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Recommendation system for workers and tasks
Recommending the optimal assignment of workers to tasks
Sebastian Bellevik, Philip Ekman
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis tries to solve the problem of matching workers with tasks when unknown
parameters are involved. Looking at the trend where outsourcing tasks to previously
unknown parties is becoming more common, a need is definitely there to solve this
problem in an efficient way. The problem can be described as a list of workers, each
with an unknown list of skills, and a list of tasks, each with a known list of require-
ments. Any method assigning all tasks to workers, while maximizing the reward
given for doing so, must be able to accurately estimate the skills of every worker to
provide good results.

To solve this problem when each worker only has a single skill has been shown to
be possible with an algorithm called Bounded Epsilon First. This algorithm is used
as a starting point for testing data with single-skill workers and single-requirement
tasks, before moving on to multi-skill workers and multi-requirement tasks. No real
world data was available for multi-skill matching, which is why all experimentation
is done on synthetic data, generated uniformly at random. After the first phase,
different matching algorithms and methods of rating worker performance were im-
plemented and tested, producing varying results.

Testing all implemented methods on real world data would surely produce interesting
results, but overall, the results presented in this thesis show good promise. Our best
solution, given time to estimate each worker’s skills, give results approaching 85%
of the result produces by matching with all parameters known.

Keywords: recommendation system, outsourcing, crowdsourcing, estimating un-
known properties, maximizing reward, exploration, exploitation
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1
Introduction

This thesis will explore different versions of the assignment problem, where a group
of workers has to be assigned to a number of tasks in an optimal way. First a general
problem description will be presented along with a clear goal to fulfill. Chapter 2
will then, in detail, explain the theory of the problem itself as well as descriptions
of several methods that will be implemented to try and solve it. The following
two chapters will explain different types of workers and tasks used for testing the
methods described in this thesis. Chapter 3 will focus on experimentation where
workers have only one skill and tasks have one requirement and chapter 4 will cover
the more complex problem where workers can have multiple skills and tasks multiple
requirements. Chapter 5 will show the results of all implemented methods as well
as a comparison of how they perform against each other and against a, theoretical,
optimal solution. Finally, in the last two chapters, the results, and the methods
used to achieve them, will be discussed and a conclusion will be reached about their
probable usability in real world scenarios.

1.1 Background
A trend that has been observed over the recent years is that many companies,
especially software companies, are outsourcing work to previously unknown parties
[1]. Instead of outsourcing tasks to known, or previously used, firms, they are often
outsourced to individual workers through platforms such as Mechanical Turk [2].
This type of outsourcing is sometimes referred to as crowdsourcing. On the market
today there are several crowdsourcing platforms that outsource simpler tasks which
can be completed during a short period of time and without a specific set of high
level skills [3].

As these services continue to grow in number and active users [4], the need to find
competent workers for more complex tasks, which require a more specific skill set,
will increase. With an increasing number of workers and tasks there will be a greater
need for automatic, or semi-automatic, recommendation methods. Otherwise, too
much time will be spent manually keeping track of each worker’s performance and
trying to find the best matches among the myriad of available workers with different
skills, and tasks with different requirements.

There exists numerous methods for optimal matching of workers and tasks when
all variables are known [5]. However, with unknown variables present, a level of
uncertainty is introduced that complicates the problem. Additionally, each task
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1. Introduction

may require a specific set of skills, each with a certain amount of experience, to be
completed. Some platforms allow their workers to enter their own perceived skill
levels. However, the company assigning the task has no way of knowing any worker’s
degree of honesty. Assigning simple tasks that almost anyone can do eliminates this
problem. With the increasing demand for workers with certain skills, there is a
need for an efficient way of eliminating the element of uncertainty, turning the
problem into a standard matching problem. In other words, there is a need for a
way of estimating the real skills of potential workers, while not wasting too many
important tasks.

1.2 Related work

There have been several occasions where large companies have crowdsourced tasks
to workers they have no prior knowledge about. Examples are Waze [6], where
users report traffic information, McDonald’s [7], where their customers competed to
design the best burger, and Greenpeace [8], where people around the world competed
to come up with the best slogan. These are all examples of crowdsourcing of tasks
that do not require a specific skill set. In recent years, with increasing popularity of
crowdsourcing, researchers have investigated if there could be a way to crowdsource
more difficult tasks with the need of a specific set of skills. This is called the expert
crowdsourcing problem.

An example of this is when Ho and Vaughan [9] were assigning workers, with different
skill sets, to heterogeneous tasks via the crowdsourcing market Amazon Mechanical
Turk. Their goal was to assign workers to tasks that required a specific set of skills,
where each of the workers have unknown skill levels, which are to be learned by
the algorithm. Because their problem was modelled as the Online Task Assignment
Problem, workers arrive online and must be assigned to a task on arrival. The
typical challenges for such a problem is to estimate each of the workers skills while
maintaining a good result, this is referred to as a exploration-exploitation trade-off.
They implemented an algorithm called Dual Task Assigner which uses an explicit
exploration phase where they are estimating workers skills and an exploitation phase
where they are maximizing the total reward.

Another group of researchers that tried to solve the expert crowdsourcing problem
was a team from University of Southampton [10]. They modelled their problem
as the Multi-armed bandit problem, where a gambler stands in front of a row of
slot machines and will choose which machines to play. Each machine has a unique
cost and gives the agent a reward when played. Their proposed algorithm is called
the Bounded Epsilon First algorithm, which utilizes a portion of a total budget to
estimate the skills for all workers, and later maximizes the utility within an exploita-
tion phase. They compared their results with an hypothetical optimal algorithm,
that knew the workers actual skills, and they approached about 90% of the optimal
solution with an increasing budget.
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1. Introduction

1.3 Goals
The primary goal when starting this thesis was to help ease the matching process
for workers and tasks for the platform Just Arrived [11]. Just Arrived is a platform
for job matching, focusing on immigrants who recently arrived to Sweden. New
members on the platform can enter their own perceived skill levels when signing up.
Before applying for a task they get interviewed by an employee at Just Arrived who
will try to assess some of their skills. When the initial process is completed, a worker
can apply for any task and it is up to the company providing the task to select the
best applicant. Also, upon task completion the company can rate the performance
of the worker. The way to make this process more straightforward is to create a
method for estimating the real skill levels of every worker as well as recommend the
best worker for each task. That way, neither the company nor Just Arrived will have
to find the best combinations of workers and tasks from some seemingly random list.
Instead, for each set of tasks, the optimal combination can be presented, making
the matching process both faster and easier in terms of time spent by humans.

