

Development of Android Software for Logging

of Engine Data for Shell Eco Marathon

Bachelor’s Thesis in Computer Science and Engineering

JOANNA ERIKSSON

MIKAEL JOHANSSON

ANDERS NORDIN

EWA SIMPANEN

PHILIP STEINGRÜBER

JOHANNES WESCHKE

Department of Computer Science and Engineering (CSE)

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2013

Bachelor’s Thesis/report no. 2013:023

Acknowledgements

This report is written as a partial fulfillment of the requirements for a bach-
elor’s degree at Chalmers University of Technology at the Department of
Computer Science and Engineering. The report describes the development
of a new system for the Chalmers Vera Team car.

The work started in January and ended in June the same year, 2013.

We would like to thank Civinco AB for their help and support through-
out the project.

Finally, a special thanks to Anders Johansson at the Department of Applied
Mechanics and Roger Johansson at the Department of Computer Science and
Engineering for their feedback and supervision.

Abstract

Teams taking part in the Shell Eco-Marathon challenge compete to create a
vehicle that is as fuel-efficient as possible. To fulfill this goal the vehicles in
general and especially their engines have to be as optimized as possible. To be
able to do this as efficiently as possible the teams require a way to analyze how
the engine performs and what it does over the course of a run. Most teams
accomplish this by connecting the vehicle’s ECU (Engine Control Unit) to a
laptop in a development environment where a test-run is simulated. A much
better solution would be for the team to be able to analyse the performance
of the engine and the behaviour of the car in real-time under a real test-
run on the track. This would allow the team to get as accurate data as
possible to analyze and make qualified adjustments from. This report deals
with the problems and result of an attempt to create a system that solve this
issue. The system includes an Android application sensors and a desktop
application.

Sammanfattning

Deltagarna i Shell Eco-Marathon tävlar om att bygga en s̊a bränslesn̊al bil
som möjligt. För att uppn̊a detta m̊aste bilarna och i synnerhet dess motorer
vara optimalt konfigurerade. Detta kräver att lagen har möjlighet att analy-
sera hur motorn presterar och uppför sig under körning. De flesta deltagare
gör detta genom att ansluta motorns styrenhet (ECU, Engine Control Unit)
till en bärbar dator och analysera dess beteende och förbrukning. Detta görs
dock med motorn och bilen stillast̊aende i utvecklingsmiljön där en riktigt
körning simuleras. En bättre lösning hade varit att l̊ata laget kunna utläsa
datan fr̊an styrenheten och hur bilen p̊averkas i realtid under en riktigt kör-
ning. Laget kan p̊a s̊a sätt se hur bilen och motorn beter sig och f̊a s̊a exakta
testvärden som möjligt samtidigt som den kör. Det hade gett dem möjlig-
heten att efter loppet kunna utföra justeringar p̊a bilen och motorn utifr̊an
dessa. Denna rapport behandlar problem och resultat som uppkommit vid
gruppens försök att skapa ett system som löser denna uppgift. Detta görs
med hjälp av en Android-applikation, sensorer och en dator-applikation.

List of abbreviations/terminology

3G Third generation telecommunication service.

Android Operating system for smartphones.

API Application Programming Interface, describes the available functions
of a software component and how they should be used.

DAQ Data acquisition System. Is the process that samples signals which
corresponds to physicals values and converts them into digital numerical
values that can be read by a computer.

DOM/SAX Document Object Model, Simple API for XML: models for
processing XML documents.

ECU Engine Control Unit.

GUI Graphical User Interface.

Java A platform independent programming language.

JFreeChart Java library used in Windows-application for drawing charts.

JMapViewer Java library used in Windows-application for drawing maps.

Kernel Central part of an operating system, acting as a communications
layer between applications and hardware.

L2C Linear to Circular

MySQL My Structured Query Language, relational database management
system typically used with PHP.

Paper prototyping Drawing crude prototypes on paper prior to develop-
ment. Commonly used when designing GUIs.

Parser A method, or program, to do the parsing.

Parsing Processing of data for use in a software application.

PHP Hypertext Preprocessor, a server-side scripting language mainly used
for web development.

RAD Requirements Analysis Document, a document containing the list of
requirements set up for an application.

SDD System Design Document, a document set up by the developers on
how the program is built.

SQL Structured Query Language, programming language used for relational
database management systems.

SQLite Relational Database Management System used in Android.

Thread Lightweight process that allows for separate functions to be carried
out in a manner that makes them seem simultaneous.

TPMS Tire Pressure Monitoring System

UI Thread User Interface Thread, the main thread for execution.

USB Universal Serial Bus, a industrial standard to define cables, contacts
and communication protocol for connecting electronic devices.

WiFi Technology that allows wireless communication.

XML Extensible Markup Language, a language for defining rules on how to
encode a document in a format that can be read by both humans and
computers.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Objective . 2
1.3 Limitations . 2
1.4 Task . 3
1.5 Method . 3

1.5.1 Preliminary study and analysis 4
1.5.2 Development . 4
1.5.3 Integration and validation 4

2 Mobile Application 5
2.1 Layout and Design . 5

2.1.1 Start- and Run-view 5
2.1.2 Action bar and Settings 8

2.2 Functionalities . 9
2.2.1 Global positioning system 9
2.2.2 Run view . 10
2.2.3 Calibration of sensor to measure steering 13
2.2.4 USB Connection . 13
2.2.5 Bluetooth Connection 14
2.2.6 Storage . 14
2.2.7 Transfer of logged data 15

3 Engine Control Unit 17
3.1 Data transfer protocol . 17

3.1.1 Initiate data transfer with the ECU 17
3.1.2 Data-package from ECU 18

4 Sensors 19
4.1 Critical data . 20

4.1.1 Speed . 20
4.1.2 Steering . 21
4.1.3 Tire pressure . 22

4.2 Post evaluation data . 23
4.2.1 Strains in the framework 23
4.2.2 Camber, Toe in & Toe out 24
4.2.3 G-force acceleration . 25
4.2.4 Engine chain tension 26

4.3 Microcontroller . 27

4.3.1 Data transfer from the Arduino to the Android-phone . 28
4.3.2 Data transfer protocol 28
4.3.3 Arduino program . 30

5 Database 31
5.1 Database modeling . 31
5.2 Data transfer to database . 31
5.3 Conversion to physical values 31
5.4 Transfer from a web server . 32

6 Desktop application 33
6.1 GUI design process . 34
6.2 Implementation . 34

6.2.1 Web connection and collection of data 34
6.2.2 Reading existing logs 35
6.2.3 Parsing . 35
6.2.4 Threading . 35
6.2.5 GUI . 35

7 Discussion 37
7.1 ECU . 37
7.2 Sensors . 38
7.3 Mobile application . 40

7.3.1 Graphical User Interface 40
7.3.2 Calculation of a new lap 41
7.3.3 Heap size error . 41

7.4 Database transfer . 41
7.5 Desktop application . 42

7.5.1 Lack of testdata . 42
7.5.2 GPS Plotting . 43
7.5.3 Warning flags . 43

7.6 System in total . 43

8 Conclusion 46
8.1 Possible future developments 47

8.1.1 Plotting GPS coordinates 47
8.1.2 Remotely modifying engine parameters 47
8.1.3 Additional sensors . 47
8.1.4 Warning flag . 48

Reference list 49

A Documentation of software I

B Data sheets XVI

List of Figures

1 Start view . 6
2 Searching for GPS signal . 6
3 GPS signal found . 6
4 Run view . 7
5 Warning sent . 8
6 First attempt to calculate new lap 11
7 ECU data package . 18
8 Installation of the Hamlin sensor 21
9 Measuring tire pressure . 23
10 SpectraSymbol Flex Sensor . 24
11 Illustration of camber . 25
12 Illustration of toe in and toe out 25
13 Two Memsic Dual-Axis Accelerometers 25
14 IC Haus LFL 1402 . 26
15 Engine chain tensioner . 26
16 Microcontroller connection scheme 27
17 Bluetooth data package . 29
18 Desktop application . 33
19 System overview . 44

List of Tables

1 Payload data table . 29

1 Introduction

The greenhouse effect has been a hot topic over the last years and one part of
counteracting this development is to build more fuel efficient cars. To develop
the most fuel efficient car in the world, the developers need to know as much
about the car’s behaviour as possible in order to find out where energy loss is
taking place. This project will focus on developing a system consisting of an
Android application, which receives data from both an ECU (engine control
unit) and from sensors, displays some important values and sends all of the
data to a computer via a web server.

1.1 Background

Shell Eco-marathon is a competition with the aim of creating the most fuel
efficient vehicle. The competition consists of three races over the course of
a year, where hundreds of universities are in contest over who can cover
the longest distance with only one liter of petrol. One team has reached
a distance of 2 485 kilometers which is equivalent to the distance between
Paris och Moscow. Chalmers competes in the two main classes, which are
Prototype and Urban Concept. In the Urban Concept class the goal is to
emulate a real life car, whereas in the Prototype class the single goal is
to construct the most fuel efficient vehicle. Chalmers currently holds the
Swedish record in the Prototype class, with a distance of 1 243 kilometers.

The team participating in the Prototype class on behalf of Chalmers is the
Chalmers Vera Team and they are in need of an Android application to log
data from the Engine Control Unit in the car. The team has been using a
Windows-based software for this task. However, due to the importance of
keeping the weight of the vehicle to a minimum, they are not able to keep
a laptop in the vehicle during races. This means that the team has no way
of obtaining ECU-data from the actual runs. The ability to log and observe
data in real time would enable them to make better adjustments.

Developing a system to perform this task will provide the Chalmers Vera
Team a unique opportunity to process data that can result in improvements
of the engine and the car itself.

1

1.2 Objective

The purpose of the project was to develop a software which could handle
communication between the engine of the vehicle and an Android phone.
The phone would save the engine data throughout a race and it would later
be available to the Vera team.

An expansion of the project led to a system that handles the communication
between the Vera team and the engine, in real time during a race. The
software is used to log, save, display and send data from the engine. In
addition to the data handled from the ECU, the vehicle’s GPS position is
logged and there are different types of data from sensors as well. The sensor
data works as a complement to the engine data and enables optimization in
other parts of the vehicle.

On the user end of the system, the Vera team can receive the data and
examine it with the help of a computer software built for presentation. The
decision to develop a new software instead of the one delivered along with the
ECU by Civinco was made due to the fact that it did not support our needs
on a couple of points, namely that it did not allow for real time updates as
well as it not being able to support additional sensors.

In case all requirements are not met, the most important part is making sure
the Android software is able to store data from the ECU and transfer it to a
computer for presentation.

1.3 Limitations

In order to implement the system during a limited amount of time, while
keeping costs low and avoiding unreasonable risks, some limitations were
made to the project.

No investigations have been made to find the optimal Android phone. The
aim has only been to find a phone which meets the requirements to fulfill the
goals of this project.

The group has not had any influence over the type of ECU used in the vehicle
and the system has therefore been customized for this particular ECU, which
is a SA3000 from Civinco AB.

2

Based on the backgrounds of the group members, the programming in the
desktop application is written in Java. No inquiry has been taken concerning
which language would be the best to use.

The system is limited to read data from the ECU and will not write to it. This
limitation is done based on the fact that the group has not been given the
opportunity to take part of any documentation describing how this is done.
Also, the group does not possess the proper knowledge of experimenting with
engines, which could result in personal as well as material damage.

1.4 Task

The main function of the system and also the main goal of the project, is to
establish communication between the Vera team and the ECU. The developed
software, provides the team with information about the vehicle’s properties
while driving.

The communication with the engine is performed by the ECU and it provides
data e.g. engine speed, temperature and petrol consumption. The data is
then transferred by a USB-wire to an Android phone, where the data is saved.
Additional data from sensors is sent to the phone via Bluetooth. The Android
phone has a Graphical User Interface (GUI) which provides the driver with
some of the most relevant data. Information about steering, elapsed time,
lap times, average speed and current speed is displayed on the screen of the
phone. The smartphone compresses and transfers the data (engine as well
as external sensors) to a web server, where it is converted to physical values.
Lastly, the data is presented to the user on a computer with the help of a
desktop application which fetches the logged data from the server.

1.5 Method

The project will be split into multiple parts: a pre-study and analysis of
requirements; the system development; and finally the testing, validation
and integration into the vehicle.

3

1.5.1 Preliminary study and analysis

This stage consisted mainly of collection and analysis of requirements, which
was done in collaboration with the Vera team. In practice, this was done by
oral and written communication with team leader of the Vera team where the
purpose of the application and its requested features were discussed. Based
on this a document stating requirements were compiled which can be found
in appendix A. A Requirements and Analysis document (RAD) has also been
developed for the mobile application and desktop application which can be
seen in appendix A and A. The documents were sent to the team for approval.
To describe the functions of the application, a document stating use cases
has been compiled and can be found in appendix A.

1.5.2 Development

Early on in the process of development the group was split into several
parts; communication between ECU and smartphone; communication be-
tween smartphone and web server, including GUI for the app itself; commu-
nication between web server and computer as well as presentation of data;
and development and integration of additional sensors to collect data from
other parts of the vehicle than the ECU. Further reading on the development
process can be found in section 4 through section 6.

1.5.3 Integration and validation

This phase of the project focuses on making sure that the applications devel-
oped meet the requirements set up by the Vera Team in a satisfactory way,
as well as making any necessary changes to achieve this goal. This will be
done in conjunction with the Vera Team in the process of integrating the
finished product into the vehicle and the everyday work of the team.

4

2 Mobile Application

The mobile application is the central module throughout this project. The
fundamental idea is that the smartphone itself is a substitute to a computer.
Its main purpose is to collected logged data from the ECU (engine control
unit), compress it and transfer it to the web server. The application also col-
lects data from the sensors through a Bluetooth connection. Besides trans-
ferring data, the application works as a dashboard for the driver, presenting
important values related to the run.

2.1 Layout and Design

First and foremost the application is designed to be practical. The applica-
tion’s main functions need to be easy to operate for the driver while driving,
wearing gloves. To ensure that only the most important information is pre-
sented, a close communication has taken place between the software develop-
ers and the Vera Team. It should be noted that even though the application
should be handy to use, a beautiful design is important to create confidence
in the application and make it pleasant for the user to look at.

2.1.1 Start- and Run-view

The first thing that meets the user when starting the application is the start
view illustrated in figure 1. When the user presses Launch on the screen,
the run view appears. Thereafter, the search for a GPS signal starts, which
can be seen in figure 2. While the application is searching for a GPS signal
the Start and Stop buttons are inactivated. As soon as the signal is found
the application displays a message which can be seen in figure 3. The Start

button is at the same time activated. As the user presses start, when the
race starts, the application can present the view as in figure 4. Also, the stop
button is activated and the resume button inactivated.

5

Figure 1: Start view.

Figure 2: Searching for GPS signal. Figure 3: GPS signal found.

6

Figure 4: Run view.

The run-view contains three buttons. The buttons are placed far apart in
order to avoid that the user presses the wrong button by accident. The
Incident button is supposed to be pressed when something particular occurs
and will be described more in detail in section 2.2.2. The Stop button pauses
the timekeeping and the logging. The Start/Resume button starts/resumes
the logging and timekeeping. When any of the buttons has been pressed the
user is presented with a confirmation which can be seen in figure 5.

In the center of the screen the user is presented with the current speed of
the car, the average speed throughout the whole session, the lap time which
presents the time of the on-going lap and further down on the screen the
driver can see the lap times of the previous laps. On the screen the total
time of the race is also presented. In the center of the screen there is a bar
with a steering indicator. The indicator shows the driver which way and how
much the steering wheel was spun. The color of the indicator changes in
accordance with the fact, if the steering was within accepted values.

When developing an interface it is important to take into consideration that

7

Figure 5: Confirmation that a button has been pressed.

the user might click on the screen by accident.1 To ensure that the back-
arrow has not been pressed by accident the user is presented a dialog box
asking ”Are you sure you want to go back?”. This action is implemented in
all views in the application.

2.1.2 Action bar and Settings

In accordance with Android standard the back arrow at the button of the
screen is used to go back to previous screen. The options menu should contain
actions which effects the app globally (Android Developer Guide, 2013d). In
VerApp the options menu contains the actions Reset, Calibrate Steering

and Exit. The first option, returns the user to the start screen and by
doing that resets all calculations in progress. The second option, will be
will be described in section 2.2.3. Finally, the third option, Exit, closes the
application.

1Jonas Andersson, Ph.D. Student, Chalmers, lecture 2013-02-18

8

The settings menu is developed with the vision of making it expandable. It
means that even though the settings menu today only contains a menu with
one item it should be easy to add more items to the menu in the future.

Early on in the development process a feature was implemented which allowed
the user to choose logging frequency through a dialogue box. Later on this
was removed as the group did not see a need for being able to change this.
The reasons behind not using this are described further in section 7.3.1.

