
Dimensioning Packet Based Fronthaul for
Radio Base Stations: Network
Requirements and Traffic Scenarios
Ethernet Network Simulator

Master’s thesis in Engineering Mathematics and Computational Science

JIMMY ABRAHAM

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Dimensioning Packet Based Fronthaul for
Radio Base Stations: Network

Requirements and Traffic Scenarios

Ethernet Network Simulator

JIMMY ABRAHAM

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology
Gothenburg, Sweden 2022

Dimensioning Packet Based Fronthaul for Radio Base Stations: Network Require-
ments and Traffic Scenarios
Ethernet Network Simulator
JIMMY ABRAHAM

© JIMMY ABRAHAM, 2022.

Supervisors: Krister Bergh & Peter R. Karlsson, Ericsson AB
Examiner: Ottmar Cronie, Department of Mathematical Sciences

Master’s Thesis 2022
Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Authors figure.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iv

Dimensioning Packet Based Fronthaul for Radio Base Stations: Network Require-
ments and Traffic Scenarios
Ethernet Network Simulator
JIMMY ABRAHAM
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
A radio base station is a wireless communication station which is used for wireless
telephone systems such as GSM (2G), WCDMA (3G), LTE (4G) and NR (5G).
Today, radio base stations use circuit switched fronthaul and will continue to do so
for a foreseeable future, however packet based fronthaul will grow as 5G development
does as well. A radio base station for packet based communication consists of three
main units: radio, baseband and switch. The aim of the thesis was to implement a
simulator for packet based fronthaul and determine optimal network configurations
for a given traffic load through statistical methods.
First the radio base stations were defined mathematically as a small network through
graph theory. Then traffic generation was characterized as a two state Markov chain.
Algorithms were designed for both network and traffic generation. Packets inside
ethernet networks follow protocols which were simplified and adapted for radio base
stations. An algorithm was designed for simulating the packets movement in the
network. The simulator was implemented in Python and was evaluated through
statistical methods to determine the amount of time steps and iterations that is
required to have consistent simulation results. Two-sided one sample t-test showed
that five iterations for each simulation was enough to generate samples close enough
to the expected mean and 10000 time steps was shown to be enough for a low
standard deviation.
Finally, data was generated with the simulator for selected combinations of network
properties. Selected properties were number of radio units, buffer size, number
of switches, and traffic load. A Poisson regression model was used to correlate
properties of a given network with the amount of packet loss as response variable.
Results show that the D2 score is about 0.8 and prove that the model works with
a reasonably good score. This also shows that with more time and development a
more advanced analysis can be made, and better machine learning models can be
made with the help of the Ethernet Simulator.

Keywords: Packets, Ethernet Frames, eCPRI, Telecommunication, Radio Base Sta-
tion, RAN, 5G, Machine learning, Poisson Regression GLM, Fronthaul.

v

Acknowledgements
Firstly, I would like to express my gratitude and utmost thanks to my two supervi-
sors Krister Bergh and Peter Karlsson at Ericsson for all their help, guidance, and
continued support. They have been integral for the work of this thesis and their
comments have helped immensely to improve the quality of this thesis. I would also
like to thank Ericsson for giving me the opportunity and trust to pursue this thesis
and providing the necessary tools needed.

Secondly, I would like to thank my examiner Ottmar Cronie who took upon this
thesis work and who gave valuable inputs to make sure the thesis was up to standard.

Jimmy Abraham, Gothenburg, June 2022

vii

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

BBU Base Band Unit
CPRI Common Public Radio Interface
C&M Control and Management
eCPRI enhanced Common Public Radio Interface
GSM Global System for Mobile Communication, 2G
GLM Generalised Linear Method
LTE Long Term Evolution, 4G
NR New Radio, 5G
PDF Probability Density Function
UE User Equipment
RAN Radio Access Network
RBS Radio Base Station
RU Radio Unit
SFP Small Form-factor Pluggable
WCDMA Wideband Code-Division Multiple Access, 3G

ix

Contents

List of Acronyms ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background . 1

1.1.1 CPRI . 1
1.1.2 eCPRI . 2

1.2 Aim . 3
1.3 Limitations . 3
1.4 Outline . 4

2 Theory 5
2.1 Packet, Hardware and eCPRI . 5

2.1.1 Network Packet and Ethernet frame 5
2.1.1.1 Packet Switched Communication 6

2.1.2 Radio Base Station . 6
2.1.2.1 Link speed . 7
2.1.2.2 Switch Buffers . 8

2.1.3 Enhanced Common Public Radio Interface 9
2.1.3.1 ON/OFF traffic . 9
2.1.3.2 First In First Out 10

2.2 Network flow in graphs . 10
2.3 Markov Chains . 12

2.3.1 Stationary distribution . 13
2.4 Algorithms . 14
2.5 Queuing Theory . 14

2.5.1 Kendall notation . 14
2.6 One sample t-test . 15
2.7 Poisson Regression . 16

2.7.1 Performance score . 17

3 Methods 19
3.1 Investigation . 19

3.1.1 Packet . 19

xi

Contents

3.1.2 Links . 19
3.1.3 Packet latency . 20
3.1.4 Node latency and buffer size 20

3.2 The Traffic Generator . 21
3.2.1 Traffic generator algorithm . 22

3.3 Network Model . 23
3.3.1 Network Introduction and Notation 23
3.3.2 Mathematical Definitions of the Network 24
3.3.3 Networks . 26

3.3.3.1 One Edge Networks 26
3.3.3.2 Two edge Networks 27

3.3.4 Network creation algorithm 28
3.4 The Ethernet Simulator . 28

3.4.1 Execution algorithm . 29
3.4.2 Program structure . 30
3.4.3 Program implementation . 30

4 Results 31
4.1 Evaluation of the Simulator . 31

4.1.1 Validating the simulator for a small example 31
4.1.2 Number of iterations . 32
4.1.3 Number of time steps . 36
4.1.4 Summary of Evaluation . 37

4.2 Regression Analysis . 37
4.2.1 Intermediate buffer size . 37
4.2.2 Generating data . 39
4.2.3 Poisson Regression Model . 40

5 Further Research 41

6 Conclusion 43

Bibliography 45

A Appendix I

B Appendix III

xii

List of Figures

1.1 A CPRI network with one BBU and three RUs. Here each link to
each RU is displayed to have constant utilization. Figure from [3] . . 2

1.2 An eCPRI network with one BBU, one switch and three RUs. Here
each link to each RU is shown to have variable utilization. Figure
from [3] . 3

2.1 Radio base station shown with two RUs, one switch, and one BBU. . 7
2.2 ON/OFF traffic for eCPRI. Image comes from CPRI.info [3] 10
2.3 A directed graph with two nodes and one edge ei,j with an associated

cost ci,j. 10
2.4 A directed graph with three nodes: 1, 2 and 3, two edges: e1,2 and

e2,3. The traffic g1(t) enters node 1. 11
2.5 A state machine with two different states. 12
2.6 The t-distribution with k = 4 and a two-tailed rejection region for

α = 5%. Here an obtained value tobt = 1.5 is also visualized. 16

3.1 The state machine for the traffic generator. 21
3.2 a) A network with one BBU, one switch and two RU’s. Traffic going

both ways. b) Traffic going to the RUs, downlink network. c) Traffic
going to the BBU, uplink network. 24

3.3 Network notation with indices of edges, capacity and nodes. 24
3.4 1e/1i. A one edge network with one intermediate node. 26
3.5 1e/2ic. One edge network with two intermediate nodes in series. . . 27
3.6 2e/2i. Two edge network with two intermediate nodes. 27
3.7 2e/2ic. Two edge network with two intermediate nodes which are

also connected. 28
3.8 Structure of the ethernet simulator. 30

4.1 A directed graph with three nodes: 1, 2 and 3, two edges: e1,2 and e2,3. 31
4.2 Histogram of n = 1000 samples with 10 000 time steps for low traffic.

The red line shows the normal distribution of the data. 33
4.3 Histogram of n = 10 000 samples with 1000 time steps for low traffic.

The red line shows the normal distribution of the data. 34
4.4 P-values generated for 1000 time steps for samples between 5 and 200

taken. 35
4.5 P-values generated for 10 000 time steps for samples between 5 and

200 taken. 35

xiii

List of Figures

4.6 Standard deviation plotted for simulations with time steps between
1000 - 500000. 36

4.7 Standard deviation plotted for simulations with time steps between
20 000− 150 000. 37

4.8 Buffer size plotted as a function of number of sources. 38
4.9 Low traffic with a 1e/1i network with packet loss in percentage as a

function of buffer size. 39

A.1 A printout from the Ethernet Simulator. I

B.1 Low traffic with a 1e/2ic network with packet loss in percentage as
a function of buffer size. III

B.2 Medium traffic with a 1e/1i network with packet loss in percentage
as a function of buffer size. IV

B.3 Medium traffic with a 1e/2ic network with packet loss in percentage
as a function of buffer size. IV

B.4 High traffic with a 1e/1i network with packet loss in percentage as
a function of buffer size. V

B.5 High traffic with a 1e/2ic network with packet loss in percentage as
a function of buffer size. V

xiv

List of Tables

2.1 List of cables for different speeds. 8
2.2 Maximum One-Way delay definitions for different use cases [3]. 9

3.1 The different probabilities for low, medium and high intensity of traffic. 22
3.2 Stationary distributions for all traffic loads. 22
3.3 The different sets. 25

4.1 Data from a printout taken of the ethernet simulator, see Appendix A 32
4.2 Simulation run performed with 100 time steps, topology 1e/1i, High

traffic load and packet loss in percentage cutoff at 5%. 38

xv

List of Tables

xvi

1
Introduction

In the following sections the background, aim, limitations and outline are described.
In the background section, fronthaul and radio base stations are explained as well as
what role packet based communication has in this context. The aim explains what
the thesis intended outcome will be and limitations show what won’t be considered.
Lastly, the outline of the thesis is presented.

