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Reinforced Concrete Beams Subjected to Drop-Weight Impact 

Experimental study of the influence of reinforcement properties on the structural 

response  

Master’s thesis in the Master’s Programme Structural Engineering and Building 

Technology 

MALIN ANDERSSON 

EMMA PETTERSSON 

Department of Architecture and Civil Engineering  

Division of Structural Engineering 

Concrete Structures 

Chalmers University of Technology 

 

ABSTRACT 

Reinforced concrete is commonly used in protective structures, therefore it is of high 

interest how it is affected by impulse loads such as collisions or explosions. The general 

purpose of this thesis is to increase the understanding of the structural response of 

reinforced concrete structures subjected to impact loading. An important issue was to 

evaluate the influence of damaged reinforcement on the plastic deformation capacity.  

 

A literature study was made on the mechanical properties of reinforcement that was 

damaged due to stretching, bending, welding and corrosion, together with its influence 

on the plastic deformation capacity. The mechanical properties of reinforcement 

damaged through stretching and bending were also tested experimentally. Furthermore, 

a literature study was made on impact loads, plastic rotation capacity and two-degree-

of-freedom (2DOF) systems.  

 

Experiments were conducted on reinforced concrete beams impacted by a drop-weight 

subsequently tested statically. Beams containing undamaged reinforcement and beams 

containing pre-stretched reinforcement were tested. The response was captured with 

cameras and was thereafter processed using digital image correlation (DIC). One 

objective was to use a 2DOF system to predict the response of the impacted beams. 

Additionally, simplified hand calculations were performed. The structural response of 

the dynamically impacted beams obtained from experiments was then compared to non-

impacted beams and to the predicted results obtained from the 2DOF model and hand 

calculations.  

 

The evaluation of the experiments showed that using pre-stretched reinforcement 

results in a smaller plastic deformation capacity and residual capacity after the impact, 

compared to using undamaged reinforcement. Furthermore, the 2DOF model generally 

underestimates the strength of the impacted beams which results in larger deflections 

than what was observed in the experiments. Thereby, the model predicts the dynamic 

response in a conservative way, though further developments of the model is desirable. 

 

Key words: reinforced concrete, reinforcement, damaged, pre-stretching, bending, 

welding, corrosion, drop-weight impact, digital image correlation, DIC, 2DOF, plastic 

deformation capacity.  
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Armerade Betongbalkar Utsatta för Fallviktsförsök 

Experimentell studie om påverkan av armeringens egenskaper på strukturresponsen 

Examensarbete inom masterprogrammet Konstruktionsteknik och Byggnadsteknologi 

MALIN ANDERSSON 

EMMA PETTERSSON 

Institutionen för arkitektur och samhällsbyggnadsteknik 

Avdelningen för Konstruktionsteknik 

Betongbyggnad 

Chalmers tekniska högskola 

 

SAMMANFATTNING 

Eftersom armerad betong ofta används till skyddande konstruktioner finns ett intresse 

för hur dessa påverkas av stötlaster såsom till exempel kollisioner eller explosioner. Det 

generella syftet med denna masteruppsats är att öka förståelsen för strukturresponsen 

hos armerade betongstrukturer utsatta för stötlast. En viktig del var att undersöka 

skadad armerings inverkan på den plastiska deformationskapaciteten.  

 

En litteraturstudie i materialegenskaper hos armering som är skadad genom 

kalldragning, bockning, svetsning och rost utfördes, med fokus på dess inverkan på den 

plastiska deformationskapaciteten. Materialegenskaperna hos armering skadad genom 

kalldragning och bockning testades även experimentellt. Vidare gjordes även 

litteraturstudie angående stötlaster, plastisk rotationsförmåga och tvåfrihetsgradsystem 

(2DOF-system).  

 

Experiment utfördes på armerade betongbalkar som stötbelastades genom en fallvikt 

och därefter testades statiskt. Både balkar med oskadad och kalldragen armering 

testades. Responsen filmades med kameror och analyserades sedan genom digital 

image correlation (DIC). Ett delmål med studien var att förutspå de stötbelastade 

balkarnas strukturrespons genom att använda ett 2DOF-system. Dessutom utfördes 

förenklade handberäkningar. Därefter jämfördes strukturresponsen hos de dynamiskt 

belastade balkarna erhållen från experimenten med den hos obelastade balkar och de 

förutspådda resultaten från 2DOF-modellen och handberäkningarna. 

 

Analysen av fallviktsförsöken visade att användning av kalldragen armering, i 

jämförelse med oskadad armering, resulterar i en lägre plastisk deformationskapacitet 

och återstående kapacitet efter stöten. Vidare tenderar 2DOF-modellen generellt att 

underskatta de stötbelastade balkarnas styrka vilket resulterar i större plastisk 

deformation än vad som kunde observeras i fallviktsförsöken. Därmed förutspår 

modellen det dynamiska beteendet på ett konservativt sätt, men en vidare utveckling av 

den vore önskvärt för framtida studier. 

 

Nyckelord: armerad betong, armering, skadad, kalldragning, bockning, svetsning, rost, 

fallviktsförsök, digital image correlation, DIC, 2DOF, plastisk deformationskapacitet. 
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1 Introduction 

 

1.1 Background 

How impact loads such as collisions or explosions affect different types of concrete 

structures is an important issue since concrete is commonly used for protective 

structures. An impact load can be critical for the remaining capacity of a structure. The 

structural response of an impact loaded concrete beam may be different compared to 

when it is statically loaded. Hence, it is not sure that observations obtained for statically 

loaded structures also hold true for a case of impact loading. 

  

The most effective way for a structure to resist an impact load is to withstand it through 

deformations. A large plastic deformation capacity in the structure is therefore essential 

to obtain a large energy absorption. Today, the plastic deformation capacity is 

determined using static load cases. However, it is of interest to investigate the influence 

of dynamic behaviour. Additionally, the influence of the properties of the reinforcement 

on the plastic deformation capacity is also of great interest.   

  

This thesis is part of an ongoing research project at the Division of Structural 

Engineering at Chalmers University of Technology that is financed by the Swedish 

Civil Contingencies Agency. The project is carried out as a co-operation between 

Chalmers and Norconsult and is a continuation of four previous thesis projects carried 

out in 2016 to 2018; Lovén and Svavarsdóttir (2016), Lozano and Makdesi (2017), 

Jönsson and Stenseke (2018) and Munther and Runebrant (2018).   

 

1.2 Aim 

The aim of this project is to increase the understanding of the structural response of 

reinforced concrete members subjected to impact loading, with focus on damaged 

reinforcement, and serve as a support for the research in the field. The specific 

objectives are 

• To study the influence of damaged reinforcement in reinforced concrete beams 

subjected to impact loading through experiments.  

• To study the mechanical properties of the reinforcement on bars that are 

damaged due to stretching, bending, welding or corrosion to increase the 

knowledge of its impact.  

• To investigate the capability to use a two-degree-of-freedom (2DOF) system to 

predict the results of the experiments in a simplified way. The calculations are 

compared to the experiments and analysed how and to what extent the dynamic 

response can be predicted.   
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1.3 Method 

The project started with a literature study to increase the knowledge of impact loading, 

plastic deformation capacity and the effect of damaged reinforcement.   

  

Thereafter, the main focus was the beam testing and analyses of the structural response. 

The manufacturing of the concrete beams was a part of the project. Half of the beams 

contained pre-stretched reinforcement while the rest were reinforced with undamaged 

bars.  

  

During the testing, cameras filmed the beams and digital image correlation (DIC) was 

then used to analyse the structural behaviour. This was the basis for the evaluation and 

analysis of the results. 

 

Predictions of the structural response of the beams were carried out by simplified hand 

calculations and a 2DOF system. The calculations of the 2DOF model were based on 

the methods found in the literature study.   

  

The influence of damage on the reinforcement bars was investigated by tensile tests for 

stretched and bent bars. The influence of corrosion and welding was studied in the 

literature of previously carried out work. 

 

1.4 Limitations 

In the study of the response of the reinforced beams, the number of beams tested were 

limited to twelve for the dynamic tests and six for the static tests. The concrete mixer 

had a limited size which resulted in having to mix the concrete in two batches of equal 

quantity. The number of tests for the material properties of both the concrete and the 

reinforcement were also limited.   

  

The study of the influence of the reinforcement’s properties on the plastic deformation 

capacity was in the drop-weight impact and static tests limited to testing undamaged 

reinforcement and pre-stretched reinforcement. The investigation of the influence of 

bent reinforcement was limited to analysis and interpretation of results from the tests 

of the mechanical properties. The influence of corroded and welded reinforcement was 

analysed through a literature study.   

  

The expected failure was bending failure and therefore shear failure was not taken into 

account in the study.   
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2 Structural Response and Materials  

The structural response of a structure is in this thesis described with four different types 

of responses; linear elastic, plastic, elasto-plastic and tri-linear. In order to facilitate the 

understanding of results and discussions made in subsequent chapters, this chapter 

describes these responses using simplified idealized functions.  

 

Furthermore, this chapter gives a brief description of all the materials used in the 

experiments, i.e. concrete, reinforcing steel and reinforced concrete.  

 

2.1 Linear elastic response 

A linear elastic response is characterized by a linear response where deformations go 

back to zero when the structure is unloaded (Lundh, 2000). The response can be 

described by  

 

𝑅(𝑢) = 𝑘 ∙ 𝑢𝑒𝑙 (2.1) 

 

where 𝑅 corresponds to the internal resisting force, 𝑘 to the stiffness of the structure 

and 𝑢𝑒𝑙 to the displacement. Accordingly, the relation between the internal resisting 

force and the displacement is linear and is illustrated in Figure 2.1. 

 

 

Figure 2.1 Relation between the internal resisting force R and displacement u for a 

linear elastic response. From Jönsson and Stenseke (2018).  
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2.2 Plastic response 

A plastic response is characterised by lasting deformations when the structure is 

unloaded (Lundh, 2000). As seen in Figure 2.2 an ideally plastic response implies that 

there will be no lasting deformations if the applied load is less than the maximum 

internal resistance 𝑅𝑚.  

 

 

Figure 2.2 Relation between the internal resisting force R and displacement u for an 

ideally plastic response. From Jönsson and Stenseke (2018). 

 

The ideally plastic response can be described by  

 

𝑅(𝑢) = {
𝐹       𝑖𝑓      𝑢 = 0
𝑅𝑚    𝑖𝑓      𝑢 > 0

 (2.2) 

 

where 𝐹 is an external force that is smaller than the maximum internal resistance 𝑅𝑚 

and 𝑢 is the displacement.  

 

As can be seen in Figure 2.2 the relation between 𝑅 and 𝑢 for an ideally plastic response 

is horizontal. This is because ideal plasticity does not take hardening effects into 

account (Ljung, Saabye Ottosen and Ristinmaa, 2007).  

 

2.3 Elasto-plastic response 

An elasto-plastic response is a combination of an elastic response and a plastic 

response. This can be used to describe a structural response in a more accurate way. As 

can be seen in Figure 2.3 an elasto-plastic response will exhibit an elastic response until 

the maximum internal resistance is reached and thereafter exhibit a plastic response. 

The deformation arising from loading of the structure will contain one elastic and one 

plastic part. When the structure is unloaded the elastic deformation will go back to zero 

while the plastic deformation will remain. The same stiffness is assumed if the structure 

is reloaded. In design, it is common to approximate the load-deflection relation for 

concrete structures as elasto-plastic.  

u
pl 

 u 

R 

R
m
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Figure 2.3 Relation between the internal resisting force R and displacement u for an 

elasto-plastic response. From Jönsson and Stenseke (2018). 

 

The elasto-plastic response can be described by  

 

𝑅(𝑢) = {
𝑘 ∙ 𝑢       𝑖𝑓      𝑢 ≤ 𝑢𝑒𝑙

𝑅𝑚         𝑖𝑓      𝑢 > 𝑢𝑒𝑙
    (2.3) 

 

where  𝑅𝑚  is the maximum internal resistance and 𝑢 is the displacement. The total 

deformation 𝑢𝑡𝑜𝑡 can be described as 

 

𝑢𝑡𝑜𝑡 = 𝑢𝑒𝑙 + 𝑢𝑝𝑙    (2.4) 

 

where 𝑢𝑝𝑙 is the plastic deformation and 𝑢𝑒𝑙 is the elastic deformation.  

 

2.4 Tri-linear response 

A tri-linear response is an even more refined response which corresponds well with that 

of reinforced concrete which will have a change in stiffness when the first cracks appear 

(Jönsson and Stenseke, 2018). In a tri-linear response the part with an internal resistance 

below 𝑅𝑚 is divided into two parts with different stiffnesses. The relation between the 

internal resisting force and displacement is depicted in Figure 2.4. 

 

 

Figure 2.4 Relation between the internal resisting force R and displacement u for a 

tri-linear response. From Jönsson and Stenseke (2018). 
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The tri-linear response can also be described by  

 

𝑅(𝑢) = {

𝑘 ∙ 𝑢                         𝑖𝑓 𝑢 ≤ 𝑢𝑐𝑟                  

𝑅𝑐𝑟 + 𝑘′(𝑢 − 𝑢𝑐𝑟) 𝑖𝑓 𝑢𝑐𝑟 ≤ 𝑢 ≤ 𝑢𝑝𝑙

𝑅𝑚                                       𝑖𝑓 𝑢 > 𝑢𝑝𝑙             
    (2.5) 

 

where 𝑢𝑐𝑟 corresponds to the displacement when cracking occurs, 𝑅𝑐𝑟 is the internal 

resisting force when cracking occurs, 𝑘 is the stiffness before cracking occurs and 𝑘′ is 

the stiffness after cracking has occurred.  

 

2.5 Concrete 

Concrete is a composite material containing a mixture of cement, aggregates and water 

(Al-Emrani, Engström, Johansson and Johansson, 2013). It is characterised by its 

difference in strength when subjected to tension and compression. This is illustrated in 

Figure 2.5 showing the stress-strain relation for concrete under uniaxial loading. The 

compressive strength, fc, is markedly higher than the tensile strength, fct. This is why 

concrete structures subjected to tension often are provided with reinforcing steel. 

Reinforced concrete (RC) is further described in Section 2.7.  

 

 

Figure 2.5  Stress-strain relation for concrete under uniaxial loading. fc and fct 

correspond to the strength in compression and tension respectively. 

From Jönsson and Stenseke (2018). 

 

2.5.1 Structural response in compression 

The stress-strain relationship of concrete under compressive loading is of considerable 

interest since concrete often is used for its eligible properties in compression. According 

to Burström (2001) the compressive strength is the most tested property of concrete.  

 

The failure mode for concrete with lower compressive strength is more ductile while 

the failure mode for concrete with higher compressive strength is more brittle (Al-

Emrani et al, 2013). This is also indicated in Figure 2.6 where the compressive strain 

related to the maximum compressive stress is higher for concrete with higher 

compressive strength.  
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Figure 2.6 Typical compressive stress-strain relations for concrete with different 

strengths. c and c correspond to the compressive stress and 

compressive strain respectively. From Jönsson and Stenseke (2018). 

 

Furthermore, the compressive strength of concrete is also depending on the loading 

rate. As can be seen in Figure 2.7 the compressive strength gets higher for a faster 

loading rate. This effect is further described in Section 2.7.2.  

 

 

Figure 2.7 Illustration of compressive strengths dependency on loading rate. From 

Jönsson and Stenseke (2018). 

 

In design there are several simplified stress-strain relations that can be used. Two 

examples of simplified stress-strain relations for concrete subjected to compression 

given in Al-Emrani et al (2013) are illustrated in Figure 2.8. The stress-strain relation 

can be assumed to be parabolic until maximum compressive strength is reached and 

thereafter constant until ultimate concrete strain, see Figure 2.8a. An even more 

simplified but also more conservative model is to assume a bi-linear model, see 

Figure 2.8b.  
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 Figure 2.8 Simplified stress-strain relations for concrete subjected to compression. 

From Jönsson and Stenseke (2018). 

 

2.5.2 Determination of concrete strength 

This section describes ways of determining concrete strength from standard material 

tests. The tests treated here are regarding compressive strength, tensile strength and 

modulus of elasticity. 

 

2.5.2.1 Compressive strength 

The compressive strength of concrete is determined in a uniaxial loading test according 

to CEN (2009b). The test is normally performed using concrete cylinders. However, in 

Sweden cubes are often used instead of cylinders, which results in a higher strength. 

This is taken into account by  

 

𝑓𝑐𝑚 = 0.8 𝑓𝑐𝑚,𝑐𝑢𝑏𝑒    (2.6) 

 

where 𝑓𝑐𝑚  is the mean compressive strength of a cylinder and 𝑓𝑐𝑚,𝑐𝑢𝑏𝑒  is the mean 

compressive strength of a cube.  

 

2.5.2.2 Tensile strength 

The tensile strength of concrete can be determined in a splitting test according to 

CEN (2009c). An approximation of the axial tensile strength, 𝑓𝑐𝑡, can be determined 

from the splitting tensile strength, 𝑓𝑐𝑡,𝑠𝑝, as 

 

𝑓𝑐𝑡 = 0.9𝑓𝑐𝑡,𝑠𝑝    (2.7) 

 

  

 



 

 

 

CHALMERS Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 9 

Another way to determine the tensile strength is to do it based on the characteristic 

compressive strength as 

 

𝑓𝑐𝑡 = 0.3𝑓𝑐𝑘
2/3

              for concrete class  C50/60    (2.8) 

 

where 

 

𝑓𝑐𝑘 =  𝑓𝑐𝑚 − 8 MPa                  (2.9) 

 

The flexural tensile strength, 𝑓𝑐𝑡,𝑓𝑙, can be determined based on the axial tensile strength 

as 

 

𝑓𝑐𝑡,𝑓𝑙 = 𝑘 ∙ 𝑓𝑐𝑡𝑚              for concrete class  C50/60    (2.10) 

 

where  

 

𝑘 = 0.6 +
0.4

ℎ0.25                 (2.11) 

 

and ℎ is the height of the cross-section.  

 

2.5.2.3 Modulus of elasticity 

The mean modulus of elasticity can be determined as the secant modulus between the 

origin and 𝜎𝑐 = 0.4 𝑓𝑐𝑚 in the stress-strain relation curve for concrete. However, the 

mean modulus of elasticity can also be approximately determined as  

 

𝐸𝑐𝑚 = 22 (
𝑓𝑐𝑚

10
)

0.3

        [GPa]    (2.12) 

 

where 𝑓𝑐𝑚 is the mean compressive strength in [MPa]. 

 

2.6 Reinforcing steel 

Since, as mentioned in Section 2.5, reinforcement often is used to compensate for the 

low tensile strength of concrete, its behaviour under tension is the main interest.  

 

Reinforcing steel is classified according to several properties such as its strength, 

fatigue strength, ductility class, size, weldability etc. (Engström, 2015). Considering 

the ability to take up impulse loads for reinforced concrete structures, a ductile response 

is preferred (Johansson and Laine, 2012). Plain concrete is in comparison to reinforcing 

steel a brittle material and therefore a reinforced concrete structure’s ability to exhibit 

a ductile response is mainly depending on the ductility of the reinforcement. Hence, the 

ductility class of reinforcing steel is of special interest in this thesis. According to 

Eurocode 2 (CEN, 2005) reinforcement bars can be classified into three categories, 

summarized in Table 2.1. 
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Table 2.1 Classification of reinforcing steel with regard to ductility characteristics. 

Property 
Class 

A B C 

Characteristic yield strength, fyk or f0.2 [MPa] 400 to 600 

Ultimate strength / yield strength, (fu / fy)k ≥ 1.05 ≥ 1.08 
≥ 1.15 

< 1.35 

Characteristic strain at maximum force, suk ≥ 0.025 ≥ 0.05 ≥ 0.075 

 

The structural tensile response of reinforcing steel is depending on the manufacturing 

process (Engström, 2015). Distinction is made between reinforcing steel that is hot 

rolled and reinforcing steel that is cold worked. A comparison between the associated 

stress-strain relations for the two manufacturing processes is displayed in Figure 2.9, 

where fu corresponds to maximum tensile strength, fy to yield strength, f0.2 to proof stress 

and su to the ultimate strain at maximum strength, fu. 

 

Figure 2.9 Stress-strain relation for reinforcing steel that is a) hot rolled and b) cold 

worked. From Jönsson and Stenseke (2018).  

 

The stress-strain relation for hot rolled reinforcing steel distinguishes a clear plastic 

stage (yield plateau) and a large strain hardening stage. Cold worked reinforcing steel 

is lacking a clear yield plateau and has a smaller strain hardening stage. Hence, it is not 

possible to determine the yield stress for cold worked reinforcing steel. Instead the so 

called proof stress, f0.2, is used for this type of reinforcement. The proof stress is further 

described in Section 5.2.  
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2.7 Reinforced concrete 

Reinforced concrete can be seen as a composite material that utilizes the 

reinforcement’s ductility and eligible properties in tension and the concrete’s high 

strength in compression. This enables the use of reinforced concrete in many different 

structures.  

 

2.7.1 Structural response in bending 

In this thesis, experiments are executed on simply supported reinforced concrete beams. 

A typical load-deflection relation for that type of beam subjected to a concentrated force 

in the mid span is illustrated in Figure 2.10. The response can be brittle or ductile 

depending on the configuration and properties of the reinforcement.  

 

Figure 2.10 Schematic structural response of a simply supported reinforced concrete 

beam subjected to a concentrated load in the mid span. Modified from 

Johansson and Laine (2012). 

 

The response can be divided into three stages; state I, state II and state III. In state I the 

concrete is assumed to be uncracked and the response is assumed to be linear elastic for 

both the reinforcing steel and the concrete. In design the influence of the reinforcement 

is often neglected and the stiffness of the uncracked section is determined based on the 

properties of the concrete only (Engström, 2015). However, the stiffness could be 

increased by over 20 % by including the reinforcement.  

 

In state II, the concrete is assumed to be fully cracked and the response is, like in state 

I, assumed to be linear elastic for both the reinforcing steel and the concrete. The 

concrete in the tensile zone is considered not to contribute. The stiffness gets lower than 

in state I but will now also depend on the reinforcement configuration.  

 

The uncracked concrete in between the cracks in a fully cracked region will still 

contribute to the stiffness of the region, this effect is referred to as tension stiffening. 

Hence, using a state II model to determine the stiffness of a cracked member will result 

in an underestimation of the real stiffness of the member. Though it should be noted 
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that the effect of tension stiffening will decrease when the load is increased above the 

cracking load.  

 

In state III, the response of the reinforcng steel and/or the concrete are assumed to be 

non-linear.  

 

The response of a simply supported reinforced concrete beam can according to 

Johansson and Laine (2012) be simplified to a bi-linear elasto-plastic response. This 

simplification is illustrated in blue colour in Figure 2.11. The beam is here assumed to 

be fully cracked already from the start of the application of load and the stiffness is 

determined based on a state II model. The response of the beam is up to its fracture 

capacity considered to be elastic and after that it is considered to be ideal plastic.  

 

Figure 2.11 Schematic simplified structural response showing a bi-linear response of 

a simply supported reinforced concrete beam subjected to a concentrated 

load in the mid span. The simplified response is marked in blue. Modified 

from Johansson and Laine (2012). 

 

2.7.2 Strain rate effects  

The material properties of concrete and reinforcing steel are affected by the rate of 

loading (Johansson, 2000). When a load is applied fast the material tends to behave 

stronger and stiffer. This effect is referred to as strain rate effect, 𝜀̇ [1/s]. Hence, the 

structural response of an impact loaded reinforced concrete beam may be different 

compared to a statically loaded beam. In other words, it is not sure that observations 

obtained for statically loaded structures hold true for a dynamic case of impact loading.  

 

Furthermore, the degree of dynamic loading can vary widely between different load 

types. As an example, an earthquake load is considered to be 100 to 1 000 times faster 

than a static load. The difference in load rate is illustrated in relation to a static load in 

Figure 2.12.  
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Figure 2.12 Principal difference in load rate for a building subjected to different load 

types. The values are normalized in relation to a static load. Modified 

from Johansson and Laine (2012). 

 

A thorough investigation of strain rate effects is done in Johansson (2000). A common 

way to describe the increase in strength or stiffness due to dynamic loading in relation 

to its static counterpart is through a dynamic increase factor, 𝐷𝐼𝐹 , which can be 

expressed as 

 

𝐷𝐼𝐹 =
𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝐹𝑠𝑡𝑎𝑡𝑖𝑐
    (2.13) 

  

where 𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐  and 𝐹𝑠𝑡𝑎𝑡𝑖𝑐  is the dynamic and static load respectively. The DIF for 

different strain rates according to some different studies are compared in 

Johansson (2000) and presented in Figure 2.13 for concrete in compression, 

Figure 2.14 for concrete in tension and Figure 2.15 for reinforcement in tension. It can 

be seen that the strain rate has largest effect on concrete strength. Regarding the 

reinforcement the yield and ultimate strength is somewhat affected by the strain rate 

but the modulus of elasticity is not. Though, it should be noticed that there are 

considerably large deviations between the different studies which implies that the effect 

of strain rates is uncertain. 

 

 

Figure 2.13 Relation between DIF and strain rate for concrete in compression 

according to different studies. From Johansson (2000). 
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Figure 2.14 Relation between DIF and strain rate for concrete in tension  according 

to different studies. From Johansson (2000). 

 

 

Figure 2.15 Relation between DIF and strain rate for reinforcement in tension  

according to different studies. From Johansson (2000). 
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3 Impulse Loaded Structures 

An impulse load is a dynamic load with high intensity and short duration. It may be 

caused by e.g. an explosion or an impact between two objects. Explosions may be rare 

in urban areas but they may still be of interest to consider as a possible load case for a 

structure (Johansson and Laine, 2012). Furthermore, Johansson and Laine (2012) 

explains that different structures are exposed to different levels of explosion risks. 

Possible causes for the presence of an explosion load may be an accident involving a 

truck carrying gas or flammable liquid or even explosions from terrorists.  

 

An explosion is a dynamic load acting on a structure. Figure 3.1 illustrates two extreme 

cases of dynamic loading, an ideal impulse load, here denoted as a characteristic 

impulse, and a pressure load. Figure 3.1a shows a characteristic impulse, Ik, with an 

infinitely large pressure that acts for an infinitesimal time. A pressure load, illustrated 

in Figure 3.1b, acts with a characteristic pressure at an infinite time. An impulse load 

can act as either of these extreme cases, though, the general interpretation is somewhere 

in between (Johansson and Laine, 2012). In this report the drop-weight hitting the 

beams is treated as an impulse load case. Therefore the case of impulse loading and 

how it can be interpreted will be further described in this chapter.  

 

 

        

Figure 3.1 Illustration of extreme dynamic cases that start acting at the time ta:        

a) characteristic impulse and b) characteristic pressure load. From 

Johansson and Laine (2012). 

 

3.1 Impulse, external work and kinetic energy 

According to Johansson and Laine (2012) the impulse on a body can be described by 

the change in the momentum, 𝑝 = 𝑚𝑣, of the body before and after impact as 

 

𝐼 = 𝑚 ∙ 𝑣1 − 𝑚 ∙ 𝑣0 = ∫ 𝐹(𝑡)𝑑𝑡
𝑡1

𝑡0

 (3.1) 

 

where I is the impulse, m the mass of the body, v1 and v0  the velocity of the mass after 

and before the impulse respectively, and F the force of the impulse. 
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In addition, the kinetic energy of the body, 𝐸𝑘, is defined as 

 

𝐸𝑘 =
𝑚 ∙ 𝑣2

2
 (3.2) 

 

According to Jönsson and Stenseke (2018) the external work on the same body, 𝑊𝑒 can 

be described by the change in kinetic energy as   

 

𝑊𝑒 = ∆𝐸𝑘 =
𝑚 ∙ 𝑣1

2

2
−

𝑚 ∙ 𝑣0
2

2
 (3.3) 

 

Furthermore, for a body where 𝑣0
 = 0, the equation for external work can be combined 

with Equation (3.1) as 

 

𝑊𝑒 =
𝐼𝑘

2

2𝑚
 (3.4) 

 

where 𝐼𝑘
  is the characteristic impulse. 

 

3.2 Equation of motion 

The equation of motion is based on Newton’s second law in accordance to Figure 3.2 

as 

𝐹(𝑡) − (𝑅𝑠𝑡𝑎 + 𝑅𝑑𝑦𝑛) = 𝑚𝑎 (3.5) 

 

where 𝑅𝑠𝑡𝑎 , 𝑅𝑑𝑦𝑛  and 𝑎  are the static and dynamic internal response and the 

acceleration of the body, respectively.  

 

Figure 3.2 Free body diagram of a dynamically loaded accelerating body. From 

Johansson and Laine (2012). 
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For a linear elastic response the internal responses Rsta and Rdyn can be expressed as 

 

𝑅𝑠𝑡𝑎 = 𝑘𝑢 (3.6) 

𝑅𝑑𝑦𝑛 = 𝑐𝑢̇ (3.7) 

 

where 𝑘 is a linear spring stiffness, 𝑢 is the deformation, 𝑐 is the damping coefficient 

and 𝑢̇ is the velocity of the body. Inserting these expressions into Equation (3.5) with 

𝑢̈ as the acceleration results in the commonly used expression of the equation of motion 

 

𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝐹(𝑡) (3.8) 

 

3.3 Internal work and energy equilibrium 

According to Johansson and Laine (2012), the response of an impulse loaded structure 

depends on energy equilibrium; i.e. the internal energy absorption is an important 

parameter. This is in contradiction to a statically loaded structure in which force 

equilibrium is essential. Energy equilibrium means that the external work on a body has 

to be balanced by an internal work, as illustrated in Figure 3.3, where the external and 

internal work are the integrals of the force and response curves, respectively.  

 

Figure 3.3 Schematic figure of the external work as the integral of an applied load 

F(u) and the internal work as the integral of the structural response R(u). 

From Johansson and Laine (2012). 

 

The ability of a structure to absorb energy, as illustrated in Figure 3.3, is determined by 

a combination of the force and resulting deformation. The characteristics of this 

combination depends on the material and geometry of the structure. Furthermore, 

Johansson and Laine (2012) state that it is more desirable to have a large capacity to 

deform than a large stiffness for an impulse loaded structure. The response of a structure 

are often in a simplified manner described as elastic, plastic or elastoplastic, as 

described in Section 2.1 to 2.3. How the internal work, 𝑊𝑖, is determined from these 

three responses is illustrated in Figure 3.4. The plastic deformation capacity, 𝑢𝑝𝑙, of a 

structure, is used as the definition of the structure’s ductility by Johansson and 

Laine (2012). This is done in this report as well. 
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             a) b)                 c) 

Figure 3.4 Structural response assuming a) linear elastic behaviour, b) plastic 

behaviour and c) elastic ideal plastic behaviour. From Johansson and 

Laine (2012). 

 

3.4 Collision of two bodies 

The mass has a large influence in the structural response of an impulse loaded structure, 

which can be interpreted from Equation (3.4). A collision of two particles can be 

described using two extreme cases; an elastic or plastic behaviour. Grahn and  

Jansson (2013), state that after an elastic collision the two bodies will have two different 

velocities while in a plastic case they will gain the same velocity after impact, see 

Figure 3.5 and Figure 3.6. After a perfectly elastic collision both the kinetic energy and 

momentum will remain, whereas after a perfectly plastic one the momentum remains 

while the kinetic energy is reduced. The amount of energy consumed is dependent of 

the masses of the particles, and the remaining energy has to be absorbed by the structure 

(Johansson and Laine (2012). 

 

Figure 3.5 Before collision between two particles. From Jönsson and 

Stenseke (2018). 

 

u 

R 

Wi 

uel 

k 

 

u 

R 

R 

Wi 

upl 

 

u 

R 

R 

Wi 

utot uel 

utot = uel + upl 

k 

 

 

  

 
m1 

m2 

v0 v = 0 



 

 

 

CHALMERS Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 19 

 

Figure 3.6 After collision between two particles, a) elastic collision and b) plastic 

collision. From Jönsson and Stenseke (2018). 

 

The kinetic energy and momentum of the first body before impact can be described as 

 

𝐸𝑘,0 =
𝑚1𝑣0

2

2
 (3.9) 

𝑝0 = 𝑚1𝑣0
  (3.10) 

 

For an elastic collision, the velocities of the bodies after impact are calculated as 

 

𝑣1 =
𝑚1 − 𝑚2

𝑚1 + 𝑚2
𝑣0 (3.11) 

𝑣2 =
2𝑚1

𝑚1 + 𝑚2
𝑣0 (3.12) 

 

The kinetic energy for the particles after an elastic impact can be determined as 

 

𝐸𝑘,1 =
𝑚1𝑣1

2

2
=

𝑚1

2
(

𝑚1 − 𝑚2

𝑚1 + 𝑚2
)

2

𝑣0
2 = (

𝑚1 − 𝑚2

𝑚1 + 𝑚2
)

2

𝐸𝑘,0 (3.13) 

𝐸𝑘,2 =
𝑚2𝑣2

2

2
=

𝑚2

2
(

2𝑚1

𝑚1 + 𝑚2
)

2

𝑣0
2 =

4𝑚1𝑚2

(𝑚1 + 𝑚2)2
𝐸𝑘,0 (3.14) 

 

The velocity of the bodies after a perfectly plastic impact can be determined as 

 

𝑣3 =
𝑚1

𝑚1 + 𝑚2
𝑣0 (3.15) 
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Following, the kinetic energy after a plastic impact can be calculated as 

 

𝐸𝑘,3 =
(𝑚1 + 𝑚2)𝑣3

2

2
=

𝑚1 + 𝑚2

2
(

𝑚1

𝑚1 + 𝑚2
)

2

𝑣0
2

=
𝑚1

𝑚1 + 𝑚2
𝐸𝑘,0 

(3.16) 
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4 Plastic Rotation Capacity 

In Chapter 3 it is concluded that a ductile behaviour of an impulse loaded structure is 

desirable. When it comes to concrete structures, the properties of the reinforcement are 

essential to obtain such a response. A ductile response means formation of plastic 

hinges. A plastic hinge is a part of the structure where the reinforcement plasticise 

leading to the ability for the cross-section to keep its load capacity while the 

deformation is increased. According to Johansson and Laine (2012) this enables for 

redistributions in the structure and leads to an increased ability to absorb energy. 

 

The plastic rotation of a structure is coupled to the deformation and therefore to the 

energy absorption. This is why a high value of plastic rotation capacity is desirable in 

an impulse loaded structure. It is often assumed in theory that plastic hinges are 

concentrated to a section in the structure while the real hinge is spread over a region, 

according to Jönsson and Stenseke (2018), see Figure 4.1. 

 

Figure 4.1 Plastic hinge in theory and reality. From Jönsson and Stenseke (2018). 

 

In this chapter, a definition of the plastic rotation capacity is described, followed by an 

investigation of the influence of the mechanical properties of the reinforcement. Lastly, 

a few methods of determining the plastic rotation of a structure are described.  

 

4.1 Definition of plastic rotation 

When defining the plastic rotation of a concrete cross-section, the curvature is used. 

The curvature, 𝜑, of a cross-section is according to Engström (2011) defined as the 

change of angle per unit length, as in Equation (4.1) with variables as in Figure 4.2. 

 

𝜑 =
1

𝑟
=

𝑑𝜙

𝑑𝑥
 (4.1) 
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Figure 4.2 Relationship between curvature radius and flexural deformation of a 

beam element with constant curvature. From Jönsson and 

Stenseke (2018). 

 

For a cross-section with known strain distribution, the curvature can be determined 

using known values of strains and the geometry of the section. For the cross-section in 

Figure 4.3, which is loaded in pure bending, the curvature can be determined as 

 

𝜑 =
1

𝑟
=

𝜀𝑐𝑐

𝑥
=

𝜀𝑠

𝑑 − 𝑥
 (4.2) 

 

 

Figure 4.3 Definition of curvature from known strains. From Jönsson and 

Stenseke (2018). 

 

For a region with length lpl, where the steel strain exceeds the yield strain, the plastic 

rotation can be determined by integrating the plastic curvature from all sections along 

the length lpl, as in Equation (4.3) (Engström, 2015). This is illustrated in Figure 4.4 in 

two simplified ways.  

 

𝜃𝑝𝑙 = ∫ (𝜑(𝑥) − 𝜑𝑦)
 

𝑙𝑝𝑙

𝑑𝑥 (4.3) 

 

 

d𝜙 
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dx 

x
tp

 



 

 

 

CHALMERS Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 23 

 

Figure 4.4 Schematic representation of different simplified models to determine 

plastic rotation capacity. Modified from Lozano and Makdesi (2017). 

 

To determine the plastic rotation capacity of a cross-section, the upper limit for the 

curvature is needed. This is normally defined as the curvature at ultimate concrete 

strain. However, it can be determined as the curvature at ultimate steel strain (see 

Figure 4.5) in cases of high steel ratios or for steel with low ductility, according to 

Engström (2015). The definition of the plastic rotation capacity is therefore the 

difference between ultimate curvature and yield curvature. These definitions can be 

seen in Figure 4.5 for an under-reinforced concrete cross-section in accordance with 

Engström (2015).  

lpl lpl 
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Figure 4.5 Typical moment-curvature diagram for an under-reinforced concrete 

cross-section. Modified from Engström (2015). 