2.2 Functionalities

The mobile application has two responsibilities: transferring data from the
ECU(engine control unit) to the web server and work as a dashboard. As
previously described, the application displays total race time, steering, speed,
average speed and lap time. The three last mentioned functions are solved
with the help of GPS. The GPS is also used together with the logged data
for better understanding when reviewing the information. Another part of
the application is the storage on the phone while the data has not yet been
transferred to the web server.

2.2.1 Global positioning system

Global positioning system, or more commonly known GPS, is used to solve
several functions in the app. GPS equipment uses satellites to determine its
position. GPS is very reliable and works in all weather conditions anywhere
in the world, at any time. With the help of GPS it is possible to determine
the user’s latitude, longitude and altitude. Once the user’s position is set,
the GPS can calculate things like bearing(direction), track, trip distance,
distance to a given position, sunrise and more (Garmin, 2013).

Most new mobile phones, including the Sony Xperia Sola used for this project,
supports GPS. Most use a technology similar to GPS called A-GPS (Assisted
Global Positioning System) (Sony Mobile, 2013). The difference between A-
GPS and GPS is that A-GPS uses the mobile network while GPS communi-
cates directly with the satellites. A-GPS is more suitable for mobile devices
since the amount of programming and CPU power required is reassigned to
the assisting servers. Some of the downsides with this is that the user has

9

to pay the phone service provider for the amount of data usage. In practice
A-GPS is often less accurate (Tech2, 2013).

Before the GPS can be used within the application, the GPS needs to al-
locate a signal. As soon as the smartphone has received its first signal the
application is ready to use. Each signal update triggers a method inside
run view with the latest position. To get the GPS working on Android
the application needs to have permission to ACCESS_FINE_LOCATION which
gives the most precise position from sources such as GPS, WiFi and cell
towers. This connection is not always working, therefore, as a precaution,
ACCESS_COARSE_LOCATION and INTERNET permission is also granted. The
last mentioned gives access to a approximate location from network sources
such as WiFi and cell towers (Developer Guide, 2013b). The app is designed
so that it is possible to run without access to GPS.

2.2.2 Run view

The run view is the central activity in the application. It is present most of
the time for the driver, calculating and displaying important values during
the race.

As soon as the GPS has allocated a signal the Start button becomes avail-
able. When the race starts the driver pushes the start button which thereby
starts a timer and ECU communication.

As mentioned in the above section 2.2.1 the application receives the latest
position through a certain method. This position is later used to determine
a new lap. All lap times are saved, even though, only the two latest lap times
are present for the driver.

The new lap feature was originally estimated in a different way, namely by
taking the start position and its course. By subtracting and adding 90 de-
grees to the initial course and finally adding 10 meters in each direction its
possible to form a straight line. This line would represent the start/finish
line. Then, for each new GPS position that was received, a method would
check if the current direction of the car would intersect with the finish line.
As a precaution, the method would also check so the car was in a radius of
10 meters to the finish line. Figure 6 illustrates the described approach.

10

Figure 6: First attempt to calculate new lap

The first attempt did not work as planned, in fact, it did not work at all.
A second attempt was made and included a much simpler solution. The
heavy mathematical part was discarded and the new calculation used only
the distance to the starting point. With help of testing and with respect to
the GPS accuracy we found that a 10 meter radius would still do the job.
Also, a thread, running concurrently was added, which would lock the lap
counter when recently updated. This would ensure that a single lap only is
counted once. The second attempt showed off well in tests and is the current
solution that is being used in the app.

It is of great importance for the Vera Team to know the speed at all time. The
speed is presented to the user with the help of the latest GPS position. Since
the speed is given in meters per second the value has to be converted before
printed to the textview(Android Developer Guide, 2013g). The average
speed is estimated with the help of the formula (1).

total distance

total elapsed time
(1)

The total distance is estimated by the distance between the second latest
point and the latest point. As mentioned before, the A-GPS is not always

11

completely accurate and might get the idea that the object is moving when
it is not. The difference in coordinates may be very small but enough to
trigger the whole system. A problem arose from the scenario above when
determining the total distance. The solution is to put the calculation inside
a separate running thread. Instead of logging for each triggering signal the
thread forces it to execute every two seconds. In practice two seconds is a
lot compared to the actual frequency of the GPS signal.

During the race unforeseen conditions might occur, the possibility to stop
and resume run mode is available at all time. This means that if the driver
would push Stop, all related functions are effected. To be even more precise,
a flag is set to false which implies that average speed, lap time, total time,
data logging and current speed is paused. However, the current value for
each is stored.

The application is also logging data during run-time. If something occurs
during the race it might effect the logged data. This could be hard to back-
track after the race. As a consequence of this, a button called incident has
been implemented which gives the driver the opportunity to report some-
thing unexpected. This is done by setting a warning flag to true which is
sent along with the data logged at the same time.

There are three more buttons which have not been covered yet, the reset,
back and exit. Reset basically returns the user to the initial view. By doing
this the run view is destroyed and all variable values are wiped away. Back
button simply forces the current activity to finish. Which activity that should
be displayed afterwards is handled by the operative system. As there are
multiply threads running it is of great importance to the phones performance
to kill all threads and that’s exactly what the exit function does, causing
the application to shutdown. Since these are core features that should be
available in the whole app, all three are implemented in the base activity
class which is a super class to all other activities in the app. The base class
itself inherits from Activity, which is the class provided by the API.

There is is no indicator like the one used in this project in the Android
API which meant it had to be built from the ground up. The indicator is
implemented by putting rectangles upon each other. The size, color and
placement of the front rectangle are then changed according to the steering.
A line has also been put in the middle to help the driver distinguishing if
the front rectangle is to the left or to the right. The background rectangle
with the line in the middle can be seen in figure 2. To make the size of the

12

rectangle proportional to the steering equation (2). In the equation steer is
the steering data received from the sensor, nomSteer is the nominal steering
signal i.e. the signal then the car is going straight forward, width back rect

refers to the width of the background rectangle and maxSteer and minSteer

refers to the maximum and minimum steering signal possible.

width front rect =
|steer - nomSteer| · width back rect

maxSteer −minSteer
(2)

A listener has been implemented which listens if the steering variable in the
program is changed. In the case that the steering variable is changed, the
appearance of the front rectangle is updated according to its value and the
value of the steering is put at top of the bar which can be seen in figure 4.

2.2.3 Calibration of sensor to measure steering

The steering is measured with a potentiometer which will be described in
section 4.1.2. In order to ensure that the steering showed to the driver by the
steering indicator is correct a calibration needs to be done. The calibration
can be done anytime the driver wishes through the action bar. When the user
chooses Calibrate steering in the menu a dialog is shown that instructs
the user how to calibrate and then guides the user through the calibration.
To calibrate the user turns the steering wheel back and forth a couple of
times and the programs saves the most extreme values.

2.2.4 USB Connection

To connect the smartphone to the ECU, the Engine Control Unit of the car,
see 3, we choose to use the mini-USB connection on the ECU box and con-
nect this to the micro-usb on the smartphone. The USB, Universal Serial
Bus, is an industrial standard developed to define a joint interface for cables,
connectors and a communication protocols between electrical devices. The
USB standard states that for a interaction between devices to be possible,
one have to claim and act like a USB host and the other have to act like a
USB device. In our case our destined phone, Xperia Sola, takes the part of

13

acting as the USB host device and thereby setting up and initialize the com-
munication over the USB bus. The ECU, SA3000 from Civinco, connected
to the engine in the Vera car will act as a USB device and active listen after
instructions from the phone on the connected USB bus.

For the application to be able to setup and initialize the connection over
the USB hardware, the Android operative system have included a USB Host

API (for Android versions over 3.1) that provides support for communications
with connected USB devices (Android Developer Guide, 2013i). The appli-
cation sets up the communication to the ECU using the classes in the API,
the VID, vendor id, and the PID, product id, that is the device identification
number for the ECU. The connection is established at the beginning when
the application is started and the communication between the phone and the
ECU is open and idle for command. When the start button is pressed the
program sends a start command, see section 2.2 Data transfer protocol, to
the ECU and start a input stream of logged data from the USB bus to the
application storage file.

2.2.5 Bluetooth Connection

The connection between the smartphone and the microcontroller, see section
4.3, is managed by a wireless Bluetooth connection. The Bluetooth connec-
tion is a wireless standard technology for exchanging data between devices
over short distances and is supported in the Android OS. The application uses
the standard Bluetooth API (Android Developer Guide, 2013j) to set up the
framework and control transfers over the connection between the smartphone
and the Bluetooth module connected to the microcontroller. The Bluetooth
connection is established when the application is started and the serial in-
put/output stream is open and idle for transmission. When the applications
start button is pressed a signal is sent to the microcontroller and the data
package flow from the microcontroller, see section

2.2.6 Storage

After the signal is received from the ECU, the application tries to transfer
the signal to the web server as soon as possible. This is not always doable
due to the fact that the connection may not be available or there are several

14

files waiting in queue to be transferred. Therefore it is important to store
the file, at least, until it is possible.

The first implementation was done with a SQLite database which is the inter-
nal database in Android. By using a relational database system it is easy to
organize all the data. Also there are significant advantages in speed and effi-
ciency when retrieving large amounts of records from a SQL database(Illinois
Institute of Technology, 2013).

Due to the amount of data being logged, the way of sending each signal value
with related parameters one by one was dumped since it lacked of efficiency.
Instead the logged data is written directly into a text file. The text file
has been assigned a maximum size of 30 kB until the file is closed and the
application starts to write to another text file. Once the file is complete,
it is compressed into a zip file. By doing this reduces the file size from 30
kilobytes to approximately 900 bytes. Finally, the zip file is placed in a folder
called waiting, more about the folder name in 2.2.7.

2.2.7 Transfer of logged data

When the logged data has been collected and packaged into zip files there
is time to transfer the file to the web server where it will be unpacked and
processed.

To transfer a zip file there is a class called FileManager which is responsible
for only sending the files. The class itself is asynchronous. The advantage
is that it is possible to run tasks, like the transfers, through the user inter-
face thread (UI thread is the main thread for execution) in the background.
This approach eliminates the need of using threads and also simplifies the
implementation. When the FileManager class is invoked it first checks that
all necessary directories exist and creates those which have not yet been cre-
ated. As soon as the right file is located it is sent to the web server through
a POST(HTTP) method.

When a race proceeds there might be hundreds of zip files in the memory
which are waiting to be transferred. An important part is to keep track of
which files have been sent and which have not. This was first implemented
with a text file that kept all names of files that have been sent and for each
new transfer the class would check whether the file had been sent before or

15

not. However, this caused an error which made the application crash. The
problem will be discussed further in 7.3.3.

The solution that is currently active in the application is executed accord-
ingly: instead of using the local database, the files are compressed and saved
into a directory which is called waiting. The directory contains all files that
have not been sent. Since the data is labeled with a time stamp it does not
matter in which order they are sent. As soon as the application has received
an OK message from the server the file is transferred to another directory
called sent. With this method it is possible to lower total transfer time,
amount of code, storage space and memory usage.

16

3 Engine Control Unit

The engine in a car today is controlled and managed by a small embedded
computer system called the car’s Engine Control Unit. The ECU controls all
the critical parameters such as fuel injection, ignition and the boost-control
of the car’s engine. By optimizing these parameters you can enhance the
performance and the efficiency of the engine.

All the parameter settings in the engine are stored in the memory of the ECU
and can be changed during operation for optimization. The ECU controlling
the Vera car’s engine is from the tuning-device company called Civinco and
their latest control unit, the SA3000.

3.1 Data transfer protocol

The data transfer between the ECU and the smartphone is based on a stan-
dard USB-serial connection, see section 2.2.4, where the phone initiates and
controls the communication between the two units. In this system the phone
acts as the USB host and is responsible for managing all the data transfers
over the USB bus. The ECU acts as a USB device and only sends data onto
the USB bus after an established connection and a request from the phone.

3.1.1 Initiate data transfer with the ECU

To initiate reading of log data from the ECU the protocol states that the host,
the controller of the communication, sends a start command to the ECU, this
sets the ECU in a binary logging state. In this state the ECU waits for an
address to a register where to start reading from. For this project, we start to
read from the first register in the ECU and reads the following 48 registers.
This is where the main parameter of the engine is located, this includes all
the data the Vera-team needs to be able to analyze and optimize the behavior
of the engine.

When the ECU reads a full command input, in our case“bL 00 30”, it starts to
loop through the given registers and send data sequentially from the register
(one data-package per loop) on to the USB bus.

17

3.1.2 Data-package from ECU

After a complete initialization and the transfer-command has been executed,
the ECU starts to send data-packages on to the USB bus. The packages are
specified by the protocol to contain three parts, the head, the payload and
the tail, see figure 10. The header contains of three bytes of data, where
the first 2 bytes are “PS” (ASCII-value) to declare the beginning of a new
package. The third byte in the header is the number of registers that have
been read and added in to the payload. The payload carries the data from
the registers that have been read in the ECU. The payloads can have a size
ranging from 0 to 200 bytes depending on the number of register read in the
ECU. Each register consists of 16 bits and is therefore divided into two bytes
before being added to the payload. The tail consists of four bytes, two bytes
of control-bits and two bytes, ”DS” (ASCII-value), to declare end of package.

Figure 7: ECU data package.

18

4 Sensors

Much needed data is conveniently accessible through the ECU. However,
there are still some parameters that are of interest, which are not connected
to the engine in the same manner. Some of these are a helpful support to the
driver, who is constantly coping with the task of keeping a steady pace and
a straight course, momentarily lowering the impacts of friction and getting
the most out of as little fuel as possible. Other data is valuable for the team
as they evaluate the runs and attempt to optimize performance in a longer
time perspective, which enables continuous development.

Accessing new data in the vehicle, requires a selection process to find useful
transducers and sensible ways of installing them. These systems need to be
robust enough to be able to perform in this unique environment, taking to
account the disturbances caused by ignition, moisture, high or low tempera-
tures, judder etc..

The data from the ECU is sent to the Android phone which presents some
of the data and transmits all of it to a server. Therefore, the data collected
by the various sensors is preferably sent to the phone and merged with the
data from the ECU, before transmitting it any further.

There are mainly two alternative routes to choose from. Either the sensors
can be connected to the ECU’s available input ports and get translated from
there or they can be connected to a micro processor which gathers the data
and then pushes it forward to VerApp. Which path is used is not at all much
significant, a combination of the two could be an alternative. Some of the
signals could travel through the ECU and some through a micro processor.

An Arduino microcontroller was chosen to manage all of the sensor data and
send it through to the mobile unit by using a bluetooth module. This proved
to be the most practical and convenient method to use when installing the
sensors. Six different types of sensors were installed in the vehicle, which
added up to 11 sensors in total.

The system built to gather data external to the ECU, is designed to be
flexible, relatively stable and easy to use. The Vera Team should be able to
maintain and make use of the systems without the need of assistance.

19

4.1 Critical data

The data which is of help when driving the vehicle should appear on the
display of the mobile phone, through VerApp, which is easily accessible to
the driver. One concern is that the screen may get too cluttered. This must
be taken into account when choosing which of the signals to be displayed.

4.1.1 Speed

Knowing the speed of the vehicle is important for many reasons. One is that
the driver obtains increased control, which is good for safety. Another reason
is that the official rules for Shell Eco-Marathon, require both a certain speed
and lap time. In the definition of competition it is stated, that teams must
complete ten laps with an average speed of approximately 25 km/h, for their
attempt to be validated (Shell Eco-Marathon, 2013).

One possible way to estimate the speed of the vehicle is through measuring
wheel speed. Being able to measure wheel speeds using sensors, allows a
much better measurement of speed than calculating it by using GPS signals.
This method also provides additional information, as it can reveal how the
wheels move in relation to each other. Measuring wheel speeds on all three
wheels, provides the possibility to see if the car rears or if any of the tires
skid, both of which can occur when accelerating quickly. Wheel speed is a
great indication when optimizing the timing of the beginning and end of an
acceleration.

To measure the wheel speed, small magnets are attached on the rims of the
vehicle and for each wheel there is a proximity sensor attached to the frame,
see figure 8. The sensor chosen for this system was the Hamlin 59025-1-S-02-
A, see appendix B.2 for the data sheet. The Hamlin sensor is easy to install,
it can handle variations in temperature, shock and vibration.

Whenever one of the magnets come within a distance of 11.5 mm of the
sensor, an induced current triggers it. This will result in a series of indications
for each wheel. The frequency of which the indications are made is combined
with the circumference of the wheel, to calculate the speed. Six magnets
are attached on each wheel and if the measurements are to be made at least
every 0.1 seconds, they allow a speed as low as 9.01 km/h.

20

Figure 8: Installation of the six magnets and the Hamlin sensor.

In the case that a magnet would fail to trigger the proximity sensor for
whatever reason, every sixth value would be lost. This is solved by processing
the data in a way that the resulting speed is a combination of a calculated
average value and the instantaneous speed. The speed and average lap time
is presented on the display of the mobile unit.

4.1.2 Steering

A visual presentation of the steering angle helps the driver to keep the vehicle
in line and minimize speed losses. It is valuable to have full control in turns
on the track. Being able to get data of the steering angle allows repetitive
testing and try outs in a manner that was not possible before.