1.1 Background
Ericsson is one of the leading providers of Information and Communication Tech-
nology to service providers. One department at Ericsson, Lindholmen has its focus
to develop the software for configuration and supervision of Radio base stations
(RBS). An RBS is a wireless communication station used for wireless telephone
systems such as GSM (2G), WCDMA (3G), LTE (4G) and NR (5G). The smallest
RBS installation consists of one Baseband Unit (BBU) and one or a few Radio Units
(RU). In larger forms an RBS can contain several of both units where the size and
complexity can vary greatly for different RBS installations. The user data trans-
ferred between user equipment and backhaul1 (as well as the reverse direction) is
encoded in a carrier transmitted in the physical sector where the user equipment is
located at a specific time. BBUs and RUs communicate with each other through two
different types of Fronthaul: Common Public Radio Interface (CPRI) or enhanced
CPRI (eCPRI)2.

1.1.1 CPRI
CPRI [3] is a circuit switched communication standard where the required amount
of resources (bandwidth on the physical links) are static for a carrier. During con-
figuration of the carriers, it is possible to determine if there is enough available
capacity on each physical link, the capacity requirement is based on each networks
peak utilization. There are pros and cons with static capacity allocation: When
configuring new systems, it can be determined if there is enough resource available
straight away as well as that the new carrier will not affect anything already config-
ured in the system. It also allows very high constant throughput of data. However,
it requires the same capacity whether or not there is a payload at any time, e.g. if

1The backbone of core network, what connects it to the rest of the world
2There are other types of fronthaul as well but these two are the ones supported by Ericsson

and in the scope of this thesis.

1

1. Introduction

there are three RUs in an RBS then all three will be allocating the same amount of
resources even though they do not utilize it all at the same time. In Figure 1.1 an
RBS with a CPRI system is shown with the allocated resources in the graph.

Figure 1.1: A CPRI network with one BBU and three RUs. Here each link to each
RU is displayed to have constant utilization. Figure from [3]

1.1.2 eCPRI

eCPRI [3] is a packet switched communication standard. Here the communication
is based on ethernet packets between the units in the RBS. In this case the required
interconnect capacity for a carrier depends on the actual traffic load (amount of
user data) at a specific time. This means that the required capacity is much smaller
in low traffic scenarios compared to high traffic scenarios. This can be exploited to
reduce the dimensioning of the physical link capacity by for instance using statistical
multiplexing if several radios are sharing a link. Peak capacity can occur on rare
occasions so using statistical multiplexing means that the total allocation is less
than peak and would therefore reduce total cost of the system. This means that
statistically there is a low probability that all capacity in the system is utilized at
any given time. A packet based system would therefore allow for a more dynamic
and cheaper system, here one RU could use all capacity at certain points in time
while still allowing three RU’s to be used simultaneously at a different time if they
don’t use peak capacity. In Figure 1.2 an RBS with an eCPRI system is shown,
here the allocated resources are dynamic and differs greatly over time depending on
throughput.

The trend is toward eCPRI and its dynamic capacity based packet system even
though CPRI will be around for many years. This is confirmed in a whitepaper
produced by Ericsson where eCPRI is referred to as "...the logical evolution of CPRI
towards a new de-facto industry standard." [1].

2

1. Introduction

Figure 1.2: An eCPRI network with one BBU, one switch and three RUs. Here
each link to each RU is shown to have variable utilization. Figure from [3]

1.2 Aim
The objective is to investigate how ethernet traffic is impacted by network configura-
tion and traffic scenarios by implementing a simulator. Here a network configuration
consists of 2 switches, up to 10 endpoints (an endpoint is either a BBU or a RU) and
up to 50 traffic flows. A mathematical model will be formulated through statistics
and machine learning which characterizes packet based communication.
The aim of the thesis is to investigate how the characteristics of packet based com-
munication in an eCPRI based fronthaul depend on network properties as well as
traffic scenarios. The thesis is divided in to three main parts:

1. Mathematically define a packet based network which fulfills telecommunication
performance requirements.

2. Implement an ethernet network simulator where the behavior of small network
configurations can be investigated for different traffic scenarios using a suitable
open-source language.

3. Formulate and evaluate a model which aims to optimize a network for packet
based communication through statistics and machine learning.

1.3 Limitations
To reduce the scope of the thesis and narrow down what will be investigated some
limitations are set, the following list summarizes what will not be investigated or
developed:

• Network topologies and traffic models will be defined as simple models, no
consideration will be taken to complex internal hardware structure of any
RUs or BBUs beside simple mathematical models.

• Traffic will be considered and formulated as either low, medium or high.
• No focus will be done on the user interface of the simulator.

3

1. Introduction

• In an RBS there can be combinations of CPRI and eCPRI, however this thesis
will only3 be looking at an eCPRI fronthaul.

• Backhaul will not be considered.

1.4 Outline
In section 2, the theory which is needed for the thesis will be explained. First, hard-
ware and protocols for the different parts of an RBS is summarized and described in
an abstract level for what is important when creating a simulator. Then the relevant
parts of network flow, Graph theory and Markov chains are described. Algorithms,
queuing theory, one sample t-test and finally Poisson regression are described as
well.
In section 3, the method of each part is outlined, in total there are four main parts:
Investigation, the traffic generator, network model and, the Ethernet simulator.

• In the investigation each part of the hardware is described and any necessary
simplifications for the simulator are explained.

• The traffic generator first shows how it is based on Markov chains and the
stationary distribution is also shown.

• Then the mathematical abstraction of an RBS is described for different types
of networks, here graph theory and optimization is utilized. The different
types of networks are defined and shown with figures.

• Lastly the simulation algorithm is shown and described, here a final summary
of the programming language and some context for the implementation is
shown.

In section 4, results and discussion is presented. It begins with evaluating different
parts of the simulator. First a simple mathematical model which is calculated and
compared to the simulator to confirm it functions properly. Then the traffic gener-
ator is used to determine the different number of iterations and time steps needed
to generate trustworthy data. Data is generated, then a Poisson regression model is
used to show linearly dependence for different networks switch buffer sizes. In each
section a discussion is shown for results given.
In section 5, further research is suggested. Here suggestions and comments for what
could have been investigated further if time had permitted is shown and a list of
different concrete examples which can be further examined.
Finally, in section 6 a conclusion for all results is summarized and connected to the
aim stated in the introduction.

3Since CPRI and eCPRI parts of the fronthaul are independent, the work is still applicable for
RBSs having both types.

4

2
Theory

In this chapter the relevant theory and important specifications which are needed
to give an understanding of how to interpret the results are shown. It begins with a
short description of the hardware and specifications of the different parts of a radio
base station, eCPRI is described and relevant parts of the specification is presented.
Then network flow in graphs will be introduced as well as Markov time chains. After
that a short summary of what algorithms and queuing theory is shown. One sample
t-test is explained and finally the Poisson regression theory is presented.

2.1 Packet, Hardware and eCPRI
In this section network packets, the radio base station and relevant parts of the
eCPRI specification are outlined.

2.1.1 Network Packet and Ethernet frame
A network packet is a segmented part of a larger file or message. When data is sent
over a network it is divided into smaller parts, i.e., packets. Dividing files into packets
makes it possible for several computers or devices to communicate at the same time.
If the files wouldn’t be divided, then for the duration of sending a file no other
device could communicate during this time on the network. Each packet contain,
information where it should go and during transmission the packets can be seamlessly
interwoven with each other and utilize the network to its maximum. There are
several different types of packets depending on which protocol is being used. In this
thesis the Ethernet protocol is used which is a technology for computer networking
where the most common use are for: local area networks (LAN), metropolitan area
networks (MAN) and wide area networks (WAN) [2]. Communication for Ethernet
is done with ethernet frames [12]. The main differences between different protocols
are the sizes of the payload and how the packet is structured. Almost all protocol
standards divide the packets into two parts, the header, and the payload. A standard
ethernet frame contains the following components, listed below:

• Preamble
• Source address
• Destination address
• Payload size

– Can vary between: 46-1500 bytes

5

2. Theory

Everything but the payload is 18 bytes large so the total size of a standard ether-
net frame with its components is between 64-1518 bytes. Source and destination
addresses are important for obvious reasons. From here on ethernet frames and
packets will be used interchangeably. There are two important aspects which need
to be considered, packet loss and packet priority:

1. Packet loss is what happens when a packet is lost, i.e., removed from the
network. A packet can be removed depending on the following reasons:

• It was too late to its destination (one-way delay).
• It was corrupt (something wrong happened when sent or during trans-

mission towards its final destination).
• A link or node towards the destination can become full and therefore no

space is left and it will be discarded.
If any of the above incidents occur the packet is thrown, i.e., removed from
the system. Link capacity, node buffers and one-way delay will be discussed
further in chapter 2.1.2.1, 2.1.2.2 and 2.1.3 respectively.

2. Packet priority is how prioritized a packet is inside a node, i.e., if there are
several packets arriving at the same time the priority is used to decide which
one will be sent first. There are a multitude of different priorities in real-life
applications however for this thesis only transmission time and arrival time
will be considered.

2.1.1.1 Packet Switched Communication

Packet switching means that a packet can take any route from A (its source) to B
(its destination). There are no pre-determined paths. However there will always be
a shortest path (several1 in some cases) to take from A to B. In case of high traffic,
the shortest path can be fully utilized at the moment a packet is sent, the packet can
then take another route to its destination. If the path is short enough the packet
will arrive in time and not result in packet loss. Movement of packets over networks
can also be called flow of packets over the network.