 

The definition for the curvature at yielding is 

 

𝜑𝑦 = (
1

𝑟
)

𝑦
=

𝜀𝑐𝑦

𝑥𝑦
=

𝜀𝑠𝑦

𝑑 − 𝑥𝑦
 (4.4) 

 

where the parameters are defined as in Figure 4.5. Furthermore, the ultimate curvature 

is, for cases when ultimate concrete strain is reached first, defined as 

 

𝜑𝑢 = (
1

𝑟
)

𝑢
=

𝜀𝑐𝑢

𝑥𝑢
=

𝜀𝑠

𝑑 − 𝑥𝑢
 (4.5) 

 

and, for cases when the ultimate steel strain is reached first, as 

 

𝜑𝑢 = (
1

𝑟
)

𝑢
=

𝜀𝑐𝑐

𝑥𝑢
=

𝜀𝑠𝑢

𝑑 − 𝑥𝑢
 (4.6) 

 

The parameters are defined in Figure 4.5, and 𝜀𝑠𝑢 is defined as the ultimate steel strain.  

 

Using these definitions of curvature at yielding and ultimate strain, the plastic curvature 

of a section can be defined using the steel strains as   

 

𝜑𝑝𝑙 = (
1

𝑟
)

𝑝𝑙
= (

1

𝑟
)

𝑢
− (

1

𝑟
)

𝑦
=

𝜀𝑠

𝑑 − 𝑥𝑢
−

𝜀𝑠𝑦

𝑑 − 𝑥𝑦
≈

𝜀𝑠 − 𝜀𝑠𝑦

𝑑 − 𝑥𝑢
 (4.7) 
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Moreover, the plastic curvature of a plastic region varies due to the variation of steel 

strains within the plastic region, 𝑙𝑝𝑙. Combining Equation (4.3) and (4.7), the plastic 

rotation capacity of the region can be determined as the integral of the plastic curvature 

along this length, which results in 

 

𝜃𝑝𝑙 = ∫ (
𝜀𝑠(𝑥) − 𝜀𝑠𝑦

𝑑 − 𝑥𝑢
)

 

𝑙𝑝𝑙

𝑑𝑥 (4.8) 

 

Engström (2015) states that this way of calculating the plastic rotation of a plastic hinge 

is theoretically correct though it is quite difficult to use since the parameters are quite 

complex. Therefore, other ways of determining the plastic rotation capacity of a plastic 

hinge are described in Section 4.3 with this definition as a theoretical background. The 

physical definition of the plastic rotation in Engström (2015) is presented in Figure 4.6.  

 

Figure 4.6 Definition of plastic rotation of a plastic hinge as in Engström (2015). 

From Jönsson and Stenseke (2018). 

 

Further, Engström (2015) mentions ways of improving the rotation capacity of a 

concrete member, where one method is to use reinforcing steel with high ductility. This 

influence of reinforcement mechanical properties on the plastic rotation capacity is 

further described in Section 4.2. 

 

4.2 Influence of the mechanical properties of the 

reinforcement 

As described in Section 4.1, the plastic rotation capacity is defined by the integral of 

the difference in ultimate and yield curvature of a concrete region. These curvatures 

represent moments at different states of the concrete, as illustrated in Figure 4.7. The 

yield curvature gives a yield moment, My, and the ultimate curvature gives an ultimate 

moment, Mu. A high ratio of these moments, 𝜂𝑀  (defined in Equation (4.9)), is, 

according to M. Johansson (technical specialist, Norconsult) needed for a high plastic 

rotation capacity (personal communication, 2 April, 2019). 

 

𝜂𝑀 =
𝑀𝑢

𝑀𝑦
 (4.9) 

 

 

 
θpl 
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Figure 4.7 Moment-curvature diagram for reinforced concrete. Inspired by 

M. Johansson (personal communication, 2 April, 2019).  

 

The load-case studied in this project is a simply supported beam subjected to a point 

load in the middle of the span. This gives a moment distribution as shown in Figure 4.8. 

Accordingly, it can be noted that for an increased value of 𝜂𝑀 the plastic hinge length, 

lpl, also increases. To obtain a high plastic rotation capacity a large lpl is desired as 

previously understood by the definition which is based on integrating the curvature over 

the plastic hinge length. 

 

Figure 4.8 Moment distribution of simply supported beam subjected to point load in 

the middle of the span. Inspired by M. Johansson (personal 

communication, 2 April, 2019). 
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Furthermore, when a concrete section has cracked, the stiffness and bending capacity 

are mostly dependent on the properties of the reinforcement, and behaves thereafter. 

Therefore, the moment ratio, 𝜂𝑀, can approximately be treated as almost equal to the 

reinforcement ratio, 𝜂𝑓, as  

 

𝜂𝑓 =
𝑓𝑢

𝑓𝑦
≈

𝑀𝑢

𝑀𝑦
= 𝜂𝑀 (4.10) 

 

Based on this, it can be concluded that the strain hardening effects of the reinforcement 

are important for a high plastic rotation capacity. However, this is mainly the case for 

concrete structures with high reinforcement ratios, where concrete crushing is the 

determining failure mode (M. Johansson, personal communication, 28 May, 2019). On 

the other hand, when rupture of the reinforcement is the determining failure mode (for 

low reinforcement ratios), the plastic strain capacity, pl, of the reinforcement may also 

have large influence on the plastic rotation capacity.  

 

4.3 Methods to predict the plastic rotation capacity 

In this section three different methods of determining the plastic rotation capacity of a 

structure are presented. Bk25 is intended to be used in case of impulse loading while 

Eurocode 2 is intended to be used in case of static loading. Another determining 

difference between the methods is the loadcase they are based on, Bk25 is based on an 

evenly distributed load over the entire span while Eurocode 2 is based on a point load 

in midspan. These methods are described based on the work of Johansson and 

Laine (2012). Additionally, the method of how to determine the plastic rotation 

capacity from experimental results is described.  

 

4.3.1 Bk25 

This method of determining the plastic rotation capacity of a concrete beam comes from 

Fortifikationsförvaltningen, published 1973, and is meant for determining the capacity 

of an impulse loaded beam.  

 

An illustration of the rotation capacity of a plastic hinge in a simply supported beam 

according to Bk25 can be seen in Figure 4.9. The plastic hinge is here represented by 

the length 2𝑎 where it has a curvature with a radius 𝑟.  
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Figure 4.9 Model for rotation capacity of a plastic hinge in a simply supported 

beam. From Johansson and Laine (2012). 

 

The length 𝑎 is calculated as 

  

𝑎 = 0.5 ∙ 𝑑 + 0.15 ∙ 𝑙 (4.11) 

The rotation capacity 𝜃𝑓 is linearly dependent on the plastic hinge length 𝑎 as 

  

𝜃𝑓 =
𝑎

𝑟
 (4.12) 

 

The maximum allowed strain in the reinforcement or in the concrete determines the 

maximum curvature radius, 𝑟. The curvature can be calculated as below 

 

1

𝑟
=

𝜀𝑐𝑢

𝑥
=

𝜀𝑠

𝑑 − 𝑥
 (4.13) 

 

where 𝜀𝑐𝑢 is the ultimate strain in the concrete, 𝜀𝑠 is the mean strain in the steel over 

the length 𝑎, 𝑥 is the height of the compressive zone and 𝑑 the effective height of the 

cross-section as shown in Figure 4.10 below. 

 

Figure 4.10 Cross-sectional analysis of a concrete cross-section under impact from 

a bending moment. From Johansson and Laine (2012).  
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A horizontal force balance, 𝐹𝑐 = 𝐹𝑠, for the cross-section in Figure 4.10 gives 

   

𝑓𝑐𝑐 ∙ 𝑏 ∙ 0.8𝑥 = 𝑓𝑦 ∙ 𝐴𝑠 (4.14) 

 

This combined with the definition of reinforcement ratio 

 

𝜌 =
𝐴𝑠

𝑏𝑑
 (4.15) 

 

and the mechanical reinforcement ratio as 

 

𝜔𝑠 =
𝐴𝑠

𝑏𝑑
∙

𝑓𝑦

𝑓𝑐𝑐
 (4.16) 

 

gives the height of the compressive zone, 𝑥, as  

 

𝑥 =
1

0.8
∙ 𝜌𝑑 ∙

𝑓𝑦

𝑓𝑐𝑐
=

𝜔𝑠𝑑

0.8
 (4.17) 

or 

𝑥

𝑑
=

𝜔𝑠

0.8
 (4.18) 

 

From this, the limit for change in failure mode based on Equation (4.13) can be written 

as 

 

𝜔𝑠,𝑐𝑟𝑖𝑡 =
0.8 ∙ 𝜀𝑐𝑢

𝜀𝑐𝑢 + 𝜀𝑠
 (4.19) 

 

Values of the mechanical reinforcement ratio lower than 𝜔𝑠,𝑐𝑟𝑖𝑡 indicate that the failure 

mode is rupture of the reinforcement and for values higher than the limit, the failure is 

due to crushing of the concrete. 

 

When concrete crushing is the assumed failure mode, s > s,crit, the rotation capacity 

can be determined with Equation (4.12) and (4.17) as 

 

𝜃𝑅𝑑,𝐵𝑘25 =
0.8𝜀𝑐𝑢

𝜔𝑠𝑑
∙ (0.5𝑑 + 0.15𝑙) =

0.4𝜀𝑐𝑢

𝜔𝑠
∙ (1 + 0.3

𝑙

𝑑
) (4.20) 
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If the failure mode is rupture of the reinforcement instead, i.e. s < s,crit, the rotation 

capacity can be determined in the same way as 

 

𝜃𝑅𝑑,𝐵𝑘25 =
0.8𝜀𝑠

𝑑(0.8 − 𝜔𝑠)
∙ (0.5𝑑 + 0.15𝑙)

=
0.4𝜀𝑠

0.8 − 𝜔𝑠
∙ (1 + 0.3

𝑙

𝑑
) 

(4.21) 

 

4.3.2 Eurocode 2 

The plastic rotation capacity is in Eurocode 2 (CEN, 2005) determined by the ratio xu / d 

along with the concrete and steel class of the structural member. This is done using the 

diagram in Figure 4.11.  

 

Figure 4.11 Diagram for determination of the allowed plastic rotation capacity pl 

for different concrete and reinforcement classes. Values for structural 

members with shear slenderness  = 3.0. Based on CEN (2005). 

 

The rotation of a plastic hinge, s, shall be lower than pl obtained from Figure 4.11. 

Within zones with plastic hinges, the x / d ratio is limited to  
 

𝑥 𝑑⁄ ≤ 0.45 for concrete classes ≤ C50/60 

𝑥 𝑑⁄ ≤ 0.35 for concrete classes ≥ C55/67 
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Furthermore, the base value for the plastic rotation, pl, should be multiplied with a 

correction factor, k, as in Equation (4.22) if the structural member does not have a 

shear slenderness of  = 3.0. 

 

𝜃𝑅𝑑,𝐸𝑐
 = 𝑘𝜆𝜃𝑝𝑙 (4.22) 

 

where k is determined as 

 

𝑘𝜆 = √
𝜆

3
 (4.23) 

 

with  

 

𝜆 =
𝑙0

𝑑
 (4.24) 

 

where  l0 is the distance from the zero moment section to the point of maximum moment 

after redistribution. 

 

4.3.3 Determination of plastic rotation capacity from experimental 

results 

According to Jönsson and Stenseke (2018), the plastic rotation capacity can be 

determined from the load-displacement curve obtained from experimental static 

loading test results. An example of response of a deformation-controlled test is 

illustrated in Figure 4.12.  
 

 

Figure 4.12 Response of a deformation-controlled test where the rotation capacity is 

determined at 95% of the ultimate load. From Jönsson and 

Stenseke (2018). 
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Depending on the deformations, the plastic rotation capacity 𝜃𝑝𝑙,𝑥% is determined at the 

descending branch of the load-displacement curve at a certain percentage of the 

ultimate load (𝑥%/100) ∙ 𝐹𝑚𝑎𝑥. The elastic and plastic deformation at that certain load 

is represented by 𝑢𝑎 and 𝑢𝑝𝑙 = 𝑢𝑏 − 𝑢𝑎, respectively.  

 

In a simply supported reinforced concrete beam, subjected to a concentrated force in 

the midspan, a plastic hinge will form at the location of maximum moment when the 

reinforcement starts to yield. That will in this case occur in the midspan of the beam, 

see Figure 4.13.  

 

 

Figure 4.13 Illustration of elastic plastic deformation measured from experiments. 

From Lozano and Makdesi (2017).  

 

If 𝐿𝑒 is defined as the length from the support of the beam to the plastic hinge, the 

plastic rotation capacity can be determined as  

 

𝜃𝑝𝑙,𝑥%  =
𝑢𝑏,𝑥% − 𝑢𝑎,𝑥%

𝐿𝑒
=

𝑢𝑝𝑙,𝑥%

𝐿𝑒
 (4.25) 
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5 Mechanical Properties of Damaged 

Reinforcement 

One aim of this study is to investigate the influence of damage on the reinforcement in 

a reinforced concrete structure. This is done by studying how the deformation capacity 

of a structure is affected by the mechanical properties of the reinforcement. As 

mentioned in Chapter 3, a high deformation capacity is sought for in an impulse loaded 

structure. Four different kinds of damages are studied through a literature survey to get 

a proper understanding of the influence. The damage comes from stretching, bending, 

welding and corrosion of the reinforcement. 

 

5.1 Investigated mechanical properties 

Following Section 4.2 the deformation capacity of a plastic hinge is defined by a high 

Mu / My ratio. This can approximately be related to the reinforcement by a high ratio of 

fu / fy (f). The general behaviour of undamaged steel can be seen in Figure 5.1. This 

chapter is further related to this general behaviour when the changes in mechanical 

properties are described.  

 

Figure 5.1 General stress-strain curve for steel.  

 

In Figure 5.1, fu is the ultimate stress, fy is the yield stress, E is the modulus of elasticity, 

el is the elastic strain, pl is the plastic strain and u is the strain at ultimate load. 
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5.2 Damage due to stretching 

Stretching the reinforcement is a way of cold working it. Burström (2001) describes the 

change in mechanical properties due to stretching according to Figure 5.2 due to 

stretching. First, the steel responds elastically up to yielding when it starts to plasticize. 

As loading continues, strain hardening occurs in the steel which results in a higher 

strength as it is loaded. As a plastic deformation cannot be undone, unloading results in 

a reversed elastic response as during loading. If the steel is loaded once again the stress-

strain curve follows the path of unloading, which results in a higher immediate strength 

but a reduction in deformation capacity.  

 

Figure 5.2 Stress-strain curve for steel during loading and reloading. 

 

Following this behaviour, pre-stretched reinforcement is expected to get a higher “yield 

stress”, “fy”, or proof stress, f0.2, as it is called when there is no clear yield plateau, see 

Figure 5.3. The f0.2 value represents the stress where an unloading results in a plastic 

strain of 0.2 %. A higher f0.2 along with remaining fu results in a lower f ratio. Further, 

as part of pl is consumed during the first loading, the ductility is reduced.  
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Figure 5.3 Stress-strain curve for cold-worked steel. 

 

5.3 Damage due to bending 

Bending is another way in which a reinforcing bar can be cold-worked. It can be 

regarded as locally stretching the bar, affecting only the bent part. A study has been 

performed in the matter by Chun and Ha (2014). The study was performed on bars with 

diameter 10, 13, 16 and 22 mm, with grade Gr 280 and Gr 420 (corresponding to a yield 

strength of 280 and 420 MPa, respectively). The bars were cold-bent at three different 

bend radii, 2𝑑, 3𝑑 and 4𝑑, where 𝑑 was the diameter of the bar. According to Chun 

and Ha (2014), 3𝑑  is the minimum bend radius allowed for these grades of steel, 

established in the American standard ACI 318-11. The bars were bent to 90 degrees 

angle and then aged indoors for either one week, one month or three months. After the 

aging, the bars were straightened and then evaluated in a tensile test. The straightening 

was done using a pressing and bending machine. Two bars of each type were tested.  

 

When bending a reinforcing bar, the plastic strain in the cross-section vary, since the 

inner side of the bend is subjected to compression and the outer side is subjected to 

tension. Chun and Ha (2014) display a determination of the tensile strain on the outside 

of the bend as 

 

𝜀𝑡 =
𝜋(𝑟0 + 𝑑 ) − 𝜋 (𝑟0 +

𝑑 

2 )

𝜋 (𝑟0 +
𝑑 

2 )
=

𝑑 

2

𝑟0 +
𝑑 

2

 (5.1) 

 

where 𝑟0 is the bending radius and 𝑑𝑏 the bar diameter. This yields a tensile strain of 

14.3 % for the minimum allowed bend radius previously mentioned, which is beyond 

the limit of elongation for Gr 280 rebars from 10 to 19 mm diameter, established by the 

American standard ASTM A615-12 (Chun and Ha, 2014).  
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Furthermore, Chun and Ha (2014) state that after straightening the rebar, loading it in 

tension gives a reduced yield strength, plastic hardening without a yield plateau and a 

reduced elongation. Moreover, if the bar is not perfectly straightened, the modulus of 

elasticity is reduced.  

 

The results of the experiments performed in the study show that the straightened bars 

exhibited non-linearity earlier than the non-bent ones, without a clear proportional limit.  

For all the Gr 280 bars, the yield strength showed almost no effect when they had aged 

for one week and for one month. However, all the specimen showed an increase in yield 

strength after three months aging, the increase was of 18 % in average in comparison 

to an unbent bar. The bars with higher strength, Gr 420, exhibited a reduction in yield 

strength for all aging periods, however, the reduction was of 25 % for one week and 

month and 10 % for three months aging. When it came to yield strength, diameter or 

bend radius showed no influence. 

 

Furthermore, the experiments showed a clear trend that the cold-bending and 

straightening had no influence on the ultimate strength. This was assumed to be due to 

the well-performed straightening, which was done using a pressing and bending 

machine. However, on construction sites the straightening conditions are not as in these 

tests, which is why a reduction in the tensile strength is expected for bars straightened 

on site.  

 

Lastly, the bars generally showed reductions of the elongation and the modulus of 

elasticity, though no clear patterns based on the variables were observed for either of 

the parameters. 

 

The results obtained in the study by Chun and Ha (2014), are illustrated principally in 

Figure 5.4 and Figure 5.5. Note that the differences in the curves are not quantitative, 

but purely qualitative, the values of change are stated above.  
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Figure 5.4 Principle illustration of the influence of cold-bending and straightening 

a reinforcing bar of Gr 420 for all three aging periods, based on the 

results from Chun and Ha (2014). 

 

a)                                                             b) 

Figure 5.5 Principle illustration of the influence of cold-bending and straightening 

a reinforcing bar of Gr 280 a) for 1 week and 1 month aging and b) for 

3 months aging, based on the results from Chun and Ha (2014). 

 

Relating the results from Chun and Ha (2014) to the fu / fy ratio gives an increased f 

for bent reinforcement and a decreased ratio for the case of low steel strength and short 

aging. 
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5.4 Damage due to welding 

The change in mechanical properties of reinforcing bars from welding has been studied 

by Mo and Kuo (1995). The study was performed to understand how welds in 

reinforcing cages affect the properties. Three bars were welded on each specimen with 

a spacing of 100 mm, using fillet welds, see Figure 5.6. The specimens tested were of 

four different sizes; #3, #4, #7 and #8 in American notations, which corresponds to 

about 10, 13, 22 and 25 mm. Three specimens of each type were tested. The rebars were 

of Grade 60 which corresponds to a minimum yield strength of 420 MPa. The weld 

material was E70 electrodes corresponding to an ultimate tensile strength of 490 MPa.  

 

 

Figure 5.6 Illustration of the welded bars used in Mo and Kuo (1995). 

 

The results from the study show that the bars ruptured by the welds, which was assumed 

to come from notches from the welding. The effect on the yield properties were 

negligible and the ultimate tensile strength only obtained a slight decrease up to 4 %. 

However, the ultimate strain decreased significantly, with values up to 46 %. Moreover, 

the bars with the most reduced ultimate strain still had a ductility sufficient for 

American standards, according to Mo and Kuo (1995). The ductility was defined as the 

difference in strain between rupture of the bar and yielding. The principle changes in 

the stress-strain curve of welded rebars are illustrated in Figure 5.7 qualitatively. Based 

on this study, the f ratio can be expected to only decrease slightly for welded rebars, 

but the strain at ultimate stress would decrease significantly. 
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Figure 5.7 Principle illustration of the influence of welding on the stress-strain 

curve based on the results from Mo and Kuo (1995).  

 

Mo and Kuo (1995) also studied the effect of annealing in addition to the welding, and 

showed that it had positive effects on the mechanical properties of the rebars. When 

this treatment was used, not all bars broke at the welds, and the ductility was recovered 

by 86 % due to the favourable microstructural change in the weld metal. However, the 

yield and ultimate stresses were slightly decreased, by 6 and 7 %, respectively.  

 

5.5 Damage due to corrosion  

One widely recognised issue with reinforced concrete is the event of corrosion in the 

reinforcement. Corrosion occurs if the passive layer of the concrete is broken or if the 

concrete cracks and the reinforcement is exposed to the environment. How corrosion 

affects the mechanical properties of the reinforcing steel has been studied by 

researchers to further understand how the service life of the structure is influenced.  

 

Previous studies have been performed on both artificially and naturally corroded 

reinforcing steel bars. According to Apostolopoulos and Papadakis (2007) both events 

show similar impact on the yield and ultimate stress and the elongation to failure. 

However, they mention that there is no direct correlation between artificially and 

naturally corroded reinforcement, the observed similarities are solely qualitative. 

Furthermore, Apostolopoulos and Papadakis (2007) state that the artificial corrosion, 

intended to represent a coastal area, show a more aggressive attack on the reinforcing 

bars than what resulted from naturally corroded bars.  

 

The most important issue from the corrosion on the reinforcement is the loss of mass, 

in correlation to the variation of cross-sectional area according to Apostolopoulos and 

Papadakis (2007). This is also proved by Du, Clark and Chan (2005) and by Fernandez 

and Berrocal (2019). The loss of cross-sectional area leads to a loss of yield and 
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ultimate load in all the investigations, see Figure 5.8 as an example from Fernandez and 

Berrocal (2019). The reduction of load capacity shows a linear correlation to the level 

of corrosion. Furthermore, Fernandez and Berrocal (2019) show that the yield and 

ultimate stresses are not affected by corrosion, since the material itself is not affected. 

Note that Figure 5.8 shows the load level, which is directly correlated to the cross-

sectional area, which in turn is decreased by corrosion as proven by all the studies 

referred to here. From this, the expected fu / fy ratio would be indifferent to the 

undamaged case, however, the values of Fu and Fy are lowered significantly 

(proportionally to the level of corrosion), which indicates that the load capacity of the 

structure is reduced.  

 

Figure 5.8 Load-strain curves for naturally corroded reinforcing bars with 

a) straight ribs and b) skewed ribs (Fernandez and Berrocal, 2019). The 

colour scale shows level of corrosion, which is represented by 

percentage of cross-sectional area loss.  

 

Moreover, the effect of corrosion on the ductility is more difficult to find a correlation 

for. All the previously mentioned studies show that the ductility is significantly reduced 

by corrosion, though a clear trend is hard to define. Apostolopoulos and 

Papadakis (2007) show that the elongation to failure was reduced exponentially to the 

corrosion level, based on their tests on artificially corroded reinforcement. They also 

mention pitting as a large impact on the ductility. This is confirmed by Fernandez and 

Berrocal (2019) who present a clear trend with the pit depth of the reinforcement, based 

on tests on naturally corroded reinforcement. They further state that pits are common 

in naturally corroded structures. Moreover, it is proven by Fernandez and 

Berrocal (2019) that the appearance of pitting in reinforcement removes the necking 

and therefore the descending branch of the stress strain curve. The difference between 

the total strain and the strain at maximum load is therefore reduced significantly. The 

strain at maximum load is decreased for increased corrosion level, though the reduction 

is low for low levels of corrosion. In contrast the strain at yielding shows an increasing 

trend with increasing corrosion which they relate to the loss of stiffness due to the 

reduction of cross-section area. 
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6 Discrete Model for Dynamic Analysis   

The response of a dynamically loaded beam can be described by a discrete model that 

originates from a single-degree-of-freedom model (SDOF) for the beam and an SDOF 

model for the drop-weight.  The two SDOF models are then joined and transformed 

into one two-degree-of-freedom model (2DOF). This chapter is based on (Johansson 

and Laine, 2012).  

 

6.1 Definition of an SDOF system 

The definition of a dynamic SDOF system is illustrated in . It consists of a mass 𝑚 that 

is exposed to an external time dependent load 𝐹(𝑡). An internal static resistance 𝑅(𝑢) 

and a viscous damper 𝑐(𝑢̇) work as counterparts to this load and generate a static force 

𝑅𝑠𝑡𝑎(𝑢) and a viscous force 𝑅𝑑𝑦𝑛(𝑢̇). However, Johansson and Laine (2012) consider 

it reasonable to neglect the effect of damping since the load duration is very short and 

it is solely the maximum displacement that is of interest. Hence, only the static force 

remains as a counteracting force here. 

 

Figure 6.1 Definition of a dynamic SDOF system where the viscous damping c is 

neglected. From Johansson and Laine (2012).  

 

6.2 Drop-weight load – dynamic interpretation 

As stated in Chapter 3, there are two dynamic extreme cases; ideal impulse load 𝐼𝑘 and 

pressure load 𝐹𝑘. An arbitrary case will be somewhere in between the two extreme cases 

depending not only on how long the load duration is but also on the structural response 

of the loaded structure. Simplified, it is reasonable to interpret a load with long duration 

as a pressure load and a load with short duration as an impulse load. The drop-weight 

used in the experiments in this thesis is considered to have a relatively short duration 

and may therefore be treated approximately as a characteristic impulse load.  

 

6.3 Transformation of structural members to equivalent 

SDOF systems 

To be able to analyse the structural response of a dynamically loaded structure all 

structural members need to be simplified and transformed to equivalent SDOF systems. 

In this case that is the reinforced concrete beam and the drop-weight.  

 

6.3.1 Transformation of a beam to equivalent SDOF system 

A statically loaded beam with a linear elastic response gets a deformation shape that is 

a function of the load acting on it and the boundary conditions. Hence the deformation 

  

F(t) 

c(u ) R(u) 

m u  
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R(u) 
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shape is the same regardless of the magnitude of the load which makes it possible to 

describe the deflection along the beam using one system point. The deformed shape 

scales linearly with a factor , see Figure 6.2. The system point is attributed to 

properties so that its displacement 𝑢𝑠 is equal to the displacement in an SDOF system 

𝑢𝑆𝐷𝑂𝐹, see Equation (6.1).  

 

 

        

Figure 6.2 Beam subjected to a concentrated load F(t) (to left) and an equivalent 

SDOF system (to right). The beam is assumed to behave linear elastic 

and the deformed shape scales linearly with . Modified from Johansson 

and Laine (2012). 

 

𝑢𝑠 = 𝑢𝑆𝐷𝑂𝐹 (6.1) 

 

In order to transform a real beam to an equivalent SDOF system its real parameters of 

mass 𝑚𝑏, stiffness 𝑘𝑏, and external load 𝐹𝑏 are multiplied with transformation factors 

𝜅𝑚, 𝜅𝑘 and 𝜅𝐹 respectively, see Figure 6.3.  

 

        

Figure 6.3 Transformation of a beam to an equivalent SDOF system. Modified from 

Johansson and Laine (2012).   

 

The mass 𝑚 , stiffness 𝑘  and external load 𝐹  for the SDOF system can then be 

expressed as 

 

𝑚 = 𝜅𝑚𝑚𝑏 (6.2) 

𝑘 = 𝜅𝑘𝑘𝑏 (6.3) 

𝐹 = 𝜅𝐹𝐹𝑏 (6.4) 
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Equation (6.2) to (6.4) inserted in Equation (3.8) with the damping neglected gives 

 

𝜅𝑚𝑚𝑏𝑢̈ + 𝜅𝑘𝑘𝑏𝑢 = 𝜅𝐹𝐹𝑏 (6.5) 

 

Equation (6.5) can also be written as 

 

𝜅𝑚

𝜅𝐹
𝑚𝑏𝑢̈ +

𝜅𝑘

𝜅𝐹
𝑘𝑏𝑢 = 𝐹𝑏 (6.6) 

 

According to Biggs (1964)  

 

𝜅𝑘 = 𝜅𝐹 (6.7) 

 

and Equation (6.6) can then be rewritten as 

 

𝜅𝑚𝐹𝑚𝑏𝑢̈ + 𝑘𝑏𝑢 = 𝐹𝑏 (6.8) 

 

where  

𝜅𝑚𝐹 =
𝜅𝑚

𝜅𝐹
 (6.9) 

 

Equation (6.5) can then for an arbitrary system be expressed as  

 

𝜅𝑚𝐹𝑚𝑏𝑢̈ + 𝑅𝑏(𝑢) = 𝐹𝑏 (6.10) 

 

where 𝑅𝑏(𝑢) describes the response of the beam at static loading. 

 

The transformation factors 𝜅 are derived from the principle of energy conservation in 

the real beam system. 𝜅𝑚 is determined from conservation of the kinetic energy in the 

system while 𝜅𝑘 and 𝜅𝐹 are determined from conservation of the internal and external 

energy, respectively. Hence, the transformation factors depend on the boundary 

conditions and loading conditions; i.e. the elastic or plastic strain range. The beams in 

the experiments carried out in this master thesis are simply supported and subjected to 

three-point loading. Therefore only those transformation factors are treated in this 

report, presented in Table 6.1. E.g. Johansson and Laine (2012) and Biggs (1964) treat 

transformation factors for several boundary conditions, loading conditions and strain 

ranges.  
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Table 6.1 Transformation factors for a simply supported beam subjected to three-

point-loading (Johansson and Laine, 2012).  

 

Strain range 𝜿𝒎 𝜿𝑭 𝜿𝒌 𝜿𝒎𝑭 

Elastic 0.486 1.000 1.000 0.486 

Plastic 0.333 1.000 1.000 0.333 

 

6.3.2 Transformation of a drop-weight to equivalent SDOF system 

The drop-weight can be simplified and transformed to an equivalent SDOF system by 

using transformation factors in a similar way as described in Section 6.3.1. The major 

difference in this case is that the drop-weight will exhibit an axial deformation instead 

of a transverse deformation as for the beam, i.e. it can be treated as a bar (Lovén and 

Svavarsdóttir, 2016). The transformation of the drop-weight is illustrated in Figure 6.4. 

The system point 𝑢𝑠 is placed where the maximum deformation occurs. That is at the 

surface where the impact occurs, i.e. at the bottom of the drop-weight.         

 

Figure 6.4 Transformation of the drop-weight to an equivalent SDOF system. From 

Johansson and Laine (2012). 

 

The transformation factors used for transformation of the drop-weight to an equivalent 

SDOF system depend on whether the bar is seen as a rigid body, i.e. very stiff in 

comparison to the impacted surface (in this case the beam), or if the impacted surface 

is seen as a rigid body, i.e. the beam is very stiff in comparison to the falling drop-

weight. The corresponding transformation factors are presented in Table 6.2. 
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Table 6.2 Transformation factors for drop-weight considered as a bar (Jönsson 

and Stenseke, 2018). 

Case 𝜿𝒎 𝜿𝑭 𝜿𝒌 𝜿𝒎𝑭 

Rigid surface: 

         

0.333 0.500 0.500 0.667 

Rigid bar:         

 

1.000 1.000 1.000 1.000 

 

In an arbitrary case the drop-weight is somewhere in between these two extreme cases. 

Lovén and Svavarsdóttir (2016) give a more thorough description of the determination 

of the transformation factors. However, in this thesis the drop-weight is considered to 

have a very stiff base in comparison to the surface of the beam. Furthermore, the drop-

weight is made of solid steel with a considerably high axial stiffness compared to the 

bending stiffness of the reinforced concrete beam that it impacts. Therefore the 

transformation factors for the drop-weight is taken for a rigid bar as 

 

𝜅𝑚 = 𝜅𝐹 = 𝜅𝑘 = 𝜅𝑚𝐹 = 1.000 (6.11) 

 

6.4 Coupling of two SDOF systems into a 2DOF system 

The two equivalent SDOF systems, the beam and the drop-weight, now need to be 

coupled together into a 2DOF system. The coupling is illustrated in Figure 6.5. Note 

that henceforth the subscript 1 refers to the drop-weight and subscript 2 refers to the 

impacted beam.  

 

        

Figure 6.5 Illustration of how two equivalent SDOF systems are coupled into one 

2DOF system. Modified from Lozano and Makdesi (2017).  
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6.4.1 Equation of motion for a 2DOF system 

In order to establish the equation of motion for a 2DOF system a free-body diagram 

can be used, see Figure 6.6. 

 

 

Figure 6.6 Free-body diagram of the 2DOF system used to describe the collision 

between the beam and the drop-weight. Note that the drop-weight is 

represented by m1 and the beam by m2. Modified from Jönsson and 

Stenseke (2018). 

 

Newton’s second law gives the force equilibrium for the two bodies as: 

 

𝐹1(𝑡) − 𝐹𝑘,1 = 𝑚1𝑢̈1 (6.12) 

𝐹2(𝑡) − 𝐹𝑘,2 = 𝑚2𝑢̈2 (6.13) 

 

By using constitutive relations this can be expressed as: 

 

𝑚1𝑢̈1 + 𝑘1(𝑢1 − 𝑢2) = 𝐹1(𝑡) (6.14) 

𝑚2𝑢̈2 − 𝑘1𝑢1 + 𝑢2(𝑘1 + 𝑘2) = 𝐹2(𝑡) (6.15) 

 

where 𝑘𝑖  corresponds to the spring stiffness, 𝑢̈𝑖  to the acceleration and 𝑢𝑖  to the 

displacement. This can also be expressed in matrix form as: 

 

[
𝑚1 0
0 𝑚2

] [
𝑢̈1

𝑢̈2
] + [

𝑘1 −𝑘1

−𝑘1 𝑘1 + 𝑘2
] [

𝑢1

𝑢2
] = [

𝐹1(𝑡)

𝐹2(𝑡)
] (6.16) 

 

By inserting the transformation factors the expression becomes 

 

[
𝜅𝑚,1𝑚1 0

0 𝜅𝑚,2𝑚2
] [

𝑢̈1

𝑢̈2
] + [

𝜅𝐹,1𝑘1 −𝜅𝐹,1𝑘1

−𝜅𝐹,1𝑘1 𝜅𝐹,1𝑘1 + 𝜅𝐹,2𝑘2
] [

𝑢1

𝑢2
]

= [
𝜅𝐹,1𝐹1(𝑡)

𝜅𝐹,2𝐹2(𝑡)
] 

(6.17) 
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By using the following relations 

 

𝛼𝑚 =
𝜅𝑚,1

𝜅𝑚,2
 (6.18) 

𝛼𝐹 =
𝜅𝐹,1

𝜅𝐹,2
 (6.19) 

 

𝜅𝑚𝐹,2 =
𝜅𝑚,2

𝜅𝐹,2
 (6.20) 

 

 

it can be rewritten as 

 

𝜅𝑚𝐹,2 [
𝛼𝑚𝑚1 0

0 𝑚2
] [

𝑢̈1

𝑢̈2
] + [

𝛼𝐹𝑘1 −𝛼𝐹𝑘1

−𝛼𝐹𝑘1 𝛼𝐹𝑘1 + 𝑘2
] [

𝑢1

𝑢2
]

= [
𝛼𝐹𝐹1(𝑡)

𝐹2(𝑡)
] 

(6.21) 

 

which also can be written as 

 

𝐌𝐮̈ + 𝐊𝐮 = 𝐅(𝐭) (6.22) 

 

Equation (6.22) can be solved numerically or analytically. An example of an 

appropriate numerical method to solve the equation, the central difference method, is 

described in Section 6.5.  

 

6.4.2 2DOF system for a drop-weight and beam system 

To establish an equivalent 2DOF model of the impact loaded reinforced concrete beam 

in this thesis, the transformation factors treated in Section 6.3.1 and 6.3.2 are inserted 

in Equations (6.18), (6.19) and (6.20). No external forces 𝐹𝑖(𝑡) are considered to act on 

the two bodies. Instead, the impact is represented by an initial velocity of the drop-

weight.  

 

For an elastic response of the specific case Equation (6.21) then becomes 

 

𝜅𝑚𝐹,2 [
𝛼𝑚𝑚1 0

0 𝑚2
] [

𝑢̈1

𝑢̈2
] + [

𝑘1 −𝑘1

−𝑘1 𝑘1 + 𝑘2
] [

𝑢1

𝑢2
] = [

0
0

] (6.23) 

 

For an elasto-plastic response of the specific case Equation (6.21) then becomes 

 

𝜅𝑚𝐹,2 [
𝛼𝑚𝑚1 0

0 𝑚2
] [

𝑢̈1

𝑢̈2
] + [

𝑅1 −𝑅1

−𝑅1 𝑅1 + 𝑅2
] [

𝑢1

𝑢2
] = [

0
0

] (6.24) 

 

with the relation between 𝑅 and 𝑢 according to Equation (2.3). However, an additional 

condition needs to be considered in this case. That is when the drop-weight moves 
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upwards after the collision, away from the beam. The modelled spring between the 

bodies is in this case subjected to tension. However, in reality there is no connection 

between the bodies preventing such a movement, i.e. the stiffness of the spring in 

tension must be equal to zero. Equation (2.3) is then extended to  

 

𝑅1 = {

𝑘1 ∙ 𝑢 𝑖𝑓 𝑢1 ≤ 𝑢𝑒𝑙,1

𝑅𝑚,1 𝑖𝑓 𝑢1 > 𝑢𝑒𝑙,1

0 𝑖𝑓  𝑢1 ≤ 0

    (6.25) 

  

The internal resistance of the drop-weight 𝑅𝑚,1 is determined from 

 

𝑅𝑚,1  = 𝑓 ∙ 𝐴𝑖𝑚𝑝 (6.26) 

 

where 𝑓 is the strength of the material and 𝐴𝑖𝑚𝑝 is the impact area. The value of 𝑓 

depends on both the strength of the drop-weight and the local behaviour of the concrete 

where the impact occurs. This gives an interval for 𝑅𝑚,1 

 

𝑓𝑐𝑚𝐴𝑖𝑚𝑝 ≤ 𝑅𝑚,1  ≤ 𝑓𝑦𝑚𝐴𝑖𝑚𝑝 (6.27) 

 

where 𝑓𝑐𝑚 is the compressive strength of concrete and 𝑓𝑦𝑚 is the yielding of steel.  