To solve this problem, for the specific case of Just Arrived, a large data set would be
provided containing numerous workers and tasks. Analyzing this data would provide
relevant information about the distribution worker skills, task requirements, and how
well the matching works today. However, the data was lacking in both quality and
quantity, making it effectively useless for basing any methods upon. The amount of
data is sure to grow as the platform grows, but pretty early on in this thesis work
a decision was made to form a more general goal. The main goal instead became
to construct a general method to be used by any group of people trying to match
workers and tasks, where the skills of workers are an unknown factor.

With the above information, the goal can be reformulated to the following: Create a
method of matching a set of workers, each with multiple unknown skill levels, with
a set of tasks, each with multiple requirement levels. This should be done indepen-
dently of the distribution of skill levels and requirement levels among them. Also,
an additional goal is to construct an estimation method for finding the unknown
true skill levels of the workers.

1.4 General problem description
The problem consists of a number of workers and a number of tasks to be matched
in an ideal way. Every task has a number of requirements, each with a certain
requirement level, representing what is needed from a worker to complete it, and
every worker has a number of skills, each with a certain skill level, representing what
they can do. While the tasks requirement levels are known, the workers skill levels
are not, making them something a potential algorithm will have to figure out to
make optimal recommendations. The ideal setting, for arriving at good estimations
about each worker’s skill levels, would be where there are many more tasks available
than there are workers. However, this is not always the case in a real world setting,
where the number of available workers can be much higher than the number of
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available tasks. To counter this, the assumption is made, in this thesis, that virtual
tasks could be introduced to fill the gap. In a real setting virtual tasks can be
anything from unimportant tasks that companies are willing to waste, to simple
tests, all with the purpose of estimating the workers skill levels. For this thesis, and
the experimentation done, no clear distinction is made between virtual tasks and
real ones, as that is something that would be completely up to the task provider,
or some other service that they use. For testing purposes it is simply assumed that
there are more available tasks than workers.

To make the assignment process more realistic the tasks are split into blocks, where
each block contains the same number of tasks as the number of workers available.
Every time matchings occur, the tasks within each block can only be assigned to one
worker, and a worker can only perform one task. This is made to simulate workers
being unavailable while performing a task.

Matching a worker with a task gives a nonnegative reward, which represents how
well the worker performed. This reward is calculated by comparing the skill levels
of the workers with the requirement levels of the task, where a skill level higher than
the corresponding requirement level means there is a higher probability of success.
In a real world setting, this process would preferably be performed by the task
provider, but since all data used is synthetic, it has been automated. Given the
above information, the goal of any solution is to maximize the total reward gained
from assigning all the tasks available to workers. When all variables in this type
of problem are known, there exist solutions to give an optimal result, for example
the Hungarian Algorithm [17], but since the skill levels of workers are unknown, an
element of uncertainty is introduced. Because of this, the problem itself can be split
into two separate parts, where the first part is to try and estimate the workers real
skill levels and the second part is to apply any optimal matching algorithm.

4
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1.5 Formal problem description
There is a set of workers W, and a set of tasks T. For each worker w ∈ W there is
a set of skills M each with an unknown skill level µ, and for each task t ∈ T there
is a set of requirements Λ, each with a requirement level λ, that is

∀w ∈ W : M = [µ1...µk] ∧ ∀t ∈ T : Λ = [λ1...λk], µ, λ ∈ [0, 1], k > 0. (1.1)

The tasks are split into blocks b ∈ B, where the size of each block b equals the size
of W and a task can only exist in a single block. However, the last block might be
smaller in size than W, which is permitted as a special case, the method should still
work. The blocks are described as

∀b ∈ B : ||b|| = ||W || ∧ bm 6= bn ∧ |B| =
⌈
||T ||
||W ||

⌉
. (1.2)

Matching a worker and a task gives a nonnegative reward rw,t, representing how well
the worker performed the task. The reward is calculated with a function f(), which
compares each of the worker’s skill levels with the corresponding requirement levels
of the task. The reward between worker w and task t is calculated as

rw,t = f(Mw,Λt). (1.3)

Given the above information, the goal is to maximize the equation

R =
∑
b∈B

∑
t∈b

rw∈W,t, ∀u ∈ U : un = um, (1.4)

given that all tasks are completed. A worker can only be assigned one task within
each block, meaning every worker will perform the same amount of tasks. This is
represented by the set U, where each element un ∈ U represent how many times
wn ∈ W has been used.
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2
Theory

This chapter will describe the theory behind all the methods implemented during
the thesis. As mentioned in section 1.3 the goal of this thesis is to solve the problem
of matching a set of workers with a set of tasks, while maximizing the cumulative
rewards. This can be referred to as the Assignment Problem. Within this thesis,
each of the problems with be modelled using parts from both the Multi-armed ban-
dit problem and the Online Task assignment problem. For the Multi-armed bandit
problem the goal is to find the best assignments in order to maximize the reward,
and the Online Task assignment problem uses an agent that continuously matches
a set of workers with a set of tasks.

2.1 Multi-armed bandit problem
The Multi-armed bandit problem [12] is described as a gambler in front of a row of
slot machines, that has to decide which machines to play, how many times, and in
which order. Each machine has a fixed cost that the gambler is required to pay to
be able to pull that machines arm. After each pull of an arm, the machine gives
a random reward from some probability distribution. Initially, the gambler starts
with a fixed budget B and the objective of the gambler is to maximize the total
reward given from all arms pulled, while not exceeding B. During our experiments
these slot machines are represented by workers, and the act of pulling and arm is
represented by a worker performing a task.

2.2 Online task assignment problem
The Online Task Assignment Problem [9] is a special case of the Assignment Prob-
lem. The Assignment Problem is defined as two sets of equal size, one set of workers
and one set of tasks. Every worker has to be assigned to exactly one task and every
task has to be performed by exactly one worker. Assigning a worker to a task has
a cost, and to solve the problem the total cost has to be minimized.

With the Online Task Assignment Problem, a requester has a set of tasks to be
completed and a total budget that can not be exceeded. Contrary to the normal
Assignment Problem, there is no fixed set of workers, but instead the workers arrive
continuously and are assigned a task upon arrival. Each new worker that arrives
has an unknown set of skills, and generally workers with higher levels of skill pro-
duce better results. Though the workers skill levels are initially unknown, they can
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be estimated by assigning them to tasks and analyzing the results. Estimating a
worker’s skill levels increases the probability of selecting the optimal worker for a
given task, when that worker can perform a task again in the future. When enough
workers are available for selection and the estimation of their skill levels are closer to
their true skill levels, the problem can basically be converted to the offline version,
i.e. the Assignment Problem, which can be solved using the Hungarian Algorithm.
Also, instead of trying to minimize the total cost, the goal is to maximize the total
reward given by assigning workers to tasks.

