
Refining Security Monitoring
Techniques for Container-Based
Virtualisation Environments

Master’s thesis in Computer science and engineering

MARCUS LINDVÄRN
ZACK LUNDQVIST

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Refining Security Monitoring
Techniques for Container-Based
Virtualisation Environments

MARCUS LINDVÄRN
ZACK LUNDQVIST

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Refining Security Monitoring Techniques for Container-Based Virtualisation Envi-
ronments
Marcus Lindvärn & Zack Lundqvist

© MARCUS LINDVÄRN, 2021.
© ZACK LUNDQVIST, 2021.

Supervisor: Rodi Jolak, Software Engineering Department
Examiner: Christian Berger, Software Engineering Department

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Refining Security Monitoring Techniques for Container-Based Virtualisation Envi-
ronments

MARCUS LINDVÄRN
ZACK LUNDQVIST
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Context: Virtualisation is a vital part of many industries’ software deployment.
When virtualisation became popular, it was more or less synonymous with virtual
machines and hypervisors. Since then, a newer form of virtualisation has surged
in popularity, containers. Containers provide improvements over traditional hyper-
visors in several aspects, with lower overhead and short boot and shutdown times
often being referenced.
Problem: However, due to the way containers operate, they do not achieve the same
level of isolation, an essential attribute in security. Containers share kernel with the
host and other containers running on the host. A shared kernel means the attack
surface differs from hypervisors, causing an elevated need for proper monitoring and
investigation of potential monitoring techniques for detecting attacks, threats or
misbehaving containers.
Objective: This study aims to understand what container monitoring techniques are
available and how they operate. Moreover, it explores novel container monitoring
techniques providing better efficiency and coverage of the STRIDE threat model.
Approach: The first objective is realised by conducting a literature review using
the snowballing approach. The second objective is realised by following the design
science research methodology.
Results: As a result, a container monitoring technique is created and refined over four
iterations. This technique uses the Isolation Forest algorithm to detect anomalies
in system call traces. The Isolation Forest algorithm enables unsupervised anomaly
detection while providing multiple advantageous characteristics in terms of efficiency
and detection.
Evaluation: In order to evaluate and compare the proposed monitoring technique
with other techniques, a framework is developed to support the use of different
anomaly detection and feature extraction algorithms, streamlining the evaluation
process.
Conclusion: The resulting technique detects all attacks included in the evaluation
while keeping an average FPR below 3%.

Keywords: Computer, science, computer science, engineering, project, thesis, secu-
rity, container, monitoring, anomaly detection.

v

Acknowledgements
We want to say a big thank you to our supervisor Rodi Jolak for all the guidance
and helpful discussions he has provided throughout the project. He has given us
recommendations and new perspectives that have enabled us to progress past the
various roadblocks we have encountered, no matter their nature or immensity. His
feedback and mentorship have also kept us on the right track and helped us to focus
on the task at hand. We would also like to thank our examiner Christian Berger,
who has helped us avoid pitfalls and polish the thesis to its detailed and concise
state by giving constructive feedback from a critical point of view.

Marcus Lindvärn & Zack Lundqvist, Gothenburg, June 2021

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Problem Domain and Motivation . 2
1.2 Research Questions and Research Goals 3
1.3 Contributions . 3
1.4 Scope . 4
1.5 Structure of the Thesis . 4

2 Background 5
2.1 Virtualisation . 5

2.1.1 Virtual Machines . 6
2.1.2 Containerisation . 6
2.1.3 Firecracker . 7

2.2 Docker . 8
2.3 Threat Landscape and Security . 8

2.3.1 STRIDE . 9
2.4 Threat Protection Approaches . 9

2.4.1 Static Analysis . 10
2.4.2 Behavioural Analysis . 10

2.4.2.1 Machine Learning-based Analysis 10
2.4.3 Runtime Security . 11

2.5 Related Work . 11

3 Approach 15
3.1 Snowballing Search Approach . 15

3.1.1 Tools and Traceability . 15
3.1.2 Search Strategy . 16
3.1.3 Study Selection Criteria . 17
3.1.4 Study Selection Procedure . 17
3.1.5 Data Extraction and Synthesis 17

3.2 Refining a Monitoring Technique . 18

4 Results of Literature Review 21
4.1 Snowballing . 21

ix

Contents

4.1.1 Extracted Data . 21
4.1.2 Citation Matrix . 30

4.2 Inter-rater Reliability Test . 31
4.3 Literature Review Analysis . 32

5 Implementation 35
5.1 Data Source . 35

5.1.1 Alternative Sources . 36
5.2 Data Representation . 37

5.2.1 Bag of System Calls . 37
5.2.2 One-hot Encoding . 38

5.3 Feature Extraction . 38
5.3.1 Frequency Vector . 39
5.3.2 Sliding Window . 40
5.3.3 n-gram . 41

5.4 Anomaly Detection . 42
5.4.1 Baseline Technique: k-nearest neighbours 42
5.4.2 Refined Technique: Isolation forest 43

5.5 Simulation Environment Tools . 44
5.5.1 Heimdall - System Call Monitoring Tool 44
5.5.2 Hlin - Anomaly Detector Evaluation Framework 46

6 Evaluation 49
6.1 Simulation Environment . 49

6.1.1 Creating Vulnerable Docker Containers 50
6.1.2 Collecting System Call Logs 51
6.1.3 Normal Load Generation . 51
6.1.4 Exploitation . 51

6.2 Evaluation Metrics . 52
6.3 Iteration 0 (baseline) . 52
6.4 Iteration 1 . 54

6.4.1 Iteration 1: Parameters . 54
6.4.2 Iteration 1: Evaluation . 54

6.5 Iteration 2 . 56
6.5.1 Iteration 2: Parameters . 56
6.5.2 Iteration 2: Evaluation . 56

6.6 Iteration 3 . 57
6.6.1 Iteration 3: Parameters . 57
6.6.2 Iteration 3: Evaluation . 57

6.7 Iteration 4 . 58
6.7.1 Iteration 4: Parameters . 58
6.7.2 Iteration 4: Evaluation . 58

6.8 Refined Monitoring Technique . 59

7 Discussion 61
7.1 Containers vs Firecracker . 61
7.2 Existing Monitoring Techniques . 61

x

Contents

7.3 Improving a Technique for Container Security Monitoring 62
7.4 Evaluation of the Proposed Technique 64

8 Threats to Validity 67
8.1 Construct Validity . 67
8.2 Internal Validity . 67
8.3 External Validity . 68

9 Conclusion 71
9.1 Future Work . 72

Bibliography 73

A Appendix 1 I

xi

Contents

xii

List of Figures

2.1 Architectural differences between Type-I and Type-II hypervisors. . . 6
2.2 Architectural structure of Docker containers. 7

3.1 Iterative process of the design science research methodology. 19

5.1 Example of Sysdig output when attached to a container and logging
enter events. 36

5.2 Visualization of the sliding window algorithm using a trace of t = 11
system calls, window size W = 5 and step size L = 2. 40

5.3 Architecture of Heimdall. 45
5.4 Architecture of the Hlin framework. 46

xiii

List of Figures

xiv

List of Tables

4.1 Snowballing procedure information. 21
4.2 Extracted meta-data of included studies. 22
4.3 Extracted miscellaneous data of included studies. 23
4.4 Extracted data describing techniques of included studies. 24
4.5 Extracted evaluations of included studies. 25
4.6 STRIDE coverage and synthesised summary of included studies. . . . 27
4.7 Citation matrix, “X“ denotes the row referencing the column, “-“

signifies a similar or later publication date, making a reference unlikely. 31
4.8 Agreement and disagreement for inclusion and exclusion between the

review and the test. 31

5.1 Constructing BoSCs using s = {2, 5, 10} from the example input
sequence. 38

5.2 Creating BoSC from frequency vectors using the example input se-
quence with ∆T = 100ms. 40

5.3 Using a sliding window with W = 5 and L = 2 to construct BoSC
from the example input sequence. 41

6.1 Hardware configuration. 49
6.2 Software configuration. 49
6.3 Vulnerable containers used in the simulation environment. 50
6.4 Explanations of evaluation metrics. 53
6.5 Baseline technique evaluation results. 53
6.6 Anomaly detection and feature extraction parameters for the first

iteration. 54
6.7 Evaluation results first iteration: sliding window feature extraction. . 55
6.8 Evaluation results first iteration: n-gram and frequency vector feature

extraction. 55
6.9 Anomaly detection and feature extraction parameters for the second

iteration. 56
6.10 Evaluation results second iteration: n-gram feature extraction. 56
6.11 Anomaly detection and feature extraction parameters for the third

iteration. 57
6.12 Evaluation results third iteration: n-grams and sliding window feature

extraction. 58

xv

List of Tables

6.13 Evaluation results third iteration: The three best performing (FPR-
wise) combinations for each feature extraction algorithm managing
to detect 21 out of 22 attacks. 58

6.14 Anomaly detection and feature extraction parameters for the fourth
iteration. 59

6.15 Evaluation results for the fourth iteration using isolation forest with
sliding window feature extraction. 59

6.16 Parameters of the top performing technique. 59
6.17 Detailed comparison of baseline and refined monitoring technique. . . 60

A.1 Raw results from all evaluations . I

xvi

1
Introduction

The use of virtualisation for running software is becoming increasingly popular. The
industry has started a transition towards cloud-native applications, which has caused
an explosive growth of software running in virtualised environments [12]. There
are two distinct approaches towards achieving virtualisation: Virtual machines and
operating system-level virtualisation, also known as containers.

A Virtual Machine (VM) emulates an entire operating system (OS) running on top
of, or alongside, another OS. These two systems are commonly referred to as the
guest OS and the host OS, respectively. VMs tend to be quite resource-intensive as
emulation of software is inefficient, and OS’s are complex [35, 72]. The introduction
of hardware support [28] and hypervisors [71] have brought optimised performance
and reduced overhead. However, the performance impact is still not negligible and
needs to be taken into consideration when evaluating virtualisation approaches.

Containers are an alternative approach that provides virtualisation with less over-
head compared to VMs. Instead of emulating an entire OS, containers run directly
on the host and use functionality in the host kernel to effectively isolate themselves,
achieving virtualisation. Thus, containers require support from the kernel to func-
tion. Containers are more lightweight than VMs as no emulation is needed, and the
containers themselves only consist of an application and its dependencies.

Containers relying on the host kernel means the kernel is shared between the host
and all containers running on the host, which introduces a new attack surface not
present in VMs. Vulnerabilities in the host kernel can be exploited from within a
container to affect entities outside, or break out of, the isolated environment of the
container. The new attack surface is a major reason for security being one of the
top concerns regarding containers [9].

Monitoring the behaviour of containers to detect potential attacks or otherwise
anomalous behaviour is a strategy that can be employed to mitigate parts of the
inherent security-related drawbacks introduced by containers. The behaviour of
containers manifests itself in multiple ways that can be monitored and analysed, with
typical behavioural data sources being system calls and resource utilisation. System
calls are superior to resource utilisation as system calls represent the behaviour in
a more fine-grained manner, enabling the detection of anomalous behaviour caused

1

1. Introduction

by sophisticated attacks. Monitoring system calls comes with the added benefit of
being a non-intrusive monitoring approach, meaning that it is a drop-in solution
and no modifications to the monitored entity are necessary.

Detection of security attacks can be categorised into two subcategories, signature-
driven approaches [38, 40] and anomaly-driven approaches [25, 22]. Signature-driven
approaches can be likened to the rules of a firewall, where what is allowed or not
allowed is specified explicitly. However, for more complex applications, signature-
driven approaches tend to become complex and hard to maintain [51]. Furthermore,
signature-driven approaches cannot detect unknown attacks, commonly referred to
as zero-day attacks [51]. On the other hand, anomaly-driven approaches aim to
detect behaviour that deviates from what is considered normal for the application
in question. These approaches can detect many types of attacks, including zero-day
attacks, and perform great in domains where the behavioural space is large [51].
However, anomaly-driven approaches require the normal behaviour to be modelled
in order to detect anomalies.

When evaluating the performance of a security-focused monitoring technique, it is
of high importance to ensure a diverse set of attack scenarios. The STRIDE threat
model [33] categorises threat types based on what an attacker is able to achieve.
This thesis aims to provide a refined anomaly-driven monitoring technique using
system calls as behavioural data, providing an evaluation of its performance using
threats from multiple STRIDE categories on a diverse set of commonly containerised
applications.

1.1 Problem Domain and Motivation

The use of containers and the technology behind them is considered relatively imma-
ture compared to current solutions, mainly VMs. As previously explained, contain-
ers do provide certain benefits over VMs, e.g. less overhead and greater flexibility
[65]. However, what makes containers lightweight also introduces security-related
drawbacks. As containers run directly on the host, the host’s kernel is shared be-
tween the host itself and all containerised applications. Thus, containers introduce
an additional attack vector, the shared kernel, meaning that attackers can poten-
tially exploit kernel vulnerabilities to affect the outside of the virtualised environ-
ment or break out of it entirely. Threats such as the one described have led to
security becoming one of the top concerns for the use of containers in production
environments [9].

Studies have been done to investigate the benefits of container-based environments
and deployment [66]. Other studies have investigated the security implications of
containerised environments [10, 16]. Identifying and improving current monitor-
ing techniques for container-based systems is a first step towards a safe migration
to containers. This study aims to provide further knowledge of how to monitor
applications running in containers.

2

1. Introduction

1.2 Research Questions and Research Goals
First, this thesis aims to analyse the current cutting edge container monitoring tech-
niques available. Second, based on the performed analysis, this study explores an
improved container monitoring technique that provides more comprehensive security
in relation to the STRIDE security threat model [33] and improvements to effec-
tiveness, e.g., detection rate. The improved monitoring technique will be created by
using an existing technique as a foundation or by combining multiple techniques to
provide additional layers of security.

In this thesis, the following research questions are addressed:

RQ1: What current monitoring techniques exist that might be applicable for the
container-based virtualisation environment? Identify existing techniques which
have the potential to be either refined or combined in order to achieve the goals.

RQ2: What are the steps needed to be taken in order to develop an improved moni-
toring technique with additional layers of security and increased effectiveness?
To gain a fundamental understanding of how container monitoring techniques
work and use that knowledge to design and implement a potentially improved
monitoring technique.

RQ3: How well does the refined monitoring technique perform with respect to STRIDE
model coverage and performance, e.g. ability to detect threats? The goal is to
evaluate and determine if the created technique covers additional attack types
and scenarios and investigate how well it performs.

1.3 Contributions
The results of this research are targeted towards both organisations and research
audiences interested in making use of the many benefits presented by the container
technology. As evidenced by the literature review, the amount of security-focused
container monitoring research is lacking. Combining this fact with the ongoing
popularity surge of containers makes all research related to the topic a welcome ad-
dition. This study contributes to the research community by detailing the creation
and evaluation of a novel monitoring technique using the Isolation Forest to detect
anomalies in system call logs. The technique was designed based on knowledge
attained and evaluations analysed during a literature review. Part of the review
process involved data extraction, resulting in multiple tables listing useful infor-
mation of the examined techniques for use with containers at the time of writing.
In addition to the previously mentioned contributions, two tools were developed
to facilitate the development and evaluation process. The system call monitoring
tool, Heimdall, provides effortless logging and labelling of system calls invoked from
containers. The anomaly detector evaluation framework, Hlin, carries the responsi-
bility of performing feature extraction on logs produced by Heimdall, transforming
them into suitable data representations. Hlin is also responsible for evaluating the
developed monitoring technique. The evaluation aims to inform interested parties
of the performance of the developed monitoring technique, presenting the number

3

1. Introduction

of correctly detected attacks and False Positive rates (FPR). The evaluation gains
additional value by examining the detection performance using 22 disclosed real-
world exploits and vulnerabilities found in software listed as part of the Common
Vulnerabilities and Exposures (CVE) database. The refined non-intrusive monitor-
ing technique successfully detects all 22 attacks while keeping the FPR below 3%,
a definite improvement over the baseline set as a reference point for evaluation.

1.4 Scope
The scope of this thesis is in the domain of monitoring containers and commonly con-
tainerised applications. This study prioritises non-intrusive monitoring techniques
to provide a universal container monitoring technique applicable to any container.
A non-intrusive approach allows monitoring of any application running in a con-
tainer, thus expanding the application domain where the refined anomaly detection
technique is applicable, increasing its generalisability. A literature review is con-
ducted using the snowballing search approach exploring the currently available con-
tainer monitoring techniques without requiring the time commitment of conducting
a complete systematic literature review. The thesis prioritises evaluating the refined
anomaly detection technique using a diverse set of applications vulnerable to real-
world exploits at the expense of using synthetically generated over real-world normal
behaviour. The refined monitoring technique should, theoretically, also function as
an online anomaly detection technique. However, in this thesis, only offline anomaly
detection has been implemented and evaluated.

1.5 Structure of the Thesis
The remainder of the thesis is structured as follows; Chapter two contains the back-
ground information pertinent for attaining a base-level understanding of the context.
Chapter three describes the approach of how this thesis plans to answer the stated
research questions found in section 1.2. The literature review results are found in
chapter four, including tables summarising the different studies examined, a citation
matrix and an analysis of the results. Chapter five details the implementation of the
refined monitoring technique, including the artefacts produced during the iterative
design science process and the tools developed to facilitate the evaluation of said
artefacts. Chapter six contains a description of the created simulation environment,
evaluation metrics and the evaluation results. The two subsequent chapters discuss
the results and evaluation, followed by the threats to validity and related mitigation
strategies. The last chapter presents the conclusion and future work.

4

2
Background

This chapter will provide an introduction to the most critical topics that are ad-
dressed in this report. Furthermore, this chapter will highlight some of the reasons
why virtualisation and especially containers are a point of high interest in the field.
The first and second sections cover virtualisation in general and how containers can
prove beneficial over other means of virtualisation. The following section provides
information about security and the threat landscape surrounding container technol-
ogy. The following section provides a background to container security protection
and outlines a few different means of achieving security and their differences. The
chapter concludes with related work on the topics previously discussed.

