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Quantum approximate optimization using SWAP gates for mixing
Carl Borgsten
Department of Physics
Chalmers University of Technology

Abstract
In recent years, with the emergence of more complex optimization problems scientists
have begun to look at how quantum computers can be utilized to solve big problems.
One algorithm that can be used is the quantum approximation algorithm(QAOA).
QAOA applies two different types of operators to a qubit string representing an
initial state. One regulates the problem to be optimized and the other mixes the
states such that all possible solutions to the problem are being tested. My work
investigates the possibility to use SWAP gates for mixing instead of the ordinary
Pauli X operator for the traveling salesman problem. The advantage of the SWAP
mixer is that it swaps the values of two qubits in the qubit string compared to the
Pauli X operator that changes the value of a single qubit. My results show that the
SWAP mixer works well for the traveling salesman problem and has the potential
to be used in more complex problems.

Keywords: quantum, computer, QAOA, qubit, TSP, SWAP, algorithm, optimize,
mixing, state.
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1
Introduction

From the point computers were invented they have been used to solve equations and
problems. With the development of better computers with more memory over time,
bigger mathematical problems have been able to be solved. [1] With companies and
scientists wanting to solve bigger and bigger problems the time it takes a computer
to solve the problems increases a lot. To address this scientist has started to look
at another type of computer to solve optimization problems. This is the quantum
computer that uses quantum mechanics to solve optimization problems in a way
that differs from an ordinary computer. [2] Ordinary computer stores information
in bit strings consisting of either a 0 or a 1. In a quantum computer the information
is also in a string, a quantum bit string or qubit string. Every qubit in this string
can be 0 or 1 as an ordinary bit but it can also be a superposition of 0 and 1. This
makes it potentially more powerful for calculating than an ordinary computer. [3]
The quantum computer uses a quantum algorithm to solve an optimization problem.
In this paper, I will look more at the Quantum Approximate Optimization Algorithm
often called QAOA. As the name suggests it is an approximate algorithm which is
not guaranteed to find the best solution. QAOA uses two types of operators on an
initial state to find an solution. One that controls the problem that will be optimized
and the other operator mixes the states such that all solutions will be compared.
This operator is called the mixer and can be built in different ways. In the ordinary
QAOA, the mixer is built by Pauli X operators, which changes the value of a single
qubit. [4] However, in this paper, I will look at how the QAOA works with a Swap
mixer, that instead swaps value between two qubits. This has been tested before
with the Max-κ-Colorable-Subgraph problem where they call the swap mixer the
ring mixer. [5] What will differ this paper from that work is that in this one I will
look at the Traveling Salesman Problem instead and see if the swap mixer is a good
solution in that case.
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2
Theory

2.1 Quantum Computers
Quantum computers are built on two main principles, these are superposition and
entanglement. With superposition means the attribute that an element can be in two
states at the same time and the final state only known after a measurement of the
element. Schroedinger’s cat is an example of this where the knowledge of the cat’s
well-being is only known after the box is opened. This makes an advantage for the
quantum computer compared to an ordinary computer. In an ordinary computer,
the information is stored in a binary string of bits that are either 0 or 1. In the
quantum computer, the information is stored in quantum bits or qubits that can be
either 0, 1, or a superposition of both. This makes the qubit more powerful than
the ordinary bit. [3]
The principle of entanglement means that the state of different elements correlate
[3]. For example in the entangled state:

1√
2

(|00 > +|11 >), (2.1)

the probability of each states are | 1√
2 | = 1/2. However, if the first qubit are measured

to be 0 the second qubit has 100% probability of being 0. The same can be said if
the first qubit is measured to be 1.

2.2 QAOA
The quantum approximate optimization algorithm or in shorter form QAOA is an
optimization algorithm used on quantum computers. The solutions to the problems
are represented as states. These states can be represented by a string of qubits
where each qubit can have a value of 0 or 1. When the qubit value is 1 the qubit
is part of the solution and when the qubit valuen is 0 the qubit is not in solution.
In the QAOA you start with preparing an initial state. This state can be a single
state or a superposition of n states z [4]:

s = 1√
n

∑
z

|z > (2.2)

The initial state is then affected by some operators to find an approximate solution
that optimizes the problem. These operators are of two different kinds U(γ,H)

3



2. Theory

and U(β,M). These operators are unitary which are the type of operators used in
a quantum computer. U(γ,H) regulates the optimization problem and applies a
phase to the state. This operator consists of the Hamiltonian of the problem and
an angle γ. [4]

U(γ,H) = e−iγH (2.3)

U(β,M) is used to mix the states in order for all states to be tested. This is done
by a mixer M and an angle β.