The potentiometer, Wabash 971 RPS, is attached on the steering wheel, for
more information see appendix B.3. It provides values which have a linear
relation to the amount of degrees it is being twisted in relation to its center
position. It is also possible to use sensors that measure angles or distances
between a fixed point at the frame and the front or back of the wheel. This
method would have been more complicated to install and maintain. The Vera
team is only interested in relative values and not in absolute angles, witch
makes the potentiometer accurate enough. It can also handle temperature
extremes, harsh environments and mechanical shock and vibration.

21

The linear rotation can be translated into a relative steering angle by con-
ducting tests. The values will be divided into steps that are of an appropriate
size. As the vehicle is being maintained and the potentiometers position is al-
tered, its settings will change. There is a function available in VerApp which
allows calibration of the steering angle by specifying a new center value. The
steering angle is presented on the display of the mobile unit.

4.1.3 Tire pressure

Measuring tire pressure can give the driver an indication of when a tire is
loosing pressure. The vehicle has custom made carbon fiber rims, which are
too expensive to run down. This would happen if the tires were to loose too
much pressure.

As the wheels are in constant rotation, it is appropriate to use a pressure
sensor capable of wireless transmission. It is common for car owners to
use TPMS, Tire Pressure Monitoring System, which is wireless. There is
a wide range of models of TPMS available for cars and motorbikes (TPMS
Sweden, 2013a). A sensor that would fit the requirements of the vehicle is
the TPMS 10.02.011 from Impaqed Products BV, see appendix B.4 for more
information. The sensor was not implemented in the car during this project,
although it could be a part of the future developments of the vehicle.

Unlike other TPMS sensors, this one is fitted straight onto the valve rather
than having to dismount the tire and replace the entire valve. Moreover, they
are very small in size and weigh only 3 g each. These sensors are capable of
measuring up to 13 bar. The Michelin tires perform best while having a tire
pressure of just above 6 bar.

Each of the sensors are marked with a tag to keep the different tire pressures
apart, and they send data associated to this tag. A radio receiver which oper-
ates at the same frequency, 433.92 MHz, is needed to pick up the signals. The
receiver Radiotronix RCR-433-MPR is designed for remote communication
using radio waves of this frequency, see figure 9 and appendix B.5. There are
many receivers of this kind to choose from and the one from Radiotronix is
as good as any of them.

The TPMS sensors available on the market have good resolution and accu-
racy. They are designed to withstand temperature fluctuations, moisture,

22

Figure 9: The tire pressure sensor TPMS 10.02.011 from Impaqed Products BV

can communicate with the receiver from Radiotronix.

dirt and judder. The data sheet in appendix B.4 specifies that the sensor
has an accuracy of pressure measurement of ±0.15 bar. TPChecker motor-
cycle TPMS monitor tire pressure and temperature every 3 seconds (TPMS
Sweden, 2013b), it can be assumed that the sensors from Impaqed Products
use a similar rate. The receiver has a data rate of 4 800 bytes per second
and won’t be hindering the transmission. However, there is need for a script
that coordinates the data from the three sensors so that there will not be
any losses.

4.2 Post evaluation data

There is sensor data which is not necessary for the driver to see while in
the middle of a run. This data will not be presented before it is sent to the
database. The values are used for the purpose of enhancing performance and
is a basis for coming up with suggestions for long term improvements.

4.2.1 Strains in the framework

Vera’s frame formerly consisted of carbon fiber, which initially is a very
sturdy material but when it ages it loses its rigidness. The framework begun
to shear. Therefore, it is interesting to measure unwanted displacements in
the new steel frame to see if this is a good alternative material.

The deflections can be measured with the help of the SpectraSymbol Flex
Sensor, see figure 10 and appendix B.6. Whenever the flex sensor is bent, its
resistance changes. The flex sensor can easily be glued or otherwise mounted
onto the frame where measurements are needed. The sensor can handle

23

variations in temperature, although it might be important to keep it dry.
If there is too much moisture the resistance might be affected. The active
length of the sensor is 9.5 cm and while flat, its resistance is 10 kΩ.

Figure 10: The SpectraSymbol Flex Sensor. Some of the most common uses for

this sensor is in robotics, gaming and medical devices.

The Vera Team has two flex sensors which have been prepared with sockets
that are easy to connect and disconnect from the microcontroller. The team
is interested in relative values which means that the data will not have to be
translated from resistance into an absolute degree of displacement.

4.2.2 Camber, Toe in & Toe out

The wheels of the vehicle can sometimes be bent in different directions, in
addition to the steering angle. When the tires form an angle where the top of
the two front wheels are slightly tilted inward, is called camber, see figure 11.
Toe in is when the front of the wheels are tilted inward and toe out is when
the front of the two wheels are tilted outward, see figure 12. The deflections
are inevitable, but if they become apparent enough, they will cause increased
friction and other disruptions.

The measurements are made by using the distance sensor GP2Y0A41SK0F
from Sharp, see appendix B.7 for the data sheet. This sensor is as the previous
ones, resistant to variations in temperature, moisture and mechanical shock.
It is easily installed by mounting it on the frame and it measures the distance
to where the light emitter and detector are directed. This Sharp sensor
measures distances within the range of 4 cm up to 30 cm. As the data sheet
implies, the sensor’s accuracy is at its best when 7 - 9 cm from its target,
where it is intended to be installed.

24

Figure 11: Camber. Figure 12: Toe in and toe out.

It is possible to install as many distance sensors as one would like. During this
project two sensors have been installed and it is intended that they measure
the camber. Since the suspension can not be changed during a race, the Vera
team could move the sensors around and optimize the wheel settings during
try outs. The data from the sensors only result in relative displacement.

4.2.3 G-force acceleration

To save fuel during the race, Vera is repeatedly accelerated up to a certain
speed and is then left to make as much use of the momentum as possible until
the next acceleration phase. This requires the acceleration to be monitored
closely and adds pressure to make it as efficient as it can be.

There Memsic 2125 Dual-Axis Accelerometer #28017, see appendix B.8, is
installed in the center of the vehicle to measure g-force acceleration. This
sensor is capable of measuring tilt, collision, static and dynamic acceleration,
rotation, and vibration. To obtain measurements in three axes, two Memsic
accelerometers are solded together perpendicularly to each other, see figure

Figure 13: Two Memsic 2125 Dual-Axis Accelerometer #28017, solded together.

25

13. The sensors give the Vera team information about the movements of the
vehicle and the values can be used to observe Vera’s behaviour in curves or
when an obstacle occurs on the track.

4.2.4 Engine chain tension

The engine chain tensioner makes sure the connection between the parts of
the engine remains intact, without them being overstressed. If the chain
is pulled too tightly, the engine can be damaged and if it is too loose, the
performance is lowered.

To register and measure the movements in the chain tensioner, the linear
image sensor IC Haus LFL 1402, see figure 14 and appendix B.9, is used.
There is room for this small sensor on a surface right next to the lever, which
is fixed between, and moved by, both a spring and the engine chain, see figure
15. The sensor has an array of 256 active photo pixels with a high resolution
and it is capable of receiving and processing an image of what is in front of
it. The lever is marked with a bar code pattern which is used to compute in
what degree the chain tensioner is moving.

Figure 14: The linear image

sensor IC Haus LFL 1402. Figure 15: The engine chain tensioner.

26

4.3 Microcontroller

To manage the collected data from the 11 sensors we choose to use the
Arduino Micro microcontroller that includes 20 digital inputs/output pins
where 7 can be used as a PWM, Pulse Width Modulation, outputs and 12
as analog inputs/outputs. This suits the task of be able to read all the sen-
sors data and connecting the Bluetooth-module, see appendix B.8, used to
transmit the data from the microcontroller to the mobile phone, and also be
small and light-weight, only 6.5 g, further minimizing the weight and space
addition to the car.

The sensors measuring wheel speed, steering and acceleration, are perma-
nently installed and connected to the microcontroller while the sensors for
camber/Toe in Toe out, strains in the framework and engine chain tension are
used mostly during testing and not while competing and therefore connected
to the microcontroller with sockets that can be removed easily.

Figure 16: Microcontroller connection scheme.

The sensors are connected to the microcontroller as shown in figure 16, the
three wheel speed sensors are connected to first three analog pins, A0- A2.
A0 is connected to the front left wheel-, A1 to the front right wheel- and

27

A2 to the rear wheel-sensors. The steering wheel potentiometer is connected
to the analog input pin A3 and the two camber/Toe in Toe out sensors are
connected to the A4, left front wheel, and A5, right front wheel. The g-force
acceleration sensors have three data values, the change in X-axis, the change
in Y-axis and the change in Z-axis, and are connected to the PWM pins
PWM5, PWM11 and PWM12. The three wireless tire pressure sensors are
connected to the microcontoller via the receiver module, Radiotronix RCR-
433-MPR see appendix B.5, and are connected to the RX-pin. The external
sensors are only used for testing are marked with blue and are easy to connect
and remove. The sensor which measures engine chain tension is connected to
the digital pin D2 for digital input and output reading. The two flex sensors
used to measure the strains in the framework are connected to the two analog
input pins A6 and A7.

4.3.1 Data transfer from the Arduino to the Android-phone

The data transfer from the Arduino microcontroller to the mobile phone is
based on the wireless Bluetooth technology, which is a standard for trans-
mitting data over short distances. The Bluetooth protocol is split in to two
parts where one part acts as the host-device, so called “host stack”, and is
responsible for setting up and managing the connection of the two parts. The
other part is the device that listens for the host-device to setup the connec-
tion, the so called ”controller stack”-part. A Bluetooth module, free2move
F2M03GLA see appendix B.10, are connected to the Arduino receiver and
transmitter pins and acts as the “controller stack” part in the system. The
smartphone acts as the“host stack”part and manages the connection between
the devices.

4.3.2 Data transfer protocol

To manage the 17 different data values read from the sensors a protocol has
been set up for the data packages transmitted between the Arduino and the
smartphone. The protocol states that the data-package from the Arduino’s
bluetooth-module will contain three parts. It begins with a header part that
states the beginning of the data package, followed by the payload holding the
sensor data and lastly the tail part that states the end of the data-package,
see figure 17.

28

Figure 17: Bluetooth data package.

The head of the package starts by sending a 2 bytes “PS” declaration to
declare the beginning of the package and then followed by 1 byte number
that give the number of sensor-data included in the payload. The payload
carries the read integer data from the sensors in the order from 0 to 16, see
table 1. The tail announces the finish of the package by sending a 2 byte
“DS” end declaration.

Table 1: Payload data table.

Payload nr Sensor Payload nr Sensor

0 Left front wheel speed sensor 9 Wireless front right wheel pressure receiver
1 Right front wheel speed sensor 10 Wireless rare wheel pressure receiver
2 Rare wheel speed sensor 11 Front left wheel house pressure sensor
3 Steering wheel sensor 12 Front right wheel house pressure sensor
4 Left front wheel kamber sensor 13 Rare wheel house pressure sensor
5 Right front wheel kamber sensor 14 Engine chain tension sensor
6 Centripetal force sensor X-axis 15 Flex sensor 1
7 Centripetal force sensor Y-axis 16 Flex sensor 2
8 Wireless front left wheel pressure receiver

29

4.3.3 Arduino program

The Arduino Micro microcontroller programming language is based on the
C/C++ language and links to the AVR Libc, an API package that provides
a subset of the standard functions from C for 8-bit microcontrollers. The
program starts by declaring and setting the input and output pins to each
sensor connected to the microcontroller according to figure X followed by the
initialization of the bluetooth serial input-/output stream. It then connects
and sets up the receiver to the wireless wheel tire pressure sensors. The
program then starts to loop through the connected inputs and stores the
value from each sensor every 20 ms. When the program has read the values
from one loop it compiles the data to a data package according to the protocol
and sends the package over the bluetooth connection.

30

5 Database

The initial plan for storage of log data was to only use a local database on
the smartphone. The idea was to use a SQLite database since Android has
native support for it. Originally the project only concerned local logging of
data, but as the project expanded a decision was made to utilize an external
MySQL database stored on an external web host.

5.1 Database modeling

The model was initially drawn on paper and translated into SQL statements
for creating the MySQL database. After creating the database some arbitrary
data points were inserted to allow for initial testing of the desktop application.

5.2 Data transfer to database

Data is sent from the smartphone in the form of a compressed .txt docu-
ment containing logged data from both the ECU (Engine Control Unit) and
external sensors. One such document is created every 5 ms. The data is
transferred using a PHP script which decompresses, parses and converts the
data (see 5.3) into physical values. The converted data is then inserted into
the database using SQL statements.

5.3 Conversion to physical values

When the data is logged in the ECU no consideration is taken to the fact
that different parameters have different units which works differently. e.g.
ignition is in degrees, frequency in hertz and fuel consumption in liters per
10 km.

In order to do these conversions Civinco (the manufacturers of the ECU)
provided a Matlab script which describes how this conversion is be done.
This script was rewritten in PHP as it was to be used on a web server. Since
all the data in the log file is not useful it is of interest to delete useless data

31

as early in the transfer process to minimize the amount of data being sent.
The reason the calculations are not made on the Smartphone is that the
web server has a lot more capacity. Civinco also provided the group with
ROWDEF-,SENSDEF and TEMPDEF files which will be explained later on.

The script begins with the ROWDEF-, SENSDEF and TEMPDEF files being read
and their content put into matrices. The ROWDEF file contains row definitions,
SENSDEF contains sensor definitions and TEMPDEF contains temperature defi-
nitions. In order to find a certain parameter in the SENSDEF and TEMPDEF file
the program uses the ROWDEF file to find at which row the relevant parameter
can be found in the actual file.

Secondly the file containing logged data sent from the smartphone is read
and put into another matrix called it DATA matrix. Before putting the data
into the matrix, the program finds the beginning and the end of the logged
data and erases the rest.

Then the ECU is logging it assumes that all parameters are linear which is not
the case. If a parameters is defined as L2C (linear to circular) in the SENSDEF

file the physical value might actually be negative. The physical value of all
parameters (except temperatures which has a nonlinear behavior) is linear
and are therefore calculated as equation (3).

physical data = logged data · constant · factor + offset (3)

The factor and offset can be found through different columns in the the
SENSDEF matrix. The temperatures are calculated using the TEMPDEF matrix.

5.4 Transfer from a web server

As stated in section 5 the system uses a MySQL database hosted on a web
hosting service. The initial plan was to have the desktop application com-
municating directly with the database and code was written to fulfill this
purpose. During the first phase of testing, a local MySQL server was used
and the developed implementation was fully functional. However, due to the
web host not allowing external connections directly to their database server
a workaround was created in the form of a PHP script which creates an XML
document using the logged data in the database.

32

6 Desktop application

The purpose of the developed desktop application is to retrieve logged data
from a web server, process it and present it in a clear and concise manner.

The application was developed using the Java programming language and
specifically the Swing framework as well as a few external libraries for drawing
maps and charts, something that Java has no native support for. The choice
of language and framework was made based on previous experience of the
developers to facilitate a smooth development process.

Figure 18: Screenshot of desktop application. Note that this is from an early

version, before logging was implemented correctly.

33

6.1 GUI design process

While designing the GUI, paper prototyping was used fairly extensively. The
goal was to create a very simplistic interface with minimal clutter. Civinco’s
old software was used as a model for the design with the aim of creating a
familiar design that the Vera team wouldn’t have any problems getting used
to. The GUI is to be seen in figure 18.

6.2 Implementation

The implementation was split up into a few parts: connection to web server
and collection of data, parsing of data and presentation of data using a graph-
ical interface. The actual code was written with these fairly distinct parts in
mind and has been split up into packages reflecting this fairly well.

6.2.1 Web connection and collection of data

Logged data is initially stored in a MySQL database located under our web
host, however, as the host does not allow external queries to be made to
their databases a PHP script was created to convert the database entries to
an XML file for the desktop application to access.

Connection to the webserver is established using Java’s native URL class
which provides an easy-to-implement interface to web resources using the
HTTP protocol. After a connection has been made a continuous stream of
data is received and processed.

As soon as a connection has been established the application retrieves data
at an interval specified by the user. A drawback of allowing the user to pick
the interval is that the application is not able to find out how often data
is uploaded to the server which could lead to the application retrieving the
same data multiple times.

34

6.2.2 Reading existing logs

As a request from the Vera Team’s the application also lets the user view
data from previously saved logs. These are stored and parsed in the same
manner as live recorded logs which allows the feature to be implemented with
mainly existing code.

6.2.3 Parsing

The data, which is stored in XML format, is processed using the DOM model
instead of the perhaps more commonly used SAX. The main difference be-
tween DOM and SAX is that DOM reads the entire document and loads
it into the memory while SAX reads the document sequentially. Due to
this SAX potentially has higher performance at a tradeoff of having a larger
overhead. The decision to use DOM over SAX was made mainly due to it
being easier to use and implement as well as the relatively small size of the
documents in question.