2.1 Virtualisation

The core concept of virtualisation is to create abstraction layers of computer hard-
ware on which computer systems can run, making the systems virtual. Development
of the technique began in the 1960s with the primary goal of a logical division of
system resources to run multiple applications simultaneously on a single machine
[49]. The technique has since seen further development and can provide additional
benefits such as isolation, snapshots, and hardware independence.

The popularity of virtualisation took off in the early 2000s as enterprises realised
the benefits of partitioning their servers to allow a single server to run multiple
legacy applications with different dependencies and optimise server utilisation to
reduce expenses. Furthermore, the last decade has seen the industry starting a
transition towards cloud-native applications and cloud computing, which has caused
an explosive growth of software running within virtualised environments in data
centres [12].

Traditionally, two conceptually different approaches have existed to achieve virtual-
isation: Virtual machines and operating system-level virtualisation, also known as
containerisation. Although similar, the approaches offer environments with different
characteristics, benefits, and drawbacks. There have been recent developments to
create a new approach without the drawbacks of the traditional approaches, e.g.,
Firecracker developed at Amazon Web Services introduced in section 2.1.3.

5

2. Background

2.1.1 Virtual Machines
A virtual machine (VM) is an emulation of an entire operating system running
on top of, or alongside, the main OS, commonly referred to as a guest OS and
host OS, respectively. While VMs provide good isolation, as evidenced by their
extensive utilisation in cloud computing services such as Amazon Web Services [3,
8], they tend to be relatively inefficient as software emulation introduces overhead
and OS’s are complex [35, 72]. However, the issue has been partly resolved with the
introduction of hardware support [28, 6], hypervisors [71] and more recently, tools
like Firecracker [3]. A hypervisor is a software, firmware, or hardware layer that
manages the creation and execution of VMs. Hypervisors can be classified into two
types, Type-I and Type-II, depending on their underlying architecture (see figure
2.1). Type-I, also called bare-metal, hypervisors run directly on the host’s hardware.
Type-II, also called hosted, runs on top of an OS just like any other conventional
application.

2.1.2 Containerisation
Containerisation, or operating system-level virtualisation, is a virtualisation ap-
proach where the operating system kernel provides tools that enables the dynamic
creation of isolated user spaces. In Linux, and from now on in this thesis, these
spaces are referred to as namespaces [42].

Namespaces "wraps a global system resource in an abstraction that makes it appear
to the processes within the namespace that they have their own isolated instance of
the global resource." [42]. Hence, they enable the Linux kernel to handle the logical
isolation of processes, achieving virtualisation. Linux has multiple namespace types
(e.g. network, PID, mount), providing flexibility in the configuration of virtualised
environments. i.e. we can isolate processes using the PID namespace while still al-
lowing them access to the same file system by omitting the mount namespace. The

Figure 2.1: Architectural differences between Type-I and Type-II hypervisors.

6

2. Background

Linux kernel also provides the Cgroup (control group) namespace allowing the par-
titioning of system resources and limiting system resource utilisation of containers.

The architecture of containers is illustrated in figure 2.2. Compared to virtual
machines, the benefits of namespaces are that the virtualised applications are not
emulated, resulting in little overhead and next to native performance [21]. Conse-
quently, as no guest operating system is emulated, isolated applications have to use
the host kernel to perform system tasks, e.g., reading and writing to files. Sharing
the host kernel between virtualised applications comes with security-related draw-
backs, which will be discussed later.

2.1.3 Firecracker
Firecracker, presented by Agache et al. [3] and developed at Amazon Web Services
(AWS), is a virtual machine monitor (VMM) specialised in serverless workloads
but also applicable to container workloads. Firecracker utilises the infrastructure
provided by the Linux Kernel-based Virtual Machine (KVM) to create and manage
minimal virtual machines (MicroVMs).

The need for Firecracker stems from the choice one is required to make when de-
ciding what virtualisation technique to use. Do you use VMs which provide good
isolation but introduces CPU and memory overhead, or do you use containers with
negligible overhead but inferior isolation? In a cloud computing environment, where
multi-tenancy is common, isolation is often non-negotiable. Cloud computing ser-
vice providers are thus forced to employ VMs on their machines serving multiple
tenants, effectively decreasing the number of tenants a single machine can serve.
The overhead is especially noticeable in environments like AWS Lambda, where
thousands of serverless functions may run on a single machine.

Firecracker aims to resolve the issue by providing MicroVMs with both excellent
isolation and low overhead. A MicroVM is a stripped-down VM where unneces-
sary functionality regarding the intended workloads has been removed, e.g., video,
audio and emulated devices such as USB. Firecracker also provides rate limiting

Figure 2.2: Architectural structure of Docker containers.

7

2. Background

and an API to configure and manage MicroVMs. The virtualisation technology can
run MicroVMs with negligible CPU overhead and memory overhead as low as 3%,
and provides excellent isolation with protection against sophisticated side-channel
attacks (e.g. Spectre [32]) and fast boot times (150ms).

2.2 Docker
Docker, also called Docker Engine, is one of the most prominent container technology
platforms designed to ease the development, deployment and execution of applica-
tions using containers. The platform uses a client-server architecture consisting of
three components, the Docker daemon, Docker client, and Docker registries. The
Docker daemon runs on the host system and handles everything related to the con-
tainer life cycle, i.e. building and running containers and setting up namespaces.
The Docker client’s purpose is to interact with and issue commands to the Docker
daemon and is usually a command-line interface (CLI). The Docker registries store
Docker images for the purpose of serving them to Docker daemons if needed. Docker
Hub is the official public Docker registry. However, other both private or public reg-
istries can be used [18].

Docker creates an abstraction of the relatively low-level nature of namespaces and
provides means of configuring, building, and bundling applications and their depen-
dencies. Using the power of Linux namespaces and cgroups, it is capable of isolating
applications with great flexibility.

Additional tools have been created for Docker to decrease the complexity of setting
up containerised applications. One such tool is docker-compose, which is used
to define and run multi-container Docker applications. It provides a syntax to
configure multiple interconnected containers using a single configuration file and
has been extensively used throughout this thesis to streamline the development.

2.3 Threat Landscape and Security
The rise of container technology introduced a new threat landscape, as the host-
container domain differs from the domain of previous generation’s applications, e.g.
VMs. Sultan et al. [68] derived four generalised use-cases which cover every as-
pect of the host-container threat landscape. The use cases include; (I) protecting
a container from applications inside it; (II) inter-container protection; (III) pro-
tecting the host from containers; and (IV) protecting containers from a malicious
or semi-honest host. They found that the first three use cases can be remedied
by software-based solutions, while the last use case requires a hardware-based solu-
tion. This thesis focuses on software-based solutions, meaning only the first three
use-cases are relevant.

An attack vector in the new threat landscape is that containers share the host kernel,
meaning vulnerabilities in the kernel can be abused from the inside of the isolated
container. Before the widespread utilisation of containers, when applications ran

8

2. Background

inside their own VMs or on separate systems, kernels were not shared and could not
be exploited to compromise other, isolated applications.

2.3.1 STRIDE

To help understand the threat landscape and subsequently understand the capabil-
ities of any particular monitoring technique, the STRIDE security threat model, as
defined by Kohnfelder and Garg [33], has been employed. The model helps with
categorising different types of threats and aids the process of understanding the
characteristics a monitoring technique should have to cover a specific type of threat.
STRIDE consists of the following types:

Spoofing - When an attacker manages to identify as someone else by falsify-
ing identifying information, gaining an unintended advantage or illegitimate
access.
Tampering - When an unauthorised actor can modify data through unin-
tended or illicit means, e.g. editing the contents of a message in flight or
removing/editing important information on a system.
Repudiation - When the origin of a message or statement can successfully
deny being the origin. Ensuring Non-repudiation allows for validation of the
signature and origin, guaranteeing such denials can be proven false.
Information disclosure - When an attack achieves privacy breach, data leak
or accessing confidential data. Covering this threat type would mean no such
unauthorised access should be possible.
Denial of service - Denial of service refers to an attackers ability to, through
illicit means, manage to deny its intended users access to a system, service or
data.
Elevation of privilege - When an attacker manages to acquire additional
permissions by illicit and unintended methods [33].

This model was designed with Microsoft’s products in mind. While the classifications
are not product specific, containers and software running in containers differ from
traditional software.

2.4 Threat Protection Approaches

Threat protection can be achieved using different approaches; some reduce the at-
tack surface, others detect anomalous behaviour or vulnerable code. However, no
one approach is complete, and they all serve different purposes towards the same
unified goal of security. This section describes some existing approaches which can
be employed to defend against or mitigate threats to containerised systems and
applications.

9

2. Background

2.4.1 Static Analysis

Static analysis of software can be performed on either source code or an already
compiled executable. In the context of containers, the target of scanning would be
the container image. Regardless of the type of target, the scanner compares the
target with known vulnerabilities and can, as a result, only detect known vulnera-
bilities. Clair is a static image scanning tool for containers that match packages and
their versions with remote Common Vulnerabilities and Exposures (CVE) databases.
However, as research by Tunde-Onadele et al. [70] shows, Clair did not detect vul-
nerabilities in more than three out of the 28 containers they used in their research.

2.4.2 Behavioural Analysis

A compromised application often causes the behaviour of the application to deviate
from its normal. Monitoring the behaviour and analysing it for anomalous activity is
an effective way of detecting an ongoing attack. The behaviour of applications often
manifests itself through either resource utilisation or system calls, both of which can
be analysed for anomalous activity using either statistical or rule-based approaches.

2.4.2.1 Machine Learning-based Analysis

Machine learning (ML)-based analysis of data is an automated approach to statis-
tical analysis where an algorithm is fed data to create an internal representation
of what the algorithm learned about the data, also called a model. The produced
model can be used to classify or perform predictions on new, previously unseen data.
ML is a powerful tool as the algorithms used can learn the correlations and patterns
in data too complex or vast for a human to analyse, making it a great tool to learn
an application’s normal behaviour and detect anomalies.

Machine learning algorithms are commonly split into two categories, supervised and
unsupervised learning. Supervised learning is generally used for classification and
unsupervised learning for outlier detection and clustering [36]. Laskov et al. [36]
compare different learning algorithms for both categories and their resulting ability
to classify known as well as unknown threats correctly. They conclude that the
supervised learning methods outperform the unsupervised ones when only dealing
with known attacks. However, the performance gap diminishes when unknown at-
tacks are introduced, leaving the unsupervised methods more practical since they
do not require labelled data.

Measuring the performance of a classification algorithm on a specific set of data
is commonly performed using confusion matrices. A confusion matrix is a table
composed of the algorithm’s predictions and the true values of the data, which can
be used to derive a plethora of performance-indicating metrics, e.g. True Positive
rate or F1 score.

10

2. Background

2.4.3 Runtime Security
Enhancing the runtime security of containerised applications is performed by limit-
ing their capabilities after startup, per the principle of least privilege. Restricting an
application’s access to only the files, system calls, and other system resources needed
for its legitimate purpose is an effective way of mitigating the potential impact of a
successful attack. Reliable tools such as AppArmor, seccomp and Sysdig Falco exist
for this purpose and have proven themselves to have potential [14].

2.5 Related Work
The idea of monitoring system calls to detect anomalous behaviour dates back to
before the 2000s. Forrest et al. proposed using the system calls and their sequence
to distinguish anomalous behaviour [22]. System call anomaly-detection methods
can be divided into two subgroups; frequency-based and sequence-based. The for-
mer completely ignores incoming system calls and instead records and stores the
frequency of each distinct system call. The sequence-based approach instead keeps
track of the sequence of the system calls, storing said sequences for later use, notably
requiring more storage compared to the frequency-based counterpart.

Bag of System Calls (BoSC) is a frequency-based system call representation of sys-
tem behaviour introduced by Kang et al. in 2005 [29] and could be viewed as an
evolution of what Forrest et al. proposed almost a decade earlier [22]. Kang et
al. define the bag of system calls as an ordered list < c1, c2....cn > where the total
number of distinct system calls is denoted as n. ci is the number of occurrences of
said system call. These bags can then be used in combination with machine learning
techniques to detect anomalies of system behaviour.

Another technique making use of the system calls, however focusing the sequence
rather than frequency, is the Sequence Time-Delay Embedding (STIDE) technique
introduced by Forrest et al. [22] published in 1996. STIDE uses a database of
short sequences, size k, to define what is to be considered normal. The database is
populated by sliding a window of size k+1 over a healthy systems trace, storing the
system call sequences. STIDE was proposed almost 30 years ago and have since seen
some improvements in 1998 [27] and in 1999 by Warrender et al. [77]. Abed et al.
call STIDE “a simple and efficient technique” [1] yet call attention to the growing
rate of the database potentially being linear with the number of system calls in the
trace.

A technique similar to STIDE [22] is the Sliding Window technique proposed by Lee
and Stolfo in 1998 [37]. As the name suggests, their proposed technique also makes
use of a sliding window. However, the size of the windows and sliding step differs.
Lee and Stolfo propose a window size of 2l+1. The window slides over the sequence
of stored system calls with a sliding step of l. The stored sequences are then analysed
using RIPPER [15] labelling regions of the sequences as either abnormal or normal.
A signal is sent if the percentage of abnormal vs normal regions exceeds a certain
threshold.

11

2. Background

Hidden Markov Models (HMM), together with the sequence of system calls, has
been used extensively to create intrusion detection systems [75, 77, 26, 13, 81].
While these all use sequence-based system calls to train their HMM classifier, their
implementation differs. Warrender et al. [77], and Wang et al. [75] both make use
of probabilities, where Warrender signals anomaly if the probability of one system
call within a sequence is below a defined threshold. Wang instead looks at the
entire sequence and signals when the probability of said sequence falls below a
certain threshold. Hoang et al. [26] present a multi-layered approach combining the
HMM with the sliding window. The final outcome is the combination of the two
techniques outcomes. Cho and Park’s implementation [13] is more focused. Their
proposed system only considers system calls generated by root privilege operations,
announcing a 100% Detection Rate (DR) and an FPR between 3-22%.

Warrender et al. compared HMM, STIDE and RIPPER-based methods in [77].
While all techniques performed adequately, they concluded HMM provided the best
detection rate and low minimum false positives at the cost of high computational
demand. Areeg and Claus apply HMM in [7] to detect and identify anomalies in con-
tainerised cluster environments, monitoring resource utilisation and response times
instead of system calls, reporting 96% precision. Additionally, they use Hierarchical
Hidden Markov Models (HHMM) to localise the anomalies, successfully doing so in
97% of evaluated cases.

Alfari and Wolthusen implemented a host-based intrusion detection system for vir-
tual machines part of a multi-tenancy Infrastructure-as-a-service (IaaS) environment
using BoSCs [4]. Their implementation monitors system calls between the VM and
the host operating system, treating the VM as a single process. They combined
BoSC with the sliding window technique. However, the sliding window technique
is not used to track the sequence; instead, it is used to receive new system calls
and drop old ones. This is done to lower the amount of tracked system calls when
possible. Their implementation divides the input trace into epochs, applying a slid-
ing window to each epoch to traverse the systems calls of the said epoch. First to
add the bags of system calls of a normally behaving system to a database. This
database holds frequencies of bags of system calls to act as a reference of normal
behaviour, i.e. training the classifier. Once trained, the same method was used to
gather BoSC and compare them to the previously generated database, declaring an
epoch anomalous if the change of BoSC frequencies exceeds a set threshold. Their
evaluation reports 100% accuracy, with 100% detection rate with 0% false positive
rate (FPR), using a sliding window of size 10.

Abed et al. [2] propose a technique similar to Alfari and Wolthusen’s [4] to docker
containers instead of VMs. By employing a background service running on the
host kernel to monitor the system calls between any docker containers and the host
kernel. This is achieved using strace to trace all system calls made by the container.
This tool collects the origin process ID, arguments and return values. Collecting
system calls using strace requires no changes to the containers themselves. In [2]
all detection and evaluation were done offline. They are reporting accuracy of 100%
and FPR at 0.58% using a window size of 10. Abed et al. have since applied the

12

2. Background

described technique to monitor systems in real-time [1], reporting a True Positive
Rate (TPR) of 100% and a False Positive Rate (FPR) of 2%.

Srinivasan et al. [67] argue that only tracking the frequency of system calls results
in lost information necessary to detect some anomalous behaviour. Their technique
makes use of n-grams to store and compare the behaviour derived from system
calls. Signalling decisions are based on probabilities. They evaluate the performance
of Maximum Likelihood Estimator (MLE) and Simple Good Turing (SGT). They
conclude the MLE performance superior when only a small number of traces are
available for training, SGT otherwise.

Zou et al. [82] monitor the levels of system resource utilisation to detect anomalies in
containers by employing a technique based on isolation forests, modified to improve
performance in a containerised environment. Data collection is done by a monitoring
agent on each host that collects system resource utilisation data. The collected data
is sent and stored continuously, only keeping data from the most recent period. The
anomaly detection module uses the received data with an iForest-based abnormality
evaluation method optimised for containers. Since the resource utilisation finger-
print can vary greatly depending on the type of workload the container is assigned,
Zou et al. propose a self-learning bias algorithm to better suit containers’ varying
nature and workload by weighting the impact of different resources depending on
the fingerprint. Performance was improved further by filtering the logs of informa-
tion not pertinent for anomaly detection and increasing the monitoring frequency
when an anomaly is detected. They achieved a detection rate of 72-100% and a false
alarm rate of 2-12.2% depending on both types of anomaly and applications running
within the containers. When an anomaly is detected, the corresponding log is sent
to another module for analysis with the goal of locating the cause of the anomaly.

Ravichandiran et al. [54] monitor resource utilisation to detect anomalies with
the intent of mitigating eDoS attacks. They use historical microservice datasets
of “normal” behaviour to build autoregressive statistical models. These models
were then used to forecast expected resource behaviour, signalling an anomaly of
the difference between the generated forecast and the actual behaviour surpass a
certain threshold.