U(β,M) = e−iβM (2.4)

These gates are applied to the initial state in several consecutive layers p. The
higher number of layers increases the performance of the algorithm because of the
more parameters used, but also require more operations in the quantum computer.
Each layer has two parameters, these are βi and γi with i representing the layer of
the parameters. With this the expression of the algorithm can be written:

|γ, β >=U(γp, H)U(βp,M)...U(γ1, H)U(β1,M)|s0 >=
e−iγpHe−iβpSWAP ....e−iγ1He−iβ1M |s0 > (2.5)

In this expression s0 represents the initial state of the problem, γ1, ..., γp and β1, ..., βp
represents the parameters for each layer, H is the Hamiltonian of the problem we
want to optimize and M is the mixer that mixes the states [4]. In this paper,
the mixer is the swap gate that swaps two qubits instead of the ordinary Pauli X
operator that swaps the probability of |0 > and |1 > for every qubit in the string.
This swap gate can be described in matrix form as[6]:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.6)

The SWAP operator is both Hermitian and unitary such that (SWAP )2 = 1 [7].
This means the operator can be written in terms of cosine and sine, this gives the
SWAP mixer:

e−iβSWAP = cos(β) ∗ I + i ∗ sin(β)SWAP =
cos(β) + i sin(β) 0 0 0

0 cos(β) i sin(β) 0
0 i sin(β) cos(β) 0
0 0 0 cos(β) + i sin(β)

 (2.7)

Every state’s performance can be described by an energy. A lower energy represents
a better solution to the optimization problem. This energy can be calculated with
the expectation value of the Hamiltonian in the current state:

E =< γ, β|H|γ, β >, (2.8)

4



2. Theory

with H again representing the Hamiltonian and |γ, β > being the state. This means
that some parameters lead to a solution with lower energy and the goal is to find
the 2p parameters that finds the optimal solution, [4] in other words the parameters
that gets the lowest expectation value and represent the best solution:

Emin(γ, β) =
∑
z

< s0|U(γ1, H)† U(β1,M)† ...U(γp, H)† U(βp,M)†H

U(γp, H)U(βp,M) ...U(γ1, H)U(β1,M) |s0 > (2.9)

2.3 Traveling Salesman Problem
The Traveling Salesman Problem or TSP is an optimization problem to find the
shortest path of a traveling salesman who wants to visit some cities and wants to
find the shortest path while only visiting every city once before returning to the
starting city. This is an NP-hard problem meaning that it falls in a class of com-
putationally difficult problems to solve and therefore is a good test for the QAOA.
There is some classical algorithms to solve the TSP most notably the brute force
variant where every possible solutions are compared. The number of solutions in-
creases as ncities! resulting in a lot of solutions to be compared. Another method to
solve TSP is to visit the nearest city for every stop. However, this will not always
result in a good solution. [8] Other ways to solve the TSP is to use a stochastic
optimization algorithm such as the Ant Colony Optimization Algorithm (ACO), the
Particle Swarm Optimization Algorithm (PSO) or a Genetic Algorithm (GA). ACO
are built in a similar way to how ants localizes food and resources. Ants lay down
pheromone trails after they have found food. Other ants have a higher probability
of choosing a trail with a higher pheromone concentration. The algorithm are built
the same way, with different agents traversing the grid with every edge having dif-
ferent probabilities. These probabilities depends on the number of agents that has
traversed that edge. PSO on the other hand uses the behavior of birds and their
social behaviour. The different agents searches the space with different velocities
based on their path. This path are compared to the agents previously best path and
the swarms best path. With this a solution to the problem can be achieved. The
last algorithm GA are based on biology. A number of chromosomes are generated,
with every chromosome having a fitness value. In optimization problems where you
want to minimize something a lower fitness value represent a better solution. For
a number of generations chromosomes are removed, the chromosomes with a lower
fitness value have a lower chance to be terminated. In every generation the chro-
mosomes are exposed to crossover and mutations. When the best fitness value does
not change the algorithm are finished. [9]
In this problem we look at toy problems where the QAOA will be slower than a
classical algorithm. To run QAOA of the TSP we need to find the Hamiltonian of
the problem. We divide the Hamiltonian into three parts, H = HA +HB +HC , one
that fulfills the constraint that we visit every city, one that fulfills the constraint
that we each time step go to a new city, and one that uses the traveled distance.
First, we need to define a variable, Xi,α that is 1 if the city i is visited at time step α
and zero otherwise. A solution to the TSP with this notation can be seen in figure
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2. Theory

2.1. This is a suitable formulation for a quantum computer.

Figure 2.1: Figure over how a solution to the TSP can be described with the
variable Xi,α.