Using the previously mentioned DOM the document is processed and split
into individual data points which contain data about signal value, GPS co-
ordinates as well as a timestamp of when the data was recorded.

6.2.4 Threading

The application was implemented using multiple threads to allow for real-
time updates of the model and GUI as new data is logged. Not using threads
would lock the application in terms of user interaction which is obviously not
acceptable.

6.2.5 GUI

The GUI was implemented using the previously mentioned Swing framework
as well as the external libraries JMapViewer as well as JFreeChart. Swing
was used for creating the overall structure of the GUI as well as some of the
graphical elements featured in the interface. In addition to this, JFreeChart is

35

used to create charts and JMapViewer is used to create visual maps showing
the route taken by the vehicle.

The user is able to choose from a list of parameters corresponding to those
logged in the ECU. When one is selected a chart and map is drawn containing
all data points associated with the chosen parameter. The chart and map is
dynamically updated as parameters are selected and deselected.

36

7 Discussion

The project has had a lot of things that have caused problems but most of
them have been solved. Solving these issues has given new knowledge, but
things that were not problems could in retrospect have been solved in a better
way. In this section some of the problems encountered and lessons learned
will be discussed in further detail.

7.1 ECU

When we first got the task of reading data from the ECU (engine control
unit) we started to research information about how to use the Android oper-
ating system to set up a USB connection between the smartphone and ECU
interface. The research resulted in information from the Android Developer
Guide stated that USB host mode, a requirement to be able to establish a
connection between two or more devices, was directly supported in the An-
droid versions from 3.1 and above throughout the USB API library. This
resulted in a decision to choose the reasonably cheap, small and light weight
smartphone Sony Xperia Tipo which supported Android 3.1 with support of
the host mode API.

When we received the phone and started the development of the USB con-
nection communication, we soon realized that even though the Android op-
erating system on the smartphone supported the USB host mode the smart-
phone’s hardware configurations and kernel did not.

A long process of trying to reconfigure the kernel to support the USB host-
mode was started. This was almost accomplished but not reliable since the
configurations stopped working and refused the connections at seemingly
random occasions while running. In the fourth week of the project we gave
up the reprogramming of the kernel approach and started looking in to other
smartphones, now at a higher price level, that supported both the Android
version 3.1 and the hardware kernel configurations needed. This resulted in
the Xperia Sola smartphone from Sony at twice the price.

This taking a lot of time to gain insight into resulted in a big delay of the
whole project. As this was the key part and the main task of the project
this affected all parts and group members in the project. When receiving the

37

Xperia Sola smartphone we were able to set up and initialize a communica-
tion with the ECU and start extracting log data. This log data have been
generated from a test bench and is not from the actual Vera car’s engine
since the team have not yet installed the ECU box type we been working
with, the Civinco SA3000 in the car.

When conquered the first big problem of the ECU communication the next
problem occurred. The ECU boxes are designed to use the Civinco software
program to collect data and request commands to and from the micropro-
cessor inside the box. This resulting in very little information on how the
communication protocol was formed and how to talk and interpret the data
return from the ECU. We approached this problem by listen and analyze
the traffic over the USB-bus with a USB protocol Analyzer box and tried
to backward engineer the communication while using the Civinco software
program and sending requests to the ECU.

This approach was abandoned due to the amount of data and control trans-
fers sent at a high rate over the USB-bus where making it impossible to solve
the problem this way. After consulting Markus Ekstrom from Civinco several
times on the phone and getting good advices and help we managed to under-
stand the communication protocol and the framework of the data-packages
sent to and from the ECU. This resulting in a fully established communica-
tion between the smartphone and the Civinco SA3000 Engine Control Unit
via the USB interface.

7.2 Sensors

The Chalmers Vera Team were interested in a new solution for collecting
data from sensors. The data they had in mind fit well with VerApp and was
appropriate to use in the GUI. It also meant that we were not as dependent
on the use of GPS-signals to measure speed and lap time. The new sensor
system that is installed does not weight much and is significantly smaller in
size when comparing it to the system the team occasionally borrows when its
time to compete. Another benefit is that the new system is installed to be
flexible and adjustable to the team. The sensors are easy to move or detach
from the microcontroller when not needed, and it is also possible to add new
sensors.

Overall, it is important to have good communication with the customers at

38

the earliest possible stage and to be prepared either for them to change their
preferences or that there may be misunderstandings about what is desired. It
can be challenging to communicate when you have different technical back-
ground. Sometimes the purpose of a sensor was unclear, and you had to figure
out what the idea was behind it all in order to translate it into a technical
solution.

The sensor part of the project initially demanded a lot of time for research.
There were difficulties in finding the sensors that were required. Some of
these difficulties were due to that the right type of retailers are hard to find,
their websites are tricky to navigate and it is difficult to distinguish which of
the sensors’ characteristics that are important for the context. At the same
you have to keep in mind that the customer has to be satisfied and that the
system may not become too expensive or difficult to install.

It was hard to find TPMS sensors that would fit smaller, tubeless tires which
were sold separately and measure up to 7 bar. The sensors usually measure
up to no more than 3 – 5 bar, which is suitable for an ordinary car. They
are sold in packages of two or four and are virtually always supplied with
a huge display, which make the systems both heavy and expensive. This
would not be an ideal solution for the vehicle, as Vera has three tires and
the data is presented through VerApp. An additional display would be too
distracting for the driver and would contribute to unnecessary extra weight in
the car. Although they are difficult to find, separate tire pressure sensors can
be purchased in order to replace lost sensors. The model we found measured
up to 13 bar. Unfortunately the sensors were never delivered by the retailer.

If we would have had an unlimited budget, we would not have had the need to
spend as much time on research but had been able to buy the more available
and expensive systems. We could have bought a costly TPMS system and
disassembled it, we could also have bought more distance sensors, we would
have acquired a triaxial accelerometer instead of soldering together the two
two-axis accelerometers, we would have found encapsulations to all compo-
nents, and we would probably have found a sensor to measure elongations
in the chain tension spring instead of using the line sensor, since it is not its
actual use.

39

7.3 Mobile application

The group members in general had no or very little experience of working with
developing smartphone applications and Android programming. As result of
this the group ran into many unforeseen problems. The following section will
contain a description of the most significant problems encountered.

7.3.1 Graphical User Interface

When developing the application’s graphical user interface it was important
that the application would be easy to read while driving as well as easy
to operate, even while wearing gloves. The phone to be placed in the car
was a Sony Xperia Sola but since this phone was the only phone allowing
host mode it was being used to study the communication with ECU and the
development of the GUI therefore had to take place on other phones. The
fact that other phones with a different display size were being used to develop
the graphical design resulted in things that looked good on the phone used
to develop the graphical design could sometimes end up looking bad on the
Xperia Sola.

Initially a settings menu was added which was previously described. However,
at the end of the project we came to the conclusion that choosing logging
frequency was not a necessary feature. This decision was taken due to the
fact that even when logging at the highest frequency there was such a small
amount of data being sent that it did not cause any problems. For the user it
is preferable to have as high logging frequency as possible and since it did not
cause us any problem offering the user the highest logging frequency available
we did not see any reason to give the user the possibility of choosing a lower
logging frequency.

The steering indicator provides a graphical illustration of the steering value.
In order to do that it needs to get a value from the sensor. Since it has taken
some time to get the sensor in place and the data from it into the cell phone
it has not yet been possible to test the indicator under its normal conditions.

40

7.3.2 Calculation of a new lap

As mentioned in the section 2.2.2 there have been two attempts to calculate
the lap time whereas the first one did not work at all. Since the earth is
not flat there is the mathematical part in which much time were spent. We
believe that the first attempt required some very precise data from the GPS
unit. and we have come to the conclusion that this could be the part that
caused failure.

In the second attempt we narrowed down the solution to only watch if the
car would be in range for the starting position. If that was the case, increase
lap counter, grab lap time and lock the counter for 5 minutes. The margin
of error might sound much with 10 meters to spare but for this app it is
acceptable. Let’s say that the car is travelling in 25 km/h, which is the
minimum average speed through the race and the new lap code is triggered
on the edge of its maximum (10 meters from starting point). This scenario
would give an incorrect value of 1,44 seconds. Since Shell Eco Marathon is
not about getting the best time, the faulty of 1,44 seconds is acceptable.

7.3.3 Heap size error

Problem was encountered when trying to send the data from the application
to the web server. As mentioned in section 2.2.7 several attempts were made.
The first one was implemented with a text file that kept all names of files that
have been sent and for each new transfer the class would check whether the
file had been sent before or not. This caused the heap to run out of memory.
The execute method was run from an infinite thread. As the application
was running, hundreds of zip-files were created and the class would list the
whole folder repeatedly. At last the memory did not stand a chance, which
caused this error. The current solution can be read from the same section as
the second attempt.

7.4 Database transfer

The database, and all transfers to and from it has caused a lot of problems
during the entire project. To begin with, we chose a hosting service that did
not allow an external connection to their database server. That is something

41

that we should have confirmed before choosing one.com as the service to go
with. We spent a lot of time developing an SQL-parser in Java that ended
up being discarded.

Another big issue concerning the database transfer was that no clear decision
on how it was supposed to be done was made. It was not up for discussion
using a zip file and a zip parser during the first half of the project time but at
the end we came to the conclusion that this would be the best option. Some
more research should have been performed at the beginning of the project
and a clear path should have been chosen. If that would have been the case,
problems such as zip-parsing and data-conversion, could have been solved
earlier.

7.5 Desktop application

While the development of the desktop application was perhaps the smoothest,
it did have its share of problems. These did, however mainly come from other
parts of the project being held up for various reason which meant that the
desktop application was not able to be sufficiently tested early enough.

7.5.1 Lack of testdata

One major problem faced during development was a lack of real test data.
This occurred due to data collection from the ECU becoming a bottleneck.
This problem propagated to other parts of the project as testing was severely
delayed. Throughout the project the desktop application was solely tested
using dummy data which was manually inserted into the database using the
web host’s own tools. While this was sufficient for making sure the XML
parsing worked correctly it did not allow for testing of real-time logging.
This lack of test data pushed the testing into the very end of the development
process which was problematic as this could be seen as one of the very core
features of the system.

42

7.5.2 GPS Plotting

Restrictions in the API used for drawing maps (JMapViewer) led to the
plotting of GPS coordinates ultimately being cut from the application. The
plan was to use the GPS coordinates to allow the team to compare signal
values not only to specific points in time, but also to geographical location.
In the end, as stated previously, the API used did not support this in a
satisfactory way leading to the feature not being fully implemented. There is
however quite a bit of code written which means that it would probably be
fairly easy to either implement without an external API or if API is found
that better supports the needs.

7.5.3 Warning flags

Since GPS Plotting was cut, we decided to cut the warning flags as well. The
flags were supposed to be connected to each data point but since we could
not figure out a smart way to plot the points there was no point for this.
Another reason for this idea being cut is the fact that we chose to plot the
data points in a chart. If we would have done some kind of list instead, this
could have easily been implemented. Although, we chose to send the warning
information all the way to the desktop application. This means that no other
changes, except from GUI changes, have to be done to implement it in the
future. Both we and the Vera team wanted this feature so it is a shame that
we did not find any good ways to implement it.

7.6 System in total

The project has consisted of many parts which have been developed rather
independently but at the same time strongly depend on each other: the
ECU (engine control unit), the DAQ (Data Acquisition System), the mobile
application, the web server and the desktop application. The system can be
illustrated with figure 19. To the far left in the picture are the engine and the
sensors. The data goes into the ECU and the data from the sensors goes into
an Arduino micro controller. This far the data from the engine and the DAQ
has been transmitted in two parallel processes but thereafter the information
from both systems converges in the smartphone. The ECU communicates

43

with the smartphone via a USB wire and the Arduino communicates via
Bluetooth.

In the phone, the data from the ECU, the data from the Arduino and the
data from the smartphone including e.g. GPS coordinates are written to a
text file which is compressed and sent to the web server. On the web server
the file gets uncompressed and the data from the ECU and is recalculated to
physical values before the data is once again written to a text file. Finally
the new text file can be fetched by the desktop application which presents
the data in relevant graphs where the user can choose which parameters to
display.

Figure 19: Overview of the entire system

Since the goal of the system is to transfer data through the system, all parts
of the system are depending on a continuous flow of data to be thoroughly
tested. However, all parts of the system have been developed in parallel
which means the testing has been done using test data without continuous
updating.

Under optimal circumstances the work with ECU would have been finished
first so that it could provide the system with data to do proper testing.
In reality this has not been the case, there have been a lot of difficulties
extracting data from the ECU and this has been a bottleneck for the entire
system. The system also has a weakness in the fact that both intermediate
parts between the ECU and desktop application are transforming the data
in some way: the mobile application writes it to a text file which is being
compressed while the web server decompressed the file and converts the data
into physical values. This means that shortcuts can never be used while
developing.

It might seem like having two parallel processes in the data transfer process

44

makes it more complicated but in fact it is a strength considering the ro-
bustness of the system. Since the systems are parallel, if the sensors in the
engine or the logging in the ECU were to stop working, the team would still
get information from the DAQ and vice verse in case the DAQ fails.

In retrospect if we would have started developing the DAQ at the same time
as the rest of the system, then having problem with the acquiring data from
the ECU it could have been possible to let the DAQ supply the system with
data and then have done proper testing earlier on the rest of the system.

45

8 Conclusion

This section will provide a conclusion of how well the task was performed
and to what degree the task was fulfilled. We will look back to investigate
whether the objective and task of the project has been solved. We will also
look forward at how this work continued.

To begin with, this project has grown immensely. From the beginning all the
customer (Chalmers Vera Team) requested was the possibility to log data in
the engine and send it wireless to a computer which displays it in real-time.
Today we are also giving the customer the opportunity of logging data from
other sensors in the car and we provide the driver with relevant information
while driving.

As mentioned in section 1.2 the purpose of the project is to develop a system
that handles the communication between the Vera-team and the engine. The
data shall also be presented in real-time. The objective of the project in
currently partly fulfilled. Data from the engine can be logged and sent. The
problem is that the real-time update on the computer does not work properly.
The reason for this is unknown and needs to be investigated further.

In the objective it is also stated that in case we do not fulfill our purpose
entirely the most important thing is that the software on the smartphone can
store data and then transfer it to the computer using the already existing
software. The data logged in the cellphone can be displayed in the existing
program by manually moving the files to the computer after the race.

It might seem strange that the project was extended when the original task
could not be fulfilled. The reason that the objective was not fulfilled is that
the ECU(engine control unit) was causing a lot of problems. It is doubtful
that we could have been more persons working on the ECU if we would have
known from the beginning that it was going to be so difficult getting the
communication between the ECU and smartphone to work. But if we would
have known it would take such a long time getting the communication to
work we would probably have developed a simulator or some other way to
test the system. That way we could have found earlier that things did not
work properly at the end of the system.

46

8.1 Possible future developments

During development, several features that were originally planned to be in-
cluded in the system had to be cut. This section will discuss a few in terms
of their feasibility and how they could be implemented in the future.

8.1.1 Plotting GPS coordinates

As previously stated, this was meant to have been implemented in the final
product, but due to API limitations it was cut. The plan was to plot GPS
coordinates on a map and allow the user to read recorded signal values at
a specific geographical point. One thought was to draw the coordinates on
a map and allow the user to read signal values by mousing over the points,
but this would require the structure of the XML documents to be adjusted
as there would otherwise be multiple points at the same coordinate, one for
each signal. This is due to the fact that data points are stored by their signal,
not by time stamp, meaning that for each time unit there would be a number
of data points equal to the number of available signals.

8.1.2 Remotely modifying engine parameters

This feature was raised as an extra extension early in the project by the Vera
team. This would however possibly introduce several new problems into the
system. For one, additional attention would have to be paid to thread safety
in the system, as sending values outside of the recommended range could
cause damage to the engine. If the threading is not sufficiently secure (values
are read and written in incorrect order), this could cause the application to
send other values than those input by the user.

8.1.3 Additional sensors

Wireless tire pressure sensors would be of great value to the Vera team. If
the tires were to loose too much pressure it would affect the performance
of the car and the expensive carbon fibre rims would be run down. A tire
pressure system could alert the driver when the pressure drops.

47

It is also of interest to know in what way the air flows around the vehicle
and inside the wheel houses. It would be valuable if the team could lower
the impact of air resistance. If sensors inside the wheel houses could expose
where the pressure is at its highest, the team could come up with solutions
of how to distribute the pressure evenly. This would get rid of unwanted
suction between the vehicle and the ground.

8.1.4 Warning flag

Much like the GPS plotting this was supposed to be implemented in the final
product. Due to the fact that we could not implement GPS coordinates this
left out. Without the coordinates to point out on map where the car was
when the flag was set we did not see any point in implementing this. Also,
we did not figure out any smart way to connect each error with a data point
in our data output. Mostly because of the chosen diagram API. Although, if
a smart way is figured out in the future, we implemented it all the way until
the desktop application. If an error is sent, it is connected to a data point
all the way until the data is presented to the user.