13

2. Background

14

3
Approach

In this section, the approach adopted to address the research questions is described.
First, a literature review is conducted using the snowballing search approach to ex-
plore the available state of the art monitoring techniques and build a foundation
of knowledge used to create a refined monitoring technique. After that, the design
science research methodology is followed to refine the container monitoring tech-
nique. Finally, a simulation environment is designed and implemented to evaluate
the refined technique.

3.1 Snowballing Search Approach
With the intent of keeping a reasonable scope of the review, the snowballing search
approach based on Wohlin’s guidelines [79] was used. During this process, a better
understanding of the problem space was attained in addition to the main objective
of answering the first research question by identifying suitable techniques to improve
further.

The remaining parts of this section define the review protocol and the methods used
to conduct the snowballing search approach. It is necessary to define the protocol
before conducting the review to reduce any potential biases, e.g., the selection of
individual studies being influenced by the researchers’ expectations.

3.1.1 Tools and Traceability
Two tools were used to assist the described workflow and procedure; Mendeley
Reference Manager [48] and Google Sheets. These tools provided a shared database
of references, their inclusion/exclusion status and allowed for creating a structure
to assist traceability in terms of origin and categorisation for each study.

The primary functionality provided by Mendeley, and thus its purpose, was to have
a single location for storing and accessing studies. Mendeley does provide the ability
to group studies hierarchically. However, something more sophisticated was deemed
necessary to provide traceability for the review process. Thus, a custom spreadsheet
was set up, which enabled full traceability of all studies reviewed. The spreadsheet
was extended with some functionality to sped up the process, e.g. automatic detec-

15

3. Approach

tion of already reviewed studies and statistics.

3.1.2 Search Strategy
The snowballing approach [79] was used in order to conduct the search. The ap-
proach consists of an iterative process that uses a set of studies to identify additional
studies to include in the review.

The first step of the snowballing process is to identify a tentative start set. The
tentative start set was generated by a database search, which requires a search
string to be crafted. The database chosen was Google Scholar, a choice made to
minimise potential bias favouring any single publisher. The search string was derived
from the research questions and consists of relevant keywords and combinations.
Multiple iterations of search strings were crafted and piloted in order to ensure wide
coverage and relevant results. The final search string was the following: (monitor*
OR analysis) AND security AND (attack* OR threat*) AND (anomaly OR misuse
OR intrusion) AND (application* OR service*) AND (software OR linux) AND
(container* OR docker) AND evaluat*. It returned ∼14 000 total results, which
was deemed reasonable.

Each result from the database search was either excluded or tentatively included
solely based on its title and abstract and the selection criteria defined in section
3.1.3. Results that could not be excluded based on the criteria were added to the
tentative start set until the set reached a satisfactory size.

The tentative start set was then condensed into the actual start set by applying the
selection criteria to the full studies. The authors performed this process individually,
each using different halves of the studies, and then cross-checked the other author’s
process to ensure the understanding of the criteria were aligned. In order to get a
starting set of reasonable size and good quality, some additional thought is required.
Wohlin states that a start set of good quality has the following characteristics: [79]:

• Includes studies from different communities.
• Included studies are diverse in regards to authors, years and publishers.
• Prioritises highly cited studies.

Thus, studies in the start set were identified with the goal in mind to achieve these
characteristics. The size of the starting set is arbitrary, but Wohlin suggests that if
the area being studied is broad, a larger size should be used (and vice-versa) [79].

Once the start set had been identified, the iterative process of the snowballing
approach began. Every iteration consists of backward and forward snowballing
on a set of studies. For the first iteration, the previously identified start set is
used. For subsequent iterations, the set of newly identified studies from the previous
iteration is used. Backward snowballing is the process of looking at the references
list of the study being examined. In contrast, forward snowballing is performed by
identifying all studies which cites the study being examined. All identified studies

16

3. Approach

are initially excluded if they do not meet the necessary criteria for inclusion or
tentatively included, based on the information available in the study being examined.
Once a study was tentatively included, the full study was attained and analysed in
order to, with certainty, determine if the study should be included or excluded.
The analysis consists of first reading the abstract and then the whole study until a
decision can be made.

Once an iteration was completed, the set of newly identified studies was used for
the next iteration. If a study was found that had already been categorised, it was
ignored. The snowballing process was re-iterated until no more studies were found.

3.1.3 Study Selection Criteria
The study selection criteria to be used:

• Include studies proposing techniques for monitoring the security of containers
within any application domain.

• Exclude studies not written in English.
• Exclude studies lacking an evaluation of the technique.

When a study, or variations of it, has been published multiple times, the most
comprehensive version will be used.

3.1.4 Study Selection Procedure
The researchers performed the initial evaluation of studies individually to mark
them as excluded or tentatively included. The tentatively included study was then
evaluated and discussed by both researchers before finally including or excluding said
study. The selection procedure was performed like this to speed up the snowballing
process while still ensuring unanimous application of the selection criteria. The
risk of incorrectly excluding a study during the initial (individual) evaluation is
considered low, as any doubt about the study would result in it being tentatively
included.

In order to verify the quality of the review, an inter-rater reliability test was per-
formed using Cohen’s kappa coefficient [47]. The test was conducted by asking a
third party to randomly select 10% of the studies included in the starting set and
let them perform the snowballing procedure according to the method specified in
this chapter. Due to the sheer amount of work involved, the test was limited to a
single iteration. The resulting studies and their inclusion/exclusion categorisation
was then used to calculate Cohen’s kappa coefficient.

3.1.5 Data Extraction and Synthesis
In order to get an overview of the identified techniques, which would guide the
selection of techniques to be used as a foundation for the refined technique created
in this thesis, a data extraction process was performed. In order to extract relevant

17

3. Approach

data systematically, with minimal risk of introducing bias, a data extraction form
was constructed and piloted before conducting the review. The final form includes
the following information:

• Title
• Source (e.g. the conference or journal)
• Author(s)
• Year of publication
• Hardware used for evaluation
• Software used for evaluation
• Container technology
• Source of data used for analysis (e.g. system calls, resource utilisation)
• Analysis method/algorithm(s) (e.g. n-grams, Nearest Neighbour)
• Evaluation results
• STRIDE security coverage
• Contextualised qualitative summary

During the piloting, some observations were made; (I) Some parts of the form are
qualitative and require interpretation; (II) Some studies will not include all infor-
mation due to low quality or the approach taken; (III) There are many different
ways to perform and present evaluations. These observations impose the need for
qualitative analysis that can be contextualised into a format more appropriately
suited for comparison, which led to the inclusion of a qualitative summary to the
form. To mitigate the potential source of bias introduced by a qualitative summary,
all summaries were written by one author and confirmed by the other.

The extracted data were tabulated and ordered alphabetically by the first author
name to provide an overview of all techniques found. The tabulated data were then
reviewed to identify which techniques are suitable to be used as a foundation for the
thesis. The data was extracted by both researchers together.

3.2 Refining a Monitoring Technique
To refine a monitoring technique, the design science research methodology (DSRM)
will be employed. DSRM is not used to prove a theory, but to refine it by exploring
why, when and how a solution works [20]. It is an iterative process that can be
divided into three major steps, also illustrated in figure 3.1:

1. Understanding/exploring the problem space
2. Ideation and design of solution (artefact)
3. Implementation and evaluation of the solution

The methodology used in this thesis is primarily based on the Regulative cycle
described by Wieringa [78] as part of the Design Science Research Methodology
(DSRM).

Understanding/exploring the problem space.

18

3. Approach

Figure 3.1: Iterative process of the design science research methodology.

The first step calls for a deeper understanding of the problem intended to be solved.
Wieringa [78] refers to this process as problem investigation, the emphasis of which
depends on the reason behind the investigation. Using the categories listed by
Wieringa, this thesis falls under Goal-driven investigation. The problem must be
understood to a satisfactory degree before it is wise to begin the design process.
The review detailed in 3.1 intends to serve as the problem investigation of this
thesis. Guidelines of DSRM often mention the importance of communication with
the stakeholders throughout the entire process [31, 78]. However, given the nature of
this project and the absence of involved companies, the authors and the supervisor
acts as stakeholders.

Ideation and design of solution (artefact).
This step involves designing a solution based on the problem investigation. Said
final design will act as an answer to RQ2. This process is referred to by Wieringa
as the solution design. The term solution is optimistic as there is no guarantee that
the designed artefact actually solves the identified problem but rather intends to do
so.

Before implementation, a validation of the design is performed. Usually, the step
involves stakeholders by asking whether the proposed solution design would bring
them closer to their goal if implemented correctly. Wieringa specifies three questions
that should be asked in order to validate the design [78]:

Internal validity. Does the proposed design satisfy the criteria identified in
the problem investigation?
Trade-offs. How would slightly modified designs satisfy the criteria?
External validity. Would the design satisfy the criteria, if implemented in a
slightly different context?

As this research does not involve any external stakeholders, the purpose of the
validation would be more of a sanity check in order to detect detrimental mistakes
in the design. However, a validation will not be conducted, and this thesis will
instead rely on the literature review to provide a foundation that has already been
validated through previous research.

19

3. Approach

Implementation and evaluation of solution.
The final steps involve creating a simulation environment and the implementation
and evaluation of the designed artefact. The simulation environment is designed to
generate data that are necessary for the evaluation. The source data is the trace
of system calls logged during the execution of normal and anomalous behaviour
of containers running software versions with known vulnerabilities. The Common
Vulnerabilities and Exposures (CVE) databases provide extensive lists of identified
vulnerabilities to use for this purpose. Evaluating the detection capabilities of real-
world vulnerabilities adds significance to the results. In order to properly evaluate
the improvements, a baseline using the same data must first be generated, which
is achieved by implementing an existing technique including source data, feature
extraction and the detection algorithm. The metrics of interest are False Positive
Rate (FPR) and if the attack is detected or not. The next step is to implement
the refined technique, possibly by using existing techniques as a foundation and
evaluating the technique using the same data set and metrics.

Due to the iterative nature of the cyclic process described, this evaluation acts as a
foundation for the problem investigation of the next cycle.

20

4
Results of Literature Review

In this chapter, the results of the conducted literature review using the snowballing
approach are presented. Due to the sheer amount of data, it has been split into
a series of tables representing different aspects of the data. The chapter concludes
with an analysis of the extracted data and the resulting conclusions made regarding
designing a refined monitoring technique.

4.1 Snowballing
The information regarding the snowballing procedure is presented in table 4.1. In
total, four snowballing iterations were performed. The initial database search con-
ducted to establish a start set returned ∼14 000 total results, which meant that some
stopping criteria had to be used given the infeasibility of examining every result.
The stopping criteria used was when a page of returned results yields no tentatively
included studies, where one page consisted of ten results. In total, ninety studies
were examined during the creation of the start set, meaning that the ninth page of
results exclusively yielded excluded studies.

Iteration Examined studies Included studies Efficiency
Start set 90 9 10%
Iteration 1 465 8 1.7%
Iteration 2 342 2 0.6%
Iteration 3 60 1 1.7%
Iteration 4 15 0 0%
Total 972 20 2.1%

Table 4.1: Snowballing procedure information.

4.1.1 Extracted Data
The extracted and synthesised data from the included studies have been split into
five separate tables. Table 4.2 presents the meta-data of the included studies, table
4.3 miscellaneous information, table 4.4 information about the proposed techniques,
table 4.5 the evaluation results and table 4.6 the synthesised data, i.e. STRIDE

21

4. Results of Literature Review

coverage and the contextualised summary. The included studies have been assigned
an identifier which is consistent across all tables.

Table 4.2: Extracted meta-data of included studies.

ID Ref Author(s) Year Source
T1 [2] Abed et al. 2015 2015 IEEE Globecom Workshops (GC Wk-

shps)
T2 [1] Abed et al. 2016 International Workshop on Security and

Trust Management
T3 [5] Aljebreen 2018 Florida Institute of Technology
T4 [17] Cui 2020 Auburn University
T5 [19] Du et al. 2018 International Conference on Algorithms and

Architectures for Parallel Processing
T6 [23] Fourati et al. 2019 2019 20th International Conference on Paral-

lel and Distributed Computing, Applications
and Technologies (PDCAT)

T7 [24] Gantikow et al. 2020 Communications in Computer and Informa-
tion Science

T8 [30] Karn et al. 2021 IEEE Transactions on Parallel and Dis-
tributed Systems

T9 [39] Li et al. 2019 ICCDA 2019: Proceedings of the 2019 3rd
International Conference on Compute and
Data Analysis

T10 [41] Lin et al. 2020 ACSAC ’20: Annual Computer Security Ap-
plications Conference

T11 [46] Lu et al. 2019 Proceedings of the International Conference
on Parallel and Distributed Systems - IC-
PADS

T12 [54] Ravichandiran et
al.

2018 2018 4th IEEE Conference on Network Soft-
warization and Workshops, NetSoft 2018

T13 [7] Samir and Paul 2020 Free University of Bozen-Bolzano
T14 [67] Srinivasan et al. 2018 Proceedings - 2016 International Conference

on Identification, Information and Knowl-
edge in the Internet of Things, IIKI 2016

T15 [69] Sun et al. 2020 Cloud Computing – CLOUD 2020
T16 [70] Tunde-Onadele et

al.
2019 2019 IEEE International Conference on

Cloud Engineering
T17 [74] Wang et al. 2018 Future Generation Computer Systems
T18 [76] Wang et al. 2020 IEEE Transactions on Industrial Informatics
T19 [80] Ye et al. 2018 Cloud Computing – CLOUD 2018
T20 [82] Zou et al. 2019 IEEE Transactions on Cloud Computing

22

4. Results of Literature Review

Table 4.3: Extracted miscellaneous data of included studies.

ID Hardware Software Container
technology

T1 N/A Ubuntu Server 14.04
MySQL 5.6

Docker

T2 N/A Ubuntu Server 14.04
MySQL 5.6

Docker

T3 N/A N/A Docker
T4 Intel Xeon E5-2650

64GB memory
Ubuntu 16.04 Docker

T5 4 vCPU
8GB memory

cAdvisor
Heapster
InfluxDB
Grafana

Kubernetes

T6 4 vCPU
8GB memory

Sysdig
Elasticsearch
Kafka

Kubernetes

T7 N/A Debian GNU/Linux 9.5 (stretch)
Docker 18.06.1-ce
Sysdig 0.24.1
Falco 0.13.0

Docker

T8 4 vCPU
16GB memory

Ubuntu 16.04 Kubernetes

T9 N/A N/A N/A
T10 2 vCPU

8GB memory
Ubuntu 16.04 Docker

T11 Host:
8 vCPU
16GB memory

Containers:
1 vCPU
2GB memory

Ubuntu 16.04
Docker 18.03-ce

N/A

T12 2 vCPU
5GB memory
20GB disk

Ubuntu 16.04
Nginx

Docker

T13 3 vCPU
2GB memory

Ubuntu 18.04.3 Docker

T14 N/A Ubuntu 18.04.3 Docker
T15 Intel Xeon E5-2630 Ubuntu 18.04

Docker 1.40
Docker

23

4. Results of Literature Review

ID Hardware Software Container
technology

T16 2GB memory
40GB disk

Ubuntu 16.04
Docker 17.05.0
Sysdig 0.19.1
Clair 2.0.0

Docker

T17 Intel i5-3470
16GB memory

MySQL
Zabbix

Docker

T18 Intel Xeon E5-2609
32GB memory

CentOS 7.2.1511
Docker 18.03.0-ce

Docker

T19 N/A N/A Docker
T20 Intel Xeon E-5620

32GB memory
Ubuntu 16.04
Docker 18.03.1-ce
Logstash 6.2.4
InfluxDB 0.13.0
MySQL 5.6
Memcached 1.5.7
CloudSuite 3.0

Docker

Table 4.4: Extracted data describing techniques of included studies.

ID Data source Analysis method/algorithm(s)
T1 System calls Frequency-based BoSC with sliding window.

Detects BoSC, which does not exist in the nor-
mal database (mismatch) and flags anomaly if
the number of mismatches exceeds a threshold
during an epoch.

T2 System calls Frequency-based BoSC with sliding window.
Detects BoSC, which does not exist in the nor-
mal database (mismatch) and flags anomaly if
the number of mismatches exceeds a threshold
during an epoch.

T3 System calls Frequency-based BoSC with sliding window.
Models tested: IQR, k-NN, ANN, C4.5 Deci-
sion Tree, Random Forest, SVM

T4 System calls Sliding window + LSTM autoencoder
T5 System resource metrics SVM, Random Forest, Naive Bayes, Nearest

Neighbour.
DTW algorithm to locate anomalous con-
tainer.

T6 CPU usage
Memory usage

Modified Z-score to detect outlier pods.
Decision tree to identify root cause of
anomaly.

T7 System calls Sysdig
Falco (rule-based)

24

4. Results of Literature Review

ID Data source Analysis method/algorithm(s)
T8 System calls

CPU usage
Non-overlapping n-grams of system call se-
quences.
Models tested: Decision Tree, XgBoost en-
semble, Feed-forward vanilla ANN, Feedback
RNN

T9 System resource metrics Random Forest
T10 System calls Autoencoder reconstruction error
T11 Component response times Graph similarity
T12 CPU usage

Network usage
Autoregressive models predicting normal be-
haviour to detect abnormal behaviour.

T13 Response latency
Resource utilization

Hierarchical hidden Markov model

T14 System calls Calculates the probability of a n-gram of sys-
tem calls occurring.
Methods tested: Maximum Likelihood Esti-
mator, Simple Good Turing

T15 Resource utilization Prophet (forecasting procedure) used to pre-
dict normal behaviour to detect abnormal be-
haviour.

T16 Resource utilization
System calls
Static analysis of containers

System call frequency vectors and system call
time vectors. Models tested: k-NN, PCA +
k-NN, K-means, Self-organizing map, Clair
(static analysis tool)

T17 Resource utilization Principal Component Analysis (PCA)
Eigenvectors

T18 System calls
perf (Linux performance data)

EnsembleVAE

T19 Feedback data
Status information
Performance data

Quantile regression

T20 Resource utilization Optimized Isolation Forest

Table 4.5: Extracted evaluations of included studies.