2.1.2 Radio Base Station
A radio network is the network which you connect your phone to through e.g.,
3G or 4G, these networks are called RAN or Radio Access Network. A RAN is a
large network which can be placed in a city for example. A RAN consists of many
RBSes. The RBSes are units connected, the part studied in this thesis is one of
these networks of interconnected units called the fronthaul. The basic hardware of
an RBS is one Baseband unit, one switch, and one or several Radio units (an RBS
can contain more than these components but for the sake of the thesis these other
types of units are not important).
The following scenario describes and explains how an RBS is realized. It shows how
traffic moves through the system of an RBS:

• A phone is connected to internet and starts an app which wants to connect
to a webserver. Data-traffic is first sent through the air to the RU (this part

1There can be more than one path with same length and capacity.

6

2. Theory

is not interesting for the thesis). The RU then transmits the traffic to the
switch which in turn switches the traffic to a BBU. The BBU then processes
the traffic and sends it to the RANs core which in turn sends the traffic to the
app’s webserver. Any traffic sent from the webserver is then sent through the
same steps in reverse. Sending traffic to the core is called uplink traffic and
traffic going to the phone is called downlink traffic.

The up and downlink traffic inside an RBS can be seen as independent2 of each
other in the scope of this study. Uplink and downlink inside an RBS can therefore
be seen as two separate systems. Furthermore, in this thesis a RU, switch or BBU
can in most circumstances be regarded as equivalent and instead of writing all names
explicitly they can be referred to as a node or several nodes.
An RBS can be simple and consist of just a few nodes or be a massive installation
of up to hundreds of nodes. The topology of the network can vary depending on
switches and connections. Different RBSs can also share nodes between each other,
and they can share the switches of the fronthaul. This together ends up in a very
challenging situation when dimensioning the fronthaul network.
For this thesis an RBS will reflect the topology of one or more BBUs, one or two
switches and one or more RU’s. Below in Figure 2.1 one simple radio base station
is illustrated with one switch, one BBU and two radio units which are connected to
a mobile phone each.

Figure 2.1: Radio base station shown with two RUs, one switch, and one BBU.

In real applications both CPRI and eCPRI can be present in the same system,
however the scope of this thesis will only cover eCPRI networks.

2.1.2.1 Link speed

Between BBU, switch and RU there are links which can be either radio waves or
physical (electrical or optical) cables. This thesis will only be describing and ana-
lyzing physical links, the word ’physical’ will be omitted henceforth. A link contains
three different parts:

• An electrical or optical transmitter.
• An electrical cable or optical fiber (the same cable or fiber is usually used for

sending data in both directions).
2In the RAN software stack there is dependencies between the payload of uplink and downlink

data, but this can be ignored when analyzing the fronthaul network as this thesis does.

7

2. Theory

• An electrical or optical receiver.
The transmitter and receiver are often mounted in a component called Small Form-
factor Pluggable (SFP) which is connected to the BBU, switch and radio. The
prices for SFPs are about the same in the 10-50Gbps range however the price for a
100Gbps is about five times [15] the amount of the other slower ones. The required
link speed is dependent on the RU it is connected to. Having higher link speed than
what the RU can handle makes the link unnecessarily expensive or any lower link
speed is not making full use of the RU. Which leads to the following conclusion: the
RU and connected link have the same speed capacity.
The capacity of an RU also has higher cost for higher throughput. But a simplifica-
tion for this thesis have been done and generalized that higher speeds are much more
costly than lower speeds of the links. Only a few different speeds are considered,
these are listed in the Table 2.1 below.

Link speed [Gbps]
10
25
50
100

Table 2.1: List of cables for different speeds.

The links considered in this thesis are optical and here the speed of light travels at
2/3 of its speed in vacuum.

2.1.2.2 Switch Buffers

A buffer is defined as something to reduce shock of fluctuation, here it is against
the possibility of having to throw away packets. Every RU, switch and BBU in the
system have the possibility to buffer packets in case the outgoing link does not have
the capacity to transmit all packets at once. Mainly it is the switch which will buffer
packets, however the possibility exists that the RU or BBU before a switch will have
to buffer packets as well. The buffer size is similarly as link capacity, a question of
price, the bigger the buffer the more costly it is. The size of the buffer is however
not the only issue, storing packets for too long will result in packet loss discussed in
2.1.1. There are two different types of traffic:

1. Best effort. In this case, the arrival time of the traffic is of small importance.
The user can accept that it takes some time to download a large file.

2. Real time traffic. In this case, it is important that the data arrives in a
timely manner. Watching a movie where the picture is freezing all the time
is annoying. However, there are even more critical situations like if you are
remotely controlling a machine or vehicle. Here it can be a question of life and
death that the information is received at the correct time.

When it comes to buffer sizes of the different nodes (RU, BBU and switch) according
to ESnet [13]: "The general rule of thumb is that you need 50ms of line-rate output
queue buffer, so for for a 10G switch, there should be around 60MB of buffer. This

8

2. Theory

is particularly important if you have a 10G host sending to a 1G host across the
WAN". Which translates to approximately:

60MB

1518B = 60 ∗ 106

1518 ≈ 39525 packets

However, looking at a few different switches [14] the range is anything between
8MB to 128MB. Which translates to approximately 5270 to 84321 packets. Note
that these numbers are viable for a general computer network. A general computer
network is traditionally used for best effort traffic, moving non-timing critical data
between different nodes. So, for best effort traffic high delay is acceptable, however
in real time traffic low delay can be critical depending on the application. Delay
times over networks will be discussed in next chapter 2.1.3.

2.1.3 Enhanced Common Public Radio Interface
eCPRI [3] enables the packets to take any route to its destination in similarity to the
Ethernet protocol. The packets can also utilize the full capacity of links compared
to CPRI. There are some requirements in eCPRI which needs to be adhered to, for
this thesis the main one is the delay from sender to receiver called a One-Way delay
measurement and is defined as:

tD = (t2 − tCV 2)− (t1 + tCV 1) (2.1)
Here t2 is the arrival time at its destination and t1 is the time it was sent from
its source. As an abstraction tCV 1 and tCV 2 can be seen as the internal delay time
it takes for data to move inside the receiving and sending node respectively. The
values for some latencies for the one-way delay measurement from high to low is
defined in Table 2.2. High also has several of its own classes which are seen in the
same table classified as high25-high500.

Table 2.2: Maximum One-Way delay definitions for different use cases [3].

Latency Max One-way delay Use case
High25 25 µs Ultra-low
High100 100 µs NR performance
High200 200 µs Fiber lengths of 40 km
High500 500 µs Large latency installations

Medium 1 ms User case (slow)
C & M plane (fast)

Low 100 ms C & M plane

The larger delays in 2.2 above (medium and low) are viable for a general computer
network using best effort traffic, they are kept here as a point of reference.

2.1.3.1 ON/OFF traffic

The traffic in eCPRI follows an ON/OFF pattern, it either sends all traffic inside
a time frame and then nothing is sent until next ON/OFF period. In the following

9

2. Theory

Figure 2.2 the ON/OFF traffic pattern is displayed.

Figure 2.2: ON/OFF traffic for eCPRI. Image comes from CPRI.info [3]

2.1.3.2 First In First Out

There are different ways of prioritizing packets in an eCPRI system, the most com-
mon and simplest one is First In First Out (FIFO). It works by always prioritizing
the first arrival to be sent next, i.e., the packet which arrived first is sent first.

2.2 Network flow in graphs
To model an RBS mathematically as a network, graph theory is utilized. Graphs
are a way to mathematically model pairwise relations between objects. Connections
between nodes in a graph can either be directed or undirected, direction is usually
denoted by an arrow when visualizing graphs. Below in Figure 2.3 the system is
visualized, here the nodes i and j are connected with edge ei,j where the index
corresponds to efrom,to. There is also an associated variable ci,j for each edge, which
can be anything correlating to its edge, some examples are: cost, capacity or price.

Figure 2.3: A directed graph with two nodes and one edge ei,j with an associated
cost ci,j.

Network flow [11] over graphs is mathematically explained in three types of con-
straints: Capacity constraint, conservation conditions and non-negativity. However
the end node or sink would be excluded from the conservation since it is the end
node and everything entering that node will stay there3. In a similar fashion the
entering node will have an ingoing flow which won’t be coming from a node but

3In real applications the end node would in turn send the packets to either the backhaul or UE.

10

2. Theory

is the generated traffic g(t), more on this in chapter 3.2. Below each constraint is
explained and displayed mathematically:

Let V = (N,E) be a network with N nodes and E directed edges. Here s, t ∈ N
are the source and the sink of V respectively, each edge has an associated cost or
capacity ci,j. The flow fi,j can be any number as long as the following constraints
hold.

1. Capacity: The flow over an edge cannot exceed a value ci,j.

fi,j ≤ ci,j (2.2)

2. Conservation: Sum of flows going into a node must leave that node. Excluding
the sink t as leaving node and source s as entering node.∑

i∈V \t
fi,j =

∑
k∈V \s

fj,k (2.3)

3. Non-negativity: The flow cannot be negative.

fij ≥ 0 (2.4)

For this thesis the flow will be packets which can be described as an integer value of
1 for each packet in a flow. There is also a time aspect t which is discrete. For each
time step a certain number of packets is sent to a source node and then put in to
the flow of the network. Hence the time t is introduced as a variable on the flow as
follows: fi,j(t). Since for each time step there can be accumulation of packets and
there can be different amounts in different time steps the buffer Bi(t) is introduced.
Each node i has its own buffer Bi. Each buffer Bi cannot be larger than the given
buffer size of bi for each buffer.

Figure 2.4: A directed graph with three nodes: 1, 2 and 3, two edges: e1,2 and
e2,3. The traffic g1(t) enters node 1.

Using the graph in Figure 2.4 an example of the system in use is shown below in
equation 2.5. Here the traffic g1(t) sends one packet each time step (Equation 2.5e)
however the simulator utilizes a Markov chain, more on this in the next chapter 2.3.

