

Version Control of structured data:
A study on different approaches in XML

Master Thesis in Software Engineering

ERIK AXELSSON

SÉRGIO BATISTA

Department of Computer Science and Engineering
Division of Software Engineering
Chalmers University of Technology
Gothenburg, Sweden 2015

Abstract

The structured authoring environment has been changing towards a decentralised
form of authoring. Existing version control systems do not handle these documents ade-
quately, making it very difficult to have parallel authoring in a structured environment.
This study attempts to find better alternatives to the existing paradigms and tools for
versioning XML documents.

To achieve this, the DESMET methodology for evaluating software engineering meth-
ods and tools was applied, with both a Feature Analysis and a Benchmark Analysis being
performed.

Concerning the feature analysis, the results demonstrate that the XML-aware tools
are, as expected, better at XML specific concerns, such as considering the history of a
specific node. Conversely, the non-XML-aware ones are not able to achieve good results
in the XML specific concerns, but do achieve a high score when considering project
maturity or general repository management features. Regarding performance, this study
concludes that XML-aware tools bring a considerable overhead when compared to the
non-XML-aware tools.

This study concludes that the selection of an approach to versioning XML should be
dependent of the priorities of the documentation project.

Keywords: Structured documentation, XML, Version Control, distributed collaboration,
Git, Sirix, XChronicler, temporal databases, DESMET.

Acknowledgements

The authors would like to thank both the academic supervisor Morgan Ericsson and
examiner Matthias Tichy for their feedback and support throughout this thesis work.
We would also like to thank the supporting company – Simonsoft – for giving us the op-
portunity to conduct this research on their premises. We thank our industry supervisors
Staffan Olsson and Thomas Åkesson for their continuous support throughout our work.
Special thanks to our friends and family.

Erik and Sérgio, Gothenburg - June 2015

Contents

List of Tables vi

List of Figures vii

List of Listings viii

1 Introduction 1
1.1 Purpose of the study . 1
1.2 Statement of the problem . 2

1.2.1 So what is this complexity about? 2
1.3 Research questions . 2

1.3.1 What is a good approach to versioning an XML document? 2
1.4 Scope and Delimitations . 3
1.5 Outline of the Report . 4

2 Foundations 5
2.1 XML . 5

2.1.1 Key Constructs . 5
2.1.2 Well-formedness . 7
2.1.3 XML Canonicalisation . 7
2.1.4 XML in Structured Documentation 7

2.2 XQuery . 7
2.2.1 FLWOR expressions . 8
2.2.2 XPath . 8
2.2.3 XQuery Update Facility . 9

2.3 XML Storage . 11
2.3.1 File System . 11
2.3.2 XML Databases . 11

2.4 XML Version Control . 12
2.4.1 Differencing Plain Text and Tree Structures 12

i

CONTENTS

2.4.2 Merging/Patching Documents . 13
2.4.3 Versioning . 13
2.4.4 The problem of versioning XML using linear approaches 13

3 Related Work 15
3.1 Temporal XML . 15

3.1.1 XChronicler and V-Documents . 15
3.1.2 The rise of temporal standards . 16

3.2 XML Differencing and Merging . 17
3.3 Versioned XML Storage . 17

3.3.1 TreeTank . 17
3.3.2 Sirix . 17

4 Research Method 18
4.1 Approach . 18

4.1.1 General Design Cycle . 19
4.1.2 Evaluation Strategy . 22

4.2 RQ1: Data Collection . 23
4.2.1 Elicitation . 23
4.2.2 Analysis . 24
4.2.3 Specification . 24
4.2.4 Validation . 24

4.3 RQ2: Data Collection . 24
4.3.1 Feature Analysis Evaluation Criteria 24
4.3.2 Feature Analysis Scoring . 25
4.3.3 Feature Analysis Examples . 26

4.4 RQ3: Data Collection . 29
4.4.1 Pre-processing . 29
4.4.2 Execution steps . 29
4.4.3 Post-processing . 29

4.5 Approaches under test . 29
4.5.1 Git . 30
4.5.2 Normalisation of XML Input . 30
4.5.3 XML-aware Versioning (Sirix and XChronicler) 30

5 Implementation 31
5.1 Overview . 31

5.1.1 Usage scenario . 31
5.1.2 Language and frameworks . 34

5.2 Common API . 34
5.3 Git . 34
5.4 Normalised Git . 35

5.4.1 Canonicalisation process . 35
5.4.2 Further Normalisation . 35

ii

CONTENTS

5.5 XChronicler + eXist . 35
5.5.1 XChronicler . 35
5.5.2 eXist . 35

5.6 Sirix . 36
5.7 Data collection for benchmark analysis . 36

5.7.1 Memory and CPU . 36
5.7.2 Time and Repository Size . 36

5.8 Source Code . 36

6 Results 38
6.1 Research Question 1 . 38

6.1.1 User Stories . 38
6.1.2 Features . 38

6.2 Research Question 2 . 40
6.2.1 Feature Analysis result – examples 40
6.2.2 Feature Analysis Score sheets . 41

6.3 Research Question 3 . 50

7 Discussion 53
7.1 Research Questions . 53

7.1.1 Research Question 1 . 53
7.1.2 Research Question 2 . 54
7.1.3 Research Question 3 . 55
7.1.4 Research Question 0 . 56

7.2 Threats to validity and Ethics . 57
7.2.1 Conclusion Validity . 57
7.2.2 Internal Validity . 57
7.2.3 Construct Validity . 57
7.2.4 External Validity . 57
7.2.5 Ethical concerns . 58

8 Conclusion 59
8.1 Research Questions . 59

8.1.1 Research Question 1 . 59
8.1.2 Research Question 2 . 59
8.1.3 Research Question 3 . 60
8.1.4 Research Question 0 . 60

8.2 Future work . 60

Bibliography 67

Glossary 68

Acronyms 71

iii

CONTENTS

A User Stories 72

B Feature list and Metrics 75

C Benchmark Results 81

D Project Metrics Analysis 83

E Pre-processing steps of benchmark data 84

F Environment Specification 86

G Test Script Example – Source Code 87

iv

List of Tables

4.1 Scoring example . 26

6.2 Feature list . 38
6.1 Feature groups description . 41
6.3 MCR-04: Handling of non-significant white-space results. 42
6.4 XML-03: Handling of insertion of parent results. 42
6.5 Git documentation comparison . 43
6.6 Sirix documentation comparison . 44
6.7 XChronicler documentation comparison 44
6.8 PM-03: Level of documentation of the project results 44
6.9 Summary of Feature Analysis results . 45
6.10 Versioning Results . 46
6.11 Repository Management Results . 46
6.12 Merging / Conflict resolution Results . 47
6.13 Project Maintainability Results . 47
6.14 XML Specific Results . 48
6.15 CMS Specific Results . 49
6.16 Summary of Benchmark results . 50

A.1 User Stories . 72

B.1 Versioning Features . 75
B.2 Repository Management Features . 75
B.3 Merging / Conflict resolution Features . 76
B.4 Project Maintainability Features . 77
B.5 XML Specific Features . 77
B.6 CMS Specific features . 80

C.1 Benchmark results: Normalised Git . 81
C.2 Benchmark results: Sirix . 82

v

LIST OF TABLES

D.1 Project Metrics Analysis . 83

vi

List of Figures

2.1 XML structure and its equivalent tree representation 6
2.2 XPath Axes . 10

3.1 XPath temporal extension implemented in Sirix 16

4.1 Design Science Research Methodology Process Model.[1] 19
4.2 Thesis Workflow . 20
4.3 Example of test design for evaluation of XML-03 27

5.1 Structure diagram of the test environment architecture. 32
5.2 Testing Framework – typical usage sequence diagram 33

6.1 Example of test for evaluation of XML-03 42
6.2 Level of documentation . 43
6.3 Feature Analysis results by Tool and stacked by Feature Group 45
6.4 CPU Usage (less is better) . 51
6.5 Hard-drive Usage (less is better) . 51
6.6 Memory Usage (less is better) . 52
6.7 Time for the operation (less is better) . 52

vii

Listings

2.1 XQuery FLWOR example . 8
2.2 XQuery Update Facility example . 11
2.3 An ideal scenario for a diff . 12
3.1 Example of a V-Document . 16
E.1 source-code of the pre-processing script used on the input data for bench-

mark . 84
G.1 source-code of the test script for a parallel editing 87

viii

1
Introduction

X
ML documentation production is moving towards decentralised produc-
tion and faster release cycle. Documentation authors have the need to manage
different documents and versions of them. It is also common for a set of these
documents to share similar content. Eventually, when part of the content is

changed, that specific change might be required to be reflected in some other documents.
With the decentralised authoring environment and having many document maintainers,
there is the need to keep eXtensible Markup Language (XML) documentation version
controlled with all the complexity that it involves. All of this should be simple to achieve
and effortless.

Considering that background, there is the need for new tools to help authors keeping
up with the rapid development pace while maintaining quality.

In this study we design, implement, compare and evaluate different implementations
of different paradigms to XML version control. Based on the outcome of the comparison,
we suggest the best fitting approaches regarding this problem.

1.1 Purpose of the study

The purpose of this study is to investigate, evaluate and suggest best-fit approaches
to perform versioning in structured documents in the form of ordered XML. Rönnau
[2] states that “most supporting tools like version control systems, or business process
systems do not handle these [XML] documents adequately. Parallel editing of documents
across network and system borders is almost impossible”. This study intends to provide
maintainers of multiple XML documents with a better approach to XML versioning.

This research can be contained within the Software Engineering Knowledge Area of
Software Configuration Management [3].

1

1.2. STATEMENT OF THE PROBLEM CHAPTER 1. INTRODUCTION

1.2 Statement of the problem

With the fast pace in releasing new and more complex products, as well as the need for
maintaining older ones, the authoring of structured documentation, specifically product
manuals, is moving from a centralised authoring paradigm towards a decentralised one.
This paradigm shift is happening in order to increase the rate and easiness of produc-
tion as well as increasing the quality of these same documents. To achieve this, more
specialised contributors are deemed necessary. These are mostly untrained authors, that
don’t want to dwell with complex documentation processes. Therefore, to get their
contribution, the complexity of the authoring process needs to decrease.

1.2.1 So what is this complexity about?

The complexity derives from having many different versions of the same documents along
with other similar ones that may share parts among them.

A solution to minimise the shared parts issue currently in use is referred as modular-
isation. Modularisation is the manual insertion of cross-references to other documents
that share the same content, this part will then be imported when compiling the doc-
ument for release. The problem with this manual approach is that it requires design
upfront in order to select and extract which parts are going to be reused later or some
refactoring effort later on. Instead, the more common solution in use is the plain copy-
paste text approach because it is easier and faster to do. There is a trade-off with this
approach, by saving time during the creation of the document, one highly increases its
maintenance complexity.

Tree based data structures have different characteristics from unstructured text ones,
with the latter having well established and efficient ways of versioning. Systems such as
Concurrent Version System (CVS), Subversion (SVN), Git or mercurial, are today, for
example, an essential part of any software codebase. For the tree-based ones though,
there are no currently well established ways of versioning this type of data in an efficient
way.

1.3 Research questions

This thesis has a main research goal that is to understand what is a good approach
to the versioning of an XML document. As mentioned before, the current state of the
industry is to use non-XML-aware tools, relying on currently well established version
control systems that do not take into account the specificities of a tree-based document.

1.3.1 RQ0: What is a good approach to versioning an XML document?

The main research question that this work tries to answer is which are the best ap-
proaches to version XML, and under which circumstances those approaches should be
used. In order to answer this, there is the need to answer the following sub-questions:

2

1.4. SCOPE AND DELIMITATIONS CHAPTER 1. INTRODUCTION

RQ1: What features are required for a version control system to have in a
documentation context?

In order to understand the document maintainers’ needs from the version control system,
there is the need to elicit and specify the requirements.

RQ2: Of the previously identified features, which ones do XML-aware and
non-XML-aware tools have?

In order to learn what are the most appropriate tools for versioning XML, there is the
need to understand which tools contain which of the required features.

RQ3: How much overhead does an XML-aware tool carry when compared
to a non-XML-aware one?

In order for a complete comparison, a cost/benefit analysis is also required, therefor we
need to understand how expensive the XML-aware tools are when compared to non-
XML-aware ones.

1.4 Scope and Delimitations

This study focuses on XML documents and their versioning. There are numerous version
control system available that, due to the limited time-frame of this research, can not be
taken into account. As such, as an initial delimitation, this research focuses only on Free
and Open-Source Software (FOSS) tools, as a way to limit the amount of tools as well
as free the research from the constraints of restrictive licenses and the most likely need
to study the source code of the tool in question.

Although the overall end goal is to tackle a production system, for this research
scenario the focus excludes the repository structure, this includes branching/forking of
repositories and similar features. The assumption being that the benefit of addressing
such scenarios does not out the research costs, mainly in what time is concerned.

In what regards the XML structure, as it contains many intricacies, some parts of
the specification have to be left out. The rationale is again that the cost/benefit of
addressing them would not be deemed enough.

• Only ordered XML, i.e. the order of nodes matters (but not the order of attributes);
• Only XML for documentation purposes, any other usage for XML is considered

out of the scope of this study.
• Within structured documentation, this study will not deal with Open Document

Format (ODF) or similar. It will focus on “pure” XML, this means Comments,
Processing Instructions, document type definition, Schemas and similar will not
take part on the scope of this research.

3

1.5. OUTLINE OF THE REPORT CHAPTER 1. INTRODUCTION

1.5 Outline of the Report

This thesis report is divided into eight chapters – This first chapter introduces and
provides an overview of the study, its motivations and goals. Chapter number two
provides the required background for the remainder of the report. In chapter number
three we discuss related work and what has been done before this work and how it
relates to the topic. The fourth chapter presents the method followed by this research
work including the data collection approach for each research question. In chapter five,
we discuss the implementation part of the evaluation, including the overall architecture
of the system, and more specifically how some of the tests were performed. The sixth
chapter presents the results of the research work and the seventh chapter presents the
discussion of those results along with the identified validity threats to this study. The
eight and final chapter presents the conclusions and possible future work in this field.

In the appendices we include the elicited User Stories (appendix A on page 72); the
Feature List used for the evaluation with their metrics (appendix B on page 75); the
detailed Benchmark Results (appendix C on page 81); the data used for the analysis of
the projects behind the two final products evaluated (appendix D on page 83); the script
used for the pre-processing steps of the benchmark analysis (appendix E on page 84);
the specification of the environment used for the benchmark analysis (appendix F on
page 86); and finally, the source code of an example test script used on the evaluation
(appendix G on page 87).

4

2
Foundations

T
his chapter lays out the foundational background for this thesis work. It ad-
dresses 4 main areas: XML, XQuery, XML Storage, and XML Version Control.
It is assumed that the reader has a basic knowledge within each of the areas
and this section intends to set a common baseline of understanding that will

be required for the next chapters.

2.1 XML

XML [4, 5] is a markup language with its specification being a World Wide Web Con-
sortium (W3C) recommendation since 1998 [4]. It is used to represent structured in-
formation in documents, data, configuration, books, transactions, invoices, and much
more.

It is designed to be read and understood by both machines and humans, with its
main goal to transport and store data and focusing on what data is rather than on what
data looks, figure 2.1 on the next page contains a basic example of an XML structure.

2.1.1 Key Constructs

This section presents a list of the most common XML constructs, it is by no means
exhaustive and intends only to put the reader up to speed with some of the terms
mentioned in this report.

Markup and Content

The set of characters in an XML document are divided into markup and content. In a
general sense, strings that are delimited by angle-brackets (< and >) or by an amper-
sand and a semi-colon (& and ;) constitute the markup and the remaining strings are

5

2.1. XML CHAPTER 2. FOUNDATIONS

<f oo a t t r=”nor f ”>
<bar>

baz
</ bar>
<qux />

</ foo>

Figure 2.1: XML structure and its equivalent tree representation

considered content. N.B. There are some exceptions to these rules, but these are out of
the scope of this study.

Tag

An XML tag is a markup construct delimited by angle-brackets (< and >). This con-
struct might be an opening- (<tag>), closing- (</tag>) or self-closing-tag (<tag/>).

Element

An element is a component that starts with an opening-tag and ends with the corre-
spondent closing-tag (it can also be contained within a self-closing-tag). Its content, if
existent, are the characters between the delimiting tags (opening and closing).