ID Evaluation
T1 TPR: 100%, FPR: 0.58%

Higher threshold reduces FPR to 0%
T2 TPR: 100%, FPR: 2%

25

4. Results of Literature Review

ID Evaluation
T3 No dimensional reduction (Dimensional reduction applied):

IQR: Acc: 92%, TPR: 90%, FPR: 6%
k-NN: Acc: 87%, TPR: 82%, FPR: 10%
ANNs: Acc: 97% (97%), TPR: 97% (97%), FPR: 1.3% (1.3%), Process time:
13.28s (13.28)
C4.5 Decision Tree: Acc: 99% (98%), TPR: 99% (98%), FPR: 1.4% (2.8%),
Process time: 1.87s (0.14s)
Random Forests: Acc: 100% (99%), TPR: 100% (100%), FPR: 0% (2%), Process
time: 3.52s (0.62s)
SVM: Acc: 100% (98%), TPR: 100% (98%), FPR: 0% (2.4%), Process time:
1.45s (0.47s)

T4 Multiple combinations of models and parameters are tested against multiple
attacks. Accuracy between 76% and 95% depending on the type of attack

T5 Tested on three datasets. F1 Score ranges:
SVM: [0.77, 0.93]
RF: [0.91, 0.99]
NB: [0.78, 0.97]
kNN: [0.93, 0.97]

T6 Better response times than standard Kubernetes deployment and manages to
identify the attack

T7 Specifies a list of scenarios that they can detect using Sysdig and Falco. Only
evaluates the overhead created when using or not using a filter

T8 Decision Tree: Accuracy: 97,1%, 2.7s training, 0.02s prediction time, 97% CPU,
243MB memory
XgBoost: Accuracy: 89.4%, 18.7s training, 0.25s prediction time, 165% CPU,
367MB memory
FFw Vanilla ANN: Accuracy: 79.7%, 35.1s training, 2.0s prediction time, 335%
CPU, 182MB memory
RNN + LTSM Autoencoder: Accuracy: 78.9%, 1340s training, 7.63s prediction
time, 385% CPU, 242MB memory

T9 Original Dataset: Accuracy 0.846, Sensitivity: 0.811, Precision: 0.879, MCC:
0.701
Labeled Dataset: Accuracy: 0.861, Sensitivity: 0.836, Precision: 0.884, MCC:
0.729

T10 Application Classification: TPR: 91%, FPR: 0.29% Anomaly Classification:
TPR: 74%, FPR: 0.24%

T11 Precision: 0.9, Recall: 0.8
T12 Manages to detect Anomalies based on CPU Util and Packets/s, comparing

normal data vs current
T13 Precision: 96% for moderate data set. Root cause accuracy: 97%
T14 MLE: Accuracy: 96-99.4%, Sensitivity: 96-100%, Specificity: 86.6-100%

SGT: Accuracy: 89-98.7%, Sensitivity: 78-99.8%, Specificity: 66-92.7%
T15 TPR: 100%, FPR: 0%

26

4. Results of Literature Review

ID Evaluation
T16 Clair: 10.71% TPR

k-NN: 32% TPR, 9.9% FPR, 0.57s detection time
PCA + k-NN: 36% TPR 9.9% FPR, 1.00s detection time
K-means: 68% TPR, 7.7% FPR, 0.36s detection time
SOM time: 75% TPR, 1.9% FPR, 25.77s detection time
SOM freq: 79% TPR, 1.7% FPR, 28.73s detection time

T17 Reduces detection time (alarm delay) by 39.1%. In the case of memory leak:
68.7%

T18 ROC=(90%, 99%)
T19 CPU, Memory and Disk Attacks:

CNN: 60% Precision, 100% Recall, 91.3% Acc,
RNN: 60% Precision, 100% Recall, 91.3% Acc,
BRNN: 75% Precision, 100% Recall, 95.7% Acc,
DRNN: 75% Precision, 100% Recall, 95.7% Acc
DDoS Attack:
Incoming Traffic: 100% Precision, 100% Recall, 100% Acc,
Outgoing Traffic: 90% Precision, 100% Recall, 98.94% Acc

T20 Memcached:
Endless loop CPU: 100% DetectRate, 2% FPR
Memory Leak: 98% DR, 2% FPR
Disk I/O Fault: 76% DR, 5% FPR
Network Congestion: 100% DR, 2% FPR

Web Search:
Endless loop CPU: 100% DetectRate, 5.7% FPR
Memory Leak: 100% DR, 7.4% FPR
Disk I/O Fault: 72% DR, 12.2% FPR
Network Congestion: 84% DR, 6.7% FPR

Table 4.6: STRIDE coverage and synthesised summary of included studies.

ID S
T
R
I
D
E

Summary

T1 T
I
D
E

Offline testing for detection of anomalies (not real-time). No performance
evaluation.

27

4. Results of Literature Review

ID S
T
R
I
D
E

Summary

T2 T
I
D
E

Targets a MySQL container and creates a bag of system call frequencies
using a sliding window. Training is done by adding BoSC to a normal-
behaviour database, and detection is done by comparing BoSC to that
database, and if it does not exist, a mismatch has occurred. If the number
of mismatches during a single epoch exceeds a certain threshold, an anomaly
has been detected. Presents a detailed complexity analysis of the algorithm,
which shows a relatively low complexity. However, it does not provide a
concrete performance evaluation.

T3 S
T
I
D
E

Evaluates multiple classifier algorithms and the process of dimensional re-
duction using PCA. Dimensional reduction overall resulted in reduced pro-
cessing time but decreased accuracy. C4.5 Decision Tree provides the best
accuracy and lowest process time.

T4 S
T
E

Provides an extensive evaluation of an LSTM neural network with differ-
ent configuration combinations applied to 7 types of attacks. Specifically
targets a MySQL container with various modifications made to be able
to execute the attacks. The model achieves ~90% accuracy overall. No
performance evaluation is provided.

T5 D Specifically created for Kubernetes. Trains a classification model using mul-
tiple algorithms and are compared using three separate datasets. Data is
collected and stored using cAdvisor, Heapster and InfluxDB. Due to Heap-
ster being created explicitly for Kubernetes, this technique is not relevant
in our context. However, parts of the proposed technique might still be of
interest.

T6 D Proposes a solution that analyses the cause of increased resource utilisa-
tion, which causes an up-scaling of available resources. The solution aims
to reduce infrastructure costs by diagnosing anomalous behaviour and de-
cide what action is appropriate. The anomaly detection algorithm is a
relatively simple outlier detection based on a modified Z-score and CPU
usage. Anomaly identification is performed after an outlier has been de-
tected, using decision trees. The technique is heavily tailored for clusters,
which means that it is not relevant in our context.

T7 T
I
E

Shows that Sysdig and Falco can detect multiple misuse and attack sce-
narios using a rule-based approach. Performance evaluation shows that
applying filters to what system calls to capture leads to significantly re-
duced overhead and disk usage.

T8 T Technique has the potential to be applied to more generic cases as well.
Decision Tree performs best of the tested algorithms in all regards.

28

4. Results of Literature Review

ID S
T
R
I
D
E

Summary

T9 D Provides a data preprocessing, labelling and anomaly detection technique.
The preprocessing technique is to remove redundant data to reduce data di-
mensions. The data labelling technique identifies what resource deficiency is
the cause of a container anomaly. The detection model is based on random
forests, with ensemble learning using the K-means and kNN algorithms.
The RF model is evaluated and compared to four other algorithms, where
it performs the best (~85% accuracy). Evaluated in a cluster, but the tech-
nique applies to other cases. No mention of how data is collected and no
performance evaluation provided.

T10 T
I
D
E

Not a detection algorithm, but a framework that uses the Random Forest
algorithm. The framework tries to overcome the challenge of lacking train-
ing data for short-lived containers. It enables real-time intrusion detection
and is evaluated on a set of varying CVEs. Feature extraction performed
by creating frequency vectors. Able to distinguish between different appli-
cations using application classification, meaning that input is first classified
by which application it is from and then classified as an anomaly or not.
This increases accuracy in a multi-tenant environment. CDL performs well
at application classification but not as good at anomaly classification.

T11 D Uses the component response time of every component in a multi-layered
architecture to detect and localise anomalies. Able to identify CPU, mem-
ory and network anomalies. In order to monitor response times, every
container needs to run an agent which collects it.

T12 D Aims to detect and prevent economic denial of sustainability (eDoS) attacks
by detecting malicious workloads and preventing automatic upscaling of
microservices.

T13 D Puts focus on the recovery aspect, which is not relevant in our context.
Uses HHMM in order to detect and localise anomalies based on resource
utilisation. Shows promising results (94% accuracy) and performs better
than the Dynamic Bayesian Network and Hierarchical Temporal Memory
detection techniques. It does not provide a performance evaluation.

T14 T
D
E

Uses a probabilistic technique on n-grams of system calls to determine the
likelihood of a particular n-gram occurring. If the likelihood is below a
threshold, an n-gram is flagged. If enough n-grams are flagged, the activ-
ity is considered malicious. The approach is evaluated on UNM datasets,
using two different methods (MLE, SGT). MLE performs best when there
are little training data, SGT otherwise. Average accuracy is ~90%. The
performance evaluation shows that the CPU usage averages ~100% (1 core),
which is relatively high.

29

4. Results of Literature Review

ID S
T
R
I
D
E

Summary

T15 D Provides multi-dimensional resource monitoring and log collection of clus-
ters. The system is not especially security-oriented but focuses on data
collection, workload prediction and rule-based alerts. Simple rules trigger
alerts, e.g. "CPU utilisation is above 70% 100 times in 30 minutes". It
should be regarded as more of a platform than a monitoring technique. It
is not relevant in our context.

T16 T
I
D
E

Tests a multitude of known vulnerabilities (CVEs) against multiple detec-
tion algorithms. Clair (static analysis tool) performs poorly compared to
the other dynamic methods. The Self-Organising Map (SOM) yields the
best TPR/FPR results but has a long detection time (~27s). The K-means
algorithm provides good TPR/FPR results with a much better detection
time (~0.36s). No performance evaluation of algorithms.

T17 D Primary focus is on reducing the alarm delay, not detection accuracy. De-
scribes a way of reducing the metrics dimension by identifying key metrics.

T18 I Specifically tailored to detect Spectre and Meltdown attacks. Uses the perf
command for low-level monitoring of the Linux system, which may not be
relevant in our context. A non-intrusive method with a small performance
overhead, meaning that the anomaly detection algorithm itself might be
interesting.

T19 D Proposes a fault injection framework to attack a system, deplete its re-
sources, and propose several fault detection models based on quantile re-
gression. Fault behaviour and interference phenomenons are observed to
detect faults. The models are tested on four kinds of AI applications. The
evaluation shows similar results for all applications with an average accu-
racy of ~93%. It does not provide a performance evaluation.

T20 D Optimized iForest performs significantly better than iForest and noticeably
better than LOF regarding TPR and FPR. The optimal number of iTrees
is 100, yielding a computation time of ~40 ms. Rebuilds a new iForest
around every 40 seconds, depending on the current (dynamic) monitoring
period, meaning detection time is ~40 seconds. Thus, the optimised iForest
is relatively performant.

4.1.2 Citation Matrix

Table 4.7 depicts what studies include references to other studies. In the matrix, an
"X" denotes the row referencing the column. The "-" signifies a study not able to
cite another study due to the publication dates.

30

4. Results of Literature Review

Tx 1 2 12 19 17 3 5 14 9 16 20 11 6 13 7 4 15 8 18 10
1 - - - - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - - - -
12 - - - - - - - - - - - - - - - - -
19 - - - - - - - - - - - - - - - - -
17 - - - - - - - - - - - - - - - - -
3 X - - - - - - - - - - - - - -
5 - - - - - - - - - - - - -
14 X - - - - - - - - - - - -
9 X - - - - - - - - - - -
16 - - - - - - - - - -
20 - - - - - - - - -
11 X X X - - - - - - - -
6 X X - - - - - - - -
13 X - - - - - -
7 X - - - - -
4 X X - - - -
15 X - - -
8 X X - -
18 X - -
10 X X

Table 4.7: Citation matrix, “X“ denotes the row referencing the column, “-“ sig-
nifies a similar or later publication date, making a reference unlikely.

4.2 Inter-rater Reliability Test

The inter-rater reliability test was performed using a starting set consisting of a sin-
gle study [2] randomly selected from the actual starting set. The test was conducted
two months after the literature review, leading to studies published after the review
was conducted to be investigated during the test. Thus, to avoid inconsistencies,
two recently published studies were removed from the test. The agreements and
disagreements of inclusion and exclusion between the review and the test are pre-
sented in table 4.8. Calculating Cohen’s kappa using these values yields κ = 0.843,
meaning almost perfect agreement according to the guidelines presented by Landis
and Koch [34].

Review
Test Include Exclude

Include 3 0
Exclude 1 33

Table 4.8: Agreement and disagreement for inclusion and exclusion between the
review and the test.

31

4. Results of Literature Review

4.3 Literature Review Analysis

Early on in the process of extracting data from the included studies, three properties
that compose most anomaly detection technique emerged. These are; (I) source
of data analysed; (II) feature extraction algorithm; and (III) anomaly detection
algorithm. It became apparent that the refined technique to be created in this thesis
had to be composed in the same manner. However, limiting the refined technique to
a single composition was deemed too restrictive as it would cause the performance of
the refined technique to depend predominantly on the selected composition. Thus,
given the lacking experience of the authors in this field, a decision was made to
implement and evaluate multiple, uniquely composed techniques.

To reduce the number of unique techniques to be implemented and evaluated, the
initial scope of potential compositions was narrowed down. It was accomplished
by analysing the extracted data and understanding how existing techniques perform
and are composed. The analysis led to the following conclusions regarding technique
composition:

(I) System calls are the most common source of data analysed. It performs
well and is, compared to resource utilisation, considerably superior from a
STRIDE coverage perspective.
(II) Feature extraction can be performed in a plethora of ways, and the selec-
tion mainly depends on the choice of (I) and (III).
(III) Machine learning algorithms are prevalent, perform well and are com-
monly paired with system calls as the type of data.

Based on these conclusions, the following decisions were made. Firstly, system calls
was going to be the source of data that will be collected and analysed. A broader
range of attacks, in regards to STRIDE, can be detected using system calls when
compared to resource utilisation. The reason being that attempted attacks often
cause changes to the behaviour of an application, which generally manifests itself
through variations in the frequency of system calls invoked by the application [70].
Resource utilisation, on the other hand, is greatly influenced by the current workload
and tends to be too noisy to be used for detecting attacks more sophisticated than
a denial-of-service [70].

Secondly, it was decided that a machine learning algorithm would be imple-
mented to identify anomalies in the collected system calls. The main reasoning
being the prevalence of machine learning algorithms paired with system calls, which
provides confidence in the composition, and promising results. However, deciding
what algorithm to implement was not straightforward, as the novelty of the refined
technique was of importance. The desire to implement and evaluate a novel tech-
nique, which has not yet been adequately evaluated in the literature, led to the
Optimised Isolation Forest (T20) as presented by Zou et al. [82]. In their study,
the authors present a modified Isolation Forest algorithm that has been optimised
to detect anomalies in resource utilisation data. However, as the type of data cho-
sen in this thesis is system calls, the original, non-optimised variant of the isolation

32

4. Results of Literature Review

forest [44] would have to be implemented instead. Further research revealed only
a single existing study evaluating the performance of isolation forest with n-gram
feature extraction using system calls [45]. Thus, the decision was made to use the
Isolation Forest algorithm for anomaly detection.

Lastly, it was decided to implement and evaluate multiple feature extraction algo-
rithms. The decision was made based on the two previous choices. Given that the
data type is system calls and that the anomaly detection algorithm was a machine-
learning one, all possible candidates found in the extracted data were chosen. They
were: n-gram, frequency vector and sliding window.

33

4. Results of Literature Review

34

5
Implementation

This section presents the implemented container anomaly monitoring technique, in-
cluding the different variations of the technique that were developed and evaluated
during the iterative process of design science. First, the raw data source is explained
and motivated, then the feature extraction algorithms that were evaluated are pre-
sented. Next, the anomaly detection model and the algorithm used to construct
the model are presented. Lastly, the custom system call monitoring tool Heimdall
and the anomaly detector evaluation framework Hlin developed to facilitate the it-
erative development process are presented. The implementation proposed in this
chapter is developed for offline pre-processing and anomaly detection. Theoreti-
cally, the refined technique is capable of online anomaly detection, although it is not
implemented nor evaluated as such in this thesis.

5.1 Data Source
Detecting anomalous behaviour of applications requires behavioural data to be col-
lected. The data source chosen to train the model and identify anomalies is system
call traces. System calls are used by processes running on a host to request ser-
vices from the host OS kernel, e.g. reading/writing files or creating new processes.
System calls acts as an abstraction layer that allows the kernel to provide con-
trolled access to sensitive services without relying on the calling process behaving
correctly. Because the OS kernel provides system calls, they can be traced without
any modifications made to the monitored process itself, making it a non-intrusive,
general-purpose monitoring method.

By analysing the system calls a process is invoking, patterns of normal behaviour
emerges and can be collected to create a normal profile. The profile can then be
used to analyse the current behaviour of a process to detect anomalous activity
and potential attacks [22]. Forrest et al. [22] compare the approach to an immune
system, capable of learning the definition of self and, by extension, what is not.
Their study provides a simple method for defining self by using a short-sequence
sliding window of a process’ system calls and a method of comparing sequences of
system calls to the definition of self to detect anomalous behaviour.

In order to trace and collect the system calls of a container, an existing tool is

35

5. Implementation

utilised. Sysdig [43] is a tool with native support for containers that provide deep
system visibility by intercepting system calls and other OS events. The tool can be
attached to a specific container and log the system calls invoked from the container,
including timestamps, system call names, passed arguments and return values. An
example of what Sysdig outputs is presented in figure 5.1. A custom system call
monitoring tool, described in section 5.5.1, was developed as an extension to Sysdig,
allowing the outputted system calls to be labelled. Having labelled data provides
benefits over non-labelled data by enabling the use of classification-based machine
learning algorithms, also called supervised learning, and the ability to produce confu-
sion matrices in order to evaluate the performance of an anomaly detection model.
Non-labelled data would restrict the machine learning solutions to unsupervised
learning.