48

Reference list

Android Developer Guide (2013a) Design Principles.
http://developer.android.com/design/get-started/principles.html.
(9 May, 2013)

Android Developer Guide (2013b) LocationManager.
http://developer.android.com/reference/android/location/
LocationManager.html.
(23 April, 2013)

Android Developer Guide (2013d) Settings.
http://developer.android.com/design/patterns/settings.html.
(19 April, 2013)

Android Developer Guide (2013e) Menus.
http://developer.android.com/guide/topics/ui/menus.html.
(19 April, 2013)

Android Developer Guide (2013e) Iconography.
http://developer.android.com/design/style/iconography.html.
(21 April, 2013)

Android Developer Guide (2013f) Launcher Icons.
http://developer.android.com/guide/practices/ui guidelines/
icon design launcher.html.
(21 April, 2013)

Android Developer Guide (2013g) Location.
http://developer.android.com/reference/android/location/Location.html.
(24 April, 2013)

Android Developer Guide (2013h) AsyncTask.
http://developer.android.com/reference/android/os/AsyncTask.html.
(16 Maj, 2013)

Android Developer Guide (2013i) USB Host and Accessory.
http://developer.android.com/guide/topics/connectivity/usb/index.html.
(16 Maj, 2013)

49

http://developer.android.com/design/get-started/principles.html
http://developer.android.com/reference/android/location/LocationManager.html
http://developer.android.com/design/patterns/settings.html
http://developer.android.com/guide/topics/ui/menus.html
http://developer.android.com/design/style/iconography.html
http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html
http://developer.android.com/reference/android/location/Location.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/guide/topics/connectivity/usb/index.html

Android Developer Guide (2013j) Bluetooth.
http://developer.android.com/guide/topics/connectivity/bluetooth.html.
(16 Maj, 2013)

Boghard et al. (2008) Arbete och teknik p̊a människans villkor. 1:1.
Stockholm: Prevent.

Garmin (2013) What is GPS?.
http://www8.garmin.com/aboutGPS.
(22 April, 2013)

Illinois Institute of Technology (2013) dvantages of SQL.
http://www.cs.iit.edu/ cs561/cs425/VenkatashSQLIntro/
Advantages%20&%20Disadvantages.html.
(18 April, 2013)

Mark A. Weiss (2005) (Data Structures and Algorithm Analysis in Java) 2.
Pearson.

Shell Eco-Marathon (2013) Shell Eco-Maraton Europe 2013, Official Rules
Chapter 2. http://s09.static-shell.com/content/dam/shell-new/local/
corporate/ecomarathon/downloads/pdf/europe/
sem-europe-official-rules-chapter-2-180413.pdf. p.11.
(12 May, 2013)

Sony Mobile (2013) Xperia sola.
http://www.sonymobile.com/global-en/products/phones/xperia-sola/
specifications.
(22 April, 2013)

Tech2 (2013) What is A-GPS? How Does it Work?.
http://tech2.in.com/features/all/what-is-agps-how-does-it-work/115142.
(22 April, 2013)

TPMS Sweden (2013a) Vad är TPMS?.
http://www.tpms-swe.se/tpms/what-is-tpms.
(17 April, 2013)

TPMS Sweden (2013a) Motorcykel TPMS (M202).
http://www.tpms-swe.se/eftermarknadsprodkter/motorcykel-tpms.
(18 April, 2013)

50

http://developer.android.com/guide/topics/connectivity/bluetooth.html
http://www8.garmin.com/aboutGPS
http://www.cs.iit.edu/~cs561/cs425/VenkatashSQLIntro/Advantages%20&%20Disadvantages.html
http://s09.static-shell.com/content/dam/shell-new/local/corporate/ecomarathon/downloads/pdf/europe/sem-europe-official-rules-chapter-2-180413.pdf
http://www.sonymobile.com/global-en/products/phones/xperia-sola/specifications
http://tech2.in.com/features/all/what-is-agps-how-does-it-work/115142
http://www.tpms-swe.se/tpms/what-is-tpms
http://www.tpms-swe.se/eftermarknadsprodkter/motorcykel-tpms

A Documentation of software

The following documentation has been done:

1 Requirements VerApp

2 RAD (Requirements and Analysis Document) VerApp

3 RAD (Requirements and Analysis Document) VerApp Desktop

4 Use Cases VerApp

I

Visible requirements:

ID 1.01: Start application

ID 1.02: Present data to the driver (speed, lap time, total time)

ID 1:03: The driver can report to the team if something occurs.

ID 1.04: Exit the application

System requirements:

ID 2.01: Logging the car position

ID 2.02: Connecting the position data to the engine data

ID 2.03: Present engine data and GPS position on the computer

ID 2.04: Logging of engine data from ECU

ID 2.05: Data from the current run saved onto the cellphone

ID 2.06: Possible logging data from DAQ

ID 2.07: Stop logging data

ID 2.08: Sending engine data and position data through 3G

ID 2.09: Sending engine data and position data through Wi-Fi

Visible requirements:

Start application
ID 1.01

Use case / scenario:

Start the application.

Trigger:

The user launches the app.

Precondition:

The application is installed.

Basic path:

The main screen is shown to the user.

Exception path:

N/A

Post condition:

The main screen is shown to the user.

Present data to the driver (speed, lap time, total time)
ID 1.02

Use case / scenario: Present speed, average speed, lap time, total time of run to driver.

Trigger: Startbutton on application

Precondition: Timer-, GPS-function is started.

Basic path: The application is using GPS-data and timer to calculate speed, average speed,

lap time and total time. Present data on main-screen of application.

Exception path: Restart and try again.

Post condition: Saving data and calculating speed while running.

RequirementsVerApp

II

The driver can report to the team if something occurs.
ID 1.03

Use case / scenario:

By a button the driver can notify the team that something has occurred.

Trigger:

 Action button

Precondition:

Application is started.

Basic path:

Stores location and time when the event occurred.

Exception path:

Saved to phone storage. Sent when connection is available.

Post condition:

Data is either sent or stored. Confirmation message should be displayed for a couple of

seconds.

Exit the application
ID 1.04

Use case / scenario:

Exit application

Trigger:

Exit button on application.

Precondition:

Application is running and is not logging data.

Basic path:

The precondition is fulfilled and exit button is pressed.

Exception path:

Application is facing an unexpected shutdown.

Post condition:

The logging of data is stopped and the application shut down

System requirements:

Logging the car position
ID 2.01

Use case / scenario:

The application is saving the GPS-data given by the GPS.

Trigger:

The logging of GPS data starts then the start-/resume botton is pressed

Precondition:

The application is started. The GPS is activated.

Basic path:

The GPS-data is saved onto the cell phone.
III

Exception path:

N/A

Post condition:

There is GPS data available on the cell phone.

Connecting the position data to the engine data
ID 2.02

Use case / scenario:

The position data och engine data sent to the application are combined.

Trigger:

Continuosly when data are availiable

Precondition:

Application is started and data are availiable

Basic path:

The data are associated with each other..

Exception path:

N/A

Post condition:

The position data and motor control data are connected

Present engine data and GPS position on the computer
ID 2.03

Use case / scenario:

Trigger:

Precondition:

Data has been acquired from the web server and is stored on the computer.

Basic path:

Exception path:

N/A

Post condition:

Logging of engine data from ECU
ID 2.04

Use case / scenario:

Read and save bit-data from USB-bus.

Trigger:

Then the start- /resume button is pressed

Precondition:

USB connected, ECU-bus initialized.

Basic path:

Setup and initialize start register in ECU, send start command to ECU.

Exception path:

Restart setup.

Post condition:
IV

Bit data is read from the bus.

Data from the current run saved onto the cellphone
ID 2.05

Use case / scenario: Log-data is saved to cellphone while data logging is running.

Trigger: Start when data logging is started.

Precondition: Data logging is started.

Basic path: Read input stream from USB-bus and write to a textfile

Exception path: Log exception and restart write-process.

Post condition: Data is written to text file which is saved on the phone

Logging data from DAQ
ID 2.06

Use case / scenario: Receive data from DAQ-sensors to ECU and logg the data in the

application on the phone.

Trigger: Start-/ resume button is being pressed

Precondition: DAQ-sensors are started and connection established to the ECU by an

arduino.

Basic path: Data sent from DAQ to the application through the arduino and the ECU.

Exception path: N/A

Post condition: The data from the DAQ is saved onto the phone

Stop logging data
ID 2.07

Use case / scenario:

The application stops to log data.

Trigger:

User clicks the stop button.

Precondition:

Application is logging data.

Basic path:

Application is logging data and the user clicks stop button. The app stops the data logging.

Exception path:

N/A

Post condition:

Data logging is turned off.

Sending logged data and position data through 3G
ID 2.08

Use case / scenario:

Logged data with its position is sent to web server through 3G.

Trigger:

V

Sent regularly with predefined interval when the logging is started.

Precondition:

Application is started and logging is activated.

Basic path:

Data is sent to web server.

Exception path:

If no 3G connection is available, the data is stored and sent when connection is available.

Post condition:

Data is sent.

Sending logged data and position data through Wi-Fi
ID 2.09

Use case / scenario:

Logged data with it’s position is sent to web server through Wi-Fi.

Trigger:

Sent regularly with predefined interval when the logging is started.

Precondition:

Application is started and logging is activated.

Basic path:

Data is sent to web server.

Exception path:

If no Wi-Fi connection is available, the data is stored and sent through 3G.

Post condition:

Data is sent.

VI

Requirements and Analysis Document for “VerApp”

Table of Contents

 1 Introduction

 1.1 Purpose of application

 1.2 General characteristics of application

 1.3 Scope of application

 1.4 Objectives and success criteria of the project

 1.5 Definitions, acronyms and abbreviations

 2 Proposed application

 2.1 Overview

 2.2 Functional requirements

 2.3 Non-functional requirements

 2.3.1 Usability

 2.3.2 Reliability

 2.3.3 Performance

 2.3.4 Supportability

 2.3.5 Implementation

 2.3.6 Verification

 2.3.7 Packaging and installation

 2.3.8 Legal

 2.4 Test Cases

 2.5 Possible future directions

 2.6 References

 APPENDIX

Version: 1.0.1

Date: 2013-05-19

This version overrides all previous versions.

RAD VerApp

VII

1 Introduction

Since the ECU can not communicate directly with a computer wirelessly this project is going to have a

smartphone which is connected to the ECU and then handles further communication. To make this possible

an application is going to be developed. The phone will also work as a dashboard for the driver.

1.1 Purpose of application

The purpose of the application is to make it possible for the ECU to communicate wirelessly with a

computer. The application shall acquire data from the ECU and forward it. The application shall also present

important information to the driver.

1.2 General characteristics of application

Our aim is an application that will run smoothly on the phones chosen for this project. The finished product

will at least contain the possibility to log data from the ECU and a dashboard.

1.3 Scope of application

The final goal is that we can provide real time logging of data and present this to the team, but in case of

lack of time and/or possibility to present data in a simple and smooth way, the most important thing is the

possibility of logging data.

1.4 Objectives and success criteria of the project

The objective of the application is to provide the driver with information about total run time, average speed,

lap time, steering and speed. The application shall also handle all communication with the ECU and send

the data received from the ECU to a web server.

The minimum criteria for success is that the application is able to retrieve data from the ECU and then either

present it on the cell phone or upload it on the web server.

1.5 Definitions, acronyms and abbreviations

ECU - Engine Controller Unit, placed inside the car.

App - Android Application

GUI - Graphical user interface

Google Play - Google’s official platform for selling Android-applications

DAQ - Data Acquisition system

2 Proposed application

Based on the information provided above. There will be presented an application which is providing a

solution.

2.1 Overview

The goal of VerApp is to provide a graphical user interface, to initiate the communication with the ECU and

to save and forward data received from the ECU.

2.2 Functional requirements

● Logging of engine data from ECU

● Sending engine data and position data through 3G

● Sending engine data and position data through Wi-Fi

● Logging of car’s position

VIII

● Associate the position data with the engine data

● Data from the current run saved onto the smartphone

● The driver can report to the team if something occurs during the run. (graphic interface for the

vehicle’s position in real time)

● Exit the app

● Reset session

● Possible logging data from DAQ

● Present data to the driver (speed, average speed, lap time, total time, steering)

2.3 Non-functional requirements

● Data is transferred with expected time resolution

● Data can be saved onto the cell phone until it can be transferred onto a computer

● Data shall be transferred in a cost efficient manner

● Data shall be transferred in a way that minimizes the risk of data loss

2.3.1 Usability

The application shall be used by a person in Chalmers Vera Team. It is important that the application can be

handled by a person wearing gloves which means that there can not be any button that are small and any

keyboard interaction.

2.3.2 Reliability

As the application relies on having either a 3G- or Wifi-network available some care will have to be put into a

solution for when neither of these is available. This will be done be saving all data on the smartphone until it

can be uploaded to the web server.

Apart from this, there aren’t many reliability issues at hand as the application is rather simple in addition to

the fact that the phone used will likely not be required to handle any other tasks while running the

application.

2.3.3 Performance

Since the application will be pretty light, the only performance issues could be with data transfer. Our goal is

that data should be transferred in a safe and controlled way with as little data loss as possible.

2.3.4 Supportability

The application will be developed for Android 4.0 and newer. Due to this, phones having older OS will not be

able to use the app. The application is also somewhat customized to the specific ECU-model SA3000 from

Civinco.

2.3.5 Implementation

The application will be implemented with Java, using version 4.0 of the Android OS, Ice Cream Sandwich

(ICS).

2.3.6 Verification

The application will be verified in collaboration with the Chalmers Vera team which will, at least early on, be

the application’s primary user.

2.3.7 Packaging and installation

Due to the tight relationship with the ECU-provider Civinco the application may not be available on Google

IX

Play but rather as a .apk-file which Android-phones are able to install with some simple configuration.

2.3.8 Legal

Our goal is to own everything by ourselves and not use any third party applications during the development

of this app.

X

Requirements and Analysis Document for “VerApp Desktop”

Table of Contents

 1 Introduction

 1.1 Purpose of application

 1.2 General characteristics of application

 1.3 Scope of application

 1.4 Objectives and success criteria of the project

 1.5 Definitions, acronyms and abbreviations

 2 Proposed application

 2.1 Overview

 2.2 Functional requirements

 2.3 Non-functional requirements

 2.3.1 Usability

 2.3.2 Reliability

 2.3.3 Performance

 2.3.4 Supportability

 2.3.5 Implementation

 2.3.6 Verification

 2.3.7 Packaging and installation

 2.3.8 Legal

 2.4 Test Cases

 2.5 Possible future directions

 2.6 References

 APPENDIX

Version: 1.0.0

Date: 2013-02-05

This version overrides all previous versions.

RAD VerApp Desktop

XI

1 Introduction

Since Android does not support handling an external database, the mobile application sends

the data to a web server and from there the data will need to be fetched. Since the desktop

application developed by Civinco (the manufacturers of the ECU) does not support real time

update of data a desktop application needed to be developed.

1.1 Purpose of application

The purpose of the application is to acquire data from the web server and then present it in

a manner more suitable for a group of people.

1.2 General characteristics of application

The application runs smoothly on an arbitrarily chosen PC. It provides a graphical user

interface where data is presented to the user in the form of a chart.

1.3 Scope of application

The application fetches the data from the web server and presents it to the user. The

current version does not support changing of engine parameters in the ECU. Neither does it

provide the user with the possibility of seeing on a map where the data was logged.

1.4 Objectives and success criteria of the project

The objective of the application is to provide the team with data from the ECU and DAQ and

present the data to the race team in a relevant manner through a chart.

The minimum criteria is that the data is presented to the user. Displaying a map is a desirable

feature.

1.5 Definitions, acronyms and abbreviations

ECU - Engine Controller Unit

App - Android Application

GUI - Graphical user interface

DAQ - Data Acquisition system

2 Proposed application

Based on the information provided above. There will now be presented an application which is

providing a solution.

2.1 Overview

The desktop application shall retrieve data from web server and present it to the user in a

relevant way.

 2.2 Functional requirements

● Retrieving data from web server via 3G

● Retrieving data from web server via WiFi

● Present data to user

● Present relevant graphs

XII

2.3 Non-functional requirements

● Data shall be transferred with expected time resolution

● Data shall be transferred in a cost efficient manner

● Data shall be transferred in a way that minimizes the risk of data loss

● It is possible to call while data continues to be logged

2.3.1 Usability

When designing the GUI care was taken to make it sufficiently similar to the one currently

used as to ease the transition as well as creating a very easy-to-use interface with minimal

clutter.

2.3.2 Reliability

As the application relies on having either a 3G- or Wifi-network available some care will have

to be put into a solution for when neither of these is available. The data will be saved onto

the web server until there is 3G- or WiFi-connection available to enable the desktop

application can fetch it.

2.3.3 Performance

Since the application will be pretty light, the only performance issues could be with data

transfer. Our goal is that data should be transferred in a safe and controlled way with as

little data loss as possible.