The element content can also contain markup that may be other elements, being
those the child elements to this one.

Attribute

An XML attribute is often used to describe the data rather than containing relevant
data itself[6]. It is added within the tag of an element and has a key and a value. In
between both, the equals sign is used (=) and the value is always quoted, either by a
single quote (’) or by a double one ("). An example of a tag element with the attribute
id is as follows: <tag id="5" />.

XML Declaration

The XML Declaration is an pseudo-element that can be present on the first line of a
document. It consists of the xml version and the text encoding. It can also include the
“pseudo-attribute”[7] standalone which essentially notifies the parser if the document has
external documents to be fetched in order to be well-formed.

Example: <?xml version="1.0" encoding="UTF-16" standalone="no" ?>

6

2.2. XQUERY CHAPTER 2. FOUNDATIONS

2.1.2 Well-formedness

Even though XML is a meta-markup language, in the sense that one can come up with the
tags and attributes as one writes the document, the document still needs to follow some
ground rules (more than 100 different ones). This is due to the specification [5] strictly
forbidding an XML Parser from fixing or even understand malformed documents, unlike,
for example, HTML. Well-formedness is then the lowest level required for the XML to
be parsed.

The complete set of rules can be found in the XML specification[5].

2.1.3 XML Canonicalisation

Canonical XML is a separate W3C Recommendation[8, 9] that converts an XML doc-
ument into a “single stand-alone file that can be compared byte-for-byte with other
canonical XML Documents.”[7]

The XML Canonicalization (C14N) process requires a set of 15 steps that transform
the document after which, and according to the W3C[5], “if two XML documents have
the same canonical form, then the two documents are logically equivalent within the
given application context”.

Below, we show some examples of the normalisation steps mentioned above:

• Normalisation of white-spaces within an element;
• Conversion of self-closing elements to ones with opening and closing tag, e.g. <foo

/> becomes <foo></foo>;
• Sorting of attributes within an element according to their unicode character num-

ber, e.g. <foo c="" b="" a="" ></foo> becomes <foo a="" b="" c="" ></foo>;
• UTF-8 is used for encoding;
• Removal of superfluous namespace declarations;

2.1.4 XML in Structured Documentation

As described by the W3C XHTML2 working group: ”XML is the universal format for
structured documents and data on the Web.”[10] Along with other formats, such as
SGML, LATEX, XML allows the separation of content from visualisation and allows for
the validation of content through the uses of schemas.

Note that in our specific situation XML for documentation purposes the order of the
nodes matter as opposed to regular XML.

2.2 XQuery

XQuery is a query language for XML, in many ways is similar to Standard Query Lan-
guage (SQL). It is a W3C recommendation since 2007 [11] and with its latest version
(3.0) released while this thesis work was undergoing in 2014 [12]. The following pages
describe what the authors consider to be important aspects of the language that were
used in this research work.

7

2.2. XQUERY CHAPTER 2. FOUNDATIONS

2.2.1 FLWOR expressions

FLWOR (pronounced ‘flower’) is a type of XQuery expressions, similar to a regular SQL
expression. It stands for for, let, where, order by, return. Listing 2.1 displays an example
extracted from [11, 3.8 FLWOR Expressions] where the query can be loosely translated
into “Get all departments that have more than ten employees, order these departments
by decreasing average salary, and return a report of department numbers, head counts
and average salary in each big department” [13].

Listing 2.1: XQuery FLWOR example

1 for $d in fn:doc("depts.xml")/depts/deptno

2 let $e := fn:doc("emps.xml")/emps/emp[deptno = $d]

3 where fn:count($e) >= 10

4 order by fn:avg($e/salary) descending

5 return

6 <big -dept>

7 {

8 $d,

9 <headcount >{fn:count($e)}</headcount >,

10 <avgsal >{fn:avg($e/salary)}</avgsal >

11 }

12 </big -dept>

In XQuery 1.0, the for and let statements can be multiple, are interchangeable and
can only eXist before the where clause. The most recent version (XQuery 3.0 [12]) allows
both statements to be included also after the where clause, allowing for the simplification
of many existing nested queries. It also extends the FLWOR expressions by adding
newer clauses (group by, count, and window, among other changes (none covered by the
scope of this work).

2.2.2 XPath

XPath is a query language mainly used to select/address parts of an XML document. It
came out as a W3C recommendation in 1999 with the purpose of being used along with
XSLT and with XPointer [14], its use has since then been more differentiated.

Besides being used to address parts of a document, XPath contains numerous stan-
dard built-in functions that span from strings/numerical values to date/time manipu-
lations. These functions will not be described here in this report, refer to the W3C
recommendation[14] for more information.

Nodes and their relationship

XPath treats each part of an XML document as a node. There are seven different types of
nodes: element, attribute, text, namespace, processing-instruction, comment, and the document

itself.

8

2.2. XQUERY CHAPTER 2. FOUNDATIONS

Together with nodes, there are Atomic Values — the content of a node with no
children or parent.

Finally, XPath categorises the relationships between each node in five different ways:

Parent each node of the type attribute or element has one and only one parent, at
the exception of the root element node which has none

Child each element node can have zero or more child nodes.

Sibling a node that shares the same parent

Ancestor a node’s parent, parent’s parent, etc.

Descendant a node’s children, children’s children, etc.

Axes

In XPath specification there are thirteen different axis that represent the different pos-
sible relations among nodes. figure 2.2 on the next page represents visually these axes.
These axes can then be used within a location path to target a specific node.

Location Path Expression

Location Path Expressions(LPEs) are used to target selected node(s), they can be either
absolute or relative.

In order for the LPE to be absolute, it must start with a forward slash (/), otherwise
it is considered a relative one.

An LPE has one or more steps, each of these separated by a forward slash /. Each
of these steps is then evaluated against the nodes in the current node-set.

The syntax for a location step is axisname::nodetest[predicate], where:

axisname defines the tree-relationship between the selected nodes and the current
node

nodetest identifies a node within an axis

predicate to further refine the selected node-set (can be zero or more)

2.2.3 XQuery Update Facility

XQuery Update Facility (XQUF) is a W3C recommendation since 2011[15] that extends
the XQuery recommendation[11] allowing persistent changes to XQuery and XPath Data
model instances.

Expressions

XQUF adds five new kinds of expressions (or update primitives) and related Update
Operations1 to XQuery, these are:

1Note that upd:put is also an update operation but is out of the scope of this work.

9

2.2. XQUERY CHAPTER 2. FOUNDATIONS

Figure 2.2: XPath Axes

insert a node (or more) inside/before/after a specific node, the related Update Oper-
ations (UO) are: upd:insertBefore, upd:insertAfter, upd:insertInto, upd:insertIntoAsFirst
, upd:insertIntoAsLast, upd:insertAttributes;

delete one (or more) nodes, UO: upd:delete;

replace a node and all of its descendants with another sequence, UO: upd:replaceNode
, upd:replaceValue, upd:replaceElementContent;

rename the name property of a node without affecting its contents, UO: upd:rename;

transform a node by creating a copy of the original node and modifying its contents.

10

2.3. XML STORAGE CHAPTER 2. FOUNDATIONS

The standard also specifies 6 update routines. The specifics about each operation
and routines are not within the scope of this work, refer to the specification[15] for more
details.

Listing 2.2: XQuery Update Facility example

1 for $idattr in doc("data.xml")//ITEM/@Id(: selection :)

2 return (delete node $idattr ,(: update 1 :)

3 insert node <NID> {string($idattr)} </NID> (: update 2 :)

4 as first into $idattr/

Pending Update Lists

As defined in the specification, a Pending Update List is an ‘unordered collection of
update primitives, which represent node state changes that have not yet been applied.’
[15]

Within the Pending Update List, the update statements are not executed immedi-
ately, but instead collected as update primitives and only applied at the end of the query
that contains them.

These primitives are not applied in the order of insertion into the list, instead they are
grouped by operation type and then applied in a specific order. A possible order (non-
normative) by which these operations are applied is presented in the recommendation
[15].

2.3 XML Storage

XML documentation is usually stored in two diverse ways, either within a textual storage
system (file system, relational database, among others), or within an XML-aware storage
system.

2.3.1 File System

Regarding the first option, arguably all of the external software applications that deal
with XML are developed with this scenario in mind and there is no need to adapt them
in order for them to access the content. This ease of access also creates an issue with
the validation and correctness of the data.

2.3.2 XML Databases

The second option, besides the storage function, and assuming that an XQuery processor
is included, allows querying the content. An example of an advantage over the file system
is that the results of repetitive queries can be indexed for increased speed. Another upside
is that many of the XML-aware tools verify the input, ensuring correctness of syntax.

11

2.4. XML VERSION CONTROL CHAPTER 2. FOUNDATIONS

Bourret[16] divides the XML Databases into two different categories, those that are
XML-enabled and those that have a Native XML support.

XML-enabled

XML-enabled are able to interpret XML but does not store it as such. Examples of
popular XML-enabled databases are IBM DB2[17], Microsoft SQL Server[18], Oracle
Database[19], and PostgreSQL[20], among others.

Native XML

Native XML databases are not only able to interpret the XML, but also stores it as
XML. Examples of popular Native XML supported databases are BaseX[21], eXist[22],
MarkLogic Server[23], Sedna[24], and Sirix[25]

2.4 XML Version Control

This section explains the current state of the art with regards to version control of XML
by highlighting the differences between plain text versioning and tree structures. It is
divided into the different features required for the version control: the versioning of
different states of the document lifetime, the differencing process between versions, and
how merging can be done.

2.4.1 Differencing Plain Text and Tree Structures

When attempting to highlight the differences in plain text, one usually uses a prede-
fined differencing algorithm (e.g. Meyers[26]) to figure out the minimum number of edit
operations between two texts and then transpose these operations into an edit script,
commonly referred to as diff.

Ideally, this scenario of producing diffs works as in listing 2.3, where the original
content and the edit operations combined will always produce the modified text.

Listing 2.3: An ideal scenario for a diff

1 diff (original_text , modified_text) --> edit_operations

2 patch(original_text , edit_operations) --> modified_text

However, when it concerns tree structures, these linear approaches don’t work as
efficiently [27]. As the data is contained within structure blocks, the context that repre-
sents the change of a content of a single block should reflect a change in the whole block
and not only on the line(s) that the change affects. Also, as explained in section 2.1
on page 5 there is no requirement to keep the structure in different lines, in fact, for
transferring data across networks, the documents are many times minified, with all of its

12

2.4. XML VERSION CONTROL CHAPTER 2. FOUNDATIONS

content reduced to a few lines, making it very hard to detect what has changed within
a line.

A possible way to address this issue is to highlight the changes on a per sub-tree
basis with the context being the relation to the neighbouring siblings, parent, and child
nodes through the means of a delta[28]. An alternative to this method is to use context
fingerprints[29], these take into account the neighbouring nodes within a specific radius
while taking into account the document order.

2.4.2 Merging/Patching Documents

Traditionally, there are two different paradigms of merging documents. The first, is
when two documents are combined. In order to perform this type of merge, the differ-
ences between the two documents are highlighted, and a file containing the differences
is generated from it.

The second, used in revision control system, is when there is a common ancestor
to the documents being merged – 3-way merge – this approach looks for sections of
documents that are common in two of the three files. In the end, two versions of each
changed section should exist, with the original (the ancestor) being discarded, and a
fourth one being produced, containing the changes existing in both documents.

2.4.3 Versioning

Versioning, also known as revision control and source control, is the act of storing all the
versions of a document. This is a very important thing for backup, history and logging
who did what and when.

There are different approaches to versioning. Originally, and still quite used, is the
storing of different documents with an incremental revision number (or timestamp) in the
file name. After, initial version control systems appeared allowing this process to be semi-
automatic while adding metadata to each stored revision (e.g. commit message, author,
and timestamp) The later tools, contain more advanced features, such as branches,
allowing for merging of different versions, the ability of locking files for editing, etc..

2.4.4 The problem of versioning XML using linear approaches

A linear approach to version control fails clearly in three simple scenarios: When using
different indentation specifications, when rearranging the tree (e.g. insertion of a parent
node), and on changing of the order of attributes within an element.

Regarding the first scenario, a linear based differencing does not understand the
difference between significant and non-significant white space. If, for example a document
is edited in different tools, each with different indentation specifications (e.g. one uses 2
consecutive white spaces and the other uses 4), the documents might be equivalent but
will be recognised as two entirely different ones.

In the second scenario a linear based would only recognise the insertion of the opening
and closing element tags, but not that the content structure had clearly changed (we

13

2.4. XML VERSION CONTROL CHAPTER 2. FOUNDATIONS

disregard possible indentation here).
The last scenario presents us with another false positive situation, as the linear

approach would detect as a change had occurred, when actually the order of attributes
is irrelevant within the context of XML.

14

3
Related Work

I
n distributed, cross-organisation authoring environments, a document’s life-cycle
doesn’t follow a linear evolution but instead a collaborative approach [2, 27]. This
means that a document is not only being developed iteratively but it might also
have different people working on it at the same time. This collaborative Strategy

requires more and better merging abilities for which conventional versioning systems are
not prepared for with regards to structured data. This issue is recognised by many and
with no established nor standardised solution, which leads to many different approaches
on how to generate delta files, perform merges or even store the documentation.

3.1 Temporal XML

Chien et al [30] propose efficient storage schemas based on structured change representa-
tions and durable node numbers. Wang and Zaniolo built on that and present “efficient
techniques to manage multi-version document history” [31] while supporting temporal
queries. They do this through the creation of a version-document or V-Document that
contains the history of all the nodes that have ever existed in the original document,
while using XML queries [11] to retrieve the temporal evolution of the document. Fourny
et al [32] use these concepts and elaborate on them with their previous work [33] by the
use and extension of standardised XML tools to extract update lists and serialise them
in order to query them afterwards. Fourny et al [32] also introduce another approach
on versioning XML by the use of node and tree time-lines along with versions creating
what they refer to as pi-nodes, pi-trees and pi-forests.

3.1.1 XChronicler and V-Documents

XChronicler is a tool that given many versions of an XML document, it generates another
that describes its revision history [31], referred to as V-Document. This document
contains all the nodes that have ever existed in the original document, and each has an

15

3.1. TEMPORAL XML CHAPTER 3. RELATED WORK

identifier to the initial version when was created (vstart) and another to when it ceased
to exist in its current form (vend), this allows for many possible temporal queries. As the
most common and basic example, in order to retrieve a specific version of the document,
only the nodes for which the vstart and vend compose the outer boundaries of the version
are to be retrieved, i.e. no node that has yet to be created nor one that has ceased to
exist are to be displayed. For this thesis work, implementation that was used in this
evaluation is the one implemented by Svallfors[34].

Listing 3.1: Example of a V-Document

1 <foo vstart =0 vend="NOW">

2 <attr isAttr ="yes" vstart =0 vend="NOW">attr</attr>

3 <bar vstart =0 vend =1/>

4 <baz vstart =1 vend="NOW"/>

5 </foo>

3.1.2 The rise of temporal standards

In [32] Fourny et al propose an extension to the XQuery Data Model with a temporal
dimension.

In [35], Lichtenberger proposes adding those axis to treetank and later on, implements
them in Sirix[25]. The added commands and their relation are in figure 3.1.

Figure 3.1: XPath temporal extension implemented in Sirix

16

3.2. XML DIFFERENCING AND MERGING CHAPTER 3. RELATED WORK

3.2 XML Differencing and Merging Tools and Formats

Regarding the differencing and merging tools and formats, there are numerous alter-
natives available. Lindholm et al [36], La Fontaine [37], Rönnau [27], Komvoteas [38],
Y. Wang et al [39], F. Wang and Zaniolo [31], among others, all present different XML
differencing algorithms. Further more, Rönnau [40] Lindholm et al [36], and Y. Wang
et al [39], perform comparisons between alternative differencing tools.

In Chien et al [41] they compare the use of versioning schemas for XML with revision
control system and Source Code Control System, concluding that both “RCS and SCCS
are not up to the task and there is a need for new and improved techniques that achieve
better performance at the physical level and the logical level.” [41].

3.3 Versioned XML Storage

3.3.1 TreeTank

Graf [42] and Graf et al [43] present an architecture for a versioned XML database called
Treetank[44]. Its architecture is based in three core concepts, these are: “the nodes must
contain all information about their content and their position in the overall structure”,
“the position of a node in a tree must be flexible regarding its position in the storage”, and
that “changes to the stored nodes must rely on a convenient and confident transaction
system”.