5.1.1 Alternative Sources
The behaviour of an application can manifest itself in different ways, providing op-
tions for potential attributes to monitor for anomalies. Different attributes provide
different benefits and drawbacks regarding what types of anomalies can be detected
and the level of intrusiveness required. Generally, the applicability of a monitor-
ing approach increases the less intrusive it is, as more invasive approaches tend to
become application-specific. For example, monitoring the internal state of an appli-
cation, e.g. the number of failed login attempts or user activity, allows for detection
of sophisticated attacks but requires unique modifications to the application itself,
hence the increased intrusiveness and lower applicability.

System resource utilisation monitoring of a container, e.g. CPU utilisation or mem-
ory usage, is a non-intrusive approach that can detect anomalous application be-
haviour manifesting itself through anomalous resource utilisation, such as memory
leaks or endless loops. The approach is excellent for detecting denial-of-service (DoS)
attacks. However, it is limited to attacks that manifest themselves through resource
utilisation and is unable to detect more sophisticated attacks.

Another approach is to let the applications themselves report their statuses, such
as the time it takes to serve a request or the rate of specific requests. The ap-
proach can detect many types of attacks, as it can be tailored towards the specific
application. However, this also makes it immensely intrusive as it requires changes
to the monitored application’s source code, making it a per-application monitoring

Figure 5.1: Example of Sysdig output when attached to a container and logging
enter events.

36

5. Implementation

solution.

5.2 Data Representation
The data used to construct a machine learning algorithm needs to be pre-processed
and encoded before being analysed. The encoding is often a numeric vector, com-
monly referred to as the feature vector. As the source data consists of sequences
of system calls, which are categorical, encoding schemes capable of encoding cate-
gorical data into feature vectors are needed. Two types of encoding schemes have
been employed in this implementation; Bag of System Calls and One-hot encoding.

5.2.1 Bag of System Calls
Bag of System Calls (BoSC) is a frequency-based feature vector first introduced by
Kang et al. [29]. BoSC is a representation that removes the ordering information in
the data and retains only the frequency information. The representation has shown
promising results when used for anomaly detection at the process level [29].

Given an input sequence of system calls of length t:

< s1, s2, ..., st >

a Bag of System Calls is defined as:

< c1, c2, ..., cn >

where n is the number of unique calls and ci the number of occurrences of system
call si in the input sequence. The size of a bag, s, is the number of inputs it was
constructed from and is equal to the length of the input sequence, s = t. It is
calculated as:

s =
n∑

i=1
ci

Given the example output provided in figure 5.1, the following input sequence can
be extracted:

< getpid, sendto, recvfrom, recvfrom, getpid, sendto, recvfrom, recvfrom, getpid, sendto >

The input sequence has length t = 10 and n = 3 unique calls. Constructing a BoSC
with t = s = 10 from the sequence results in the following bag:

< c1, c2, c3 > = < cgetpid, csendto, crecvfrom > = < 3, 3, 4 >

BoSC can represent the same data in many different ways by changing how the
source data is grouped into input sequences. For example, using the same input
sequence described above, one could construct multiple BoSC by splitting the input
sequence into sub-sequences of length s, effectively changing the bag size. Table
5.1 shows the resulting BoSC for different bag size values using the example input
sequence.

37

5. Implementation

s Bags of System Calls
2 < 1, 1, 0 >,< 0, 0, 2 >,< 1, 1, 0 >,< 0, 0, 2 >,< 1, 1, 0 >
5 < 2, 1, 2 >,< 1, 2, 2 >
10 < 3, 3, 4 >

Table 5.1: Constructing BoSCs using s = {2, 5, 10} from the example input se-
quence.

5.2.2 One-hot Encoding
One-hot encoding is a way of encoding categorical data into feature vectors while
retaining ordering information. In contrast to label encoding, which assigns each
categorical value with an integer, one-hot encoding uses boolean values to represent
categories. One-hot encoding thus brings an advantage over label encoding as the
latter introduces an implicit ordering of the categorical values. For example, a label
encoder could assign categories A, B and C the values 1, 2 and 4, respectively.
Due to the inherent ordering of these numerical values, an arbitrary relationship
between the categories is introduced that the machine learning algorithm will try
to understand. The algorithm could interpret this encoding as if categories A and
B are more similar compared to category C, even though the categories have no
relationship.

One-hot encoding represents a single categorical value using multiple boolean values.
The number of boolean values needed to represent a single categorical value is equal
to the number of unique system calls. Only one of these boolean values must be
true, indicating the categorical value of that column in the feature vector. Given an
input of three n-grams of system calls to encode:

< getpid, sendto, recvfrom >,< recvfrom, getpid, sendto >,< sendto, recvfrom, getpid >

The one-hot encoder retrieves all possible values for the three columns and represents
them using boolean values (0/1). In this case, getpid is represented by the first
boolean value, sendto by the second one and recvfrom by the third one. The resulting
one-hot encoding is the following matrix:1 0 0 0 1 0 0 0 1

0 0 1 1 0 0 0 1 0
0 1 0 0 0 1 1 0 0

5.3 Feature Extraction
Feature extraction is a vital part of machine learning. It is the process of trans-
forming the data into a representation better suited for training a machine learning
algorithm. Commonly, feature extraction involves dimensional reduction and encod-
ing the data as a feature vector. Dimensional reduction is the process of removing
redundant or irrelevant information from the source data and often results in lower

38

5. Implementation

computational complexity, due to fewer features, and increased accuracy, due to
increased relevancy of features. During the iterative design science process, two en-
coding types (described in section 5.2) and three feature extraction algorithms were
implemented to be evaluated and compared:

• Frequency vector
• Sliding window
• n-gram

All implemented feature extraction algorithms have used the same approach to label
the feature vectors that they output. If a feature vector has been created from
a sequence of system calls where at least one of the system calls is labelled as
anomalous, the entire feature vector is labelled as anomalous.

5.3.1 Frequency Vector
The frequency vector feature extraction algorithm is based on frequency vectors as
described by Tunde-Onadele et al. [70]. Frequency vectors are BoSC where the input
sequence has been split into sub-sequences of equal time intervals. By grouping the
input based on time, the data representation partly encodes the current load of the
monitored application, making it the only feature extraction algorithm included in
this research capable of doing so.

Constructing frequency vectors requires that the input sequence include timestamps
for each input. Using these timestamps, time frames can be constructed by which
the inputs are grouped. A time frame is defined as an interval in milliseconds:

[T, T + ∆T)

where ∆T = 100ms, as proposed by Tunde-Onadele et al. [70]. Given an input
sequence of length n, where each input is a pair of a system call and a millisecond
timestamp:

< i1, i2, ..., in >

ix =< sx, tx >

which occurred over a time period equal to or greater than ∆T (tn − t1 ≥ ∆T),
multiple time frames can be constructed:

< [T1, T2), [T2, T3), ..., [Tm−1, Tm) >

Ti − Ti−1 = ∆T

where T1 = t1 and tn ⊂ [Tm−1, Tm).

Using the example input sequence defined previously in section 5.2.1 with t1 =
1620377398948ms and subsequent inputs occurring 30 milliseconds apart, the fol-
lowing input sequence is created:

<< getpid, 1620377398948 >, < sendto, 1620377398978 >, < recvfrom, 1620377399008 >, ... >

39

5. Implementation

Using ∆T = 100ms, the following time frames would be constructed:

T1 = 1620377398948 T2 = 1620377399048

T3 = 1620377399148 T4 = 1620377399248

The results of grouping the example input using these time frames and creating
BoSC from the groups are presented in table 5.2. It shows how the bag sizes can
differ between individual BoSC, which is how the current load of the monitored
application is encoded.

Time frame
System call getpid sendto recvfrom BoSC

[T1, T2) 1 1 2 < 1, 1, 2 >
[T2, T3) 1 1 1 < 1, 1, 1 >
[T3, T4) 1 1 1 < 1, 1, 1 >

Table 5.2: Creating BoSC from frequency vectors using the example input sequence
with ∆T = 100ms.

5.3.2 Sliding Window
The sliding window method of feature extraction groups the source data by sliding
a window over it, extracting an input sequence every time a step is taken. The
extracted input sequences are then used to create BoSC. A visualisation of the
algorithm is presented in figure 5.2.

Figure 5.2: Visualization of the sliding window algorithm using a trace of t = 11
system calls, window size W = 5 and step size L = 2.

The sliding window algorithm takes two parameters; the window size, W , and step-
ping size, L. Given an input sequence of system calls with length t:

< s1, s2, ..., st >

A sliding window with window size W and stepping size L would extract the fol-
lowing input sequence at step k:

[sk∗L+1, sk∗L+W] k ∈ N ∩ [0, dt−W
L
e]

40

5. Implementation

The extracted input sequences are of length W , which means that all the BoSC
produced are of size W as well. For cases where the upper bound value of k is not
an integer, it is rounded up to the nearest integer. In other words, if the original
input sequence results in the last bag having a size less than W , it is still included.

As an example, for t = 11, W = 5 and L = 2, the following input sequences would
be extracted, as illustrated in figure 5.2:

< [s1, s5], [s3, s7], [s5, s9], [s7, s11] >

As the implementation is based on offline data analysis, a scenario where there is not
enough system calls in the sequence to produce a whole number of bags of the same
size might occur. In this scenario, the algorithm outputs smaller BoSC instead
of ignoring the last system calls in the input sequence. Using the example input
sequence defined in section 5.2.1 (t = 10), the algorithm with W = 5 and L = 2
would produce the BoSC listed in table 5.3. The table illustrates how the last bag
produced by the algorithm is smaller than all other bags, which can be confirmed
by calculating that the upper bound (without rounding upwards) is not an integer:

t−W
L

= 10− 5
2 = 2.5

Step (k) Extracted input sequence Bag of System Calls
0 [s1, s5] < 2, 1, 2 >
1 [s3, s7] < 1, 1, 3 >
2 [s5, s9] < 2, 1, 2 >
3 [s7, s10] < 1, 1, 2 >

Table 5.3: Using a sliding window with W = 5 and L = 2 to construct BoSC from
the example input sequence.

5.3.3 n-gram
The n-gram technique is, in contrast to previously explained algorithms, a more
straightforward feature extraction approach. N-grams are created by splitting the
input sequence into sub-sequences of length N . These are also referred to as non-
overlapping n-grams. The extracted feature vectors thus keep the original ordering,
which the previous algorithms do not. The algorithm is a special case of the sliding
window algorithm (section 5.3.2), where the window size is equal to the stepping
size, but the output is not BoSC.

Producing n-grams of length N given an input sequence of length t:

< s1, s2, ..., st >

41

5. Implementation

is achieved by extracting the following interval at step k from the input:

[sk∗N+1, sk∗N+N] k ∈ N ∩ [0, d t
N
− 1e]

For cases where the upper bound value of k is not an integer, it is rounded up to
the nearest integer. In other words, if the original input sequence results in the last
n-gram having a size less than N , it is still included.

Using the example input sequence as presented in section 5.2.1 and N = 5, the
following two n-grams are produced:

< [s1, s5], [s6, s10] >

< getpid, sendto, recvfrom, recvfrom, getpid >,< sendto, recvfrom, recvfrom, getpid, sendto >

The output of the n-gram algorithm does, however, need to be encoded into a
numerical vector representation that a machine learning algorithm can take as input.
To this end, one-hot encoding (section 5.2.2) has been used in favour of BoSC as
the former retains the ordering information while the latter removes it.

5.4 Anomaly Detection
Detecting anomalies in the data sets created by the feature extraction algorithms is
achieved by employing a machine learning algorithm. Machine learning algorithms
are commonly divided into two types, supervised and unsupervised, with the main
difference between the types being the use of labelled data. The data used in this
thesis have been labelled, enabling the use of either type of algorithm. However,
only unsupervised algorithms have been implemented in this thesis.

Two algorithms have been implemented for anomaly detection purposes in this the-
sis, the k-nearest neighbours (kNN) and the Isolation Forest (iForest) algorithm.
The kNN algorithm is employed in the baseline technique, which has been imple-
mented in order to establish a frame of reference in which the isolation forest can
be evaluated and compared. The baseline technique that implements the kNN al-
gorithm is based on the works of Tunde-Onadele et al. [70].

5.4.1 Baseline Technique: k-nearest neighbours
The baseline technique [70] utilises the frequency vector feature extraction algorithm
(section 5.3.1) and the kNN algorithm for anomaly detection. Generally, the kNN al-
gorithm is used as a supervised algorithm, but it can also be used as an unsupervised
algorithm, with the latter being the case in this case. The unsupervised algorithm
is a relatively simple algorithm that, given a data set, calculates the distances for
each point in the data set to its k nearest neighbours. It uses the euclidean distance
metric to calculate the distances. The algorithm has two parameters:

• k - Number of nearest neighbours to consider

42

5. Implementation

• p - Anomaly threshold percentile

The algorithm considers a data point anomalous if the average distance to its k
nearest neighbours is in the top p percentile of all data points in the data set. The
parameters used to evaluate the baseline is k = 5 and p = 10%, as empirically found
to be optimal [70].

The implementation uses scikit-learn’s NearestNeighbors1 module, which provides
the unsupervised algorithm for creating the model and calculating the distances be-
tween a data point and its k nearest neighbours. All parameters except n_neighbors
are set to their default values.

5.4.2 Refined Technique: Isolation forest
The refined technique performs anomaly detection using the iForest algorithm, in-
spired by the Optimised Isolation Forest as proposed by Zou et al. [82]. However,
the optimisations presented by the authors are specific to resource utilisation and
does not translate when using system calls as the data source. Thus, the original
iForest algorithm is used instead.

The iForest algorithm has multiple beneficial characteristics that influenced the
decision to evaluate its performance utilising system calls.

• It has low linear time complexity and a small memory requirement.
• It deals well with high dimensional data with irrelevant attributes.
• It allows for training without anomalous data as it is an unsupervised algo-

rithm; training in this context means a definition of normal.
• It can provide detection results with different levels of granularity without

re-training [11].

The iForest consists of several isolation trees (iTree) where each leaf node is a single
data. The base premises are as follows; data easy to isolate means it is in a sparse
part of the data set, an outlier, is likely to be an anomaly. The sooner the algorithm
manages to isolate data from the set, the more likely it is an anomaly. Constructing
an iTree using a set of N data items follows the following steps;

1. First, take n samples from the set (N).
2. Then, randomly select a feature and a p-value within the range of all values

this feature has in the set. This p-value will be placed at the root of a binary
tree. All data items whose feature value is less than p is placed on the left
side, others on the right.

3. repeat previous steps on the left and right data items until the data is divisible
no more or if the tree’s height reaches log2(n).

Repeating the described process of generating iTrees constitutes the creation of an

1https://scikit-learn.org/0.24/modules/generated/sklearn.neighbors.
NearestNeighbors.html#sklearn.neighbors.NearestNeighbors

43

https://scikit-learn.org/0.24/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors
https://scikit-learn.org/0.24/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors

5. Implementation

iForest. Structuring the data in this way means there is a distance, h(x), between
each data item, x, and the root. The average of all h(x) is denoted E(h(x)). The
anomaly value of data x in the n samples is denoted S(x, n). where the anomaly
value is calculated as follows:

S(x, n) = 2− E(h(x))
c(n) (5.1)

c(n) = 2H(n− 1)− (2(n− 1)
n

), H(i) = ln(i) + e (5.2)

The range of S(x, n) is [0, 1], where values closer to 1 constitutes a high probability
of an anomaly and values close to 0 means a high probability of normal behaviour.
If most values are close to 0.5, the entire data set is considered to have no apparent
outliers.

The implementation of the iForest algorithm in this research has two adjustable
parameters, the number of estimators (iTrees) and the contamination (cont) per-
centage of the data. The contamination is the proportion of outliers in the data set.
If no value is given for the contamination rate, the threshold is instead determined
as in the original paper [44]. During evaluation, we refer to this setting as auto. The
exact setting is the calculated percentage of anomalous BoSC’s or N-grams from the
labelled data, and the percentage values refer to the exact value with an upper and
lower bound, using the limits as input if the exact value falls outside the defined
range.

The implementation uses the IsolationForest2 module provided by scikit-learn to
create the model from and perform predictions on the data set. All parameters
except n_estimators, contamination and random_state are set to their respective
default values.

5.5 Simulation Environment Tools
This section presents Heimdall, a tool developed to collect and label container be-
havioural data through system calls, and Hlin, a framework developed to facilitate
the evaluation of anomaly detection techniques. The two tools are used to perform
the evaluation of the refined techniques implemented in this thesis.

5.5.1 Heimdall - System Call Monitoring Tool
System calls need to be monitored and logged to create training data sets for the
anomaly detection algorithms. We created Heimdall3 to manage monitoring, logging

2https://scikit-learn.org/0.24/modules/generated/sklearn.ensemble.
IsolationForest.html

3https://github.com/ZLundqvist/Heimdall

44

https://scikit-learn.org/0.24/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/0.24/modules/generated/sklearn.ensemble.IsolationForest.html
https://github.com/ZLundqvist/Heimdall

5. Implementation

and labelling of system calls. Heimdall is written in TypeScript and runs in the
Node.js runtime. It is an extension of the existing tool Sysdig [43] which provides
deep system visibility by intercepting system calls and other OS events with native
support for monitoring containers. Compared to existing tools, Heimdall expedites
the process of monitoring and logging system calls of victim containers by providing
the following additional functionalities:

• Automatically attach Sysdig to containers as they start
• Redirect output of Sysdig to a per-container log file
• Labelling of output data
• RESTful API to toggle labelling mode of container

An overview of the architecture of Heimdall can be seen in figure 5.3. The tool
automatically attaches to containers when they start by listening to events emitted
by the Docker Engine API. Once the tool detects a container-start event, a new
Sysdig process is started by executing the command:

sysdig -p"%evt.rawtime.s.%evt.rawtime.ns %syscall.type" \
container.id=<container_id> \
and syscall.type!=container \
and evt.dir=">"

The command instructs Sysdig to output system calls made by the started container
in a format that only includes the timestamp and the system call name. The tool
captures the output of every Sysdig process, labels it, and redirects it to a per-
container log file.