2.3 Matching algorithms

2.3.1 Bounded epsilon first
The Bounded Epsilon First (BEF) [10] is an algorithm that tries to maximize the
reward, given a set of workers, a set of tasks, and a fixed budget. The workers and
tasks are modeled as the Multi-Armed bandit problem, where each worker is a slot
machine and pulling the arm of a certain slot machine corresponds to assigning that
worker to a specific task. Pulling the arm of a worker has a fixed cost and gives a
reward. Each worker also has a limit that decides how many times they can perform
any task, i.e. how many times their arm can be pulled.

The algorithm consists of an exploration phase and an exploitation phase. A certain
part, ε ∈ [0, 1], of the budget, B, is dedicated to the exploration phase. During that
phase, each worker is assigned a task and is paid, until εB is depleted. This phase is
used to estimate the workers skill levels. The skill levels are later used to determine
which worker to use for a certain task during the exploitation phase.

The exploitation phase is used to select the best workers available for each task.
Because the algorithm is unaware of the true skill levels for the workers, it uses the
estimated skill levels obtained through the exploration phase. During this phase the
bounded knapsack algorithm [13] is used to select the best available worker for a
task. First, the workers are sorted by their density which is defined as

densityi = µ̂i

ci

, (2.1)

where µ̂i is the estimated skill level for worker i and ci is their cost. After sorting the
list of workers, the algorithm pulls the arms of the worker with the highest density
until the limit for that worker is reached. This is repeated until the rest of the
budget, 1-εB, is depleted.

8
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2.3.2 Epsilon greedy
This approach is similar to BEF, but there is no such clear distinction between sepa-
rate phases [14]. For each given task, a random worker is selected with a probability
of ε and with a probability of 1 − ε the best worker for the task is selected. This
results in a continuous mix of exploring and exploiting. A version of the Epsilon
Greedy, where ε is steadily decreasing over the course of the matching process, is
sometimes called Epsilon Decreasing. The decrease, referred to here as drop rate, is
a value 0 < d ≤ 1, which is multiplied by ε at each turn, resulting in the formula

εk = dk ∗ εk−1, (2.2)

where εk is the current epsilon, dk is the drop rate to the power of the number of
tasks completed and εk−1 is the epsilon during the previously performed task. As
more tasks are performed, the probability to pick a random worker should decrease,
because the algorithm should have learned something about the available workers.
Finding a good start value and drop rate for ε can be a difficult task, this will be
discussed further in section 4.7.2.

2.3.3 Upper confidence bound
This algorithm is similar to both BEF and Epsilon Greedy in that it continuously
updates and chooses workers for tasks, and uses a pre-exploration phase where each
worker is tested once, to give the algorithm a starting point [15]. When a worker
has completed a task the estimated skill levels µ̂ are updated. After the initial
exploration phase is done, for each task a worker is selected that maximizes the
following formula:

x̄j +

√√√√2ln(n)
nj

. (2.3)

Where j is the current worker, x̄j is the average reward for worker j, n is the total
number of tasks performed and nj is the number of tasks performed by worker j.

2.3.4 Hungarian algorithm
The Hungarian Algorithm [16] is an algorithm used to solve the assignment problem.
The algorithm uses a cost matrix, C, of size n×n, where n is the number of workers
and tasks, and each entry in the matrix is nonnegative. The entry Ci,j represents
the cost of assigning worker i to task j. Given this matrix the algorithm finds the
optimal way of assigning a worker to each task. For the specific problem to be solved
in this thesis the goal is to maximize the total reward, where the reward is any value
between 0 and 1. Hence, for each entry in the constructed matrix the reward is
subtracted from 1, giving a matrix that can be solved with the standard Hungarian
Algorithm.

The Hungarian Algorithm uses the following four steps to find the optimal sets of
matches [17]. First, the lowest entry of each row is found and subtracted from each
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2. Theory

element in that row. This will ensure each row contains at least one zero. Second,
repeat the same procedure, but with columns instead of rows. Third, all zeroes in
the matrix are covered using the minimum number of horizontal and vertical lines.
If n lines are required, an optimal assignment can be made with the zeroes. If less
than n lines are required, the last step is to find the smallest entry in the matrix
that is not covered by any line from the third step. The value of that entry is then
subtracted from all elements not covered by the lines from step three and added to
all elements that are covered twice. Many times, all steps are not needed, and the
optimal solution might be found after any of the aforementioned steps.

10



3
Experimentation with single-skill

matching

Due to the lack of data provided, the first experiments were conducted on a set of
data from the project Get Another Label [18]. The format of the data provided by
the Get Another Label project differ much from the format of the data provided
from Just Arrived. The former only uses workers with one skill level and tasks with
one requirement level, while the latter use workers with multiple skill levels and
tasks with multiple requirement levels. Because of this, some experimentation was
needed in order to get a good starting point for the method implementations. Get
Another Label was a project that tried to categorize websites as one of the following;
G (General), PG (Parental Guidance), R (Restricted) or X (X-rated). It resulted in
a large set of websites as well as data from Mechanical Turk where workers tried to
categorize these websites, some of which had a known true category. This project
is used to make sure that the initial implementation of the BEF algorithm is done
correctly, since no real data in the form needed was provided.

3.1 Model
The model for the implementation consists of tasks t ∈ T and workers w ∈ W . Tasks,
in this case, are websites, with an unknown real rating, to be categorized. Workers
have an unknown skill level µ, representing their ability to categorize websites, as
well as a known public skill level µ̂, representing how good the algorithm think they
are at categorizing websites. Each worker also has a cost c that needs to be taken
into consideration, since there is a total budget B that cannot be exceeded.

This problem is modeled as the Multi-armed bandit problem, where a gambler pulls
the arms that maximizes the total reward given from performed tasks. The slot
machines represents the workers and pulling their arm is equivalent to letting a
worker rate a specific website. Each worker has an individual cost c, based on their
skill level µ. This was done to try to simulate a real world setting where better
workers, with a high probability, are more expensive. The cost of the workers follow
the formula

∀w ∈ W : cw = K ∗ µw, (3.1)

where K is an arbitrarily chosen base cost.

11



3. Experimentation with single-skill matching

3.2 Data

The Get Another Label project used a number of data sets, but for this experiment
only the largest one was selected. This data set contained 11,040 websites, rated by
Mechanical Turk workers, of which 1517 had been assigned a verified official rating,
and a list of 825 workers who had performed the rating. This data was used to test
the implementation of the algorithm, but also as a base for generating much larger
data sets.

Figure 3.1: Distribution of the different ratings, as proportion of the total number
of verified ratings.
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3.3 Rating model

When the agent pulls an arm, i.e. assigns a task t to a worker w, a reward rw,t

is given, which value is between 0 and 1 and depends on the worker’s ability to
rate websites, their skill level µ. Their skill level is used as a probability to guess
correctly, giving the model a certain degree of randomness. A worker might still
fail, even with a skill level of 0.99, and a worker with a skill level of 0.01 might still
succeed, with suggesting the correct rating.