3.3.2 Sirix

Lichtenberger, originally involved in the group that created TreeTank [43], creates Sirix[25]
as a fork from TreeTank in a followup to his MSc Thesis[35], in order to maintain focus
on Version control of XML as the previous project had shifted its towards secure cloud
storage [45]. Lichtenberger also added in the project brackit(.org) to the project. Brackit
is a query engine for XQuery developed at the TU Kaiserslautern.

17

4
Research Method

T
his chapter describes the research method followed to execute this the-
sis work. In the first section it is presented the overall research approach
followed in this work. The second section presents the method followed to an-
swer RQ1 by eliciting and specifying the required features. The third section

presents the Feature Analysis performed to answer RQ2. The fourth section presents the
experimental protocol followed to perform the Benchmark Analysis required to answer
RQ3.

4.1 Approach

This work focuses on two different paradigms on XML version control (XML-aware and
non-XML-aware) and performs a comparison between them. To achieve this goal, and
in an initial stage, a literature review was performed to allow the understanding of the
state of the art as well as a few workshops were made in conjunction with the supporting
company in order to define and understand the magnitude of the problem.

The next stage, and after the problem has been more clearly defined, usage scenarios
were elicited from the experts at the supporting company. Then they were specified
and, after that, prioritised by the experts in a different workshop. At this stage, the
functional and knowledge gaps were more clear and also understood where the current
technologies in use weren’t fulfilling the users’ needs.

Given the two major possible paradigms that we’ve defined, the next stages focus on
the development and evaluation of at least two solutions (one for each paradigm) on a
prototype level.

For the non-XML-aware, the main idea was to extend and improve the existing
technology through minor modifications (normalisation of input and output) that should
increase the effectiveness of these tools with a low cost of implementation in some of the
scenarios where these tools currently don’t hold. Regarding the XML-aware tools, the

18

4.1. APPROACH CHAPTER 4. RESEARCH METHOD

focus was on exploring existing solutions that could potentially address the problem and
select one to implement and evaluate.

For the demonstration of the solution and the evaluation of the results in a systematic
way, a lightweight testing framework was designed and developed specifically for this
purpose with the goal of automating most of the tests. Using the aforementioned testing
framework along with some manual testing, we compare the solutions against the user
scenarios and defined goals.

The final stage of this research takes place with the writing of the project report
directed towards the supporting company, this thesis report, and the thesis presentation.

The general design cycle approach and the evaluation strategy are described in the
following sections.

4.1.1 General Design Cycle

Figure 4.1: Design Science Research Methodology Process Model.[1]

Due to the nature of the proposed problem, this study follows a Design Science Re-
search methodology [1, 46] in a non-strict way, i.e. the process was adapted to the prob-
lem while still keeping a close relation with the methodology. The selected general design
cycle as figure 4.1 shows, is then divided into six separate stages: Problem identification
and motivation; Definition of the objectives for a solution; Design and development;
Demonstration; Evaluation; and Communication. Note the iterative process that allows
for refining the outcomes of each stage with the exception of the problem identification
and motivation. Each of these stages is described in the following paragraphs.

The actual workflow followed along with its relation to the aforementioned method-
ology is present in figure 4.2 on the following page.

19

4.1. APPROACH CHAPTER 4. RESEARCH METHOD

Identify Problem
& Motivate

Define
Objectives of a

Solution

Design &
Development

Demonstration

Evaluation

Communication

Literature Review
Meetings/Workshops

with Supporting
Company

User Stories

Study Proposal

Feature
Specification

Development/
Adaptation of

Tools

Evaluation
Setup

Thesis Report
Presentation of

results to
Academia

Analysis of
Results

Evaluation of
the tools

[optional]

[optional]

Presentation of
results to
Industry

Research
Step

DSRM Stage
Research

Flow

Legend:

RQ1

RQ2 & RQ3

Research Question
gets Answered

Figure 4.2: Thesis Workflow

20

4.1. APPROACH CHAPTER 4. RESEARCH METHOD

Problem identification and motivation

During this phase, meetings with the supporting company took place concerning the
problem definition. A literature review was also performed on the matter in order to
better understand the state of the art regarding the subject. The main outcome of this
activity was a study proposal, where the research questions were defined and motivated
for.

Define the objectives for a solution

In this activity usage scenarios defined, user stories written and features for the tools
were specified. These features are measurable either qualitatively or quantitatively. It
is at the end of this stage that the Research Question 1 gets answered.

Design and development

This stage is self-explanatory, here the actual design and development of the prototypes
of the tools were done to address the goals.

Demonstration

In the demonstration phase, or evaluation setup, activities such as experiments, simula-
tions, etc. took place, these enabled the subsequent evaluation phase in order to verify
that the tool did indeed solve the problem.

Note that the framework (DESMET) that supports this and the following stage of
the cycle (Evaluation) is better described in sub-section 4.1.2 on the next page.

Evaluation

The evaluation stage concerns the measuring of“how well the artifact supports a solution
to the problem” [46]. This activity involves the evaluation of the testing results against
the features brought up by user scenarios, other quality metrics that have been defined,
the feedback from the supporting company, among others.

At the conclusion of this phase, the research as a whole was re-evaluated and allowed
to iterate back to either the objectives definition phase — in case of the features spec-
ification — to the design & development phase — in order to improve the tool — or,
instead, proceed to the communication phase.

Before the transition to the next stage, the remaining Research Questions(2 and 3)
must be answered.

Communication

Based on the knowledge collected in the above mentioned stages, in this last step two
separate communication sets were produced. The first, regarding the supporting com-
pany, a project report was written along with a presentation performed; The second, in
regards to the academia, this thesis report was written and the thesis defence took place.

21

4.1. APPROACH CHAPTER 4. RESEARCH METHOD

4.1.2 Evaluation Strategy

Albeit we are at some point comparing apples and oranges as these tools have different
approaches towards the same target, the end goal is to know which paradigm has the best
cost benefit, or even if they are both mature and ready to be consumed. So, in order to
be able to perform the comparison between the two approaches, a fair evaluation criteria
has to be set and defined.

Kitchenham [47, 48] introduces an evaluation framework (DESMET) and a proce-
dure to select the most appropriate evaluation method according to circumstances. The
Feature Analysis and Benchmarking are deemed as appropriate means to perform a
comparison between two or more alternate tools in our case.

In order to delimit the amount of tools to be reviewed and compared, an initial
Feature analysis/Qualitative screening [47] was performed. This allowed to narrow down
to the more relevant tools to later elaborate on the comparison.

Qualitative Screening

Kitchenham[47] defines qualitative screening as “a feature-based evaluation done by a
single individual (or cohesive group) who not only determines the features to be assessed
and their rating scale but also does the assessment. For initial screening, the evaluations
are usually based on literature describing the software methods/tools rather than actual
use of the methods/tools.”

In order to answer the Research Question 2 — to know what features do these tools
have — the Qualitative Screening evaluation method was selected.

Qualitative screening - Superficial setup

In order to perform this qualitative screening, an initial requirements elicitation was
performed to understand the needs for the tools. These are then specified and detailed
into measurable metrics.

Following that, a broad search was performed to gather the relevant available tools,
both academic and industrial literature was reviewed with a focus on specialised con-
ference proceedings (XML Prague)[49–53] to understand the specific tools that were in
the market. Along with that, references to some tools were also given by the experts at
the partner company which enabled the collection of a substantial amount of tools to be
screened.

It is then accessed the extent to which these tools support the features by reviewing
promotional material or academic literature of each tool. After scoring them, a list is
compiled and shortened through an elimination process. The tools that are part of this
shortlist are then to be used on the next stages of the evaluation.

Qualitative screening - Detailed setup

In the second stage in the screening, each tool from the shortlist is then implemented and
a deeper assessment is then performed. This assessment is done against a refined set of

22

4.2. RQ1: DATA COLLECTION CHAPTER 4. RESEARCH METHOD

rules for the level of acceptability for each metric. The framework for the establishment
of the set of rules and their acceptability ranges was inspired in much by the work of
[54], where it “proposes a framework of Critical Success Factors(CSFs) that can be used
to manage IS [Information Systems] integration projects”. The results of this stage are
later reviewed, analysed and summarised in a score sheet.

Benchmarking

Kitchenham[47] defines benchmarking as“a process of running a number of standard tests
using alternative tools/methods (usually tools) and assessing the relative performance
of the tools against those tests”.

This Benchmark analysis was deemed appropriate to provide an answer to the Re-
search Question 3 — How much overhead does an XML-aware tool carry when compared
to a non-XML-aware one?

In order to perform this benchmarking, a test suit was developed (described in detail
in section 5.1 on page 31) to automate the tests and reduce the human factor from the
analysis. The metrics deemed relevant for this analysis are Time, Memory, Disk Space
and Processing Consumption.

A workshop destined to understand realistic testing scenarios was conducted with the
experts at the supporting company. Based on that, and the input from our academic
supervisor, a decision of gathering an reliable open source documentation project with a
reasonable level of commits was taken and, after extracted and preprocessed, was used
as input for the benchmark analysis. The results are then added to a score sheet, for
later analysis.

4.2 RQ1: Data Collection – Features Specification

In order to answer RQ1 – “What features are required for a version control system to
have in a documentation context?” – a subset of Requirements Engineering processes
were followed that can be organised into four different stages: Elicitation, Analysis,
Specification, and Validation.

4.2.1 Elicitation

To elicit the requirements for the system, the knowledge available from the experts at
the supporting company was used, along with the literature review performed.

Workshops

Experts’ profile The supporting company provided the authors with access to two
experts in the structured documentation field. Both experts are Software Engineers,
holding more than 15 years of cumulative technical experience within the field of
structured documentation – specifically in version control and developing of authoring
tools. These experts are co-authors and maintainers of a Document Management

23

4.3. RQ2: DATA COLLECTION CHAPTER 4. RESEARCH METHOD

System (DMS) that has been in the market for several years, having gathered along
the years valuable information from its users adding up to their technical expertise.

The experts at the supporting company functioned as user representatives in a re-
quirements elicitation workshop that spanned for multiple sessions, helping the authors
identifying and refining the requirements for the system.

4.2.2 Analysis

After the elicitation stage, User Stories were written (see appendix A on page 72) and
brought back to the experts for prioritisation, allowing for both validation and refinement
of the elicited requirements.

4.2.3 Specification

In this stage the User Stories were converted into measurable features (see table 6.2 on
page 38) and grouped into categories (see table 6.1 on page 41).

4.2.4 Validation

Along with the previous preliminary validation performed by the experts when prioritis-
ing the User Stories, these were further validated in the later Feature Analysis evaluation
stage (see section 4.3) of the research through the feature testing of the tools.

4.3 RQ2: Data Collection – Feature Analysis

This section contains the description of the method used for the Feature Analysis per-
formed in order to answer the second Research Question. Firstly the criteria used is
described(in 4.3.1), followed by the scoring methods used for the features considered(in
4.3.2), and lastly, three different analysis examples are provided – each with different
characteristics and complexity (in 4.3.3, 4.3.3, and 4.3.3).

4.3.1 Feature Analysis Evaluation Criteria

Feature Analysis: Screening mode

As described in sub-section 4.1.2 on page 22, the evaluation started by the screening of
possible tools to take up to the next phase. For this screening, our criteria was quite
high level, with some being objective (e.g. licenses, access to source code, novelty), and
some being subjective (e.g. recommendation from the experts).

The final outcome of this pre-selection was the short list of four different tools to
experiment with:

Git next to SVN, one of the defacto standard tools for versioning text files, selected
mostly due to our own previous experience with it.

24

4.3. RQ2: DATA COLLECTION CHAPTER 4. RESEARCH METHOD

Normalised Git implementation of a normalising step on input before using a line
based versioning tool.

XChronicler based on the previous work from [34], it was a recommended tool from
the experts at the supporting company.

Sirix the candidate that seemed to have the best potential to be a full versioning
system for xml.

Feature Analysis: Detailed mode

DESMET[55] suggests a set of thirteen different top level features to be evaluated:

1. Supplier assessment
2. Maturity of method or tool
3. Economic issues in terms of purchase, technology transfer costs and cost of own-

ership
4. Ease of introduction in terms of cultural, social and technical problems
5. Eligibility for required application areas
6. Reliability of the tool software
7. Robustness against erroneous use
8. Effectiveness in current working environment
9. Efficiency in terms of resource usage

10. Elegance in the way certain problem areas are handled
11. Usability from the viewpoint of all the target users in terms of learning requirements

and “user-friendliness”
12. Maintainability of the tool
13. Compatibility of the method and tool with existing or proposed methods

and tools.

Out of these suggested top-level features, eight have been selected (highlighted in
bold) as relevant for this analysis based on the experts opinion.

These top-level features, combined with the user stories (full list in appendix A on
page 72), resulted in the complete feature list presented in table 6.2 on page 38.

4.3.2 Feature Analysis Scoring

Judgement Scale

For each of the features mentioned above, a set of different criteria was developed to eval-
uate each metric. These criteria should have the following characteristics: be replicable;
easily understandable; distinct, i.e. without possible fuzzy results; and quantifiable;

We then define the possible results on a scale from 1 to 5, where 5 is the best outcome,
and 1 the worst.

Depending on the type of feature, the scale can have 3 different possible distributions:

25

4.3. RQ2: DATA COLLECTION CHAPTER 4. RESEARCH METHOD

1. Binary/Boolean (for binary qualitative results): {1, 5}
2. Ternary (for qualitative results): {1, 3, 5}
3. and Quinary (for quantifiable results): {1, 2, 3, 4, 5}

Fitting the score

After setting the criteria from the Judgement Scale step, and knowing the type of pro-
gression of the possible result of the feature evaluation, the score is then adapted to fit
the scale defined previously. In most cases the fitting formulation followed a logarithmic
progression. The following presents an example of this type of formulation:

1. < 100
2. < 1000
3. < 10000
4. < 100000
5. ≥ 100000

The remainder fitting formulations can be found in appendix B on page 75.

Score

After fully establishing the criteria, we then proceed to assess the score, which, depending
on the type of criteria can be then calculated, verified by experimentation, or based on
the tool’s literature. The outcome of this step is then documented in a table like the one
in table 4.1.

Table 4.1: Scoring example

Scoring example

id Metric Name Git Normalised
Git

XChronicler
eXist

Sirix

Id Name of feature [1-5,N/A] [1-5,N/A] [1-5,N/A] [1-5,N/A]

4.3.3 Feature Analysis Examples

In this section, three different examples of the feature scoring are presented, the remain-
ing detailed metrics and results are presented in appendix B on page 75.

Example 1 – MCR-04: Handling of non-signicant white-space

Description: MCR-04: Handling of non-signicant white-space is the capability that
the tool has to ignore the existence of non-significant white-space within the XML
document(see sub-section 2.4.4 on page 13).

26

4.3. RQ2: DATA COLLECTION CHAPTER 4. RESEARCH METHOD

<ROOT>
 <FOO></FOO>
</ROOT>

<ROOT>
 <BAZ>
 <FOO></FOO>
 </BAZ>
</ROOT>

<ROOT>
 <FOO>BAR</FOO>
</ROOT>

<ROOT>
 <BAZ>
 <FOO>BAR</FOO>
 </BAZ>
</ROOT>

0:

1B:

1A:

Expected:

Figure 4.3: Example of test design for evaluation of XML-03

Formulation: This feature is evaluated in a binary/boolean scale, where:

• 5 - Exists
• 1 - Does not exist

Example 2 – XML-03: Handling insertion of parent

Description: XML-03: Handling insertion of parent evaluates the capability of the
tool to handle the insertion of a parent above one (or many) elements – e.g. in the
context of documentation, to create a section that contains already existing text as
in figure 4.3.

Formulation: this feature is evaluated in a ternary scale, where:

• 5 - Possible and can not create unintended conflicts
• 3 - Possible but can create unintended conflicts
• 1 - Not Possible

Unintended conflicts are conflicts that are not expected to exist. E.g. given a base
element, when merging a commit A – that adds a text content – with a commit B – that
adds a parent to the base element – there should not be a conflict and the merge should
run smoothly.