B1(t) = B1(t− 1) + g1(t)− f1,2(t),
B2(t) = B2(t− 1) + f1,2(t)− f2,3(t),
B3(t) = B3(t− 1) + f2,3(t),
Bi ≤ bi, i = 1, 2, 3,
g1(t) = 1,
fi,j, Bi ≥ 0, ∀ i, j = 1, 2, 3

(2.5a)
(2.5b)
(2.5c)
(2.5d)
(2.5e)
(2.5f)

11

2. Theory

Equation 2.5a is the amount of packets in the buffer in current time step, adding ar-
riving packets and subtracting leaving packets from the buffer. This pattern repeats
for Equations 2.5b and 2.5c, beside there is no leaving packets in the last Equation.
Equation 2.5e shows how many packets are sent in each time step, this can be any
positive integer. Equation 2.5f states the non-negativity restraint for all flows and
buffers.

2.3 Markov Chains
A stochastic processes [4] is the collection of some random variables which follows a
pattern and where the variables change within the state space, usually one variable
is time. State space is the mathematical values of which the stochastic process can
take, this can be all real values, just integers or some restricted binary space. A
common and simple stochastic process is the Markov chain which is a stochastic
process that describes events which depend on each other in a sequence.
A Markov chain [6] can be described as the weather for two different conditions:
Raining and Not raining4. So, the weather today gives a certain probability for
what the weather will be tomorrow, this is sequence which is only dependent on
the former state. This can then be seen as a state machine where each state has a
certain probability of moving to a different state or staying in the same state. Below
in Figure 2.5 a state machine with two states are shown.

Figure 2.5: A state machine with two different states.

The definition for a general Markov Chain is the following: The stochastic process
{Xn, n = 0, 1, . . .} with state space I is called a discrete-time Markov chain if, for
each n = 0, 1, . . .,

P {Xn+1 = in+1 | X0 = i0, . . . , Xn = in} = P {Xn+1 = in+1 | Xn = in} (2.6)

where the Markov property is satisfied which states that the next state depends of
the current state. However, looking at time-homogeneous transition probabilities,
the following assumption is taken:

4Commonly known as regular weather in Gothenburg

12

2. Theory

P {Xn+1 = j | Xn = i} = pij, i, j ∈ I (2.7)

Here pij is called the one-step transition probabilities and satisfies equation 2.8.

pij ≥ 0, i, j ∈ I, and
∑
j∈I

pij = 1, i ∈ I. (2.8)

Below in equation 2.9 is an example of an one-step transition matrix with two
states and I =: {1, 2}, using the example from Figure 2.5 then P (A) = 0.70 and
P (B) = 0.55.

P =
(

0.70 0.30
0.45 0.55

)
(2.9)

2.3.1 Stationary distribution
The stationary distribution of a Markov chain is the distribution which it goes
towards and says how much time the chain spends in one state overall, which also
could be interpreted as the total intensity of one state. Below in equation 2.10 the
general distribution is shown.

π(n) =
[
P (Xn = 0) P (Xn = 1) · · ·

]
(2.10)

Considering a finite Markov chain {Xn, n = 0, 1, 2, . . .} whereXn ∈ S = {0, 1, 2, · · · , r},
assuming the chain is irreducible and aperiodic, then Equation 2.11 below has a
unique solution.

π =πP∑
j∈S

πj =1 (2.11)

The limiting distribution of Equation 2.11 is the following:

πj = lim
n→∞

P (Xn = j | X0 = i) , for all i, j ∈ S

Given a two state transition matrix P as:

P =
[

1− a a
b 1− b

]

then the limiting distribution for any two state chain is shown below in equation
2.12.

π =
[
π0 π1

]
=
[

b
a+b

a
a+b

]
(2.12)

13

2. Theory

2.4 Algorithms
An algorithm is a well-defined procedure which follows a set of rules usually given an
input to solve a problem and then returning an output [5]. Algorithms can be viewed
as tools for solving computational problems which are well-defined. Algorithms
are not dependent on programming language and a common way of conveying an
algorithm is by pseudo-code. Below in algorithm 1 an example pseudo-code is shown,
here the input x is used to randomize a list of x numbers and then square them and
returns the squared list.

Algorithm 1 Example pseudo-code
Input: n
X := Set of n randomized numbers
for x ∈ X do

Add x2 to Y
end for
return Y

Pseudo-code should only convey the method of an algorithm, an abstraction of the
idea which can be applied to any suitable way of solving it.

2.5 Queuing Theory
Queuing theory [6] is the study of mathematically defining waiting lines and queues.
Using customers and servers to explain the basics: Customers arrive at a server
with an intensity λ, i.e., the average amount of customer per time unit. When a
customer arrive at a server they either need to wait in line or leave the system. A
customer is served in a timely manner, in average b = 1/µ time units. Finally, the
customer leaves the server. There are multiple different ways of defining queues and
therefore there are different stochastic processes to define them. To define a queuing
network can be complex and therefore there is a notation defining them, the Kendall
notation.

2.5.1 Kendall notation
Kendall notation [10] is a standard way of describing different queuing models. The
notation is written as: A/S/c/K/N/D here the different parts stand for:

• A: The arrival process
• S: The service time distribution
• c: Number of servers
• K: Number of places in the queue
• N: The calling population
• D: The queue’s discipline

Most common use of the system only includes the first three and one common queue
is M/M/1 where M is for Markov chain for both arrivals and service time.

14

2. Theory

2.6 One sample t-test
One sample t-test [9] is used for small samples and under the assumption that
the population distribution is normal. The t-distribution is a distribution which
depends on the sample size given, below in Equation 2.13 the density function of
the t-distribution is shown

f(x) =
Γ
(
k+1

2

)
√
kπΓ

(
k
2

) (1 + x2

k

)− k+1
2

, k ≥ 1 (2.13)

Here the parameter k, is the number of degrees of freedom which reflects the sample
size - 1 and Γ(x) the gamma function. The cumulative distribution function (cdf)
is given in Equation 2.14 below.

F (t) =
∫ t

−∞
f(x)dx (2.14)

The one sample t-test is normally used to test a hypothesis for the population mean.
Hypothesis testing is a way of trying two hypotheses which are designed to match
the given data properly. We consider two different hypotheses: null-hypothesis H0
and the alternative hypothesis H1. For a two-tailed one sample t-test the hypothesis
test becomes:

H0 : µ = µ0

H1 : µ 6= µ0

where µ0 is the null hypothesized population mean of the population and µ is the
true population mean. Below in equation 2.15 the t-test statistic is shown.

tobt = x̄− µ0

sx̄
(2.15)

Here x̄ is the sample mean and sx̄ is the estimated standard error. Below in equation
2.16 the estimated standard error is shown.

sx̄ = s√
n

(2.16)

Here s2 is the sample variance and, n the sample size where s2 is shown below in
equation 2.17.

s2 = 1
n− 1

∑
(xi − x̄)2 (2.17)

The null hypothesis H0, is then tested using the p-value which is defined as the
"Probability of obtaining a sample more extreme than the ones observed in the data,
assuming H0 is true". Thus, the null hypothesis is rejected if the p-value is less than
the given α. Here α is the significance level and says how big the rejection region is;
usually, α is represented as 100(1−α)%. α usually is 5% or lower depending on how
accurate the test needs to be. In Figure 2.6 below the two-sided rejection region

15

2. Theory

for α = 5% and t-distribution with k = 4 is visualized. Here an obtained value of
tobt = 1.5 is shown as well, for which the null-hypothesis would not be rejected.

Figure 2.6: The t-distribution with k = 4 and a two-tailed rejection region for
α = 5%. Here an obtained value tobt = 1.5 is also visualized.

The p-value is obtained through getting the total area left of −|tobt| and right of
|tobt| value under the curve in the t-distribution. The two-sided p-value is obtained
using Equation 2.18 below where the t-distributions cdf is utilized:

p-value = 2 ∗ (1− F (|tobt|)) (2.18)
Equation 2.18 is valid when the distribution used for the p-value is symmetric around
zero, which the t-distribution is.

2.7 Poisson Regression
A Poisson regression model is a generalized linear regression model (GLM). A GLM
works by letting the response variable y be a function of a linear combination of
the covariates/predictors and we refer to the function in question as a link function.
Depending on how the response data looks some different distributions can be cho-
sen. One of these is the Poisson distribution which uses the log function as the link
function. There are three components to a GLM and for a Poisson regression model
they are the following:

1. Distribution of Y : Poisson
2. Link function: log(µ)
3. Linear predictors: β0 + β1x1 + β2x2 + . . .

Below in Equation 2.19 the probability density function (pdf) for the Poisson dis-
tribution is shown. Here µi is the expected mean and variance for the ith response.

16

2. Theory

P (Yi = ki) = e−µiµki
i

ki!
, ki = 0, 1, . . . , (2.19)

Hence the linear predictor becomes the following Equation 2.20. Note that µi can
have different values for different values of X. Taking the logarithm of Equation
2.20a it becomes 2.20b, below both Equations are shown.

log(µi) = β0 + β1x1 + β2x2 + · · ·+ βnxn (2.20a)
µi = e(β0+β1x1+β2x2+···+βnxn) (2.20b)

The response variable µi, can be a count or a rate with explanatory variables X =
(x1, x2, . . . , xn) which can be categorical or continuous. The aim is to estimate the
parameters/coefficients βi, i = 1, 2, . . . , n to obtain a fitted model for the given data.
This is done by an iterative re-weighted least square method through the following
steps:

• First the working dependent variable:

zi = ηi + yi − µi
µi

(2.21)

Here ηi = log (µi) is the link function.
• Then the iterative weights:

wi = 1/
[
µi

1
µ2
i

]
= µi (2.22)

• Then finally β is estimated through Equation 2.23. HereX is the model matrix
(from data), W the diagonal matrix of weights, and z the working dependent
variable given in Equation 2.21:

β̂ = (X ′WX)−1
X ′Wz (2.23)

• These steps are then repeated until β converge.

When β has converged the Poisson regression model becomes Equation 2.24 with
the expected mean µ for the set of explanatory variables X.