With this variable the constraints can be written as:
∑
i

Xi,α = 1 ∀α (2.10)

∑
α

Xi,α = 1 ∀i (2.11)

From these constraints the Hamiltonians HA and HB can be expressed as:

HA =
∑
i

(
1−

∑
α

Xi,α

)2

(2.12)

HB =
∑
α

(
1−

∑
i

Xi,α

)2

(2.13)

With these expressions, a state that visits a city twice or two cities at the same time
step will receive a penalty resulting in higher energy. This means the states that
fulfill the constraints will therefore end up with lower energy.
BeforeHC is defined the problem can be simplified. In the ordinary TSP, the starting
city is randomized. This means that to solve the TSP n2

cities qubits are needed to
find the solution. However, if the starting city is fixed the needed number of qubits
is instead (ncities − 1)2 which makes a big difference computationally for the small
problems we consider. Proof of this is that the 4 city path 1−2−3−4−1 represents
the same solution as 3−4−1−2−3 and with that, the first city can be fixed. With
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2. Theory

this simplification, the cost part of the Hamiltonian can be defined as:

HC =
ncities−1∑
i=1

ncities−1∑
j=1

ci,j

ncities−2∑
α=1

Xi,αXj,α+1 +
ncities−1∑
i=1

c0,iXi,1+

ncities−1∑
i=1

ci,0Xi,0 (2.14)

In equation (2.14), c is a matrix of the distances between every city. The first part
of the expression represents the distances between every city except the starting
city. The second part represents the distance from starting city to the first visited
city while the last expression represents the distance from the last visited city to
the starting city. The edge between the last city visited and the start city i = 0 are
defined with α = 0.

2.4 Create SWAP gate
The SWAP changes the value of two qubits. This means that the Hamming distance
to |000.. > are conserved. This can be utilized to limit the space searched. How this
is done are described below. With the X notation, a viable solution that does not
break the constraint can be written as a matrix with a row sum of 1 and a column
sum of 1. With each column being the timestep 1, 2, and 3 and the rows being city
1, 2, and 3. For example, a good solution of the 9 qubit case can be:

X =

1 0 0
0 1 0
0 0 1

 (2.15)

this correspond to the first city being visited at timestep 1, the second city at
timestep 2 and the third city at timestep 3. A bad solution can be:

X =

0 1 0
0 1 0
0 1 0

 , (2.16)

that visits all the cities at the same timestep. With this fact we can see that the good
solutions will have nstops ones, with each one being in a different row and column
as the other ones for a total of nstops! good solutions. There are nnstops

stops possible
solutions visiting all the cities but that may be on the same timestep another city
is visited or visited multiple times. This means the initial state can be modified to
only look at the good solution by starting in a state with ones in different rows and
columns and then swap two columns. For example in the 9 qubit case a swapper
that would swap column 1 and 2 can look like this:

X =

1 0 0
0 1 0
0 0 1

→ X =

0 1 0
1 0 0
0 0 1

 (2.17)

7



2. Theory

Starting in a viable state and swapping two columns end up in a new viable state.
However, to do this a gate of the size n2

stops has to be implemented which is tricky
when nstops increases. Instead, a simpler swap mixer can be used that takes more
steps to achieve the same thing. This can be done in two ways, the first is to swap
the timestep each city is visited by moving the ones in each row and skip swapping
between rows. This means that if only states with only one 1 in each row are used
as the initial state the resulting states of the QAOA should fulfill this property as
well. If the starting state is the same as above this can look like this:

X =

1 0 0
0 1 0
0 0 1

→ X =

0 1 0
0 1 0
0 0 1

→ X =

0 1 0
1 0 0
0 0 1

 (2.18)

And the same result is achieved after one more step. The other way is very similar
to the first, but instead of swapping which timestep every city is visited the city
visited at every timestep is swapped by moving the ones in each column and not in
the rows. This would look like this:

X =

1 0 0
0 1 0
0 0 1

→ X =

0 0 0
1 1 0
0 0 1

→ X =

0 1 0
1 0 0
0 0 1

 (2.19)

The first simpler swap mixer will be used in this paper. In this case, the qubits that
are swapped can be described by the expression below with i representing the city
and j the timestep:

QSWAP =
ncities−1∑
α=1

ncities−1∑
j=α+1

SWAP(i,α),(i,j) ∀i (2.20)

In the above expression the second sum is from i+ 1 because a swap between qubit
0 and 1 is the same as a swap between qubit 1 and 0 and is unnecessary to do twice.
With this SWAP mixer the searched space will be a little bit bigger than for the
optimal SWAP mixer that swaps columns as described earlier. However, compared
to the single qubit bitflips in the standard QAOA the searched space will be smaller.
For the single qubit bitflips the constraints are not preserved as it explores the full
2nqubits space. This makes it much more difficult to find viable solutions and minimize
the energy and path length. [7]