27

4.3. RQ2: DATA COLLECTION CHAPTER 4. RESEARCH METHOD

Example 3 – PM-03: Level of Documentation of the Project

Description: PM-03: Level of Documentation of the Project evaluates the avail-
ability and type of documentation of the development project of the tool.

Formulation: In order to assess the Level of Documentation, and given the natural
fuzziness of this type of feature, we include a set of different parameters into the
equation, each with different weights. The considered formula was the following:

x =Book hits× 100+

+ Search Engine hits× 0.01+

+ Expert Community Q&A hits× 1+

+ Source Code lines of comment× 0.01+

+ Official Documentation lines of text× 0.1

Where:

Book hits number of books hits found on a major online book reseller (i.e.
amazon.com) for the name of the tool and the works “version control”.

Search Engine hits number of hits on the major online search engine (i.e.
google.com) for the name of the tool and the words “version control”.

Expert Community Q&A hits number of questions tagged on the major on-
line software development expert community Q&A (i.e. stackoverflow.com).

Source Code lines of comment number of lines of comment within the source
code. For this analysis, a source code analysis tool (ohcount[56]) was used.

Official Documentation lines of text In order to measure the amount of of-
ficial documentation available, we opted for selecting the number of lines of text
in the official documentation.

Given the different type and amount of information usually available within each of
the above described parameters, their contribution to the end score differs.

Taking the Expert Community Q&A hits as the baseline, the other features were
weighted according to the estimated amount of information on a 10n based scale. All
the data has been collected in 2015-04-10.

Given that it is a quantifiable results we selected the quinary ({1, 2, 3, 4, 5}) scale
for scoring the results.

Fitting the score: Given the expected range of results, a 5-stepped logarithmic
scale (starting at 100) was selected.

28

4.4. RQ3: DATA COLLECTION CHAPTER 4. RESEARCH METHOD

4.4 RQ3: Data Collection – Benchmark Analysis

A subset of the OpenStack Manuals[57] was selected as the data used in the performance
tests.

The selection of this dataset took into account the following criteria:

• Popular repository
• Different repository contributors
• Easy access to repository history
• Reasonable documentation size
• Formatted in well-formed XML

4.4.1 Pre-processing

In order to facilitate the insertion on the XML-aware approach, we tuned the data in
order to exclude features that were not within the scope of the study. This included the
removal of elements such as x-links, x-includes, namespace declarations, and processing
instructions, along with special characters.

After this setup we ended up with 30 unique files and a series of 129 unique commits.

4.4.2 Execution steps

The following list presents the execution steps for the performance evaluation, see ap-
pendix E on page 84 for implementation details.

1. Create a folder for each file and put all the versions of that file in that folder.
2. For each file in the above, remove comments, processor instructions, xlinks, and

special characters.
3. For each folder run the init command on the common-api
4. Send in all the files as commits to the common-api
5. Read the output that contains time, memory, CPU, and hard-drive space.

4.4.3 Post-processing

From the extracted data, the Memory consumption which is in percentage relative to the
test environment is then converted into absolute values before proceeding to the analysis
of these results.

4.5 Approaches under test

For the benchmark analysis we needed an automated test suite for reducing the influences
of the human factor. We decided to build this test suite in a modular form for later reuse
of some of the modules and also to be flexible in case we need to improve, we can iterate
back and change or rewrite a part or change the selected tool.

29

4.5. APPROACHES UNDER TEST CHAPTER 4. RESEARCH METHOD

4.5.1 Git

Currently Git is arguably the most advanced and used tool for versioning source code,
it then comes naturally as a proper baseline to experiment with.

4.5.2 Normalisation of XML Input

non-XML-aware tools, are unable to accurately perceive context and to identify when
a change has been performed. With the distributed environment and possibly differ-
ent tools editing the same XML files, some changes might occur that are not actually
structural changes in the XML, but are perceived as such by line differencing tool. An
example of that would be the change of the order of the attributes of a node, this would
still represent the same node with the same characteristics and would not represent a
change in an XML-aware tool, but for a line-based differencing tool it would be perceived
as a change.

A possible way to counter these limitations is to then force the input to be normalised
and to always follow a strict set of rules with regards to its form.

The selected normalisation steps were to first perform an XML C14N[9] (see sub-
section 2.1.3 on page 7), followed by splitting the attributes of a node into their specific
rows. This allows many of the common non-content changes to be ignored by the ver-
sioning tool while increasing the change detection within attributes of an element.

4.5.3 XML-aware Versioning (Sirix and XChronicler)

We implemented XChronicler with a different backend for meeting the needs of the API
for testing purposes, we also wanted to be able to update current generated v-files so we
added an update function.

Regarding Sirix’ evaluation, given that it is missing the branching model, and in order
to be able to test the built in merging ability, we implemented an extration method that
extracts a patch in the form of an XQuery Pending Update List, the decision for using
Pending Update Lists was made based on it being part of the XQuery Update Facility[15]
recommendation from W3C.

30

5
Implementation

F
or the evaluation, a series of adapters, tests and minor features were devel-
oped, this chapter presents the most important implementation details. We
start by providing the architectural overview of the test framework, and then
go into details on the specific modules developed.

5.1 Overview

The test environment has three major components, the Test GUI, the Common API,
and the Test API.

The Test GUI presents the interface (webpage) towards the tester, it allows to
select which tests to run and retrieve its results.

The Common API layer is an interface that sets the features that each tool should
comply with, allowing for a more fair evaluation of the different tools.

The Test API functions as a bridge between both the test database and the Test
GUI.

In figure 5.1 on the next page, one can see this high level structure of the implemen-
tation of the test framework.

5.1.1 Usage scenario

A typical usage scenario of the test framework can be seen in figure 5.2 on page 33,
where a user selects a test and executes it, and the results are then stored in the Test
DB.

31

5.1. OVERVIEW CHAPTER 5. IMPLEMENTATION

Figure 5.1: Structure diagram of the test environment architecture.
32

5.1. OVERVIEW CHAPTER 5. IMPLEMENTATION

User Test GUITest GUI Test APICommon API

Open Webpage

Get list of all tests

Select a Test

Get a test

Execute Command

loop

[test command list]

Report result

opt

compare (expected, result)

Get latest revision

Figure 5.2: Testing Framework – typical usage sequence diagram

Usage Example

Use Case: ”More than one person editing the same file in different parts at the same
time”.

How to perform the test:

1. The user selects the platform to which it runs the test against (e.g. Normalised
Git).

2. The user selects the test to run, in this case the test ParallelEditWithoutConflicts
3. The Test GUI then gets the test script from the Test API, and starts executing it

against the Common API.
4. The results then are reported to the Test DB for later processing during the eval-

uation phase.

This concrete test scenario script can be seen in the following list and its implemen-
tation can be found in appendix G on page 87.

1. Pre-conditions: Repository, File, and File content exists

33

5.2. COMMON API CHAPTER 5. IMPLEMENTATION

2. Alice checks out repository
3. Bob checkouts repository
4. Alice edits file
5. Bob edits same file in different place
6. Alice commits changes
7. Bob commits changes
8. Post-conditions: Resulting file is the correct merge of the 2 commits with the

original file.

5.1.2 Language and frameworks

For the server side language Test API and Common API the selected language is java,
due to its usage within the supporting company’s servers and the authors are well versed
in it.

The server side implementation uses Java Play[58] framework, due to its REST ca-
pabilities.

For the client-side language, JavaScript is used. No client-side framework was used
for flexibility reasons.

5.2 Common API

The Common API is an interface for the different versioning tools. It lays on top of the
different adapters that implement this interface, this design allows for an easy usage of
different tools without touching the main modules.

The different layers communicate between themselves through AJAX requests, that
are then interpreted in JSON within each module.

The Common API has following interface:

init Creates a new repository, removing the previous one.
commit Attempts to commit a file or a Pending Update List list to the latest revision
of the repository or to a determined version, if specified.
getRepositoryHEAD Retrieves the latest version of the repository.
getLog Gets all the commit IDs with their messages.
getDiff Sends in a relative version and receives diff script as response: a Git diff in
case of Git, and a Pending Update List in Sirix’s case.
getRevision Sends an ID of a specific revision and receives its content.
revert Reverts the repository to a specified version.

5.3 Git

For the implementation of the Git module, Eclipse Foundation’s JGit[59] was used out-
of-the-box due to its native java form.

34

5.4. NORMALISED GIT CHAPTER 5. IMPLEMENTATION

5.4 Normalised Git

For the implementation of the Normalised Git, the process was divided into two sepa-
rated phases. The first, where the C14N happens, and the second where some further
normalising steps are taken.

5.4.1 Canonicalisation process

The C14N of XML (described in sub-section 2.1.3 on page 7) is performed with the help
of an external tool (xmllint[60]) that transforms the input into a XML Canonical v.1.0[9]
compliant version.

5.4.2 Further Normalisation

After the C14N, a simple set of rules are applied to the canonical XML. A new line is
initiated after each attribute in an element, with the intention of making it easier to
detect where changes occur, and also to avoid conflicts in concurrent changes in different
attributes belonging to the same node.

5.5 XChronicler + eXist

In this implementation we extend Svallfors’ work[34] and modify the storage medium
from a regular file system to an XML Database with an XQuery processor (eXist)[22],
allowing us to perform multiple queries on the data.

Despite our implementation efforts, the XChronicler + eXist implementation never
reached par in terms of features with the other versioning tools, for more details, see
discussion in chapter 7 on page 53.

5.5.1 XChronicler

This original implementation, as a a versioning system that creates a V-Document from
two (or more) different versions of the same document.

Initially this implementation was not ready to expand the originally created V-
Document with a new added version, since this was required to properly test the ca-
pabilities of this tool, this feature was implemented.

5.5.2 eXist

The eXist storage and XQuery processor, allowed us to perform a series of different
queries that enabled the system to perform closer to an actual versioning system.

These queries allowed to retrieve different revisions of a document from the generated
V-Document, along with retrieving the list of revisions.

35

5.6. SIRIX CHAPTER 5. IMPLEMENTATION

5.6 Sirix

For the implementation of the Sirix module, a set of XQuery instructions were used to
perform the required actions.

Regarding the creation of patches, a Pending Update List parser was developed, this
translated the Java objects that were returned from Sirix’s engine when creating a diff,
into Pending Update Lists.

These Pending Update Lists were then used to recreate the different versions of a
file.

Although Sirix has a multiple interface – i.e. Java Objects, REST, and XQuery –
the decision of using Pending Update Lists and the XQuery expressions as the way to
communicate changes to the engine was due to the standardised approach that these
convey.

Along with the Pending Update List parser, some headers were added to the docu-
ments, allowing the required queries to be performed, the headers added were the commit
message, author, and timestamp.

5.7 Data collection for benchmark analysis

All the tested tools used the same process for data collection, as described next.

5.7.1 Memory and CPU

For the collection of Memory and CPU usage, we use the application “top”[61] with the
following arguments:

top -b -d 0.5 -n 100

Translating to run top in batch mode, updating every 500ms, and limited to 100
iterations — this translates into more than the necessary iterations for the test time, the
excess data is then removed in a post-processing step.

5.7.2 Time and Repository Size

For the collection of Time, Java’s built in API was used with the following function call:
System.nanoTime()

Lastly, for the Repository Size, the Java’s API built in function for getting file size
was used: File.length()

5.8 Source Code

The source code for the frameworks that have been produced for this thesis are released
in github under the Apache 2.0 license[62]:

• The Versioning Framework is currently on 396e4430 and can be found in:
https://github.com/XMLVersioningFramework/XMLVersioningFramework

36

https://github.com/XMLVersioningFramework/XMLVersioningFramework

5.8. SOURCE CODE CHAPTER 5. IMPLEMENTATION

• The Test Framework is currently on deae63ed and can be found in:
https://github.com/XMLVersioningFramework/XMLTestFramework

37

https://github.com/XMLVersioningFramework/XMLTestFramework

6
Results

T
his chapter presents the findings of this research. It is divided in three
major sections, one for each of the first three research questions. Firstly, the
outcome of the requirement elicitation and the summary of the required fea-
tures provide the answer to RQ1. Secondly, the results of the Feature Analysis

provide the answer to RQ2. Thirdly and last, the outcome of the Benchmark Analysis
provides answer to RQ3.

6.1 RQ1: What features are required for a version control
system to have in a documentation context?

6.1.1 User Stories

The workshops and the literature review performed allowed to elicit some important
user stories that were then validated by the experts, these are specified in appendix A on
page 72 and are a byproduct of this research that can be used in future implementations.

6.1.2 Features

The user stories were then restructured into features and grouped by their nature as can
be seen in table 6.1 on page 41. The fully extended feature list can be seen in table 6.2.

Table 6.2: Feature list

ID Metric Name

Versioning Features

V-01 Fulfilment of tracking of file changes

38

6.1. RESEARCH QUESTION 1 CHAPTER 6. RESULTS

ID Metric Name

V-02 Fulfilment of reversion of a file to a previous version of choice

Repository Management Features

RM-01 Existence of different branches of the same repository

RM-02 Ability to tag a specific revision of a repository

RM-03 Ability to merge different branches of the same repository

RM-04 Ability to remove/untrack a file on the repository

RM-05 Ability to amend a commit

RM-06 Ability to rename a file

RM-07 Ability to fork a document

RM-08 Ability to handle different users

Merging / Conflict resolution Features

MCR-01 Ability to handle conflicts

MCR-02 Ability to merge different patches

MCR-03 Ability to interactively merge hunks of a file

MCR-04 Handling of non significant white-space

Project Maintainability Features

PM-01 Level of Popularity of the project

PM-02 Level of Activity of the project

PM-03 Level of documentation of the project

XML Specific Features

XML-01 Handling insertion of child

XML-02 Handling insertion of sibling

XML-03 Handling insertion of parent

XML-04 Handling of element rename

XML-05 Handling of removal of elements

XML-06 Handling of move of an element

XML-07 Handling of attributes insertion

XML-08 Handling of attributes removal

XML-09 Ignores the change of order of an attribute

XML-10 Ability to enforce well-formed xml on the repository

39

6.2. RESEARCH QUESTION 2 CHAPTER 6. RESULTS

ID Metric Name

XML-11 Ability to track changes on a node

XML-12 Ability to retrieve the history of a specific node

CMS Specific features

CMS-01 Ability to retrieve list of changes (log)

CMS-02 Ability to retrieve list of modified elements in the current working
copy

CMS-03 Ability to flatten a modular document

CMS-04 Ability to reuse parts of a file in others

6.2 RQ2: Of the previously identified features, which ones
do XML-aware and non-XML-aware tools have?

6.2.1 Feature Analysis result – examples

Here the examples previously introduced in section 4.3 on page 24 have their results
presented.

Example 1 – MCR-04: Handling of non-significant white-space

Regarding the MCR-04: Handling of non-significant white-space, Git is the only tool
that is not able to handle it as there is no distinction on significant and non-significant
white-spaces. The MCR-04 scoring sheet is in 6.3.

Example 2 – XML-03: Handling insertion of parent

In this example we look closer at the scoring and results of the feature XML-03: Handling
insertion of parent.

Both Git and Normalised Git do not fully succeed in handling the insertion of a
parent element. This can be verified by the implementation of the previous example
test (see figure 4.3 on page 27) in figure 6.1 on page 42 where both trigger unintended
conflicts as opposed to XChronicler and Sirix. The scoring sheet for XML-03 can be
found in table 6.4 on page 42.

Example 3 – PM-03: Level of Documentation of the Project

Regarding the PM-03: Level of Documentation of the Project, the results vary greatly,
with Git achieving the maximum result, XChronicler and Sirix the minimum, and Nor-
malised Git being excluded from this evaluation as it was developed by the authors when
performing this research.

40

6.2. RESEARCH QUESTION 2 CHAPTER 6. RESULTS

Table 6.1: Feature groups description

Prefix Category Conceptual Definition Metrics

V-00 Versioning Comprises the basic features that relate to
keep track of versions – these are
mandatory and are meant to dismiss any
non-fulfilling tool.

2

RM-00 Repository
Management

Contain the file structure and its related
features.

8

MCR-00 Merging/Conflict
resolution

The features that relate to the tools ability
to merge and solve differences in a file.

4

PM-00 Project
Maintainability

Contains the characteristics of the project
that supports the tool. Its goal is to
provide a degree of reliability and trust to
the tool.

3

XML-00 XML Specific The features related to versioning that are
unique to XML.