3.4 Estimation of skills

The estimation of each worker’s skill level µ̂, is the number of ratings the worker
have received divided by the sum of the accumulated ratings. Since the skill level
of a worker is the probability to succeed, given enough tasks the true rating should
be found.
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3. Experimentation with single-skill matching

3.5 Algorithms

3.5.1 Implementations
The the first algorithm used in this thesis is BEF, which is also the only algorithm
used for the data from Get Another Label. This is because it has been proven to
give good results for this type of problem [12]. The theory behind BEF has been
described in Section 2.3.1, and the pseudocode of the implementation can be found
in Algorithm 1 below.
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3. Experimentation with single-skill matching

Algorithm 1: Bounded Epsilon First
input : T : a set tasks

W : a set of workers
B: the total budget to be spent
ε: the percentage of the budget used for exploration

Output: r: the average reward received by the workers
1 procedure BEF(T ,W ,B ,ε):
2 let Texplore be exploration tasks
3 let Texploit be exploitation tasks
4 let B be B − εB
5 (Assign workers one by one until Texplore is empty)
6 for task t ∈ Texplore do
7 if all workers assigned then
8 let w be first worker
9 else

10 let w be the next worker
11 end
12 assign w to t
13 rate performance of w
14 estimate skills of w
15 end for

16 sort workers by average worker performance rating
worker cost

17 while B is not empty do
18 let w be the best worker for task t ∈ Texploit

19 assign w to t
20 rate performance of w
21 estimate skills of w
22 let B be B − wcost

23 remove t from Texploit

24 if w cannot work more then
25 remove w from W
26 end
27 end while
28 return average performance rating of all workers
29 end procedure

14



3. Experimentation with single-skill matching

Along with the implementation of BEF, an optimal solution, explained more in
section 3.5.2, was implemented. The optimal solution was used for comparison to
be able to observe the performance of the implementation of BEF in two different
settings. The first test was made on the real set of websites and workers to see its
performance in a setting close to the real scenario, as seen in plot 3.2.

Figure 3.2: Performance of BEF compared to the optimal solution using the real
set of websites and workers, depending on the number of tasks provided. Optimal
is always 100% and the closer BEF gets to 100% the better are the results.
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After that, a set of 100,000 websites was generated, using the same distribution as
the real set, to see if the performance of BEF would approach the optimal solution
given enough tasks. The results of the test with generated data can be seen in plot
3.3 below.
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3. Experimentation with single-skill matching

Figure 3.3: Performance of BEF compared to the optimal solution using the gen-
erated set of websites and workers, depending on the number of tasks provided.
Optimal is always 100% and the closer BEF gets to 100% the better are the results.
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3.5.2 Optimal
The optimal solution is used mainly as a benchmark, used to be able to measure the
performance of other algorithms. It has access to the true ratings of the websites
as well as the true skill level and cost of each worker. Using this information,
the optimal solution can calculate each worker’s true density and make the best
assignments using the knapsack algorithm.

3.5.3 Random
Similarly to the optimal solution, the random solution is used for comparison. To
get a better picture of how well the real algorithm performs, it is compared both
to the optimal and the random solution. This solution simply selects a random
available worker for each website to rate.
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Multi-skill matching

One problem with the model implemented in the Get Another Label system de-
scribed in chapter 3 was that it differed to much from the model described by Just
Arrived. First of all, in Just Arrived’s model the workers have multiple skills, with
skill levels in each one, instead of just one skill. The same holds for the tasks, which
have multiple requirements with a minimum requirement level for every require-
ment. Another major difference is that there are no individual costs for workers,
nor is there a total budget that can’t be exceeded. Instead, the goal is to complete
all the given tasks while maximizing the total rating given from each completed
task. The cost is decided by the task, and since all tasks have to be assigned, the
cost aspect can be omitted completely.

This problem is also modeled as a Multi-armed bandit problem. However, because
of the absence of a budget as well as the removal of costs for each worker and the
introduction of multiple skills, a few changes in the model was made. It can also be
described as a less complex version of the Online Task Assignment Problem, namely
the Offline Task Assignment Problem, where there is a static list of workers and
tasks instead of workers arriving dynamically. The possible impacts that this will
have on the results will be discussed in section 6.1.

4.1 Model
This model consists of a set of workers W , and a set of tasks T . Every worker
w ∈ W has a set of skills M , each with an unknown true skill level µ, and a known
estimated skill level µ̂. The estimated skill levels will gradually be updated by the
algorithm and the goal is for µ̂ to converge towards µ. Also, every task has a set of
requirements Λ, each with a requirement level λ. Both skill levels and requirements
levels are represented by a value between 0 and 1.

4.2 Synthetic data
As described in section 1.3, the quantity and quality of the data received for this
thesis was lacking, and therefore a decision had to be made early on to focus on
using synthetic data. The basic structure of the workers and tasks present in the
data from Just Arrived was preserved however, but no conclusions about the dis-
tribution of skills and requirements could be drawn from analyzing the data itself.
With better quality data of a larger quantity, analyzes could be done to find the
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mean and variance and use that to generate the data using a Gaussian distribu-
tion. Using a Gaussian distribution for generation would give synthetic data that
more closely resembles real world data for a real world application. If for example
a software company were looking for new developers, a certain distribution of skill
levels across the various programming languages available could be assumed, and
modelling synthetic workers could be done according to this. This could not be done
however, and this problem is now modelled as a very general case, where the skills
and requirements can be anything from any category of skills and requirements.
Because of this, the skill levels and requirement levels are generated uniformly at
random, meaning each level is as likely to exist as any other. Also, any level of a
specific skill or requirement is a likely as any other. However, if information about
more common skills and average skill levels, as well as requirements and requirement
levels, could be found in a real world scenario, the estimation and matching process
might improve. Since there is no distribution to be found in the generated data, the
main focus for any implemented method in this thesis is instead to find a quick and
efficient way to estimate the workers skill levels.

Working purely with synthetic data requires some research about the format of the
relevant real world data, as well as a lot of testing. Another aspect preserved from
the Just Arrived data was the cost for utilizing a worker is set by the task, which
means that both the specific worker costs, and total budget can be omitted from
any implemented algorithm. To speed up computing times and to make analyzing
the data smoother, some restrictions were made:

• The sets of workers skills and tasks requirements are always of equal size,
which, for the duration of this thesis, is 3. This is a soft restriction however,
since both skill levels and requirement levels can be 0, meaning the effective
number of skills or requirements can be lower.

• The generated skill levels and requirement levels are sampled from a multi-
nomial distribution with the categories [0.0, 0.2, 0.4, 0.6, 0.8, 1.0], and all cat-
egories have the same probability to be chosen. Limiting the number of skill
levels to 6 was done to mimic real world data, since it would be an unrealistic
expectation that humans would be able to estimate skill levels and requirement
levels to any of an infinite number of levels between 0 and 1.