 

The stiffness of the drop-weight 𝑘1 can be determined based on Hertz contact theory, 

described in Fujikake, Senga, Ueda, Ohno and Katagiri (2006), as 

 

𝑘1  =
4√𝑟1

3
[
1 − 𝜈1

2

𝐸1
+

1 − 𝜈2
2

𝐸2
]

−1

 (6.28) 

 

where 𝑟1 is the radius of the hitting surface of the drop-weight, 𝐸𝑠𝑚 and 𝐸𝑐𝑚 are the 

mean modulus of elasticity of the drop-weight (steel) and the beam (concrete), 

respectively. 𝜈1 and 𝜈2 are the Poisson’s ratio for the drop-weight (steel) and the beam 

(concrete), respectively. The relation between the impact force, 𝐹1 , and the local 

deformation at the impact zone, 𝛿, is through the contact law described as 

 

𝐹1  = 𝑘1 ∙ 𝛿3/2 (6.29) 

 

The relation in Equation (6.29) is non-linear. However, in this thesis a linear 

relationship was assumed at a certain internal resistance and a “new” stiffness, an 

approximation of 𝑘1, was determined. This is further treated in Appendix A. 
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The internal resistance of the beam, 𝑅𝑚,2, is determined from 

 

𝑅𝑚,2   =
4𝑀𝑢

𝐿2
 (6.30) 

 

where 𝑀𝑢 is the maximum moment at ultimate limit state for a point load at the midspan 

and 𝐿2 is the length of the beam. Additionally, the beam is subjected to a static load, its 

self-weight 𝑔𝑏𝑒𝑎𝑚 . To account for the self-weight, Equation (6.30) is modified into 

Equation (6.31). This is illustrated in Figure 6.7.  

 

𝑅𝑚,2,𝑚𝑜𝑑   =
4𝑀𝑢

𝐿2
−

𝑔𝑏𝑒𝑎𝑚𝐿2

2
 (6.31) 

 

 

 

Figure 6.7 Illustration of  the internal resistance of the beam. From Jönsson and 

Stenseke (2018). 

 

The stiffness of the beam, 𝑘2, can be determined according to 

 

𝑘2  =
48𝐸𝑐𝑚𝐼𝐼𝐼

𝐿2
3  (6.32) 

 

where 𝐸𝑐𝑚 is the mean modulus of elasticity of concrete and 𝐼𝐼𝐼 is the moment of inertia 

in state II.  

 

6.5 Central difference method 

The central difference method (CDM) is an explicit method to determine an 

approximate solution to a second-order differential equation such as for example the 

equation of motion, see Equation (3.8). The method is described in e.g. Jönsson and 

Stenseke (2018) and Johansson (2012). Though, as discussed in Section 6.1, the 

damping 𝑐 is neglected in this thesis, so it is neglected in this description of CDM as 

well.  
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6.5.1 Numerical formulation 

A scheme of the concept used in CDM can be seen in Figure 6.8.  

 

 

Figure 6.8 Scheme over the central difference method. From Jönsson and 

Stenseke (2018).  

 

The velocity, 𝑢̇, and acceleration, 𝑢̈, at time, i, can be expressed as 

 

𝑢̇𝑖 =
𝑢𝑖+1 − 𝑢𝑖−1

2∆𝑡
 (6.33) 

𝑢̈𝑖 =

𝑢𝑖+1 − 𝑢𝑖

∆𝑡 −
𝑢𝑖 − 𝑢𝑖−1

∆𝑡
∆𝑡

=
𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

(∆𝑡)2
 (6.34) 

 

Inserting Equation (6.33) and Equation (6.34) into Equation (6.22) gives an 

approximation of the equation of motion 

 

𝐌
𝐮𝑖+1 − 2𝐮𝑖 + 𝐮𝑖−1

(∆𝑡)2
+ 𝐊𝐮𝑖 = 𝐅𝑖(𝑡) (6.35) 

 

where 𝐮𝑖 and 𝐮𝑖−1 are assumed to be known. This expression can be solved for 𝐮𝑖+1 

by introducing the initial conditions 

 

𝐮(0) =  𝐮0 (6.36) 

𝐮̈(0) = 𝐮̈0 (6.37) 

𝐅̈(0) = 𝐅̈0 (6.38) 

 

for an initial value of 𝑖 = 0. The solution can then be expressed as  

 

𝐮𝑖+1 = (∆𝑡)2𝐌−𝟏(𝐅𝑖(𝑡) − (𝐊 −
2

(∆𝑡)2
𝐌) 𝐮𝑖 −

1

(∆𝑡)2
)𝐌𝐮𝑖−1

= 𝐅𝑖(𝑡) 

(6.39) 
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The starting step, where 𝑖 = 0, for solving the central difference method is given as 

 

𝐮−1 = 𝐮0 − ∆𝑡𝐮̇0 +
(∆𝑡)2

2
 𝐮̈0 (6.40) 

 

When deriving Equation (6.39) a linear elastic material response is assumed in the 

stiffness matrix, 𝐊. Hence, this equation needs to be adjusted if the material response 

instead is assumed to be non-linear. A suggestion of how this can be done is described 

in Johansson and Laine (2012).  

 

6.5.2 Stability of CDM 

If the time step ∆𝑡 is chosen too large, the errors in the initial conditions can easily grow 

during the iterations and the solution is then considered as unstable. To get a stable 

solution the time step should be chosen smaller than   

 

∆𝑡𝑐𝑟𝑖𝑡 =
2

𝜔𝑚𝑎𝑥
=

𝑇𝑛

𝜋
  (6.41) 

 

where 𝜔𝑚𝑎𝑥  corresponds to the highest eigenfrequency determined from 

Equation (6.42) and 𝑇𝑛 is the smallest period.  

 

det (𝐊 − 𝜔2𝐌) = 0  (6.42) 

 

According to Johansson and Laine (2012) a significantly smaller time step might be 

required when a high level of accuracy is needed. A suitable timestep is dependent on 

both loading conditions and response time of the system. Though, a time step that is 

smaller than one percent of the load duration is usually sufficient. That gives an 

appropriate time step as 

 

∆𝑡 ≤ {
∆𝑡𝑐𝑟𝑖𝑡

𝑡𝑙

100

  (6.43) 

 

where 𝑡𝑙 is the duration of the load. 
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7 Experiment Description 

This chapter gives a detailed description of the experiments performed. The first part 

describes the beam tests and the second part describes the reinforcement tests. 

 

7.1 Beam tests 

In total 18 beams were cast and tested under different loading conditions. Half of the 

beams were provided with normal reinforcement and the other half were provided with 

pre-stretched reinforcement. The beams were then divided into three series of which 

each were subjected to different load conditions. The beams in Series S were only tested 

statically and used as a reference. The beams in Series I10 and Series I20 were tested 

dynamically by a drop-weight impact of 10 kg and 20 kg respectively, released from a 

height of five meters. The residual capacities of the impacted beams were thereafter 

determined by a static test.  

 

Due to limited size of the concrete mixer the concrete was mixed in two batches. The 

two batches of concrete were distributed evenly between the different beams. To be 

able to compare the results obtained from the dynamical testing of beams with 

undamaged reinforcement and beams with pre-stretched reinforcement, concrete from 

one batch was used within all beams in Series I10 and the other batch was used for 

beams in Series I20.  

 

The beams were named with reference to its load case, reinforcement type, concrete 

batch and beam number, respectively. Static load case was indicated by S while 

dynamic load case with 10 kg and 20 kg drop-weight impact was indicated by I10 and 

I20, respectively. Damaged reinforcement was abbreviated to D, undamaged 

reinforcement to UD and batch to B. Here damaged reinforcement refers to the pre-

stretched reinforcement. A scheme over the beams and associated loading condition, 

reinforcement type and batch used can be found in Table 7.1.  
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Table 7.1 Scheme over beam number and associated loading condition, 

reinforcement type and batch used. Here damaged reinforcement refers 

to pre-stretched reinforcement. 

Beam 

number 

Load 

case 

Reinforcement 

type 

Batch 

number 
Beam name Series 

Sub-

series 

1 Static Undamaged 1 S-UD-B1-01 

S 

UD 2 Static Undamaged 1 S-UD-B1-02 

3 Static Undamaged 2 S-UD-B2-03 

4 Static Damaged 1 S-D-B1-04 

D 5 Static Damaged 2 S-D-B2-05 

6 Static Damaged 2 S-D-B2-06 

7 10 kg Undamaged 1 I10-UD-B1-07 

I10 

UD 8 10 kg Undamaged 1 I10-UD-B1-08 

9 10 kg Undamaged 1 I10-UD-B1-09 

10 10 kg Damaged 1 I10-D-B1-10 

D 11 10 kg Damaged 1 I10-D-B1-11 

12 10 kg Damaged 1 I10-D-B1-12 

13 20 kg Undamaged 2 I20-UD-B2-13 

I20 

UD 14 20 kg Undamaged 2 I20-UD-B2-14 

15 20 kg Undamaged 2 I20-UD-B2-15 

16 20 kg Damaged 2 I20-D-B2-16 

D 17 20 kg Damaged 2 I20-D-B2-17 

18 20 kg Damaged 2 I20-D-B2-18 

 

The material properties of the concrete and the reinforcement were determined 

according to standard material tests. A number of 16 concrete cubes were cast to 

determine the compressive and tensile strength of the concrete. Additionally, six cubes 

with a notch were cast to determine the fracture energy of the concrete.  

 

7.1.1 Geometry of tested beams 

The geometry of the beams can be seen in Figure 7.1. The beams had a total length of 

1 400 mm and a cross-sectional area of 100 x 100 mm2. Four longitudinal 

reinforcement bars with a nominal diameter of 6 mm were placed symmetrically in the 

beams. The distance from the free concrete edge to the centre of the bar was 20 mm.  
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Figure 7.1 Geometry and reinforcement arrangement of the tested beams [mm].  

 

7.1.2 Preparations 

7.1.2.1 Moulds 

The moulds for the beams were made before this project started. They were made of 

timber boards and screwed together with inner dimensions according to the beam 

geometry described in Figure 7.1. The moulds had four bored holes on each short end 

as support for the reinforcement, see Figure 7.2. The preparations started with cleaning 

and oiling the moulds for both the beams and the cubes and wedge splitting test (WST) 

cubes. The nominal size of the cubes was aimed for 150 mm according to CEN (2012).  

 

 

Figure 7.2 Example of short end of the beam moulds with bored holes as support for 

the reinforcement. 

 

7.1.2.2 Reinforcement 

The reinforcement used in the beams was K500C-T with a nominal diameter of 6 mm. 

The bars were cut from a 6 m long bar at a length of 1 410 mm so that the bars would 

be supported by the holes on the short sides of the mould. Half of the bars were first 
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pre-stretched to a plastic deformation of 3 %, this procedure is described in 

Section 7.2.1.1.  

 

The reinforcement was put in the beam moulds and further kept in place by steel wires 

hung from a transverse reinforcement bar laying on top of the mould. The steel wires 

acted at approximately one third of the beam's length from the end, see Figure 7.3. The 

length of the steel wire (resulting in the height of the reinforcing bar) was assured by 

placing a timber block beneath the bar right by the steel wire, this block had a height of 

17 mm which put the centre line of the bottom reinforcement at a height of 20 mm. The 

top reinforcement was put in place by a similar manner. The block below the bottom 

reinforcement was kept where it lay and then blocks were put between the bottom and 

top reinforcement to assure the concrete cover of 17 mm there as well. Thereafter, the 

steel wires for the top reinforcement were placed at the same distance along the length 

as for the bottom reinforcement. This procedure is shown in Figure 7.4. After the tests, 

the position of the reinforcement was measured for a few beam specimen and it was 

confirmed that the bars’ centre lines were at 20 mm from the edge.  

 

Figure 7.3 Location of the hanging arrangement for the reinforcement. 

 

Figure 7.4 Procedure for hanging the reinforcement bars in steel wires, a) for 

bottom reinforcement, b) for top reinforcement.   
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7.1.3 Casting 

The concrete was mixed according to the recipe in Table 7.2. As previously mentioned, 

the concrete was mixed in two bathes due to the limiting size of the mixer. The recipe 

was developed by Ingemar Löfgren, Thomas Concrete Group AB. The materials used 

in the mixture were dry.  

 

Table 7.2 Concrete recipe for one batch.  

Material Supplier Quantity per batch [kg] 

Sand 0/8 Sköllunga Ucklums grus 157.4 

Stone 5/8 Vikan Skanska 16.7 

Stone 8/16 Vikan Skanska 140.5 

Byggcement CEM II/A-LL 42,5R Cementa 57.8 

Glenium 51/18 BASF 0.635 

Water - 35.3 

 

Slump tests were performed on the two batches to establish the consistence of the 

concrete before casting. After the slump tests were performed and the consistence of 

the concrete validated, the beams, cubes and WSTs were cast. The concrete was 

compacted using a vibrating rod, see Figure 7.5. Lastly, the top surface of the beams 

was evened out for a smooth surface and covered with a plastic film.  

 

Figure 7.5 Compacting of the concrete using a vibrating rod.  

 

The day after casting (25 h later for batch 1 and 22 h later for batch 2), water was poured 

over the beams and then the plastic film was reapplied. At the same time, the cubes and 

WSTs were demoulded and put in water for curing. The specimens cured for 27 and 28 

days before testing. 



 

 

 

CHALMERS Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 57 

The consistence of the fresh concrete was tested with slump test according to 

CEN (2009a). The target slump height for the concrete was 200 ± 20 mm. The 

measured slump heights for the two batches are listed in Table 7.3. The slump heights 

resulted within the target interval. 

 

Table 7.3 Slump test results. 

Batch Slump height [mm] 

1 215 

2 200 

 

7.1.4 Demoulding and painting 

The beams were demoulded 23 days after casting. Then the beams were painted in a 

black and white random pattern in order to give good result from both the high speed 

camera and the one used in the static tests. An example of this pattern is presented using 

beam S-D-B2-05 in Figure 7.6. 

 

Figure 7.6 Painted pattern of beam S-D-B2-05. 

 

After the painting, two snapshots were taken of all the beams using the same cameras 

as for the static tests (note that this was before any impact). These were later used as 

reference frames in the analysis of  the static tests. 

 

7.1.5 Testing of the hardened concrete 

The concrete material properties of importance were the compressive strength, the 

modulus of elasticity, the tensile strength and the fracture energy. Therefore, 

compressive tests were performed in accordance with CEN (2009b) and tensile splitting 

tests were performed in accordance with CEN (2009c). To estimate the fracture energy 

wedge splitting tests were performed according to Tschegg (1991). The number of 

cubes tested of each type are presented in Table 7.4. Additionally, the density was 

determined.  

 

Table 7.4 Total number of tests performed to determine the material properties of 

the hardened concrete. Number from each batch within parentheses. 

Test 27 days after casting 28 days after casting 

Compressive test 4 (2) 6 (3) 

Tensile splitting tests 6 (3) - 

WST 6 (3) - 
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7.1.6 Dynamic tests 

The drop-weight tests took place 27 days after casting of the beams. A schematic 

illustration of the set-up for the drop-weight tests can be found in Figure 7.7, and in 

Figure 7.8, a photo of the actual set-up is shown. The beams were placed freely on two 

rigid supports that had a distance of 1.3 m. Thus, the beam was acting simply supported 

with a 1.3 m span. The fact that the supports were rigid assured the assumptions of only 

the beam deforming under the load. 

 

Figure 7.7 Dynamic test set-up. Modified from Jönsson and Stenseke (2018). 

 

Figure 7.8 Set-up of the dynamic testing. Photo taken after the impacting of beam      

I10-UD-B1-09. 

 

As seen in Figure 7.8, the drop-weight was a cylindrical steel rod with a rounded tip. 

The dimensions are presented in Figure 7.9. The drop-weight was lifted to a height of 

5 m above the beam and there released. There were vertical guiding rails to assure that 

the weight would hit the centre point of the beam. As seen in Figure 7.8, the drop-

weight also had the black and white pattern so it could be digitally analysed in the same 

manner as the beams. 
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Figure 7.9 Dimensions of drop-weight with different heights for 10 and 20 kg. 

 

The high speed camera used, captured half the beam span, as shown in Figure 7.7, in 

order to get as high resolution as possible. The camera specifications and conditions for 

the set-up are listed in Table 7.5. 

 

Table 7.5 Camera specifications and setup. 

High speed camera Photron SA4 

Distance from front of the beam to 

camera house 
1 979 mm 

Zoom Tamron Zoom lens 28-75. Set to 50 

Resolution 1 024400 pixels 

Spatial scale 

Calibrated with a 200 mm measuring 

scale. 

200 mm = 267 pixels 

 1 pixel = 0.7491 mm 

Approximate measured area 767300 mm 

Frame rate 5 000 fps (every 0.2 ms) 

Trigging 

Manual trigging with “centre trigger” 

which approximately captures 1 s 

before and 1 s after impact 

Saved data 
Approximately 140 ms (700 frames) 

were saved for each test 

 

7.1.7 Static tests 

The static testing was performed 27 and 28 days after casting. The aim of the static 

testing was to analyse the residual capacity of the beams tested dynamically and to 

compare structural response with beams that had not been tested before, i.e. the 

reference beams. Series S and I10 were tested in three point bending while Series I20 

was tested in four point bending. The reason for the different loading conditions was 

that the beams subjected to the 20 kg drop-weight had a high level of concrete spalling 

after the impact, resulting in three point bending being unsuitable for these beams. 

 

The beams were placed on two roller supports, with a distance of 1.3 m. The set-up for 

the three point and four point bending are illustrated in Figure 7.10 and Figure 7.11, 

respectively. Photos of the same set-ups are shown in Figure 7.12 and Figure 7.13. The 
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distance between the two point loads in the four point bending was 300 mm. In the 

static tests, two cameras were used which created a 3D view of the beam. The cameras 

captured the middle 1.0 m of the beam. The deformation speed in the static tests was 

2 mm/min until a deformation of 10 mm was reached and thereafter it was increased to 

10 mm/min. 

 

Figure 7.10 Static test set-up, three point bending. Modified from Jönsson and 

Stenseke (2018). 

 

Figure 7.11 Static test set-up, four point bending. Modified from Jönsson and 

Stenseke (2018). 
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Figure 7.12 Photo of static test set-up with three point bending.  

 

Figure 7.13 Photo of static test set-up with four point bending (picture taken from the 

back). 

 

7.1.8 Digital image correlation  

To analyse the structural behaviour of the dynamically and statically tested beams the 

frames collected by the cameras during the tests were processed by digital image 

correlation (DIC). This is an optical non-contact method that utilizes the stochastic 

pattern painted on the beams to describe discrete image areas. Structural behaviour such 

as for example deformation or strain can be determined from these images. The DIC 
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analysis was made using the programme GOM Correlate Professional 2018 

(GOM, 2018).  

 

7.2 Reinforcement Testing Description 

An investigation was made on the properties of the reinforcement in order to further 

understand how it influences the behaviour of the beams. This was made through tensile 

tests on undamaged reinforcement and on reinforcement that was damaged in different 

ways. Moreover, an investigation of the strain rate at testing was performed to further 

understand the meaning of the measured values.  

 

7.2.1 Modifications of the reinforcement  

To understand the structural behaviour of damaged reinforcement better, tensile tests 

were performed on normal (undamaged), pre-stretched and bent bars. The mechanical 

properties for the bars were tested on six undamaged bars, six pre-stretched bars and 18 

bent bars. The pre-stretched specimens were extracted from the bars that were pre-

stretched for the beams. The group of bent bars was divided into three subgroups of 

equal quantity (six per group), where the bars in the first group were bent and re-bent 

once. The second group was bent and re-bent twice, and the last group was bent and re-

bent four times.  

 

7.2.1.1 Pre-stretching 

A number of 14 uncut, 6 m long bars were pre-stretched using a hydraulic pump from 

Enepac (model SPR 36 0 E8) and a hydraulic cylinder that performed the stretching. 

The setup is depicted in Figure 7.14. The bar was anchored as depicted in Figure 7.15.  
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Figure 7.14 Setup for the pre-stretching of the reinforcement.  

 

 

Figure 7.15 Anchorage of the reinforcement bar at a) end 1 and b) end 2. 

 

The target plastic strain of the pre-stretched bars was 3 %. The resulting plastic strains 

were within an interval of 2.95 % and 3.04 %, as seen in Table 7.6. The bars marked 

with an asterisk had a too large plastic strain which is why they were excluded and two 

new bars were stretched to a value closer to 3 %. The resulting plastic strain was 

measured based on the total length of the bar. 
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Table 7.6 Plastic strain, s,pl, of the pre-stretched bars. The bars marked with an 

asterisk had a too large plastic strain and were excluded from the 

experiments. 

Bar s,pl [%]  Bar s,pl [%] 

1 2.97  8 3.00 

2* 3.09  9* 3.06 

3 3.00  10 3.04 

4 3.03  11 2.95 

5 2.97  12 2.97 

6 3.03  13 2.98 

7 2.96  14 2.97 

 

After the stretching was performed, three 1 410 mm bars were cut from each stretched 

bar for the beams. As there were bent parts at the ends that were not desired to be used 

they were cut off as shown in Figure 7.16 and Figure 7.17. The bending of the end parts 

came from the tilting of the ground anchors as the bar was stretched; this is shown in 

Figure 7.18. There was enough material on each stretched bar to retrieve one specimen 

for the material tests later performed.  

 

Figure 7.16 At the cylinder end 900 mm were cut off the bar. 

 

Figure 7.17 At the other end 200 mm were cut off the bar. 
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Figure 7.18 Photograph of how one of the ground anchors tilted due to the stretching 

of the steel bar. 

 

7.2.1.2 Bending 

The bending was made in accordance with CEN (2016), bending around a mandrel 

using a clamp. The mandrel had a diameter of 71 mm, which equals 11.8∅. The aim of 

the angle of the bend was 90 and the resulting angle of a representative specimen can 

be seen in Figure 7.19, along with the general setup of the bending.  

 

Figure 7.19 Resulting shape of a representative bar specimen after bending.  

 

The bending was performed using a tube with an inner diameter of 11 mm to control 

the bending as seen in Figure 7.20.  
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Figure 7.20 Photograph of the tube used for the bending.  

 

After the bar was bent it was turned 180 horizontally to perform the re-bending using 

the same mandrel, the position was assured by marking the bar before moving it. The 

position can be seen in Figure 7.21.  

 

Figure 7.21 Position of bar specimen for re-bending.  

 

The re-bending of the specimens was aimed for making the bars as straight as possible 

to fit in the grips of the testing machine and to reduce the impact of the straightening of 

the bar in the stress-strain curves. The resulting straightness of a representative 

specimen can be seen in Figure 7.22. The bending and re-bending was made one time 

for six bars, two times for another six bars and lastly four times for the last group of six 

bars. 
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Figure 7.22 Straightness of a representative bar specimen that has been re-bent.  

 

7.2.2 Testing procedure  

The tensile testing was performed for bar specimens that were 400 mm long. The 

parallel length of the bar was 300 mm (the length between the grips in the machine). 

The tests were performed using an MTS 380 machine. The tests were deformation 

controlled, with two different strain rates for different stages of the stress-strain curve 

according to proposed strain rates in CEN (2016). It was also of interest to investigate 

what influence the testing speed would have on the results. Therefore, another 

deformation rate was also used, which was slower than that proposed by CEN (2016). 

The different speed levels used in the testing are presented in detail in Table 7.7. The 

properties of interest were the modulus of elasticity, yield strength, tensile strength and 

ultimate strain.  

 

Table 7.7 Speed used in the testing of the reinforcement properties. 

Type Stage 
Deformation 

speed [mm/min] 
Strain rate [s-1] 

Normal 
1 5 2.8·10-4 

2 120 67·10-4 

Slow 
1 0.5 0.28·10-4 

2 4 2.2·10-4 

 

To get more accurate results of the elastic and initial yielding part of the stress-strain 

curve an extensometer was used of model MTS 634.25F-24 with serial number 

10504454C. It was removed at 10 mm, 15 mm and 20 mm deformation for different 

groups of bars.  
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8 Predictions 

This chapter presents the expected behaviour of the beams tested both under dynamic 

and static loading. The material properties used in these calculations are the measured 

mean values that are presented in Section 9.1 and 9.2, to get a behaviour that would 

reflect the beams used in the tests more accurately.  

 

8.1 Static response 

The static tests in the experimental part of this project were performed in two different 

ways; using three-point or four-point bending. Therefore, predictions were made for 

both cases. The responses of interest for later comparison with experimental results are 

load and moment in ultimate limit state (ULS), cracking and yielding and lastly the 

general behaviour is presented by load-deflection curves. The calculations for the static 

response are made using the software Mathcad 15.0 and are presented in Appendix N. 

 

8.1.1 Ultimate limit state 

In ULS, it is assumed that the ultimate concrete strain, cu = 3.5 ‰, is reached. 

Furthermore, a linear strain distribution is assumed over the cross-section. It is also 

assumed that the stress distribution in the compressive zone follows an idealised 

parabolic-rectangular stress-strain relationship. The strain and stress distributions at 

failure are illustrated in Figure 8.1. 

 

Figure 8.1 Assumed response in ULS. Modified from Lozano and Makdesi (2017). 

 

Both Lozano and Makdesi (2017) and Jönsson and Stenseke (2018), who used the same 

cross-section as in this project, observed that the height of the compressive zone was 

lower than the concrete cover in ULS, meaning that the top reinforcement was subjected 

to tensile stresses. Therefore, these calculations are based on that assumption, which 

was later confirmed. Furthermore, the equilibrium conditions for the cross-section are  

 

𝛼𝑅 ∙ 𝑓𝑐𝑚 ∙ 𝑏 ∙ 𝑥 = 𝜎𝑠 ∙ 𝐴𝑠 + 𝜎′𝑠 ∙ 𝐴′𝑠 (8.1) 

𝑀𝑢 = 𝛼𝑅 ∙ 𝑓𝑐𝑚 ∙ 𝑏 ∙ 𝑥 ∙ (𝑑 − 𝛽𝑅 ∙ 𝑥) − 𝜎′
𝑠 ∙ 𝐴′

𝑠 ∙ (𝑑 − 𝑑′) (8.2) 
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The stress block factors used in ULS are  

 

𝛼𝑅 = 0.81 (8.3) 

𝛽𝑅 = 0.42 (8.4) 

 

The steel strains were determined from the geometry of the cross-section and the 

concrete strain as 

 

𝜀𝑠 =
𝑑 − 𝑥

𝑥
∙ 𝜀𝑐𝑢 (8.5) 

𝜀′𝑠 =
𝑑′ − 𝑥

𝑥
∙ 𝜀𝑐𝑢 (8.6) 

 

The reinforcement stresses were determined from these strains using a bilinear 

relationship based on the measured values of the reinforcement used in the experiments 

(i.e. considering strain hardening effects), as 

 

𝜎𝑠 = {

𝐸𝑠𝑚 ∙ 𝜀𝑠                                                 𝑖𝑓 𝜀𝑠 ≤ 𝜀𝑠𝑦

𝑓𝑦𝑚 +
𝜀𝑠 − 𝜀𝑠𝑦

𝜀𝑠𝑢 − 𝜀𝑠𝑦
(𝑓𝑡𝑚 − 𝑓𝑦𝑚)          𝑖𝑓 𝜀𝑠 > 𝜀𝑠𝑦

 (8.7) 

 

Lastly, the ultimate load was determined from the moment in Equation (8.2). The value 

for three point bending was determined as  

 

𝐹𝑢,3𝑃 =
4 ∙ 𝑀𝑢

𝐿
 (8.8) 

 

and the value for four point bending as 

 

𝐹𝑢,4𝑃 = 2 ∙
𝑀𝑢

𝑎
 (8.9) 

 

where a is the distance between support and load application which is 0.5 m in this case. 

The factor 2 in Equation (8.9) results in Fu being the applied load from both point loads, 

which is the value retrieved from the experiments. In Equation (8.8) and (8.9) the self-

weight of the beam has been disregarded due to its low impact.  
 

The resulting ultimate moment and load are presented in Table 8.1 for three point 

bending and Table 8.2 for four point bending. The calculations were also made 

disregarding the top reinforcement, which were used in the later calculations of the 

rotation capacity since those are based on a cross-section with top reinforcement 

subjected to compressive stresses or without top reinforcement. Furthermore, the 

calculations were made using material properties of the undamaged and pre-stretched 

reinforcement measured, see Section 9.2.  
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Table 8.1 Moment and load capacity in ultimate limit state for different 

reinforcement cases for three point bending.  

Reinforcement Layers of reinforcement Mu [kNm] Fu [kN] 

Undamaged 
Top and bottom 2.49 7.68 

Only bottom 2.43 7.48 

Damaged 
Top and bottom 2.78 8.56 

Only bottom 2.73 8.40 

 

Table 8.2 Moment and load capacity in ultimate limit state for different 

reinforcement cases for four point bending.  

Reinforcement Layers of reinforcement Mu [kNm] Fu [kN] 

Undamaged 
Top and bottom 2.49 9.98 

Only bottom 2.43 9.73 

Damaged 
Top and bottom 2.78 11.13 

Only bottom 2.73 10.92 

 

8.1.2 Cracking 

For the state of cracking the applied moment was determined as 

 

𝑀𝑐𝑟 =
𝑓𝑐𝑡,𝑓𝑙 ∙ 𝐼𝐼

ℎ/2
 (8.10) 

 

using the flexural tensile concrete strength, fct,fl. Then, the cracking force was 

determined in the same manner as in ULS, using Equation (8.8) or (8.9), though Mcr 

was inserted. The resulting cracking moment and load are presented in Table 8.3.  

 

Table 8.3 Moment and load at cracking for different loading and reinforcement 

cases.  

Loading case Reinforcement Mcr [kNm] Fcr [kN] 

Three point bending 
Undamaged 1.03 3.18 

Damaged 1.03 3.17 

Four point bending 
Undamaged 1.03 4.13 

Damaged 1.03 4.12 

 

8.1.3 Yielding 

The moment at onset of yielding was calculated in a similar manner as in ULS, though 

the top reinforcement was contributing to the compressive part of the cross-section. 

Here, the concrete strain was unknown, cc < cu, while the steel strain in the bottom 

reinforcement layer was known. At yielding, the stress block factors, R and R, were 

unknown, which is why an iterative process of determining the height of the 
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compressive zone was used. Initially, the position of the neutral axis was assumed, then, 

the concrete and top reinforcement strains were calculated as  

 

𝜀𝑐𝑐,𝑦 =
𝑥𝑦

𝑑 − 𝑥𝑦
∙ 𝜀𝑠𝑦 (8.11) 

𝜀′𝑠𝑦 =
𝑥𝑦 − 𝑑′

𝑥𝑦
∙ 𝜀𝑐𝑐.𝑦 (8.12) 

 

Then, the stress block factors were determined and the condition for horizontal 

equilibrium was checked. The position of the neutral axis was adjusted until the 

horizontal equilibrium was fulfilled. Then, the yielding moment and load were 

determined for both three and four point bending, the results are presented in Table 8.4 

and Table 8.5, respectively.  

 

Table 8.4 Moment and load at yielding for different reinforcement cases for three 

point bending.  

Reinforcement Layers of reinforcement My [kNm] Fy [kN] 

Undamaged 
Top and bottom 2.26 6.95 

Only bottom 2.27 6.98 

Damaged 
Top and bottom 2.62 8.07 

Only bottom 2.63 8.09 

 

Table 8.5 Moment and load at yielding for different reinforcement cases for four 

point bending.  

Reinforcement Layers of reinforcement My [kNm] Fy [kN] 

Undamaged 
Top and bottom 2.26 9.04 

Only bottom 2.27 9.07 

Damaged 
Top and bottom 2.62 10.49 

Only bottom 2.63 10.52 

 

8.1.4 Load-deflection curves 

In order to determine the expected load-deflection curves, the stiffnesses in state I and 

II are needed. The stiffness for three point bending is determined according to 

Equation (8.13) and that for four point bending according to Equation (8.14). In these 

equations, the second moment of inertia, I, can be inserted using either the value for 

state I or II which results in the stiffness for state I or II, respectively. 

 

𝑘3𝑃 =
48 ∙ 𝐸𝑐𝑚 ∙ 𝐼

𝐿3
 (8.13) 

𝑘4𝑃 =
48 ∙ 𝐸𝑐𝑚 ∙ 𝐼

𝑎 ∙ 𝐿2 (3 −
4𝑎2

𝐿2 )
 

(8.14) 
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The response is then presented using a bilinear and a trilinear load-deflection curve, 

where the trilinear curve takes cracking into account. The beam was assumed to be 

plastic after the ultimate load was reached. The load deflection curves for the four cases 

studied in this project are presented in Figure 8.2 and Figure 8.3. Lastly, the calculated 

stiffnesses are presented in Table 8.6. The ultimate load levels presented here are used 

in the 2DOF calculations in Section 8.3.1, and there called R2 Predicted. 

 

Figure 8.2 Load-deflection curve for three point bending for a) undamaged 

reinforcement and b) damaged reinforcement. 

 

Figure 8.3 Load-deflection curve for four point bending for a) undamaged 

reinforcement and b) damaged reinforcement. 

 

 

a)                                                               b) 

k
cy

 

 

a)                                                               b) 
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Table 8.6 Expected stiffnesses based on loading case and reinforcement properties. 

Loading case Reinforcement 
kI  

[MN/m] 

kcy 

[MN/m] 

kII 

[MN/m] 

Three point bending 
Undamaged 6.11 0.684 1.08 

Damaged 6.10 0.710 1.06 

Four point bending 
Undamaged 6.60 0.738 1.17 

Damaged 6.59 0.766 1.14 

 

Futhermore, the moment ratios, ηM, for different reinforcement cases are presented in 

Table 8.7. 

 

Table 8.7 Moment ratio for different reinforcement cases.  

Reinforcement Layers of reinforcement My / My [kNm] 

Undamaged 
Top and bottom 1.10 

Only bottom 1.07 

Damaged 
Top and bottom 1.06 

Only bottom 1.04 

 

8.2 Rotation capacity 

As previously mentioned, the methods of predicting the rotation capacity are based on 

a cross-section with top reinforcement subjected to compressive stresses, however, that 

was not the case here. Therefore, the values used in these calculations were those 

disregarding the top reinforcement. The calculation were made in Mathcad 15.0 and are 

presented in Appendix N. 

 

8.2.1 Bk25 

The calculations using the Bk25 method were performed in accordance with 

Section 4.3.1. The calculated values are presented in Table 8.8.  

 

Table 8.8 Expected plastic rotation capacity and plastic deformation according to 

Bk25. 

Loading case Reinforcement pl [mrad] upl [mm] 

Three point bending 
Undamaged 69.2 45.0 

Damaged 59.5 38.7 

Four point bending 
Undamaged 69.2 34.6 

Damaged 59.5 29.8 

 

8.2.2 Eurocode 2  

The calculations using the Eurocode 2-method were performed in accordance with 

Section 4.3.2. The values of plastic rotation for Eurocode 2 were divided by two to 

compare with the results obtained from Bk25 and the experiments. The calculated 

values are presented in Table 8.9. The calculations for damaged rebars are based on 



CHALMERS, Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 74 

both class C and B reinforcement. The pre-stretched reinforcement does not fulfil the 

ductility requirements for any of the reinforcement classes, see Table 2.1 and Table 9.3. 

However, only class B and C are to be used in a plastic analysis according to Eurocode 

2, which is why the calculations were made for these two classes. 

 

Table 8.9 Expected plastic rotation capacity and plastic deformation according to 

Eurocode 2. 

Loading case Reinforcement pl [mrad] upl [mm] 

Three point bending 

Undamaged 23.0 15.0 

Damaged – class B 11.1 7.22 

Damaged – class C 22.2 14.4 

Four point bending 

Undamaged 20.2 10.1 

Damaged – class B 9.74 4.87 

Damaged – class C 19.5 9.74 

 

8.2.3 Comparison 

The values obtained for the plastic rotation capacity are quite different in magnitude. 

This is assumed to partly be due to the difference in loading conditions. Bk25 is based 

on a uniformly distributed load. This results in a more favourable moment distribution 

and thereby a longer plastic hinge length, than for a case of point load in the middle of 

the span, which is the case for Eurocode 2.  

 

8.3 Dynamic response 

The predictions of the dynamic response are mostly made using the 2DOF model, 

additionally, calculations of the initial shear velocities are presented. 