12

CMS-00 CMS Specific Features that are not entirely scoped
within the above categories and are not
expected to be addressed by the existing
solutions but are a ‘nice to have’ set of
features.

4

The detailed scoring of the various parameters of the different tested tools can be
seen in table format in table 6.5 on page 43, table 6.6 on page 44, and table 6.7 on
page 44; and in chart format in figure 6.2 on page 43.

The resulting scoring sheet for this feature can be found in table 6.8 on page 44.

6.2.2 Feature Analysis Score sheets

The table 6.9 on page 45 presents the summarised version of the scores from the Feature
Analysis evaluation grouped by Feature Group, the stacked area chart in figure 6.3 on
page 45 presents a visualisation of this same data.

The detailed results follow this summarised view and are from table 6.10 on page 46
to table 6.15 on page 49. Each table contains a reference to the metric’s ID, its Name,
and the resulting Scores given to each of the appreciated tools.

41

6.2. RESEARCH QUESTION 2 CHAPTER 6. RESULTS

Table 6.3: MCR-04: Handling of non-significant white-space results.

id Metric Name Git Normalised
Git

XChronicler
eXist

Sirix

MCR-
04

Handling of non-significant

white-space
1 5 5 5

<ROOT>
 <FOO></FOO>
</ROOT>

<ROOT>
 <BAZ>
 <FOO></FOO>
 </BAZ>
</ROOT>

<ROOT>
 <FOO>BAR</FOO>
</ROOT>

<ROOT>
 <BAZ>
 <FOO>BAR</FOO>
 </BAZ>
</ROOT>

0:

1B:

1A:
XChronicler +
eXist & Sirix:

Git & Normalised
Git:

Figure 6.1: Example of test for evaluation of XML-03

Table 6.4: XML-03: Handling of insertion of parent results.

id Metric Name Git Normalised
Git

XChronicler
eXist

Sirix

XML-
03

Handling of insertion

of parent
3 3 5 5

42

6.2. RESEARCH QUESTION 2 CHAPTER 6. RESULTS

(a) Git (137 626) (b) Sirix (577)

(c) XChronicler (121)

Figure 6.2: Level of documentation

Table 6.5: Git documentation comparison

Name Value Weight Score

Book hits (9.7%) 134 100.00 13400.00

Search Engine hits (20.6%) 2840000 0.01 28400.00

Expert Community Q&A hits (38.7%) 53297 1.00 53297.00

Source Code lines of comment (0.3%) 42647 0.01 426.47

Official Documentation lines of text (30.6%) 421030 0.10 42103.00

Total 137626.47

43

6.2. RESEARCH QUESTION 2 CHAPTER 6. RESULTS

Table 6.6: Sirix documentation comparison

Name Value Weight Score

Book hits (0%) 0 100.00 0.00

Search Engine hits (0.4%) 239 0.01 2.39

Expert Community Q&A hits (0%) 0 1.00 0.00

Source Code lines of comment (92.3%) 53267 0.01 532.67

Official Documentation lines of text (7.3%) 419 0.10 41.90

Total 576.96

Table 6.7: XChronicler documentation comparison

Name Value Weight Score

Book hits (0%) 0 100.00 0.00

Search Engine hits (0.4%) 45 0.01 0.45

Expert Community Q&A hits (0%) 0 1.00 0.00

Source Code lines of comment (3.1%) 372 0.01 3.72

Official Documentation lines of text (96.6%) 1172 0.10 117.20

Total 121.37

Table 6.8: PM-03: Level of documentation of the project results

id Metric Name Git Normalised
Git

XChronicler
eXist

Sirix

PM-03
Level of documentation

of the project
5 N/A 1 1

44

6.2. RESEARCH QUESTION 2 CHAPTER 6. RESULTS

Figure 6.3: Feature Analysis results by Tool and stacked by Feature Group

Table 6.9: Summary of Feature Analysis results

Features Maximum
score

Git Normalised
Git

XChronicler
+ eXist

Sirix

Versioning 10 10 10 10 10

Repository
Management

35 31 31 11 11

Merging /
Conflict resolution

20 12 16 8 16

Project
Maintainability

15 14 2 3 5

XML Specific 55 25 33 53 55

CMS Specific 20 12 12 8 12

Total 155 104 104 93 109

45

6.2. RESEARCH QUESTION 2 CHAPTER 6. RESULTS

Table 6.10: Versioning Results

Versioning Results

id Metric Name Git Normalised
Git

XChronicler
eXist

Sirix

V-01 Fulfilment of tracking of file
changes

5 5 5 5

V-02 Fulfilment of reversion of a
file to a previous version of
choice

5 5 5 5

Table 6.11: Repository Management Results

Repository Management Results

id Metric Name Git Normalised
Git

XChronicler
eXist

Sirix

RM-01 Existence of different
branches of the same
repository

5 5 1 1

RM-02 Ability to tag a specific
revision of a repository

5 5 1 1

RM-03 Ability to merge different
branches of the same
repository

5 5 1 1

RM-04 Ability to remove/untrack a
file on the repository

5 5 5 5

RM-05 Ability to amend a commit 5 5 1 1

RM-06 Ability to rename a file 5 4 1 1

RM-07 Ability to fork a document 1 1 1 1

RM-08 Ability to handle different
users

5 5 5 5

46

6.2. RESEARCH QUESTION 2 CHAPTER 6. RESULTS

Table 6.12: Merging / Conflict resolution Results

Merging / Conflict resolution Results

id Metric Name Git Normalised
Git

XChronicler
eXist

Sirix

MCR-
01

Ability to handle conflicts 5 5 1 5

MCR-
02

Ability to merge different
patches

5 5 1 5

MCR-
03

Ability to interactively
merge hunks of a file

1 1 1 1

MCR-
04

Handling of non significant
whitespace

1 5 5 5

Table 6.13: Project Maintainability Results

Project Maintainability Results

id Metric Name Git Normalised
Git

XChronicler
eXist

Sirix

PM-01 Level of Popularity of the
project

5 1 1 1

PM-02 Level of Activity of the
project

5 5 1 2

PM-03
Level of documentation

of the project
5 N/A 1 1

47

6.2. RESEARCH QUESTION 2 CHAPTER 6. RESULTS

Table 6.14: XML Specific Results

XML Specific Results

id Metric Name Git Normalised
Git

XChronicler
eXist

Sirix

XML-
01

Handling insertion of child 3 3 5 5

XML-
02

Handling insertion of sibling 3 3 5 5

XML-
03

Handling insertion of parent 3 3 5 5

XML-
04

Handling of element rename 3 3 5 5

XML-
05

Handling of removal of
elements

3 3 3 5

XML-
06

Handling of move of an
element

3 3 3 5

XML-
07

Handling of attributes
insertion

3 3 5 5

XML-
08

Handling of attributes
removal

3 3 3 5

XML-
09

Ignores the change of order
of an attribute

1 5 5 5

XML-
10

Ability to enforce
well-formed xml on the
repository

1 5 5 5

XML-
11

Ability to track changes on
a node

1 1 5 5

XML-
12

Ability to retrieve the
history of a specific node

1 1 5 5

48

6.2. RESEARCH QUESTION 2 CHAPTER 6. RESULTS

Table 6.15: CMS Specific Results

CMS Specific Results

id Metric Name Git Normalised
Git

XChronicler
eXist

Sirix

CMS-
01

Ability to retrieve list of
changes (log)

5 5 1 5

CMS-
02

Ability to retrieve list of
modified elements in the
current working copy

5 5 5 5

CMS-
03

Ability to flatten a modular
document

1 1 1 1

CMS-
04

Ability to reuse parts of a
file in others

1 1 1 1

49

6.3. RESEARCH QUESTION 3 CHAPTER 6. RESULTS

6.3 RQ3: How much overhead does an XML-aware tool
carry when compared to a non-XML-aware one?

The table 6.16 summarises the results of the Benchmark Analysis performed on the se-
lected tools (Normalised Git and Sirix). The detailed results can be found in appendix C
on page 81. The description of the environment used for this analysis is present in ap-
pendix F on page 86

Table 6.16: Summary of Benchmark results

Sirix(avg) Git(avg) Sirix/Git Difference
(Sirix−Git)

CPU(%) 50.26 1.28 39.4/1 48.99

Overall CPU (ms
× %)

36 186.70 154.71 233.9/1 36031.99

Hard-drive Size
(kB)

973.69 7.40 131.6/1 966.29

Memory (GB) 0.74 0.53 1.4/1 0.21

Overall memory
(ms × kB)

532.79 64.06 8.3/1 468.73

Time (ms) 719.99 120.87 6.0/1 599.12

50

6.3. RESEARCH QUESTION 3 CHAPTER 6. RESULTS

Figure 6.4: CPU Usage (less is better)

Figure 6.5: Hard-drive Usage (less is better)

51

6.3. RESEARCH QUESTION 3 CHAPTER 6. RESULTS

Figure 6.6: Memory Usage (less is better)

Figure 6.7: Time for the operation (less is better)

52

7
Discussion

I
n this chapter we discuss the results of the study. In the first section we
address the individual research questions, followed by a discussion on the identified
threats to validity and ethical conserns.

7.1 Research Questions

7.1.1 RQ1: What features are required for a version control system to
have in a documentation context?

The elicitation stage started with several brainstorming sessions with the experts from
the supporting company. Most of these sessions were unstructured and aimed towards
the gathering of the experts’ thoughts on the needs for the system they were envisioning.

This decision on the unstructured workshops approach was taken due to the scope not
being clearly defined from the start, and the need to better understand the system that
the experts envisioned given their several years of experience. Given both the technical
and business profile of the experts, the need for (semi-)structured interviews was not
deemed necessary by the authors.

Based on these sessions, a set of User Stories were written and brought to the experts
for prioritisation and validation. During this period, there were still some uncertainties
about the scope of the work, this required some iterations for the refinement of the user
stories – the last version of these can be found in appendix A on page 72.

Before performing the transition to the formalisation of features, the authors, along
with the academic supervisor scoped the work towards the evaluation of different ap-
proaches on versioning XML.

The formalisation of the Features (see table 6.2 on page 38) addressed the newly
defined scope, selecting aspects from the user stories that were relevant to the research.

The validation of the Features was addressed by initially having derived them from
the validated User Stories, and by having them validated during the Evaluation phase

53

7.1. RESEARCH QUESTIONS CHAPTER 7. DISCUSSION

of the research – during which the authors excluded non-quantifiable Features.

7.1.2 RQ2: Of the previously identified features, which ones do XML-
aware and non-XML-aware tools have?

After gathering the necessary features, the initial screening process allowed us to narrow
down the various available tools and further evaluate in detail a shorter selection of these
tools/approaches.

After experimenting and attempting to fulfil the features with this narrower selection,
we scored our experience in the score sheets present in section 6.2 on page 40, namely
in tables 6.10, 6.11, 6.12, 6.13, 6.14, and 6.15.

Versioning Features

Regarding the Versioning features, there is no relevant differences as expected, as this
was a basic requirement that the tools had to fulfil before being selected for the feature
analysis.

Repository Management Features

For the Repository Management features, the non-XML-aware tools are much more
evolved in this category. The Sirix project does contain many of these features on its
roadmap to be implemented in the future, but these could not be taken into account as
our consideration was on the currently implemented features only.

Merging and Conflict Resolution Features

In the Merging and Conflict Resolution category, the XChronicler+eXist tool fails con-
siderably as conflict resolution is not within its scope. Otherwise, results between the
different remaining tools are somewhat approximate with none really excelling. In the
case of the document inserted being minified, the readibility of any conflicts occurring
in Git is close to impossible to understand, with the pre-processing step added in Nor-
malised Git cancelling this problem. However, with a ‘pretty-printed’ document, both
Git and Normalised Git are much clear when throwing conflicts than Sirix.

Project Maintainability Features

For the Project Maintainability features, we analysed the project statistics, extracted
from [63] and their own repositories [25, 64]. We considered the usage and compliance of
established standards, its popularity and activity (contributors, commits, and supporting
community), its maturity, and finally the quality and level of the project documentation
available.

Unsurprisingly Git scores the highest in this category, achieving the maximum score
possible. With the remaining projects, as expected, not having the same level overall.

54

7.1. RESEARCH QUESTIONS CHAPTER 7. DISCUSSION

To note that we excluded the Normalised Git project from the evaluation on the
PM-03 (level of documentation) as it was developed by us. Still on this metric, it should
be noted that, given the different distribution mean of the documentation of each tool
(wikis, manpages, etc.), the extension of these might vary – not only due to the lack of
content – but also probably due to differences in style inherent to the distribution mean.

Regarding the PM-02 (level of activity), we were initially inclined to select the number
of line changes that had occurred in the repository during the last year, but given that
a restructure in the folder structure of the project could create a massive number of
line changes. We then opted for counting the number of commits as traditionally each
commit portrays an activity step (bug fix, feature implementation, etc.).

Also of note is that on PM-01 (level of popularity), we use the number of stars a
project has on Github to determine the level of popularity of a project. This is an
arguable decision, but considering the huge popularity of Github, we believe it is a
reasonable approximation to the popularity level of a project. Arguably, there are very
few popular open source projects that are not present in Github.

XML Specific Features

Regarding the XML Specific features, the XML-aware tools score, as expected, much
higher than the non-XML-aware ones. The non-XML-aware tools didn’t achieve the
best results, mostly due to the creation of unintended conflicts on some test scenarios.
This occurs as expected (see sub-section 2.4.4 on page 13) due to their linear approach
to context awareness.

It is interesting to highlight that there is a significant difference between Git and
Normalised Git with the pre-processing step applied. By splitting the XML elements
into several rows, we trick the context awareness of Git to accept merge commits with
changes performed in different areas of the same element – e.g. when merging commits A
and B, where A changes the value of an attribute, and B changes another, both originally
in the same document line.

It should be noted that it is not expected that the XML Specific features not currently
present in the non-XML-aware tools to be part of their feature roadmap anytime soon.

CMS Specific Features

In the last category of features, CMS Specific, both the non-XML-aware and the XML-
aware tools achieve a bad score. This is mostly due to the fact that, as previously
mentioned in sub-section 7.1.1 on page 53, these features are mostly out of scope from
a standard versioning tool.

7.1.3 RQ3: How much overhead does an XML-aware tool carry when
compared to a non-XML-aware one?

After having analysed the results from the previous question (summarised in table 6.9 on
page 45), we selected the top scoring tools from each of the different approaches, namely

55

7.1. RESEARCH QUESTIONS CHAPTER 7. DISCUSSION

Normalised Git and Sirix.
These tools were then subject of a battery of tests designed to provide the benchmark

results (summarised in table 6.16 on page 50).
For these tests, the input data used was a sample of the OpenStack Manuals[57]

as mentioned in sub-section 4.4 on page 29, this documentation repository has a good
set of characteristics that makes it a reasonable data input for the tests, such as the
documentation structure, number of files, commits, and authors. Despite its quality
characteristics, the sample documentation could not be processed in its whole due to
some well-formedness(see sub-section 2.1.2 on page 7) errors with specific files/revisions.
When facing these errors, the decided approach was to discard the whole file.

Git as a non-XML-aware tool was highly superior to Sirix in this benchmark analysis
– where, besides consuming much fewer resources, it completed its tasks in 1/6 of the
time of its competitor. These results confirm our expectations, as Git is a more mature
and optimised tool, it doesn’t have the expected overhead that an XML-aware tool would
carry.

7.1.4 RQ0: What is a good approach to versioning an XML document?

Based on the results of the previous questions, our reasoning is that the final decision on
a versioning tool is depending on many factors. As seen in the RQ2 (Feature Analysis)
results, the analysed tools perform quite differently in the various categories. When
choosing a tool or a type of approach, one must consider the overall needs and abilities
of the system.

Assuming the more collaborators participate in editing a document, the probability of
these editing the same areas of a document increases, and, that these edits will increase
the probability of merge conflicts. Then, it is reasonable to assume that a tool that
raises less collision problems will be able to handle more collaborators. Therefore, if
the number of collaborators is expected to be high, the selected tool should be one that
raises fewer conflicts.

When seeking performance, repository management or maintainability features, one
should probably select a non-XML-aware tool like Normalised Git. If, one is seeking for
XML specific features then XML-aware tools are likely the way to go, but it should be
noted that some development work is still required to achieve parity with regards to the
other features.