• The number of tasks available is equal to or greater than the number of avail-
able workers.

• All estimated skill levels are initiated to 0.5, which is the average level when
nothing is known.

4.3 Matching
When matching workers with tasks, two different approaches were tested during
experimentation. The first one, called unrestricted matching, is when no restrictions
are put on the worker in terms of how many tasks they can perform at any time.
Although this might not be applicable in many real world settings, it allowed for
quick testing of the implementations. When the tasks provided are simple and take
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no more than a couple of seconds of a worker’s time, like with the Get Another
Label project, this might be a realistic approach. A worker can be assigned a large
number of tasks to be completed one after the other, without a real time restriction.
However, in many real world scenarios tasks will take longer to complete, which
is why the second method, block matching, was implemented. With this method,
tasks are split into blocks with the same size as the number of workers, and within
each block a worker can only perform one task, and a task can only be assigned to
one worker.
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4. Multi-skill matching

4.4 Rating model
After each completed task, the information about the worker known by the algorithm
is updated. For each skill the workers possess, a rating is provided, e ∈ Ew,t,
for each skill, depending on the difference between the worker skill level and the
corresponding task requirement level. A skill level equal to or above the requirement
level means a higher probability of success. This rating model does not award a
worker more for being above the requirement level than for just having an equal
skill level. This decision was made with the assumption that task providers have a
good understanding of what skills and skill levels are needed to complete a given
task. For example, a task with a requirement level of 0.6 in Java, should be able
to be completed by a worker with a skill level of 0.6 in Java, a greater skill level
should not be needed. The rating of each skill is calculated according to formula
4.1. The ratings of each skill are then used to calculate a single value rating a, for
the task completion according to formula 4.2. Also, this single value rating is used
to measure the overall success of any implemented algorithm.

ei =

Bernoulli(1− ε), µi ≥ λi

Bernoulli(ε), otherwise
, (4.1)

here ei is the rating for skill i, µi is the worker’s skill level for skill i, λi is the
task’s requirement level for requirement i, and ε is an arbitrarily chosen, low value,
variable described more below. Whenever a worker w performs a task t, they receive
a rating calculated as

aw,t =
∑

e∈Ew,t
e

||Ew,t||
, (4.2)

where Ew,t is the set of ratings for each of the worker’s skills according to formula
4.1.

The variable ε was introduced to represent a certain amount of uncertainty in a real
world scenario. It can be used as a single value to represent a number of different
factors during the work process or the rating process. A worker with skill levels
above the requirement levels can still fail, for example because of a bad day or a
bad night’s sleep. When rating, the task provided can make an incorrect assumption
based on the result. Similarly, a worker who is normally not good enough for a given
task, can still succeed, or the rating can be incorrect because of the task providers
inexperience within the field. The choice of ε will be discussed further in section
5.2.
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4.5 Estimation of skills

The same approach used in section 3.4 was tested for estimation of multiple skill
levels per worker. For each skill, a set of ratings was saved, and the estimated skill
level was the average of all ratings for that particular skill. However, with multiple
skills the estimation for each skill level fluctuates a lot, and the results are worse
than when used with single skill matching.

To solve that problem, a new method of estimation was introduced, called min-max
estimation. Instead of adding every rating to sets and using the average rating as
estimation, each worker gets a new set, with the same size as the set of skills, that
contains pairs of values. The elements in the pair represents the minimum and
maximum values that the algorithm believes the skill level could be. After each
performed task, the algorithm uses the result to decide how to update the minimum
and maximum estimations and then the estimation for that particular skill level is
the average of the minimum and maximum values. If the rating received for skill i
is 1, the minimum is updated as seen in formula 4.3 and if the rating received for
skill i is 0, the maximum is updated as seen in formula 4.4.

smin
i :

ti, r = 1
smin

i , otherwise
(4.3)

and

smax
i :

ti, r = 0
smax

i , otherwise
, (4.4)

where smin
i and smax

i are the minimum and maximum estimations for skill i respec-
tively, ti is requirement i for task t, and r is the rating received for skill i. The
estimation for a particular skill is thus continually updated and set according to the
following formula:

se
i : s

min
i + smax

i

2 , (4.5)

where se
i is the estimated skill level for skill i.

A comparison of the two rating methods can be seen in the graph below, and when
comparing both to the optimal solution it is clear that using min-max estimates the
true skill levels both better and faster.
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Figure 4.1: Performance of the modified BEF solution, comparing the old skill
estimation that uses the average of all ratings, and the new model that uses min-
max estimation.
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4.6 Selection of workers
Selecting the best worker for a single task is another aspect that gets more compli-
cated with multiple skills and requirements. Also, matching using blocks forces any
selection of the best worker to take into account that choosing a worker that is a lot
better than needed might waste them, making them unavailable for more difficult
tasks later on. To solve this problem, the best worker for a task is defined as the
worker with the highest number of skill levels equal to or above the corresponding
requirement levels. The worker that maximizes the formula

k∑
i=1

1, µ̂i ≥ λi

0, otherwise
(4.6)

is selected, where k is the number of skills for each worker, µ̂i is the estimated skill
level for skill i, and λi is the requirement level for requirement i.

If there are more than one worker who fulfills that criteria, the worker with the lowest
total difference, in skill levels against requirement levels, is selected, according to
the formula

k∑
i=1
|µ̂i − λi|. (4.7)

This means that the worker selected for a task should be just good enough to be
able to complete it, so that workers a lot better than required can be used later.
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This whole process is illustrated, in pseudocode, in Algorithm 2 below.
Algorithm 2: Worker Selection
input : t: the task to be assigned

W : a set containing workers
Output: wbest: The best worker for the provided task

1 procedure WorkerSelect(t ,W ):
2 let A be w ∈ W with most skill levels above requirement levels of t
3 if ||A|| is 1 then
4 let wbest be w ∈ A
5 else
6 let wbest be w ∈ A with lowest total difference in skill levels compared to

requirement levels
7 end
8 return wbest

9 end procedure

4.7 Algorithms

All the matching algorithms described in 2.3 were implemented with regards to
the model used for multi-skill matching, starting with a modified version of BEF.
Any changes made to the implementation of each respective algorithm are described
here. The selection process described in 4.6 is used for all greedy approaches, i.e.
the modified BEF, Epsilon Greedy, and UCB. Although some algorithms use more
information to select the best worker for any given task, the base which all of the
use is that particular measurement for best worker.