8



3
Methods

3.1 Simulation of quantum computer
Although quantum computers of increasing size are being constructed, access is
limited. They are also prone to noise and have limited gate sets, making simulations
difficult. Some initial work using QAOA on real quantum computers has been done.
[10] Instead, in this paper, the quantum computer will be simulated. A quantum
computer can be simulated in a few steps. First, an initial state has to be prepared,
next apply operators to the state, and finally compute the final state. All this can
be done with the python package Qiskit. In Qiskit different quantum circuits can
be created to imitate a quantum computer. These quantum circuits can be built to
represent the expression in equation (2.5) with all the gates. This quantum circuit
can then be executed with a certain backend that computes the final state [11].
First, the initial state has to be applied to the quantum circuit then each layer of
operators from equation (2.5) can be added. Every layer has a certain γi and βi that
are being optimized. In this paper, the state vector backend is used. This backend
returns the amplitude of every state. [12] With this, the expectation value of the
energy for the current state can be calculated by multiplying with the Hamiltonian.
The total probability of all the states are 1, this means that the state with the
highest amplitude is the most probable state measured if one would run the circuit
on a quantum computer.
To find the optimal angles the parameters are optimized with the differential evo-
lution function in the library SciPy in python. Differential evolution is a stochastic
optimizer that creates several solutions. Two such solutions are then mixed and if it
is better than the original the original is replaced. [13] Basin hopping was another
optimization algorithm that was tested but was less efficient and took much more
time to run. To use the gates in Qiskit, the variable Xi,α has to be an operator.
This can easily be fixed with a variable substitution to the Pauli Z operator:

Z =
[
1 0
0 −1

]
(3.1)

Making the substitution.
Xi,α = 1

2(1− Zi,α), (3.2)
this becomes 0 when Zi,α is |0 > and 1 when Zi,α is |1 > [14].
In the simulation in Qiskit, the qubits are in a string in comparison with the matrix
presented earlier. To solve this the matrix is flatten meaning in the 9 qubit case the
first 3 qubits are the first row which represents when the first city is visited, the 3

9



3. Methods

next qubits are the second row and the last 3 qubits are the third row. This means
the Hamiltonian can be rewritten as:

HA =
nstops∑
i=1

(
1−

nstops∑
α=1

Xi,α

)2

=
nstops∑
i=1

(
1−

nstops∑
α=1

1
2(1− Zi,α)

)2

=

nstops∑
i=1

(
1−

nstops∑
α=1

1
2(1− Zi∗nstops+α)

)2

(3.3)

HB =
nstops∑
α=1

(
1−

nstops∑
i=1

Xi,α

)2

=
nstops∑
α=1

(
1−

nstops∑
i=1

1
2(1− Zi,α)

)2

=

nstops∑
α=1

(
1−

nstops∑
i=1

1
2(1− Zi∗nstops+α)

)2

(3.4)

HC =
nstops∑
i=1

nstops∑
j=1

ci,j

nstops−1∑
α=1

Xi,αXj,α+1 +
nstops∑
i=1

c0,iXi,1 +
nstops∑
i=1

ci,0Xi,0 =

nstops∑
i=1

nstops∑
j=1

ci,j

nstops−1∑
α=1

1
2(1− Zi,α)1

2(1− Zj,α+1) +
nstops∑
i=1

c0,i
1
2(1− Zi,1)+

nstops∑
i=1

ci,0
1
2(1− Zi,0) =

nstops∑
i=1

nstops∑
j=1

ci,j

nstops−1∑
α=1

1
2(1− Znstops∗i+α)1

2(1− Znstops∗j+α+1)+

nstops∑
i=1

c0,i
1
2(1− Znstops∗i+1) +

nstops∑
i=1

ci,0
1
2(1− Znstops∗i) (3.5)

With these modifications of the problem Hamiltonian, the SWAP mixer are ready
to be tested.
The final version of the quantum approximate optimization algorithm used for the
travelling salesman problem in this paper can be described in algorithm 1:

Algorithm 1 QAOA
1: Define the Hamiltonian H = HA +HB +HC as in equation (3.3), equation (3.4)
and equation (3.5)
2: Define the mixer as in the equations (2.7), (2.20)
3: Define an initial state s0
4: Construct circuits for the operators U(γ,H) and U(β,M) from equation (2.3)
and equation (2.4)
5: Choose the amount of layers p and create circuit for the whole algorithm as in
equation (2.5)
6: Optimize the parameters γi and βi
7: Get approximate solution to the problem with these optimal parameters

10



3. Methods

3.1.1 Prepare initial state
The first two steps in algorithm 1 has already been done earlier. However, in the
third step the initial state has to be defined and prepared. A quantum computer
start in the state |000... >. If the initial state should be a superposition of all the
possible states the Hadamard gate can be used. To get a specific set of states,
different gates can be applied to the start state |000... >. However, Qiskit has a
function that given a list of the vector we want to start in, as well as the qubits to
initialize in this state construct the initial state we want. [11]