The labelling of output data is done by prepending a flag to each output of Sysdig,
representing either normal or anomalous activity. The tool’s RESTful API provides
endpoints to toggle a container’s current labelling mode, simplifying the data la-
belling process into a single HTTP request sent to the monitoring agent at the start

Figure 5.3: Architecture of Heimdall.

45

5. Implementation

and end of an attack providing correctly labelled data as output.

5.5.2 Hlin - Anomaly Detector Evaluation Framework
The need for a framework to aid in developing a refined technique was discovered
early in the ideation phase. It was realised that multiple feature extraction algo-
rithms, anomaly detection algorithms, and combinations were to be evaluated. A
framework would expedite the process of evaluating new or modified components. It
would handle integrating the components and allow us to focus solely on implement-
ing the components themselves, thus speeding up the iterative process of refining a
technique.

The framework developed was given the name Hlin4, and its architecture is presented
in figure 5.4. It uses a three-layered architecture, including a feature extraction layer,
transform layer and anomaly detection layer. The feature extraction layer converts
the raw system call traces to a generic representation of the data stored in a pandas
DataFrame5, with generic referring to the data still having to be transformed into a
suitable format for the selected algorithm. DataFrames are cached in order to skip
the feature extraction step for subsequent runs. The transform layer consists of a sin-
gle transformation algorithm for each combination of feature extraction and anomaly
detection algorithm. The transform layer transforms generic DataFrames output by
the feature extraction layer to the format expected by the selected anomaly detec-
tion algorithm. The transformations are relatively simple and include, for instance,
memory optimisations and the data contamination calculation for the isolation for-
est. The anomaly detection layer is responsible for constructing and validating an
anomaly detection model and outputting the confusion matrix produced from the
external validation. The architecture enables the framework to provide easy inte-
gration of components and fast implementation, iteration and evaluation of feature
extraction and anomaly detection algorithms.

The framework is written in Python and utilises the well-established scikit-learn
library [52, 63] for most machine learning-related tasks, i.e. the anomaly detection

Figure 5.4: Architecture of the Hlin framework.

4https://github.com/ZLundqvist/Hlin
5https://pandas.pydata.org/docs/user_guide/dsintro.html#dataframe

46

https://github.com/ZLundqvist/Hlin
https://pandas.pydata.org/docs/user_guide/dsintro.html#dataframe

5. Implementation

layer components as described in section 5.4. The framework takes the following
arguments as input:

• Input file or directory of input files as produced by Heimdall, the custom
system call monitoring tool.

• Feature extraction component (frequency vector, sliding window, n-gram) to
use.

• Anomaly detection component (knn, isolation forest) to use.
• Parameters required by the selected feature extraction and anomaly detection

components (e.g. window size for sliding window)

The output of the framework is a csv file with metadata of the evaluation and the
confusion matrix produced by external validation of the model.

47

5. Implementation

48

6
Evaluation

This chapter first describes how the simulation environment was set up to evaluate
the many technique compositions and parameter combinations of this thesis. After
that, the iterative process of refining a monitoring technique by tuning parameters
is detailed. Lastly, the refined monitoring technique is presented and compared to
the baseline technique.

6.1 Simulation Environment
The simulation environment was designed to provide a consistent and reproducible
environment in which containerised vulnerable applications can be run, monitored
and exploited. Interestingly, consistency and reproducibility are intrinsic properties
of Docker containers which simplifies the development of the environment. Specifi-
cally, we need a simulation environment designed to perform the following tasks:

(I) Create Docker containers running applications with known exploits.
(II) Collect system call logs.
(III) Generate normal load for containerised applications.
(IV) Exploit containerised applications.

The hardware and software configurations of the system where the evaluation is
conducted are presented in tables 6.1 and 6.2, respectively. The system runs the
victim containers, the exploits and the previously described custom monitoring tool
and framework. The rest of this section describes how the simulation environment
was set up to perform the above tasks.

Component Specification
Processor Intel i7 6700K 4.0 GHz
Memory 32GB DDR4 3000MHz
Storage Samsung 980 Pro SSD

Table 6.1: Hardware configuration.

Software Version
Operating System Ubuntu 20.04 LTS
Docker 20.10.6 build 370c289
Docker-compose 1.28.6 build 5db8d86fd
Sysdig 0.27.1
Node.js 14.16.1
Python 3.8.5

Table 6.2: Software configuration.

49

6. Evaluation

6.1.1 Creating Vulnerable Docker Containers
To get a holistic view of how a monitoring technique performs, a diverse set of
commonly containerised applications with known exploits has been created to be
monitored and are listed in table 6.3. The Threat Impact column describes the type
of attack the application is vulnerable to. The list of Common Vulnerabilities and
Exploits (CVE) is managed by the CVE Numbering Authorities (CNA), where the
CVE ID is the common way of identification. The CVSS column lists the CVSS
score, the degree of severity and characteristics of the exploit. The following two
columns list the vulnerable application and its version. The second to last column,
Exploit Tool, lists the tool used to perform the exploits, with POC referring to the
use of Proof of Concept code. Finally, the STRIDE column refers to what category
of STRIDE the attack actually targeted. This column does not directly correlate to
the first column since CVE’s belonging to the two first categories of threat impact
allows a choice of what code to execute. With the intent of keeping the footprint
of each attack small, only one or two commands were executed for each container.
Finding suitable applications to include was achieved by looking at similar lists
found in papers from the conducted literature review [41, 70], online collections of
pre-built vulnerable Docker containers [73] and the Common Vulnerabilities and
Exposures (CVE) database provided by NIST [50].

Threat Impact CVE ID CVSS
Score Application Version Exploit

Tool STRIDE

Return Shell
and Execute

Arbitrary Code

CVE-2014-3120 6.8 Elasticsearch 1.1.1 Metasploit IE
CVE-2015-3306 10 proFTPd 1.3.5 POC IE
CVE-2017-7494 10 Samba 4.5.9 POC TE
CVE-2016-3714 10 ImageMagick 6.7.9 POC TIE
CVE-2015-8562 7.5 Joomla 3.4.5 POC IE

Execute
Arbitrary
Code

CVE-2017-12615 6.8 Apache Tomcat 8.5.19 POC T
CVE-2014-6271 10 Bash 4.2.37 POC IE
CVE-2015-1427 7.5 Elasticsearch 1.4.2 POC IE
CVE-2018-16509 9.3 Ghostscript 9.23 POC IE
CVE-2018-19475 6.8 Ghostscript 9.25 POC IE
CVE-2019-6116 6.8 Ghostscript 9.26 POC IE
CVE-2016-10033 7.5 PHPMailer 5.2.17 POC T
CVE-2017-5638 10 Struts 2.5 POC I

Escalation of
Privilege CVE-2017-12635 10 CouchDB 2.1.0 POC E

Disclose
Credential
Information

CVE-2015-5531 5 Elasticsearch 1.6.0 POC I
CVE-2016-1897 4.3 ffmpeg 2.8.4 POC I
CVE-2017-8917 7.5 Joomla 3.7.0 SQLmap I
CVE-2017-7529 5 Nginx 1.13.2-1 POC I
CVE-2017-5223 2.1 PHPMailer 5.2.20 POC I

Crash the
Application

CVE-2015-5477 7.8 Bind 9 POC D
CVE-2016-7434 4.3 NTP 1.4.2.8 POC D

Consume
Excessive CPU CVE-2014-0050 7.5 Apache Commons

FileUpload 1.3.1 POC D

Table 6.3: Vulnerable containers used in the simulation environment.

50

6. Evaluation

6.1.2 Collecting System Call Logs
System call logs for the containers were collected using Heimdall, described in section
5.5.1. Logs were collected by first starting Heimdall and then starting a container.
After starting the container, all invoked system calls are logged until manual termi-
nation or termination due to crash. The procedure ensures that all invoked system
calls are logged during the entire lifetime of the container. Logs for all containers
were collected before proceeding with the evaluation of the detection techniques.

6.1.3 Normal Load Generation
Generating a normal load is an essential aspect of creating a data set of good qual-
ity. Ideally, a normal load should include every scenario and type of load one would
expect to see during real-world operation. However, the simulation environment
includes different types of applications of varying complexities, which has forced
the scope of generating normal loads to be reduced. For applications with low
complexity that only perform a single or a few tasks, generating a normal load is
straightforward. For more complex applications, however, only the most common
scenarios have been simulated. Multiple tools were employed to generate the normal
load, some of which have been used to generate a normal load for multiple applica-
tions. Many of the created applications use a web server to expose an interface used
to interact with the vulnerable application. An excellent tool for load-testing web
applications is the Apache JMeter application, which has been employed to generate
a normal load whenever possible. JMeter’s HTTP sampler was used to send HTTP
requests to web server applications such as Nginx, Joomla, PHPMailer, Apache and
Struts. Normal behaviour data for proFTPd and samba were generated by upload-
ing, downloading, replacing and deleting files using the FTP sampler and OS process
sampler, respectively. ImageMagick and Ghostscript data were generated by send-
ing images via HTTP POST requests. NTP and Bind received UDP requests using
the JMeter UDP request plugin for the current time and DNS-lookups, respectively.
Elasticsearch and CouchDB normal behaviour were replicated by adding, removing
and searching for entries.

Containerised applications typically run for a short period of time, making it chal-
lenging for an anomaly detection system to collect sufficient data to build a complete
model of normal behaviour. With the intent of reflecting these short lifespans, the
data collection used for evaluation is based on six minutes of runtime. While run-
ning, the synthetic normal load is applied, and the attack is executed once. The
duration was inspired by Tunde-Onadele et al. [70], who used a similar approach to
evaluate various anomaly detection algorithms for containerised applications.

6.1.4 Exploitation
The majority of the exploits used against the vulnerable applications has been imple-
mented as proofs-of-concept, as seen in table 6.3. Even though tools exist that can
be used to expedite vulnerability testing, e.g. Metasploit, not much use was found
for them as they rarely succeeded in exploiting the target applications. It was found

51

6. Evaluation

that implementing proof-of-concept exploits was the faster approach, especially con-
sidering the online resources available for many CVEs. Whether it was caused by
the specific setup of the simulation environment or the authors’ inexperience using
these tools is unknown. The process of executing an exploit is a three-step process.
First, an HTTP request is sent to the monitoring agent, telling it to switch to the
anomaly labelling mode. The attack is executed, and lastly, another HTTP request
is sent to revert the labelling mode of the monitoring agent.

Using the three-step process in order to label the collected system calls does not
result in perfectly labelled data, which refer to data where only the system calls
invoked as a result of the malicious action itself would be labelled as anomalous.
Labelling data using that approach would be infeasible, if not impossible, but is also
not necessary. This thesis intends to evaluate how well an anomaly detection tech-
nique performs in detecting anomalous activity within a stream of activity. Thus,
the three-step process is a reasonable solution as it effectively marks the start and
end of the malicious activity in the stream. The time frame of the malicious activity
can then be used to validate whether models are capable of correctly identifying any
anomalous activity.

6.2 Evaluation Metrics
The metrics used to present and compare the performance of the evaluated tech-
niques are derived from confusion matrices, which are a common way of visualising
the performance of classification algorithms [53]. Many performance-representing
values can be derived from a confusion matrix, but only a few are relevant for this
thesis’ purpose. Specifically, the True Positive rate (TPR) and False Positive rate
(FPR) are of interest.

The FPR is of interest due to the nature of the problem addressed in this thesis.
How often a monitoring technique incorrectly classifies non-anomalous behaviour
as anomalous, also called false alarms, is synonymous with the FPR, making it
a valuable metric. Table 6.4 presents how the FPR is calculated. The TPR is a
valuable metric due to how the simulation has been conducted. Because only a single
attack is executed during the entire lifespan of a container, the TPR can be used
to derive the binary value of whether a monitoring technique detects the attack or
not. The proportion of correctly identified anomalous data points is not of interest,
as the extent to which a monitoring technique can detect an attack is irrelevant.
Thus, if the TPR of a monitoring technique is > 0%, the monitoring technique has
successfully detected the attack.

6.3 Iteration 0 (baseline)
Before refining a technique, the baseline technique has to be evaluated using the same
data set as the refined technique to constitute a valid comparison. The baseline acts
as a frame of reference for the refined techniques and is used for the comparison of

52

6. Evaluation

Metric Description Calculation

True Negatives (TN) Correct negative classifications -

False Positives (FP) Incorrect positive classifications -

False Positive rate Proportion of incorrectly classified negatives F P
F P +T N

Table 6.4: Explanations of evaluation metrics.

the evaluations. The baseline technique is implemented as previously described in
section 5.4.1.

The evaluation results is presented in detail in table 6.5. The table shows that the
baseline technique is able to detect 18/22 attacks with an average FPR of 7.37%,
which is considerably better than the evaluation of the same technique performed
by Tunde-Onadele et al. [70] (9/28, 9.92%). The discrepancy might be explained by
the evaluations being performed on different data sets, reinforcing the importance
of performing a baseline evaluation on the data set.

Threat Impact CVE ID Detected FPR STRIDE

Return Shell
and Execute

Arbitrary Code

CVE-2014-3120 7 1.41% IE
CVE-2015-3306 7 2.45% IE
CVE-2017-7494 7 0.09% TE
CVE-2016-3714 3 1.34% TIE
CVE-2015-8562 3 0.24% IE

Execute
Arbitrary
Code

CVE-2017-12615 3 9.94% T
CVE-2014-6271 3 9.91% IE
CVE-2015-1427 3 9.80% IE
CVE-2018-16509 3 9.99% IE
CVE-2018-19475 3 9.98% IE
CVE-2019-6116 3 9.97% IE
CVE-2016-10033 7 10.03% T
CVE-2017-5638 3 9.40% I

Escalation
of Privilege CVE-2017-12635 3 0.92% E

Disclose
Credential
Information

CVE-2015-5531 3 10.20% I
CVE-2016-1897 3 7.99% I
CVE-2017-8917 3 9.98% I
CVE-2017-7529 3 16.02% I
CVE-2017-5223 3 9.48% I

Crash the
Application

CVE-2015-5477 3 10.00% D
CVE-2016-7434 3 3.10% D

Consume
Excessive CPU CVE-2014-0050 3 9.87% D

Average 81.82% 7.37%

Table 6.5: Baseline technique evaluation results.

53

6. Evaluation

6.4 Iteration 1
The first iteration was conducted using a shotgun approach, meaning that the goal
was to evaluate the performance of all technique compositions, as described in sec-
tion 4.3, using only a few combinations of parameters. This approach yields a
rough estimate of how the different compositions compare to each other, which is a
good starting point. The evaluated compositions include the iForest algorithm for
anomaly detection and all feature extraction algorithms.

6.4.1 Iteration 1: Parameters
The feature extraction and anomaly detection algorithms, including the parameter
combinations used in the first iteration, are listed in table 6.6. The values for the
number of iTrees is inspired by Zou et al. [82], who concluded that 100 iTrees yielded
the best performance in their research. In the interest of exploring further, two more
values are added.

The number of unique combinations to be evaluated for this iteration is the number
of unique anomaly detection algorithms multiplied by the number of unique feature
extraction algorithms, meaning 12 ∗ 11 = 132 unique techniques will be evaluated.

iForest Feature Extraction
Parameters Values Algorithm Parameters Values
iTrees 50, 100, 200 n-gram n 3, 5, 10

Contamination auto, exact, 1-5%, 1-7% Sliding Window (W, L) (7,4), (10,5), (11,6),
(11,11), (23,12)

Frequency Vector ∆T [ms] 50, 100, 200

Table 6.6: Anomaly detection and feature extraction parameters for the first iter-
ation.

6.4.2 Iteration 1: Evaluation
The evaluation results have been split into two tables, where table 6.7 lists a selection
of results from the sliding window feature extraction algorithm, and table 6.8 lists
the results of combinations using the n-gram and frequency vector feature extraction
algorithms. Given the amount of information, the results presented for this and
future iterations is selected based on what conclusions came from the iteration in
question. The results for this iteration showed a clear divide in terms of performance
depending on which contamination mode was employed, which is why the five best
performing combinations using each contamination mode (exact, auto and custom)
is included in the reported results.

The first iteration made it clear that the exact contamination mode tends to be too
conservative, detecting 16 out of 22 attacks at best. The auto contamination mode
is the only mode that manages to detect all the attacks in this iteration but comes
at the cost of a higher FPR (∼ 13%). Using the 1-5% contamination interval and a
sliding window with W = 11, L = 6 and 50 iTrees, the technique manages to detect

54

6. Evaluation

Sliding Window

Cont iTrees Window
Size

Step
Size Detected FPR

Auto 50 11 6 100.00% 7.31%
1-7% 50 11 6 95.45% 2.20%
Auto 200 10 5 95.45% 6.55%
Auto 200 11 11 95.45% 6.74%
Auto 100 10 5 95.45% 6.76%
Auto 50 10 5 95.45% 6.98%
1-5% 200 10 5 90.91% 1.82%
1-5% 200 11 6 90.91% 1.83%
1-5% 50 11 11 90.91% 1.85%
1-5% 50 10 5 90.91% 1.86%
Exact 100 23 12 72.73% 3.52%
Exact 200 11 6 72.73% 3.55%
Exact 50 23 12 68.18% 3.51%
Exact 100 11 6 68.18% 3.62%
Exact 200 10 5 68.18% 3.65%

Table 6.7: Evaluation results first iteration: sliding window feature extraction.