4.7.1 Modified bounded epsilon first

As described in the beginning of chapter 4, the notion of individual worker costs and
a total budget was removed for the purpose of this multi-skill matching problem.
Therefore an implementation used would not follow the rules of the orgininal BEF,
which is why the modified BEF is introduced. The basic structure used by BEF is
still used, where there is a set of workers W , and a set of tasks T and the goal is
still to maximize the total reward R. Without costs and a budget, ε is instead used
to directly decide the number of tasks used for exploration according to:

Texplore ⊂ T, ||Texplore|| = bε · ||T ||c. (4.8)

Then, like when using the original BEF, the remaining tasks are used for the ex-
ploitation phase. Other than the selection of tasks, this implementation is identical
to the one described in Algorithm 1.
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4.7.2 Epsilon greedy
Epsilon greedy was implemented with regards to the new model, and the problem of
finding the best ε still persists. Therefore several different values for ε were tested
and compared, as seen in figure 4.2. Using an ε of 0.0 gives the best result when
the number of tasks increases, even when decreasing ε over time. This means that
the best results, for this problem, using Epsilon greedy were achieved when never
choosing a worker at random.

Figure 4.2: Performance of Epsilon Greedy compared to the optimal solution, with
regards to ε. Used to find the optimal ε.
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Epsilon greedy tries to choose the best worker for a given task, without regards to any
other tasks than might be assigned later. The pseudocode for the implementation
can be seen below.

Algorithm 3: Epsilon greedy
input : T : a set containing tasks

W : a set containing workers
ε: probability to select random worker

Output: r: the average reward received by the workers
1 procedure EpsilonGreedy(T , W , ε):
2 for task t ∈ T do
3 let r be selected at random ∈ [0, 1]
4 if r < ε then
5 let w be selected at random from W
6 else
7 let w be best worker for task t
8 end
9 assign w to t

10 rate performance of w
11 estimate skills of w
12 end for
13 return average performance rating of all workers
14 end procedure

4.7.3 Upper confidence bound

The only real modification made to this formula was to change what x̄j represents,
as it is supposed to represent the average reward. However, with multiple skills,
only using the average reward of a worker gives no indication of the performance
on a specific task. For example, a worker excelling in skill 1 and 2, while being bad
at skill 3, might have a higher average rating than someone whose skill levels are
exactly the opposite. But if the task in question requires excellent skill levels for skill
3, the second worker would be a better match. Instead of using the average reward,
it uses the method described in 4.6. The method does not return only the optimal
worker, but instead the score, i.e. the number of skill levels above requirement levels
and how close their skill levels are to the requirement levels. This score is then used
as x̄j for UCB.
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Algorithm 4: Upper confidence bound (UCB)
input : T : a set of size n, containing tasks

W : a set of size m, containing workers
Output: r: the average reward received by the workers

1 procedure UCB(T , W ):
2 let TtestOnce be the set where ||TtestOnce|| = ||W ||
3 let Trest be the rest of the tasks in T
4 for t ∈ TtestOnce do
5 let w be the next worker assign w to t
6 rate performance of w
7 estimate skills of w
8 end for
9 for t ∈ Trest do

10 let w be the worker that maximizes

WorkerSelect(t, w) +
√

2 log(Total number of performed tasks)
Number of ratings for w

11 (WorkerSelect() is defined in Algorithm 2)
12 assign w to t
13 rate performance of w
14 estimate skills of w
15 end for
16 return average performance rating of all workers
17 end procedure

4.7.4 Hungarian min-max estimation
While testing all above methods, it was discovered that all of them favoured very
little distinct exploration or in some cases none at all. Modified BEF uses a very
small ε for selecting tasks used only for exploration and Epsilon greedy works best
with ε = 0. Since all modified methods in this thesis continue to estimate the workers
skill levels, even when not using distinct exploration, a new experimental method
was conceived. For all greedy methods, a drop in performance was observed when
moving from single-skill matching to, the more complex, multi-skill matching. This
performance drop was also observed when trying to apply the optimal method which
used the knapsack algorithm with access to the workers true skills. The Hungarian
algorithm is a methods that takes all current workers and tasks into consideration
when making the assignments, and it showed better performance than any greedy
method.

Hungarian min-max estimation was created with the idea that always making the
optimal assignments with regards to all current workers and tasks will produce the
best results, as long as the workers skill levels are continuously estimated. Since the
Hungarian algorithm gave good results when used with multiple skills and require-
ments, while still only needing O(n3) time to do so, it was used as a base for this
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new method. Also, this method was the first one using the new min-max method
of estimating skills, hence the name: Hungarian min-max estimation. This method
uses the Hungarian algorithm, at each step, with an equal amount of workers and
tasks, to make the optimal assignments. However, contrary to the optimal method
this does not have access to the workers’ true skill levels, but instead uses their
estimations. After each assignment, they workers skill levels are estimated again
which leads to better assignments during the next set of tasks.

4.7.5 Random
For each block of tasks, a random worker is selected for each task, with no regard to
the workers estimated skill levels. The random method is, just as with single skill
matching, used for measuring the performance of other algorithms.

4.7.6 Optimal
The optimal method is, like the random method, used primarily for comparison
with the other implemented methods. It has access to all workers true skill levels,
therefore no estimation is needed and an optimal matching can be done. When
matching users with multiple skills and tasks with multiple requirements, a greedy
method, like the knapsack algorithm, will not always produce the best result, which
is described more in 5.4.1. Therefore an algorithm is needed that takes all current
workers and tasks into account at the same time. The Hungarian algorithm is, as
described in 4.7.4, a known algorithm for solving the assignment problem when all
variables are known and is what will be used as the optimal solution.
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5
Results

This chapter will present all results gained from using the different methods for
solving the assignment problem with unknown variables.

5.1 Algorithm paramaters

When testing the different algorithms with the multi-skill matching model, a number
of different parameters were used. Some of the parameters were the same for every
test and algorithm but other were changed.

Table 5.1: Parameters used for testing all implemented methods.

Parameter description Value of parameter
Number of workers 10
Number of tasks 10 - 10000
Number of runs 25

The number of workers was constant, and was set to 10, as seen in table 5.1, to speed
up running time and to be able to analyze some of the results manually. Different
number of tasks were used when testing different aspects. When trying to find the
end result of assigning a large number of tasks, many tasks were generated as the
running time was still withing acceptable limits. However, when trying to find how
the performance changes with the number of tasks provided, many more tests had
to be run and therefore fewer tasks were used. A run in this scenario is a single
test with a set of tasks and a set of workers, and several runs were used because of
two different elements of randomness with each run. First, when rating a worker’s
skill level, a Bernoulli distribution was used, and as described in section 4.4, it has a
certain probability of giving an erroneous rating. Second, since all worker skill levels
and task requirement levels are generated uniformly at random, there is always a
probability of two sets being generated where very few matches are possible, or none
at all. To account for this, every test was run 25 times and the result presented is
the average value of all those runs. Also, for each run, the set of tasks is constant
while new workers are generated every time.
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5.2 Bernoulli rating

All methods described in this thesis uses the same model for rating workers and their
skill levels. As described before, this rating model includes a level of randomness
in the form of ε, which affects the outcome. This is used to model several different
aspects of uncertainty in a real life scenario:

• The task provider’s ability to accurately set the requirement level for each of
the tasks requirements.