3.1.2 Construct circuits for operator
After the initial state has been prepared the different operators has to be applied to
this state. The quantum circuit for the operator U(γ,H) can be described with the
following for loops. The first describes the terms in the Hamiltonian with a single
Pauli Z operator. The second loop describes the terms in the Hamiltonian with a
product of Pauli Z operators:

3.1.2.1 Single qubit operator

for qubits in Hamiltonian_single:
qubit = int(qubits[0])
weight = qubits[1]
qc.rz(2 * gamma * weight, qubit)

}

3.1.2.2 Double qubit operator

for qubitPair in Hamiltonian_double:
qubit1 = int(qubitPair[0])
qubit2 = int(qubitPair[1])
weight = qubitPair[2]
qc.rzz(2 * gamma * weight, qubit1, qubit2)

}
In these for loops gamma is the angle applied to layer i, weight are a constant
multiplied with every Pauli Z operator in the Hamiltonian. qubit, qubit1 and qubit2
are the qubits the gate are applied to. rz is a single qubit rotation around the Z
axis described as

rz(λ) = e−i
λ
2Z ,

for an angle λ that are divided by two. This is why the angle gamma aer multiplied
with 2. rzz is a 2 qubit interaction described as

rzz(θ) = e−i
θ
2Z⊕Z ,

for an angle θ. [11]
In the case for the SWAP mixer, a unitary operator were created as in equation
(2.7).

11
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3.1.2.3 SWAP unitary operator

val1 = complex(np.cos(beta), np.sin(beta))
val2 = complex(0, np.sin(beta))
val3 = complex(np.cos(beta), 0)

swap_mixer = Operator([[val1, 0, 0, 0],
[0, val3, val2, 0],
[0, val2, val3, 0],
[0, 0, 0, val1]])

}
This SWAP unitary operator were then used for all the qubits in equation (2.20).

3.1.2.4 SWAP qubits

for qubitPair in SWAP_qubits:
qubit1 = qubitPair[0]
qubit2 = qubitPair[1]
qc.unitary(swap_mixer, [qubit1, qubit2], label = 'swapmixer')

}
Now with these quantum circuit defined they can be used in layers p to create a final
quantum circuit as in equation (2.5). With the final quantum circuit the parameters
γi and βi can be optimized with differential evolution and an approximate solution
to the problem can be achieved.
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4
Results

4.1 Performance of SWAP mixer
To test the performance of the SWAP mixer a few compositions of the initial state
will be used. This test will have 9 qubits representing 4 cities with 3 stops where
city 0 is the starting city. All the states will have properties as described earlier to
only swap between states consisting of 3 stops. The different compositions of the
initial state will be only 1 bad state, only 1 good state, superposition of all bad
states, superposition of all good states, and finally a superposition of all states. A
bad state is in this case a state that as in equation (2.16) has more than one 1 in
a column and a good state has only one 1 in every row and column as in equation
(2.15). In the 9 qubit case this gives 6 good states and 21 bad states for a total
of 27 states. This is a large reduction due to using SWAP mixer, compared to the
29 = 512 states that would be explored with the standard bit-flip mixer. Results
for p = 1 to p = 10 layers will be documented with a predicted better performance
for higher p. All of the trials use differential evolution to find optimal parameters.
Every state has an energy calculated as in equation (2.8) with its corresponding state
vector and the Hamiltonian. This energy will be lower for the states that satisfy the
constraints and represent a shorter path. The best path in this small problem can
be seen in figure 4.1. Note that traversing the path the other way around results in
the same distance and therefore has the same energy. These paths are represented
by the states |001100010 > and |100001010 >. In the following figures the states
representing the best paths will be showed as a red bar.

Figure 4.1: Figure showing the path with the lowest energy in the toy problem.
The reverse path shares the lowest energy.
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4.1.1 Starting in one state that violates the constraints

When starting in only one state the initial state from equation (2.2) will be:

s0 = |001001001 >, (4.1)

The first test start in the initial state |001001001 >, this represents the path visiting
all cities at the third time step. In the following figures the probability of all the
states after p layers can be seen.

(a) Probabilities for the states after p=1
layers.

(b) Probabilities for the states after p=2
layers.

(c) Probabilities for the states after p=3
layers.

(d) Probabilities for the states after p=4
layers.

Figure 4.2: Probabilities for the different states after p layers for the initial state
s0 = |001001001 >. Above each bar the probability can be seen. The red bars are
the states with the lowest energy as described earlier.
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(a) Probabilities for the states after p=5
layers.

(b) Probabilities for the states after p=6
layers.

(c) Probabilities for the states after p=7
layers.

(d) Probabilities for the states after p=8
layers.