The research questions considered above (RQ1 to RQ3) only answer a portion of the
required research to reach a more accurate conclusion on which approach is best. Aspects
that were scoped out from this research such as different document type definitions,
modularised documents, and the size of the content of a commit, should be considered
as well.

56

7.2. THREATS TO VALIDITY AND ETHICS CHAPTER 7. DISCUSSION

7.2 Threats to validity and Ethical concerns

7.2.1 Conclusion Validity

Low Statistical Power: We did ten independent runs, with the variation on some param-
eters being high, increasing the number of independent runs would reduce the validity
threat.

7.2.2 Internal Validity

Selection Bias: We’ve done the screening of different XML versioning tools, and might
have left out relevant ones, for example when we excluded all non FOSS tools. On
a similar aspect, we only interviwed a couple of different experts at the supporting
company, increasing the possible selection bias.

We have set the results on the score sheet, and given eventual cognitive biases, there
is the risk of having instrumented the results.

The implementations of the approaches under test have some adapter code that sets
up the approaches and their tests. This has been designed and implemented by us and
might not be optimal, therefore hindering the performance results.

7.2.3 Construct Validity

If the data set that was used does not reflect the average data set, the results may differ.
The consulted expert group consisted of two elements within the supporting company,

it is a narrow sample with the same background. This may reduce the quality/quantity
of the usage scenarios that were elicited in the initial part of the research.

Following that, our own interpretation of these scenarios that led to the final feature
list might be faulty as well.

Feature Analysis Screening mode — The evaluation is based on our evaluation of
third party information and some of the evaluation criteria are subjective.

7.2.4 External Validity

Results might not be generalisable to other kinds of XML documentation of those not
being studied. Also, and perhaps more important, results might not be generalisable
towards different scenarios that were not taken into account.

Only one computer and one operating system has been used in the performance
tests, there is the possibility that the end results vary if these are run on a different
environment.

The data set used for the tests was extracted from a single project, this implies that
data may have consistent characteristics that may perform better in a specific approach.

The data set used on benchmarking were coming from a Git repository and that might
create some bias towards Git, to balance that, we excluded from the set everything that
was being rejected from Sirix (incorrect formatting, unresolved references, etc.).

57

7.2. THREATS TO VALIDITY AND ETHICS CHAPTER 7. DISCUSSION

7.2.5 Ethical concerns

It should be noted that this work was developed under the sponsorship of a supporting
company and that the implementation of the XChronicler’s [34] algorithm that was used
was developed in a previous thesis work that was also sponsored by the same company.

Under this work we have tried to avoid our own biases or those of the supporting
company. Having been kindly offered to use their anonymised client’s data, we used
technically similar open data instead in order to facilitate the replication of the research.

58

8
Conclusion

T
his thesis work evaluated and compared two different approaches regard-
ing the versioning of XML, one being XML-aware and the other targeting
plain text. Its outcome is not an absolute result, and no strong conclusions
were able to be extracted from it. The results show that performance wise, the

non-XML-aware approach is faster and consumes fewer resources, while meeting some
basic needs regarding the problem.

However, and as pinpointed by the consulted experts, when adding more complex
operations such as detection of move of elements, these tools fail considerably to handle
them adequately.

In the following section we present the conclusions regarding the research questions.

8.1 Research Questions

8.1.1 RQ1: What features are required for a version control system to
have in a documentation context?

Our research shows that there are many specific aspects to take into account when
managing changes in XML within documentation context. We identified 6 different
categories of features to take into account when choosing a version control system for
XML, these are: Versioning; Repository Management; Merge/Conflict Resolution; XML
Specific; CMS Features; and Project Maintainability.

8.1.2 RQ2: Of the previously identified features, which ones do XML-
aware and non-XML-aware tools have?

From the analysed tools, both the approaches have good versioning and conflict reso-
lution features, but there’s a substantial difference among their strengths regarding the

59

8.2. FUTURE WORK CHAPTER 8. CONCLUSION

other studied features. XML-aware tools are mostly strong, as expected, with XML re-
lated features, whereas the non-XML-aware approaches studied showed a major strength
in repository management.

It should also be noted that the non-XML-aware approaches score very high in
Project Maintainability, this is mostly due to the excellent status and reputation of
the Git project that backs it up.

8.1.3 RQ3: How much overhead does an XML-aware tool carry when
compared to a non-XML-aware one?

A benchmark analysis was performed over the top scoring tools within each of the con-
sidered approaches, namely Normalised Git and Sirix. The results were quite favourable
towards the first, with Normalised Git consuming a mere 1/238 of CPU, 1/8 of RAM,
and 1/132 of storage, while performing in 1/6 of the time that Sirix took to complete
the same tasks for the same input data.

These results confirm our expectations that XML-aware tools, due to their more
complex nature, do bring an overhead. Despite the previous statement, we cannot claim
the generalisation of this major difference as we did not consider performance in the
phases that led to the selected tools for benchmarking and one of the tools is in a highly
mature state whether the other is not. Hence, we can only conclude that there is plenty
of overhead added with this implementation of an XML-aware tool.

8.1.4 RQ0: What is a good approach to versioning an XML document?

To answer what is a good approach to versioning an XML document, this research
focused on XML-aware and non-XML-aware approaches.

The overall results indicate that XML-aware tools are a good choice when in the need
of tracking moves of elements within a document, track changes on a node, retrieve the
node history, or if the amount of predicted conflicts during the lifetime of a document is
to be high and the performance is not a issue.

Conversely the non-XML-aware tools are a good choice when in need of a trusted and
more mature tool, with a higher level of documentation, or, if performance is a major
concern.

In conclusion, both approaches fit to the versioning XML problem, which one to use
will depend on the characteristics of the documentation project.

8.2 Future work

There are many possible ways to proceed with this work, from evaluating different ver-
sioning tools and approaches, to the use of different methodologies for the evaluation.

The elicitation of features with a different group of experts would be quite important
to provide validation to the first part of this work.

60

8.2. FUTURE WORK CHAPTER 8. CONCLUSION

Regarding different approaches to be evaluated, Operational Transformation might
be an interesting one that seeks the support of collaborative authoring through different
change synchronisation methods.

While this work was undergoing, many changes have happened within the tools and
approaches under study, e.g. Git got a new major version, Sirix has been in continuous
development, XQuery standard got updated, therefore an updated study on the same
tools is not to be excluded as well.

On the benchmark analysis, the tests performed include only writing operations
(commits). It might be of interest for future work to also benchmark reading opera-
tions (checkout of latest revision and also revisions in random places in the repository
history) on the same tools as these are the most common operations performed in a
documentation project.

61

Bibliography

[1] A. R. Hevner, S. T. March, J. Park, S. Ram, Design science in information systems
research, MIS quarterly 28 (1) (2004) 75–105.

[2] S. Rönnau, U. M. Borghoff, Collaborative xml document versioning, in: Computer
Aided Systems Theory-EUROCAST 2009, Springer, 2009, pp. 930–937.

[3] I. C. Society, Guide to the Software Engineering Body of Knowledge - Version 3.0
- SWEBOK, 2014th Edition, IEEE Press, 2014.
URL http://www.computer.org/portal/web/swebok/

[4] J. Paoli, T. Bray, M. Sperberg-McQueen, XML 1.0 recommendation, W3C recom-
mendation, W3C (Feb. 1998).
URL http://www.w3.org/TR/1998/REC-xml-19980210

[5] E. Maler, F. Yergeau, T. Bray, M. Sperberg-McQueen, J. Paoli, Extensible markup
language (XML) 1.0 (fifth edition), W3C recommendation, W3C (Nov. 2008).
URL http://www.w3.org/TR/2008/REC-xml-20081126/

[6] xmlfiles.com, Xml attributes — xml files (2000).
URL www.xmlfiles.com/xml/xml_attributes.asp

[7] E. R. Harold, XML Bible (Gold Edition), Hungry Minds, 2001.

[8] J. Boyer, Canonical XML version 1.0, W3C recommendation, W3C (Mar. 2001).
URL http://www.w3.org/TR/2001/REC-xml-c14n-20010315

[9] G. Marcy, J. Boyer, Canonical XML version 1.1, W3C recommendation, W3C (May
2008).
URL http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/

[10] W3C, W3c xhtml2 working group home page (2010).
URL http://www.w3.org/MarkUp/

62

http://www.computer.org/portal/web/swebok/
http://www.computer.org/portal/web/swebok/
http://www.computer.org/portal/web/swebok/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
www.xmlfiles.com/xml/xml_attributes.asp
www.xmlfiles.com/xml/xml_attributes.asp
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/
http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/
http://www.w3.org/MarkUp/
http://www.w3.org/MarkUp/

BIBLIOGRAPHY BIBLIOGRAPHY

[11] J. Simeon, M. Fernandez, J. Robie, D. Chamberlin, D. Florescu, S. Boag, XQuery
1.0: An XML query language (second edition), W3C recommendation, W3C (Dec.
2010).
URL http://www.w3.org/TR/2010/REC-xquery-20101214/

[12] J. Snelson, M. Dyck, J. Robie, D. Chamberlin, XQuery 3.0: An XML query lan-
guage, W3C recommendation, W3C (Apr. 2014).
URL http://www.w3.org/TR/2014/REC-xquery-30-20140408/

[13] Wikipedia, FLWOR — Wikipedia, The Free Encyclopedia, [Online; accessed 4-
June-2014] (2013).
URL http://en.wikipedia.org/w/index.php?title=FLWOR&oldid=572903989

[14] S. DeRose, J. Clark, XML path language (XPath) version 1.0, W3C recommenda-
tion, W3C (Nov. 1999).
URL http://www.w3.org/TR/1999/REC-xpath-19991116

[15] J. Melton, J. Simeon, D. Florescu, M. Dyck, D. Chamberlin, J. Robie, XQuery
update facility 1.0, W3C recommendation, W3C (Mar. 2011).
URL http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/

[16] Ronald Bourret, rpbourret.com - xml database products (2014).
URL http://www.rpbourret.com/xml/XMLDatabaseProds.htm

[17] I. Corporation, DB2 Version 10.1 for Linux, UNIX, and Windows, [Online; accessed
14-December-2014] (September 2014).
URL http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.

ibm.db2.luw.xml.doc/doc/c0022308.html/

[18] Microsoft, Using XML in SQL Server, [Online; accessed 14-December-2014]
(September 2014).
URL http://msdn.microsoft.com/en-us/library/ms190936(v=sql.90).aspx

[19] Oracle, XMLType Operations, [Online; accessed 14-December-2014] (August 2005).
URL http://docs.oracle.com/cd/B19306_01/appdev.102/b14259/xdb04cre.

htm

[20] postgresql, 8.13. XML Type, [Online; accessed 14-December-2014] (August 2013).
URL http://www.postgresql.org/docs/9.0/static/datatype-xml.html

[21] baseX, BaseX. The XML Database., [Online; accessed 14-December-2014] (August
2014).
URL http://basex.org/

[22] eXist Solutions, exist — vitamins for your applications (2014).
URL http://exist-db.org/

63

http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/2010/REC-xquery-20101214/
http://www.w3.org/TR/2014/REC-xquery-30-20140408/
http://www.w3.org/TR/2014/REC-xquery-30-20140408/
http://www.w3.org/TR/2014/REC-xquery-30-20140408/
http://en.wikipedia.org/w/index.php?title=FLWOR&oldid=572903989
http://en.wikipedia.org/w/index.php?title=FLWOR&oldid=572903989
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.xml.doc/doc/c0022308.html/
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.xml.doc/doc/c0022308.html/
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.xml.doc/doc/c0022308.html/
http://msdn.microsoft.com/en-us/library/ms190936(v=sql.90).aspx
http://msdn.microsoft.com/en-us/library/ms190936(v=sql.90).aspx
http://docs.oracle.com/cd/B19306_01/appdev.102/b14259/xdb04cre.htm
http://docs.oracle.com/cd/B19306_01/appdev.102/b14259/xdb04cre.htm
http://docs.oracle.com/cd/B19306_01/appdev.102/b14259/xdb04cre.htm
http://www.postgresql.org/docs/9.0/static/datatype-xml.html
http://www.postgresql.org/docs/9.0/static/datatype-xml.html
http://basex.org/
http://basex.org/
http://exist-db.org/
http://exist-db.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[23] marklogic, New generation big data requires a new generation database., [Online;
accessed 14-December-2014] (December 2014).
URL http://www.marklogic.com/

[24] sedna, Native XML Database system, [Online; accessed 14-December-2014] (De-
cember 2014).
URL http://www.sedna.org/

[25] J. Lichtenberger, SirixDB github (2014).
URL https://github.com/sirixdb/sirix

[26] E. W. Myers, Ano (nd) difference algorithm and its variations, Algorithmica 1 (1-4)
(1986) 251–266.

[27] S. Rönnau, Efficient change management of xml documents, Ph.D. thesis, Univer-
sitätsbibliothek der Universität der Bundeswehr (2010).
URL http://athene-forschung.unibw.de/doc/88983/88983.pdf

[28] A. Mouat, Xml diff and patch utilities, CS4 Dissertation, Heriot-Watt University,
Edinburgh, Scotland, Senior Project.

[29] S. Rönnau, U. M. Borghoff, Xcc: change control of xml documents, Computer
Science-Research and Development 27 (2) (2012) 95–111.

[30] S.-Y. Chien, V. J. Tsotras, C. Zaniolo, Xml document versioning, ACM SIGMOD
RECORD 30 (3) (2001) 46–53.
URL http://www.sigmod.org/publications/sigmod-record/0109/SPECIAL/

zaniolo7.pdf

[31] F. Wang, C. Zaniolo, Temporal queries and version management in xml–based doc-
ument archives, Data & Knowledge Engineering 65 (2) (2008) 304–324.

[32] G. Fourny, D. Florescu, D. Kossmann, M. Zaharioudakis, D. Kossmann, D. Koss-
mann, A time machine for xml, Tech. rep., ETH, Department of Computer Science
(2011).
URL http://e-collection.library.ethz.ch/eserv/eth:5661/eth-5661-01.

pdf

[33] G. Fourny, D. Florescu, D. Kossmann, M. Zaharioudakis, A time machine for xml:
Pul composition, in: Kosek [53], pp. 233–242.
URL http://archive.xmlprague.cz/2010/files/XMLPrague_2010_

Proceedings.pdf

[34] H. Svallfors, Efficient Temporal Queries in an XML-Based Content Management
System, Master’s thesis, Chalmers University of Technology, Gothenburg, Sweden
(2013).
URL http://studentarbeten.chalmers.se/publication/193724-efficient-

temporal-queries-in-an-xml-based-content-management-system

64

http://www.marklogic.com/
http://www.marklogic.com/
http://www.sedna.org/
http://www.sedna.org/
https://github.com/sirixdb/sirix
https://github.com/sirixdb/sirix
http://athene-forschung.unibw.de/doc/88983/88983.pdf
http://athene-forschung.unibw.de/doc/88983/88983.pdf
http://www.sigmod.org/publications/sigmod-record/0109/SPECIAL/zaniolo7.pdf
http://www.sigmod.org/publications/sigmod-record/0109/SPECIAL/zaniolo7.pdf
http://www.sigmod.org/publications/sigmod-record/0109/SPECIAL/zaniolo7.pdf
http://e-collection.library.ethz.ch/eserv/eth:5661/eth-5661-01.pdf
http://e-collection.library.ethz.ch/eserv/eth:5661/eth-5661-01.pdf
http://e-collection.library.ethz.ch/eserv/eth:5661/eth-5661-01.pdf
http://archive.xmlprague.cz/2010/files/XMLPrague_2010_Proceedings.pdf
http://archive.xmlprague.cz/2010/files/XMLPrague_2010_Proceedings.pdf
http://archive.xmlprague.cz/2010/files/XMLPrague_2010_Proceedings.pdf
http://archive.xmlprague.cz/2010/files/XMLPrague_2010_Proceedings.pdf
http://studentarbeten.chalmers.se/publication/193724-efficient-temporal-queries-in-an-xml-based-content-management-system
http://studentarbeten.chalmers.se/publication/193724-efficient-temporal-queries-in-an-xml-based-content-management-system
http://studentarbeten.chalmers.se/publication/193724-efficient-temporal-queries-in-an-xml-based-content-management-system
http://studentarbeten.chalmers.se/publication/193724-efficient-temporal-queries-in-an-xml-based-content-management-system

BIBLIOGRAPHY BIBLIOGRAPHY

[35] J. Lichtenberger, A visual analytics approach for comparing tree-structures, Master
thesis, University of Konstanz — Department of Computer and Information Science,
Konstanz, Germany (2012).
URL http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-210419

[36] T. Lindholm, J. Kangasharju, S. Tarkoma, Fast and simple xml tree differencing
by sequence alignment, in: Proceedings of the 2006 ACM symposium on Document
engineering, ACM, 2006, pp. 75–84.