• The task provider’s ability to accurately rate the performance of each skill
level of a worker, compared to a task’s requirement levels.

• The workers performance level. A worker can have a good or a bad day,
resulting in a performance that is a poor representation of their true skill
levels.

A number of different values of ε were tested, using Hungarian min-max estimation,
to see how the overall result was affected. The results of the test can be seen in plot
5.1 below.

Figure 5.1: Success rate of Hungarian min-max estimation with regard to ε, i.e.
the probability that the correct skill level rating is given.
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The value for ε was set to 0.15 to represent all the different sources of error described
above. In this case it means that there is a 15% probability that an error occurs
during the process of task creation, skill rating och worker performance.

5.3 Performance compared to optimal
When all methods were implemented, using block matching, they were compared to
the optimal solution over time, as an increasing number of tasks were assigned. The
goal for any method is to make sure that the estimated skill levels of every worker
converges towards the true skill levels, and each method uses the same set of workers
and tasks. During most of the experimentation, the number of available skills and
requirements were limited to 3, to speed up computing time, while still using more
than 1 skill. The results of all methods, while using 3 skills and requirements, can
be seen in plot 5.2 below.

Figure 5.2: Performance of all algorithms compared to the optimal solution. Used
to see if any of them converge towards the optimal solution, given enough tasks.
Maximum number of skills per worker and requirements per task is 3.
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5. Results

However, the number of available skills and requirements could vary drastically in a
real world scenario, so different number of skills and requirements were tested with
the finished implementations. When using just one skill, the problem is basically
the same as the Get Another Label problem, where BEF performed well. This is
also evident in the plot below, where all methods produce similar results.

Figure 5.3: Performance of all algorithms compared to the optimal solution. Used
to see if any of them converge towards the optimal solution, given enough tasks.
Maximum number of skills per worker and requirements per task is 1.
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Tests made with more skills and requirements, from 3 up to 10, all give similar
results as with 3 skills, meaning the big difference occurs when changing from 1 skill
and requirement to multiple.
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5.4 Method comparison

5.4.1 Hungarian min-max estimation

Regardless of the number of skills and requirements available, as long as the number
is greater than 1, this method always produced the best results, as evident by graphs
5.2 and 5.3. The main difference between this method and the other ones is that it
is not greedy, it instead takes all current tasks and workers into account when doing
the assignment, resulting in a lower risk of wasting workers on too easy tasks. When
only one skill is involved it is easier for an algorithm to make the optimal worker
selection for a task. For example, consider the two scenarios with two workers and
two tasks, table 5.2 using one skill and requirement, and table 5.3 using two skills
and requirements.

Available data
Requirements
t1 0.6
t2 0.7

Skills
w1 0.6
w2 0.7

Table 5.2: Worker and task
example data, workers with 1 skill
and tasks with 1 requirement.

Available data
Requirements
t1 [0.5, 0.5]
t2 [0.6, 0.4]

Skills
w1 [0.4, 0.6]
w2 [0.6, 0.4]

Table 5.3: Worker and task
example data, workers with 2 skills
and tasks with 2 requirements.

When assigning the workers to the tasks, while following the rules, there is only one
correct way to do it, resulting in the optimal match every time. Using the Hungarian
algorithm would produce the same result in this case.

w1 w2
t1 X
t2 X

Table 5.4: Matching table for 2 workers and 2 tasks, workers with 1 skill and tasks
with 1 requirement. The only greedy optimal assignment possible.

However, when using more than 1 skill and requirement, as in table 5.3, there can
be two ways for a greedy algorithm to assign the workers, as seen below:
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w1 w2
t1 X
t2 X

Table 5.5: Matching table for 2
workers and 2 tasks, workers with 2
skills and tasks with 2 requirements.
First example of a greedy attempt at
an optimal solution.

w1 w2
t1 X
t2 X

Table 5.6: Matching table for 2
workers and 2 tasks, workers with 2
skills and tasks with 2 requirements.
Second example of a greedy attempt at
an optimal solution.

Both assignments follow the rules, but they will give different results, were table 5.5
gives the optimal solution. In table 5.6, w2 is wasted on t1 and will be unavailable
for t2, which will result in an overall worse result.

5.4.2 Epsilon greedy and modified bounded epsilon first
No matter the number of skills available, both these methods give similar results,
since they use similar approaches, both methods use the concept of exploring and
exploiting workers. This can be seen both in figure 5.3 and figure 5.2. When more
than 1 skill and requirement is used, their results differ from the one received from
using Hungarian min-max estimation.

5.4.3 Upper confidence bound
This solution gives results not much better than random when using multiple skills
and requirements, but performs similar to the other solutions when just using 1 skill
and 1 requirement. The biggest difference from Epsilon greedy and modified BEF
is that it adds another layer of weight when choosing the best worker for a task, as
described in 2.3.3, which might be unfavourable in this setting.
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Discussion

All the results, for multi-skill matching, included in this thesis are based on experi-
mentation with synthetic data. No real world data has been used. Therefore, results
may vary greatly when any of the methods are applied to real world data. However,
since all skill levels and requirement levels were generated uniformly at random, no
conclusions could be drawn from the distributions. If a large amount of data from
specific groups could be analyzed, patterns could be detected that might be able to
add weights when estimating the workers skill levels. Because of this uncertainty we
do not know if the solutions from this thesis would produce better or worse results
in a real world setting. However, we think the results presented here are good and
that there is something to be used. If the methods can not be used as is, they may
be able to be used as a base to improve upon.

6.1 Limitations

All current solutions are implemented for the offline task assignment problem. This
means that there is a static setup of workers and tasks. If more workers are added
while the algorithms are running, their estimated skill levels would all be 0.5, mean-
ing they are less likely to be selected for tasks with appropriate requirement levels.
None of the algorithms account for this at the moment. However, the idea that
workers could be able to suggest their own skill levels might help. This can be both
positive and negative however, depending on the honesty of the workers. With only
honest workers, the true skill levels could probably be estimated faster, but if many
of the workers are dishonest, the estimation might take much longer. One way to
solve this might be to add a probability for each task to be assigned to a worker that
have never been used before. Another solution might be to add more virtual tasks,
described more in section 6.4, for estimating new workers before including them in
the algorithm. That way the new workers are only compared to other new workers
and none of the groups are given an advantage.