(e) Probabilities for the states after p=9
layers.

(f) Probabilities for the states after p=10
layers.

Figure 4.3: Probabilities for the states after p layers for the initial state s0 =
|001001001 >. Above each bar the probability can be seen. The red bars are the
states with the lowest energy as described earlier
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All these distributions results in different expectation values for the energy. How this
value changed through each layer can be seen in figure 4.4. This shows a comparison
to the lowest energy of the best state. The numbers are smaller than 1 because the
lowest energies are negative.

Figure 4.4: Evolution of the expectation value of the energy calculated as in
equation 2.8 for each layer, compared to the energy of the best state when starting
in a bad state.

A distribution of all the 27 possible states appears after the first layer of operations
in figure 4.2a when starting in the bad state s0 = |001001001 >. This can be
compared to an initial state of all the possible states but with every state having
a different probability in the beginning, running for only p = 9 layers instead of
p = 10. With the increase of layers p the probabilities of the good states increases
to end up around 1/6 for every good state in figure 4.3c and figure 4.3d.

4.1.2 Starting in one state that satisfy the constraints

The SWAP mixer worked pretty good for an initial state consisting of a bad state
but what happens if the initial state is a good state?

In this test the performance when starting in one good state are examined. As when
starting in only one bad state the probability of the starting state will be 1. The
initial state for this test is |010001100 > representing the path 0-3-1-2-0, with 0
being the starting city.

The following figure describes how the distribution of the states have changed after
p = 1 layer.
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Figure 4.5: Probabilities for the states after p = 1 layer for the initial state
s0 = |010001100 >.

All these distributions results in different expectation values for the energy. How
this value changed with each layer can be seen in figure 4.6.

Figure 4.6: Evolution of the expectation value of energy calculated as in equation
2.8 for each layer, compared to the energy of the best state when starting in a good
state.

In figure 4.5 the state has already changed from the initial state s0 = |010001100 >
to the state |100001010 > after the first layer. The probability of the other states
are 0. For higher number of layers p > 1 I got the same probabilities of the final
state with a 100% probability of ending up in |100001010 >. This is also the best
state overall with the lowest energy which can be seen by its red color. This can also
be seen in figure 4.6 where the expectation value of the energy instantly increases to
the maximum. The states differs by only 4 qubits making it quite simple to SWAP
into. However, the resulting state is |100001010 > instead of the other best state
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|001100010 >. The difference between those are that the other state differs by 6
qubits compared to the initial state.
Even though the single initial state worked in this case the advantages of a quantum
computer with the superposition were unutilized. This solution to the problem can
be compared to a classical algorithm with a start in a good state and then move
around the position of the 1:s to create permutations of the original state. This is
done until the best state is found. Instead how the SWAP works with an initial
state consisting of a superposition of multiple states is more interesting.

4.1.3 Starting in a superposition of all the states that vio-
lates the constraints

In the first superposition test, an initial state of all the bad states are tested. The
number of bad states are 21 as stated earlier which means that the initial state are
represented by:

s0 = 1√
21

(|001001001 > +|001001010 > +|001001100 > +|001010001 > +

|001010010 > +|001100001 > +|001100100 > +|010001001 > +|010001010 > +
|010010001 > +|010010010 > +|010010100 > +|010100010 > +|010100100 > +
|100001001 > +|100001100 > +|100010010 > +|100010100 > +|100100001 > +
|100100010 > +|100100100 >) (4.2)

The following figures describes how the distribution of the states change with each
layer p.

(a) Probabilities for the states after p=1
layers.

(b) Probabilities for the states after p=2
layers.

Figure 4.7: Probabilities for the different states after p layers for the initial state
described by equation (4.2). Above each bar the probability can be seen. The red
bars are the states with the lowest energy as described earlier.
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(a) Probabilities for the states after p=3
layers.

(b) Probabilities for the states after p=4
layers.

(c) Probabilities for the states after p=5
layers.

(d) Probabilities for the states after p=6
layers.

(e) Probabilities for the states after p=7
layers.

(f) Probabilities for the states after p=8
layers.

Figure 4.8: Probabilities for the different states after p layers for the initial state
described by equation (4.2). Above each bar the probability can be seen. The red
bars are the states with the lowest energy as described earlier.
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(a) Probabilities for the states after p=9
layers.

(b) Probabilities for the states after p=10
layers.

Figure 4.9: Probabilities for the different states after p layers for the initial state
described by equation (4.2). Above each bar the probability can be seen. The red
bars are the states with the lowest energy as described earlier.

All these distributions results in different expectation values of the energy. How the
energy changed with each layer can be seen in figure 4.10.

Figure 4.10: Evolution of the expectation value of energy calculated as in equation
2.8 for each layer, compared to the energy of the best state when starting in a
superposition of all bad states.