µ = e(β0+β1x1+β2x2+···+βnxn) (2.24)

2.7.1 Performance score
Scoring the Poisson regression model is done using the D2 score [8] which is the
fraction of deviance explained, it is a form of skill score and is a generalization of
R2. It is computed according to the following Equation 2.25:

17

2. Theory

D2(y, ŷ) = 1− dev(y, ŷ)
dev (y, ynull) (2.25)

Where ŷ is the predicted value of given input y, ynull is the optimal predicted value.
dev is the deviance which is calculated as the following:

dev(y, ŷ) = 1
nsamples

nsamples−1∑
i=0

2 (yi log (yi/ŷi) + ŷi − yi)

Where:yi ∈ y, i = 1, 2, ..., nsamples and ŷi ∈ ŷ, i = 1, 2, ..., nsamples.

Here nsamples is the number of data points for which the deviance is calculated,
i.e., the number of test samples for which the score is to be calculated with. The
maximum score is 1 where the model would predict correctly on all given inputs and
the lowest score can be −1, i.e., it can be equally bad as good. If the model would
predict ynull while disregarding the input features the D2 score would become 0.

18

3
Methods

The thesis work was divided in to four main parts: Investigation, the traffic genera-
tor, network model, and the Ethernet simulator. Investigation clarifies all different
relevant parts of the RBS and the protocol used for packets. Latency magnitudes
are defined, and the nodes buffer sizes and internal latency are defined. The traf-
fic generator is described as a Markov chain and its stationary distribution is also
shown. The network model is defined with graph theory. Finally, the ethernet sim-
ulator is briefly described and the algorithm which was implemented is described,
some programming implementation is shown here as well.

3.1 Investigation
In this section all the parts which was discussed in section 2.1 will be formalized
and modified for use in the simulator. First a packet structure fitting the simulator
will be defined, then link speeds will be used to define the length of a time frame
inside the simulator. Then the buffer sizes will be defined for the simulator, lastly
delay times are briefly summarized.

3.1.1 Packet
Ethernet frames is the basis for the simulator packets, it will contain the three parts
mentioned in 2.1.1: Source and destination address and payload. Two additions will
be made: the transmission and arrival time for each packet. These will enable the
simulator to determine how long it takes for each packet to reach its destination.
If the transmission time is too long it will be useless for the RBS and will then be
discarded see 2.1.1. The packet will then contain the following five components:

• Source address.
• Destination address.
• Packet size; here each packet will be normalized as size 1.
• Transmission time.
• Arrival time.

3.1.2 Links
For simplicity’s sake a link will only contain one packet per time frame, however
since there are different speeds of links a base line needs to be set. This base line
will be the fastest link of 100Gbps (see 2.1) and the length of the link is therefore

19

3. Methods

something that reflects that. So given the 2/3 of speed of light for a 100Gbps link
with one packet of 1518B and v = 2/3 ∗ 299792458 the length of the link becomes:

L = Packet size][Byte]
[Linerate][Bbps]/v[m/s] = 1518[Byte]

100(109/8)[Byte/s]/v[m/s] = 1518
62.54... [m] ≈ 24.3m

and length of a time step, i.e., simulation step, is the following:

t = L[m]
v[m/s] ≈ 0.12µs

So, for each link with one packet the length will be 24.3 meters and the time frame
for this length is 0.12 µs. Hence for the speed of the other links (50, 25, 10) a time
taken property is introduced. Which will increase the time it takes for a packet to
be sent from one node until it is received on the other end of the link. This can in
turn be specified as a simple function:

Time taken = 100
Speed

[t]

So, for 50, 25 and 10Gbps links the time taken will be 2, 4 and 10 respectively.
There will also be the possibility of adding different length for links as well using a
different principle, since adding length to a link will enable it to buffer more packets,
so if a link is 2L then that link will have a buffer size of 2. Essentially buffer sizes
for the links are a function with the multiple x of length L = 24.3:

Link buffer size = x[L]

3.1.3 Packet latency
The latency is calculated according to Equation 2.1 and with the given latency
length for tCV 1 and tCV 2 as 1 the equation becomes:

tD = (t2 − tCV 2)− (t1 + tCV 1) = (t2 − 1)− (t1 + 1) (3.1)
There were several different delay times in Table 2.2 however only a few are im-
portant for the simulator, for this thesis the important ones are between 25µs and
200µs from Ultra-low to High200. As NR (5G) requirement is a one-way delay of
100µs is the most important. The possibility of adding longer fiber lengths for the
network 200µs is also considered. Different simulations can be setup using these
different constraints depending on which sort of network is tested.

3.1.4 Node latency and buffer size
The node latency tCV 1 and tCV 2 in Equation 2.1 from chapter 2.1.3 is as mentioned
before the internal latency of a node. For the thesis node latency is approximated
to one time frame. This is based on the fact that it takes some time to process data
inside the nodes. As described earlier the internal behavior on the switches will not
be modeled in detail, for this thesis one time frame is a good approximation.

20

3. Methods

Stated in the section 2.1.2.2 the buffer sizes of switches can range from 5270 - 84321
packets for each buffer. The rule of thumb stated that the accumulated amount for
50 ms should be utilized which is approximately 39525 packets. However, since this
simulator is designed with a NR network in mind, for which the maximum One-Way
delay is between 25 and 200 µs a 50 ms buffer would not make any sense. If the
buffer is 50 ms large for a network with a maximum One-Way delay of 200 µs then,
any packets added after 200 µs would have to be thrown when they arrive. Since
the delay would be at least 200 µs or greater than what is allowed for the One-Way
delay. The three important buffer sizes are shown below:

25ms⇒ 25/0.12 ≈ 208 packets (3.2)
100ms⇒ 100/0.12 ≈ 830 packets (3.3)
200ms⇒ 200/0.12 ≈ 1660 packets (3.4)

3.2 The Traffic Generator
The traffic generator is a state machine with on/off traffic. The traffic generator
will either send all- or not send all packets at current time frame with a given
probability, hence the traffic generator is a state machine with two states: Send and
not send. Below in Figure 3.1 the state machine is visualized for the two states
with probabilities P(A) and P(B).

Figure 3.1: The state machine for the traffic generator.

The different probabilities are divided in to four possible outcomes given the two
states:

P (A) : Not send, traffic was not sent in previous time frame.
1− P (A) : Send, traffic was not sent in previous time frame.

P (B) : Send, traffic was sent in previous time frame.
1− P (B) : Not send, traffic was sent in previous time frame.

Given the state machine the traffic generated has different load depending on the
probabilities of sending and not sending in the two states. There are three different
traffic loads: low, medium, and high. So for each given intensity there is a given
probability of sending or not sending p packets at the current time frame. The
probabilities P (Ai) and P (Bi) can be seen in Table 3.1 below and are based on
measurements on real networks.

21

3. Methods

Table 3.1: The different probabilities for low, medium and high intensity of traffic.

P (X) Low Medium High
P (Ai) 0.96 0.92 0.68
P (Bi) 0.84 0.83 0.91

Using the different probabilities for traffic loads the stationary probabilities can then
be calculated using Equation 2.12. Calculations for the low traffic distribution is
shown below.

πLow1 = a

a+ b
= 1− 0.96

1− 0.96 + 1− 0.84 = 0.2

Since the equality πLow0 + πLow1 = 1 holds, the second distribution is calculated as:
πLow0 = 1 − 0.2 = 0.8. In Table 3.2 below the different distributions for all traffic
loads have been calculated using the values from Table 3.1. In the table the indices
are changed to: π0 = πTraffic loadNot send and π1 = πTraffic loadSend .

Table 3.2: Stationary distributions for all traffic loads.

State i=Low i=Medium i=High

πiNot send 0.8 0.68 0.22

πiSend 0.2 0.32 0.78

3.2.1 Traffic generator algorithm

Since the state machine will be implemented in a program an algorithm was designed.
Below in algorithm 2 the pseudo-code is outlined.

22

3. Methods

Algorithm 2 The traffic generator algorithm
procedure traffic-generator(T, P) . T: time steps, P: State probabilities

G := List of zeros, T indices long
State = Not send
for i = 1 to T do

R = random float ∈ [0, 1]
if State = Not send then

if R ≤ P (Send|Not send) then
Add Packet to G[i]
State = Send

else
Do nothing . R ≤ P (Not send|Not send)
State = Not send

end if
else if State = Send then

if R ≤ P (Send|Send) then
Add Packet to G[i]
State = Send

else
Do nothing . R ≤ P (Not send|Send)
State = Not send

end if
end if

end for
Return: G . G is the generated traffic

end procedure

3.3 Network Model
In Radio Base Stations there are endless possibilities for different configurations and
in this chapter the goal is to define the notation of and to make a clear definition of
the different topologies that will be considered in this thesis.

3.3.1 Network Introduction and Notation
Below in Figure 3.2 a simple network is illustrated. 3.2a is shown with traffic going
both from and to backhaul on the left hand side and User Equipment (UE) on the
right hand side. Since uplink and downlink traffic are independent of each other
two different networks can be constructed as can also be seen as networks 3.2b and
3.2c. These two networks together are equivalent to network 3.2a. Here the nodes:
Source, Intermediate and Destination are introduced. Links will be called edges for
the abstraction of networks.
The edges in network 3.2b and 3.2c will be referred to as ei,j where the indices i
and j are defined as from node and to node respectively; i.e., efrom,to. The edges are
directed and each have a capacity ci,j associated with it. Furthermore, the Source,

23

3. Methods

Figure 3.2: a) A network with one BBU, one switch and two RU’s. Traffic going
both ways. b) Traffic going to the RUs, downlink network. c) Traffic going to the
BBU, uplink network.

Intermediate and Destination nodes will be referred to as si, wj and dk respectively.
The indices i, j and k are independent non-negative integers, more on this in section
3.3.2. See Figure 3.3 below for reference.

Figure 3.3: Network notation with indices of edges, capacity and nodes.