The option for workers to input their own perceived skill levels is actually something
that was used from Just Arrived’s model, as new workers have the possibility to do
so when signing up. This set of skill levels exist besides the set of estimated skill
levels.
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6.2 Estimation of skills
A lot of experimentation with multi-skill matching, during this thesis, was done with
the system of estimation skill levels with rating averages. While we were pleased
with the results, there is always room for improvement. In a pretty late stage, a
new estimating method was introduced, described in section 4.5, that improved the
results of all implementations when applied. While this approach works well in our
simulated setting, we have no way of knowing how well it would work when the rating
of skills is performed by a human being, i.e. a task provider rating a skill performance
1 or 0 depending on if the result is good enough or not. One big weakness with using
the min-max approach is that the estimated values might get stuck, outside the real
values, meaning the true skill level might never be found. Since it uses failure
or success to modify the max and min skill levels respectively, giving an incorrect
rating might give minimum value above the true level or a maximum value below it.
Consider the following two examples, where the true skill level of the worker is 0.8:

Requirement level Min Max
initial 0 1
0.6 0.6 1

Table 6.1: Example of correct
worker skill level estimation.

Requirement level Min Max
initial 0 1
0.6 0 0.6

Table 6.2: Example of incorrect
worker skill level estimation.

In both cases, the initial estimation of the skill level is 0.5, but after just one mistake,
as shown in table 6.2, the estimated skill level is down to 0.3, and the worker’s
probability to be selected for a task with a requirement level of 0.8 has decreased
considerably. Also, a safeguard when updating the min and max is that the min
value is set to the maximum of the current min value and the task requirement level,
and the max value is set to the minimum of the current max value and the task
requirement level. This decision was made to stop the estimation from fluctuating to
much, but as evident by this small example, it also introduces a risk. With correct
ratings however, the true skill level might be found quickly, as seen in table 6.1,
where the current estimated level would already be 0.8.

One way to solve this problem might be to use the complete history of completed
tasks to find where the incorrect rating was made. If something seems off, the
problem might be found by running another algorithm besides the best one and
comparing both results, one or more new tests could be made to try and find were
things went wrong. The tests and results could be checked again, either by a person
or automatically, and then update the estimated min and max values accordingly.
Another way to solve it can be to always do a number of automated ratings, de-
pending on some testing algorithm, although this might only be possible when it
comes to software related tasks. For example, after a task provider has rated the
skill performance of a programming test, a number of quality testing runs could be
made to complement that rating. Using a human rating as well as an automated
one would probably decrease the probability of an incorrect rating.
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6.3 Rating of skills
As discussed above, the ε chosen for Bernoulli when rating skills was chosen arbi-
trarily. Some experimentation was done, but it was found that using a low value,
meaning around 15% probability of failure, produced good enough results while still
allowing for some uncertainty. Surely, a lot of research could be done into the area
of how people make the wrong decisions, even when they should have the necessary
competence to make the correct one. Using data from decisions made during differ-
ent times of the day, or different days of the week for example, could give an average
probability of how often people make those erroneous decisions. The ε could then
be updated accordingly and the results would be one step further to representing
the real world. Basically, the ε was added since we had no access to real data and
wanted to add some level of uncertainty to try and mimic a real world scenario more
closely.

6.4 Virtual tasks
The models for multi-skilled matching used in this thesis has some connection to
real world data, but they require a larger supply of tasks than workers, which is not
always the case. When looking at data like that used for the Get Another Label
project, there were certainly many more tasks available than there were workers,
about ten times more. But when it comes to the data from Just Arrived, the ratio is
reversed, meaning there are about ten times as many workers available as tasks. In
both scenarios however, there might be an incentive for task providers to use what
we call virtual tasks. These tasks can be anything from written tests, trying to
gauge workers abilities, to non important or at least less important tasks, that the
task providers are willing to waste to find the workers true potential. A company
working with development using different programming languages might need a new
project manager. One way to find a good candidate could be to offer programming
assignments and other written tests to try and estimate a potential worker’s skill
levels. All these tests could be made available online for anyone to try, meaning the
company would have no need to spend any extra time until a good result appeared.
Providing less important tasks could mean offering parts of larger tasks that have
no big impact on the overall outcome. For example if a large programming project
was underway and a certain smaller module was needed. A request to create that
module could be put online and analyzing several candidates results could help with
rating each of their skills. If the code-quality rating could be automated even more
time could be saved, but that is probably a large project all in itself. Also, if the
tasks made available contain no private information, the results from the candidates
performances could be shared, meaning a lot more workers skill levels could be
evaluated in a shorter amount of time.
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Conclusion

7.1 Future work
As mentioned in section 6.1, an interesting addition to the methods described in
this thesis would be to add a weight to workers depending on what distribution
they come from. This could be used to simplify the matching process for particular
groups of people in the future, hopefully decreasing the number of tasks needed to
estimate the workers’ true skill levels. This addition might also improve the result
in the case were new workers are introduced in a set where the existing workers
already have performed a number of tasks. If any conclusions at all can be drawn
without the need to test the new workers, the number of tasks needed for skill level
estimation might decrease considerably.

Another way to use this kind of model would be to analyze users of a job focused
social network, for example, Linkedin [19]. Users can enter their own skills and other
users can endorse them, this endorsement could work as a kind of starting point for
evaluating their real skill levels. This, together with analyzing results from previous
jobs via Linkedin and how pleased their employers are, might give a lot of interesting
information. Somewhat related to this is that Just Arrived could try to apply this
method as an indicator when the number of registered workers and tasks increases.
Although it will need more work before it can be used without human interaction,
it might give some hints for which recommendations to make. Testing this could
certainly be done with data from many other sources than Just Arrived. Probably
any source that contains sets of workers and tasks could be used, especially if a
history of completed tasks and ratings is accessible as well.

7.2 Problem description
As stated in section 1.4 and section 1.5, the first problem was to find way of matching
a set of tasks and a set of workers in a way as close to the optimal solution as possible,
while initially nothing is known about the workers’ abilities. Also, as a sub-problem,
find a quick and efficient way of estimating each workers skill levels.

Regarding the first part, to find a good way of matching workers and, we think that
the results are good. If the process can be somewhat automated, anything better
than completely random would be useful and the results presented in chapter 5 show
that there is a least a possibility to come close to an optimal solution. Since all data
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used is generated, there is no way to prove that the results would be similar in a
real world setting, but since all data is created uniformly at random, adding more
information about the workers might actually improve the results. Also, the results
assume that someone is able to accurately rate the performance of each skill, or that
a system is in place that can do that automatically.

When looking at the results, most solutions approach the optimal results, given
enough time, with some doing it quicker than others. The best solution, Hungarian
min-max estimation, reaches over 85% of the optimal results after each worker has
been rated less than ten times. If virtual tasks are introduced, those ten performance
ratings can be given in a early stage, which might also solve the problem where new
workers are introduced dynamically. Overall, we think that results show that using
Hungarian min-max estimation with the min-max skill level estimation is a good
way to assign workers to tasks in a simulated scenario, and it is probably viable in
a real world scenario as well.
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