 

8.3.1 2DOF 

The predictions using the 2DOF model were made in accordance with Chapter 6. The 

calculations were performed in the software Matlab R2016b and the script, based on 

the one written by Lozano and Makdesi (2017), is presented in Appendix M. 

 

8.3.1.1 Input data 

The input data for the 2DOF model is presented in Table 8.10. The velocity is 

determined by a mean value of the velocity during the 3 ms before impact for all the 

beams from the DIC analysis. This is presented in Section 9.3.3. The internal resistance 

of the drop-weight, R1, and the stiffness of the spring between drop-weight and beam, 

k1, are determined according to Hertz contact theory, explained in Section 6.4.2 and 

Appendix A, and determined from a convergence study, see Appendix B. The value of 

the stiffness of the beam is the one calculated for state II in Section 8.1.4. The density 

used is the one measured during testing of the material properties of the concrete, see 

Section 9.1. The mass of the reinforcement is disregarded in the density, however, it 

has a small impact in these tests. Lastly, there were two input data parameters that were 

varied depending on the loading and reinforcement case etc. The internal resistance of 

the beam, R2, was determined according to the ultimate load for three point bending in 
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Section 8.1.1 for both undamaged and damaged reinforcement. This was compared to 

the behaviour when the measured value of the ultimate load during the experimental 

static tests was used, from Section 9.4.2, this value was also taken for both undamaged 

and damaged reinforcement. The second parameter that was varied was the mass of the 

drop-weight, varying from 10 kg to 20 kg, as in the experiments. 

 

Table 8.10 Input data for the 2DOF-model. 

Parameter Description Value 

v0 [m/s] Initial velocity of drop-weight 9.84 

R1.10 [kN] Internal resistance of 10 kg-drop-weight 50 

k1.10 [N/m] 
Stiffness of the spring between drop-weight and 

beam for 10 kg-drop-weight 
2.38108 

R1.20 [kN] Internal resistance of 20 kg-drop-weight 70 

k1.20 [N/m] 
Stiffness of the spring between drop-weight and 

beam for 20 kg-drop-weight 
2.69108 

k2 [N/m] Stiffness of the beam spring 1.08106 

 [kg/m3] Density of the beam 2 420 

 

The results of the 2DOF model were solved using the central difference method 

described in Section 6.5. To get the starting step for solving the central difference 

method, 𝐮̇0 was put into Equation (6.40) as load together with  

 

𝐮0 = 0 (8.15) 

𝐮̈0 = 0 (8.16) 

 

8.3.1.2 Results 

The maximum and plastic deflections of body 2, the beam, are tabulated in Table 8.11. 

The deflection of the beam and the velocity of the drop-weight at impact are presented 

in Figure 8.4 to Figure 8.7 for all the series.  

 

Table 8.11 Predicted deflections with the 2DOF-model.  

Drop-weight 

[kg] 
Reinforcement 

R2  

[kN] 

umax 

[mm] 

upl 

[mm] 

10 

Undamaged 
Predicted 7.68 35.0 28.1 

Measured 9.00 30.8 22.6 

Damaged 
Predicted 8.56 32.0 24.2 

Measured 9.50 29.5 20.9 

20 

Undamaged 
Predicted 7.68 88.8 81.9 

Measured 9.00 76.6 68.4 

Damaged 
Predicted 8.56 80.2 72.4 

Measured 9.50 72.9 64.2 
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Figure 8.4 Deflection of beam, u2, and velocity of drop-weight, v1, after impact for 

I10-UD in 2DOF-model. 

 

Figure 8.5 Deflection of beam, u2, and velocity of drop-weight, v1, after impact for 

I10-D in 2DOF-model. 

 

Figure 8.6 Deflection of beam, u2, and velocity of drop-weight, v1, after impact for 

I20-UD in 2DOF-model. 
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Figure 8.7 Deflection of beam, u2, and velocity of drop-weight, v1, after impact for 

I20-D in 2DOF-model. 

 

When using the predicted R2 the deflections become greater since the predicted beam 

resistance is less than the measured one. This is evident in all the deflection-time curves.  

 

The beams with damaged reinforcement present slightly smaller deflections than the 

ones with undamaged reinforcement. This holds for both the I10 and I20-series. 

 

8.3.2 Initial shear velocity 

The shear wave propagation is studied by Yi, Zhao and Kunnath (2016) where a time, 

𝑡0, is proposed as the time it takes for the active portion of the beam to span the entire 

beam. The definition of active part is illustrated in Figure 8.8. 

 

Figure 8.8 Illustration of active and inactive part of the beam span. 

 

The time, 𝑡0 is given as 

 

𝑡0 =
𝐿0

2𝑣𝑠
 (8.17) 

 

where 𝐿0 is the span of the beam and 𝑣𝑠 is determined as 

 

𝑣𝑠 = √
𝐺

𝜌
 (8.18) 

 

where 𝜌 is the density and 𝐺 is the shear modulus, determined from the modulus of 

elasticity, 𝐸, and Poisson’s ratio, 𝜈, as 
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𝐺 =
𝐸

2(1 + 𝜈)
 (8.19) 

 

The parameters used and the resulting 𝑡0  are presented in Table 8.12. The detailed 

calculations are presented in Appendix N. 

 

Table 8.12 Parameters for calculating shear velocity and resulting t0. 

Parameter Value 

 2420 kg 

G 13.1 GPa 

L0 1.3 m 

t0 0.28 ms 
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9 Experimental results 

Presented in this chapter are the results from the experiments performed on concrete 

and reinforcement material properties and the structural response of the beams under 

both dynamic and static loading. Note that in this section damaged reinforcement refers 

to pre-stretched reinforcement. 

 

9.1 Hardened concrete properties 

The testing of the hardened concrete was made in accordance with Section 7.1.5 and 

the results are presented in Table 9.1. For more detailed results see Appendix C. There 

are no apparent differences between the two batches, therefore, they are not expected 

to behave differently in the beams either. The observant reader sees that the 

compressive strength in batch 2 is somewhat lowered from 27 to 28 days after casting. 

This is assumed to be a coincidence and there were probably cubes in the higher range 

of the normal distribution curve tested on day 27, rather than that the strength would 

have lowered.  The average cube compressive strengths between the batches are the 

same for day 27 and 28 which is a reasonable behaviour of concrete. 

 

Table 9.1 Experimentally determined average values of concrete properties. 

Property Description Batch 1 Batch 2 Average 

𝑓𝑐𝑚,𝑐𝑢𝑏𝑒,27 
Mean compressive cube strength 

after 27 days [MPa] 
40.2 42.2 41.2 

𝑓𝑐𝑚,𝑐𝑢𝑏𝑒,28 
Mean compressive cube strength 

after 28 days [MPa] 
41.0 41.3 41.2 

𝑓𝑐𝑡𝑚,𝑠𝑝,27 
Mean splitting tensile strength 

after 27 days [MPa] 
4.94 4.90 4.92 

𝜌 Density [kg/m3] 2 420 2 410 2 420 

𝐺𝑓,28 
Fracture energy after 28 days 

[Nm/m2] 
112 114 113 

 

Then, the measured cube properties were transformed into cylinder properties 

according to Section 2.5.2. These values are presented in Table 9.2 and are the ones 

used in the calculations made.  

 

Table 9.2 Calculated cylinder properties of concrete.  

Property Description Average 

𝑓𝑐𝑚,27 Mean compressive strength after 27 days [MPa] 33.0 

𝑓𝑐𝑚,28 Mean compressive strength after 28 days [MPa] 32.9 

𝑓𝑐𝑡𝑚,27 Mean tensile strength after 27 days [MPa] 4.43 

𝐸𝑐𝑚,27 Modulus of elasticity after 27 days [GPa] 31.5 

𝐸𝑐𝑚,28 Modulus of elasticity after 28 days [GPa] 31.5 
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9.2 Reinforcement test results 

The testing of the reinforcement was made in accordance with Section 7.2. The detailed 

results including properties of all bars can be seen in Appendix D. In the charts in this 

section, representative bars have been used, and the relation used is stated in the 

appendix. The values of the properties in the tables are presented using mean values.  

 

9.2.1 Undamaged vs damaged reinforcement 

In the testing, values of proof stress, f0.2 [MPa], ultimate stress, fu [MPa], ultimate strain, 

u [%], and modulus of elasticity, E [GPa], were measured and are presented in 

Table 9.3 for the undamaged and damaged reinforcement. In the table, the fu / f0.2 ratio 

is also presented. The stress-strain curves of the undamaged and pre-stretched 

reinforcement are presented in Figure 9.1. The increase of yield stress and loss of 

ductility is clear from this chart. One observation for the pre-stretched reinforcement in 

Table 9.3 is that the ηf ratio is lower than what is accepted for all three ductility 

categories for reinforcement, presented in Table 2.1. 

 

Table 9.3 Material properties for the different types of reinforcement.  

Reinforcement f0.2 [MPa] fu [MPa] u [%] E [GPa] fu / f0.2 [-] 

Undamaged 555 656 9.38 202 1.18 

Pre-stretched 645 664 5.80 196 1.03 

Bent one time 553 651 8.29 166 1.18 

Bent two times 556 649 7.58 133 1.17 

Bent four times 554 645 6.97 146 1.16 

 

Figure 9.1 Stress-strain curves for undamaged and pre-stretched reinforcement.  
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The stress-strain curves for undamaged and bent reinforcement are presented in 

Figure 9.2. The bent reinforcement showed a slightly softer behaviour by the end of the 

elastic range, which is assumed to come from the straightening of the slight bend that 

remained. This made it unreasonable to use the proof stress since it resulted in very low 

values when it is clear in the chart that yielding is at the same level as for the undamaged 

bars. Therefore, the yield stress for the bent bars were taken as the stress at the plateau 

seen in the chart. Moreover, it does not seem to be any apparent differences of the yield 

stress between the undamaged and bent bars, though the ultimate stress and strain are 

both lowered proportionally to the amount of bendings. Furthermore, the moduli of 

elasticity appear to differ for the different groups of bars, which is not visible in the 

graphs. This is assumed to be due to the fact that the extensometer is more sensitive to 

the straightening of the bar than the values from the machine, which are the values that 

the graphs are based on. This is further commented on in Appendix D. 

 

Figure 9.2 Stress-strain curves for undamaged and bent reinforcement.  
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9.2.2 Variation of testing speed 

The difference in properties and stress-strain relationship for the two speeds introduced 

in Section 7.2.2 can be seen in Table 9.4 and Figure 9.3, respectively. Note that the 

group called fast here is the same as the one called undamaged in the previous section. 

This is the speed recommended by CEN (2016). It is apparent here that there is a slight 

decrease in all the properties (except for the modulus of elasticity), this decrease is of 

about 1.5 – 2.0 % depending on which property is studied. 

 

Table 9.4 Material properties based on testing speed. 

Reinforcement f0.2 [MPa] fu [MPa] u [%] E [GPa] fu / f0.2 [-] 

Fast 555 656 9.38 202 1.18 

Slow 546 643 9.24 203 1.18 

 

 

Figure 9.3 Stress-strain curves for reinforcement specimens tested with different 

speed.  
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9.3 Dynamic testing of beams 

This section treats the drop-weight testing of the beams. The results are based on the 

high speed camera used. The films from the high speed camera were processed and 

retrieved from GOM Correlate Professional 2018. The section treats the force at impact, 

the midpoint deflection over time, the initial deformed shape of the beams, the 

velocities of the initial deflections and lastly the crack patterns on the concrete face.  

 

9.3.1 Method 

Initially, a study was made in the mesh of the surface component in GOM Correlate, to 

get clear results. This investigation is presented in Appendix E. It resulted in a facet 

size of 15 pixels and a point distance of 5 pixels for this project, which gave readable 

strain fields. The strain fields were displayed against the reference stage, namely the 

first picture in the film.  

 

Then, surface points were applied straight under the drop-weight and over the support 

in mid-height of the beam to extract the beam deflections. The deflection in the middle 

of the span, 𝑢𝑚𝑖𝑑, were then analysed relative the support point, 𝑢𝑠𝑢𝑝; i.e. all deflections 

given here have been adjusted as 

 

𝑢(𝑡) = 𝑢𝑚𝑖𝑑(𝑡) − 𝑢𝑠𝑢𝑝(𝑡) (9.1) 

 

To analyse the deformed shape of the beam a section was created through the beam at 

mid-height along the horizontal axis. The deformations were extracted at different time 

steps.  

 

Lastly, three facet points were set on the drop-weight, close to the head, where the 

acceleration and velocity were extracted.  

 

These steps were made for all the beams, except for the facet analysis, which was only 

made once.  

 

9.3.2 Applied force and impulse 

The force from the drop-weight and its corresponding impulse are presented within this 

section. The force was established from the acceleration in several points on the drop-

weight in GOM Correlate. An average value was taken from these points in order to get 

rid of the noise in this process, also observed by Jönsson and Stenseke (2018).  

 

9.3.2.1 Series I10-UD 

The peak force and impulse on series I10-UD are presented in Table 9.5. The impact is 

taken as the integral of the peak in the force-time curve, which is presented in 

Figure 9.4. The highspeed camera may not have captured the actual peak acceleration 

in these tests, it may have occurred between two frames which is why trend lines are 

presented of the peaks to get a better understanding of how the curve could be assumed 

to look if more frames had been captured per second. Note therefore that the peak loads 
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presented in the table may not be the actual peak load, but the highest one captured with 

the camera. An alternative method to determine this can be found in Appendix F. 

 

Table 9.5 Impact force and impulse for series I10-UD. 

Beam F [kN] I [Ns] 

I10-UD-B1-07 97.6 53.7 

I10-UD-B1-08 95.2 55.9 

I10-UD-B1-09 96.9 53.7 

Average 96.6 54.5 

 

Figure 9.4 Applied force of series I10-UD. The diagram to the right is zoomed in on 

the peak of the left one. Dashed lines are trendlines for each beam with 

corresponding shade. 

 

9.3.2.2 Series I10-D 

The peak force and impulse on series I10-D are presented in Table 9.6. The force-time 

curve is presented in Figure 9.5.  

 

Table 9.6 Impact force and impulse for series I10-D. 

Beam F [kN] I [Ns] 

I10-D-B1-10 99.6 53.5 

I10-D-B1-11 92.2 52.9 

I10-D-B1-12 96.7 53.4 

Average 96.2 53.2 
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Figure 9.5 Applied force of series I10-D. Right diagram is zoomed in on the peak of 

the left one. Dashed lines are trendlines for each beam with 

corresponding shade. 

 

9.3.2.3 Series I20-UD 

The peak force and impulse on series I20-UD are presented in Table 9.7. The force-

time curve is presented in Figure 9.6.  

 

Table 9.7 Impact force and impulse for series I20-UD. 

Beam F [kN] I [Ns] 

I20-UD-B2-13 102 69.4 

I20-UD-B2-14 105 72.0 

I20-UD-B2-15 96.4 68.2 

Average 101 69.9 

 

 

Figure 9.6 Applied force of series I20-UD. Right diagram is zoomed in on the peak 

of the left one. Dashed lines are trendlines for each beam with 

corresponding shade. 
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9.3.2.4 Series I20-D 

The peak force and impulse on series I20-D are presented in Table 9.8. The force-time 

curve is presented in Figure 9.7. 

 

Table 9.8 Impact force and impulse for series I20-D. 

Beam F [kN] I [Ns] 

I20-D-B2-16 101 73.6 

I20-D-B2-17 106 67.0 

I20-D-B2-18 112 69.4 

Average 106 70.0 

 

Figure 9.7 Applied force of series I20-D. Right diagram is zoomed in on the peak of 

the left one. Dashed lines are trendlines for each beam with 

corresponding shade. 

 

9.3.2.5 Comparison 

The I10 series show a rather well gathered response on all fronts, which is not the case 

for the I20 beams. Both beam I20-UD-B2-14 and I20-D-B2-17 show a large noise in 

the tests results. However, they do show a behaviour similar to the other beams during 

the peak loading, i.e. at the impact.  

 

All beams show a smaller second peak at around 1.6 ms which is interesting. This can 

be interpreted as a second impact between the drop-weight and the beam, and occurs at 

the same time as the beam has straightened out, shown in the deformed shape of the 

beams, which is presented in Section 9.3.5.  

 

Furthermore, the impact forces and impulses from the 20 kg drop-weight are slightly 

higher than those of the 10 kg impact. This is in line with observations made by Jönsson 

and Stenseke (2018), who additionally showed that the drop height had most influence 

on the force, rather than the mass of the drop-weight.  
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9.3.3 Velocity of drop-weight 

The velocity of the drop-weight is presented in Figure 9.8 using average values for each 

series. The velocities for all the beam can be viewed in Appendix G. Here, the same 

process was made as for the acceleration, where the velocity was estalished from 

several points on the drop-weight in GOM Correlate. 

 

Figure 9.8 Velocity of drop-weight for all series. 

 

The 20 kg drop-weight takes longer time to slow down due to its higher kinetic energy. 

There is also a systemic difference between undamaged and damaged reinforcement 

where it takes slightly longer time for the beams with undamaged reinforcement to slow 

down the drop-weight. It is seen in the figure that series I20-UD has a curve that is more 

noisy than the other ones, this is due to noise in the curve from beam I20-UD-B2-14, 

which is in correspondence with Section 9.3.2.3. 

 

9.3.4 Midpoint deflection over time 

In this section, the midpoint deflection over time is presented. The value was taken 

relative the support deflection, as in Equation (9.1), in GOM Correlate by setting points 

in mid-height of the beam straight over the support and under the drop-weight. The 

reason for the initial, small bulge in the curves, after about 5 ms, is the fact that the 

beam rose from the support initially and when it was lowered to the support level again, 

this behaviour is apparent. The plastic deflection of the beams was determined 

according to Appendix H. 
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9.3.4.1 Series I10-UD 

The midpoint deflection during the first 50 ms after impact of the beams in Series        

I10-UD is presented in Figure 9.9. The initial velocities of the drop-weight along with 

the maximum deflection and the plastic deflection of the beam’s midpoint are presented 

in Table 9.9.  

 

Figure 9.9 Midpoint deflection of beams with undamaged reinforcement during the 

first 50 ms after impact from the 10 kg drop-weight. 

 

Table 9.9 Initial velocity of drop-weight, maximum deflection and plastic deflection 

of beams subjected to 10 kg dropweight with undamaged reinforcement. 

Beam v0 [m/s] umax [mm] upl [mm] 

I10-UD-B1-07 9.83 29.1 18.0 

I10-UD-B1-08 9.86 26.6 15.3 

I10-UD-B1-09 9.83 27.9 17.5 

Average 9.84 27.9 17.0 

 

  

 



 

 

 

CHALMERS Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 89 

9.3.4.2 Series I10-D 

The midpoint deflection during the first 50 ms after impact of the beams in Series       

I10-D is presented in Figure 9.10. The initial velocities of the dropweight along with 

the maximum deflection and the plastic deflection of the beam midpoint are presented 

in Table 9.10.  

 

Figure 9.10 Midpoint deflection of beams with damaged reinforcement during the 

first 50 ms after impact from the 10 kg drop-weight. 

 

Table 9.10 Initial velocity of drop-weight, maximum deflection and plastic deflection 

of beams subjected to 10 kg dropweight with damaged reinforcement. 

Beam v0 [m/s] umax [mm] upl [mm] 

I10-D-B1-10 9.84 24.5 12.0 

I10-D-B1-11 9.85 26.2 14.0 

I10-D-B1-12 9.82 25.2 12.1 

Average 9.84 25.3 12.7 
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9.3.4.3 Series I20-UD 

The midpoint deflection during the first 80 ms after impact of the beams in Series        

I20-UD is presented in Figure 9.11. The initial velocities of the dropweight along with 

the maximum deflection and the plastic deflection of the beam midpoint are presented 

in Table 9.11. Note that beam I20-UD-B2-15 was first accidently subjected to a load of 

the 20 kg weight dropped from a height of approximately 2 m. This is assumed to be 

the reason for the different behaviour of that one. Therefore, it is not included in the 

average and envelope curves in Figure 9.11. It is also observed to have lower 

deflections in Table 9.11, which can be assumed to be due to the strain hardening of the 

reinforcement due to the accidental impact. Furthermore, be aware that the measured 

data from beam I20-UD-B2-15 is from the second impact only; the deflection from the 

accidental impact is not included. In the figure, the curve for beam I20-UD-B2-14 lack 

information around the maximum deflection, where the curve is dashed. The maximum 

is therefore taken as the highest measured value of the deflection.  

 

Figure 9.11 Midpoint deflection of beams with undamaged reinforcement during the 

first 80 ms after impact from the 20 kg drop-weight. Note that  

beam I20-UD-B2-15 is not included in the average and envelope curves. 

 

Table 9.11 Initial velocity of drop-weight, maximum deflection and plastic deflection 

of beams subjected to 20 kg dropweight with undamaged reinforcement. 

Beam v0 [m/s] umax [mm] upl [mm] 

I20-UD-B2-13 9.80 82.1(1) 69.1 

I20-UD-B2-14 9.83 82.1 67.1 

I20-UD-B2-15 9.85 73.6(2) 54.2(2) 

Average 9.83 82.1 68.1 
(1) Note that in the maximum deflection for beam 13 the small top before the smooth rounded curve 

top is disregarded as it is assumed to come from noise in the measuring data in GOM Correlate. 
(2) Deflection values for beam I20-UD-B2-15 are not included in the average values.  
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9.3.4.4 Series I20-D 

The midpoint deflection during the first 80 ms after impact of the beams in Series         

I20-D is presented in Figure 9.12. The initial velocities of the dropweight along with 

the maximum deflection and the plastic deflection of the beam midpoint are presented 

in Table 9.12.  

 

Figure 9.12 Midpoint deflection of beams with damaged reinforcement during the 

first 80 ms after impact from the 20 kg drop-weight. 

 

It is apparent that beam I20-D-B2-17 has a shift in its time period compared to the other 

two in Figure 9.12. This is assumed to be due to the high level of concrete spalling 

during the impact which resulted in a greater loss of mass and stiffness compared to the 

other two beams. 

 

Table 9.12 Initial velocity of drop-weight, maximum deflection and plastic deflection 

of beams subjected to 20 kg dropweight with damaged reinforcement. 

Beam v0 [m/s] umax [mm] upl [mm] 

I20-D-B2-16 9.90 74.7 58.6 

I20-D-B2-17 9.80 77.9 61.8 

I20-D-B2-18 9.82 70.0 55.5 

Average 9.84 74.2 58.6 

 

9.3.4.5 Comparison 

The average midpoint deflection curves for all beam series are presented in Figure 9.13. 

It is evident that the 20 kg-drop-weight gives a more severe impact on the beams. 

Moreover, it can be seen that the beams containing damaged reinforcement gives a 

smaller overall deflection compared to those with undamaged reinforcement. This 

comes from the reduction of plastic deformation capacity in the reinforcement bars due 

to pre-stretching, as shown in Figure 9.1. Exactly how much the maximum deflection 

has been lowered due to the reinforcement properties is presented in Table 9.13.  
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Figure 9.13 Midpoint deflection of all beam groups (presented using average curves) 

during the first 80 ms after impact. 

 

Table 9.13 Comparison of deflection between beams with undamaged vs damaged 

reinforcement.  

Comparison 

𝒖𝒎𝒂𝒙,𝑫−𝒖𝒎𝒂𝒙,𝑼𝑫

𝒖𝒎𝒂𝒙,𝑼𝑫
  

[%] 

𝒖𝒑𝒍,𝑫−𝒖𝒑𝒍,𝑼𝑫

𝒖𝒑𝒍,𝑼𝑫
   

[%] 

I10-UD vs I10-D -9 -25 

I20-UD vs I20-D -10 -14 

 

9.3.5 Deformed shape 

The variation of the deformed shape of the beams is of interest to get an explanation on 

how the load is transferred through it. This was done by taking a section through the 

middle part of the beam, in the vertical direction, that was parallel to the horizontal axis 

in GOM Correlate. The deflections in the sections were retrieved for the first two 

milliseconds after impact. This was done for only four beams, one representative beam 

from each series. The choice was based on the midpoint deflection over time curves 

where the one chosen was the one closest to average in the beginning of the curve. 
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9.3.5.1 Series I10-UD 

For this series, beam I10-UD-B1-07 was used to represent the group. The variation of 

the deformed shape is presented in Figure 9.14. The relative deformed shape is 

presented in Figure 9.15. In this figure, the deflection was normalized to the maximum 

value at each time step.  

 

Figure 9.14 Variation of deformed shape of half of beam I10-UD-B1-07 during the 

first 2 ms after impact. 

 

Figure 9.15 Variation of relative deformed shape of half of beam I10-UD-B1-07 

during the first 2 ms after impact. 
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9.3.5.2 Series I10-D 

For this series, beam I10-D-B1-10 was used to represent the group. The variation of the 

deformed shape is presented in Figure 9.16. The relative deformed shape is presented 

in Figure 9.17. 

 

Figure 9.16 Variation of deformed shape of half of beam 10 during the first 2 ms after 

impact. 

 

Figure 9.17 Variation of relative deformed shape of half of beam 10 during the first 

2 ms after impact. 
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9.3.5.3 Series I20-UD 

For this series, beam I20-UD-B2-13 was used to represent the group. The variation of 

the deformed shape is presented in Figure 9.18. The relative deformed shape is 

presented in Figure 9.19. 

 

Figure 9.18 Variation of deformed shape of half of beam 13 during the first 2 ms after 

impact. 

 

Figure 9.19 Variation of relative deformed shape of half of beam 13 during the first 

2 ms after impact.  
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9.3.5.4 Series I20-D 

For this series, beam I20-D-B2-16 was used to represent the group. The variation of the 

deformed shape is presented in Figure 9.20. The relative deformed shape is presented 

in Figure 9.21.  

 

Figure 9.20 Variation of deformed shape of half of beam 16 during the first 2 ms after 

impact.  

 

Figure 9.21 Variation of relative deformed shape of half of beam 16 during the first 

2 ms after impact. 
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9.3.5.5 Comparison 

From the figures of the absolute deformed shape it is clear that the 20 kg drop-weight 

gave a higher deflection in general. It is also visible that there immediately appeared 

severe cracks close to the middle in the I20-beams, due to the excess deflection directly 

below the point of impact. This behaviour is not as severe in the I10-beams.  

 

The influence of the reinforcement is not distinct in either the absolute or relative 

deformed shapes. Therefore, the information seems to travel at almost the same pace in 

all the beams. However, it is difficult to study in these rough curves, which is why this 

is evaluated further.  

 

9.3.6 Velocity of initial deflection 

How the deflection propagates through the beam is here studied in a more detailed 

manner. This was done by calculating how the active portion of the beam increased in 

length between two time steps. This velocity was calculated as 

 

𝑣 =
𝑥(𝑡2) − 𝑥(𝑡1)

𝑡2 − 𝑡1
 (9.2) 

 

where x is the transition point between active and inactive portion in each time step. 

The method is schematically shown in Figure 9.22.  

 

 

Figure 9.22 Transition point between active and inactive part. From Jönsson and 

Stenseke (2018). 

 

The velocities were calculated for the beams studied in the previous section, and they 

are presented in Table 9.14.  
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Table 9.14 Shear velocities of representative beams during the first two milliseconds 

after impact. [m/s] 

Beam 
0.4 

ms 

0.6 

ms 

0.8 

ms 

1.0 

ms 

1.2 

ms 

1.4 

ms 

1.6 

ms 

1.8 

ms 

2.0 

ms 

I10-UD-B1-07 446 318 149 282 169 131 37.5 37.2 37.5 

I10-D-B1-10 337 252 84 178 207 140 112 37.7 46.8 

I20-UD-B2-13 431 281 112 149 245 168 75.6 37.2 59.9 

I20-D-B2-16 262 262 112 224 170 206 113 37.6 55.5 

 

It is evident that the velocities decrease with time and that they quickly stabilize. 

Though it seems that for all the beams, the velocity is increased between 0.8 and 1.0 

ms. This could come from the fact that this is the point at which the beams seem to lift 

from the support and therefore behave quite differently. Additionally, it seems that the 

velocity in the beams with damaged reinforcement start at a lower value than those with 

undamaged bars. This indicates that the reinforcement reaches its yield limit in either 

the top bars or the bottom bars in mid-span. In this part of the stress-strain curve the 

different types of reinforcement respond differently due to strain hardening effects in 

the pre-stretched bars. The beams with damaged reinforcement also seem to stabilize 

one time step later, at 1.8 ms rather than 1.6 ms which seems to be the case for the 

undamaged ones. Furthermore, there does not seem to be any apparent difference in 

impacting with 10 kg or 20 kg. 

 

9.3.7 Strain fields 

Strain fields were retrieved from GOM Correlate for the dynamic testing to get an 

overview of the crackpattern of the beams during the dynamic tests. The strain fields 

were taken for the first two milliseconds after impact and at the time of maximum 

deflection. 

 

 

9.3.7.1 I10-UD 

The strain fields for Series I10-UD are presented in Table 9.15. Between the time steps 

0.6 and 1.0 ms one can see that cracks form in the top of the beam at approximately one 

fourth of the beam span from the support. They seem to have closed by 2.0 ms. This is 

assumed to come from the behaviour studied in the previous sections where the 

deflection propagates.  

 

The strain fields are similar for the three beams, where three major cracks appear in the 

middle of the span, of which one is vertical and two inclined.  

 

Note that the white spots in the strain fields solemnly mean that there is no information 

available there. This either indicates that there is excessive concrete spalling or that the 

concrete is there, yet that the surface component has lost vital information.  

 



 

 

 

CHALMERS Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 99 

Table 9.15 Strain fields  during the first two milliseconds and at the maximum 

deflection  for beams with undamaged reinforcement dynamically loaded 

with 10 kg drop-weight.  

[ms] I10-UD-B1-07 I10-UD-B1-08 I10-UD-B1-09 

0.2 
   

0.4 
   

0.6 
   

0.8 
   

1.0 
   

2.0 
   

umax 
 

t = 12.6 ms 

 umax = 29.1 mm 

 
t = 11.0 ms 

umax = 26.6 mm 

 
t = 12.4 ms 

umax = 27.9 mm 

[%] 
 

 

  

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
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9.3.7.2 I10-D 

The strain fields for Series I10-D are presented in Table 9.16. These show the same 

behaviour as I10-UD with the initial cracks in the top that later closes. The I10-D beams 

show a larger variation than the former ones. However, the cracks seem to follow the 

same general pattern as in the undamaged beams. 

 

Table 9.16 Strain fields  during the first two milliseconds and at the maximum 

deflection for beams with damaged reinforcement dynamically loaded 

with 10 kg drop-weight.  

[ms] I10-D-B1-10 I10-D-B1-11 I10-D-B1-12 

0.2 
   

0.4 
   

0.6 
   

0.8 
   

1.0 
   

2.0 
   

umax 
 

t = 10.4 ms 

umax = 24.5 mm 

 
t = 11.0 ms 

umax = 26.2 mm 

 
t = 11.2 ms 

umax = 25.2 mm 

[%] 
 

 

  

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
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9.3.7.3 I20-UD 

The strain fields for Series I20-UD are presented in Table 9.17. The beams                    

I20-UD-B2-13 and -14 show similar crack patterns. Beam I20-UD-B2-15, however, 

shows a larger deflection along with more severe cracks at the time of maximum 

deflection. This is assumed to be due to the accidental drop of the weight on the beam 

from approximately 2 m before the testing. Note that the maximum deflection noticed 

in the table is the value it was deflected in the intended impact, the deflection for the 

accidental impact is not included. All the beams also obtained the initial cracks in the 

top of the beams; i.e. similar to that obtained in the I10-beams.  

 

Table 9.17 Strain fields  during the first two milliseconds and at the maximum 

deflection  for beams with undamaged reinforcement dynamically loaded 

with 20 kg drop-weight.  

[ms] I20-UD-B2-13 I20-UD-B2-14 I20-UD-B2-15 

0.2 
   

0.4 
   

0.6 
   

0.8 
   

1.0 
   

2.0 
   

umax 
 

t = 26.2 ms 

umax = 82.1 mm 

 
t = 25.4 ms 

umax = 82.1 mm 

 
t = 19.2 ms 

umax = 73.8 mm 

[%] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
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9.3.7.4 I20-D 

The strain fields for Series I20-D are presented in Table 9.18. The three beams show 

similar crack patterns and shows the initial cracks in the top as the previous beams.  

 

Table 9.18 Strain fields during the first two milliseconds and at the maximum 

deflection for beams with damaged reinforcement dynamically loaded 

with 20 kg drop-weight.  

[ms] I20-D-B2-16 I20-D-B2-17 I20-D-B2-18 

0.2 
   

0.4 
   

0.6 
   

0.8 
   

1.0 
   

2.0 
   

umax 
 

t = 24.2 ms 

umax = 74.7 mm 

 
t = 25.4 ms 

umax = 77.9 mm 

 
t = 22.4 ms 

umax = 70.0 mm 

[%] 
 

 

9.3.7.5 Comparison 

As previously mentioned, all the beams show the initial cracks in the top at 

approximately one fourth of the span from the support.  

 

The largest difference in the crack patterns is that the I20-beams show larger cracks 

than the I10 ones.  

 

During the first two milliseconds there does not seem to be any difference between the 

beams containing undamaged reinforcement compared to the ones with damaged. This 

is coherent with the deformed shape of the beams which showed the same thing. 

However, as known from the shear velocities that is not the case, yet the difference does 

not seem to be visible for the naked eye. The reinforcement show a larger influence on 

the maximum deflection, which in general was somewhat smaller for the D-beams, see 

Section 9.3.4.5.  

 

 

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
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9.4 Static testing of beams 

This section treats the results of the static testing of the beams. The purpose of testing 

the beams statically after they were tested dynamically was to analyse their static 

response compared to non-impacted beams (Series S) and also to evaluate their residual 

load and deformation capacity. The section presents the static results for beams in 

Series S, Series I10 and Series I20. 

 

9.4.1 Method  

The results were obtained from both the static testing machine and the 3D view 

analysed in GOM Correlate. In case of beams from Series I10 or Series I20, the 

deflection extracted from the testing machine was corrected to include the plastic 

deformation due to the drop-weight impact.  

 

The 3D view analysed in GOM Correlate was done using a facet size of 17 pixels and 

a point distance of 14 pixels. The strain fields were displayed against the reference 

stage, namely the first picture in the film.  

 

9.4.2 Results for Series S 

This section presents the results for beams in Series S regarding curves for load-

deflection relationship and strain fields at a total deformation of 30 mm. The load-

deflection curves describe the structural behaviour and were used to calculate plastic 

rotation capacity, internal work and stiffness at different stages. The results obtained 

for Series S were later used as reference when evaluating the static results from the 

impacted beams.   

 

9.4.2.1 Load-deflection relationship 

The load-deflection relationship of the beams in Series S, i.e. the beams subjected to 

static loading only, is shown in Figure 9.23. Comparison is made between beams with 

undamaged reinforcement (solid line) and beams with damaged reinforcement (dashed 

line). Additionally, outer envelopes and average load-deflection relationship are 

presented in Figure 9.24 for beams with undamaged reinforcement and Figure 9.25 for 

beams with damaged reinforcement.  

 

Initially, all beams in Series S show a similar behaviour independently on whether they 

have undamaged or damaged reinforcement. It is visible that Series S-UD reaches 

yielding slightly earlier than Series S-D. Furthermore, beams in Series S-UD show a 

more ductile behaviour compared to Series S-D. Comparing the average curves in 

Figure 9.24 and Figure 9.25, the beams with undamaged reinforcement reaches a 

somewhat lower maximum load than the beams with damaged reinforcement.  
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Figure 9.23 Load-deflection relationship for statically loaded beams with damaged 

and undamaged reinforcement. The experimental set-up was in this case 

static three point loading.  

 

Figure 9.24 Outer envelopes and average load-deflection relationship for statically 

loaded beams with undamaged reinforcement. 
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Figure 9.25 Outer envelopes and average load-deflection relationship for statically 

loaded beams with damaged reinforcement. 

 

Values for maximum deflection before failure, maximum load and ratio between 

ultimate moment and yield moment are presented in Table 9.19 for beams with 

undamaged reinforcement and in Table 9.20 for beams with damaged reinforcement. A 

beam was in this thesis considered to reach failure when the descending branch of the 

load-deflection curve reached 50 % of the average value of the maximum load, 𝐹𝑚𝑎𝑥. 

That is at the load 4.90 kN for beams with undamaged reinforcement and at 5.10 kN 

for beams with damaged reinforcement. A decrease in the ratio 𝜂𝑀 = 𝑀𝑢 𝑀𝑦⁄  of about 

12 % is noticed for beams with damaged reinforcement compared to undamaged. 

Furthermore, it is noticed that 𝜂𝑀  is considerably higher than 𝜂𝑓  obtained in 

Section 9.2.1 for both undamaged and damaged reinforcement.  

  

Table 9.19 Maximum deflection, maximum load and quotient between ultimate 

moment and yield moment for statically loaded beams with undamaged 

reinforcement.    

Beam 
ufail 

[mm] 

Fmax 

[kN] 

Fy 

 [kN] 

Mu / My 

[-] 

S-UD-B1-01 63.0 9.54 7.37 1.29 

S-UD-B1-02 54.4 9.73 7.49 1.30 

S-UD-B2-03 61.3 10.1 7.81 1.29 

Average 59.6 9.79 7.56 1.30 
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Table 9.20 Maximum deflection, maximum load and quotient between ultimate 

moment and yield moment for statically loaded beams with damaged 

reinforcement.    