There are two cases with different characteristics of topologies which will be focused
on in this thesis. Case one is defined as a one edge network where each source and
destination node only has one edge. Similarly case two is defined as a two edge
network where each source and destination node has two edges. One and two edge
only refers to the source and destination nodes, in between these two nodes one (or
several) intermediate node is positioned and doesn’t necessarily only have one or
two edges, this will be discussed further in 3.3.3.1 and 3.3.3.2.

3.3.2 Mathematical Definitions of the Network

First the sets which will be used are defined in Table 3.3 below. The constants m,
n and h are parameters which describe the configuration and can be seen as input
variables, l is defined in Equation 3.6 below.

24

3. Methods

Table 3.3: The different sets.

G := {g1, . . . , gl} Set of l traffic generators
M := {s1, . . . , sm} Set of m source nodes
N := {d1, . . . , dn} Set of n destination nodes
H := {w1, . . . , wh} Set of h intermediate nodes
P := {p1, . . . , pl} Amount of packets to be sent for each generator
B := {b1, . . . , bm+n+h} Buffer size for each node in the network

l, m, n and h ∈ Z+

To define a network set either n for a downlink (3.2b) or m for an uplink network
(3.2c) as ≥ 2. Then either m or n will be 1 (whichever wasn’t set). In Equation 3.5
below the definition is shown: {

if m ≥ 2, n = 1,
if n ≥ 2, m = 1 (3.5)

Number of traffic generators l are defined as the maximum of either m or n:

l = max{m,n} (3.6)

The entire system aims to generalize a network for an RBS. First the traffic which is
generated for gi(t) will belong to certain source and destination nodes. If l = m then
traffic gi(t) will be sent from node si and the sum of all traffic gi(t) will be arriving
to node d1. However if l = n then it is reversed, i.e., the sum of traffic gi(t) is sent
from source s1 and each traffic gi(t) is sent to a destination node di. The buffer
Bi(t) is defined for each node as the incoming traffic gi(t) or fj,i(t) (depending if
source or intermediate) plus what was kept from previous time step Bi(t− 1) minus
what is leaving for the current time step fi,j(t). Below in the equation system 3.7
and 3.8 network l = m and l = n are defined mathematically. Below each equation
system a description is listed for each row of equations in respective system.

l = m :

Bi(t) = Bi(t− 1) + gi(t)− fi,j(t), i ∈M, j ∈ H,
Bi(t) = Bi(t− 1) +

∑
i∈H

fj,i(t)− fi,d(t), i ∈ H, j ∈M,

Bd(t) = Bd(t− 1) + fj,d(t), j ∈ H,
Bi ≤ bi, i ∈M ∪N ∪H
gi(t) = pi, i ∈M
fi,j, Bi ≥ 0, ∀ i, j ∈M ∪H ∪N

(3.7a)
(3.7b)

(3.7c)
(3.7d)
(3.7e)
(3.7f)

• 3.7a describes the buffer for each source node i in the network.
• 3.7b describes the buffer for all intermediate nodes.
• 3.7c describes the buffer for the singular destination node.
• 3.7d limits the size of the buffers.
• 3.7e is the p amount of packets coming into the system which.
• Equation 3.7f is the non-negativity requirement.

25

3. Methods

For an l = n network the first three equation differs, the equations for this network
is listed below in Equation system 3.8.

l = n :

Bs(t) = Bs(t− 1) +

∑
k∈N

gk(t)− fs,j(t), j ∈ H,

Bi(t) = Bi(t− 1) + fs,i(t)− fi,j(t), i ∈ H, j ∈ N,
Bi(t) = Bi(t− 1) + fi,j(t), i ∈ N, j ∈ H

(3.8a)

(3.8b)
(3.8c)

The difference between 3.7 and 3.8 is small beside for the first equation, 3.7a. The
differences are described below.

• 3.7a is the sum of all traffic going in to the buffer for the singular source node.
• 3.8b here the indexes changes slightly to accommodate for the differences for

the other two equations.
• 3.8c describes all the different destination nodes i instead of a singular desti-

nation node in the former equation.

3.3.3 Networks
Here the different one edge networks which will be used are introduced. In an
attempt to make referencing the different networks easier a system is introduced.
This system is based on Kendall’s notation and uses a a/b/c notation. Here it will
be defined as ae/bi where a and b are defined as:

• a: The number of edges going from source and to destination nodes.
• b: The number of intermediate nodes, some special cases will be noted:

– c: for connected intermediate nodes

Example of the system in use:
Using the system for a "one edge, one intermediate node" network, its name would
be: 1e/1i network. This exact network can be seen in Figure 3.4 in subsubsec-
tion 3.3.3.1.

3.3.3.1 One Edge Networks

Below in Figure 3.4 the basic case is shown with one intermediate node and m or
n amount of source nodes or destination nodes respectively. This network will be
referred to as 1e/1i.

Figure 3.4: 1e/1i. A one edge network with one intermediate node.

26

3. Methods

In figure 3.5 below the network has an extra intermediate node in series. This
network is interesting when there’s exceedingly long distances between RUs and the
BBU. The capacity on the edge ew1,w2 is usually much higher than the other edges
in the network. This network will be referred to as 1e/2ic.

Figure 3.5: 1e/2ic. One edge network with two intermediate nodes in series.

3.3.3.2 Two edge Networks

Here the two edge networks which will be used are introduced. Below in Figure 3.6
a network with two intermediate nodes is shown, here the traffic has two possible
routes to take to its destination node. The added intermediate node w2 enables
redundancy in the network i.e., the capacity can be exceeded for one edge without
losing packets between source and destination node. This network will be referred
to as 2e/2i.

Figure 3.6: 2e/2i. Two edge network with two intermediate nodes.

In Figure 3.7 a network with two intermediate nodes and a connection in between
them is shown, here the traffic has four possible routes to take to its destination
node. Similarly to the 2e/2i network, this network enables further redundancy
within the intermediate nodes. This network will be referred to as 2e/2ic.

27

3. Methods

Figure 3.7: 2e/2ic. Two edge network with two intermediate nodes which are
also connected.

3.3.4 Network creation algorithm

The network is general and the only requirement here is that it returns edges given
a template. The template is one of the intermediate connection models given in
chapter 3.3.3. A node connection is defined as whichever node is directly connected
to another one. The general formulation can be seen below in algorithm 3. M,N
and H in the algorithm below are all defined as sets in Table 3.3 above.

Algorithm 3 Network creation algorithm
Input: M, N, H, template . Template: Intermediate template
M := Set of m source nodes
N := Set of n destination nodes
H := Set of h intermediate nodes
for i = 1 to max{M, N}, given template do

Create edge
Append to V

end for
return V

3.4 The Ethernet Simulator

First the execution algorithm is presented which is the final step for the simulator.
Then an overview of the program structure is shown. The interaction and design of
the three main parts of the simulator is explained as well. Finally, a brief overview
of how it was implemented in Python.

28

3. Methods

3.4.1 Execution algorithm

The algorithm was designed using the information in the investigation, chapter
3.1. Below in algorithm 4 the pseudo-code is shown for the execution of a packet
based fronthaul. The network creation and traffic generator are both inputs for the
execution algorithm and are noted as V and G in the algorithm respectively.

Algorithm 4 Execution algorithm
Input: V, N, T, L . V: Network, N: generators, T: timesteps, L: Traffic-load
A := Empty list . Nodes and edges with ≥ [one packet]
G := traffic-generator(N, T, L) . Generated traffic
t := 0 . Time step t
while t ≤ T or A 6= empty do

A ← Get active nodes & edges ∈ V
Sort A in descending order, with destination nodes first
for i=0 to length(A) do

P ← First packet in A[i]
C ← Get connection for packet . Node or edge
if C 6= full then

Move P from A[i] to E
Set C to active
if C is P’s destination node then

K ← Get [time of arrival] - [time of sending] . Latency
if K ≥ [Latency req.] then

Discard P . Packet loss, latency to high
end if

end if
else if A[i] = Node then . Keep in node buffer

Do nothing
else if A[i] = Edge then

Discard P . Packet loss, buffer full
end if
if A[i] is empty then

set A[i] to inactive
end if

end for
if G[t] 6= empty then . Initiate traffic from traffic-generator

for i=0 to length(G[t]) do
PG ← Get packet i from G[t]
Move PG from G[t] to PG source node
Set source node to active

end for
end if
t += 1

end while

29

3. Methods

3.4.2 Program structure
The program has an object-oriented design. Each major part was split into its own
separate class. The classes are network creation, traffic generator and execution.
Each of them is combined in the simulator for which everything is run through.
Below in Figure 3.8 an illustration of the structure is shown.

Figure 3.8: Structure of the ethernet simulator.

3.4.3 Program implementation
The ethernet simulator was implemented using Python and manipulating dictionar-
ies for both the network and packet generation. The reasoning for using Python was
several:

• Easy to implement something that will work fast.
• Former knowledge as well as supervisors at Ericsson having knowledge of the

language.
• Several modules are available that enables easy addition to the simulator (such

as numpy, sci-kit, matplotlib etc.).
Python has a data structure called dictionary, which is an array with indexing for
each value. Where an example would be the following for two keys: dict={"key
1": value, "key 2": value}. The use of dictionary made it easy to create
both network and packets, so each node was defined as a key with some different
properties and space for its current packets. In a similar fashion, each packet had its
property for addresses as well as the other properties discussed in chapter 3.1.1. So,
the end result will be easy to read as well as easy to get information about content
in whatever node buffer at any given time frame.
The simulator was designed as three different classes: Network, traffic generator and
execution. Each of these classes run together through the simulator class and ends
with saving all relevant data to a csv file.

30

4
Results

First an evaluation of the ethernet simulator is shown, using equations and output
from the simulator. Then some tests are conducted to confirm a good enough number
of iterations and number of time steps for generation of data, afterwards the findings
are summarized. After that a regression analysis is done, first it is determined and
motivated what sort of data is to be generated. Then a Poisson regression model is
used to fit the data and its effectiveness is shown.