N-gram Frequency Vector

Cont iTrees N-gram
size Detected FPR Cont iTrees ∆T

[ms] Detected FPR

1-5% 50 5 90.91% 1.73% Auto 200 50 100.00% 12.72%
1-7% 50 5 90.91% 2.16% Auto 200 200 100.00% 12.83%
1-5% 200 3 86.36% 1.56% Auto 50 200 100.00% 12.95%
1-5% 100 3 86.36% 1.58% Auto 50 50 100.00% 12.98%
1-5% 100 10 86.36% 1.75% Auto 100 200 100.00% 13.07%
Exact 100 5 72.73% 3.51% 1-5% 50 50 86.36% 2.17%
Exact 200 3 68.18% 3.35% 1-5% 200 50 86.36% 2.17%
Exact 50 10 63.64% 3.55% 1-7% 200 50 86.36% 2.62%
Exact 100 3 59.09% 3.43% 1-7% 50 50 86.36% 2.64%
Exact 200 5 59.09% 3.50% 1-7% 100 50 86.36% 2.64%
Auto 50 5 18.18% 1.38% Exact 50 100 50.00% 5.17%
Auto 200 3 18.18% 1.64% Exact 200 50 50.00% 5.19%
Auto 100 3 18.18% 1.85% Exact 100 50 50.00% 5.20%
Auto 50 3 18.18% 2.16% Exact 50 50 50.00% 5.22%
Auto 100 10 13.64% 0.82% Exact 200 100 45.45% 5.19%

Table 6.8: Evaluation results first iteration: n-gram and frequency vector feature
extraction.

21 attacks and has a relatively low FPR (1.87%). For future iterations, the auto
and exact contamination modes are omitted in favour of using set intervals due to
its superior overall performance.

Regarding the feature extraction algorithms, frequency vector paired with a con-
tamination interval seems to detect slightly fewer attacks and result in a higher

55

6. Evaluation

FPR when compared to the other two algorithms. The only frequency vectors that
perform well do so in combination with the auto contamination mode. From this
iteration, it can be concluded that frequency vectors seem to perform worse than the
other two feature extraction algorithms when paired with contamination intervals
and is therefore excluded in subsequent iterations.

6.5 Iteration 2
The first iteration indicated that larger values of n for the n-gram feature extraction
algorithm led to worse results. With the intent of confirming this, a larger n-value
is evaluated for this iteration.

6.5.1 Iteration 2: Parameters
This iteration is considerably more focused than the previous. A total of 24 results
are presented, six of which are new for this iteration, caused by the addition of
n = 20. The complete set of parameter values evaluated as part of this iterated are
listed in table 6.9.

iForest Feature Extraction
Parameters Values Algorithm Parameters Values
iTrees 50, 100, 200 n-gram n 3, 5, 10, 20
Contamination 1-5%, 1-7%

Table 6.9: Anomaly detection and feature extraction parameters for the second
iteration.

6.5.2 Iteration 2: Evaluation
Table 6.10 includes all the new results generated in this iteration. The results
strongly indicate that out of the four evaluated n-values, n = 3 and n = 5 outperform
the larger values. Thus, larger values of n do not seem beneficial in the scenarios
evaluated in this thesis and will consequently be excluded in further iterations.

n=3 n=5 n=10 n=20
Cont iTrees Detected FPR Detected FPR Detected FPR Detected FPR

1-5%
50 90.91% 1.73% 81.82% 1.48% 86.36% 1.82% 77.27% 1.75%
100 86.36% 1.81% 86.36% 1.58% 86.36% 1.75% 68.18% 1.85%
200 81.82% 1.75% 86.36% 1.56% 77.27% 1.74% 68.18% 1.81%

1-7%
50 90.91% 2.16% 81.82% 1.89% 86.36% 2.14% 77.27% 2.11%
100 86.36% 2.11% 86.36% 1.90% 86.36% 2.10% 68.18% 2.14%
200 81.82% 2.09% 86.36% 1.89% 77.27% 2.09% 68.18% 2.18%

Average 86.36% 1.94% 84.85% 1.72% 83.33% 1.94% 71.21% 1.97%

Table 6.10: Evaluation results second iteration: n-gram feature extraction.

56

6. Evaluation

6.6 Iteration 3
Based on the previous iterations, the contamination mode and its range appear to
have a meaningful impact on both the number of attacks detected and the FPR.
This iteration focuses on evaluating different contamination ranges as input for the
custom contamination mode in order to identify the best performing range(s).

6.6.1 Iteration 3: Parameters
The combination of feature extraction parameters used in this iteration comprises
the top three performing sliding window combinations and the two best performing
n-gram sizes from previous iterations. A fourth sliding window parameter combi-
nation (W = 11, L = 5) is added to evaluate the proposed window and step size
relation of (W = 2l + 1, L = l), as proposed by Lee and Stolfo [37]. Six feature
extraction parameters, fifteen contamination ranges and three counts of iTrees are
evaluated in this iteration.

A total of 270 combinations is evaluated in this iteration. All parameter values
evaluated in this iteration are listed in table 6.11.

iForest Feature Extraction
Parameters Values Algorithm Parameters Values
iTrees 50, 100, 200 n-gram n 3, 5

Contamination

1%, 1-2%, 1-3%, 1-4%
1-5%, 2%, 2-3%, 2-4%,
2-5%, 3%, 3-4%, 3-5%,
4%, 4-5%, 5%

Sliding Window (W, L) (10,5), (11,5),
(11,6), (11,11)

Table 6.11: Anomaly detection and feature extraction parameters for the third
iteration.

6.6.2 Iteration 3: Evaluation
The results detailed in table 6.12 includes the total top ten of all the evaluations
performed for each of the feature extraction algorithms included. All ten sliding
window combinations listed manage to detect all 22 attacks with an FPR roughly
ranging from 3% to 4%. The evaluated n-gram combinations did not manage to
detect all attacks using the same parameter values. While it provides a lower FPR,
it does not detect all 22 attacks combined with any contamination input evaluated as
part of this iteration. In a context where finding 21 out of 22 attacks is considered
satisfactory, the three best performing parameter value combinations from each
feature extraction algorithm are listed in table 6.13.

In this iteration, a total of 159 combinations managed to detect 21 attacks with an
FPR ranging between 0.93% and 4.88%. A deeper analysis of the results showed
that they all fail to detect the same attack, a denial of service attack causing NTP
(CVE-2016-7434) to crash instantaneously. These results indicate that the sliding

57

6. Evaluation

window outperforms the n-grams for all the scenarios evaluated. As a result, the
n-gram feature extraction is omitted for the following iterations.

Sliding Window N-gram

Cont iTrees Window
Size

Step
Size Detected FPR Cont iTrees N-gram

size Detected FPR

3% 50 11 6 100.00% 2.85% 2% 100 5 95.45% 1.71%
3% 200 10 5 100.00% 2.89% 2% 50 5 95.45% 1.85%
3-4% 50 11 6 100.00% 3.02% 2-3% 100 5 95.45% 1.91%
3-4% 200 10 5 100.00% 3.07% 2-3% 50 5 95.45% 2.02%
3-5% 50 11 6 100.00% 3.21% 2-4% 100 5 95.45% 2.14%
3-5% 200 10 5 100.00% 3.23% 2-4% 50 5 95.45% 2.21%
4% 50 10 5 100.00% 3.84% 2-5% 50 5 95.45% 2.35%
4% 200 10 5 100.00% 3.85% 2-3% 200 3 95.45% 2.36%
4% 50 11 5 100.00% 3.87% 2-5% 100 5 95.45% 2.36%
4% 50 50 26 100.00% 3.87% 3% 100 3 95.45% 2.40%

Table 6.12: Evaluation results third iteration: n-grams and sliding window feature
extraction.

Sliding Window N-gram

Cont iTrees Window
Size

Step
Size Detected FPR Cont iTrees N-gram

size Detected FPR

1% 200 11 5 95.45% 0.93% 2% 100 5 95.45% 1.71%
1% 50 11 5 95.45% 0.93% 2% 50 5 95.45% 1.85%
1% 50 11 6 95.45% 0.94% 2-3% 100 5 95.45% 1.91%

Table 6.13: Evaluation results third iteration: The three best performing (FPR-
wise) combinations for each feature extraction algorithm managing to detect 21 out
of 22 attacks.

6.7 Iteration 4
The fourth and final iteration focuses on the number of iTrees and their impact on
performance. Zou et al. [82] conducted a similar evaluation, where they concluded
no improved detection performance was attained by increasing the number of iTrees
beyond 100. This iteration is intended to investigate if the same conclusion can be
drawn when using system calls as the data source.

6.7.1 Iteration 4: Parameters
This iteration includes the four best performing sliding window parameter values
and contamination ranges from previous iterations. All possible combinations are
evaluated with three new values of iTrees; 150, 250 and 500. A total of 36 new
combinations is evaluated in this iteration, and the parameter combinations are
listed in table 6.14.

6.7.2 Iteration 4: Evaluation
Table 6.15 lists the top ten performing combinations of this iteration. The top
combination manages to detect all attacks with a false positive rate almost equal

58

6. Evaluation

iForest Feature Extraction
Parameters Values Algorithm Parameters Values
iTrees 150, 250, 500 Sliding Window (W, L) (10,5), (11,5),

(11,6), (11,11)Contamination 3%, 3-4%,
3-5%, 4%

Table 6.14: Anomaly detection and feature extraction parameters for the fourth
iteration.

to the top performer of the previous iteration (+0.02%). The results show that a
larger number of estimators does not improve detection performance, confirming the
findings of Zou et al. [82].

Sliding Window

Cont iTrees Window
Size

Step
Size Detected FPR

3% 150 10 5 100.00% 2.87%
3-4% 150 10 5 100.00% 3.05%
3-5% 150 10 5 100.00% 3.18%
4% 500 10 5 100.00% 3.83%
4% 150 10 5 100.00% 3.83%
4% 250 10 5 100.00% 3.84%
4% 500 11 5 100.00% 3.84%
4% 150 11 6 100.00% 3.85%
3% 250 11 5 95.45% 2.85%
3% 150 11 6 95.45% 2.86%

Table 6.15: Evaluation results for the fourth iteration using isolation forest with
sliding window feature extraction.

6.8 Refined Monitoring Technique
The refined monitoring technique was selected as the top performing technique of
all techniques evaluated, based primarily on detection rate and secondarily on FPR.
The refined technique is composed of system calls as the data source, feature
extraction using a sliding window and anomaly detection using iForest. The
parameter values of the refined technique are listed in table 6.16.

Component Parameter Optimal Value

iForest iTrees 50
Contamination 3%

Sliding Window Window Size 11
Step Size 6

Table 6.16: Parameters of the top performing technique.

The refined technique is capable of detecting all 22 attacks with an average FPR
of 2.85%, clearly outperforming the baseline technique which manages to detect

59

6. Evaluation

18 attacks with an average FPR of 7.37%. From a STRIDE perspective, both
techniques are capable of detecting the same four categories: TIDE. A detailed
comparison of the techniques is presented in table 6.17. The evaluation results of
all evaluated techniques can be found in appendix A.

Refined Baseline
Threat Impact CVE ID Detected FPR Detected FPR STRIDE

Return Shell
and Execute

Arbitrary Code

CVE-2014-3120 3 2.90% 7 1.41% IE
CVE-2015-3306 3 2.99% 7 2.45% IE
CVE-2017-7494 3 3.00% 7 0.09% TE
CVE-2016-3714 3 2.95% 3 1.34% TIE
CVE-2015-8562 3 3.00% 3 0.24% IE

Execute
Arbitrary
Code

CVE-2017-12615 3 2.99% 3 9.94% T
CVE-2014-6271 3 2.98% 3 9.91% IE
CVE-2015-1427 3 2.80% 3 9.80% IE
CVE-2018-16509 3 2.90% 3 9.99% IE
CVE-2018-19475 3 2.93% 3 9.98% IE
CVE-2019-6116 3 2.93% 3 9.97% IE
CVE-2016-10033 3 2.82% 7 10.03% T
CVE-2017-5638 3 2.98% 3 9.40% I

Escalation of
Privilege CVE-2017-12635 3 3.01% 3 0.92% E

Disclose
Credential
Information

CVE-2015-5531 3 2.93% 3 10.20% I
CVE-2016-1897 3 2.94% 3 7.99% I
CVE-2017-8917 3 2.59% 3 9.98% I
CVE-2017-7529 3 1.79% 3 16.02% I
CVE-2017-5223 3 3.00% 3 9.48% I

Crash the
Application

CVE-2015-5477 3 2.79% 3 10.00% D
CVE-2016-7434 3 2.48% 3 3.10% D

Consume
Excessive CPU CVE-2014-0050 3 2.98% 3 9.87% D

Average 100.00% 2.85% 81.82% 7.37%

Table 6.17: Detailed comparison of baseline and refined monitoring technique.

60

7
Discussion

This chapter first discuss how containers relate to Firecracker, and why the results
of this thesis are of relevance. Subsequent sections discuss how the thesis relates to
and answers the research questions declared in section 1.2.

7.1 Containers vs Firecracker
Amazon has made recent efforts to develop a virtualisation technology that promises
to provide the benefits of both containers and VMs, without any of their drawbacks,
named Firecracker (described in section 2.1.3). Firecracker aims to use heavily op-
timised VMs (MicroVMs) to provide a virtualisation solution with the performance
and flexibility of containers and the isolation of VMs. Given the features promised
by Firecracker, the relevancy of conducting further research in the field of containers
could be questioned.

Arguably, improving the security of containers should still be considered important
for three reasons. First, allowing practitioners a choice should always be considered
a benefit. Second, Firecracker was recently released and still needs time to prove
itself as there is a risk of unforeseen issues or security-related flaws. Third, containers
have seen widespread adoption since the release of Docker, and the technology now
has a firm grip on the industry. Even if Firecracker was to become the defacto
standard in the future, it is likely to take time. In the meantime, improving the
security of containers should still be considered an essential step towards increasing
the overall security of virtualised systems.

7.2 Existing Monitoring Techniques
RQ1. What current monitoring techniques exist that might be applicable for the
container-based virtualisation environment?

The first research question asks for the currently available monitoring techniques
that might apply to monitoring containers. The approach to answering this ques-
tion was in the form of a literature review. The literature review yielded a summary
of existing monitoring techniques applicable to containers. The identified techniques

61

7. Discussion

and their evaluation results are summarised and presented in section 4.1.1. These
techniques and evaluations guided the effort towards developing and evaluating the
refined monitoring technique, which could be considered as a combination of multi-
ple techniques found during the review.

The citation matrix, as seen in table 4.7, generated from the final set of included
studies, is arguably a bit sparse. We attribute this to three influential factors; (I)
Strict selection criteria; the requirement of each paper explicitly evaluating their
techniques using containers filtered out a large portion of the references; (II) Rel-
atively new field of research; the earliest publication found fitting the specified se-
lection criteria was published in 2015. A significant portion of the included papers
had been, at the time, cited less than ten times according to Google Scholar; and
(III) The decision to include the most comprehensive version of a study resulted in
multiple exclusions, most notably of studies authored by Areeg and Pahl. A total of
eight studies [57, 55, 58, 56, 59, 60, 61, 62] and one dissertation [7] written by these
authors was found during the snowballing procedure. The dissertation included
the combined efforts of the seven previously published papers, making it the most
comprehensive version. As a result, the dissertation was included, and the seven
previously published papers were excluded. Many of the included studies referenced
at least one of the eight excluded studies, but not the dissertation, reducing the
density of the citation matrix.

An improved selection criterion could be to include the paper with the most cita-
tions instead of the most comprehensive version, which would likely result in a denser
matrix. However, since the primary purpose of the literature review was to inves-
tigate what techniques are currently available to serve as a basis for improvement,
this alternative is arguably less suitable. To evaluate the validity of the literature
review, an inter-rater reliability test was performed, presented in section 4.2. Said
test yielded almost perfect agreement, indicating well-defined selection criteria with
sufficient consistency.

7.3 Improving a Technique for Container Security
Monitoring

RQ2. What are the steps needed to be taken in order to develop an improved mon-
itoring technique with additional layers of security and increased effectiveness?

The second research question focuses on the path towards developing an improved
monitoring technique. The first step is to formulate a planned approach followed
by understanding the current state of the research field and available techniques. In
the context of this research, this step was accomplished by conducting a literature
review, followed by data extraction and synthesis to provide a condensed overview.
The next step involves creating a simulation environment and data collection tool
to generate and record behavioural data for evaluation. Heimdall was developed
for said data collection, allowing effortless logging and labelling of a containerised

62

7. Discussion

application’s system calls. The following step involves the design of the technique
and choosing feature extraction algorithms. As part of this research, an effort was
made to evaluate as many feature extraction algorithms as the limited amount of
time would allow.

The selection of technique compositions to evaluate was based on an analysis of the
information gathered from the literature review. The compositions were then iter-
atively evaluated and tuned by changing parameters and hyper-parameters of their
respective algorithms. To facilitate a streamlined evaluation process, the framework
Hlin was developed. Hlin assists the evaluation of multiple techniques and exports
the results for further analysis.

The process summarised in this section generalises the process and approach used
as part of this thesis, i.e. the steps taken by the authors of this thesis to provide a
technique with improved efficiency over the stated baseline. The process outlined is
by no means to be considered the only nor the best approach.

Using the design science research methodology to refine a monitoring technique
proved itself to be incredibly useful. The provision of a method that describes how
to approach a problem in order to improve or create a solution by first understand-
ing the problem domain and then iteratively design and evaluate solutions helped
tremendously. In the context of this thesis, DSRM guided the inclusion of a lit-
erature review in order to explore the problem space and the iterative refinement
process. Compared to the studies included in the literature review, which tend
only to state the problem, solution and evaluation of their techniques, using DSRM
provides better insight and understanding of the problem and solution in question.
Given that the authors of the included studies most likely have adequate knowl-
edge and experience in this field, they might consider DSRM more of a hindrance
than something useful. Based on this reasoning, speculation is made that DSRM
is better suited for problems where the problem domain is large or unknown to the
researchers or where the solution space has not been scoped to only include specific,
pre-determined solutions.

However, the solution space in this thesis was partly scoped as well. As deci-
sions were made only to implement specific techniques and then iteratively eval-
uate parameters, whereas solutions based on other techniques were excluded. For
instance, monitoring resource utilisation and using rule-based intrusion detection
were excluded early. The scoping was deemed necessary because of time constraints;
however, exploring other solutions could further improve container monitoring and
anomaly detection.