 

 

By looking at the load-deflection curves it is possible to distinguish the three different 

stages that the reinforced concrete exhibits during static loading; state I, state II and 

state III. The stiffness of the beams during these stages is calculated and presented in 

Table 9.21 for beams with undamaged reinforcement and in Table 9.22 for beams with 

damaged reinforcement. Two different values for the state II stiffness are presented, 

𝑘𝐼𝐼,𝑠 refers to the secant stiffness in state II while 𝑘𝐼𝐼,𝑡 refers to the tangent stiffness in 

state II. All stiffnesses were calculated by dividing the difference in load by the 

difference in deflection. For further description of the different stiffnesses see 

Appendix I. There is no major difference in the stiffnesses in the different stages 

comparing undamaged and damaged reinforcement.  

 

Table 9.21 Stiffnesses in different stages for statically loaded beams with 

undamaged reinforcement.    

Beam 
kI  

[MN/m] 

kII,s 

[MN/m] 
kII,t  

[MN/m] 

kIII  

[MN/m] 

S-UD-B1-01 2.38 0.947 0.783 0.132 

S-UD-B1-02 2.03 0.900 0.747 0.126 

S-UD-B2-03 1.85 0.930 0.768 0.125 

Average 2.09 0.926 0.766 0.128 

 

Table 9.22 Stiffnesses in different stages for statically loaded beams with damaged 

reinforcement.    

Beam 
kI  

[MN/m] 

kII,s 

[MN/m] 
kII,t  

[MN/m] 

kIII  

[MN/m] 

S-D-B1-04 1.86 0.885 0.743 0.094 

S-D-B2-05 2.02 0.897 0.753 0.117 

S-D-B2-06 2.31 0.845 0.687 0.104 

Average 2.06 0.875 0.728 0.105 

 

The plastic rotation at different load levels is presented in Table 9.23 for beams with 

undamaged reinforcement and in Table 9.24 for beams with damaged reinforcement. 

The values are calculated according to Section 4.3.3 using the secant state II stiffness, 

𝑘𝐼𝐼,𝑠. In comparison to beams with undamaged reinforcement, the plastic rotation is 

consistently lower for beams with damaged reinforcement. By looking at the load-

deflection curves, this can be explained by the steep drop in load that occurs earlier for 

Beam 
ufail 

[mm] 

Fmax 

[kN] 

Fy 

 [kN] 

Mu / My 

[-] 

S-D-B1-04 32.1 9.66 8.63 1.12 

S-D-B2-05 42.1 10.8 9.38 1.16 

S-D-B2-06 38.6 10.1 8.82 1.14 

Average 37.6 10.2 8.94 1.14 
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beams with damaged reinforcement and thus resulting in a decreased value of plastic 

rotation capacity.  

 

Table 9.23 Plastic rotation at different load levels for statically loaded beams with 

undamaged reinforcement.   

Beam 
pl,100% 

[mrad] 

pl,95% 

[mrad] 

pl,90% 

[mrad] 

pl,85% 

[mrad] 

pl,80% 

[mrad] 

S-UD-B1-01 20.9 27.0 37.3 41.7 61.7 

S-UD-B1-02 23.3 25.7 36.0 45.5 61.2 

S-UD-B2-03 24.0 29.5 32.9 37.3 46.9 

Average 22.7 27.4 35.4 41.5 56.6 

 

Table 9.24 Plastic rotation at different load levels for statically loaded beams with 

damaged reinforcement.   

Beam 
pl,100% 

[mrad] 

pl,95% 

[mrad] 

pl,90% 

[mrad] 

pl,85% 

[mrad] 

pl,80% 

[mrad] 

S-D-B1-04 13.9 18.9 26.1 31.6 35.2 

S-D-B2-05 16.5 24.6 30.1 36.4 38.1 

S-D-B2-06 16.2 23.8 26.5 34.1 39.9 

Average 15.5 22.4 27.6 34.0 37.8 

 

The rotation capacity is also presented in terms of relative rotation capacity in 

Figure 9.26 and Figure 9.27. The presented values are average values at different load 

levels that are normalized in relation to the load level corresponding to 100 % of the 

maximum load, 𝐹𝑚𝑎𝑥 . Both beams with undamaged reinforcement and beams with 

damaged reinforcement obtain larger plastic rotation capacity when considering lower 

load levels. It is also noticed that the beams with damaged reinforcement obtain lower 

rotation capacity than undamaged at all load levels. 
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Figure 9.26 Relative plastic rotation capacity at different load levels. The values refer 

to average values of statically loaded beams and are normalized in 

relation to the load level corresponding to 100 % of Fmax for the 

undamaged reinforcement.  

 

Figure 9.27 Relative plastic rotation capacity at different load percentages. The 

values refer to average values of statically loaded beams with damaged 

reinforcement and they are normalized in relation to the load level 

corresponding to 100 % of Fmax. 
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The ratio between average values for the plastic rotation capacity of beams with 

damaged reinforcement and beams with undamaged reinforcement for different load 

levels can be seen in Figure 9.28. The figure shows that there is no clear correlation 

between the different load levels but the plastic rotation is, as stated before, lower for 

beams with damaged reinforcement than for beams with undamaged reinforcement. 

The plastic rotation capacity for the beams with damaged reinforcement is around 75 % 

of the one measured for the undamaged beams on all load levels.  

 

Figure 9.28 Ratio between plastic rotation capacity of beams with damaged 

reinforcement and beams with undamaged reinforcement. The values 

refer to average values of statically loaded beams.  

 

The total internal work, 𝑊𝑡𝑜𝑡, and internal work at different load levels, 𝑊𝑝𝑙,𝑥%, are 

listed in Table 9.25 for beams with undamaged reinforcement and in Table 9.26 for 

beams with damaged reinforcement. The methodology of internal work is described in 

Section 3.3. A schematic illustration of how the internal work is interpreted and 

calculated can be found in Appendix J. The same conclusions as made for the 

comparison of the plastic rotation capacity can be made for the internal work. The 

internal work at different load levels is correlated to the plastic rotation at the same load 

level. This is reasonable since the calculation procedures for internal work and plastic 

rotation capacity are based on the same methodology. 
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Table 9.25 Internal work at different load levels for statically loaded beams with 

undamaged reinforcement.   

Beam 
Wtot 

[Nm] 

Wpl,100% 

[Nm] 

Wpl,95%  

[Nm] 

Wpl,90% 

[Nm] 

Wpl,85% 

[Nm] 

Wpl,80% 

[Nm] 

S-UD-B1-01 486 123 160 218 242 344 

S-UD-B1-02 432 138 152 213 266 348 

S-UD-B2-03 488 148 183 203 227 279 

Average 469 136 165 211 245 324 

 

Table 9.26 Internal work at different load levels for statically loaded beams with 

damaged reinforcement.   

Beam 
Wtot 

[Nm] 

Wpl,100% 

[Nm] 

Wpl,95%  

[Nm] 

Wpl,90% 

[Nm] 

Wpl,85% 

[Nm] 

Wpl,80% 

[Nm] 

S-D-B1-04 254 86.2 116 158 188 208 

S-D-B2-05 364 112 166 203 242 252 

S-D-B2-06 315 103 150 167 209 242 

Average 311 100 144 176 213 234 

 

Furthermore, the total internal work calculated based on the average load-deflection 

curve for Series S-UD and S-D, is presented in Table 9.27. This parameter is later used 

in Section 9.4.3.3.2. It is visible that there is no big difference between the average 

value of the total internal work for the three beams in a series compared to the total 

internal work based on the average curve for the same series.  

 

Table 9.27 Total internal work, 𝑊𝑠𝑡𝑎𝑡𝑖𝑐, based on the average load-deflection curve 

for Series S. 

Series 
𝑾𝒔𝒕𝒂𝒕𝒊𝒄 

[Nm] 

S-UD 450 

S-D 303 
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9.4.2.2 Strain fields 

The strain fields at a deformation of 30 mm for beams in Series S are presented in 

Table 9.28. At this stage all beams have reached their maximum load, 𝐹𝑚𝑎𝑥, and all the 

major cracks have appeared. All beams show similar crack patterns with clear bending 

cracks along the bottom of the beams. There is no distinct difference in crack pattern 

between beams in Series S-UD and Series S-D. Note that the colour white in the strain 

fields indicate areas where information is lost. This could be either due to lost contact 

with the surface component or loss of concrete due to spalling. For the beams in Series S 

the white areas are mainly due to spalling of the concrete surface close to wide cracks. 

Pictures of all beams at a total deformation of 30 mm can be found in Appendix K. 

Table 9.28 Visualisation of strain fields at a total deformation of 30 mm of beams 

subjected to static testing only.  

Force [kN] Strain fields of beams in Series S 

Beam 

S-UD-B1-01 

F30mm = 8.97  
 

Beam 

S-UD-B1-02 

F30mm = 9.05 
 

Beam 

S-UD-B2-03 

F30mm = 9.34 
 

Beam 

S-D-B1-04 

F30mm = 8.19 
 

Beam 

S-D-B2-05 

F30mm = 9.89 
 

Beam 

S-D-B2-06 

F30mm = 8.83 
 

[%] 

 

 

  

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
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9.4.3 Results for Series I10 

This section presents the results for beams in Series I10 regarding curves for load-

deflection relationship and strain fields at a total deformation of 30 mm. The load-

deflection curves describe the structural behaviour and are used to calculate the internal 

work and stiffness at different stages. Furthermore, the results obtained for Series I10 

are compared to the results obtained for Series S.  

 

9.4.3.1 Load-deflection relationship 

The load-deflection relationship of the beams in Series I10, i.e. beams dynamically 

loaded with 10 kg drop-weight prior to the static testing, can be seen in Figure 9.29. 

Comparison is made between beams with undamaged reinforcement (solid line) and 

beams with damaged reinforcement (dashed line). Additionally, outer envelopes and 

average load-deflection relationship are presented in Figure 9.30 for beams with 

undamaged reinforcement and Figure 9.31 for beams with damaged reinforcement. 

 

Initially, all beams in Series I10 show a similar behaviour independently on whether 

they have undamaged or damaged reinforcement. It is visible that Series I10-UD yields 

slightly earlier than Series I10-D. Furthermore, beams in Series I10-UD show a 

considerably larger ductility compared to Series I10-D. Comparing the average curves 

in Figure 9.30 and Figure 9.31, the beams with undamaged reinforcement reaches a 

somewhat lower maximum load than the beams with damaged reinforcement, just as 

for Series S.  

 

It should be noted that the curves for outer envelopes and average load-deflection 

relationships for Series I10 and Series I20 can be somewhat misleading. At some places, 

especially at the end part of the curves, one can see that the average curve is not laying 

within the outer envelopes, which may seem unreasonable. This is due to the fact that 

the load in the outer envelopes and average curves are here based on a given 

deformation. Another way to display average and envelope curves could be to base the 

values of the deflection on given load. However, the curves displayed in this thesis are 

considered to be sufficient to represent the tested beams. 
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Figure 9.29 Load-deflection relationship for beams with damaged and undamaged 

reinforcement dynamically loaded with 10 kg drop-weight prior to the 

static test. The experimental set-up was in this case static three point 

loading.  

 

Figure 9.30 Outer envelopes and average load-deflection relationship for beams with 

undamaged reinforcement dynamically loaded with 10 kg drop-weight 

prior to the static test. The experimental set-up was in this case static 

three point loading.  
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Figure 9.31 Outer envelopes and average load-deflection relationship for beams with 

damaged reinforcement dynamically loaded with 10 kg drop-weight 

prior to the static test. The experimental set-up was in this case static 

three point loading. 

 

Values for maximum deflection before failure, maximum load, ratio between ultimate 

moment and yield moment and finally the stiffness are presented in Table 9.29 for 

beams with undamaged reinforcement and in Table 9.30 for beams with damaged 

reinforcement. There is no noticeable difference in stiffness or ratio between ultimate 

moment and yield moment when comparing Series I10-UD and Series I10-D.  

 

Table 9.29 Maximum deflection, maximum load, ratio between ultimate moment and 

yield moment  and stiffness for beams with undamaged reinforcement 

dynamically loaded with 10 kg drop-weight. 

Beam 
ufail 

 [mm] 

Fmax  

[kN] 

Mu / My 

[-] 
kdam  

[MN/m] 

I10-UD-B1-07 87.0 7.68 1.01 0.633 

I10-UD-B1-08 76.0 8.36 1.00 0.761 

I10-UD-B1-09 77.3 8.01 1.06 0.676 

Average 80.1 8.02 1.03 0.690 
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Table 9.30 Maximum deflection, maximum load, ratio between ultimate moment and 

yield moment and stiffness for beams with damaged reinforcement 

dynamically loaded with 10 kg drop-weight. 

Beam 
ufail 

[mm] 

Fmax 

[kN] 

Mu / My 

[-] 
kdam 

[MN/m] 

I10-D-B1-10 36.3 8.91 1.01 0.701 

I10-D-B1-11 32.0 8.59 1.03 0.681 

I10-D-B1-12 41.8 8.56 1.01 0.652 

Average 36.7 8.68 1.01 0.678 

 

The total internal work, 𝑊𝑡𝑜𝑡, is tabulated in Table 9.31 for beams with undamaged 

reinforcement and in Table 9.32 for beams with damaged reinforcement. The 

methodology of internal work is described in Section 3.3. The total internal work is, 

compared to Series I10-D, markedly larger for beams in Series I10-UD. This is 

reasonable since the beams with undamaged reinforcement are considerably more 

ductile than the beams with damaged reinforcement.  

 

Table 9.31 Total internal work for beams with undamaged reinforcement 

dynamically loaded with 10 kg drop-weight.  

Beam 
Wtot 

[Nm] 

I10-UD-B1-07 587 

I10-UD-B1-08 549 

I10-UD-B1-09 544 

Average 560 

 

Table 9.32 Total internal work for beams with damaged reinforcement dynamically 

loaded with 10 kg drop-weight.  

Beam 
Wtot 

[Nm] 

I10-D-B1-10 250 

I10-D-B1-11 214 

I10-D-B1-12 296 

Average 253 

 

9.4.3.2 Strain fields 

The strain fields at a total deformation of 30 mm for beams in Series I10 are presented 

in Table 9.33. At this stage all beams have reached their maximum load, 𝐹𝑚𝑎𝑥, and all 

the major cracks have appeared. All beams show similar crack patterns with bending 

cracks along the bottom and two inclined and one vertical crack in the mid span where 

the drop-weight have hit. There is no distinct difference in crack pattern between beams 

in Series I10-UD and Series I10-D. However, there are distict differences compared to 

Series S, where all cracks are vertical. This indicates that all the cracks in Series I10 

appeared during the drop-weight impact. Note that the colour white in the strain fields 

mark areas where information is lost. This could be either due to lost contact with the 



CHALMERS, Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 116 

surface component or loss of concrete due to spalling. For the beams in Series I10 the 

white areas mainly correspond to spalling of the concrete surface close to wide cracks. 

Pictures of all beams at a deformation of 30 mm can be found in Appendix K. 

 

Table 9.33 Visualization of strain fields at a total deformation of 30 mm of beams 

subjected to a 10 kg drop-weight impact prior to the static testing. 

Force [kN] Strain fields of beams in Series I10 

Beam 

I10-UD-B1-07 

F30mm = 7.50  
 

Beam 

I10-UD-B1-08 

F30mm = 8.22 
 

Beam 

I10-UD-B1-09 

F30mm = 7.68 
 

Beam 

I10-D-B1-10 

F30mm = 8.61 
 

Beam 

I10-D-B1-11 

F30mm = 8.56 
 

Beam 

I10-D-B1-12 

F30mm = 8.53 
 

[%] 

 

 

  

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
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9.4.3.3 Comparison with Series S 

In this section a comparison between Series I10 and Series S is made regarding both 

load-deflection relationship and internal work. Additionally, an approximation of the 

internal work during the impact for Series I10 is done.  

 

9.4.3.3.1 Load-deflection relationship 

The load-deflection relationships of the beams in Series S and Series I10 are compared 

in Figure 9.32 for beams with undamaged reinforcement and Figure 9.33 for beams 

with damaged reinforcement.  

 

Figure 9.32 Load-deflection relationship for beams with undamaged reinforcement 

subjected to static load only and beams with undamaged reinforcement 

subjected to 10 kg drop-weight prior to static loading.  
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Figure 9.33 Load-deflection relationship for beams with damaged reinforcement 

subjected to static load only and beams with damaged reinforcement 

subjected to 10 kg drop-weight prior to static loading. 

 

A comparison between average results of the key parameters obtained from the load-

deflection relations from Series S and Series I10 is made in Table 9.34 and Table 9.36 

for beams with undamaged reinforcement and Table 9.35 and Table 9.37 for beams 

with damaged reinforcement.  

 

One can see that, independently of undamaged or damaged reinforcement, beams 

impacted by a drop-weight experience a reduction in ultimate static load capacity, 𝐹𝑚𝑎𝑥. 

The reason for this could be due to reduction of the compressive zone, after the impact. 

Beams with undamaged reinforcement that are impacted by a drop-weight experience 

an increase in both total internal work, 𝑊𝑡𝑜𝑡 , and deflection until considered 

failed, 𝑢𝑓𝑎𝑖𝑙  (i.e. u at 50 % of Fmax for Series S, see Section 9.4.2.1), when tested 

statically. This indicates that those beams can be expected to have a larger plastic 

rotation capacity than beams not impact loaded prior to the static test. In contrast, beams 

with damaged reinforcement experience a reduction in the same parameters which 

indicates that those beams instead can be expected to have lower plastic rotation 

capacity than beams that are not dynamically impacted by a drop-weight prior to the 

static testing.  

 

Furthermore, the stiffness of impacted beams, 𝑘𝑑𝑎𝑚, corresponds best with the tangent 

stiffness in state II, 𝑘𝐼𝐼,𝑡, of the reference beams (beams in Series S). This applies to 

both undamaged and damaged reinforcement. Moreover, the stiffness of impacted 

beams is lower than both the secant and the tangent state II stiffness of non impacted 

beams. This reduction may come from a decrease of the compressive zone due to 

spalling of concrete in the impact zone during the dynamical test.  
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Table 9.34 Comparison of average results for beams in Series S-UD and beams in 

Series I10-UD. The results presented refer to beams with undamaged 

reinforcement.  

Series 
ufail 

[mm] 

Fmax 

[kN] 

Wtot 

[Nm] 

S-UD 59.6 9.79 469 

I10-UD 80.1 8.02 560 

Difference [%] +34 -18 +19 

 

Table 9.35 Comparison of average results for beams in Series S-D and beams in 

Series I10-D. The results presented refer to beams with damaged 

reinforcement. 

Series 
ufail 

[mm] 

Fmax 

[kN] 

Wtot 

[Nm] 

S-D 37.6 10.2 311 

I10-D 36.7 8.68 253 

Difference [%] -2 -15 -19 

 

Table 9.36 Comparison of average results for beams in Series S-UD and beams in 

Series I10-UD. The results presented refer to beams with undamaged 

reinforcement.  

Series 

kI 

(kdam) 

[MN/m] 

kII,s 

(kdam) 

[MN/m] 

kII,t  

(kdam) 

[MN/m] 

kIII  

(kdam) 

[MN/m] 

S-UD 2.09 0.926 0.766 0.128 

I10-UD 0.690 0.690 0.690 0.690 

Difference [%] -67 -26 -10 +439 

 

 

Table 9.37 Comparison of average results for beams in Series S-D and beams in 

Series I10-D. The results presented refer to beams with damaged 

reinforcement. 

Series 

kI 

(kdam) 

[MN/m] 

kII,s 

(kdam) 

[MN/m] 

kII,t  

(kdam) 

[MN/m] 

kIII  

(kdam) 

[MN/m] 

S-D 2.06 0.875 0.728 0.105 

I10-D 0.678 0.678 0.678 0.678 

Difference [%] -67 -23 -7 +546 
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9.4.3.3.2 Approximation of internal work during impact 

It is of interest to investigate the internal work during the impact of the beams. 

However, the load-deflection relationship during the dynamic test is not known. To get 

an idea of the structural response during the dynamic testing, the load-deflection 

relation during the impact could be assumed to act as the static response of the reference 

beams (Series S), up to a point where unloading coincide with the static response of the 

impacted beams (Series I10).  

 

Load-deflection curves for beams in Series I10 together with the average curve for 

Series S can be seen in Figure 9.34 and Figure 9.35 for undamaged and damaged 

reinforcement, respectively.  

 

Figure 9.34 Load-deflection relationship for beams in Series I10-UD and the average 

curve for Series S-UD. The curves refer to beams with undamaged 

reinforcement.  
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Figure 9.35 Load-deflection relationship for beams in Series I10-D and the average 

curve for Series S-D. The curves refer to beams with damaged 

reinforcement. 

 

Based on the curves in Figure 9.34 and Figure 9.35, some key parameters regarding 

internal work were calculated, tabulated in Table 9.39 and Table 9.40. The total internal 

work, 𝑊𝑠𝑡𝑎𝑡𝑖𝑐, based on the average load-deflection curve for Series S can be found in 

Table 9.38. These values are used for the comparison in Table 9.39 and Table 9.40. 

Additionally, a comparison between beams with undamaged and damaged 

reinforcement is made in Table 9.41. 

 

𝑊𝑑𝑦𝑛𝑎𝑚𝑖𝑐  is assumed to represent the energy consumed during the impact.  

𝑊𝑖𝑚𝑝𝑎𝑐𝑡+𝑠𝑡𝑎𝑡𝑖𝑐 is interpreted as the energy consumed during both the impact and the 

static test. Finally, the ratio between 𝑊𝑖𝑚𝑝𝑎𝑐𝑡+𝑠𝑡𝑎𝑡𝑖𝑐 and 𝑊𝑠𝑡𝑎𝑡𝑖𝑐 can be regarded as an 

indication of the increase in internal work due to the impact. A graphical interpretation 

of  the different parameters in the tables can be found in Appendix L.  

 

It is visible that the total internal work is increased substantially due to the impact. This 

yields for both beams with undamaged and damaged reinforcement. However, the 

increase is largest when undamaged reinforcement is used. 

 

Table 9.38 Total internal work, 𝑊𝑠𝑡𝑎𝑡𝑖𝑐, based on the average load-deflection curve 

for Series S. 

Series 
𝑾𝒔𝒕𝒂𝒕𝒊𝒄 

[Nm] 

S-UD 450 

S-D 303 
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Table 9.39 Parameters used to approximate the internal work due to impact for 

beams in Series I10-UD, based on the average load-deflection curve for 

Series S-UD. The results presented refer to beams with undamaged 

reinforcement. 

Beam 𝑾𝒅𝒚𝒏𝒂𝒎𝒊𝒄 𝑾𝒊𝒎𝒑𝒂𝒄𝒕+𝒔𝒕𝒂𝒕𝒊𝒄 
𝑾𝒊𝒎𝒑𝒂𝒄𝒕+𝒔𝒕𝒂𝒕𝒊𝒄

𝑾𝒔𝒕𝒂𝒕𝒊𝒄
 

I10-UD-B1-07 249 785 1.74 

I10-UD-B1-08 217 710 1.58 

I10-UD-B1-09 242 731 1.62 

Average 236 742 1.65 

 

Table 9.40 Parameters used to approximate the internal work due to impact for 

beams in Series I10-D, based on the average load-deflection curve for 

Series S-D. The results presented refer to beams with damaged 

reinforcement. 

Beam 𝑾𝒅𝒚𝒏𝒂𝒎𝒊𝒄 𝑾𝒊𝒎𝒑𝒂𝒄𝒕+𝒔𝒕𝒂𝒕𝒊𝒄 
𝑾𝒊𝒎𝒑𝒂𝒄𝒕+𝒔𝒕𝒂𝒕𝒊𝒄

𝑾𝒔𝒕𝒂𝒕𝒊𝒄
 

I10-D-B1-10 203 388 1.28 

I10-D-B1-11 227 375 1.23 

I10-D-B1-12 214 442 1.46 

Average 215 402 1.32 

 

Table 9.41 Comparison of average results of parameters used to approximate the 

internal work due to impact for beams in Series I10-UD and beams in 

Series I10-D. 

Series 𝑾𝒅𝒚𝒏𝒂𝒎𝒊𝒄 𝑾𝒊𝒎𝒑𝒂𝒄𝒕+𝒔𝒕𝒂𝒕𝒊𝒄 
𝑾𝒊𝒎𝒑𝒂𝒄𝒕+𝒔𝒕𝒂𝒕𝒊𝒄

𝑾𝒔𝒕𝒂𝒕𝒊𝒄
 

I10-UD 236 742 1.65 

I10-D 215 402 1.32 

Difference [%] -9 -46 -20 

 

9.4.4 Results for Series I20 

This section presents the results for beams in Series I20 regarding curves for load-

deflection relationship and strain fields at maximum load. The load-deflection curves 

describe the structural behaviour and are used to calculate the internal work and 

stiffness at different stages. Since the beams in Series I20 were statically tested by four 

point bending, the results are difficult to compare to both Series S and Series I10. 

Hence, the static results for Series I20 is only compared to the predicted results, see 

Section 10.2.3. 

 

It should be noted that beam I20-UD-B2-15 was accidentally hit by the drop-weight 

from a height of approximately two meters before the real intended impact test started. 
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This beam experienced a lot of concrete spalling after the intentional impact test (i.e. 

drop from 5.0 m) and was considered to more or less have consumed all its load bearing 

capacity and was therefore determined to not be tested statically. A picture of beam 

I20-UD-B2-15 after the intended impact can be seen in Appendix K. 

  

9.4.4.1 Load-deflection relationship 

The load-deflection relationship of the beams in Series I20 can be seen in Figure 9.36. 

Comparison is made between beams with undamaged reinforcement (solid line) and 

beams with damaged reinforcement (dashed line). Additionally, outer envelopes and 

average load-deflection relationship are presented in Figure 9.37 for beams with 

undamaged reinforcement and Figure 9.38 for beams with damaged reinforcement.  

 

Initially, all beams in Series I20 show a similar behaviour independently on whether 

they have undamaged or damaged reinforcement. Additionally, comparing the average 

curves in Figure 9.37 and Figure 9.38, there is no distinct difference in neither ductility 

nor reached maximum load.  

 

Figure 9.36 Load-deflection relationship for beams with damaged and undamaged 

reinforcement dynamically loaded with 20 kg drop-weight prior to the 

static test. Note that the experimental set-up in this case was static four 

point loading. 
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Figure 9.37 Outer envelopes and average load-deflection relationship for beams with 

undamaged reinforcement dynamically loaded with 20 kg drop-weight 

prior to the static test. The experimental set-up was in this case static 

four point loading. 

 

Figure 9.38 Outer envelopes and average load-deflection relationship for beams with 

damaged reinforcement dynamically loaded with 20 kg drop-weight 

prior to the static test. The experimental set-up was in this case static 

four point loading. 

 

Values for maximum deflection before failure (i.e. u at 50 % of Fmax for Series S, see 

Section 9.4.2.1),, maximum load, ratio between ultimate moment and yield moment 

and finally the stiffness are presented in Table 9.42 for beams with undamaged 

reinforcement and in Table 9.43 for beams with damaged reinforcement. There is no 
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noticeable difference in stiffness or ratio between ultimate moment and yield moment 

when comparing Series I20-UD and Series I20-D.  

 

Table 9.42 Maximum deflection, maximum load, ratio between ultimate moment and 

yield moment and stiffness for beams with undamaged reinforcement 

dynamically loaded with 20 kg drop-weight. 

Beam ufail [mm] Fmax [kN] 
Mu / My 

[-] kdam [MN/m] 

I20-UD-B2-13 27.6 8.07 1.02 0.551 

I20-UD-B2-14 22.6 7.78 1.06 0.543 

I20-UD-B2-15 - - - - 

Average 25.1 7.93 1.04 0.547 

 

Table 9.43 Maximum deflection, maximum load, ratio between ultimate moment and 

yield moment and stiffness for beams with damaged reinforcement 

dynamically loaded with 20 kg drop-weight. 

Beam ufail [mm] Fmax [kN] 
Mu / My 

[-] kdam [MN/m] 

I20-D-B2-16 25.3 8.66 1.00 0.621 

I20-D-B2-17 19.6 6.16 1.01 0.456 

I20-D-B2-18 24.3 9.46 1.00 0.685 

Average 23.1 8.09 1.01 0.587 

 

The total internal work, 𝑊𝑡𝑜𝑡, is tabulated in Table 9.44 for beams with undamaged 

reinforcement and in Table 9.45 for beams with damaged reinforcement. The 

methodology of internal work is described in Section 3.3. There is no noticeable 

difference in total internal work between beams with undamaged or damaged 

reinforcement. This is reasonable since, as mentioned before, there is no distinguished 

difference in ductility either.  

 

Table 9.44 Total internal work for beams with undamaged reinforcement 

dynamically loaded with 20 kg drop-weight.  

Beam 
Wtot 

[Nm] 

I20-UD-B2-13 156 

I20-UD-B2-14 115 

I20-UD-B2-15 - 

Average 135 
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Table 9.45 Total internal work for beams with damaged reinforcement dynamically 

loaded with 20 kg drop-weight.  

Beam 
Wtot 

[Nm] 

I20-D-B2-16 156 

I20-D-B2-17 82 

I20-D-B2-18 162 

Average 133 

 

9.4.4.2 Strain fields 

The strain fields at maximum load, 𝐹𝑚𝑎𝑥 , for beams in Series I20 are presented in 

Table 9.46. The reason for displaying the strain fields at maximum load instead of at a 

total deflection of 30 mm is that the beams in Series I20 already have an initial 

deflection far above that due to the impact test. However, a comparison of crack pattern 

with Series S is reasonable since most cracks appeared during the drop-weight impact. 

Therefore, the difference in load case does not have large effects on the pattern. 

 

All beams show similar crack patterns although it is hard to evaluate since there are lots 

of white areas in the pictures. This could be either due to lost contact with the surface 

component, excessive spalling of concrete or just spalling of the surface concrete layer. 

For the beams in Series I20 the white areas primarly corresponds to excessive spalling 

of the concrete surface. In one case, for beam I20-UD-B2-14, the white areas mainly 

correspond to lost contact with the surface component. Pictures of all beams at 

maximum load can be found in Appendix K. There is no distinct difference in crack 

pattern between beams in Series I20-UD and Series I20-D.  

 

Series I20 shows great differences in crack pattern compared to Series S. The cracks 

are inclined which is not the case for Series S. This indicates, as for Series I10, that the 

cracks appeared during the impact. Furthermore, Series I20 shows similar patterns as 

Series I10, however, there are more cracks close to where the drop-weight impacted the 

beam.  
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Table 9.46 Visualization of strain fields at maximum load, Fmax, of beams subjected 

to a 20 kg drop-weight impact prior to the static testing. 

Deflection 

[mm] 
Strain fields of beams in Series I20 

Beam 

I20-UD-B2-13 

uFmax = 85.2 
 

Beam 

I20-UD-B2-14 

uFmax = 84.5 
 

Beam 

I20-UD-B2-15 

uFmax = (1) 

(1) 

Beam 

I20-D-B2-16 

uFmax = 74.1 
 

Beam 

I20-D-B2-17 

uFmax = 78.9  
 

Beam 

I20-D-B2-18 

uFmax = 71.3 
 

[%] 

 
(1)Not tested statically due to excessive spalling of concrete in the dynamic test. 

 

9.4.4.3 Comparison with Series S 

As mentioned before, the beams in Series I20 were statically tested by four point 

bending. This makes the response difficult to compare to Series S (apart from the crack 

patterns) which were statically tested by three point bending. Therefore, Series I20 is 

only compared to predicted results in Section 10.2.3. 

 

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
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10 Comparison between experimental results and 

predictions 

This section exhibit several comparisons between the predicted and experimental 

results, and is based on Chapter 8 and 9. This is aimed for comparing the results through 

all the steps of the beams’ lives.  

 

10.1 Dynamic response 

This part is mainly aimed for comparing the 2DOF model to the beam experiments. 

However, it also includes the initial shear velocity. 

 

10.1.1 2DOF 

The main parts studied in the comparison between the 2DOF model and the 

experimental results are the deflections of the beam along with the velocity of the drop-

weight. Such results are presented in Figure 10.1 to Figure 10.4 for all the series. A 

detailed comparison of some deflections of interest is made in Table 10.1 to Table 10.4. 

The comparisons are made with both the predicted R2 and the one measured in the 

results to see which yields results closest to reality. 

 

Figure 10.1 Comparison between experimental results and 2DOF model of deflection 

of beam, u2, and velocity of drop-weight, v1, after impact for I10-UD. 
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Figure 10.2 Comparison between experimental results and 2DOF model of deflection 

of beam, u2, and velocity of drop-weight, v1, after impact for I10-D. 

 

Figure 10.3 Comparison between experimental results and 2DOF model of deflection 

of beam, u2, and velocity of drop-weight, v1, after impact for I20-UD. 

 

Figure 10.4 Comparison between experimental results and 2DOF model of deflection 

of beam, u2, and velocity of drop-weight, v1, after impact for I20-D. 

 

The velocity of the drop-weight in the 2DOF model shows a behaviour not far away 

from the real one for all series. 
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The deflections on the other hand are slightly different compared to the real behaviour. 

It is evident that the 2DOF model gives too large plastic deflection for all cases; except 

for series I20-UD when the 2DOF has been calculated using the measured resistance 

R2; then the results are almost equal. The maximum deflection on the other hand yields 

a too large result for all the series when the predicted R2 is used in 2DOF. This is 

expected since the predicted ultimate load is clearly underestimated, as seen in 

Section 10.2. However, the predictions correspond better to the experiments for Series 

I20 than I10.  When it comes to the maximum deflection based on the measured R2, 

there is no clear trend. As seen, the 2DOF model yields results that are slightly higher 

than the measured values for the I10-series. However, the maximum deflection is 

estimated lower than the experimental results for the I20-beams. This yields that the 

predicted R2 is on the safe side to use, while the measured R2 is slightly more unsafe to 

use in the 2DOF-model. 

 

Table 10.1 Comparison of umax between measured and predicted values with R2 as 

predicted.. 

Series 
Measured 

umax [mm] 

Predicted 

umax,2DOF [mm] 

Difference 

umax 

[mm]           [%] 

I10-UD 27.9 35.0 +8.0 +29 

I10-D 25.3 32.0 +6.7 +26 

I20-UD 82.1 88.8 +6.7 +8 

I20-D 74.2 80.2 +6.0 +8 

 

Table 10.2 Comparison of umax between measured and predicted values with R2 as 

measured. 

Series 
Measured 

umax [mm] 

Predicted 

umax,2DOF [mm] 

Difference 

umax 

[mm]           [%] 

I10-UD 27.9 30.8 +2.9 +10 

I10-D 25.3 29.5 +4.2 +17 

I20-UD 82.1 76.6 -5.5 -7 

I20-D 74.2 72.9 -1.3 -2 

 

Table 10.3 Comparison of upl between measured and predicted values with R2 as 

predicted. 

Series 
Measured 

upl [mm] 

Predicted 

upl,2DOF [mm] 

Difference 

upl 

[mm]           [%] 

I10-UD 17.0 28.1 +11 +65 

I10-D 12.7 24.2 +12 +94 

I20-UD 68.1 81.9 +14 +21 

I20-D 58.6 72.4 +14 +24 
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Table 10.4 Comparison of upl between measured and predicted values with R2 as 

measured. 

Series 
Measured 

upl [mm] 

Predicted 

upl,2DOF [mm] 

Difference 

upl 

[mm]           [%] 

I10-UD 17.0 22.6 +5.6 +33 

I10-D 12.7 20.9 +8.2 +65 

I20-UD 68.1 68.4 +0.3 +0 

I20-D 58.6 64.2 +5.6 +10 

 

10.1.2 Initial shear velocity 

The experimental results show that it takes the deflection to reach the end of the beam 

around 1.6 - 1.8 ms while the prediction according to Yi et al (2016) turn out at 0.28 ms, 

see Section 8.3.2. This is around 5 – 6 times smaller than the measured value which is 

in line with what Jönsson and Stenseke (2018) observed.  

 

10.2 Static response 

The static response of the beams is compared using the load-deflection curves for all 

series.  

 

10.2.1 Series S 

The load-deflection curves for series S are presented in Figure 10.5 and Figure 10.6 for 

beams with undamaged and damaged reinforcement respectively. The predictions used 

are the ones considering cracking of the concrete as a part of the evolution. Before the 

curve reaches ultimate capacity, the predictions overestimate the load slightly. 

However, the reason for the significant underestimation of the ultimate load is 

unknown. These observations hold for both undamaged and damaged reinforcement.  
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Figure 10.5 Load-deflection curves retrieved from experiments and predictions for 

series S-UD. 

 

Figure 10.6 Load-deflection curves retrieved from experiments and predictions for 

series S-D. 

 

For the beams in Series S, the predicted stiffness between cracking and yielding, 𝑘𝐼𝐼,𝑡 

or 𝑘𝑐𝑦, corresponds well with the measured stiffness. This holds for both undamaged 

and damaged reinforcement. However, the predicted stiffness in state I, 𝑘𝐼, is markedly 
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higher than the measured value. This implies a stiffness prediction on the unsafe side 

when using the 2DOF model. This is also visible in Table 10.5. 

 

Table 10.5 Stiffness for Series S based on experiments and predictions. 