4.1 Evaluation of the Simulator
In this section the ethernet simulator is first evaluated with a simple model which
can be verifiable by hand calculations. Then to determine how many iterations are
needed for the data to be within its average given from stationary Markov chain the
one sample t-test is utilized. Finally, the amount time steps needed to reach a low
standard deviation is investigated. The main goal of the evaluation is to minimize
the number of iterations and time-steps for each simulation run while making sure
that the simulation is accurate.

4.1.1 Validating the simulator for a small example
Using the example from Figure 2.4 which is a network with one of each source,
intermediate and, destination node and the 1e/1i topology. Then sending packets
with 100% probability for 2 time steps, then Equation 4.1 shows how the packets
should move over the different buffers.

B1(t) = B1(t− 1) + g1(t)− f1,2(t),
B2(t) = B2(t− 1) + f1,2(t)− f2,3(t),
B3(t) = B3(t− 1) + f2,3(t),

(4.1a)
(4.1b)
(4.1c)

Figure 4.1: A directed graph with three nodes: 1, 2 and 3, two edges: e1,2 and
e2,3.

31

4. Results

Instead of using integers, here each packet will be denoted as p1 and p2 for clarity
for the calculations in Equation 4.2. Beside it a table with the printout is shown,
the data in Table 4.1 is generated from the simulator from which a screenshot was
taken which can be seen in Appendix A. The simulator runs until all packets have
reached its destination.

B1(0) = 0 + 0− 0,
B2(0) = 0 + 0− 0,
B3(0) = 0 + 0,

B1(1) = 0 + p1 − 0,
B2(1) = 0 + 0− 0,
B3(1) = 0 + 0,

B1(2) = p1 + p2 − p1,

B2(2) = 0 + p1 − 0,
B3(2) = 0 + 0,

B1(3) = p2 + 0− p2,

B2(3) = p1 + p2 − p1,

B3(3) = 0 + p1,

B1(4) = 0 + 0− 0,
B2(4) = p2 + 0− p2,

B3(4) = p1 + p2,

B1(5) = 0 + 0− 0,
B2(5) = 0 + 0− 0,
B3(5) = [p1 + p2] + 0,

(4.2)

Table 4.1: Data from a printout taken
of the ethernet simulator, see Appendix
A

B1(0) 0 0 0
B2(0) 0 0 0
B3(0) 0 0 -

B1(1) 0 1 0
B2(1) 0 0 0
B3(1) 0 0 -

B1(2) 1 1 -1
B2(2) 0 1 0
B3(2) 0 0 -

B1(3) 1 0 -1
B2(3) 1 1 -1
B3(3) 0 1 -

B1(4) 0 0 0
B2(4) 1 0 -1
B3(4) 1 1 -

B1(5) 0 0 0
B2(5) 0 0 0
B2(5) 2 0 -

4.1.2 Number of iterations
There are three main classes implemented for the ethernet simulator: Network,
Traffic generator and Execution. The simulator is deterministic, if the same number
of packets are sent at the same time steps for two different simulations it will return
the same result. See calculations in Equation 4.2 and Table 4.1 above.
The randomness only comes from the Traffic generator; hence number of samples
and time steps can be evaluated on that class alone. Since the Traffic generator
returns a random number of packets for given time steps an average needs to be
taken to remove the effect of extreme cases for different generation of traffic. Below
is the result from two different executions of the traffic generator. Here samples

32

4. Results

will be the number of iterations which are executed with the same inputs for each
iteration.

Using the stationary distribution as the mean traffic intensity a comparable mean
is obtained. For low traffic it was calculated to 0.2 according to Table 3.2. This
means that the overall intensity of the traffic is 20% of a full traffic load. Full traffic
meaning that traffic is sent in every time step, compare to the example in chapter
4.1 above. Generating low traffic with 10 000 time steps means that the average
load should be the following:

Number of generators ∗ time steps ∗ πLowsend = 1 ∗ 10 000 ∗ 0.2 ≈ 2000

Below in Figure 4.2 1000 samples have been generated and plotted in a histogram.

Figure 4.2: Histogram of n = 1000 samples with 10 000 time steps for low traffic.
The red line shows the normal distribution of the data.

As can be seen the figure shows the samples being approximately normal distributed
with the mean being around 2000. In Figure 4.3 below another generation of traffic
is shown for n = 10 000 samples and 1000 time steps.

33

4. Results

Figure 4.3: Histogram of n = 10 000 samples with 1000 time steps for low traffic.
The red line shows the normal distribution of the data.

As can be seen both Figure 4.2 and 4.3 show a normal distribution of data with
a mean around the intensity of 20% of the total traffic generated. The results
above confirms that the data is normally distributed, and that the intensity is close
to the total traffic generated. Next step is to determine how many iterations each
execution of the simulator needs to get an average close to the stationary distribution
for: πisend, i = Low,Medium,High which are 0.2, 0.32, 0.78 respectively.

Continuing with low traffic and performing a one sample t-test for different number
of iterations and time steps. Stating the null hypothesis as no difference from the
mean, i.e., H0 : µ1 = µn with a significance level of at least 5%. Traffic is generated
for 1000 time steps and between 5 − 200 iterations to see if the samples diverge to
much from the mean. In Figure 4.4 below the data is shown.

34

4. Results

Figure 4.4: P-values generated for 1000 time steps for samples between 5 and 200
taken.

Here the most extreme value is: p = 0.06 at 4 iterations. Since p > 0.05 none of the
iterations reject the null hypothesis. To see if there is a difference between 1000 and
10 000 time steps another test with the same amount of samples as before of t-tests
are done, below in Figure 4.5 the result are shown.

Figure 4.5: P-values generated for 10 000 time steps for samples between 5 and
200 taken.

Similarly, to 1000 time steps the most extreme value was: p = 0.052 at 116 iterations.
The null hypothesis is therefore not rejected at 5% significance level.

35

4. Results

Given that the null hypothesis was not rejected for any number of iterations shows
that none of them are outside the mean. Any number of iterations is therefore a
reasonable number to do for each run, since the run time of the simulator increases
for each iteration a smaller amount is preferable. Therefore, the number of iterations
needed does not need to be higher than 5 for the data to be within an average mean
of the traffic load for any generation of data.

4.1.3 Number of time steps

Given the number of iterations per run is set to 5 then a number of time steps for
each simulation needs to be decided as well. The goal is to look at what amount
of time steps gives a standard deviation good enough to trust the result of the
simulator. Low traffic was generated with the traffic generator with time steps
between 1000−500 000. For each simulation 5 iterations were done, and the standard
deviation is calculated and taken as a percentage of the amount it deviates. Below
in Figure 4.6 the result is shown.

Figure 4.6: Standard deviation plotted for simulations with time steps between
1000 - 500000.

Although the data is fluctuating it seems to even out somewhere below 2% for time
steps at about 50 000 and above. Looking closer for an interval between 20 000 −
150 000 below in Figure 4.7 the result can be seen.

36

4. Results

Figure 4.7: Standard deviation plotted for simulations with time steps between
20 000− 150 000.

The data shows that at above 80000 time steps the standard deviation seems to
be stagnant, therefore choosing time steps at 100 000 will be enough to ensure a
standard deviation of ≈ 2%. A simulation with 100 000 time steps shows that a run
takes about 3 seconds with a standard laptop.

4.1.4 Summary of Evaluation
Here the settings of the Ethernet simulator are listed:

• Five iterations per simulation run with the same settings and inputs.
For the five different iterations the only thing changing will be the traffic
generation. The average of all iterations will be close to the average of given
intensity for given traffic load (low, medium, or high).

• At least 100 000 time steps is needed for a standard deviation around 2 %
per iteration.

• Each iteration takes ≈ 3s, so each simulation takes ≈ 15s.

4.2 Regression Analysis
First a short investigation on how the data for buffer size is depending on packet loss
is presented. After that the data generation is shown. Then the Poisson regression
model is trained and used in a performance metric to determine how well it did.

4.2.1 Intermediate buffer size
To get an understanding for how the buffer size depend on packet loss and to mo-
tivate a machine learning model a simple simulation was ran with 100 time steps.

37

4. Results

The simulation ran until the packet loss was below 5% and for 3 − 6 source and
destination nodes. Below in Table 4.2 the data can be seen.

Table 4.2: Simulation run performed with 100 time steps, topology 1e/1i, High
traffic load and packet loss in percentage cutoff at 5%.

No.
Source

No.
Destination

Buffer
size

Packet
loss %

3 1 115 5.0
4 1 189 2.0
5 1 263 5.0
6 1 332 5.0
1 3 1 0.0
1 4 1 0.0
1 5 1 0.0
1 6 1 0.0

Below in Figure 4.8 the data is plotted.

Figure 4.8: Buffer size plotted as a function of number of sources.

Two conclusions can be drawn from this simulation run:
• Do not need to simulate downlink network for these type of networks, i.e., only

need to change number of sources. Number of destination nodes can be kept
at one.

• Buffer size is linearly dependent on the amount of packets being sent.
The linearly dependency shows that a linear regression model would suit this data
well, the GLM model Poisson Regression is chosen to try to optimize a network for
a given traffic load.

38

4. Results

4.2.2 Generating data
The goal is to optimize the network for a given traffic load. First which variables
to generate data for is chosen. Packet loss will be the response variable for the
regression model. Number of sources are ranged between 3 to 6 since this amount
will cover many normal RBS installations today. Two different topologies are chosen:
1e/1i and 1e/2ic. The other two topologies (2e/1i and 2e/2ic) were not implemented
properly because of time constraints. Three different traffic loads. Finally a range
of different buffer sizes with a middle point of 830 stated as relevant size of buffer
in Chapter 3.1.4. The range is defined as: 20 numbers which ranges between 83
- 1660 increases with 5% (rounded to nearest integer), i.e., Buffer sizes:= {1660 ∗
0.05, 1660 ∗ 0.10, 1660 ∗ 0.15, . . . , 1660 ∗ 1.00}. The different inputs are listed below:

• Number of sources: 3-6
• Topology: 1e/1i, 1e/2ic
• Traffic load: Low, medium and High
• Buffer sizes: {83, 166, 249, . . . , 1660}.