[37] R. La Fontaine, Merging xml files: a new approach providing intelligent merge of
xml data sets, in: Xml Europe, 2002, pp. 03–03.

[38] K. Komvoteas, Xml diff and patch tool, Ms in distributed multimedia and informa-
tion systems dissertation, Heriot-Watt University, Edinburgh, Scotland (2003).

[39] Y. Wang, D. J. DeWitt, J.-Y. Cai, X-diff: An effective change detection algorithm
for xml documents, in: Data Engineering, 2003. Proceedings. 19th International
Conference on, IEEE, 2003, pp. 519–530.

[40] S. Rönnau, G. Philipp, U. M. Borghoff, Efficient change control of xml documents,
in: Proceedings of the 9th ACM symposium on Document engineering, ACM, 2009,
pp. 3–12.

[41] S.-Y. Chien, V. J. Tsotras, C. Zaniolo, D. Zhang, Storing and querying multiversion
xml documents using durable node numbers, in: Web Information Systems Engi-
neering, 2001. Proceedings of the Second International Conference on, Vol. 1, IEEE,
2001, pp. 232–241.
URL http://www.cs.ucla.edu/~zaniolo/papers/wise01.pdf

[42] S. Graf, Treetank, a native xml storage, Tech. rep., University of Konstanz (2009).

[43] S. Graf, M. Kramis, M. Waldvogel, Treetank, designing a versioned xml storage.
URL http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-opus-

126912

[44] Sebastian Graf, Treetank — secure treebased storage (2014).
URL http://treetank.org/

[45] S. Graf, Flexible secure cloud storage, Doctor of engineering dissertation, Univer-
sity of Konstanz — Department of Computer and Information Science, Konstanz,
Germany (2014).
URL http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-272505

[46] K. Peffers, T. Tuunanen, M. Rothenberger, S. Chatterjee, A design science research
methodology for information systems research, J. Manage. Inf. Syst. 24 (3) (2007)
45–77. doi:10.2753/MIS0742-1222240302.
URL http://www.jmis-web.org/articles/v24_n3_p45/

65

http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-210419
http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-210419
http://www.cs.ucla.edu/~zaniolo/papers/wise01.pdf
http://www.cs.ucla.edu/~zaniolo/papers/wise01.pdf
http://www.cs.ucla.edu/~zaniolo/papers/wise01.pdf
http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-opus-126912
http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-opus-126912
http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-opus-126912
http://treetank.org/
http://treetank.org/
http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-272505
http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-272505
http://www.jmis-web.org/articles/v24_n3_p45/
http://www.jmis-web.org/articles/v24_n3_p45/
http://dx.doi.org/10.2753/MIS0742-1222240302
http://www.jmis-web.org/articles/v24_n3_p45/

BIBLIOGRAPHY BIBLIOGRAPHY

[47] B. Kitchenham, S. Linkman, D. Law, DESMET: a methodology for evaluating
software engineering methods and tools, Computing & Control Engineering Journal
8 (3) (1997) 120–126.

[48] B. Kitchenham, Evaluating software engineering methods and tools - part 2: Se-
lecting an appropriate evaluation method - technical criteria, SIGSOFT Softw. Eng.
Notes 21 (2) (1996) 11–15. doi:10.1145/227531.227533.
URL http://doi.acm.org/10.1145/227531.227533

[49] J. Kosek (Ed.), Conference Proceedings of the XML Prague, 2014.
URL http://archive.xmlprague.cz/2014/files/xmlprague-2014-

proceedings.pdf

[50] J. Kosek (Ed.), Conference Proceedings of the XML Prague, 2013.
URL http://archive.xmlprague.cz/2013/files/xmlprague-2013-

proceedings.pdf

[51] J. Kosek (Ed.), Conference Proceedings of the XML Prague, 2012.
URL http://archive.xmlprague.cz/2012/files/xmlprague-2012-

proceedings.pdf

[52] J. Kosek (Ed.), Conference Proceedings of the XML Prague, 2011.
URL http://archive.xmlprague.cz/2011/files/xmlprague-2011-

proceedings.pdf

[53] J. Kosek (Ed.), Conference Proceedings of the XML Prague, 2010.
URL http://archive.xmlprague.cz/2010/files/XMLPrague_2010_

Proceedings.pdf

[54] L. E. Mendoza, M. Pérez, A. Grimán, Critical success factors for managing systems
integration, Information Systems Management 23 (2) (2006) 56–75.

[55] B. Kitchenham, DESMET: A method for evaluating Software Engineering methods
and tools, Technical Report TR96-09, Department of Computer Science — Univer-
sity of Keele, University of Keele, Keele, Staffordshire, ST5 5BG, U.K., iSSN:1353-
7776 (1996).

[56] I. Black Duck Software, SirixDB github (2015).
URL https://github.com/blackducksw/ohcount

[57] OpenStack, Openstack manuals, https://github.com/openstack/openstack-

manuals, hash of last commit used: 4e94b84d7e125761d36c1f900b09ccd33aa93d0a
(Aug. 2014).

[58] Play Framework, Java play framwork (2015).
URL https://www.playframework.com/

66

http://doi.acm.org/10.1145/227531.227533
http://doi.acm.org/10.1145/227531.227533
http://dx.doi.org/10.1145/227531.227533
http://doi.acm.org/10.1145/227531.227533
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://archive.xmlprague.cz/2014/files/xmlprague-2014-proceedings.pdf
http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf
http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf
http://archive.xmlprague.cz/2013/files/xmlprague-2013-proceedings.pdf
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
http://archive.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf
http://archive.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf
http://archive.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf
http://archive.xmlprague.cz/2010/files/XMLPrague_2010_Proceedings.pdf
http://archive.xmlprague.cz/2010/files/XMLPrague_2010_Proceedings.pdf
http://archive.xmlprague.cz/2010/files/XMLPrague_2010_Proceedings.pdf
https://github.com/blackducksw/ohcount
https://github.com/blackducksw/ohcount
https://github.com/openstack/openstack-manuals
https://github.com/openstack/openstack-manuals
https://www.playframework.com/
https://www.playframework.com/

BIBLIOGRAPHY

[59] Eclipse foundation, Jgit (2015).
URL https://eclipse.org/jgit/

[60] xmllint, xmllint (2015).
URL http://xmlsoft.org/xmllint.html

[61] Jim / James C. Warner, top(1) - linux man page4 (2015).
URL http://linux.die.net/man/1/top

[62] Apache Foundatuion, Apache license, version 2.0, january 2004 (2015).
URL https://www.apache.org/licenses/LICENSE-2.0.html

[63] Blackduck, Discover, Track and Compare Open Source, [Online; accessed 7-
February-2015] (February 2015).
URL https://www.openhub.net

[64] kernel.org, git/git @ github (2015).
URL https://github.com/git/git

[65] selenic, mercurial from selenic (2015).
URL http://mercurial.selenic.com/

[66] Google Developers, Minify resources (html, css, and javascript) - pagespeed insights
— google developers (2015).
URL https://developers.google.com/speed/docs/insights/

MinifyResources

[67] B. W. Boehm, et al., Software engineering economics, Vol. 197, Prentice-hall En-
glewood Cliffs (NJ), 1981.

67

https://eclipse.org/jgit/
https://eclipse.org/jgit/
http://xmlsoft.org/xmllint.html
http://xmlsoft.org/xmllint.html
http://linux.die.net/man/1/top
http://linux.die.net/man/1/top
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.openhub.net
https://www.openhub.net
https://github.com/git/git
https://github.com/git/git
http://mercurial.selenic.com/
http://mercurial.selenic.com/
https://developers.google.com/speed/docs/insights/MinifyResources
https://developers.google.com/speed/docs/insights/MinifyResources
https://developers.google.com/speed/docs/insights/MinifyResources
https://developers.google.com/speed/docs/insights/MinifyResources

Glossary

AJAX asynchronous JavaScript and XML(AJAX) is a group of techniques that is
used in web development for building asynchronous Web applications. 34

Common API developed for this evaluation. Common API is the interface layer
that lies on top of the different adapters for the versioning tools.. 31, 33, 34

delta file The same as a diff file, it is a representation of the differences between
two versions of a document. 15

DESMET DESMET – a methodology for evaluating software engineering methods
and tools, proposed by Kitchenham[55]. It identifies nine methods of evaluation and
a set of criteria to help evaluators select an appropriate method.. 21, 22, 25

diff Diff is used in jargon as a verb for calculating any difference between two different
documents. It is also referred to a file that contains the calculated changes required
to transform a document A into a document B. 12, 34, 36

document type definition A document type definition defines the legal building
blocks of an XML document. 3, 56

eXist High-performance native XML database engine and all-in-one solution for
application building.[22]. 8, 12, 26, 35, 42, 44–49, 54

Git Git is a distributed revision control and source code management system with
an emphasis on speed[64]. ii, 2, 24, 26, 30, 34, 40, 42, 44–50, 54–57, 83

Java Play Java Play is a web framework for developing web applications[58]. 34

JavaScript also known as ECMAScript, is a dynamic programming language for
the web understood by all major web browsers, developed by Brendan Eich in 1995..
34

68

Glossary

JSON JavaScript Object Notation(JSON) is a lightweight data-interchange format.
Designed for easy reading by humans and computers. 34

mercurial Mercurial defines itself as a free, distributed source control management
tool. It efficiently handles projects of any size and offers an easy and intuitive inter-
face [65]. 2

Minification Minification is the process of removing unnecessary or redundant data
without affecting how the resource is processed[66].. 12

non-XML-aware a versioning tool that is not aware if it storage XML or plain
text. 2, 3, 18, 30, 54–56, 59, 60

Normalised Git An application developed for this thesis work, that pre-processes
the input (normalisation) before committing it to Git. 25, 26, 33, 35, 40, 42, 44–50,
54–56, 60, 81

Operational Transformation Operational transformation is a standard for a wide
rage of collaboration functionalities. 61

patch a series of instructions that when added to a original document A, produce
a document B. 30, 36, 39, 47, 73, 76

Pending Update List A pending update list is an unordered collection of update
primitives, which represent node state changes that have not yet been applied. 11,
30, 34, 36

revision control system A software implementation of revision control that au-
tomates the storing, retrieval, logging, identification, and merging of revisions. 13,
17

Sirix Versioned XML database in Java, with added temporal XQuery[25]. ii, vii,
12, 16, 17, 25, 26, 30, 34, 36, 40, 42, 44–50, 54, 56, 57, 60, 61, 82, 83

Source Code Control System An early revision control system, geared toward
program source code and other text files. 17

Test API developed for this evaluation. It is the interface that is used to retrieve
a test and store its results.. 31, 33, 34

Test GUI developed for this evaluation. The Test GUI is the interface build for
running the tests.. 31, 33

V-Document An XML document that describes another document’s revision his-
tory. 15, 35

69

Glossary

version control system A system that keep track of the changes to documents, it
should address issues as branching, baselines, change-list, etc.. 3, 59

XChronicler Differencing and versioning tool that produces a V-Document[34]. ii,
15, 25, 26, 30, 35, 40, 42, 44–49, 54, 58

XML-aware a versioning tool that can understand XML structure. ii, 3, 11, 18,
29, 30, 55, 56, 59, 60

XPath XPath is a query language mainly used to select/address parts of an XML
document. 8, 9

XPointer XPointer, or XML Pointer Language, is a language that allows the ad-
dressing of specific fragments of an XML document. 8

XQuery XQuery is a query language for XML. i, viii, 7–9, 11, 17, 30, 35, 36, 61

XSLT XSLT, or Extensible Stylesheet Language Transformations, is a transforma-
tion language for XML documents that transforms a document into another. 8

70

Acronyms

C14N Canonicalization. 7, 30, 35

CSF Critical Success Factor. 23

CVS Concurrent Version System. 2

DMS Document Management System. 23

FOSS Free and Open-Source Software. 3, 57

LPE Location Path Expression. 9

ODF Open Document Format. 3

SQL Standard Query Language. 7, 8

SVN Subversion. 2, 24

W3C World Wide Web Consortium. 5, 7–9, 30

XML eXtensible Markup Language. 1–3, 5–8, 11, 17, 18, 30, 35, 41, 53, 55, 56, 59,
60

XQUF XQuery Update Facility. 9

71

A
User Stories

Table A.1: User Stories

User Stories

id title description

US-01 Parallel edit without
conflicts

More than one person editing the same file in
different parts at the same time

US-02 Parallel edit with con-
flicts and manual reso-
lution

More than one person editing the same file in
the same part at the same time

US-03 Parallel edit with con-
flicts and manual reso-
lution

More than one person editing the same file in
the same part at the same time

US-04 Parallel remove file More than one person touching a file, one re-
moves it while the other edits it

US-05 Commit to wrong
branch

When you figure out that you have changes done
on the wrong product line, and don’t want to
redo the changes

US-06 Serial simple edit file More than one person editing the same file in
the same part non-concurrently

US-07 Simple parallel edit on
different branches

More than one person editing the same file in
the same part at the same time but in different
branches

US-08 Merge different
branches

Merge changes that have been done in a separate
branch ant to get all change from another branch

72

APPENDIX A. USER STORIES

User Stories (cont.)

id title description

US-09 Simple revert file to the
immediate previous ver-
sion

After committing a change in a file I want to
revert to the previous version

US-10 Simple revert file to a
version of choice

I want to revert a file to a previous version of
my choice

US-11 Simple revert file to a
version of choice with
conflict

A user reverts file to a previous version before
another user commits.

US-12 Remove element with
conflicts

A user removes an element while another edits
it.

US-13 Rename element with
conflicts

Two users edit the same element at the same
time.

US-14 Edit text with conflicts Two users edit the same text within an element.

US-15 Remove text with con-
flict

Two users edit the same text within an element,
one removes it before the other one changes its
content.

US-16 Rename element and
edit text

One user changes element’s name while the other
edits its content.

US-17 Merge a branch with a
specific patch

merge a branch with a specific patch from an-
other branch

US-18 Merging equal commits Two users edit a file and both changes are equal.

US-19 Move element within a
document

A user moves an element from one place to an-
other.