2.3.4 Supportability

The application will be developed for Android 4.0 and newer. Due to this, older phones will

not be able to use the app.

2.3.5 Implementation

The application will be implemented in Java, using a few external libraries. In addition, some

PHP will be used for supporting functions.

2.3.6 Verification

The application will be verified in collaboration with the Chalmers Vera team which will, at

least early on, be the application’s primary user.

2.3.8 Legal

The application will not use any non-open source code.

2.4 Test Cases

XIII

ID: 1

Name: Install application

Includes: -

Actor: User

Goal: To install the application.

Description: Installation file is transferred to the phone and is initiated.

ID: 2

Name: Start application

Includes: Install application

Actor: User

Goal: Start application

Description: Prepare the application for using

ID: 3

Name: Enable GPS

Includes: Start application

Actor: User

Goal: Enable GPS

Description: Enable GPS before starting run mode.

ID: 4

Name: Start run mode

Includes: Start application, Enable GPS

Actor: User

Goal: To start the run mode.

Description: User presses the start button when GPS signal has been allocated.

ID: 5

Name: View values

Includes: Start run mode

Actor: -

Goal: Present speed, average speed, steering, total time and lap times.

Description: Display values on the screen in run mode.

ID: 6

Name: Report incident

Includes: Start run mode.

Actor: User

Goal: Set warning flag.

Description: Flag later viewed together with logged data

ID: 7

Name: Press stop button

Includes: Start run mode.

Actor: User

Use Cases VerApp

XIV

Goal: Pause logging and race values. Show possibility to end session.

Description: Pause logging and race values. Shows a summarization of the race together

with the option of ending the session.

ID: 8

Name: End session

Includes: Press stop button

Actor: User

Goal: Go back to the start screen.

Description: Go back to the start screen and end the current session.

ID: 9

Name: Transfer data

Includes: -

Actor: -

Goal: To transfer loggdata from phone to computer through HTTP protocol.

Description: Transfer collected data from the phone to computer.

ID: 10

Name: Reset application

Includes: -

Actor: User

Goal: Go back to initial screen

Description: Close current session and send user to initial start view. All values are reset.

ID: 11

Name: Exit application

Includes: -

Actor: User

Goal: To exit the app.

Description: User clicks exit button. App with all related threads are shutdown.

XV

B Data sheets

The following data sheets are included:

1 Michelin 45-75R16 RADIAL 2013

2 Hamlin 59025-1-S-02-A

3 Wabash 971 RPS

4 Impaqed Products BV TPMS 10.02.011

5 Radiotronix RCR-433-MPR

6 SpectraSymbol Flex Sensor Rev A1

7 Sharp GP2Y0A41SK0F

8 Memsic 2125 28017

9 IC Haus LFL 1402

10 Free2Move F2M03GLA

XVI

MICHELIN TIRES AND RIMS CARACTERISTICS
Prototype vehicles

── TECHNICAL SPECIFICATIONS ──

Maximum pressure: 7 bars (700 kPa)
Load capacity: 100 kg
Speed limit: 70 km/h
Recommended rim size: 1.20 J16 - 1.35 J16
Electrical resistance: > 3 E+10 Ω

── TIRE IDENTIFICATION (SIDEWALL MARKINGS) ──

Manufacturing week/year :

Only tires with above markings, manufactured in 2013, are certified conform to this datasheet.

── TIRE DIMENSIONS ──

TIRE SIZE DIMENSION
Section width

mm
Overall Diameter

mm

45/75 R16 45 478

Theoretical dimensions depending on pressure and rim

── RIM DIMENSIONS ──
“drop center rim with cylindrical bead seats”

WIDTH
CODE

DIMENSIONS (mm)

A B G P H C R1 R2 R3 R4 R9

D

πd

+0,15
-0,5

min. max. ±0,5
+0,2
-0

+1,0
-0,5

ref. ref. max. min. min. min.
+2,0
-0,5

1,20 30,5 5,5 7,5 9 3 7 3,5 6 1,5 1,5 5 7,0 405,6 1274,2

1,35 34,0 6,5 8,5 10 3,5 7,5 4 6,5 1,5 2 5 7,0 405,6 1274,2

WW13 FOR COMPETITION PURPOSE ONLY

22

Hamlin USA Tel: +1 920 648 3000 • Fax: +1 920 648 3001 • Email: sales.us@hamlin.com
Hamlin UK Tel: +44 (0)1379 649700 • Fax: +44 (0)1379 649702 • Email: sales.uk@hamlin.com
Hamlin Germany Tel: +49 (0) 6181 953660 • Fax: +49 (0) 6181 9536666 • Email: sales.de@hamlin.com
Hamectrol France Tel: +33 (0) 1 4687 0202 • Fax: +33 (0) 1 4686 6786 • Email: sales.fr@hamlin.com

TABLE 1 Form A Normally Normally Open Change Normally
Contact Type Open High Voltage Over Closed

Switch Type 1 2 3 4

Power Watt - max. 10 10 5 5

Voltage Switching Vdc - max. 200 300 175 175

Breakdown Vdc - min. 250 450 200 200

Current Switching A - max. 0.5 0.5 0.25 0.25

Carry A - max. 1.2 1.5 1.5 1.5

Resistance Contact, Initial Ω - max. 0.2 0.2 0.2 0.2

Insulation Ω - min. 1010 1010 109 109

Capacitance Contact pF - typ. 0.3 0.2 0.3 0.3

Temperature Operating °C -40 to +105 -20 to +105 -40 to +105 -40 to +105

Storage °C -65 to +105 -65 to +105 -65 to +105 -65 to +105

Time Operate ms - max. 1.0 1.0 3.0 3.0

Release ms - max. 1.0 1.0 3.0 3.0

Shock 11ms 1⁄2 sine G - max. 100 100 50 50

Vibration 50-2000 Hz G - max. 30 30 30 30

TABLE 4
Termination Options:-

SELECT DESCRIPTION
OPTION

A Tinned leads

B Crimped terminals

C 6.35mm fastons

D AMP MTE 2.54mm pitch

E JST XHP 2.5mm pitch

Select Option S T U V
Switch Pull In Activate Pull In Activate Pull In Activate Pull In Activate
Type AT Distance AT Distance AT Distance AT Distance

Range d Range d Range d Range d
(in) mm (in) mm (in) mm (in) mm

1 Normally Open 12-18 (.453)
17-23

(.374)
22-28

(.315)
27-33

(.295)
2 High Voltage 11.5 9.5 8.0 7.5
3 Change Over

15-20
(4.13)

20-25
(.354)

25-30
(.295)

4 Normally Closed 10.5 9.0 7.5

CUSTOMER OPTIONS - Switching Specifications

ORDERING INFORMATION

DETAILS PROVIDED ON THIS DATA SHEET ARE PROVIDED FOR
INFORMATION PURPOSES ONLY AND SHOULD NOT BE RELIED
UPON AS BEING ACCURATE FOR ANY PARTICULAR PURPOSE.
Product performance may be affected by the application to which the
product is put. Upon request, HAMLIN will assist purchasers by
providing information specific to any particular application. HAMLIN
disclaims any and all liability whatsoever for any purchaser’s reliance
upon the information contained on this data sheet without further
consultation with authorised representatives of HAMLIN.

59036

Switch Type Table 1

Table 2

Table 3

Sensitivity

Cable Length

Termination

File E61760(N)

www.hamlin.com

X T XX X

TABLE 3

Cable Type:-
24 AWG 7/32 PVC 105oC
UL1430/UL1569

Standard Lengths
SELECT CABLE
OPTION LENGTH

(in) mm

01 (3,94) 100

02 (11,81) 300

03 (19,69) 500

04 (29,53) 750

05 (39,37) 1000

TABLE 4
Termination Options:-

SELECT DESCRIPTION
OPTION (2 WIRE VERSIONS ILLUSTRATED)

A Tinned leads

B Crimped terminals

C 6.35mm fastons

D AMP MTE 2.54mm pitch

E JST XHP 2.5mm pitch

TABLE 2

Sensitivity Options:-
Activate Distances are approximate
using Hamlin 57025 actuator
as illustrated
Switch AT before modification

DIMENSIONS (in) mm

CUSTOMER OPTIONS - Sensitivity, Cable Length and Termination Specification

Series 59025

Table 3

Table 2

Table 4

Features
• 2 part magnetically operated

proximity sensor
• UL recognised
• Choice of normally open, normally

closed or change over contacts
• Customer defined sensitivity
• Choice of cable length and

connector

Benefits
• Quick and easy to install
• No standby power requirement
• Operates through non-ferrous

materials such as wood, plastic or
aluminium

• Hermetically sealed, magnetically
operated contacts continue to
operate long after optical and other
technologies fail due to
contamination

Applications
• Position and limit sensing
• Security
• Level sensing
• Linear actuators

X

59025 Firecracker Features and Benefits

A B C
Max Max NOM.

57025 (.245) 6,22 (1.000) 25,40 -

59025 (.245) 6,22 (1.000) 25,40 Table 3 ± (.393) 10,00

Sensor

Actuator

59025

ISSUE No: 4 DATE: 1/5/3

To learn more about
how our products can
help you, contact us at
260-355-4100 or visit
www.wabashtech.com

Committed to sensor advancement.

Wabash 971 RPS
Rotary Position Sensor

Designed to operate in
demanding environments
where long life and high
performance is required.

The Wabash 971 Rotary Position Sensor (RPS)
uses high performance conductive polymer
tracks and contact designs to achieve 2 percent
independent linearity. Reliable and versatile,
it is ideal for applications such as:

 • Electric industrial vehicles
• Off-road steering and transmission
• Engine management and controls
• Recreational vehicles
• Agricultural equipment

The RPS can be supplied with options for
electrical track length, resistance, flying leads,
integral connector and actuator drive direction.
Its rugged design can withstand:

 • Temperature extremes
• Harsh environments
• Mechanical shock and vibration

Wabash generic sensors offer customers low cost
options with minimal or little tooling investment.

Count on Wabash Technologies for sensing
solutions that add performance and value to
products. We serve customers with advanced
design and engineering capabilities, flawless
quality performance, flexible manufacturing
and on-time delivery.

Committed to sensor advancement.

The Wabash 971 RPS
Rotary Position Sensor

Technical Specifications
PHYSICAL
• Fully “sealed” robust package suitable for automotive,

agricultural, marine and industrial environments
• High performance, compact potentiometric sensor
• Suitable for arduous engine management and closed loop

control system feedback applications
• Through-hole actuation capability
• Integral connector or flying lead versions
• Actuator and mounting configuration options

Wabash Technologies, Inc.
1375 Swan Street, P.O. Box 829, Huntington, IN 46750-0829 USA Phone: 260-355-4100 Fax: 260-355-4265

Wabash Technologies, Ltd.
5 Faraday Park, Dorcan, Swindon, Wiltshire, SN3 5JF, England UK Phone: +44 1793 600500 Fax: +44 1793 600600

ELECTRICAL
 Specifications
Track Resistance (R†) 5KΩ ±20% @ 20°C ±10°C
Linearity (Independent) ±2%
Index Point 3% ±2% @ -Low End Stop
Output Gradient 0.973%/° Max 0.873%/° Min
Power Rating I Watt @ 40°C Derated to Zero @ 135°C
Temperature Coefficient ±600ppm/°C
Insulation Resistance 1000MΩ Min 500V DC
Maximum Voltage 13.5V DC

MECHANICAL
 Specifications
Rotation 128° ±2°
Spring Torque Min Return - 6 Nmm
 Max Wind up - 120 Nmm
Mechanical End Stop Strength 680Nmm Min
Fixing Torque (M4 and Washer) 2Nm Maximum
Lead Wire Version 971 - 0002 16/0.2, 0.5 mm CSA
 1.8 mm OD
 Pull Strength: 10 kg Max (all 3 wires)
Connector Version 971 - 0001 Connector to
 M47/2
 AMP P/N 828748 - 3

PERFORMANCE & ENVIRONMENTAL
 Specifications
Rotation Life (- 40° - +130°C) 5, 000, 000 Full Cycles
 10, 800, 000 Dither Cycles (2°)
Functional Temperature Range -40°C to +85°C Wire Version
 -40°C to +155°C Connector Version
Mechanical Shock (Handling) Im Drop onto Concrete Floor
Mechanical Shock (Bump) 1000 40 g 11 ms Shocks (3 axis)
Vibration (Sinusoidal) 10 - 57 Hz @ 1 mm Displacement
 57 - 100 Hz @ 10 g
 100 - 500 Hz @ 27 g
Sealing IP 5X (dust)
Pressure Wash 90 Bar 0.5-0.6 m 5-6 Seconds
Humidity 40°C 96% RH 504 Hours
Chemical Resistance Screen Wash, Gearbox Oil
 Brake Fluid Dot 4
 Isoctane/Toluene (70/30) + 15% Methanol
 Engine Cleaning Agent, Engine Coolant
 Antigel Fluid, Electrolyte Density
 1285 Kg/m3 (Sulphuric Acid H2S04)

 - i -

Typical Applications

Features

Description

Value Item No. Parameter Description
MIN TYP MAX UNIT

1. Operating Radio Frequency 280`433.92 MHz

2. Sensitivity Vcc 5.0, AT25C
BER= 3/100 -105 dBm

3. Modulation ASK

4. Power Supply 4.75 5 5.25 v

5. Supply Count 4 5 mA

6. Data Rate 3

7. Operating Temperature -40 +85 oC

8. RF Bandwidth – 3dB 4 MHz

RCR-433-MPR

• Home Security Systems
• Remote Lighting Controls
• Remote Gate Controls
• Asset Tracking
• Sensor Monitoring

• The Module’s Frequency is from UHF
(ASK) 280~433.92 MHz

• High Sensitivity Passive Design
• 4800 B/S Baseboard Data Rate.
• Simple to apply with Low External Parts

count
• Low Supply Voltage: VCC= 5 Vdc
• ASK Data Shaping Comparator Included

The RCR-433-MPR is a miniature receiver module
that receives On-off keyed (OOK) modulation
signal and demodulated to digital signal for the next
decoder stage. Local Oscillator is made of L/C
structure. The result is excellent performance in
simple-to-use. The RCR-433-MPR is designed
specifically for unlicensed remote control and
wireless security receiver operating at 433 MHz in
the USA under FCC Part 15 regulation.

RCR-XXX-MPR Data Sheet

 - 1 - 1/22/2007

Document Control

Created By TJ Everett 1/20/07
Engineering Review
Marketing Review
Approved - Engineering
Approved - Marketing

Revision History

Revision Author Date Description
1.0 TJE 1/20/07 Document Created

RCR-XXX-MPR Data Sheet

 - 2 - 1/22/2007

Mechanical Drawing Pinout Diagram

Absolute Maximum Ratings

Rating Value Units
Power Supply and All Input Pins -0.3 to +12 VDC
Storage Temperature -50 to +100 °C
Soldering Temperature (10 sec) 350 °C
Industrial Temperature -40 to +85 °C

Pin Description

Pin Name
1 GND
2 DIGITAL OUTPUT
3 LINEAR OUTPUT
4 VCC
5 VCC
6 GND
7 GND

8 ANT

RCR-XXX-MPR Data Sheet

 - 3 - 1/22/2007

Typing Test Circuit

Typical Receiver Application

Notes:
1. Encoder : HT12D/F , PTC (2262)
2. Antenna : Length = 22.6cm for 315MHz

Ordering Information

PRODUCT ORDER CODE
RCR-433-MPR RCR-433-MPR

Radiotronix Inc.

905 Messenger Lane
Moore, OK 73160

(405) 794-7730

(405) 794-7477 (Fax)

www.radiotronix.com
sales@radiotronix.com

Features

- Angle Displacement Measurement

- Bends and Flexes physically with motion device

- Possible Uses

 - Robotics

 - Gaming (Virtual Motion)

 - Medical Devices

 - Computer Peripherals

 - Musical Instruments

 - Physical Therapy

- Simple Construction

- Low Profile

spectrasymbol.com (888) 795-2283Rev A1 - Page 1

Mechanical Specifications Electrical Specifications

-Life Cycle: >1 million

-Height: 0.43mm (0.017")

-Temperature Range: -35°C to +80°C

-Flat Resistance: 10K Ohms

-Resistance Tolerance: ±30%

-Bend Resistance Range: 60K to 110K Ohms

-Power Rating : 0.50 Watts continuous. 1 Watt

 Peak

Dimensional Diagram - Stock Flex Sensor

6.35 [0.250]

ACTIVE LENGTH

95.25 [3.750]

PART LENGTH

112.24 [4.419]

How It Works

Flat (nominal resistance)

45˚ Bend (increased resistance)

90˚ Bend (resistance increased further)

How to Order - Stock Flex Sensor

103

Resistance

103 = 10 KOhms

L

Model

L = Linear

FS

Series

FS = Flex Sensor

Active Length

0095 = 95.25mm

0095 ST

Connectors

ST = Solder Tab

spectrasymbol.com (888) 795-2283Page 2

Schematics

Following are notes from the ITP Flex Sensor Workshop

"The impedance buffer in the [Basic Flex Sensor Circuit] (above) is a single sided operational amplifier, used with these

sensors because the low bias current of the op amp reduces errer due to source impedance of the flex sensor as

voltage divider. Suggested op amps are the LM358 or LM324."