The total amount of runs for all variables is simply the amount of each multiplied
together:

[No.sources] ∗ [No.topologies] ∗ [No.traffic loads] ∗ [No.buffer sizes] =
4 ∗ 2 ∗ 3 ∗ 20 = 480

Each simulation takes approximately 15 seconds to run so for a total of 480 runs.
This means that with each simulation taking 15 seconds, given in 4.1.4, the total
data generation takes about 2 hours.
Below in Figure 4.9 one result is shown for a 1e/1i network with low traffic. Here
the packet loss can clearly be seen as linearly dependent on buffer size.

Figure 4.9: Low traffic with a 1e/1i network with packet loss in percentage as a
function of buffer size.

39

4. Results

The rest of the figures for the generated data with different topologies and traffic
load can be seen in Appendix B.

4.2.3 Poisson Regression Model
Implementation of the Poisson regression model is done through Scikit-learn in
Python. First the data is normalized through the method StandardScalar() which
standardizes the inputs with the function: z = (x − u)/s where u is the mean of
the input, s the standard deviation and x the sample input and z the standardized
value. Then data is split in to 60% training and 40% testing data randomly. Then
the data is fitted for the model. The explanatory variables are:

x1 = Traffic load

x2 = Sources

x3 = Topology

x4 = Buffer size

The resulting coefficients for each of the inputs can be seen in 4.3 below:

β0 = 2.954
β1 = 1.021
β2 = 0.308
β3 = −0.009
β4 = −0.063

(4.3)

Then plugging that in to Equation 2.24, the model becomes the following Equation
4.4 (here the logarithm has been taken for readability):

log(ploss) = 2.954 + 1.021x1 + 0.308x2 − 0.009x3 − 0.063x4 (4.4)

The model was then tested using the D2 score described in chapter 2.7.1. The
remainder of the data which wasn’t used to fit the model is tested. With a D2 score
of 0.83, the model is shown to be an effective estimate of packet loss for the four
explanatory variables.

40

5
Further Research

Here things are listed that could be further improved upon or investigated separately
but closely related to this thesis work. Some of the suggestions have been discussed
through theory and method, but not yet implemented.

• Delay, link speed and two topologies (2e/2i and 2e/2ic) were not added because
of time constraint. Both theory and implementation has been prepared for
these however some things are incomplete or missing for them to work properly.

• Different traffic loads on different nodes, currently only one traffic load for the
whole network is considered. Being able to change any node to a given traffic
load would be more correlated to reality and therefore also beneficial for future
design of RBSs.

• Generate more data, i.e., more buffer sizes and larger amount of source nodes
to accommodate larger RBSs. Increasing the data amount would be more
beneficial for any regression analysis made.

• Analyze the data with other regression models, e.g. General Additive Model
for Poisson Regression.

• More traffic models which could fill the gap between low, medium and high
could be added to further mimic real-life applications.

• Combining several RBSs with both eCPRI and CPRI in the simulator.
• Using the simulator with an implementation of a deep reinforcement learning.

41

5. Further Research

42

6
Conclusion

It has been shown within this thesis that it is possible to define an RBS mathemati-
cally which fulfills telecommunication performance requirements as a small network
through graph and optimization theory. It has been proven that a two state Markov
chain was appropriate for generating traffic and that average intensity of traffic is
given by the stationary Markov chain.
It has been proven that an implementation of the ethernet simulator in Python
works. The ethernet simulator was proven valid for small time steps through com-
parisons between hand calculations and output data. The ethernet simulator was
also proven to be efficient with five iterations per run with 100 000 time steps for
each iteration.
It has been shown that a Poisson regression (GLM) was a fitting machine learning
model for the data generated by the ethernet simulator. The ingoing variables
was four: Number of sources, topology, traffic load and buffer size. The response
variable was the packet loss in percentage. The model was validated with a D2 score
of ≈ 0.8.

43

6. Conclusion

44

Bibliography

[1] E. Trojer et al., "Packet fronthaul – design choices towards
versatile RAN deployments", Ericsson.com. [Online]. Available:
https://www.ericsson.com/en/reports-and-papers/white-papers/
packet-fronthaul-design-choices. [Accessed: 18- Apr- 2022].

[2] Ralph Santitoro (2003). "Metro Ethernet Services – A Technical Overview"
(PDF). mef.net. https://web.archive.org/web/20181222184046/http:
//www.mef.net/Assets/White_Papers/Metro-Ethernet-Services.pdf
archived on December 22, 2018. [Accessed January 19 May 2022].

[3] "Common Public Radio Interface", Cpri.info, 2022. [Online]. Available: http:
//www.cpri.info/spec.html. [Accessed: 18- Apr- 2022].

[4] H. C. Tijms, A First Course in Stochastic Models. Amsterdam: John Wiley &
Sons Ltd, 2003.

[5] Cormen, T., Leiserson, C., Rivest, R. and Stein, C., 2009. Introduction to
algorithms. 3rd ed. Cambridge, Massachusetts. London, England.: The MIT
Press.

[6] Enger, J. and Grandell, J., 2022. Markov Kompendium. Stockholm: Kungliga
Tekniska Högskolan.

[7] Pishro-Nik, H., 2014. Introduction to Probability, Statistics, and Random Pro-
cesses. 1st ed. Massachusetts: Kappa Research.

[8] scikit-learn. 2022. 3.3. Metrics and scoring: quantifying the quality of pre-
dictions. [online] Available at: https://scikit-learn.org/stable/modules/
model_evaluation.html#regression-metrics> [Accessed 29 May 2022].

[9] Rice, J., 2021. Mathematical statistics and data analysis. New Delhi: Cengage
Learning.

[10] N. Daigle, J., 2005. Queueing Theory with Applications to Packet Telecommu-
nication. 1st ed. Mississippi: Springer.

[11] S. Keshav, Mathematical Foundations of Computer Networking. Waterloo:
Addison-Wesley, 2012.

[12] "Ethernet frame: definition and variants of the frame format", IONOS Digi-
talguide, 2022. [Online]. Available: https://www.ionos.com/digitalguide/
server/know-how/ethernet-frame/. [Accessed: 03- May- 2022].

[13] "Router/Switch Buffer Size Issues", fasterdata.es.net, 2022. [On-
line]. Available: https://fasterdata.es.net/network-tuning/
router-switch-buffer-size-issues/. [Accessed: 03- May- 2022].

[14] "packet buffers", People.ucsc.edu, 2022. [Online]. Available: https://people.
ucsc.edu/~warner/buffer.html. [Accessed: 03- May- 2022].

45

https://www.ericsson.com/en/reports-and-papers/white-papers/packet-fronthaul-design-choices
https://www.ericsson.com/en/reports-and-papers/white-papers/packet-fronthaul-design-choices
https://web.archive.org/web/20181222184046/http://www.mef.net/Assets/White_Papers/Metro-Ethernet-Services.pdf
https://web.archive.org/web/20181222184046/http://www.mef.net/Assets/White_Papers/Metro-Ethernet-Services.pdf
http://www.cpri.info/spec.html
http://www.cpri.info/spec.html
https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
https://www.ionos.com/digitalguide/server/know-how/ethernet-frame/
https://www.ionos.com/digitalguide/server/know-how/ethernet-frame/
https://fasterdata.es.net/network-tuning/router-switch-buffer-size-issues/
https://fasterdata.es.net/network-tuning/router-switch-buffer-size-issues/
https://people.ucsc.edu/~warner/buffer.html
https://people.ucsc.edu/~warner/buffer.html

Bibliography

[15] Limited, R., 2022. SFP Price - Cisco Global Price List. [online] Itprice.com.
Available at: https://itprice.com/cisco-gpl/sfp [Accessed 12 May 2022].

46

https://itprice.com/cisco-gpl/sfp

A
Appendix

Figure A.1: A printout from the Ethernet Simulator.

I

A. Appendix

II

B
Appendix

Figure B.1: Low traffic with a 1e/2ic network with packet loss in percentage as
a function of buffer size.

III

B. Appendix

Figure B.2: Medium traffic with a 1e/1i network with packet loss in percentage
as a function of buffer size.

Figure B.3: Medium traffic with a 1e/2ic network with packet loss in percentage
as a function of buffer size.

IV

B. Appendix

Figure B.4: High traffic with a 1e/1i network with packet loss in percentage as a
function of buffer size.

Figure B.5: High traffic with a 1e/2ic network with packet loss in percentage as
a function of buffer size.

V

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	CPRI
	eCPRI

	Aim
	Limitations
	Outline

	Theory
	Packet, Hardware and eCPRI
	Network Packet and Ethernet frame
	Packet Switched Communication

	Radio Base Station
	Link speed
	Switch Buffers

	Enhanced Common Public Radio Interface
	ON/OFF traffic
	First In First Out

	Network flow in graphs
	Markov Chains
	Stationary distribution

	Algorithms
	Queuing Theory
	Kendall notation

	One sample t-test
	Poisson Regression
	Performance score

	Methods
	Investigation
	Packet
	Links
	Packet latency
	Node latency and buffer size

	The Traffic Generator
	Traffic generator algorithm

	Network Model
	Network Introduction and Notation
	Mathematical Definitions of the Network
	Networks
	One Edge Networks
	Two edge Networks

	Network creation algorithm

	The Ethernet Simulator
	Execution algorithm
	Program structure
	Program implementation

	Results
	Evaluation of the Simulator
	Validating the simulator for a small example
	Number of iterations
	Number of time steps
	Summary of Evaluation

	Regression Analysis
	Intermediate buffer size
	Generating data
	Poisson Regression Model

	Further Research
	Conclusion
	Bibliography
	Appendix
	Appendix