The superposition of multiple bad states has pretty much the same development
as the single bad state. First changing to a state of all the good states with a
probability of 1/6 for all the states after p = 8 layers in figure 4.8f. Before ending
up with a higher probability of the states |001100010 > and |100001010 > that have
the lowest energy.
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4.1.4 Starting in a superposition of all the states that satisfy
the constraints

The superposition of only bad states worked pretty much at the same level as the
single bad state. How does the superposition of all good state compare to the single
good state?

This test of the performance of the SWAP mixer for a superposition of all the good
states consists of 6 good states described by the following expression:

s0 = 1√
6

(|001010100 > +|001100010 > +|010001100 > +|010100001 > +

|100001010 > +|100010001 >) (4.3)

The following figures describes how the distribution of the states change with each
layer p.

(a) Probabilities for the states after p=1
layers.

(b) Probabilities for the states after p=2
layers.

Figure 4.11: Probabilities for the different states after p layers for the initial state
described by equation (4.3). Above each bar the probability can be seen. The red
bars are the states with the lowest energy as described earlier.
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(a) Probabilities for the states after p=3
layers.

(b) Probabilities for the states after p=4
layers.

(c) Probabilities for the states after p=5
layers.

(d) Probabilities for the states after p=6
layers.

(e) Probabilities for the states after p=7
layers.

(f) Probabilities for the states after p=8
layers.

Figure 4.12: Probabilities for the different states after p layers for the initial state
described by equation (4.3). Above each bar the probability can be seen. The red
bars are the states with the lowest energy as described earlier.
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(a) Probabilities for the states after p=9
layers.

(b) Probabilities for the states after p=10
layers.

Figure 4.13: Probabilities for the different states after p layers for the initial state
described by equation (4.3). Above each bar the probability can be seen. The red
bars are the states with the lowest energy as described earlier.

All these distributions results in different expectation values of the energy. How this
expectation value changed with each layer can be seen in figure 4.14.

Figure 4.14: Evolution of the expectation value of energy calculated as in equation
2.8 for each layer, compared to the energy of the best state when starting in a
superposition of all good states.

The small difference in energy between all the good states makes the state staying
the same for almost every layer. However, after p = 4 layers the expectation value
of the energy has increased a little bit before returning to the same value again. The
difference is very small at 0.001. The expectation value increases a little bit more
after p = 10 layers. This can be seen in figure 4.13b where the two states with the
highest probability are the two best states. The superposition of all the good states
is not the optimal initial state for the SWAP mixer. The total energy is already
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almost the best making it hard to improve. A last interesting test would be to see
how a superposition of all the possible states performs.

4.1.5 Starting in a superposition of all the states in subspace

In the last test the performance of the SWAP mixer when starting in a superposition
of all the possible states are examined. There is a total of 27 states which makes
it the optimal test for the SWAP mixer. With these states the initial state can be
described as in equation (4.4).

s0 = 1√
27

(|001001001 > +|001001010 > +|001001100 > +|001010001 > +|001010010 > +

|001010100 > +|001100001 > +|001100010 > +|001100100 > +|010001001 > +
|010001010 > +|010001100 > +|010010001 > +|010010010 > +|010010100 > +
|010100001 > +|010100010 > +|010100100 > +|100001001 > +|100001010 > +
|100001100 > +|100010001 > +|100010010 > +|100010100 > +|100100001 > +
|100100010 > +|100100100 >) (4.4)

The following figures describes how the distribution of the states change with each
layer p.

(a) Probabilities for the states after p=1
layers.

(b) Probabilities for the states after p=2
layers.

Figure 4.15: Probabilities for the states after p layers for the initial state consisting
of all the possible states as described in equation (4.4). Above each bar the proba-
bility can be seen. The red bars are the states with the lowest energy as described
earlier.
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(a) Probabilities for the states after p=3
layers.

(b) Probabilities for the states after p=4
layers.

(c) Probabilities for the states after p=5
layers.

(d) Probabilities for the states after p=6
layers.

(e) Probabilities for the states after p=7
layers.

(f) Probabilities for the states after p=8
layers.

Figure 4.16: Probabilities for the states after p layers for the initial state consisting
of all the possible states as described in equation (4.4). Above each bar the proba-
bility can be seen. The red bars are the states with the lowest energy as described
earlier.
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(a) Probabilities for the states after p=9
layers.

(b) Probabilities for the states after p=10
layers.

Figure 4.17: Probabilities for the states after p layers for the initial state consisting
of all the possible states as described in equation (4.4). Above each bar the proba-
bility can be seen. The red bars are the states with the lowest energy as described
earlier.

All these distributions results in different expectation values of the energy. How the
expectation value changed with each layer can be seen in figure 4.18.