"You can also test your flex sensor using the simplest circut, and skip the op amp."

"Adjustable Buffer - a potentiometer can be added to the

circuit to adjust the sensitivity range."

"Variable Deflection Threshold Switch - an op amp is used

and outputs either high or low depending on the voltage of the

inverting input. In this way you can use the flex sensor as a

switch without going through a microcontroller."

"Resistance to Voltage Converter - use the sensor as the

input of a resistance to voltage converter using a dual sided

supply op-amp. A negative reference voltage will give a positive

output. Should be used in situations when you want output at a

low degree of bending."

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

Copyright © Parallax Inc. Memsic 2125 Dual-Axis Accelerometer (#28017) v2.0 1/29/2009 Page 1 of 3

Memsic 2125 Dual-Axis Accelerometer (#28017)
The Memsic 2125 is a low-cost thermal accelerometer capable of measuring tilt, collision, static and
dynamic acceleration, rotation, and vibration with a range of ±3 g on two axes. Memsic provides the
2125 IC in a surface-mount format. Parallax mounts the circuit on a tiny PCB providing all I/O
connections so it can easily be inserted on a breadboard or through-hole prototype area.

Features
 Measures ±3 g on each axis
 Simple pulse output of g-force for each axis
 Convenient 6-pin 0.1” spacing DIP module
 Analog output of temperature (TOut pin)
 Fully temperature compensated over 0 to 70 °C

operating temperature range

Key Specifications
 Power Requirements: 3.3 to 5 VDC;

< 5 mA supply current
 Communication: TTL/CMOS

compatible 100 Hz PWM output signal
with duty cycle proportional to
acceleration

 Dimensions: 0.42 x 0.42 x 0.45 in
(10.7 x 10.7 x 11.8 mm)

 Operating temperature: 32 to 158 °F
(0 to 70 °C)

Application Ideas
 Dual-axis tilt and acceleration sensing

for autonomous robot navigation
 R/C tilt controller or autopilot
 Tilt-sensing Human Interface Device
 Motion/lack-of-motion sensor for

alarm system
 Single-axis rotational angle and

position sensing

Theory of Operation
The MX2125 has a chamber of gas with a
heating element in the center and four
temperature sensors around its edge.
When the accelerometer is level, the hot
gas pocket rises to the top-center of the
chamber, and all the sensors will measure
the same temperature.

By tilting the accelerometer, the hot gas will collect closer to some of temperature sensors. By
comparing the sensor temperatures, both static acceleration (gravity and tilt) and dynamic acceleration
(like taking a ride in a car) can be detected. The MX2125 converts the temperature measurements into
signals (pulse durations) that are easy for microcontrollers to measure and decipher.

Copyright © Parallax Inc. Memsic 2125 Dual-Axis Accelerometer (#28017) v2.0 1/29/2009 Page 2 of 3

Pin Definitions
For Memsic MXD2125GL pin ratings, see the manufacturer’s datasheet posted on the 28017 product page
at www.parallax.com.

Pin Name Function
1 Tout Temperature Out
2 Yout Y-axis PWM output
3 GND Ground -> 0 V
4 GND Ground -> 0 V
5 Xout X-axis PWM output
6 VDD Input voltage: +3.3 to +5 VDC

Communication Protocol
Each axis has a 100 Hz PWM duty cycle output in which acceleration
is proportional to the ratio tHx/Tx. In practice, we have found that
Tx is consistent so reliable results can be achieved by measuring
only the duration of tHx. This is easy to accomplish with the BASIC
Stamp PULSIN command or with the Propeller chip’s counter
modules.

With Vdd = 5V, 50% duty cycle corresponds to 0 g, but this will vary
with each individual unit within a range of 48.7% to 51.3%. This
zero offset may be different when using Vdd = 3.3 V. See the
manufacturer’s datasheet for details.

Example Circuit
The example schematic and wiring diagram below are for the BASIC Stamp and Board of Education.

The program below, SimpleTilt.bs2, simply measures the pulse width, that is, the duration of tHx, for
each axis. The raw values are displayed in the BASIC Stamp Editor’s Debug Terminal. If you run the
program, then tilt the accelerometer, you should see the values for each axis change.

Copyright © Parallax Inc. Memsic 2125 Dual-Axis Accelerometer (#28017) v2.0 1/29/2009 Page 3 of 3

' Smart Sensors and Applications - SimpleTilt.bs2
' Measure room temperature tilt.

'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Word
y VAR Word

DEBUG CLS

DO

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 DEBUG HOME, DEC4 ? X, DEC4 ? Y

 PAUSE 100

LOOP

Programming Resources and Downloads

BASIC Stamp

 Smart Sensors and Applications — The BASIC Stamp example above is taken from the Stamps in
Class text Smart Sensors and Applications, which features several chapters specific to the Memsic
Dual-Axis Accelerometer. Topics include output scaling and offset, measuring vertical rotation, tilt-
controlled video gaming basics, data logging g-force during a skateboard trick, and data logging
acceleration on an RC car. The book and sample code can be downloaded from the 28029 product
page at http://www.parallax.com

 Boe-Bot Robot Projects with the Memsic 2125 Accelerometer — The following projects with

source code are posted under the Stamps in Class Mini-Projects sticky-thread in the Stamps in Class
Forum at http://forums.parallax.com:

o Boe-Bot Robot Navigation with Accelerometer Incline Sensing
o A Tilt Radio Controller for Your Boe-Bot

 The Memsic 2125 Demo Kit BASIC Stamp Source Code — this source code contains conditional
compile directives that allow it to be used with the BS2, BS2e, BS2sx, BS2p, and BS2pe.

Propeller Objects
Several Memsic 2125 Accelerometer code objects and applications
for the Propeller chip are available in the Propeller Object Exchange
(http://obex.parallax.com).

Below is a photograph of the high-speed Memsic MXD2125
Accelerometer Demo in action. This application “provides a high
speed assembly driver, and separate-cog and same-cog Spin
versions of the MXD2125 Dual Axis Accelerometer. The high speed
version displays the data on a television as a 3D wireframe plane
with normal vector.

preliminary

preliminary
iC-LFL1402
256x1 LINEAR IMAGE SENSOR

Rev A3, Page 1/8

FEATURES

♦ 256 active photo pixels of 56 µm at a gap and distortion free
pitch of 63.5 µm (400 DPI)

♦ Integrating L-V conversion followed by a sample & hold circuit
♦ High sensitivity and uniformity over wavelength
♦ High clockrates of up to 5 MHz
♦ Only 256 clocks required for readout
♦ Shutter function enables flexible integration times
♦ Glitch-free analogue output
♦ Push-pull output amplifier
♦ 5 V single supply operation
♦ Can run off external bias to reduce power consumption
♦ Function equivalent to TSL1402 (serial mode)

APPLICATIONS

♦ Optical line sensors
♦ CCD substitute

PACKAGES

OBGA™ LFL1C

BLOCK DIAGRAM

DIS

Q

D

C

Bit 3

Q

NR

D
NQ

NR

Q
C

VHE

ONE

NQ

NS

NQ

Control

Bit 1

C

MULTIPLEXER

CONTROL AND SHIFT REGISTER

D

PIXEL

PIXOI

Pixel 1

NRCI SNH256

Bit 255

RPIX(1:256)SNH

ACTIVE PIXELS

OUTPUT

C

Sample and Hold

NQ
D

Bit 2

Q
NS

Q

BIAS

Pixel 2

NR

AMPLIFIER

Pixel 256

Bit 256

NQ
D

PIXEI

REF

C

VHO

AGND

AO

CLK

GND

RSET

SI

TPVCC VDD

LFL1402

Copyright © 2006 iC-Haus http://www.ichaus.com

preliminary

preliminary
iC-LFL1402
256x1 LINEAR IMAGE SENSOR

Rev A3, Page 2/8

DESCRIPTION

iC-LFL1402 is an integrating light-to-voltage con-
verter with a single line of 256 pixels pitched at
63.5 µm (center-to-center distance). Due to the
monolithical integration there is no pixel-gap or pitch
distortion whatsoever. Each pixel consists of a
56.4 µm x 200 µm photodiode, an integration capaci-
tor and a sample and hold circuit.

The integrated control logic makes operation very
simple, with only a start and clock signal necessary.
A third control input enables the integration period
to be prematurely terminated at any time (electronic
shutter).

When the start signal is given the hold mode is acti-
vated for all pixels simultaneously with the next rising
clock edge; starting with pixel 1 the hold voltages are
switched in sequence to the push-pull output ampli-
fier. The second clock pulse deletes all integration
capacitors and the integration period starts again in
the background during the output phase. A run is
complete after 256 clock pulses.

iC-LFL1402 is suitable for high clock rates of up to
5 MHz. If this is not required the supply current can
be reduced via the external bias setting.

PACKAGES OBGA™ LFL1C

PIN CONFIGURATION OBGA™ LFL1C
(top view)

PIN FUNCTIONS
No. Name Function

1 SI Start Integration Input
2 CLK Clock Input
3 AO Analogue Output
4 VCC +5 V Supply Voltage
5 RSET Bias Current (resistor from VCC to

RSET; when connected to GND the in-
ternal bias setting is activated)

6 AGND Analogue Ground
7 GND Digital Ground
8 DIS Disable Integration Input

CHIP-LAYOUT

iC-LFL1402
Chip size: 16.6 mm x 1.7 mm

Pitch 63.5 um

DIS

SI

GND

CLK

AGND

AO

TP

VDD VCC

RSET

PIXEL 256 PIXEL 1 Active Area 56.4 um x 200 um

preliminary

preliminary
iC-LFL1402
256x1 LINEAR IMAGE SENSOR

Rev A3, Page 3/8

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item Symbol Parameter Conditions Fig. Unit
No. Min. Max.

G001 VDD Digital Supply Voltage -0.3 6 V

G002 VCC Analogue Supply Voltage -0.3 6 V

G003 V() Voltage at SI, CLK, DIS, RSET, TP, AO -0.3 VCC +
0.3

V

G004 I() Current in RSET, TP, AO -10 10 mA

G005 Vd() ESD Susceptibility at all pins MIL-STD-883, Method 3015,
HBM 100 pF/1.5 kΩ

2 kV

G006 Tj Operating Junction Temperature -40 125 °C

G007 Ts Storage Temperature Range see package specification
OBGA™ LFL1C

THERMAL DATA

Operating Conditions: VCC = VDD = 5 V ±10%

Item Symbol Parameter Conditions Fig. Unit
No. Min. Typ. Max.

T01 Ta Operating Ambient Temperature Range see package specification
OBGA™ LFL1C

All voltages are referenced to ground unless otherwise stated.
All currents into the device pins are positive; all currents out of the device pins are negative.

preliminary

preliminary
iC-LFL1402
256x1 LINEAR IMAGE SENSOR

Rev A3, Page 4/8

ELECTRICAL CHARACTERISTICS

Operating Conditions: VCC = VDD = 5 V ±10%, RSET = GND, Tj = -25...85 °C unless otherwise noted

Item Symbol Parameter Conditions Tj Fig. Unit
No. °C Min. Typ. Max.

Total Device

001 VDD Digital Supply Voltage Range 4.5 5.5 V

002 VCC Analogue Supply Voltage Range 4.5 5.5 V

003 I(VDD) Supply Current in VDD f(CLK) = 1 MHz 0.39 mA
f(CLK) = 5 MHz 1.85 mA

004 I(VCC) Supply Current in VCC 11.5 mA

005 Vc()hi Clamp Voltage hi at SI, CLK, DIS,
TP, RSET

Vc()hi = V() − V(VCC);
I() = 1 mA

0.3 1.8 V

006 Vc()lo Clamp Voltage lo at SI, CLK, DIS,
TP, RSET

Vc()hi = V() − V(AGND);
I() = -1 mA

-1.5 0.3 V

007 Vc()hi Clamp Voltage hi at AO Vc()hi = V(AO) − V(VCC);
I(AO) = 1 mA

0.3 1.5 V

008 Vc()lo Clamp Voltage lo at AO, VCC,
VDD, GND

Vc()lo = V() − V(AGND);
I() = -1 mA

-1.5 -0.3 V

Photodiode Array

201 A() Radiant Sensitive Area 200 µm x 56.40 µm per Pixel 0.01128 mm²

202 S(λ)max Spectral Sensitivity λ = 680 nm 1 0.5 A/W

203 λar Spectral Application Range S(λar) = 0.25 x S(λ)max 1 400 980 nm

Analogue Output AO

301 Vs()lo Saturation Voltage lo I() = 1 mA 0.5 V

302 Vs()hi Saturation Voltage hi Vs()hi = VCC - V(), I() = -1 mA 1 V

303 K Sensitivity λ = 680 nm,
package OBGA™ LFL1C

2.88 V/pWs

304 V0() Offset Voltage integration time 1 ms,
no illumination

400 800 mV

305 ∆V0() Offset Voltage Deviation during
integration mode

∆V0() = V(AO)t1 − V(AO)t2,
∆t = t2 − t1 = 1 ms

-250 50 mV

306 ∆V() Signal Deviation during hold
mode

∆V0() = V(AO)t1 − V(AO)t2,
∆t = t2 − t1 = 1 ms

-150 150 mV

307 tp(CLK-
AO)

Settling Time Cl(AO) = 10 pF, CLK lo → hi until
V(AO) = 0.98 x V(VCC)

200 ns

Power-On-Reset

801 VCCon Power-On Release by VCC 4.4 V

802 VCCoff Power-Down Reset by VCC 1 V

803 VCChys Hysteresis VCChys = VCCon − VCCoff 0.4 1 2 V

Bias Current Adjust RSET

901 Ibias() Permissible External Bias Current 20 100 µA

902 Vref Reference Voltage I(RSET) = Ibias 2.5 3 3.5 V

Input Interface SI, CLK, DIS

B01 Vt()hi Threshold Voltage hi 1.4 1.8 V

B02 Vt()lo Threshold Voltage lo 0.9 1.2 V

B03 Vt()hys Hysteresis Vt()hys = Vt()hi − Vt()lo 300 800 mV

B04 I() Pull-Down Current 10 30 50 µA

B05 fclk Permissible Clock Frequency 5 MHz

preliminary

preliminary
iC-LFL1402
256x1 LINEAR IMAGE SENSOR

Rev A3, Page 5/8

OPTICAL CHARACTERISTICS: Diagrams

400

10

20

30

40

50

60

70

80

90

100

600 800 1000 nm

%

Figure 1: Relative spectral sensitivity

OPERATING REQUIREMENTS: Logic

Operating Conditions: VCC = VDD = 5 V ±10%, Tj = -25...85 °C
input levels lo = 0...0.45 V, hi = 2.4 V...VCC, see Fig. 2 for reference levels

Item Symbol Parameter Conditions Fig. Unit
No. Min. Max.

I001 tset Setup Time:
SI stable before CLK lo → hi

3 50 ns

I002 thold Hold Time:
SI stable after CLK lo → hi

3 50 ns

t

V

2.0V

0.8V

2.4V

0.45V

0

1

Input/Output

Figure 2: Reference levels

CLK

SI

tset

thold

Figure 3: Timing diagram

preliminary

preliminary
iC-LFL1402
256x1 LINEAR IMAGE SENSOR

Rev A3, Page 6/8

DESCRIPTION OF FUNCTIONS

Normal operation
Following an internal power-on reset the integration
and hold capacitors are discharged and the sample
and hold circuit is set to sample mode. A high signal
at SI and a rising edge at CLK triggers a readout cycle
and with it a new integration cycle.

In this process the hold capacitors of pixels 1 to 255
are switched to hold mode immediately (SNH = 1),

with pixel 256 (SNH256 = 1) following suit one clock
pulse later. This special procedure allows all pixels to
be read out with just 256 clock pulses. The integration
capacitors are discharged by a one clock long reset
signal (NRCI = 0) which occurs between the 2nd and
3rd falling edge of the readout clock pulse (cf. Figure
4). After the 255 pixels have been read out these are
again set to sample mode (SNH = 0), likewise for pixel
256 one clock pulse later (SNH256 = 0).

SNH

SNH256

NRCI Integration Time Pixel 1−255

Integration Time Pixel 256

Pix256Pix255...Pix255 Pix256Pix254

255

Pix1

1 2563

V(AO)

CLK

SI

Pix2 Pix3

254 1 2255 256 2 4 ...

Pix1

Figure 4: Readout cycle and integration sequence

If prior to the 256th clock pulse a high signal occurs
at SI the present readout is halted and immediately
reinitiated with pixel 1. In this instance the hold ca-

pacitors retain their old value i.e. hold mode prevails
(SNH/SNH256 = 0).