Reinforcement Method kI [MN/m] kII,t or kcy [MN/m] 

Undamaged 
Measured 2.09 0.766 

Predicted 6.11 0.684 

Damaged 
Measured 2.06 0.728 

Predicted 6.10 0.710 

 

10.2.2 Series I10 

The load-deflection curves for series I10 are presented in Figure 10.7 and Figure 10.8 

for beams with undamaged and damaged reinforcement respectively. The predictions 

used are the ones not considering cracking of the concrete as a part of the evolution, but 

the state II stiffness instead. The reason for comparing with this curve is that it was 

clear that the beams had already cracked during the impact.  

 

Figure 10.7 Load-deflection curves retrieved from experiments and predictions for 

series I10-UD. 
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Figure 10.8 Load-deflection curves retrieved from experiments and predictions for 

series I10-D. 

 

For the I10-beams, the predicted load capacity is corresponding well to the measured 

one. However, the stiffness in state II is slightly higher than the measured one. This 

could come from a reduction of the compressive zone in the impact area, which is not 

considered in the predictions. This is also shown in Table 10.6. 

 

Table 10.6 Stiffness for Series I10 based on experiments and predictions. 

Reinforcement kdam or kII [MN/m] 

Undamaged 
Measured 0.690 

Predicted 1.08 

Damaged 
Measured 0.678 

Predicted 1.06 

 

Looking at the graphs, it seems that the predictions does not fully predict the influence 

of the damaged reinforcement. The stiffness does not seem to correspond as well in the 

damaged case as in the undamaged case. This could be due to the higher stress in the 

pre-stretched rebars which could result in greater damage of the compressive zone in 

the impact area. 
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10.2.3 Series I20 

There are no pure static reference beams for the 20 kg-beams since they were tested 

with four point bending. However, the static three point tests showed a maximum load 

that was 28 % and 19 % higher than the predicted load for undamaged and damaged 

reinforcement, respectively. The same underestimation in the predictions is assumed 

here.  

 

The load-deflection curves for series I20 are presented in Figure 10.9 and Figure 10.10 

for beams with undamaged and damaged reinforcement respectively. The predictions 

used are the ones both considering and not considering cracking of the concrete. This 

is to see an approximation of how the purely static load-deflection curve may look for 

four point bending of the beams.  

 

Figure 10.9 Load-deflection curves retrieved from experiments and predictions for 

series I20-UD. State cy is here defined as the state between cracking of 

the concrete and yielding of the reinforcement. 
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Figure 10.10 Load-deflection curves retrieved from experiments and predictions for 

series I20-D. State cy is here defined as the state between cracking of the 

concrete and yielding of the reinforcement. 

 

It is clear from both graphs that the beams have consumed a large amount of their 

original capacity during the impact. The ultimate load capacity is significantly lower 

than the predicted one.  

 

Additionally, the stiffnesses are showing the same pattern as for the I10-beams, where 

the predicted value is higher than the measured one. The values of the stiffnesses are 

listed in Table 10.7.  

 

Table 10.7 Stiffness for Series I20 based on experiments and predictions. 

Reinforcement kdam or kII [kN/mm] 

Undamaged 
Measured 0.547 

Predicted 1.17 

Damaged 
Measured 0.587 

Predicted 1.14 

 

The measured stiffness for damaged reinforcement is slightly higher than that for 

undamaged reinforcement. This could be due to the greater concrete spalling in the 

beams with undamaged reinforcement due to larger deflections, resulting in a smaller 

compressive zone. 
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10.3 Rotation capacity  

A comparison of the rotation capacity from the experiments and prediction is 

interpreted graphically in Figure 10.11 for undamaged reinforcement and in 

Figure 10.12 for damaged reinforcement. Note that this study only cares for the case of 

three point bending, in order to compare with the static tests.  

 

Figure 10.11 Comparison of plastic rotation capacity between experimental results 

and predictions when using undamaged reinforcement. 

 

Figure 10.12 Comparison of plastic rotation capacity between experimental results 

and predictions when using damaged reinforcement. 
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It is evident that Bk25 overestimates the rotation capacity in both cases. This is assumed 

to partly be due to the difference in loadcase, where Bk25 is calculated for an evenly 

distributed load. The evenly distributed load gives a larger plastic hinge length due to 

the form of the moment distribution over the beam, which is beneficial for the plastic 

rotation capacity. Therefore, using Bk25 is incorrect in this case.   

 

However, Eurocode 2 gives a more reasonable result, which is around the capacity for 

a load level of 100 %. For the beams with undamaged reinforcement, the rotation 

capacity is coherent for the load level 100 %. However, the damaged reinforcement 

does not fulfil the requirements for any of the ductility classes. It can be seen in 

Figure 10.12 that the experimental results show a larger rotation capacity than what is 

obtained for class B in Eurocode 2. The reason for this is assumed to come from the 

fact that the beams showed an 𝜂𝑀  ratio that is larger than 𝜂𝑓  obtained for the 

reinforcement, i.e. that the beams are more ductile than what can be observed by the 

reinforcement. However, according to Eurocode 2 reinforcement that is less ductile than 

class B should not be used in a plastic analysis.  
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11 Discussion 

Observations made during the project are discussed in this chapter, including methods 

of testing and calculating, and the results.  

 

The fact that the concrete was mixed in two different batches raise some questions 

regarding the results. It was shown by the material tests that the concrete from the two 

batches exhibited similar strength. However, to reduce possible sources of differences 

between the beams, it would have been preferred to mix the concrete in one batch.   

 

Moreover, all the material tests showed a well gathered structural response, which 

indicated that sufficient methods during the casting and damaging (pre-stretching and 

bending) of the reinforcement were used. The plastic strain of the pre-stretched bars 

was assured in a way that the scatter would not affect the beam tests more than other 

dispersion in material properties. The bent bars showed a well gathered response in 

their stress-strain relations, which assured the method used to bend and straighten the 

bars. The bars were not straightened completely, which was the goal. Nonetheless, on 

a construction site, there are rarely means of straightening the bars completely, which 

is why the method used in this project is assumed to show a real case more accurately.  

 

The material tests of the pre-stretched and bent reinforcement gave results in line with 

the literature study. However, the bending and straightening did not seem to have as 

large effect on the yield strength in the tests as in the literature. This could be due to the 

larger bending radius in the experiments performed in this study which may not have 

resulted in as large plastic deformations in the bar.  

 

The position of the reinforcement was measured for some beams after the static tests, 

to assure that the predictions were describing the beams more accurately. This showed 

that the reinforcement indeed was placed with a concrete cover of 17 mm, which 

indicates that the method used to position the reinforcing bars during beam 

manufacturing is sufficient.  

 

DIC proved to be a powerful tool to use in this kind of experiments, where a large 

amount of data could be collected from the tests afterwards. The choice to film half the 

beam during the dynamic tests was based on the work made by Lozano and 

Makdesi (2017) and Jönsson and Stenseke (2018), where it was shown that filming only 

half the beam would yield results with higher resolution. However, this choice has its 

limitations. Filming only half the beam does not capture any asymmetry of the beam 

response. However, this choice was assumed to be sufficient since the beams are 

assumed to behave symmetrically. Additionally, the cameras used in the static tests 

were limited to filming only one meter of the span, namely the middle. This choice was 

made to capture the most interesting part of the span of a beam subjected to bending, 

i.e. the middle part. All the results wanted were retrieved in an accurate manner, 

however, it may be of interest to capture the entire span.  

 

One issue was discovered when retrieving the plastic deflection from the impact. A 

snapshot was taken of the beam before impact to capture this data. This snapshot was 

in GOM Correlate compared with the first frame captured in the film shot during the 

drop weight test. The film had a black frame in the top of the photo which the snapshot 

did not have. This was the reason for comparing the mid deflection with the support 
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deflection when the plastic deflection was determined, see Appendix H. However, there 

is an alternative way to overcome this. During the testing, a snapshot could be taken 

before the tests as well so that the photos used in the comparison had the same layout. 

Whether this would be more efficient than the method used in this project is unknown, 

since it would mean an extra stage during the testing. Moreover, the results are assumed 

to be equal independent of which method is used.  

 

It was previously observed by Jönsson and Stenseke (2018) and Lozano and 

Makdesi (2017) that the predictions of the ultimate capacity of the beams was lower 

than the measured value, which may be due to a conservative method of calculating. 

This was taken into account when performing the 2DOF calculations which is why they 

were done with measured capacity as well. This gave a more accurate response for the 

beams subjected to a 10 kg-weight while it overpredicted the strength for the 20 kg-

beams. This showed that the 2DOF model has shortcomings. The velocity of the drop-

weight was quite accurately described compared to the experimental results. However, 

the predicted beam deflections were larger than the experiments, though they 

corresponded better with Series I20 than I10. This proves that the description of the 

beam response in particular could be developed further for the method to correspond 

even better with reality. However, the 2DOF model provides results on the safe side for 

this specific case.  

 

Moreover, the 2DOF model used here does not take strain rate effects into account, 

which is assumed to be one reason for the difference in result from 2DOF and 

experiments. The dynamic tests are done at a high speed in comparison to the tests 

performed to obtain the material properties. It was proved for the reinforcement that the 

speed of testing influenced the strength and, as mentioned in Chapter 2, concrete shows 

even larger effects of such behaviour. This may be another reason for the too large 

deflections predicted with 2DOF.  

 

When it comes to the static tests, it would have been preferred to test Series S using 

four point bending to compare with Series I20. The intention was to test Series I20 with 

three point bending, however the excessive concrete spalling averted this. It would have 

been a good idea to test Series S last of all. However, to save time, this was done parallel 

with the dynamic tests which is why it was not known during the testing of Series S 

that the I20-beams would suffer such damages from the impact tests.   

 

From Series S, the plastic rotation capacity was determined and compared with the 

predictions based on Bk25 and Eurocode 2. For the beams with undamaged 

reinforcement, the rotation capacity corresponded well with the one predicted using 

Eurocode at a load level of 100 % for undamaged reinforcement. However, it can be 

seen that the beams have larger capacity if lower load levels are regarded. For damaged 

reinforcement, class C is not representative for the reinforcement used in the beams. 

However, the rotation capacity is higher than the one predicted using class B for all 

load levels, even though the reinforcement has a much lower f ratio than what is 

required. This is assumed to come from the fact that M ratio for the beams is higher 

than f for the reinforcement. Furthermore, the capacity using Bk25 was significantly 

higher than the measured one at all load levels studied. However, the method in Bk25 

is meant to be used for a beam subjected to an evenly distributed load, which would 

result in a larger rotation capacity due to the more advantageous moment distribution 

obtained in such a load case. Therefore, Bk25 is misleading here.  
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12 Final Remarks 

The aim of this thesis is to increase the knowledge of impact loaded reinforced concrete 

structures and the influence of the reinforcement properties on the structural response. 

This chapter gives conclusions of the results and possible future studies in the subject. 

 

12.1 Conclusions  

The study of the material properties of the reinforcement due to damages gave 

interesting results. For pre-stretched reinforcement, both the f ratio and the plastic 

strain capacity, pl, were significantly decreased according to both the tests and 

literature survey. From the tests of the bent reinforcement, it was found that the f ratio 

was hardly affected while the pl was reduced significantly, however the literature 

survey showed that the f ratio was increased. Welded reinforcement, which was 

studied through a literature survey, showed similar results with an almost indifferent f 

ratio and a significantly reduced pl. Furthermore, the literature survey showed that for 

corroded reinforcement the f ratio was completely indifferent, however, the load 

capacity was reduced proportionally to the corrosion level, while the pl was reduced 

significantly.  

 

How the pre-stretching influenced the structural response of the concrete beams was 

studied for both the impact event and the residual capacity. During the impact, the 

beams containing pre-stretched reinforcement showed lower deflections than the ones 

containing undamaged bars, due to strain hardening. When it came to the residual 

capacity, the beams with pre-stretched reinforcement resulted in a significantly lower 

energy absorption, in terms of internal work and deformation capacity, than the ones 

containing undamaged bars. However, the load capacity was slightly higher for the 

beams with damaged compared to undamaged reinforcement.  

 

Dynamically loaded beams showed a significantly larger deformation capacity than 

beams subjected to static loading only. This was true for all beams, regardless of 

reinforcement properties used. However, the increase was larger for undamaged than 

damaged reinforcement. Furthermore, looking at lower load levels in the load-

deflection curves gave larger deformation capacities. Eurocode 2 (CEN, 2005) designs 

according to maximum load, which hence can be regarded as conservative.  

 

The predictions of the dynamic response of the beams using the 2DOF model turned 

out to be conservative when using the beam resistance as predicted in the ultimate limit 

state calculations. However, the beam response was not described in a way that 

reflected reality, whereas additional strength is assumed if strain rate effects were to be 

taken into account.  

 

Regarding the rotation capacity, Eurocode 2 corresponded quite well with the 

experiments at a load level of 100 % for the beams subjected to static loading only. 

Furthermore, Bk25 overestimated the rotation capacity in this study, regardless of load 

level or reinforcement properties.  
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12.2 Future studies 

It would be of interest to further develop the 2DOF model in order to make it more in 

accordance with reality. The part of interest would be the beam response that could be 

described in a more detailed way, including e.g. strain rate effects, variation of initial 

deformed shape and loss of stiffness due to concrete spalling. 

 

Additionally, it would be of interest to examine the behaviour studied in the 

experiments in a finite element analysis. Such an analysis could be compared to the 

experiments performed to examine if the response is predicted in an accurate way to 

reduce the needed amount of experiments in the matter.  
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Appendix A Approximation of k1 in 2DOF model 

As mentioned in Section 5.4.1, the stiffness of the spring between the drop weight and 

the beam, 𝑘1, is determined in an approximate way from Hertz contact theory. The 

expression for the impact force, 𝐹1, is 

 

𝐹1  = 𝑘1 ∙ 𝛿3/2 (A.1) 

 

where 𝛿 is the local deformation at the impact zone, and 𝑘1 is determined as 

 

𝑘1  =
4√𝑟1

3
[
1 − 𝜈1

2

𝐸1
+

1 − 𝜈2
2

𝐸2
]

−1

 (A.2) 

 

where 𝑟1 is the radius of the hitting surface of the drop-weight, 𝐸𝑠𝑚 and 𝐸𝑐𝑚 are the 

mean modulus of elasticity of the drop-weight (steel) and the beam (concrete), 

respectively. 𝜈1 and 𝜈2 are the Poisson’s ratio for the drop-weight (steel) and the beam 

(concrete), respectively. The stiffness used in this project is hereby taken as the secant 

of the curve yielded from Equation (A.1), see Figure A.1, at the level of the impact 

force of interest. 

 

Figure A.1 Approximation of drop weight stiffness based on Hertz contact theory.   
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Appendix B 2DOF Convergence Study 

In the 2DOF model a convergence study was performed on the variables R1 (strength 

of the contact) and k1 (stiffness of the contact) since those are unknown. The 

convergence study was performed for the series I10-UD and I20-UD to get 

representative values for each drop weight. Several levels of R1 were selected and then 

the spring stiffness was determined according to Appendix A. The parameters studied 

for the convergence assurance were the beam midpoint deflection and the velocity of 

the drop weight over time. As a comparison, the results from the study are presented in 

Figure B.1 to Figure B.4. In the figures, the plots of the average measured behaviours 

in the experiments are presented as well. 

 

Figure B.1 Beam midpoint deflection after impact for 2DOF using different 

strengths and stiffnesses for the drop weight. Compared with I10-UD 

from experiments. 
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Figure B.2 Velocity of drop weight after impact for 2DOF using different strengths 

and stiffnesses for the drop weight. Compared with I10-UD from 

experiments. 

 

Figure B.3 Beam midpoint deflection after impact for 2DOF using different 

strengths and stiffnesses for the drop weight. Compared with I20-UD 

from experiments. 
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Figure B.4 Velocity of drop weight after impact for 2DOF using different strengths 

and stiffnesses for the drop weight. Compared with I20-UD from 

experiments. 

 

The choice for the I10-beams was 

 

𝑅1  = 50 kN   

𝑘1  = 238 MN/m 
 

 

The choice for the I20-beams was 

 

𝑅1  = 70 kN  

𝑘1  = 269 MN/m 
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Appendix C Material Properties of Concrete 

The material properties of the concrete were tested both on the day of dynamic testing, 

after 27 days of hardening, and the day after, after 28 days of hardening. The properties 

tested were the cube compressive strength, the tensile splitting strength and the fracture 

energy.  

 

C.1 Compressive strength 

The compressive strength of the concrete was tested after both 27 and 28 days of 

hardening. Two specimens were tested from each batch on day 27 and on day 28 three 

specimens were tested from each batch. The measured values are presented in Table C.1 

and Table C.2. 

 

Table C.1 Results from compressive cube tests after 27 days of hardening.  

Batch Cube 

Weight 

[kg] 

Width 

[mm] 

Length 

[mm] 

Height 

[mm] 

Density 

[kg/m3] 

Load 

[kN] 

fcc 

[MPa] 

1 
1 8.230 150.4 151.2 151.1 2 390 917 40.1 

2 8.262 150.3 150.7 150.3 2 430 911 40.2 

2 
1 8.181 150.0 150.4 150.0 2 420 952 42.2 

2 8.162 150.7 150.3 150.3 2 400 955 42.3 

 

Table C.2 Results from compressive cube tests after 28 days of hardening. 

Batch Cube 

Weight 

[kg] 

Width 

[mm] 

Length 

[mm] 

Height 

[mm] 

Density 

[kg/m3] 

Load 

[kN] 

fcc 

[MPa] 

1 1 8.270 151.1 150.8 150.5 2 410 942 41.5 

2 8.240 150.5 151.0 150.5 2 410 924 40.7 

3 8.227 150.1 150.6 150.0 2 430 924 40.9 

2 1 8.186 150.7 150.1 150.4 2 410 943 41.8 

2 8.239 150.1 150.1 150.1 2 430 923 41.0 

3 8.209 151.1 150.1 150.8 2 400 933 41.2 
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C.2 Tensile strength 

The tensile splitting tests were performed after 27 days of hardening. Three specimens 

from each batch were tested. The measured values are presented in Table C.3.  

 

Table C.3 Results from tensile splitting tests after 27 days of hardening. 

Batch Cube 
Weight 

[kg] 

Width 

[mm] 

Length 

[mm] 

Height 

[mm] 

Density 

[kg/m3] 

Load 

[kN] 

fct,sp 

[MPa] 

1 

1 8.241 150.2 151.0 150.6 2 410 105 4.59 

2 8.180 150.1 149.7 149.9 2 430 113 5.03 

3 8.213 150.1 150.1 150.2 2 430 117 5.19 

2 

1 8.190 150.6 150.7 150.4 2 400 116 5.12 

2 8.245 151.2 151.1 150.4 2 400 104 4.59 

3 8.160 150.5 149.9 150.1 2 410 112 5.00 

 

C.3 Fracture energy 

The fracture energy of the concrete was determined using wedge splitting tests on three 

specimens from each batch. The tests were performed after 27 days of hardening. The 

geometries of the specimens are presented in Table C.4. 

 

Table C.4 Geometric values of the specimens in the WST. 

Batch Cube l1 [mm] l2 [mm] h1 [mm] h2 [mm] A [mm2] 

1 

1 151.6 150.6 76.1 75.5 11 453 

2 150.8 151.2 76.3 75.7 11 476 

3 150.9 150.6 74.9 75.9 11 367 

2 

1 151.0 151.8 76.2 74.7 11 423 

2 151.3 152.0 75.9 74.7 11 419 

3 151.0 151.6 76.0 75.8 11 484 

 

In Figure C.1, the splitting load-CMOD diagram is shown for the six cubes. It appears 

that the curves from cube 2.1 and 2.3 were not sufficient to represent the fracture energy 

of the concrete since the other four curves show a much more gathered behaviour. It is 

assumed that an error in the testing occurred and therefore cube 2.1 and 2.3 are not 

further considered.  
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Figure C.1 Splitting force – CMOD diagram from WST. In the legend, the cubes are 

specimen are presented with batch number and cube number. 

 

The parameters extracted from the behaviour seen in Figure C.1, such as the fracture 

energy, are listed in Table C.5.  

 

Table C.5 Results from the WST. 

Batch Cube 

Accumulated 

GF [Nm/m2] 

Maximum 

Fsp [kN] 

Maximum 

CMOD [mm] 

CMOD at 

Fsp,max [mm] 

1 

1 109 3.72 2.02 0.069 

2 119 3.88 2.01 0.061 

3 108 4.43 2.01 0.067 

2 

1 52* 0.88* 2.01* 0.383* 

2 114 3.49 2.01 0.060 

3 88* 1.97* 2.00* 0.218* 
*Values not considered in the report. 
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Appendix D Material properties of reinforcement 

This appendix contains all the results from the testing of the reinforcement.  

 

D.1 Undamaged reinforcement 

The stress-strain curves for the undamaged reinforcement are presented in Figure D.1 

and the measured parameters based on these curves are listed in Table D.1. 

 

Figure D.1 Stress-strain curves for undamaged bars tested with high speed. 

 

Table D.1 Material properties of undamaged reinforcement bars tested with high 

speed. 

Bar f0.2 [MPa] fu [MPa] u [%] E [GPa] 

1 555 655 9.33 199 

2 554 653 9.38 208 

3 552 655 9.36 200 

4 553 655 9.16 197 

5 555 657 9.71 205 

6 560 660 9.31 203 

Average 555 656 9.38 202 

 

  



D-2                      CHALMERS, Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 

D.2 Undamaged reinforcement tested with low speed 

The stress-strain curves for the undamaged reinforcement tested with low speed are 

presented in Figure D.2 and the measured parameters based on these curves are listed 

in Table D.2. 

 

Figure D.2 Stress-strain curves for undamaged bars tested with low speed. 

 

Table D.2 Material properties of undamaged bars tested with low speed. 

Bar f0.2 [MPa] fu [MPa] u [%] E [GPa] 

1 545 641 9.26 204 

2 546 644 8.69 197 

3 544 640 9.21 203 

4 549 646 9.79 193 

5 547 644 9.51 210 

6 544 640 8.98 210 

Average 546 643 9.24 203 
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D.3 Pre-stretched reinforcement 

The stress-strain curves for the pre-stretched reinforcement are presented in Figure D.3 

and the measured parameters based on these curves are listed in Table D.3. 

 

Figure D.3 Stress-strain curves for pre-stretched bars. 

 

Table D.3 Material properties of pre-stretched bars. 

Bar f0.2 [MPa] fu [MPa] u [%] E [GPa] 

1 647 659 5.63 191 

2 652 676 5.85 190 

3 643 663 5.78 188 

4 643 662 5.84 219 

5 643 662 5.66 191 

6 641 661 6.07 195 

Average 645 664 5.80 196 

 

  



D-4                      CHALMERS, Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 

D.4 Bent reinforcement 

The stress-strain curves for the reinforcement bent one time are presented in Figure D.4 

and the measured parameters based on these curves are listed in Table D.4.  

 

The stress-strain curves for the reinforcement bent two times are presented in 

Figure D.5 and the measured parameters based on these curves are listed in Table D.5.  

 

The stress-strain curves for the reinforcement bent four times are presented in 

Figure D.6 and the measured parameters based on these curves are listed in Table D.6.  

 

Figure D.4 Stress-strain curves for bars bent one time. 

 

Table D.4 Material properties of bars bent one time. 

Bar fy [MPa] fu [MPa] u [%] E [GPa] 

1 553 652 8.60 163 

2 553 652 8.29 153 

3 552 653 8.06 165 

4 547 648 8.32 190 

5 558 654 8.11 193 

6 554 650 8.33 133 

Average 553 651 8.29 166 
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Figure D.5 Stress-strain curves for bars bent two times. 

 

Table D.5 Material properties of bars bent two times.  

Bar fy [MPa] fu [MPa] u [%] E [GPa] 

1 552 650 7.52 122 

2 555 647 7.50 133 

3 563 656 7.49 91 

4 552 643 7.45 164 

5 552 651 7.77 141 

6 561 649 7.73 145 

Average 556 649 7.58 133 
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Figure D.6 Stress-strain curves for bars bent four times. 

 

Table D.6 Material properties of bars bent four times.  

Bar fy [MPa] fu [MPa] u [%] E [GPa] 

1 552 644 7.27 297(1) 

2 554 647 6.98 270(1) 

3 554 644 6.83 165 

4 554 648 7.05 111 

5 557 646 6.96 199 

6 554 643 6.72 110 

Average 554 645 6.97 146 
      (1) Not included in the average value. 
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D.5 Reinforcement tested at RISE 

To assure the method of testing, some bars were tested at the Research Institutes of 

Sweden (RISE). The stress-strain curves for the reinforcement tested there are 

presented in Figure D.7 and Figure D.8 and the measured parameters based on these 

curves are tabulated in Table D.7 and Table D.8. These tests gave results in line with 

those tested at Chalmers, which is why they are not considered further. 

 

Figure D.7 Stress-strain curves for undamaged bars tested at RISE. 

 

Table D.7 Material properties of undamaged bars tested at RISE.  

Bar f0.2 [MPa] fu [MPa] u [%] E [GPa] 

1 554 654 8.60 209 

2 553 655 8.95 200 

3 551 652 8.81 212 

4 547 649 9.14 205 

5 550 651 9.29 205 

6 550 655 9.60 189 

Average 551 652 9.06 203 
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Figure D.8 Stress-strain curves for pre-stretched bars tested at RISE. 

 

Table D.8 Material properties of pre-stretched bars tested at RISE.  

Bar f0.2 [MPa] fu [MPa] u [%] E [GPa] 

1 653 668 6.46 190 

2 656 666 7.20 197 

3 649 661 5.04 196 

4 649 662 4.39 211 

5 652 661 3.17 188 

6 653 682 3.56 187 

Average 652 667 4.97 195 

 

D.6 Modulus of elasticity 

The moduli of elasticity from the tests are listed in Table D.9. The modulus of elasticity 

presented in the report was based on measurements from the extensometer. Though this 

appeared to give quite low values for the bent bars even though the curves were quite 

similar to the undamaged ones. It is of importance to mention that the stress-strain 

curves above are presented using the strain based on the displacement measured in the 

machine and not the extensometer. Retrieving the modulus of elasticity based on the 

strain from the machine gave unreasonable values overall. Though, it proved that the 

E-modulus for the bent bars gave similar results to the other specimens which is 

assumed to be why the curves are similar. It seems as though the extensometer may 

have been more sensitive to the straightening of the bars (the extensometer was placed 

in the middle of the bar, where the bend also was placed) which is why those values do 

not quite correspond to the form in the stress-strain curve. 
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Table D.9 Modulus of elasticity for the different bar groups based on extensometer 

and the displacement from the testing machine. 

Bar group Eext [GPa] Edisp [GPa] 

Undamaged 202 167 

Pre-stretched 196 161 

Bent one time 166 166 

Bent two times 133 149 

Bent four times 146 159 

Undamaged slow 203 166 
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Appendix E DIC facet analysis 

In GOM Correlate Professional 2018 a triangular mesh is used for the DIC. The mesh 

is built based on facet size (length of a side [pixels]) and point distance (distance 

between midpoint of each facet [pixels]). To find an appropriate combination of facet 

size and point distance, a facet analysis was made on beam I10-D-B1-10 evaluating the 

major strains. To avoid undesirable noise, the colour scale limit was set to 5 % as upper 

limit and 1 % as lower limit. High accuracy computation was used. The strain fields for 

different settings of facet size and point distance can be seen in Table E.1 to Table E.4. 

Based on these strain fields, it was determined that a facet size of 15 pixels and a point 

distance of 5 pixels gave satisfactory results without too much noise but still clearly 

showing the cracks.  

 

Table E.1 Strain fields with a point distance of 5 pixels. 

Facet size 

[pixels] 
Point distance = 5 pixels 

10 

 

15 

 

20 

 

25 
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Table E.2 Strain fields with a point distance of 10 pixels. 

Facet size 

[pixels] 
Point distance = 10 pixels 

15 

 

20 

 

25 

 

 

Table E.3 Strain fields with a point distance of 15 pixels. 

Facet size 

[pixels] 
Point distance = 15 pixels 

20 

 

25 

 
 

Table E.4 Strain fields with a point distance of 20 pixels. 

Facet size 

[pixels] 
Point distance = 20 pixels 

25 
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Appendix F Impact Force - Alternative Method 

An alternative way to determine the impact force was performed and is presented in 

this appendix. The idea was to base the force on the measured velocity at the time of 

impact. The time for the velocity curve was reduced to 0.6 ms before impact and 0.6 ms 

after. Then a trendline was retrieved from Microsoft Excel 2016 using a polynomial of 

grade 6. Then the polynomial was derivated to get the acceleration and the acceleration 

was transformed into a force using the mass of the drop weight. This was done for beam 

I10-UD-B1-07, -08 and -09. The resulting force-time curves are presented in Figure F.1 

to Figure F.3. 

 

Figure F.1 Velocity and derived force for beam I10-UD-B1-07. 

 

Figure F.2 Velocity and derived force for beam I10-UD-B1-08. 
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Figure F.3 Velocity and derived force for beam I10-UD-B1-09. 

 

The study yielded about 15 % larger maximum forces than those extracted from GOM 

Correlate.  
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Appendix G Velocity of Drop Weight  

The measured velocities of the drop weight during the experiments are presented for 

each beam in Figure G.1 to Figure G.4.  

 

Figure G.1 Velocity of drop weight for series I10-UD. 

 

Figure G.2 Velocity of drop weight for series I10-D. 
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Figure G.3 Velocity of drop weight for series I20-UD. 

 

Figure G.4 Velocity of drop weight for series I20-D. 

 

As seen the velocity of beam I20-UD-B2-14 was disturbed by large noise in GOM 

Correlate.  
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Appendix H Determination of plastic deflection 

kkkkkk using DIC 

The plastic mid-span deflection after the impact was determined in GOM Correlate 

Professional 2018, using DIC. After the impact, the beam was put back into the correct 

place on the supports and another photo was taken. This photo was later correlated in 

GOM Correlate Professional 2018 with the first image sequence from the film of the 

dynamic test, and the plastic deflection was determined. 

 

A problem that was noticed during the evaluation of the photos was that the reference 

photo automatically had a black area with some informational text on it while the last 

photo of the beam lacked this area, see Figure H.1 and Figure H.2. This results in a size 

difference between the two images which causes problems when correlating the pixels 

in them and hence also when determining the plastic deflection. As can be seen in 

Figure H.2, the measured deflection at the support according to GOM Correlate is 

+17.093 mm. Though, in reality the deflection at the support should be close to zero. 

The measured deflection at the support from GOM Correlate appears due to the size 

difference of the reference image and the photo after impact. To correct for this effect, 

the plastic deformation in mid-span, 𝑢𝑝𝑙, was calculated based on the measured values 

from GOM Correlate as 

 

𝑢𝑝𝑙 = 𝑢2,𝑚𝑖𝑑 − 𝑢2,𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (H.1) 

 

where  𝑢2,𝑚𝑖𝑑 is the deflection at mid-span in the second photo and 𝑢2,𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is the 

deflection at the support in the second photo. 

 

Figure H.1 Image of the beam before the impact, used as reference. Here beam I10-

UD-B1-07 serves as an example. 
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Figure H.2 Photo of the beam after the impact. Here beam I10-UD-B1-07 serves as 

an example. 

 



CHALMERS Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 I-1 

Appendix I Calculation of stiffness 

In this thesis four different stiffnesses have been calculated; 𝑘𝐼 , 𝑘𝐼𝐼,𝑡 , 𝑘𝐼𝐼,𝑠  and 𝑘𝐼𝐼𝐼 . 

What is meant by the different stiffnesses is illustrated Figure I.1 and Figure I.2. All 

stiffnesses are calculated based on the load-deflection curves gained from the static 

testing by dividing the difference in load, Δ𝐹, by the difference in deflection, Δu, see 

Equation (I.1). 

 

𝑘𝑖 =
𝛥𝐹

𝛥𝑢
 (I.1) 

 

Figure I.1 Principal illustration of 𝑘𝐼, 𝑘𝐼𝐼,𝑡 and 𝑘𝐼𝐼𝐼. 
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Figure I.2 Principal illustration of 𝑘𝐼𝐼,𝑠. 
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Appendix J Calculation of internal work 

The internal work at different load levels is calculated as the area under the load-

deflection curve, see Figure J.1. Secant state II stiffness is assumed. The total internal 

work, 𝑊𝑡𝑜𝑡, is calculated as the area under the whole load-deflection curve. Prior to the 

calculation of internal work, the load-deflection curve is truncated at the point where 

the beam is considered to have reached its full capacity. In this thesis that point was 

considered to be when the descending branch of the load-deflection reached a load 

corresponding to 50 % of the average maximum load of the beams in Series S.  

 

Figure J.1 Method for calculating the internal work at different load levels. Here 

beam S-UD-B1-01 serves as an example. 
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Appendix K Strain fields from static test displayed on 

lllllllllllllbeams 

The strain fields from the static testing, extracted from GOM Correlate Professional 

2018, are in this appendix displayed on real photos of the beams. Note that two cameras 

were used to capture the static response. This is photos from the left camera, but the 

right camera show similar results. 

 

K.1 Series S 

The strain fields at a deformation of 30 mm, displayed on beams in Series S, are 

presented in Figure K.1 to Figure K.6.  

 

Figure K.1  Strain field displayed on beam S-UD-B1-01. 

 

Figure K.2  Strain field displayed on beam S-UD-B1-02. 

 

Figure K.3  Strain field displayed on beam S-UD-B2-03. 
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Figure K.4  Strain field displayed on beam S-D-B1-04. 

 

Figure K.5  Strain field displayed on beam S-D-B2-05. 

 

Figure K.6  Strain field displayed on beam S-D-B2-06. 
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K.2 Series I10 

The strain fields at a deformation of 30 mm, displayed on beams in Series I10, are 

presented in Figure K.7 to Figure K.12. 

 

Figure K.7  Strain field displayed on beam I10-UD-B1-07. 

 

 

Figure K.8  Strain field displayed on beam I10-UD-B1-08. 

 

Figure K.9  Strain field displayed on beam I10-UD-B1-09. 

 

Figure K.10  Strain field displayed on beam I10-D-B1-10. 
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Figure K.11  Strain field displayed on beam I10-D-B1-11. 

 

Figure K.12  Strain field displayed on beam I10-D-B1-12. 

 

K.3 Series I20 

The strain fields at maximum load, displayed on beams in Series I20, are presented in 

Figure K.13 to Figure K.18. Note that beam I20-UD-B2-15 experienced excessive 

spalling of concrete during the dynamic test and was therefore not tested statically. 

However, a photo of this beam after the dynamic loading test can be seen in Figure K.15. 

 

Figure K.13  Strain field displayed on beam I20-UD-B2-13. 
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Figure K.14  Strain field displayed on beam I20-UD-B2-14. 

 

Figure K.15  Photo of beam I20-UD-B2-15 after the dynamic loading test. 

 

Figure K.16  Strain field displayed on beam I20-D-B2-16. 

 

Figure K.17  Strain field displayed on beam I20-D-B2-17. 
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Figure K.18  Strain field displayed on beam I20-D-B2-18. 
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Appendix L Approximation of internal work during    

lllllllllllllimpact 

Graphical interpretations of the internal work parameters discussed in Section 9.4.3.3.2 

are illustrated in Figure L.1 to Figure L.3. All the load-deflection curves were truncated 

at the point where they were considered to have utilized their full capacity prior to the 

calculation of internal work. 

 

Figure L.1 Graphical interpretation of Wimpact+static. Here the average static curve 

for undamaged reinforcement together with beam I10-UD-B1-08 serve 

as example. 

 

Average static UD  

I10-UD-B1-08  
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Figure L.2 Graphical interpretation of Wdynamic. Here the average static curve for 

undamaged reinforcement together with beam I10-UD-B1-08 serve as 

example. 

 

Figure L.3 Graphical interpretation of Wstatic. Here the average static curve for 

undamaged reinforcement together with beam I10-UD-B1-08 serve as 

example. 