Figure 4.18: Evolution of the expectation value of energy calculated as in equation
2.8 for each layer, compared to the energy of the best state when starting in a
superposition of all states in subspace.

With the initial state of all the possible states, the SWAP mixer has found the
good states after p = 2 layers in figure 4.15b. However, after that, the performance
becomes very similar to the earlier test for all the good states. With the probability
of all the good states staying at 1/6 through all the layers of operations. This is
quite strange, we expect that more start states should make it more likely to end up
in a better state. The reason for this can be that in the case with only bad states
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the energy difference is pretty significant and makes it easier to SWAP to the best
good state. When there is already a probability for the good states that are a little
worse the energy difference for the total system before and after a SWAP is much
lower and hence preventing a SWAP.

4.1.6 Comparison of all the initial states
How the performance of the SWAP mixer depend on the initial state can be seen in
figure 4.19. This figure describes how the expectation value of the energy changes
with layer for all the initial states.

Figure 4.19: Comparison of how the expectation value of the energy changes with
layers p for every different initial states.

The performance of the single good state achieved the best energy compared to
the others. But as stated earlier it does not utilize the advantages of a quantum
computer. Instead, the best initial state were the ones starting in bad states. With
these initial states, the probability of the best states was significantly bigger than
the other initial states for all the good states and all possible states.
For p = 9 and p = 10 in figure 4.3e and figure 4.3f the two best states end up with a
higher probability than the rest of the good states. This can also be seen for other
initial states such as in figure 4.9a and figure 4.9b. This means that QAOA with a
SWAP mixer is quite good at sorting out the bad states and find the best states.
However, it cannot swap to end up in the best state with 100% probability. This is
probably because the energy difference between the good states is quite low. This
can be seen in figure 4.4 and figure 4.10 where the energy of the states increases
to almost the optimal and then staying the same. The SWAP mixer seems to have
a little problem when the energy difference is low. The reason for this is probably
that when the energy is almost the lowest possible a SWAP may not necessarily
lower the energy. A SWAP that is applied to a state with a little higher energy to
get a better state with a lower energy is also applied to all the other states and can
increase their energy.
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5
Conclusion

In this paper, I have tested using a SWAP mixer for QAOA on an instance of the
Traveling salesman problem. With the SWAP mixer a subspace of the whole state
space could be generated and the SWAP mixer could preserve this subspace. With
this subspace less solutions had to be explored compared to if the ordinary bit flip
operator in the ordinary QAOA, that explores the whole space would have been used.
Instead of the 29 = 512 states that have to be explored in the ordinary QAOA, the
SWAP mixer only had to explore 33 = 27 states. This difference in number of states
are something that would increase with number of qubits making the SWAP even
more suited for particular problems that can utilize such a mixer.
Overall the SWAP mixer performed pretty well and could distinguish the good states
from the bad states that broke the constraints. To fully test the performance of the
SWAP mixer and see if it can find the best state the difference in energies between
the states has to increase. One way to do this is to increase the number of cities
visited and with that increase the number of qubits used. A first test would be to
test for 5 cities and 16 qubits. However, an increase in qubits implies an increase in
the number of required operations to simulate a quantum circuit representing the
new algorithm. This increase of quantum operations increased the operational time
of the program significantly taking more than 5 days instead of the 1 hour for the
9 qubit version and required a considerable amount more memory. A way to solve
this problem would be to use a different kind of simulator that is more efficient in
simulating a quantum computer. A different approach would be to have a list of
pre-defined parameters γp and βp to limit the optimizer part of the algorithm. It
is pretty hard to see if these pre-defined parameters are good parameters or bad
compared to all possible. Another way to speed up the algorithm would be to use
machine learning to predict the parameters. [15] A quantum circuit is expensive to
simulate on a classical computer which is of course why we would like to use a real
quantum computer.
The performance of the SWAP mixer showed potential and should be a contender
for mixing in more complex optimization problems than the TSP. An example is the
capacitated vehicle routing problem (CVRP) that is based on the traveling salesman
problem but instead of one person, you have multiple vehicles that together want to
deliver an amount of load to different stops. The goal is to find the optimal route
for every vehicle given a max freight load for each vehicle and that every stop is
visited once. [16] [17]
When using electronic equipment for measuring quantities noise is a problem of-
ten occurring. An interesting thing to look at would be to see how noise affects
the algorithm and how you can implement the algorithm to limit the impact of
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the noise. This has earlier been tested on the Max-κ-Colorable-Subgraph prob-
lem for the Quantum Alternating Operator Ansatz [18]. Qiskit has a backend called
QasmSimulator that implements noise to the quantum circuit [12]. However, adding
noise to the computation may result in a state outside the subspace generated by
the SWAP mixer. This will probably make the SWAP mixer useless because it is
defined to work on states in that particular subspace.
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