Pix2 Pix3

254 1256 5 1

Pix4 Pix5

2 3

Pix2

4

Pix256

2

Pix1...

...

SNH

SNH256

NRCI

2 4

Pix4Pix3

255

Pix255 Pix256Pix254 Pix1Pix1

1 2563

V(AO)

CLK

SI

Figure 5: Restarting a readout cycle

With more than 256 clock pulses until the next SI sig-
nal, pixel 1 is output without entering hold mode; the

output voltage tracks the voltage of the pixel 1 integra-
tion capacitor.

preliminary

preliminary
iC-LFL1402
256x1 LINEAR IMAGE SENSOR

Rev A3, Page 7/8

SNH

SNH256

NRCI Integration Time

259

Pix256Pix255...Pix255 Pix256Pix254

255

Pix1

1 2563

V(AO)

CLK

SI

Pix2 Pix3

254 257 258255 256 2 4 ...

Pix1

Figure 6: Clock pulse continued without giving a new integration start signal

Operation with the shutter function
Integration can be stopped at any time via pin DIS,
i.e. the photodiodes are disconnected from their cor-
responding integration capacitor when DIS is high and

the current integration capacitor voltages are main-
tained. If this pin is open or switched to GND the pixel
photocurrents are summed up by the integration ca-
pacitors until the next successive SI signal follows.

PIX SAMPLE−C

5 6

DIS

Integration Integration
Disabled Disabled

Integration
Enabled

SNH

1

NRCI

2 ... 14

SI

CLK

3 256255

Figure 7: Defining the integration time via shutter input DIS

External bias current setting
In order to reduce the power consumption of the device
an external reference current can be supplied to pin
RSET which reduces the maximum readout frequency,

however. To this end a resistor must be connected
from VCC to RSET. If this pin is not used, it should
be connected to GND.

This specification is for a newly developed product. iC-Haus therefore reserves the right to change or update, without notice, any information contained herein,
design and specification; and to discontinue or limit production or distribution of any product versions. Please contact iC-Haus to ascertain the current data.
Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source.
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions
in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of
merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which
information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or
areas of applications of the product.
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

preliminary

preliminary
iC-LFL1402
256x1 LINEAR IMAGE SENSOR

Rev A3, Page 8/8

ORDERING INFORMATION

Type Package Order Designation

iC-LFL1402 OBGA™ LFL1C iC-LFL OBGA LFL1C
- iC-LFL Chip

For information about prices, terms of delivery, other packaging options etc. please contact:

iC-Haus GmbH Tel.: +49 (61 35) 92 92-0
Am Kuemmerling 18 Fax: +49 (61 35) 92 92-192
D-55294 Bodenheim Web: http://www.ichaus.com
GERMANY E-Mail: sales@ichaus.com

Rev: c

Low power Bluetooth™ Module with antenna- F2M03GLA
Datasheet

Features
• Fully qualified end product with
• Bluetooth™ v2.0+EDR, CE and FCC
• Low power consumption
• Integrated high output antenna
• Transmit power up to +8dBm
• Class1/ 2/ 3 Configurable
• Range up to 350m (line of sight)
• Piconet and Scatternet capability,
 support for up to 7 slaves
• Require only few external components
• Industrial temperature range -40°C to +85°C
• USB v2.0 compliant
• Extensive digital and analog I/O interface
• PCM interface for up to 3 simultaneous voice channels
• Large external memory for custom applications
• Support for 802.11b/g Co-Existence
• RoHS compliant

Applications
• Industrial and domestic appliances

• Cable replacement

• Medical systems

• Automotive applications

• Stand-alone sensors

• Embedded systems

• Cordless headsets

• Computer peripherals

(Mice, Keyboard, USB dongles, etc.)

• Handheld, laptop and desktop computers

www.free2move.net

BLUETOOTH is a trademark owned by
Bluetooth SIG, Inc., U.S.A. and licensed to Free2move

• Mobile phones

General Description
F2M03GLA is a Low power embedded
Bluetooth™ v2.0+EDR module with built-in high
output antenna. The module is a fully
Bluetooth™ compliant device for data and voice
communication. With a transmit power of up to
+8dBm and receiver sensibility of down to
–83dBm combined with low power consumption
the F2M03GLA is suitable for the most
demanding applications. Developers can easily
implement a wireless solution into their product
even with limited knowledge in Bluetooth™ and
RF. The module is fully Bluetooth™ v2.0+EDR
qualified and it is certified according to CE and
FCC, which give fast and easy Plug-and-Go
implementation and short time to market.

The F2M03GLA comes with an on board highly
efficient omni-directional antenna that simplifies
the integration for a developers Bluetooth™
solution. The high output power combined with
the low power consumption makes this module
ideal for handheld applications and other battery
powered devices.

RoHS
COMPLIANT
2002/96/EC

F2M03GLA can be delivered with the
exceedingly reliable and powerful easy-to-use
Wireless UART firmware implementing the
Bluetooth™ Serial Port Profile (SPP).

Bidragsrapport

I början av projektet delade vi in gruppen i mindre grupper. Eftersom vi är sex personer kändes det naturligt
att dela in sig i par. Vi hade regelbundna möten minst två gånger i veckan med en mötesagenda. Nedan
följer gruppindelningarna och ansvarsområdena för respektive grupp.

Tolkning av ECU­boxen och USB­gränssnitt
Joanna
Johannes

Databas and Android­app
Mikael
Anders

Desktop Applikation
Philip
Ewa

I mitten av projekttiden utökade vi projektet med sensorer och givare. Detta fick till följd att vi blev tvungna att
göra en ny gruppindelning. Den nya gruppindelningen och dess ansvarsområden finns beskrivna nedan.

Tolkning av ECU­boxen och USB­gränssnitt
Johannes

Android­app
Joanna
Anders(Projektledare)

Webbserver
Mikael

Desktop Applikation
Philip

Sensorer
Ewa

Mikrokontroller
Johannes

Arbetet har genomförts i smågrupperna medan mötena har ägnats åt problem, diskussion och status
uppdateringar.

Utveckling av individuella bidrag följer nedan.

Joanna Eriksson ­ joannae@student.chalmers.se ­ 891122­5905
● Möte (~80 h)
● Litteraturstudier (~60 h)

Då jag aldrig har programmerat i Android innan har en viss tid fått läggas på att lära mig detta samt
att finna material för de specifika programmeringsuppgifterna som jag har haft hand om.
Även MatLab: Tolkning av MatLab Script (av Civinco)

● Skriva rapport (~77 h)
I denna tid ingår förutom ren rapportskrivning även översättning till engelska av delar av
planeringsrapporten samt att jobba med formateringen av LaTex­dokumentet innehållandes
projektrapporten

○ Introduction
■ Intro
■ Limitations

○ Mobile Application
■ Layout and Design,

● Start­ and Run­view
● Action bar and Settings,

■ Functionalities
● Run View
● Calibration of sensor to measure steering

○ PHP­skript
■ Conversion to physical values

○ Discussion
■ Intro
■ Mobile Application

● Graphical User Interface
■ System in Total

○ Conclusion
■ Intro

● Programmering(~57 h)
Mobilapp: del av Settings­menyn (som senare inte användes), styrutslagsindikator, kalibrering
styrutslagssensor

● Meka (~10 h)
● Presentation (~25 h)

Ansvarig för halvtidsredovisning
● CTK's Bachelor's Challenge: Moment 1 & 2 (~20 h)
● Mjukvarudokumentation (~6 h) Med detta avser jag att jag gick igenom dokumentation och skrev om

inför inlämning av slutrapport. Dokumentation gjordes även gemensamt i gruppen i början av
projektet men den tiden har jag inte räknat in här utan på möte.

● Opponering(~17 h)
● Fackspråk (~5 h)
● Informationsteknik (~6 h)
● Projektföreläsning (~5 h)
● Övrigt (~10 h)

Total tid: 378 h

Mikael Johansson ­ Mikaejo@student.chalmers.se ­ 901106­0754

● Dokumentation ~5 timmar
● Programmering

○ Desktop applikation ~29 timmar
○ PHP ~77 timmar
○ Databasutveckling ~11 timmar

● Testning ~15 timmar
● Rapportskrivning ~27 timmar

○ Kap 5 Database
○ Kap 7 Discussion

■ Database transfer
■ Warning flags

○ Kap 8 Conclusion
■ Warning flags

● Inläsning ~39 timmar
○ Fräscha upp kunskaper om androidprogrammering
○ Fräscha upp kunskaper om javaprogrammering
○ Fräscha upp kunskaper om PHP­programmering
○ Fräscha upp kunskaper om SQL (MySQL)
○ Söka efter hjälp vid programmeringsfrågor

● Möten ~73 timmar
● Övrigt ~32 timmar

○ Planering
○ Diskutera koddesign
○ Boka mötessalar
○ Utvecklingsmiljö­problem

● Presentationer ~22 timmar
● Fackspråk ~5 h
● Informationsteknik ~6 h

○ 2 tillfällen
○ 1 hemuppgift

● Föreläsningar ~5 timmar

Totalt ~346 timmar

Anders Nordin ­ anordin@student.chalmers.se ­ 910122­5036

● Projektledning och administration(~19h): Ansvarig för styrdokument, kontakt med handledare ,
mötesbokningar, ansvarsfördelning, övrigtrelaterat.

● Inlärning och söka material(~48h): Lärde mig bl.a. Android och andra mindre delar.
● Dokumentation(~8h): kommentering, projekt­dokument
● Testning(~18h): Praktiska tester av funktionalitet i appen
● Databasmodellering(~2h): ER­diagram, SQL Queries
● Design(~27h)

○ Skapa affisch(~8h)
○ App­ikon och App­logo(~9h)
○ App­design(~10h)

● CTK Bachlor’s Challenge: Moment 1(~8h)
● Programmering(~65h): GPS, varvtid, medelhastighet, start och stopp, total tid, nuvarande hastighet,

överföring av zip­filer, reset, exit, felsökning.
● Skriva rapport(~58h)

○ Acknowledgements
○ Introduction

■ Background
■ Limitations

○ Mobile Application
■ Intro
■ Functionalities(except: Calibration of sensor to measure steering, USB Connection

and Bluetooth Connection)
○ Kap 7 Discussion

■ Mobile application
● Intro
● Calculation of a new lap
● Heap size error

○ Editorial Work
● Möten(~75h)
● Föreläsningar(~7h)
● Fackspråk(~5h)
● Felsökning av styrbox till telefon(~24h)
● Presentationer(~22h)

○ 2 tillfällen(~7h+6h)
○ Halvtidsredovisning­förberedelser(~9h)

● Biblioteksövning(~6h)
● Opponering(~14h): Opponeringsrapport, inläsning, muntligt framträdande.

Total tid: ~406 h

Ewa Simpanen ­ ewas@student.chalmers.se ­ 871017­4882

● Möte: 77 h
På mötena har vi allihopa planerat, diskuterat, bokat handledartider, skrivit på rapporter,
designat, kodat och jobbat med presentationer bland annat.

● Litteraturstudier: 88 h
Urvalsprocess och söka material om sensorer, arduino, installationsguider, bilens
egenskaper och allt som hör därtill. Läsa in sig på materialet samt även undersöka och lära
sig vilka sensordata som är relevanta och viktiga för projektet.

● Skriva rapport: 96 h
Ansvarig för LaTex­dokumentet innehållandes projektrapporten. Jag har lagt upp all
grundkod och sett till så att rapportens struktur hålls riktig. Dessutom har jag tagit hand om
och varit en hjälp vid diverse editering av dokumentet.

○ Introduction
Omarbetning av intro, 1.1, 1.2, 1.3 efter opposition.

○ Sensors
Intro, 4.1, 4.2 och alla underliggande stycken.

○ Discussion
Sensors 7.2.

○ Conclusion
Additional sensors 8.1.3.

● Installation av sensorer: 47 h
Löda, testa och installera sensorer i bilen.

● Presentation: 38 h
Ansvarig för bibliotekspresentationen och projektets slutpresentation.

● Programmering: 3 h
● Projektföreläsningar: 6 h
● Övrigt: 43 h

Övrigt innefattar administrativa göromål så som tidsbokning, mail, tidrapportering m.m.
samt ärenden hos handledare, opponering och bidragsrapport.

● Fackspråk: 5 h
● Informationsteknik: 6 h

Total tid: 409 h

Philip Steingrüber ­ 891022­4834 ­ phiste@student.chalmers.se

● Dokumentation (Desktop) ~25 timmar
● Programmering

○ Desktop applikation ~105 timmar
○ PHP ~1 timme

● Testning ~5 timmar
● Rapportskrivning ~65 timmar

○ Abstract/Sammanfattning
○ Kap 1 Introduction

■ Method
■ Task

○ Kap 5 Database
○ Kap 6 Desktop application
○ Kap 7 Discussion

■ Database transfer
■ Desktop application

○ Kap 8 Conclusion
■ Plotting GPS Coordinates
■ Remotely modifying engine parameters

○ Stora mängder korrekturläsning och redaktionella ändringar
● Inläsning ~35 timmar

○ Främst leta lösningar på programmeringsproblem
○ En del inläsning av androidprogrammering

● Möten ~65 timmar
● Övrigt ~25 timmar

○ Planering
○ Diskutera koddesign

● Slutpresentation ~15 timmar
● Fackspråk ~4 timmar handledning (2 tillfällen)

○ ~2 timmar kompletteringsuppgift
● Föreläsningar ~5 timmar

Totalt ~350 timmar

Johannes Weschke 840829­5015 johwesc@student.chalmers.se
● Möte (79h)
● Föreläsningar (5h)
● Söka Material (15h)

Letat efter information att läsa på om de olika delarna jag jobbat på.
● Inläsning(13h)

○ Läst material om Android programmering (Android Tutorials och Android skola från
internet), hade endast gjort en liten app innan.

○ Läst material om Arduino programmering, inte använt mig av innan.
● Skriva rapport (45h)

○ Mobile application
○ USB Connection
○ Bluetooth Connection
○ ECU
○ Sensors
○ Microcontroller
○ Discussion ­ ECU
○ Korrekturläsning

● Koda(79h)
○ Tagit hand om all programering till och från ECU:n.
○ Skrivit Android­applikations delarna som tar hand om kommunikation till och från styrboxen och

som omvandlar datan till värden.
○ Skrivit Android­applikationens delar som ansluter med blåtand till Arduinon och som tolkar datan

därifrån.
○ Skrivit Android­applikations delen som samlar ihop datan från Microcontrollern och ECU:n och

lägger ihop till ett data paket för avläsning.
○ Skrivt Android­applikations delen som zippar datafilerna och gör dom redo för att skickas.
○ Hjälpt till med Android­applikations delen som skickar datan till servern.
○ Tagit hand om all programmering till Microcontrollern (Arduinon) och sensorerna.

● Meka(92h)
○ Kopplat ihop sensorer och Arduino.
○ Mycket testning med hårdvaror och felsökningar.
○ Rootat Android telefon för omprogrammering av kerneln så att det skulle fungera att

använda telefonen som en USB­host.
○ Hämta testbänk av Civinco.

● Testning(6h)
○ Testning av appliaktionens olika delar

● Övrigt(44h)
○ Kontakt med Arne
○ Kontakt med Markus på Civinco
○ Material letande (hårdvara) så som Arduino, sensorer, telefon m.m.

● Diskussioner om problemlösning och nya idéer.
● Köpa hårdvara som behövts i Farnell butiken.
● Fackspråk(8h)

● Presentation(23h)
● Informationsteknik(6h)

Totalt tid: 415 h

	Introduction
	Background
	Objective
	Limitations
	Task
	Method
	Preliminary study and analysis
	Development
	Integration and validation

	Mobile Application
	Layout and Design
	Start- and Run-view
	Action bar and Settings

	Functionalities
	Global positioning system
	Run view
	Calibration of sensor to measure steering
	USB Connection
	Bluetooth Connection
	Storage
	Transfer of logged data

	Engine Control Unit
	Data transfer protocol
	Initiate data transfer with the ECU
	Data-package from ECU

	Sensors
	Critical data
	Speed
	Steering
	Tire pressure

	Post evaluation data
	Strains in the framework
	Camber, Toe in & Toe out
	G-force acceleration
	Engine chain tension

	Microcontroller
	Data transfer from the Arduino to the Android-phone
	Data transfer protocol
	Arduino program

	Database
	Database modeling
	Data transfer to database
	Conversion to physical values
	Transfer from a web server

	Desktop application
	GUI design process
	Implementation
	Web connection and collection of data
	Reading existing logs
	Parsing
	Threading
	GUI

	Discussion
	ECU
	Sensors
	Mobile application
	Graphical User Interface
	Calculation of a new lap
	Heap size error

	Database transfer
	Desktop application
	Lack of testdata
	GPS Plotting
	Warning flags

	System in total

	Conclusion
	Possible future developments
	Plotting GPS coordinates
	Remotely modifying engine parameters
	Additional sensors
	Warning flag

	Reference list
	Documentation of software
	Data sheets