 

Average static UD  

I10-UD-B1-08  

 

Average static UD  

I10-UD-B1-08  
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Appendix M Matlab Script for 2DOF model 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%                                              %%%%%%%%%%% 
%%%%%%%%%%%% Simplified 2DOF System                       %%%%%%%%%%% 
%%%%%%%%%%%%                                              %%%%%%%%%%% 
%%%%%%%%%%%%                                              %%%%%%%%%%% 
%%%%%%%%%%%% Malin Andersson                              %%%%%%%%%%% 
%%%%%%%%%%%% Emma Pettersson                              %%%%%%%%%%% 
%%%%%%%%%%%%                                              %%%%%%%%%%% 
%%%%%%%%%%%% Modified from the version made by            %%%%%%%%%%% 
%%%%%%%%%%%% Fabio Lozano Mendoza & Josef Makdesi Aphram  %%%%%%%%%%% 
%%%%%%%%%%%%                                              %%%%%%%%%%% 
%%%%%%%%%%%% Chalmers University of Technology            %%%%%%%%%%% 
%%%%%%%%%%%%                                              %%%%%%%%%%% 
%%%%%%%%%%%% 16 - May - 2019                              %%%%%%%%%%% 
%%%%%%%%%%%%                                              %%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
clear all 
close all 
clc 

  
conditions=2;           % Indata for different impact conditions. 
                        % 1 - 10 kg 
                        % 2 - 20 kg 

  

  
resistance=4;           % Indata for resistance 
                        % 1 - calculated resistance, undamaged 
                        % 2 - measured resistance, undamaged 
                        % 3 - calculated resistance, damaged 
                        % 4 - measured resistance, damaged 

                                 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
if conditions==1 
    m_1 = 10;                   % [kg] mass of the drop-weight 
    L_d = 0.250;                % [m] Length Drop-weight 
elseif conditions==2 
    m_1 = 20;                   %[kg] mass of the drop-weight 
    L_d = 0.500;                %[m] Length Drop-weight 
end 

  
if resistance==1 
    R_u=7.675e3;                % Calculated resistance, undamaged  
elseif resistance==2 
    R_u=9.00e3;                 % Measured resistance, undamaged 
elseif resistance==3 
    R_u=8.559e3;                % Calculated resistance, damaged  
elseif resistance==4 
    R_u=9.50e3;                 % Measured resistance, damaged 
end 

  
%% MATERIAL PROPERTIES 

  
% Concrete 
r_c = 2420;         % [kg/m^3] Mass density 
E_c = 31.5e9;       % [Pa] Modulus of elasticity 
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% Steel 
r_s = 7800;         % [kg/m^3] Mass density 
E_s = 200e9;        % [Pa] Modulus of elasticity 

  
%% GEOMETRY 

  
A_1 = 5027e-6;      % [m^2] Area dropweight 
A_2 = 0.1*0.1;      % [m^2] Area beam 
L_b = 1.3;          % [m] Length Beam 

  

  
%% TRANSFORMATION FACTORS 

  
% Transformation factors for the beam 
k_b_m_el = 0.486;   % Elastic mass transformation factor 
k_b_m_pl = 0.333;   % Plastic mass transformation factor 

  
k_b_F_el = 1;       % Elastic load transformation factor 
k_b_F_pl = 1;       % Plastic load transformation factor 

  
k_b_K_el = 1;       % Elastic stiffness transformation factor 
k_b_K_pl = 1;       % Plastic stiffness transformation factor 

  
% Transformation factors for the drop-weight 
k_d_m = 1;          % Plastic mass transformation factor 
k_d_F = 1;          % Plastic load transformation factor 
k_d_K = 1;          % Plastic stiffness transformation factor 

  
%% MASS PROPERTIES 

  
m_2 = r_c*A_2*L_b;    %[kg] mass of the beam 

  
% Mass matrix 
M = [m_1*k_d_m 0; 0 m_2*k_b_m_pl]; 

  
%% STIFFNESS PROPERTIES 

  
I_b_ii = 1.571e-6;      % [m^4] Second moment of inertia of the beam 
                        % corresponding to the stiffness in state II. 

                         
K_el_1 = 2.69e+8;               % [N/m] Elastic stiffness of the  
                                % drop-weight, according to Hertz 
%K_el_1 = A_1*E_s/L_d;          % [N/m] Elastic stiffness of the 

drop-weight 
K_el_2 = 48*E_c*I_b_ii/L_b^3;   % [N/m] Elastic stiffness of the beam 

  
% Initial stiffness matrix 
K_el = [K_el_1 -K_el_1; 
-K_el_1 K_el_1+K_el_2]; 

  
%% MATERIAL RESPONSE 

  
% Drop-weight 
R_1 = 70e+3;                    % [N] Plastic resistance  
u_el_1 = R_1/K_el_1;            % [m] Limit of elastic deformation 
u_rd_1 = 50;                    % [m] Limit of plastic deformation  
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% Beam 
R_2_sw = r_c*9.81*A_2*L_b/2;    % [N] Reduction of plastic resistance 
                                % due to self-weight 

                                 
R_2 = R_u - R_2_sw;             % [N] Plastic resistance. 

  
u_el_2 = R_2/K_el_2;            % [m] Limit of elastic deformation 
u_rd_2 = 50;                    % [m] Limit of plastic deformation 

  
%% DETERMINATION OF EIGENFREQUENCIES 

  
[L,X] = eig(K_el, M);           % "L" is a matrix containing the 

eigenvectors 
                                % "X" is a matrix containing the 

eigenvalues 

                                 

% Maximum eigenfrequency 
w_max = sqrt(max(max(X))); 

  
%% CRITICAL TIME STEP 

  
h_crit = 2/w_max;               % [s] Maximum admissible value 
h = 0.1e-4;                     % [s] Chosen time step 

  
t_end = 80e-3;                  % [s] End of sequence 
t = linspace(0,t_end,t_end/h);  % Time vector 

  
if h >= h_crit 
disp('ERROR, chosen time step too large') 
end 

  
%% INITIAL CONDITIONS 

  
% Empty matrices 
dofs = 2;                       % Number of degree of freedom 
u = zeros(dofs, length(t));     % Empty matrix storing displacement 

vectors 
v = zeros(dofs, length(t)-1);   % Velocity vectors 
a = zeros(dofs, length(t)-1);   % Acceleration vectors 

  
% Assigning initial values 
u(:,1) = [0;0];                 % Initial Displacement 

  
height = 5.0;                   % [m] Drop height 
v_d = 9.84;                     % [m/s] Initial velocity of drop-

weight  
                                % [measured value] 

                                 
% v_d = sqrt(2*9.81*height);    % [m/s] Initial velocity of drop-

weight 
%                               % [theoretical value] 

  
v(:,1) = [v_d; 0];              % Velocities at time t = 0 

  
a_0 = inv(M)*(-K_el*u(:,1));    % Initial acceleration vector 
a(:,1) = a_0;                   % Initial acceleration as calculated 

before 

  



M-4                      CHALMERS, Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 

u_b0 = u(:,1)-h*v(:,1)+h^2/2*a(:,1);    % Displacement at time step 

n-1 

  
% Initial plastic deformation 
u_pl_1 = 0;                     % Plastic deformation of rod 
u_pl_2_pos = 0;                 % Plastic deformation of beam in 

compression 
u_pl_2_neg = 0;                 % Plastic deformation of beam in 

tension 

  

  
%% CENTRAL DIFFERENCE METHOD 

  

  
for i =2:length(t) 
    du = u(1,i-1)-u(2,i-1);     % [m] Relative displacement between 

beam 
                                % and drop-weight 
    u2 = u(2,i-1);              % [m] Downwards beam displacement 

     
    % Determining resistance and stiffness of ficticious spring 

between 
    % drop-weight and beam 

     
    % If du = 0, set stiffness equal to elastic stiffness 
    if du == 0; 
        K_1 = K_el_1; 
    % If spring is in tension, set stiffness to 0 
    elseif du < u_pl_1; 
        K_1 = 0; 
    % If spring is in elastic range 
    elseif du > u_pl_1 && du <= u_pl_1+u_el_1; 
        R = K_el_1*(du-u_pl_1); 
        K_1 = R/du; 
    % If spring is in plastic range 
    elseif du > u_pl_1+u_el_1 
        K_1 = R_1/du; 
        u_pl_1 = du-u_el_1; 
    end 

   
    % Determining resistance and stiffness of beam spring 

     
    % If u2 = 0, set stiffness equal to elastic stiffness 
    if u2 == 0; 
        K_2 = K_el_2; 
    % If spring is in elastic tension/compression 
    elseif u2 > u_pl_2_pos - u_el_2 && u2 <= u_pl_2_pos + u_el_2 
        R = K_el_2*(u2-u_pl_2_pos); 
        K_2 = R/u2; 
    % If spring is in plastic compression 
    elseif u2 > u_pl_2_pos + u_el_2; 
        K_2 = R_2/u2; 
        u_pl_2_pos = u2-u_el_2; 
    % If spring is in plastic tension 
    elseif u2 <= u_pl_2_pos - u_el_2 
        K_2 = -R_2/u2; 
        u_pl_2_neg = abs(u2+u_el_2-u_pl_2_pos); 
        u_pl_2_pos = u_pl_2_pos - u_pl_2_neg; 
    end 
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    % Storing values of resistance for all time steps 
    Res(1,i-1) = K_1*du; 
    Res(2,i-1) = K_2*u2; 

     
    % Computing stiffness matrix 
    K = [(K_1) -(K_1); -(K_1) (K_1)+(K_2)]; 

     
    % Calculation of displacement, velocity and acceleration 
    if i==2 
        u(:,i) = inv(M/h^2)*(-(K-2*M/h^2)*u(:,i-1)-(M/h^2)*u_b0); 
    else 
        u(:,i) = inv(M/h^2)*(-(K-2*M/h^2)*u(:,i-1)-(M/h^2)*u(:,i-2)); 
        v(:,i-1) = (u(:,i)-u(:,i-2))/(2*h); 
        a(:,i-1) = (u(:,i)-2*u(:,i-1)+u(:,i-2))/h^2; 
    end 
end 

  
%% CALCULATION OF ENERGY 

  
% External Work of Beam 
DeltaWe(1) = 0; 
We(1) = 0; 

  
for i = 2:(length(t)-1) 
    DeltaWe(i) = 0.5*(Res(1,i-1)+Res(1,i))*(u(2,i)-u(2,i-1)); 
    We(i) = We(i-1)+DeltaWe(i); 
end 

  
% Internal Work of Beam 
DeltaWi(1) = 0; 
Wi(1) = 0; 

  
for i = 2:(length(t)-1) 
    DeltaWi(i) = 0.5*(Res(2,i-1)+Res(2,i))*(u(2,i)-u(2,i-1)); 
    Wi(i) = Wi(i-1)+DeltaWi(i); 
end 

  
% Kinetic Energy 
Wk(1)=0; 

  
for i = 2:(length(t)-1) 
    Wk(i) = m_2*k_b_m_pl*0.5*v(2,i-1)^2; 
end 

  
% Total Energy 
Wt(1)=0; 

  
for i = 2:(length(t)-1) 
    Wt(i) = Wi(i)+Wk(i); 
end 

  
%% CREATING PLOTS 

  
% Displacement vs Time plots 
figure(1) 
plot(t*1000,u(1,:)*1000,'LineWidth',3); 
set(gca,'fontsize',16) 
title('Displacement of mass 1', 'FontSize', 30) 
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xlabel('Time [ms]'); ylabel('Displacement [mm]'); 

  
figure(2) 
plot(t*1000,u(2,:)*1000,'LineWidth',3); 
set(gca,'fontsize',16) 
title('Displacement of mass 2', 'FontSize', 30) 
xlabel('Time [ms]'); ylabel('Displacement [mm]'); 

  
% Resistance vs Displacement 
figure(3) 
plot(u(2,1:length(u)-1)*1000,Res(2,:)/1000,'LineWidth',3); 
set(gca,'fontsize',16) 
title('Internal Resistance vs Displacement - Body 2', 'FontSize', 30) 
xlabel('Displacement [mm]'); ylabel('Resistance [kN]'); 

  
figure(4) 
plot(u(1,1:1500)*1000-

u(2,1:1500)*1000,Res(1,1:1500)/1000,'LineWidth',3); 
set(gca,'fontsize',16) 
title('Internal Resistance vs Displacement - Body 1', 'FontSize', 30) 
xlabel('Displacement [mm]'); ylabel('Resistance [kN]'); 

  
% Resistance vs Time 
figure(5) 
plot(t(1:length(t)-1)*1000,Res(2,:)/1000,'LineWidth',3); 
set(gca,'fontsize',16) 
title('Internal Resistance vs Time - Body 2', 'FontSize', 30) 
xlabel('Time [ms]'); ylabel('Resistance [kN]'); 

  
figure(6) 
plot(t(1:1500)*1000,Res(1,1:1500)/1000,'LineWidth',3); 
set(gca,'fontsize',16) 
title('Internal Resistance vs Time - Body 1', 'FontSize', 30) 
xlabel('Time [ms]'); ylabel('Resistance [kN]'); 

  
% Velocity vs Time 
figure(7) 
plot(t(1:(length(t)-1))*1000,v(1,:),'LineWidth',3); 
set(gca,'fontsize',16) 
title('Velocity of Body 1', 'FontSize', 30) 
xlabel('Time [ms]'); ylabel('Velocity [m/s]'); 

  
figure(8) 
plot(t(1:(length(t)-1))*1000,v(2,:),'LineWidth',3); 
set(gca,'fontsize',16) 
title('Velocity of Body 2', 'FontSize', 30) 
xlabel('Time [ms]'); ylabel('Velocity [m/s]'); 

  
% Work vs Time 
figure(9) 
plot(t(1:(length(t)-1))*1000,We(:),'LineWidth',3); 
hold on 
plot(t(1:(length(t)-1))*1000,Wi(:),'LineWidth',3); 
hold on 
plot(t(1:(length(t)-1))*1000,Wk(:),'LineWidth',3); 
hold on 
plot(t(1:(length(t)-1))*1000,Wt(:),'LineWidth',3); 
set(gca,'fontsize',16) 
title('External Work of Body 2', 'FontSize', 30) 
xlabel('Time [ms]'); ylabel('Velocity [m/s]'); 
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height; 

v_init = v(1,2); 

maxdisp = max(max(u(2,:))); 

u_pl = maxdisp – u_el_2; 

[height v_init maxdisp u_pl] 
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Appendix N Mathcad Calculations 

1. Three point bending and undamaged reinforcement

1.1 Load Capacity of Reinforced Concrete Beam

The load capacity of a reinforced concrete beam is determined for a given cross section.

kN N 10
3

 MPa Pa 10
6



1.1.1 Input Data

1.1.1.1 Geometry

Beam height: h 0.1m

Beam width: b 0.1m

Effective span length: L 1.3m

Nominal bar diameter:  6mm

Area of reinforcement bar: Abar 


2

4
 28.274 mm

2


Stirrup dimension: s 0mm

Note: No stirrups

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Area of top reinforcement: As n Abar 56.549 mm
2



Area of bottom reinforcement: A's n' Abar 56.549 mm
2

  
 

 



N-2                      CHALMERS, Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 

 

Concrete cover: c 0.02m


2
 17 mm

Distance from top edge to bottom reinforcement: d h


2
c









 80 mm

Distance from top edge to top reinforcement: d'


2
c 20 mm

1.1.1.2 Material properties

Concrete: Mean compressive strength: fcm 33.0MPa

Mean tensile strength fctm 4.43 MPa

Mean modulus of elasticity Ecm 31.5GPa

Reinforcing steel: Mean yield strength: fym 555MPa

Ultimate tensile stress: ft 656MPa

Mean modulus of elasticity: Esm 202 GPa

1.1.2. Stress-strain Relationship of Concrete

1.1.2.1 Mathematic formulation

The parabola-rectangle stress-strain diagram for concrete under compression

(according to EN 1992-1-1) is adopted.   

Parameters for all concrete classes:

Concrete strain at maximum strength: c2 2 10
3



Ultimate concrete strain: cu2 3.5 10
3



Exponent: n 2

Stress-strain relationship: c c  1 1
c

c2










n













fcm











0 c c2if

fcm c2 c cu2if



Create a vector with different values of strain: c 0 0.0001 cu2
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Graphic representation of the stress-strain relationship:

0 10
0

 1 10
3

 2 10
3

 3 10
3

 4 10
3



0 10
0



1 10
7



2 10
7



3 10
7



4 10
7



Simplified stres s-strain relationship of concrete

c c 

c

1.1.2.2 Determination of block factors

Area under the curve for a given value of strain:

Area c 
0

c

cc c 




d

Area under the curve multiplied by the distance from the origin to the center of

gravity of the area:

A_ c 
0

c

cc c  c




d

Determination of  factors R.S and R.S

R.S c 
Area c 

fcm c
 R.S cu2  0.81

R.S c 

c

A_ c 
Area c 



c

 R.S cu2  0.416
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1.1.3 Stress-strain Relationship of Reinforcing Steel

1.1.3.1 Mathematic formulation

Ultimate steel strain:  su 0.0938

Yield strain:  sy

fym

Esm

  sy 2.748 10
3



Relationship parameters: p1  s 
 s  sy

 su  sy


Stress-strain relationship: s  s  Esm  s   s  syif

fym p1  s  ft fym   s  syif



 s 0 0.001  su

Graphic representation of the stress-strain relationship for reinforcing steel:

0 0.02 0.04 0.06 0.08 0.1
0

2 10
8



4 10
8



6 10
8



8 10
8



Bi-linear stress -strain relationship of undamaged steel

s s 

s

1.1.4. Design Strength
Values
1.1.4.1 Concrete

Partial factor:  C 1.0

Design compressive strength: fcd

fcm

 C

 fcd 33 MPa

Concrete ultimate strain:  cu 0.0035  
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Stress block factors: R R.S cu  0.81

R R.S cu2  0.416

5%-fractile tensile strength: fctk0.05 0.7 fctm 3.101 MPa

Flexural tensile strength:  0.6
0.4

4
h

m

 1.311

fct.fl  fctm 5.809 MPa

1.1.4.2 Reinforcing steel

 S 1.0Partial factor:

Design yield stress: fyd

fym

 S

 fyd 555 MPa

1.1.5. Load Capacity in Ultimate Limit State

1.1.5.1 Analysis of field section without top reinforcement

Number of bars in the top: n' 0

Number of bars in the bottom: n 2

Assume yielding:  s.1  sy  s.1

d x1

x1

cu

Position of neutral axis:

Initial guess: xu.1 20mm

Calculated value: xu.1 root R fcd b xu.1 s

d xu.1

xu.1

cu









n Abar xu.1










xu.1 12.143 mm

Check the strain in the reinforcement bars:

 s.1

d xu.1

xu.1

cu 0.02  sy 2.748 10
3

  s.1  sy 1
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Calculation of load capacity:

Mu.1 R fcd b xu.1 d R xu.1  Mu.1 2.431 kN m

Fu.1

4 Mu.1

L
 Fu.1 7.481 kN

Calculation of stress in the steel bars:

s.1 s  s.1  s.1 573.648 MPa

Calculation of curvature at failure:

 s.1 0.02 u.1

 s.1

d xu.1
0.288m

1


1.1.5.2 Analysis of field section including top reinforcement

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Assume tension in top and bottom and that the neutral axis is located above the top

reinforcerment. 

Strain in bottom reinforcement:  s.2

d xu.2

xu.2

cu

Strain in top reinforcement: ' s.2

d' xu.2

xu.2

cu

Position of neutral axis:

Initial guess: xu.2 20mm

Calculated value:

xu.2 root R fcd b xu.2 s

d' xu.2

xu.2

 cu









A's s

d xu.2

xu.2

cu









As xu.2










xu.2 15.888 mm Note : The neutral axis is indeed located above the

top reinforcement. Top bars are subjected to tensile

stress.  
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Check the strain in the reinforcement bars:

 s.2

d xu.2

xu.2

cu 0.014  sy 2.748 10
3

  s.2  sy 1

' s.2

d' xu.2

xu.2

cu 9.058 10
4

 ' s.2  sy 0

Calculation of moment capacity:

Mu.2 R fcd b xu.2 d R xu.2  s

d' xu.2

xu.2

cu









A's d d'( ) Mu.2 2.494 kN m

Fu.2

4 Mu.2

L
 Fu.2 7.675 kN

Calculation of stress in the steel bars:

's.2 s ' s.2  's.2 182.963 MPa

s.2 s  s.2  s.2 567.618 MPa

Calculation of curvature at failure:

 s.2 0.014 u.2

 s.2

d xu.2
0.22m

1


1.1.6. Moment and Curvature at Onset of Yielding 

1.1.6.1 Analysis of field section without top reinforcement

Yielding strain:  sy 2.748 10
3



Definition of strain in the compressed edge:

cc.y.1

xy.1

d xy.1
 sy

Tensile force in the bottom reinforcement:

Fsy fyd n Abar 31.385 kN

Equivalent compressive force in concrete

FC.y.1 R.y fcd b xy.1 R.y R.S cc.y.1   
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Horizontal equilibrium condition:

Fsy FC.y

Assume xy.1 22.042mm

Total tensile force: Fsy 31.385 kN

Total compressive force: FC.y.1 R.S

xy.1

d xy.1
 sy









fcd b xy.1 31.384 kN

F FC.y.1 Fsy 7.021 10
5

 kN

Note: Check that ?F ˜ 0 

Calculation of strains

cc.y.1

xy.1

d xy.1
 sy 1.045 10

3
 cc.y.1 c2 1

Calculation of moment at yielding:

R.y R.S cc.y.1  0.431 R.y R.S cc.y.1  0.351

My.1 R.y fcd b xy.1 d R.y xy.1  My.1 2.268 kN m Fy.1

4 My.1

L
6.978 kN

Determination of stresses in the reinforcement bars:

s.y.1 s  sy  s.y.1 555 MPa

Curvature at yielding

 sy 2.748 10
3

 y.1

 sy

d xy.1
0.047m

1


1.1.6.2 Analysis of field section including top reinforcement

Assume tension in the top reinforcement bars

Yielding strain:  sy 2.748 10
3

  
 

 

 

 

 

 

Note: Check that Δ F ≈  0 



CHALMERS Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 N-9 

 

Definition of strain in the compressed edge and top reinforcement:

cc.y.2

xy.2

d xy.2
 sy ' s.y.2

xy.2 d'

d xy.2
 sy

Tensile force in the reinforcement:

 Top reinforcement: F'sy.2 s ' s.y.2  A's

 Bottom reinforcement: Fsy fyd As 31.385 kN

Equivalent compressive force in concrete

FC.y.2 R.y fcd b xy.2 R.y R.S cc.y.2 

Horizontal equilibrium condition:

Fsy FC.y.2 F'sy.2

Assume xy.2 21.725mm

Total tensile force: FT.y.2 Fsy 31.385 kN

Total compressive

 force: FC.y.2 R.S

xy.2

d xy.2
 sy









fcd b xy.2 s

xy.2 d'

d xy.2
 sy









A's

FC.y.2 31.378kN

F FC.y.2 FT.y.2 6.889 10
3

 kN

Note: Check that ?F ˜ 0 

Calculation of strains

cc.y.2

xy.2

d xy.2
 sy 1.024 10

3
 cc.y.2 c2 1

Note: The strains are in fact

negative though they are

posetive here to be able to use

the stress-strain curve. 

' s.y.2

xy.2 d'

xy.2

cc.y.2 8.133 10
5



 
 

 

 

 

Note: Check that Δ F ≈  0 

Note: The strains are in fact 

negative though they are 

positive here to be able to use 

the stress-strain curve. 

Note: Check that Δ F ≈  0 
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Calculation of moment at yielding:

R.y R.S cc.y.2  0.425 R.y R.S cc.y.2  0.35

My.2 R.y fcd b xy.2 d R.y xy.2  s

xy.2 d'

xy.2

 cc.y.2









A's d d'( )

My.2 2.26 kN m Fy.2

4 My.2

L
6.953 kN

Determination of stresses in the reinforcement bars:

Top reinforcement: 's.y.2 s ' s.y.2  's.y.2 16.429 MPa

Bottom reinforcement: s.y.2 s  sy  s.y.2 555 MPa

Curvature at yielding

 sy 2.748 10
3

 y.2

 sy

d xy.2
0.047m

1


1.1.7 Summary

1.1.7.1 Moment and curvature at yielding without consideration of top

reinforcement

My.1 2.268 kN m xy.1 22.042 mm

Fy.1 6.978 kN y.1 0.047m
1



1.1.7.2 Moment and curvature at yielding considering both top and bottom

reinforcement

My.2 2.26 kN m xy.2 21.725 mm

Fy.2 6.953 kN y.2 0.047m
1



1.1.7.3 Load Capacity at Ultimate State without consideration of top

reinforcement

Mu.1 2.431 kN m xu.1 12.143 mm

Fu.1 7.481 kN u.1 0.288m
1

  
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1.1.7.4 Load Capacity at Ultimate State considering both top and bottom

reinforcement

Mu.2 2.494 kN m xu.2 15.888 mm

Fu.2 7.675 kN u.2 0.22m
1



Increase in load capacity if top

reinforcement is considered:

Fu.2 Fu.1

Fu.1

2.591 %
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1.2 Theoretical Load vs Deformation Relationship

1.2.1. Determination of Cracking Moment and Cracking Curvature:

Modular ratio: s

Esm

Ecm

6.413

Moment of inertia in State I: II

b h
3



12
s 1 2n Abar d

h

2










2

 8.884 10
6

 mm
4



Cracking stress: fct.fl

Mcr

h

2











II

Cracking moment: Mcr

fct.fl II

h

2

1.032 kN m

Cracking force: Fcr

4 Mcr

L
3.176 kN

1.2.2. Determination of Moment of Inertia in State II

Calculation of position of neutral axis:

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Consider first moment of area around the neutral axis:

b xII
2



2
s 1  A's xII d'  s As d xII 

Initial guess:

xII 50mm

Calculated value:

xII root
b xII

2


2
s  A's d' xII  s As d xII  xII











xII 20.638 mm  
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Moment of inertia:

III

b xII
3



3
s  A's d' xII 2 s As d xII 2

III 1.571 10
6

 m
4



1.2.3. Load-Deformation plot

1.2.3.1 Determination of equivalent stiffness 

Stiffness in State I: KI

48 Ecm II

L
3

6.114
kN

mm


Stiffness in State II: KII

48 Ecm III

L
3

1.081
kN

mm


1.2.3.2 Deformation considering only State II until ultimate  load

Peak load: Fu.2 7.675 kN

Deflection at peak load:
uII

Fu.2

KII

7.098 mm

Load as a function of displacement: Force2 u( ) u KII u uIIif

Fu.2 u uIIif



1.2.3.3 Deformation considering State I and State II

Cracking load: Fcr 3.176 kN

Deflection when cracking occurs: ucr

Fcr

KI

0.519 mm

Peak load: Fu.2 7.675 kN

Deflection at peak load: uII 7.098 mm

Stiffness between cracking and yielding: Kcy

Fu.2 Fcr

uII ucr
0.684

kN

mm

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Load as a function of displacement: Force u( ) KI u  u ucrif

Fcr u ucr  Kcy  u ucrif

Fu.2 u uIIif



u 0mm 0.01mm 30mm

1.2.3.4 Load-deformation curves

0 0.01 0.02 0.03
0

2 10
3



4 10
3



6 10
3



8 10
3



Force u( )

Force2 u( )

u  
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1.3 Prediction of Plastic Rotational Capacity

1.3.1 Input Data

1.3.1.1 Geometry

Beam height: h 0.1m

Beam width: b 0.1m

Effective span length: L 1.3m

Distance to critical section from support: l0
L

2
650 mm

Effective height: d 0.08m

1.3.2. Rotation Capacity According to Eurocode 2

Determine allowable rotation for reference beam (? = 3):

xu xu.1 12.143 mm Note: Position of neutral axis considering

only bottom reinforcement.

xu

d
0.152

Rotation capacity from the chart:

 total.Eur.R 0.028

Correction for different values of shear slenderness:


l0

d
8.125 



3
1.646
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 total.Eur   total.Eur.R 0.046

Consider:

 total.Eur 2 pl.Eur

Rotational capacity according to Eurocode 2:

pl.Eur

 total.Eur

2
0.023

upl.Eur

pl.Eur L

2
14.976 mm

1.3.3 Rotation Capacity According to Bk 25

Empirical expression:

lp.Bk25 0.5 d 0.15L Plastic hinge on the field

Plastic hinge length: lp.Bk25 0.5 d 0.15L 235 mm

Area of tensile reinforcement: As 56.549 mm
2



s

As

b d

fym

fcm

 0.119

Since no stirrups were included, the contribution of the top bars can be disregarded

Area of compression reinforcement: Ac 0 Note: the top reinforcement has been

proved to be subjected to tensile stress.

's

Ac

b d

fym

fcm

 0

Dominant failure mode:

s.crit

0.8 cu

cu  su
0.029 s 0.119

s s.crit 1 Note: The dominant failure mode is concrete crushing

Determination of plastic rotation capacity:

pl.Bk25

0.4 cu

s

1 0.3
L

d










0.0692 upl.Bk25

pl.Bk25 L

2
44.972 mm
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1.3.4. Summary

Eurocode 2: pl.Eur 0.023 rad

Bk25 method: pl.Bk25 0.069 rad
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2. Three point bending and damaged reinforcement

2.1 Load Capacity of Reinforced Concrete Beam

The load capacity of a reinforced concrete beam is determined for a given cross section.

kN N 10
3

 MPa Pa 10
6



2.1.1 Input Data

2.1.1.1 Geometry

Beam height: h 0.1m

Beam width: b 0.1m

Effective span length: L 1.3m

Nominal bar diameter:  6mm

Area of reinforcement bar: Abar 


2

4
 28.274 mm

2


Stirrup dimension: s 0mm

Note: No stirrups

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Area of top reinforcement: As n Abar 56.549 mm
2



Area of bottom reinforcement: A's n' Abar 56.549 mm
2

  
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Concrete cover: c 0.02m


2
 0.017m

Distance from top edge to bottom reinforcement: d h


2
c









 80 mm

Distance from top edge to top reinforcement: d'


2
c 20 mm

2.1.1.2 Material properties

Concrete: Mean compressive strength: fcm 33.0MPa

Mean tensile strength fctm 4.43 MPa

Mean modulus of elasticity Ecm 31.5GPa

Reinforcing steel: Mean yield strength: fym 645MPa

Ultimate tensile stress: ft 664MPa

Mean modulus of elasticity: Esm 196 GPa

2.1.2. Stress-strain Relationship of Concrete

2.1.2.1 Mathematic formulation

The parabola-rectangle stress-strain diagram for concrete under compression

(according to EN 1992-1-1) is adopted.   

Parameters for all concrete classes:

Concrete strain at maximum strength: c2 2 10
3



Ultimate concrete strain: cu2 3.5 10
3



Exponent: n 2

Stress-strain relationship: c c  1 1
c

c2










n













fcm











0 c c2if

fcm c2 c cu2if



Create a vector with different values of strain: c 0 0.0001 cu2  
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Graphic representation of the stress-strain relationship:

0 10
0

 1 10
3

 2 10
3

 3 10
3

 4 10
3



0 10
0



1 10
7



2 10
7



3 10
7



4 10
7



Simplified stress-strain relationsh ip of concrete

c c 

c

2.1.2.2 Determination of block factors

Area under the curve for a given value of strain:

Area c 
0

c

cc c 




d

Area under the curve multiplied by the distance from the origin to the center of

gravity of the area:

A_ c 
0

c

cc c  c




d

Determination of  factors R.S and R.S

R.S c 
Area c 

fcm c
 R.S cu2  0.81

R.S c 

c

A_ c 
Area c 



c

 R.S cu2  0.416
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2.1.3 Stress-strain Relationship of Reinforcing Steel

2.1.3.1 Mathematic formulation

Ultimate steel strain:  su 0.0580

Yield strain:  sy

fym

Esm

  sy 3.291 10
3



Relationship parameters: p1  s 
 s  sy

 su  sy


Stress-strain relationship: s  s  Esm  s   s  syif

fym p1  s  ft fym   s  syif



 s 0 0.001  su

Graphic representation of the stress-strain relationship for reinforcing steel:

0 0.02 0.04 0.06
0

2 10
8



4 10
8



6 10
8



8 10
8



Bi-linear stress -strain relationship of damaged steel

s s 

s  
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2.1.4. Design Strength Values

2.1.4.1 Concrete

Partial factor:  C 1.0

Design compressive strength: fcd

fcm

 C

 fcd 33 MPa

Concrete ultimate strain: cu 0.0035

Stress block factors: R R.S cu  0.81

R R.S cu2  0.416

5%-fractile tensile strength: fctk0.05 0.7 fctm 3.101 MPa

Flexural tensile strength:  0.6
0.4

4
h

m

 1.311

fct.fl  fctm 5.809 MPa

2.1.4.2 Reinforcing steel

 S 1.0Partial factor:

Design yield stress: fyd

fym

 S

 fyd 645 MPa

2.1.5. Load Capacity in Ultimate Limit State

2.1.5.1 Analysis of field section without top reinforcement

Number of bars in the top: n' 0

Number of bars in the bottom: n 2

Assume yielding:  s.1  sy  s.1

d x1

x1

cu
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Position of neutral axis:

Initial guess: xu.1 20mm

Calculated value: xu.1 root R fcd b xu.1 s

d xu.1

xu.1

cu









n Abar xu.1










xu.1 13.753 mm

Check the strain in the reinforcement bars:

 s.1

d xu.1

xu.1

cu 0.017  sy 3.291 10
3

  s.1  sy 1

Calculation of load capacity:

Mu.1 R fcd b xu.1 d R xu.1  Mu.1 2.729 kN m

Fu.1

4 Mu.1

L
 Fu.1 8.397 kN

Calculation of stress in the steel bars:

s.1 s  s.1  s.1 649.712 MPa

Calculation of curvature at failure:

 s.1 0.017 u.1

 s.1

d xu.1
0.254m

1


2.1.5.2 Analysis of field section including top reinforcement

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Assume tension in top and bottom and that the neutral axis is located above the top

reinforcerment. 

Strain in bottom reinforcement:  s.2

d xu.2

xu.2

cu

Strain in top reinforcement: ' s.2

d' xu.2

xu.2

cu
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Position of neutral axis:

Initial guess: xu.2 20mm

Calculated value:

xu.2 root R fcd b xu.2 s

d' xu.2

xu.2

cu









A's s

d xu.2

xu.2

cu









As xu.2










xu.2 16.649 mm Note: The neutral axis is indeed located above the

top reinforcement. Top bars are subjected to tensile

stress.

Check the strain in the reinforcement bars:

 s.2

d xu.2

xu.2

cu 0.013  sy 3.291 10
3

  s.2  sy 1

' s.2

d' xu.2

xu.2

cu 7.044 10
4

 ' s.2  sy 0

Calculation of moment capacity:

Mu.2 R fcd b xu.2 d R xu.2  s

d' xu.2

xu.2

cu









A's d d'( ) Mu.2 2.782 kN m

Fu.2

4 Mu.2

L
 Fu.2 8.559 kN

Calculation of stress in the steel bars:

's.2 s ' s.2  's.2 138.054 MPa

s.2 s  s.2  s.2 648.482 MPa

Calculation of curvature at failure:

 s.2 0.013 u.2

 s.2

d xu.2
0.21m

1

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2.1.6. Moment and Curvature at Onset of Yielding 

2.1.6.1 Analysis of field section without top reinforcement

Yielding strain:  sy 3.291 10
3



Definition of strain in the compressed edge:

cc.y.1

xy.1

d xy.1
 sy

Tensile force in the bottom reinforcement:

Fsy fyd n Abar 36.474 kN

Equivalent compressive force in concrete

FC.y.1 R.y fcd b xy.1 R.y R.S cc.y.1 

Horizontal equilibrium condition:

Fsy FC.y

Assume xy.1 22.18mm

Total tensile force: Fsy 36.474 kN

Total compressive force: FC.y.1 R.S

xy.1

d xy.1
 sy









fcd b xy.1 36.479 kN

F FC.y.1 Fsy 5.062 10
3

 kN

Note: Check that ?F ˜ 0 

Calculation of strains

cc.y.1

xy.1

d xy.1
 sy 1.262 10

3
 cc.y.1 c2 1

Calculation of moment at yielding:

R.y R.S cc.y.1  0.498 R.y R.S cc.y.1  0.356

My.1 R.y fcd b xy.1 d R.y xy.1  My.1 2.631 kN m Fy.1

4 My.1

L
8.094 kN

 
 

 

 

 

 

Note: Check that Δ F ≈  0 
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Determination of stresses in the reinforcement bars:

s.y.1 s  sy  s.y.1 645 MPa

Curvature at yielding

 sy 3.291 10
3

 y.1

 sy

d xy.1
0.057m

1


2.1.6.2 Analysis of field section including top reinforcement

Assume tension in the top reinforcement bars

Yielding strain:  sy 3.291 10
3



Definition of strain in the compressed edge and top reinforcement:

 cc.y.2

xy.2

d xy.2
 sy ' s.y.2

xy.2 d'

d xy.2
 sy

Tensile force in the reinforcement:

 Top reinforcement: F'sy.2 s ' s.y.2  A's

 Bottom reinforcement: Fsy fyd As 36.474 kN

Equivalent compressive force in concrete

FC.y.2 R.y fcd b xy.2 R.y R.S  cc.y.2 

Horizontal equilibrium condition:

Fsy FC.y.2 F'sy.2

Assume xy.2 21.83mm

Total tensile force: FT.y.2 Fsy 36.474 kN  
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Total compressive

 force: FC.y.2 R.S

xy.2

d xy.2
 sy









fcd b xy.2 s

xy.2 d'

d xy.2
 sy









A's 36.475 kN

F FC.y.2 FT.y.2 8.149 10
4

 kN

Note: Check that ?F ˜ 0 

Calculation of strains

cc.y.2

xy.2

d xy.2
 sy 1.235 10

3
 cc.y.2 c2 1

Note: The strains are in fact

negative though they are

posetive here to be able to use

the stress-strain curve. 

' s.y.2

xy.2 d'

xy.2

cc.y.2 1.035 10
4



Calculation of moment at yielding:

R.y R.S cc.y.2  0.49 R.y R.S cc.y.2  0.355

My.2 R.y fcd b xy.2 d R.y xy.2  s

xy.2 d'

xy.2

cc.y.2









A's d d'( )

My.2 2.621 kN m Fy.2

4 My.2

L
8.066 kN

Determination of stresses in the reinforcement bars:

Top reinforcement: 's.y.2 s ' s.y.2  's.y.2 20.291 MPa

Bottom reinforcement: s.y.2 s  sy  s.y.2 645 MPa

Curvature at yielding

 sy 3.291 10
3

 y.2

 sy

d xy.2
0.057m

1


2.1.8. Summary

2.1.8.1 Moment and curvature at yielding without consideration of top

reinforcement

My.1 2.631 kN m xy.1 22.18 mm

Fy.1 8.094 kN y.1 0.057m
1

  
 

 

 

Note: The strains are in fact 

negative though they are 

positive here to be able to use 

the stress-strain curve. 