US-20 Merge an change from
repository to a Ex-
ported file

A user want to have his changes in repository
reflected on the similar Exported xml

US-21 Merge a change on a Ex-
ported file to repository

A user want to have his changes in similar Ex-
ported XML reflected on the repository

US-22 Merge a part of a Ex-
ported file with an in-
clude file

A user wants to merge a part of Exported file
(part of a whole without references/includes)
with an included file (part)

US-23 Persistent reuse of part
of a file in a different one

A user wants to be able to reuse part of a file in
a different one and persist that connection

US-24 A user Exports a docu-
ment

A user intends to extract a flattened document
from the system

73

APPENDIX A. USER STORIES

User Stories (cont.)

id title description

US-25 A user Exports part of
a document

A user intends to extract a flattened section of
a document from the system

US-26 Different encoding The use of different applications and systems,
might save the document with different charac-
ter encoding

US-27 Different indentation The use of different applications and systems,
might save the document with different inden-
tation (non-significant white-space)

US-28 Change order of at-
tribute

A user don’t need to worry about the order of
the attributes

US-29 Add a file A user wants a file to be versioned

US-30 Remove a file A user wants to remove a file from the versioning
system

US-31 Edit a file A user wants to change the contents of a file

US-32 Fork repository A user wants to fork a repository in order to
be able to make changes without impacting the
original repository

US-33 Fork a part of a docu-
ment

A user wants to fork a part of a document in
order to be able to make changes without im-
pacting the original part

US-34 Fork a document A user wants to fork a document in order to
be able to make changes without impacting the
original document

US-35 checkout a revision of a
document

A user intends to checkout a specific revision of
a document

US-36 Commit to the reposi-
tory

A user intends to save changes into the version-
ing system

US-37 Create the repository A user intends to initialise a repository

US-38 Get list of changes A user intends to understand the recent history
of changes of a document

74

B
Feature list and Metrics

Table B.1: Versioning Features

Versioning Features

id Metric Name Formulation Lower
Value

Higher
Value

V-01 Fulfilment of tracking of file
changes

5 - fulfilled

1 - not fulfilled
1 5

V-02 Fulfilment of reversion of a file
to a previous version of choice

5 - fulfilled

1 - not fulfilled
1 5

Table B.2: Repository Management Features

Repository Management Features

id Metric Name Formulation Lower
Value

Higher
Value

RM-01 Existence of different branches of
the same repository

5 - exists

1 - does not exist
1 5

RM-02 Ability to tag a specific revision
of a repository

5 - exists

1 - does not exist
1 5

75

APPENDIX B. FEATURE LIST AND METRICS

Repository Management Features (cont.)

id Metric Name Formulation Lower
Value

Higher
Value

RM-03 Ability to merge different
branches of the same repository

5 - exists

1 - does not exist
1 5

RM-04 Ability to remove/untrack a file
on the repository

5 - exists

1 - does not exist
1 5

RM-05 Ability to amend a commit
5 - exists

1 - does not exist
1 5

RM-06 Ability to rename a file
5 - exists

1 - does not exist
1 5

RM-07 Ability to fork a document
5 - exists

1 - does not exist
1 5

RM-08 Ability to handle different users
5 - exists

1 - does not exist
1 5

Table B.3: Merging / Conflict resolution Features

Merging / Conflict resolution Features

id Metric Name Formulation Lower
Value

Higher
Value

MCR-
01

Ability to handle conflicts
5 - exists

1 - does not exist
1 5

MCR-
02

Ability to merge different
patches

5 - exists

1 - does not exist
1 5

MCR-
03

Ability to interactively merge
hunks of a file

5 - exists

1 - does not exist
1 5

MCR-
04

Handling of non significant
white-space

5 - exists

1 - does not exist
1 5

76

APPENDIX B. FEATURE LIST AND METRICS

Table B.4: Project Maintainability Features

Project Maintainability Features

id Metric Name Formulation Lower
Value

Higher
Value

PM-01 Level of Popularity of the project
(where x = github stars)

5: {x > 10.000}
4: {x ≤ 10.000}
3: {x ≤ 1.000}
2: {x ≤ 100}
1: {x ≤ 10}

1 5

PM-02 Level of Activity of the project
(where x = commits to SCM in 2014)

5: {x > 10.000}
4: {x ≤ 10.000}
3: {x ≤ 1.000}
2: {x ≤ 100}
1: {x ≤ 10}

1 5

PM-03

Level of documentation of the project

(where x = Book hits × 100 +

+Search Engine hits × 0.01 +

+Expert Community Q&A hits × 1 +

+Source Code lines of comment × 0.01 +

+Official Documentation lines of text × 0.1

5: { x > 100.000}
4: { x ≤ 100.000}
3: { x ≤ 10.000}
2: { x ≤ 1.000}
1: { x ≤ 100}

1 5

Table B.5: XML Specific Features

XML Specific Features

id Metric Name Formulation Lower
Value

Higher
Value

XML-
01

Handling insertion of child
(where x = min(tests))

5: x :Possible and can not

create unintended conflicts

3: x :Possible but can

create unintended conflicts

1: x :Not Possible

1 5

77

APPENDIX B. FEATURE LIST AND METRICS

XML Specific Features (cont.)

id Metric Name Formulation Lower
Value

Higher
Value

XML-
02

Handling insertion of
sibling

5: x :Possible and can not

create unintended conflicts

3: x :Possible but can

create unintended conflicts

1: x :Not Possible

1 5

XML-
03

Handling insertion of
parent

5: x :Possible and can not

create unintended conflicts

3: x :Possible but can

create unintended conflicts

1: x :Not Possible

1 5

XML-
04

Handling of element
rename

5: x :Possible and can not

create unintended conflicts

3: x :Possible but can

create unintended conflicts

1: x :Not Possible

1 5

XML-
05

Handling of removal of
elements

5: x :Possible and can not

create unintended conflicts

3: x :Possible but can

create unintended conflicts

1: x :Not Possible

1 5

XML-
06

Handling of move of an
element

5: x :detects move operations

3: x :detects removal and

insertion operations

1: x :fails to handle

1 5

78

APPENDIX B. FEATURE LIST AND METRICS

XML Specific Features (cont.)

id Metric Name Formulation Lower
Value

Higher
Value

XML-
07

Handling of attributes
insertion

5: x :Possible and can not

create unintended conflicts

3: x :Possible but can

create unintended conflicts

1: x :Not Possible

1 5

XML-
08

Handling of attributes
removal

5: x :Possible and can not

create unintended conflicts

3: x :Possible but can

create unintended conflicts

1: x :Not Possible

1 5

XML-
09

Ignores the change of
order of an attribute

5: Yes

1: No
1 5

XML-
10

Ability to enforce
well-formed xml on the
repository

5 - exists

1 - does not exist
1 5

XML-
11

Ability to track changes on
a node

5 - exists

1 - does not exist
1 5

XML-
12

Ability to retrieve the
history of a specific node

5 - exists

1 - does not exist
1 5

79

APPENDIX B. FEATURE LIST AND METRICS

Table B.6: CMS Specific features

CMS Specific features

id Metric Name Formulation Lower
Value

Higher
Value

CMS-01 Ability to retrieve list of changes

(log). expected features : {Author,

Message, Timestamp, Reference to

commit}(
where x = features complied

total expected features × 5
)

5: {x > 4}
4: {4 > x ≥ 3}
3: {3 > x ≥ 2}
2: {2 > x ≥ 1}
1: {1 > x ≥ 0}

1 5

CMS-02 Ability to retrieve list of
modified elements in the current
working copy

5 - exists

1 - does not exist
1 5

CMS-03 Ability to flatten a modular
document

5 - exists

1 - does not exist
1 5

CMS-04 Ability to reuse parts of a file in
others

5 - exists

1 - does not exist
1 5

80

C
Benchmark Results

Table C.1: Benchmark results: Normalised Git

Benchmark results: Normalised Git

Test Number CPU
(%)

Hard-Drive
Size (B)

Memory
(% of 8

GB)

Time (ns)

1 1.04 7397.24 10.09 120005257.0

2 1.11 7397.20 6.54 120854531.4

3 0.93 7396.39 3.37 120217476.3

4 1.19 7395.89 6.54 120341663.3

5 1.34 7396.57 6.55 120627771.1

6 1.23 7396.12 6.61 120283701.2

7 1.63 7396.13 6.65 122876457.9

8 1.26 7396.84 6.55 120818115.7

9 1.45 7396.37 6.59 120860879.5

10 1.59 7396.78 6.64 121801376.2

Average 1.24 7396.53 6.61 120765094.8

Median 1.23 7396.39 6.55 120627771.1

Standard
Deviation

0.21 0.48 1.68 850365.4

81

APPENDIX C. BENCHMARK RESULTS

Table C.2: Benchmark results: Sirix

Benchmark results: Sirix

Test Number CPU
(%)

Hard-Drive
Size (B)

Memory
(% of 8

GB)

Time (ns)

1 44.60 974542.84 9.35 596174011.8

2 44.88 974191.26 9.78 612656860.7

3 43.96 972715.81 9.02 553498619.7

4 51.95 974390.84 9.38 998883915.9

5 50.00 973564.06 8.19 903283391.2

6 52.27 973991.31 9.27 930158363.5

7 54.15 971809.19 9.32 719727839.0

8 56.10 973396.33 9.57 709110878.4

9 56.67 973921.50 9.58 691684147.6

10 48.07 974327.50 9.28 484740026.0

Average 50.27 973685.06 9.27 719991805.4

Median 50.98 973956.41 9.34 700397513.0

Standard
Deviation

4.75 856.93 0.43 172040499.6

82

D
Project Metrics Analysis

Table D.1: Project Metrics Analysis

Project Metrics Analysis[63]

Project name Git Sirix

Number of commits 38,464 553

Number of contributors 1,289 6

Lines of code 342,067 74,650

Main language C Java

Number of comments average above average

Team size very large average

COCOMO model[67] 92 years 19 years

First commit April, 2005 June, 2012

83

E
Pre-processing steps of

benchmark data

Listing E.1: source-code of the pre-processing script used on the input data for benchmark

1 import os, subprocess , shutil , sys , re

2

3 rootdir = ’.’

4 folderUrl = "Uri/To/Folder";

5

6 for subdir , dirs , files in os.walk(rootdir):

7 for file in files:

8 counter = 0

9 shutil.rmtree(folderUrl + file + "mapp", ignore_errors = True)

10 os.mkdir(folderUrl + file + "mapp", 0755);

11 print "git log on: "+file

12 ps = subprocess.Popen((’git’, ’log’, ’--stat’, file), stdout =

subprocess.PIPE)

13 output = subprocess.check_output ((’grep’, ’commit ’), stdin =

ps.stdout)

14 ps.wait()

15 for item in reversed(output.split()):

16 if item != "commit":

17 print "checkout: " + item

18 counter += 1

19 gitCheckout = subprocess.Popen((’git’, ’checkout ’, item), stdout

= subprocess.PIPE)

20 gitCheckout.wait()

84

APPENDIX E. PRE-PROCESSING STEPS OF BENCHMARK DATA

21 with open (file , "r") as myfile:

22 data = myfile.read()

23

24 data = re.sub(r"\–", "", data)

25 data = re.sub(r"\—", "", data)

26 data = re.sub(r"\ ", "", data)

27 data = re.sub(r"\<", "", data)

28

29 data = re.sub(r" <!--.*-->", "", data)

30 data = re.sub(r"<xi:.*/>", "", data)

31 data = re.sub(r" <\?.*\?>", "", data)

32

33 #remove namespaces

34 data = re.sub(r"xlink:", "", data)

35 data = re.sub(r"xml:", "", data)

36

37 def removeNewLine(matchobj):

38 return re.sub(r’\n’, " ", matchobj.group (0))

39 data = re.sub(r’\ <((.|\n)*?)\>’, removeNewLine ,data)

40

41 with open(folderUrl + file + "mapp" + ’/’ +

42 tr(counter).zfill (2), "w") as text_file:

43 text_file.write("%s" % data)

44

45

46 gitCheckout = subprocess.Popen((’git’, ’checkout ’, ’master ’),

stdout=subprocess.PIPE)

47 gitCheckout.wait()

85

F
Environment Specification

The test environment used for the performance tests was the following:

Laptop brand/model Asus U36JC

CPU Intel R©CoreTM i5 CPU M 480 2.67GHz x 4

Hard-drive Samsung SSD 840 EVO 250GB

RAM 8 GB of memory.

Operating System Ubuntu 14.04

Kernel Linux kernel 3.13.0-35-generic x86 64 GNU-Linux

File System EXT4

Libraries/Runtimes

• Java version 1.8.0 20
• Git version 1.9.1
• brackit-0.1.3-20140421.192832-4
• sirix-parent-0.1.3-20140520.173148-31

86

G
Test Script Example – Source

Code

Listing G.1: source-code of the test script for a parallel editing

1 (function () {

2 var userStoryUuid = "ParallelEditWithoutConflicts";

3 var testName = "basic";

4 console.log("Running " + userStoryUuid + ":" + testName);

5

6 var testResult = false;

7 var commonAPI = new CommonAPI ();

8 var userStory = getUserStory(userStoryUuid);

9 var test = getTest(userStory ,testName);

10 var inputFolder = "/" + userStoryUuid + "/" + testName + "/input/";

11

12

13 var fileName = testName ,

14 initialFile = test.input[0],

15 initialFileMessage = "I HAVE 3 ELEMENTS: a,b,c",

16 alicesFile = test.input[1],

17 alicesFileMessage = "I HAVE 2 ELEMENTS: a,c",

18 bobsFile = test.input[2],

19 bobsFileMessage = "I HAVE 3 ELEMENTS: a,b,c AND d WITHIN a",

20 expectedFile = test.input[3],

21 expectedFileMessage = "I HAVE 2 ELEMENTS: a,c AND d WITHIN a",

22 actualFile;

23 // PRECONDITIONS

24 // "Repository exists"

25 commonAPI.initRepo ().then(

87

APPENDIX G. TEST SCRIPT EXAMPLE – SOURCE CODE

26 function(data){

27 // "File exists" and "File Content exists"

28 return commonAPI.commitFile(fileName , inputFolder+initialFile ,

initialFileMessage , 0);

29 },

30 function(data){

31 console.log("Failed to initRepo");

32 reportIn(userStoryUuid , testName , "error");

33 }

34).then(

35 // SCENARIO

36 // "Alice checkouts repository" and "Alice edits file" -> alicesFile

37 // "Bob checkouts repository" and "Bob edits same file in different

place" -> bobsFile

38 function(data) {

39 // "Alice commits changes"

40 return commonAPI.commitFile(fileName , inputFolder+alicesFile ,

alicesFileMessage , 0);

41 },

42 function(data){

43 console.log("Failed to commit initialFile");

44 reportIn(userStoryUuid , testName , "error");

45 }

46).then(

47 function(data){

48 // "Bob commits changes"

49 return commonAPI.commitFile(fileName , inputFolder+bobsFile ,

bobsFileMessage , 1);

50 },

51 function(data){

52 console.log("Failed to commit alicesFile");

53 reportIn(userStoryUuid , testName , "error");

54 }

55).then(

56 // OUTCOME

57 // testResult is true iff both commits are successful and Bob’s commit

includes Alice’s changes as well.

58 function(data) {

59 return commonAPI.getHEAD ();

60 },

61 function(data){

62 console.log("Failed to commit bobsFile");

63 reportIn(userStoryUuid ,testName ,"error");

64 }

65).then(

66 function(data){

67 //do comparison with expectedFile and actualFile

68 return compare(expected , actual);

69 },

70 function(data){

71 console.log("Failed to getHEAD");

88

APPENDIX G. TEST SCRIPT EXAMPLE – SOURCE CODE

72 reportIn(userStoryUuid , testName , "error");

73 }

74).then(

75 function(data){reportIn(userStoryUuid ,testName ,"success");},

76 function(data){

77 console.log("Failed to Compare");

78 reportIn(userStoryUuid , testName , "error");

79 }

80);

81 }());

89

	List of Tables
	List of Figures
	List of Listings
	Introduction
	Purpose of the study
	Statement of the problem
	So what is this complexity about?

	Research questions
	What is a good approach to versioning an XML document?

	Scope and Delimitations
	Outline of the Report

	Foundations
	XML
	Key Constructs
	Well-formedness
	XML Canonicalisation
	XML in Structured Documentation

	XQuery
	FLWOR expressions
	XPath
	xquery Update Facility

	XML Storage
	File System
	XML Databases

	XML Version Control
	Differencing Plain Text and Tree Structures
	Merging/Patching Documents
	Versioning
	The problem of versioning XML using linear approaches

	Related Work
	Temporal XML
	xchronicler and V-Documents
	The rise of temporal standards

	XML Differencing and Merging
	Versioned XML Storage
	TreeTank
	sirix

	Research Method
	Approach
	General Design Cycle
	Evaluation Strategy

	RQ1: Data Collection
	Elicitation
	Analysis
	Specification
	Validation

	RQ2: Data Collection
	Feature Analysis Evaluation Criteria
	Feature Analysis Scoring
	Feature Analysis Examples

	RQ3: Data Collection
	Pre-processing
	Execution steps
	Post-processing

	Approaches under test
	git
	Normalisation of XML Input
	xmlaware Versioning (sirix and xchronicler)

	Implementation
	Overview
	Usage scenario
	Language and frameworks

	Common API
	Git
	Normalised Git
	Canonicalisation process
	Further Normalisation

	XChronicler + eXist
	XChronicler
	eXist

	Sirix
	Data collection for benchmark analysis
	Memory and CPU
	Time and Repository Size

	Source Code

	Results
	Research Question 1
	User Stories
	Features

	Research Question 2
	Feature Analysis result – examples
	Feature Analysis Score sheets

	Research Question 3

	Discussion
	Research Questions
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 0

	Threats to validity and Ethics
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity
	Ethical concerns

	Conclusion
	Research Questions
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 0

	Future work

	Bibliography
	Glossary
	Acronyms
	User Stories
	Feature list and Metrics
	Benchmark Results
	Project Metrics Analysis
	Pre-processing steps of benchmark data
	Environment Specification
	Test Script Example – Source Code