Note: Check that Δ F ≈  0 
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2.1.8.2 Moment and curvature at yielding considering both top and bottom

reinforcement

My.2 2.621 kN m xy.2 21.83 mm

Fy.2 8.066 kN y.2 0.057m
1



2.1.8.3 Load Capacity at Ultimate State without consideration of top

reinforcement

Mu.1 2.729 kN m xu.1 13.753 mm

Fu.1 8.397 kN u.1 0.254m
1



2.1.8.4 Load Capacity at Ultimate State considering both top and bottom

reinforcement

Mu.2 2.782 kN m xu.2 16.649 mm

Fu.2 8.559 kN u.2 0.21m
1



Increase in load capacity if top

reinforcement is considered:

Fu.2 Fu.1

Fu.1

1.932 %
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2.2 Theoretical Load vs Deformation Relationship

2.2.1. Determination of Cracking Moment and Cracking Curvature:

Modular ratio: s

Esm

Ecm

6.222

Moment of inertia in State I: II

b h
3



12
s 1 2n Abar d

h

2










2

 8.865 10
6

 mm
4



Cracking stress: fct.fl

Mcr

h

2











II

Cracking moment: Mcr

fct.fl II

h

2

1.03 kN m

Cracking force: Fcr

4 Mcr

L
3.169 kN

2.2.2. Determination of Moment of Inertia in State II

Calculation of position of neutral axis:

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Consider first moment of area around the neutral axis:

b xII
2



2
s 1  A's xII d'  s As d xII 

Initial guess:

xII 50mm

Calculated value:

xII root
b xII

2


2
s  A's d' xII  s As d xII  xII











xII 20.408 mm  
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Moment of inertia:

III

b xII
3



3
s  A's d' xII 2 s As d xII 2

III 1.533 10
6

 m
4



2.2.3. Load-Deformation plot

2.2.3.1 Determination of equivalent stiffness 

Stiffness in State I: KI

48 Ecm II

L
3

6.101
kN

mm


Stiffness in State II: KII

48 Ecm III

L
3

1.055
kN

mm


2.2.3.2 Deformation considering only State II until ultimate  load

Peak load: Fu.2 8.559 kN

Deflection at peak load:
uII

Fu.2

KII

8.113 mm

Load as a function of displacement: Force2 u( ) u KII u uIIif

Fu.2 u uIIif



2.2.3.3 Deformation considering State I and State II

Cracking load: Fcr 3.169 kN

Deflection when cracking occurs: ucr

Fcr

KI

0.519 mm

Peak load: Fu.2 8.559 kN

Deflection at peak load: uII 8.113 mm

Stiffness between cracking and yielding: Kcy

Fu.2 Fcr

uII ucr
0.71

kN

mm

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Load as a function of displacement: Force u( ) KI u  u ucrif

Fcr u ucr  Kcy  u ucrif

Fu.2 u uIIif



u 0mm 0.01mm 30mm

2.2.3.4 Load-deformation curves

0 0.01 0.02 0.03
0

2 10
3



4 10
3



6 10
3



8 10
3



1 10
4



Force u( )

Force2 u( )

u  
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2.3 Prediction of Plastic Rotational Capacity

2.3.1 Input Data

2.3.1.1 Geometry

Beam height: h 0.1m

Beam width: b 0.1m

Effective span length: L 1.3m

Distance to critical section from support: l0
L

2
650 mm

Effective height: d 0.08m

2.3.2. Rotation Capacity According to Eurocode 2

Determine allowable rotation for reference beam (? = 3):

xu xu.1 13.753 mm Note : Position of neutral axis considering

only bottom reinforcement.

xu

d
0.172

Reinforcement class  C

Rotation capacity from the chart:

 total.Eur.R.C 0.027

Correction for different values of shear slenderness:

C

l0

d
8.125 C

C

3
1.646
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 total.Eur.C C  total.Eur.R.C 0.044

Consider:

 total.Eur.C 2 pl.Eur.C

Rotational capacity according to Eurocode 2:

pl.Eur.C

 total.Eur.C

2
0.0222

upl.Eur.C

pl.Eur.C L

2
14.441 mm

Reinforcement class B

Rotation capacity from the chart:

 total.Eur.R.B 0.0135

Correction for different values of shear slenderness:

B

l0

d
8.125 B

B

3
1.646

 total.Eur.B B  total.Eur.R.B 0.022
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Consider:

 total.Eur.B 2 pl.Eur.B

Rotational capacity according to Eurocode 2:

pl.Eur.B

 total.Eur.B

2
0.0111

upl.Eur.B

pl.Eur.B L

2
7.221 mm

2.3.3 Rotation Capacity According to Bk 25

Empirical expression:

lp.Bk25 0.5 d 0.15L Plastic hinge on the field

Plastic hinge length: lp.Bk25 0.5 d 0.15L 235 mm

Area of tensile reinforcement: As 56.549 mm
2



s

As

b d

fym

fcm

 0.138

Since no stirrups were included, the contribution of the top bars can be disregarded

Area of compression reinforcement: Ac 0 Note: the top reinforcement has been

proved to be subjected to tensile stress.

's

Ac

b d

fym

fcm

 0

Dominant failure mode:

s.crit

0.8 cu

cu  su
0.046 s 0.138

s s.crit 1 Note: The dominant failure mode is concrete crushing

Determination of plastic rotation capacity:

pl.Bk25

0.4 cu

s

1 0.3
L

d










0.0595 upl.Bk25

pl.Bk25 L

2
38.696 mm
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2.3.4. Summary

Eurocode 2: pl.Eur.C rad

pl.Eur.B rad

Bk25 method: pl.Bk25 rad
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3 Four point bending and undamaged reinforcement

3.1 Load Capacity of Reinforced Concrete Beam

The load capacity of a reinforced concrete beam is determined for a given cross section.

kN N 10
3

 MPa Pa 10
6



3.1.1 Input Data

3.1.1.1 Geometry

Beam height: h 0.1m

Beam width: b 0.1m

Effective span length: L 1.3m

Distance to load application from support: LF 0.5m

Nominal bar diameter:  6mm

Area of reinforcement bar: Abar 


2

4
 28.274 mm

2


Stirrup dimension: s 0mm

Note: No stirrups

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Area of top reinforcement: As n Abar 56.549 mm
2



Area of bottom reinforcement: A's n' Abar 56.549 mm
2

  
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Concrete cover: c 0.02m


2
 0.017m

Distance from top edge to bottom reinforcement: d h


2
c









 80 mm

Distance from top edge to top reinforcement: d'


2
c 20 mm

3.1.1.2 Material properties

Concrete: Mean compressive strength: fcm 33.0MPa

Mean tensile strength fctm 4.43 MPa

Mean modulus of elasticity Ecm 31.5GPa

Reinforcing steel: Mean yield strength: fym 555MPa

Ultimate tensile stress: ft 656MPa

Mean modulus of elasticity: Esm 202 GPa

3.1.2. Stress-strain Relationship of Concrete

3.1.2.1 Mathematic formulation

The parabola-rectangle stress-strain diagram for concrete under compression

(according to EN 1992-1-1) is adopted.   

Parameters for all concrete classes:

Concrete strain at maximum strength: c2 2 10
3



Ultimate concrete strain: cu2 3.5 10
3



Exponent: n 2

Stress-strain relationship: c c  1 1
c

c2










n













fcm











0 c c2if

fcm c2 c cu2if



Create a vector with different values of strain: c 0 0.0001 cu2  
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Graphic representation of the stress-strain relationship:

0 10
0

 1 10
3

 2 10
3

 3 10
3

 4 10
3



0 10
0



1 10
7



2 10
7



3 10
7



4 10
7



Simplified stres s-strain relationsh ip of concrete

c c 

c

3.1.2.2 Determination of block factors

Area under the curve for a given value of strain:

Area c 
0

c

cc c 




d

Area under the curve multiplied by the distance from the origin to the center of

gravity of the area:

A_ c 
0

c

cc c  c




d

Determination of  factors R.S and R.S

R.S c 
Area c 

fcm c
 R.S cu2  0.81

R.S c 

c

A_ c 
Area c 



c

 R.S cu2  0.416
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3.1.3 Stress-strain Relationship of Reinforcing Steel

3.1.3.1 Mathematic formulation

Ultimate steel strain:  su 0.0938

Yield strain:  sy

fym

Esm

  sy 2.748 10
3



Relationship parameters: p1  s 
 s  sy

 su  sy


Stress-strain relationship: s  s  Esm  s   s  syif

fym p1  s  ft fym   s  syif



 s 0 0.001  su

Graphic representation of the stress-strain relationship for reinforcing steel:

0 0.02 0.04 0.06 0.08 0.1
0

2 10
8



4 10
8



6 10
8



8 10
8



Bi-linear stress -strain relationship of undamaged steel

s s 

s  
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3.1.4. Design Strength Values

3.1.4.1 Concrete

Partial factor:  C 1.0

Design compressive strength: fcd

fcm

 C

 fcd 33 MPa

Concrete ultimate strain: cu 0.0035

Stress block factors: R R.S cu  0.81

R R.S cu2  0.416

5%-fractile tensile strength: fctk0.05 0.7 fctm 3.101 MPa

Flexural tensile strength:  0.6
0.4

4
h

m

 1.311

fct.fl  fctm 5.809 MPa

3.1.4.2 Reinforcing steel

 S 1.0Partial factor:

Design yield stress: fyd

fym

 S

 fyd 555 MPa

3.1.5 Load Capacity in Ultimate Limit State

3.1.5.1 Analysis of field section without top reinforcement

Number of bars in the top: n' 0

Number of bars in the bottom: n 2

Assume yielding:  s.1  sy  s.1

d x1

x1

cu
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Position of neutral axis:

Initial guess: xu.1 20mm

Calculated value: xu.1 root R fcd b xu.1 s

d xu.1

xu.1

 cu









n Abar xu.1










xu.1 12.143 mm

Check the strain in the reinforcement bars:

 s.1

d xu.1

xu.1

cu 0.02  sy 2.748 10
3

  s.1  sy 1

Calculation of load capacity:

Mu.1 R fcd b xu.1 d R xu.1  Mu.1 2.431 kN m

Fu.1

Mu.1

LF

 Fu.1 4.863 kN

Fu.1.tot 2 Fu.1 9.725 kN

Calculation of stress in the steel bars:

s.1 s  s.1  s.1 573.648 MPa

Calculation of curvature at failure:

 s.1 0.02 u.1

 s.1

d xu.1
0.288m

1


3.1.5.2 Analysis of field section including top reinforcement

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Assume tension in top and bottom and that the neutral axis is located above the top

reinforcerment. 

Strain in bottom reinforcement:  s.2

d xu.2

xu.2

cu

Strain in top reinforcement: ' s.2

d' xu.2

xu.2

cu
 

 

 

 

 



N-42                      CHALMERS, Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 

Position of neutral axis:

Initial guess: xu.2 20mm

Calculated value:

xu.2 root R fcd b xu.2 s

d' xu.2

xu.2

cu









A's s

d xu.2

xu.2

cu









As xu.2










xu.2 15.888 mm Note : The neutral axis is indeed located above the

top reinforcement. Top bars are subjected to tensile

stress.

Check the strain in the reinforcement bars:

 s.2

d xu.2

xu.2

cu 0.014  sy 2.748 10
3

  s.2  sy 1

' s.2

d' xu.2

xu.2

cu 9.058 10
4

 ' s.2  sy 0

Calculation of moment capacity:

Mu.2 R fcd b xu.2 d R xu.2  s

d' xu.2

xu.2

cu









A's d d'( ) Mu.2 2.494 kN m

Fu.2

Mu.2

LF

 Fu.2 4.989 kN

Fu.2.tot 2 Fu.2 9.977 kN

Calculation of stress in the steel bars:

's.2 s ' s.2  's.2 182.963 MPa

s.2 s  s.2  s.2 567.618 MPa

Calculation of curvature at failure:

 s.2 0.014 u.2

 s.2

d xu.2
0.22m

1

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3.1.6. Moment and Curvature at Onset of Yielding 

3.1.6.1 Analysis of field section without top reinforcement

Yielding strain:  sy 2.748 10
3



Definition of strain in the compressed edge:

cc.y.1

xy.1

d xy.1
 sy

Tensile force in the bottom reinforcement:

Fsy fyd n Abar 31.385 kN

Equivalent compressive force in concrete

FC.y.1 R.y fcd b xy.1 R.y R.S cc.y.1 

Horizontal equilibrium condition:

Fsy FC.y

Assume xy.1 22.042mm

Total tensile force: Fsy 31.385 kN

Total compressive force: FC.y.1 R.S

xy.1

d xy.1
 sy









fcd b xy.1 31.384 kN

F FC.y.1 Fsy 7.021 10
5

 kN

Note: Check that ?F ˜ 0 

Calculation of strains

cc.y.1

xy.1

d xy.1
 sy 1.045 10

3
 cc.y.1 c2 1

Calculation of moment at yielding:

R.y R.S cc.y.1  0.431 R.y R.S cc.y.1  0.351

My.1 R.y fcd b xy.1 d R.y xy.1  My.1 2.268 kN m Fy.1

My.1

LF

4.536 kN

Fy.1.tot 2 Fy.1 9.072 kN  
 

 

 

Note: Check that Δ F ≈  0 
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Determination of stresses in the reinforcement bars:

s.y.1 s  sy  s.y.1 555 MPa

Curvature at yielding

 sy 2.748 10
3

 y.1

 sy

d xy.1
0.047m

1


3.1.6.2 Analysis of field section including top reinforcement

Assume tension in the top reinforcement bars

Yielding strain:  sy 2.748 10
3



Definition of strain in the compressed edge and top reinforcement:

cc.y.2

xy.2

d xy.2
 sy ' s.y.2

xy.2 d'

d xy.2
 sy

Tensile force in the reinforcement:

 Top reinforcement: F'sy.2 s ' s.y.2  A's

 Bottom reinforcement: Fsy fyd As 31.385 kN

Equivalent compressive force in concrete

FC.y.2 R.y fcd b xy.2 R.y R.S cc.y.2 

Horizontal equilibrium condition:

Fsy FC.y.2 F'sy.2

Assume xy.2 21.725mm

Total tensile force: FT.y.2 Fsy 31.385 kN

Total compressive

 force: FC.y.2 R.S

xy.2

d xy.2
 sy









fcd b xy.2 s

xy.2 d'

d xy.2
 sy









A's 31.378 kN

F FC.y.2 FT.y.2 6.889 10
3

 kN

Note: Check that ?F ˜ 0  
 

 

 

Note: Check that Δ F ≈  0 
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Calculation of strains

cc.y.2

xy.2

d xy.2
 sy 1.024 10

3
 cc.y.2 c2 1

Note: The strains are in fact

negative though they are

posetive here to be able to use

the stress-strain curve. 

' s.y.2

xy.2 d'

xy.2

cc.y.2 8.133 10
5



Calculation of moment at yielding:

R.y R.S cc.y.2  0.425 R.y R.S cc.y.2  0.35

My.2 R.y fcd b xy.2 d R.y xy.2  s

xy.2 d'

xy.2

cc.y.2









A's d d'( )

My.2 2.26 kN m Fy.2

My.2

LF

4.52 kN

Fy.2.tot 2 Fy.2 9.039 kN

Determination of stresses in the reinforcement bars:

Top reinforcement: 's.y.2 s ' s.y.2  's.y.2 16.429 MPa

Bottom reinforcement: s.y.2 s  sy  s.y.2 555 MPa

Curvature at yielding

 sy 2.748 10
3

 y.2

 sy

d xy.2
0.047m

1


3.1.8. Summary

3.1.8.1 Moment and curvature at yielding without consideration of top

reinforcement

My.1 2.268 kN m xy.1 22.042 mm

Fy.1.tot 9.072 kN y.1 0.047m
1



3.1.8.2 Moment and curvature at yielding considering both top and bottom

reinforcement

My.2 2.26 kN m xy.2 21.725 mm

Fy.2.tot 9.039 kN y.2 0.047m
1

  
 

 

 

Note: The strains are in fact 

negative though they are 

positive here to be able to use 

the stress-strain curve. 
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3.1.8.3 Load Capacity at Ultimate State without consideration of top

reinforcement

Mu.1 2.431 kN m xu.1 12.143 mm

Fu.1.tot 9.725 kN u.1 0.288m
1



3.1.8.4 Load Capacity at Ultimate State considering both top and bottom

reinforcement

Mu.2 2.494 kN m xu.2 15.888 mm

Fu.2.tot 9.977 kN u.2 0.22m
1



Increase in load capacity if top

reinforcement is considered:

Fu.2.tot Fu.1.tot

Fu.1.tot

2.591 %
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3.2 Theoretical Load vs Deformation Relationship

3.2.1. Determination of Cracking Moment and Cracking Curvature:

Modular ratio: s

Esm

Ecm

6.413

Moment of inertia in State I: II

b h
3



12
s 1 2n Abar d

h

2










2

 8.884 10
6

 mm
4



Cracking stress: fct.fl

Mcr

h

2











II

Cracking moment: Mcr

fct.fl II

h

2

1.032 kN m

Cracking force: Fcr

Mcr

LF

2.064 kN Fcr.tot 2 Fcr 4.129 kN

3.2.2. Determination of Moment of Inertia in State II

Calculation of position of neutral axis:

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Consider first moment of area around the neutral axis:

b xII
2



2
s 1  A's xII d'  s As d xII 

Initial guess:

xII 50mm

Calculated value:

xII root
b xII

2


2
s  A's d' xII  s As d xII  xII











xII 20.638 mm  
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Moment of inertia:

III

b xII
3



3
s  A's d' xII 2 s As d xII 2

III 1.571 10
6

 m
4



3.2.3. Load-Deformation plot

3.2.3.1 Determination of equivalent stiffness 

Stiffness in State I: KI

48 Ecm II

LF L
2

 3
4 LF

2


L
2













6.601
kN

mm


Stiffness in State II: KII

48 Ecm III

LF L
2

 3
4 LF

2


L
2













1.167
kN

mm


3.2.3.2 Deformation considering only State  II until ultimate load

Peak load: Fu.2.tot 9.977 kN

Deflection at peak load:
uII

Fu.2.tot

KII

8.547 mm

Load as a function of displacement: Force2 u( ) u KII u uIIif

Fu.2.tot u uIIif



3.2.3.3 Deformation considering State I and State II

Cracking load: Fcr.tot 4.129 kN

Deflection when cracking occurs: ucr

Fcr.tot

KI

0.625 mm

Peak load: Fu.2.tot 9.977 kN

Deflection at peak load: uII 8.547 mm

Stiffness between cracking and yielding: Kcy

Fu.2.tot Fcr.tot

uII ucr
0.738

kN

mm

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Load as a function of displacement: Force u( ) KI u  u ucrif

Fcr.tot u ucr  Kcy  u ucrif

Fu.2.tot u uIIif



u 0mm 0.01mm 30mm

3.2.3.4 Load-deformation curves

0 0.01 0.02 0.03
0

2 10
3



4 10
3



6 10
3



8 10
3



1 10
4



Force u( )

Force2 u( )

u  
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3.3 Prediction of Plastic Rotational Capacity

3.3.1 Input Data

3.3.1.1 Geometry

Beam height: h 0.1m

Beam width: b 0.1m

Effective span length: L 1.3m

Distance to critical section from support: l0 LF 0.5m

Effective height: d 0.08m

3.3.2. Rotation Capacity According to Eurocode 2

Determine allowable rotation for reference beam (? = 3):

xu xu.1 12.143 mm Note: Position of neutral axis considering

only bottom reinforcement.

xu

d
0.152

Rotation capacity from the chart:

 total.Eur.R 0.028

Correction for different values of shear slenderness:


l0

d
6.25 



3
1.443
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 total.Eur   total.Eur.R 0.04

Consider:

 total.Eur 2 pl.Eur

Rotational capacity according to Eurocode 2:

pl.Eur

 total.Eur

2
0.0202

upl.Eur pl.Eur l0 10.104 mm

3.3.3 Rotation Capacity According to Bk 25

Empirical expression:

lp.Bk25 0.5 d 0.15L Plastic hinge in the field

Plastic hinge length: lp.Bk25 0.5 d 0.15L 235 mm

Area of tensile reinforcement: As 56.549 mm
2



s

As

b d

fym

fcm

 0.119

Since no stirrups were included, the contribution of the top bars can be disregarded

Area of compression reinforcement: Ac 0 Note: the top reinforcement has been

proved to be subjected to tensile stress.

's

Ac

b d

fym

fcm

 0

Dominant failure mode:

s.crit

0.8 cu

cu  su
0.029 s 0.119

s s.crit 1 Note: The dominant failure mode is concrete crushing

Determination of plastic rotation capacity:

pl.Bk25

0.4 cu

s

1 0.3
L

d










0.0692 upl.Bk25 pl.Bk25 l0 34.593 mm
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3.3.4. Summary

Eurocode 2: pl.Eur 0.02 rad

Bk25 method: pl.Bk25 0.069 rad
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4. Four point bending and damaged reinforcement

4.1 Load Capacity of Reinforced Concrete Beam

The load capacity of a reinforced concrete beam is determined for a given cross section.

kN N 10
3

 MPa Pa 10
6



4.1.1 Input Data

4.1.1.1 Geometry

Beam height: h 0.1m

Beam width: b 0.1m

Effective span length: L 1.3m

Distance to load application from support: LF 0.5m

Nominal bar diameter:  6mm

Area of reinforcement bar: Abar 


2

4
 28.274 mm

2


Stirrup dimension: s 0mm

Note: No stirrups

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Area of top reinforcement: As n Abar 56.549 mm
2



Area of bottom reinforcement: A's n' Abar 56.549 mm
2

  
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Concrete cover: c 0.02m


2
 0.017m

Distance from top edge to bottom reinforcement: d h


2
c









 80 mm

Distance from top edge to top reinforcement: d'


2
c 20 mm

4.1.1.2 Material properties

Concrete: Mean compressive strength: fcm 33.0MPa

Mean tensile strength fctm 4.43 MPa

Mean modulus of elasticity Ecm 31.5GPa

Reinforcing steel: Mean yield strength: fym 645MPa

Ultimate tensile stress: ft 664MPa

Mean modulus of elasticity: Esm 196 GPa

4.1.2. Stress-strain Relationship of Concrete

4.1.2.1 Mathematic formulation

The parabola-rectangle stress-strain diagram for concrete under compression

(according to EN 1992-1-1) is adopted.   

Parameters for all concrete classes:

Concrete strain at maximum strength: c2 2 10
3



Ultimate concrete strain: cu2 3.5 10
3



Exponent: n 2

Stress-strain relationship: c c  1 1
c

c2










n













fcm











0 c c2if

fcm c2  c cu2if



Create a vector with different values of strain: c 0 0.0001 cu2  
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Graphic representation of the stress-strain relationship:

0 10
0

 1 10
3

 2 10
3

 3 10
3

 4 10
3



0 10
0



1 10
7



2 10
7



3 10
7



4 10
7



Simplified stres s-strain relationsh ip of concrete

c c 

c

4.1.2.2 Determination of block factors

Area under the curve for a given value of strain:

Area c 
0

c

cc c 




d

Area under the curve multiplied by the distance from the origin to the center of

gravity of the area:

A_ c 
0

c

cc c  c




d

Determination of  factors R.S and R.S

R.S c 
Area c 

fcm c
 R.S cu2  0.81

R.S c 

c

A_ c 
Area c 



c

 R.S cu2  0.416
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4.1.3 Stress-strain Relationship of Reinforcing Steel

4.1.3.1 Mathematic formulation

Ultimate steel strain:  su 0.0580

Yield strain:  sy

fym

Esm

  sy 3.291 10
3



Relationship parameters: p1  s 
 s  sy

 su  sy


Stress-strain relationship: s  s  Esm  s   s  syif

fym p1  s  ft fym   s  syif



 s 0 0.001  su

Graphic representation of the stress-strain relationship for reinforcing steel:

0 0.02 0.04 0.06
0

2 10
8



4 10
8



6 10
8



8 10
8



Bi-linear stress -strain relationship of damaged steel

s s 

s  
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4.1.4. Design Strength Values

4.1.4.1 Concrete

Partial factor:  C 1.0

Design compressive strength: fcd

fcm

 C

 fcd 33 MPa

Concrete ultimate strain: cu 0.0035

Stress block factors: R R.S cu  0.81

R R.S cu2  0.416

5%-fractile tensile strength: fctk0.05 0.7 fctm 3.101 MPa

Flexural tensile strength:  0.6
0.4

4
h

m

 1.311

fct.fl  fctm 5.809 MPa

4.1.4.2 Reinforcing steel

 S 1.0Partial factor:

Design yield stress: fyd

fym

 S

 fyd 645 MPa

4.1.5. Load Capacity in Ultimate Limit State

4.1.5.1 Analysis of field section without top reinforcement

Number of bars in the top: n' 0

Number of bars in the bottom: n 2

Assume yielding:  s.1  sy  s.1

d x1

x1

cu
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Position of neutral axis:

Initial guess: xu.1 20mm

Calculated value: xu.1 root R fcd b xu.1 s

d xu.1

xu.1

cu









n Abar xu.1










xu.1 13.753 mm

Check the strain in the reinforcement bars:

 s.1

d xu.1

xu.1

cu 0.017  sy 3.291 10
3

  s.1  sy 1

Calculation of load capacity:

Mu.1 R fcd b xu.1 d R xu.1  Mu.1 2.729 kN m

Fu.1

Mu.1

LF

 Fu.1 5.458 kN Fu.1.tot 2 Fu.1 10.916 kN

Calculation of stress in the steel bars:

s.1 s  s.1  s.1 649.712 MPa

Calculation of curvature at failure:

 s.1 0.017 u.1

 s.1

d xu.1
0.254m

1


4.1.5.2 Analysis of field section including top reinforcement

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Assume tension in top and bottom and that the neutral axis is located above the top

reinforcerment. 

Strain in bottom reinforcement:  s.2

d xu.2

xu.2

cu

Strain in top reinforcement: ' s.2

d' xu.2

xu.2

cu

 
 

 

 

 

 

 

 

 



CHALMERS Architecture and Civil Engineering, Master’s Thesis ACEX30-19-27 N-59 

Position of neutral axis:

Initial guess: xu.2 20mm

Calculated value:

xu.2 root R fcd b xu.2 s

d' xu.2

xu.2

cu









A's s

d xu.2

xu.2

cu









As xu.2










xu.2 16.649 mm Note: The neutral axis is indeed located above the

top reinforcement. Top bars are subjected to tensile

stress.

Check the strain in the reinforcement bars:

 s.2

d xu.2

xu.2

cu 0.013  sy 3.291 10
3

  s.2  sy 1

' s.2

d' xu.2

xu.2

cu 7.044 10
4

 ' s.2  sy 0

Calculation of moment capacity:

Mu.2 R fcd b xu.2 d R xu.2  s

d' xu.2

xu.2

cu









A's d d'( ) Mu.2 2.782 kN m

Fu.2

Mu.2

LF

 Fu.2 5.564 kN Fu.2.tot 2 Fu.2 11.127 kN

Calculation of stress in the steel bars:

's.2 s ' s.2  's.2 138.054 MPa

s.2 s  s.2  s.2 648.482 MPa

Calculation of curvature at failure:

 s.2 0.013 u.2

 s.2

d xu.2
0.21m

1


4.1.6. Moment and Curvature at Onset of Yielding 

4.1.6.1 Analysis of field section without top reinforcement

Yielding strain:  sy 3.291 10
3

  
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Definition of strain in the compressed edge:

cc.y.1

xy.1

d xy.1
 sy

Tensile force in the bottom reinforcement:

Fsy fyd n Abar 36.474 kN

Equivalent compressive force in concrete

FC.y.1 R.y fcd b xy.1 R.y R.S cc.y.1 

Horizontal equilibrium condition:

Fsy FC.y

Assume xy.1 22.18mm

Total tensile force: Fsy 36.474 kN

Total compressive force: FC.y.1 R.S

xy.1

d xy.1
 sy









fcd b xy.1 36.479 kN

F FC.y.1 Fsy 5.062 10
3

 kN

Note: Check that ?F ˜ 0 

Calculation of strains

cc.y.1

xy.1

d xy.1
 sy 1.262 10

3
 cc.y.1 c2 1

Calculation of moment at yielding:

R.y R.S cc.y.1  0.498 R.y R.S cc.y.1  0.356

My.1 R.y fcd b xy.1 d R.y xy.1  My.1 2.631 kN m

Fy.1

My.1

LF

5.261 kN Fy.1.tot 2 Fy.1 10.523 kN

Determination of stresses in the reinforcement bars:

s.y.1 s  sy  s.y.1 645 MPa  
 

 

 

 

 

 

Note: Check that Δ F ≈  0 
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Curvature at yielding

 sy 3.291 10
3

 y.1

 sy

d xy.1
0.057m

1


4.1.6.2 Analysis of field section including top reinforcement

Assume tension in the top reinforcement bars

Yielding strain:  sy 3.291 10
3



Definition of strain in the compressed edge and top reinforcement:

cc.y.2

xy.2

d xy.2
 sy ' s.y.2

xy.2 d'

d xy.2
 sy

Tensile force in the reinforcement:

 Top reinforcement: F'sy.2 s ' s.y.2  A's

 Bottom reinforcement: Fsy fyd As 36.474 kN

Equivalent compressive force in concrete

FC.y.2 R.y fcd b xy.2 R.y R.S cc.y.2 

Horizontal equilibrium condition:

Fsy FC.y.2 F'sy.2

Assume xy.2 21.83mm

Total tensile force: FT.y.2 Fsy 36.474 kN

Total compressive

 force: FC.y.2 R.S

xy.2

d xy.2
 sy









fcd b xy.2 s

xy.2 d'

d xy.2
 sy









A's 36.475 kN

F FC.y.2 FT.y.2 8.149 10
4

 kN

Note: Check that ?F ˜ 0  
 

 

 

 

 

 

Note: Check that Δ F ≈  0 
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Calculation of strains

cc.y.2

xy.2

d xy.2
 sy 1.235 10

3
 cc.y.2 c2 1

Note: The strains are in fact

negative though they are positive

here to be able to use the

stress-strain curve. 

' s.y.2

xy.2 d'

xy.2

cc.y.2 1.035 10
4



Calculation of moment at yielding:

R.y R.S cc.y.2  0.49 R.y R.S cc.y.2  0.355

My.2 R.y fcd b xy.2 d R.y xy.2  s

xy.2 d'

xy.2

cc.y.2









A's d d'( )

My.2 2.621 kN m Fy.2

My.2

LF

5.243 kN Fy.2.tot 2 Fy.2 10.485 kN

Determination of stresses in the reinforcement bars:

Top reinforcement: 's.y.2 s ' s.y.2  's.y.2 20.291 MPa

Bottom reinforcement: s.y.2 s  sy  s.y.2 645 MPa

Curvature at yielding

 sy 3.291 10
3

 y.2

 sy

d xy.2
0.057m

1


4.1.8. Summary

4.1.8.1 Moment and curvature at yielding without consideration of top

reinforcement

My.1 2.631 kN m xy.1 22.18 mm

Fy.1.tot 10.523 kN y.1 0.057m
1



4.1.8.2 Moment and curvature at yielding considering both top and bottom

reinforcement

My.2 2.621 kN m xy.2 21.83 mm

Fy.2.tot 10.485 kN y.2 0.057m
1


 

 

 

 

Note: The strains are in fact 

negative though they are 

positive here to be able to use 

the stress-strain curve. 
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4.1.8.3 Load Capacity at Ultimate State without consideration of top

reinforcement

Mu.1 2.729 kN m xu.1 13.753 mm

Fu.1.tot 10.916 kN u.1 0.254m
1



4.1.8.4 Load Capacity at Ultimate State considering both top and bottom

reinforcement

Mu.2 2.782 kN m xu.2 16.649 mm

Fu.2.tot 11.127 kN u.2 0.21m
1



Increase in load capacity if top

reinforcement is considered:

Fu.2.tot Fu.1.tot

Fu.1.tot

1.932 %
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4.2 Theoretical Load vs Deformation Relationship

4.2.1. Determination of Cracking Moment and Cracking Curvature:

Modular ratio: s

Esm

Ecm

6.222

Moment of inertia in State I: II

b h
3



12
s 1 2n Abar d

h

2










2

 8.865 10
6

 mm
4



Cracking stress: fct.fl

Mcr

h

2











II

Cracking moment: Mcr

fct.fl II

h

2

1.03 kN m

Cracking force: Fcr

Mcr

LF

2.06 kN Fcr.tot 2 Fcr 4.12 kN

4.2.2. Determination of Moment of Inertia in State II

Calculation of position of neutral axis:

Number of bars in the top: n' 2

Number of bars in the bottom: n 2

Consider first moment of area around the neutral axis:

b xII
2



2
s 1  A's xII d'  s As d xII 

Initial guess:

xII 50mm

Calculated value:

xII root
b xII

2


2
s  A's d' xII  s As d xII  xII











xII 20.408 mm
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Moment of inertia:

III

b xII
3



3
s  A's d' xII 2 s As d xII 2

III 1.533 10
6

 m
4



4.2.3. Load-Deformation plot

4.2.3.1 Determination of equivalent stiffness 

Stiffness in State I: KI

48 Ecm II

LF L
2

 3
4 LF

2


L
2















6.587
kN

mm


Stiffness in State II: KII

48 Ecm III

LF L
2

 3
4 LF

2


L
2















1.139
kN

mm


4.2.3.2 Deformation considering only State  II until ultimate  load

Peak load: Fu.2.tot 11.127 kN

Deflection at peak load:
uII

Fu.2.tot

KII

9.77 mm

Load as a function of displacement: Force2 u( ) u KII u uIIif

Fu.2.tot u uIIif



4.2.3.3 Deformation considering State I and State II

Cracking load: Fcr.tot 4.12 kN

Deflection when cracking occurs: ucr

Fcr.tot

KI

0.625 mm

Peak load: Fu.2.tot 11.127 kN

Deflection at peak load: uII 9.77 mm

Stiffness between cracking and yielding: Kcy

Fu.2.tot Fcr.tot

uII ucr
0.766

kN

mm

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Load as a function of displacement: Force u( ) KI u  u ucrif

Fcr.tot u ucr  Kcy  u ucrif

Fu.2.tot u uIIif



u 0mm 0.01mm 30mm

4.2.3.4 Load-deformation curves

0 0.01 0.02 0.03
0

5 10
3



1 10
4



1.5 10
4



Force u( )

Force2 u( )

u  
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4.3 Prediction of Plastic Rotational Capacity

4.3.1 Input Data

4.3.1.1 Geometry

Beam height: h 0.1m

Beam width: b 0.1m

Effective span length: L 1.3m

Distance to critical section from support: l0 LF 0.5m

Effective height: d 0.08m

4.3.2. Rotation Capacity According to Eurocode 2

Determine allowable rotation for reference beam (? = 3):

xu xu.1 13.753 mm Note : Position of neutral axis considering

only bottom reinforcement.

xu

d
0.172

Reinforcement class  C

Rotation capacity from the chart:

 total.Eur.R.C 0.027  
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Correction for different values of shear slenderness:

C

l0

d
6.25 C

C

3
1.443

 total.Eur.C C  total.Eur.R.C 0.039

Consider:

 total.Eur.C 2 pl.Eur. C

Rotational capacity according to Eurocode 2:

pl.Eur. C

 total.Eur.C

2
0.0195

upl.Eur. C pl.Eur. C l0 9.743 mm

Reinforcement class B

Rotation capacity from the chart:

 total.Eur.R.B 0.0135

Correction for different values of shear slenderness:

B

l0

d
6.25 B

B

3
1.443

 total.Eur.B B  total.Eur.R.B 0.019  
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Consider:

 total.Eur.B 2 pl.Eur.B

Rotational capacity according to Eurocode 2:

pl.Eur.B

 total.Eur.B

2
9.7428 10

3


upl.Eur.B pl.Eur.B l0 4.871 mm

4.3.3 Rotation Capacity According to Bk 25

Empirical expression:

lp.Bk25 0.5 d 0.15L Plastic hinge on the field

Plastic hinge length: lp.Bk25 0.5 d 0.15L 235 mm

Area of tensile reinforcement: As 56.549 mm
2



s

As

b d

fym

fcm

 0.138

Since no stirrups were included, the contribution of the top bars can be disregarded

Area of compression reinforcement: Ac 0 Note: the top reinforcement has been

proved to be subjected to tensile stress.

's

Ac

b d

fym

fcm

 0

Dominant failure mode:

s.crit

0.8 cu

cu  su
0.046 s 0.138

s s.crit 1 Note: The dominant failure mode is concrete crushing

Determination of plastic rotation capacity:

pl.Bk25

0.4 cu

s

1 0.3
L

d










0.0595 upl.Bk25 pl.Bk25 l0 29.766 mm
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4.3.4. Summary

Eurocode 2: pl.Eur.C 0.019 rad

pl.Eur.B 9.743 10
3

 rad

Bk25 method: pl.Bk25 0.06 rad
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5. Initial shear velocity

 0.2

G
Ecm

2 1 ( )
13.125 GPa

 2420kg

vs

G


m

1.5
 2.329 10

3


m

s


t0

L

2 vs
0.279 ms
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