The refined technique was developed by making design-decisions based on data anal-
ysis from either evaluations or the literature review. Based on the literature review
data, decisions were made during the early stages of solution design to establish a
foundation that was to be iteratively refined. Because of the reduced scope of the
literature review, no quantitative analysis of the included evaluations to statistically
identify the most promising candidates was conducted. Instead, they were identified

63

7. Discussion

by reasoning about the evaluations, which can provide better context but also intro-
duces bias. Thus, a potential improvement to the foundation establishment would
be quantitative data analysis in the literature review, which would provide addi-
tional objectivity to the decision-making. The same can be argued for the decisions
made during the iterative refinement process, which were primarily based on evalu-
ation data from previous iterations. The selection of parameter value combinations
to evaluate for the subsequent iteration was based on reasoning, meaning there is
no guarantee the correct selections were made.

The refined monitoring technique presented in this thesis was developed iteratively,
using the knowledge attained by conducting a literature review as a foundation.
The technique monitors the system calls invoked from a container, performs feature
extraction using the sliding window algorithm, and encodes it to a Bag of System
Calls (BoSC) representation. The detection of anomalous behaviour is then achieved
using the Isolation Forest algorithm to train a model used to perform predictions
on sequences of BoSC.

7.4 Evaluation of the Proposed Technique

RQ3. How well does the refined monitoring technique perform with respect to
STRIDE model coverage and performance, e.g. ability to detect threats?

The fundamental aim of this thesis is to design, implement and evaluate a non-
intrusive application-agnostic container monitoring technique. In order to accom-
plish this, an effort was made to include a diverse set of containerised applications.
The inclusion of STRIDE assisted the selection of threats included in the simulation.
With the intent of improving the significance of the evaluations, exploits were care-
fully selected to ensure the creation of a diverse simulation environment in terms of
STRIDE. Attacks that could be categorised into multiple STRIDE categories, such
as remote code execution, were tailored to fall into a particular category.

However, the Spoofing and Repudiation categories of STRIDE were not included in
the simulation due to the nature of the threats and the source of data. These types
of threats involve performing common actions posing as another user. Since the
collected system calls do not contain any information that can be used to distinguish
between actors, it is next to impossible to detect these types of threats.

Since both the baseline and the refined technique detect at least one attack of each
included STRIDE category, the refined technique does not perform better from a
strict STRIDE point of view. However, to state that any monitoring technique
covers all categories of STRIDE in a complete sense would be false since that is
not possible to prove. Arguably, using STRIDE as a metric to evaluate monitoring
techniques is a poor choice, if not even counter-productive. STRIDE is not to blame
here, though, as the model was developed to help reasoning about a system and the
potential threats it is exposed to [64].

64

7. Discussion

The refined technique provides improved performance by detecting all 22 attacks
compared to the baseline detecting only 18 (compared in section 6.8). In addition
to the superior detection performance, the average FPR of the refined technique
amounts to 2.85%, compared to the baseline’s 7.37%. These results were achieved
iteratively as explained in chapter 6. Each iteration aimed to examine the perfor-
mance impact of different parameters and their values, with the intent of excluding
some parameter, parameter value or feature extraction algorithm in each iteration.
The results presented in section 6.8 far exceeds the performance of the baseline
and are considered an improvement. However, the presented result should not be
viewed as the best possible result attainable using the algorithms and parameters
evaluated. There is likely a better set of parameter values that exist for the pre-
sented technique, as the evaluated sets are restricted to a relatively small number of
parameter values, e.g. only six sliding window parameter combinations were eval-
uated. Conceivably, another parameter value could perform even better. However,
the potential improvements to be found by further extending the parameter value
space would suffer from diminishing returns and would likely not yield a justifiable
return on time invested.

The best performing combination of values included a fixed contamination value
of 3%. Using a fixed contamination rate is comparable to the p-parameter used
in the baseline technique’s anomaly detection algorithm, as both effectively act as
thresholds. A higher value is more likely to detect more anomalies at the cost
of a higher FPR. Thus, in a setting where it is of higher interest to keep a low
rate of false alarms, other parameter values should be evaluated. Similarly, using
a different set of containerised applications, the results would be expected to vary
to some extent. However, given the diversity of the containerised applications, it
would be reasonable to expect the proposed technique to offer better performance
compared to the baseline.

65

7. Discussion

66

8
Threats to Validity

This chapter describes the identified threats to validity and how they were addressed
or mitigated.

8.1 Construct Validity
The data used for both training and evaluation is collected, transformed and eval-
uated using software developed specifically for this research. During any software
development, the presence of unknown bugs is always a potential risk. These bugs
could alter the data by, for example, not logging every system calls. To mitigate
the risk of generating incorrect data, the developed framework uses several libraries
and tools which provide the desired functionality. The open-source system visi-
bility tool Sysdig handles the interception and extraction of system calls. Sysdig
has been used successfully in numerous other studies utilising system call traces for
monitoring system behaviour [41, 5, 17, 70], adding validity to the use of the tool.
The scikit-learn library handles the implementation of the kNN and Isolation For-
est algorithm and the confusion-matrix calculations. Using a reputable and widely
adopted open-source library [63] instead of developing a new solution with the same
purpose minimises the risk of invalid results caused by software bugs.

8.2 Internal Validity
The use of Google Scholar does mitigate the risk of introducing publisher bias [79].
However, some inconsistencies were observed during the creation of the starting set
for the literature review. When using identical search strings, the results shown to
the authors differed slightly. Generally, the same results were shown on the same
page only in a different order. However, some cases were observed where a paper
was listed on a different page, threatening the reproducibility of the resulting list
of included papers. This inconsistency of the served results means that the search
algorithm is an unknown factor capable of affecting the outcome.

Another threat is the potential of an unknown factor interfering with the data cap-
tured. The following strategies are used to mitigate these kinds of threats; (I) To
mitigate any impact made on the performance of the system during the generation

67

8. Threats to Validity

of data, only the necessary applications were running during the generation and
capturing of data; (II) All evaluations were performed on the same machine; and
(III) Using the open-source system visibility tool Sysdig for capturing the system
calls.

A third threat to the internal validity is values of the parameters and hyper-parameters
used to achieve the results. To evaluate every possible value for every parameter
is arguably not feasible nor likely to be worth the effort. Nevertheless, there is a
likelihood that other values not evaluated would outperform the values presented as
best performing as part of this thesis.

8.3 External Validity

The literature review conducted in this study, detailed in section 3.1, followed the
guidelines provided by Wohlin [79]. Wohlin states that this approach is not nec-
essarily intended to replace other methods of literature review but rather extend
them. As the snowballing search served as our primary approach for identifying
techniques and studies applicable to our research, this study does not strictly confer
with said guidelines. The decision was a conscious one, with the intent of keep-
ing the scope of the review reasonable. However, it does introduce the risk of not
providing a complete picture of the current state and all available techniques of in-
terest. As mentioned in section 3.1.2, using Google Scholar during the generation
of the starting set does help mitigate publisher bias and consequently provides a
more comprehensive picture than if using a specific publishers’ database. However,
even if publisher bias is mitigated entirely, the impact of the starting set could still
be considered unbalanced since a differing starting set could potentially result in a
relatively different final set. The sparse citation matrix further highlights this. This
imbalanced impact does stem from the snowballing procedure itself and cannot be
avoided unless paired with other methods.

The data used for evaluation is another important threat. Since the normal data
is generated by a synthetic load rather than real-world data generated by actual
users, the system call traces used in this thesis will likely differ somewhat from
traces generated in a real-world scenario. With the intent of mitigating this issue
to a reasonable extent, an effort was made to ensure the synthetic load includes the
most common actions a real user would want to perform with each application. To
further mitigate the issue, the load was varied during data collection, alternating
between different levels of load to reflect a fluctuating number of simultaneous users.

Another threat to external validity is that the performance of the refined technique
heavily depends on the type of threat or application running within the monitored
container. The strategy employed to mitigate this threat was to include as many
containerised applications as the time constraint allowed for while making an effort
to ensure a diverse set of containerised applications. Still, there is a possibility that
the performance would not be replicated using other applications and threats.

68

8. Threats to Validity

The choice of refining a machine learning-based approach in itself is another miti-
gation strategy employed to enhance the generalisability of the results. Compared
to a solution employing a signature-based, static detection of threats and vulnera-
bilities, the performance of the solution presented is not dependant on the threats
or vulnerabilities signatures being known or previously detected.

69

8. Threats to Validity

70

9
Conclusion

Container-based virtualisation is an increasingly popular virtualisation technique,
mainly due to the flexibility and efficiency it brings when compared to the more tra-
ditional VM-based approach. However, containerisation introduces major security-
related risks in the form of weakened isolation, which can be partly mitigated
through solid monitoring and anomaly detection. The aim of this thesis was to
examine the current landscape of container security monitoring and investigate the
process of refining a monitoring technique, including the implementation and eval-
uation of a novel technique. The contributions of this thesis are the following:

• An overview of available state-of-the-art container monitoring
techniques: By conducting a literature review using the snowballing search
approach, currently available techniques have been synthesised and presented
to facilitate comparison and assist future technique selection.

• A method of refining a container monitoring technique: An iterative
process of refining a technique using the DSRM is described and presented,
including designing, implementing and evaluating techniques. The process can
be imitated by future research to refine techniques.

• Heimdall - A container system call monitoring tool: Heimdall facili-
tates effortless collection and labelling of system calls invoked by containers for
anomaly detection using machine learning. Both practitioner and researchers
can utilise the tool to collect system call logs from containers.

• Hlin - An anomaly detector evaluation framework: Hlin expedites
the process of implementing, training and evaluating anomaly detection tech-
niques. The iterative refinement process is streamlined by providing a simple
evaluation of different technique compositions and parameter combinations.
Researchers can employ the framework to perform an offline evaluation of
anomaly detection techniques.

• A well-performing refined container monitoring technique: The re-
fined technique is novel, unsupervised, non-intrusive and application-agnostic.
The technique uses system calls as the data source, a sliding window for fea-
ture extraction and the iForest algorithm for anomaly detection, a composition
previously unseen. It provides a 100% detection rate and a relatively low FPR
of 2.85%, a substantial improvement over the evaluated baseline technique.

This research benefits researchers by providing additional knowledge and evaluation

71

9. Conclusion

of a technique not previously evaluated for monitoring containers. This information
could inform decisions of what algorithms and compositions to investigate further
or disregard in future research.

This thesis benefits both practitioners and researchers by providing an anomaly de-
tector evaluation framework and a container system call monitoring tool. These
could be used to evaluate other algorithms and technique compositions for use with
containers. Additionally, practitioners could evaluate the performance of the re-
fined technique presented with applications of their choice, potentially enhancing
the security of their deployed containerised applications.

9.1 Future Work
This thesis provides a baseline for a continuous investigation of how to best monitor
containers to improve their security. The evaluation of this thesis is based on the
detection performance using synthetically generated data. Confirming the perfor-
mance of the refined technique in a real-world deployment would further validate
the proposed monitoring technique.

The evaluation presented is based on pre-generated system call traces. Future re-
searchers could investigate how the performance is affected by real-time detection.
Theoretically, the technique should yield performance similar to the results pre-
sented as part of this thesis. However, the lack of real-time evaluation calls for
future investigation.

Other possible areas for future research would be to evaluate the performance using
a different set of containerised applications. While an effort was made to include a
diverse set of applications, a more extensive set could provide further insights.

72

Bibliography

[1] Amr S. Abed, Charles Clancy, and David S. Levy. “Intrusion Detection Sys-
tem for Applications using Linux Containers”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 9331 (Nov. 2016), pp. 123–135. issn: 16113349.
doi: 10.1007/978- 3- 319- 24858- 5_8. arXiv: 1611.03056. url: http:
//arxiv.org/abs/1611.03056.

[2] Amr S. Abed, T. Charles Clancy, and David S. Levy. “Applying Bag of System
Calls for Anomalous Behavior Detection of Applications in Linux Containers”.
In: 2015 IEEE Globecom Workshops (GC Wkshps). IEEE, Dec. 2015, pp. 1–
5. isbn: 978-1-4673-9526-7. doi: 10.1109/GLOCOMW.2015.7414047. arXiv:
1611.03053. url: http://ieeexplore.ieee.org/document/7414047/.

[3] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, Implementation Nsdi,
Alexandra Iordache, Marc Brooker, Anthony Liguori, Rolf Neugebauer, and
Phil Piwonka. “Firecracker : Lightweight Virtualization for Serverless Appli-
cations”. In: Nsdi ’20 (2020), pp. 419–434. url: https://www.usenix.org/
conference/nsdi20/presentation/agache.

[4] Suaad S. Alarifi and Stephen D. Wolthusen. “Detecting anomalies in IaaS
environments through virtual machine host system call analysis”. In: 2012
International Conference for Internet Technology and Secured Transactions,
ICITST 2012. 2012, pp. 211–218. isbn: 9781908320087.

[5] Mohammed J Aljebreen. “Towards Intelligent Intrusion Detection Systems for
Cloud Computing”. PhD thesis. 2018. url: https://repository.lib.fit.
edu/handle/11141/2554.

[6] AMD. Virtualization solutions. url: https : / / www . amd . com / en /
technologies/virtualization-solutions (visited on 02/12/2021).

[7] Samir Areeg and Pahl Claus. “Monitoring, Detecting, Identifying, and Healing
Anomalous Workload in Clustered Computing Environments”. PhD thesis.
Apr. 2020. doi: 10.13140/RG.2.2.20110.59206.

[8] AWS. Linux AMI virtualization types - Amazon Elastic Compute Cloud.
url: https : / / docs . aws . amazon . com / AWSEC2 / latest / UserGuide /
virtualization_types.html (visited on 06/17/2021).

[9] Anthony Bettini. Vulnerability Exploitation in Docker Container Envi-
ronments. 2015. url: https : / / www . slideshare . net / FlawCheck /
vulnerability-exploitation-in-docker-container-environments.

73

https://doi.org/10.1007/978-3-319-24858-5_8
https://arxiv.org/abs/1611.03056
http://arxiv.org/abs/1611.03056
http://arxiv.org/abs/1611.03056
https://doi.org/10.1109/GLOCOMW.2015.7414047
https://arxiv.org/abs/1611.03053
http://ieeexplore.ieee.org/document/7414047/
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://repository.lib.fit.edu/handle/11141/2554
https://repository.lib.fit.edu/handle/11141/2554
https://www.amd.com/en/technologies/virtualization-solutions
https://www.amd.com/en/technologies/virtualization-solutions
https://doi.org/10.13140/RG.2.2.20110.59206
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html
https://www.slideshare.net/FlawCheck/vulnerability-exploitation-in-docker-container-environments
https://www.slideshare.net/FlawCheck/vulnerability-exploitation-in-docker-container-environments

Bibliography

[10] Kelly Brady, Seung Moon, Tuan Nguyen, and Joel Coffman. “Docker Con-
tainer Security in Cloud Computing”. In: 2020 10th Annual Computing
and Communication Workshop and Conference, CCWC 2020. Institute of
Electrical and Electronics Engineers Inc., Jan. 2020, pp. 975–980. isbn:
9781728137834. doi: 10.1109/CCWC47524.2020.9031195.

[11] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection:
A Survey”. In: ACM Comput. Surv. 41 (2009). doi: 10 . 1145 / 1541880 .
1541882.

[12] Gary Chen. Modernizing Applications with Containers in the Public Cloud.
2019. url: https://www.ibm.com/downloads/cas/AWPB0Y7L (visited on
03/18/2021).

[13] Sung Bae Cho and Hyuk Jang Park. “Efficient anomaly detection by modeling
privilege flows using hidden Markov model”. In: Computers and Security 22.1
(Jan. 2003), pp. 45–55. issn: 01674048. doi: 10.1016/S0167-4048(03)00112-
3.

[14] Z. Cliffe Schreuders, Tanya McGill, and Christian Payne. “Empowering end
users to confine their own applications: The results of a usability study com-
paring SELinux, AppArmor, and FBAC-LSM”. In: ACM Transactions on In-
formation and System Security 14.2 (Sept. 2011). issn: 10949224. doi: 10.
1145/2019599.2019604. url: https://dl.acm.org/doi/abs/10.1145/
2019599.2019604.

[15] William W. Cohen. “Fast Effective Rule Induction”. In: Machine Learning
Proceedings 1995. Elsevier, Jan. 1995, pp. 115–123. doi: 10.1016/b978-1-
55860-377-6.50023-2.

[16] Theo Combe, Antony Martin, and Roberto Di Pietro. “To Docker or Not to
Docker: A Security Perspective”. In: IEEE Cloud Computing 3.5 (Sept. 2016),
pp. 54–62. issn: 2325-6095. doi: 10.1109/MCC.2016.100.

[17] Pinchen Cui. DevSecOps of Containerization. Tech. rep. Aug. 2020. url:
https://etd.auburn.edu//handle/10415/7425.

[18] Docker. Docker overview | Docker Documentation. 2018. url: https://docs.
docker.com/get-started/overview/ (visited on 04/07/2021).

[19] Qingfeng Du, Tiandi Xie, and Yu He. “Anomaly Detection and Diagnosis
for Container-Based Microservices with Performance Monitoring”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 11337 LNCS. Springer
Verlag, 2018, pp. 560–572. isbn: 9783030050627. doi: 10.1007/978-3-030-
05063-4_42.

[20] Emelie Engström, Margaret Anne Storey, Per Runeson, Martin Höst, and
Maria Teresa Baldassarre. “How software engineering research aligns with de-
sign science: a review”. In: Empirical Software Engineering 25.4 (July 2020),
pp. 2630–2660. issn: 15737616. doi: 10.1007/s10664-020-09818-7. arXiv:
1904.12742.

[21] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. “An up-
dated performance comparison of virtual machines and Linux containers”. In:
ISPASS 2015 - IEEE International Symposium on Performance Analysis of
Systems and Software. Institute of Electrical and Electronics Engineers Inc.,

74

https://doi.org/10.1109/CCWC47524.2020.9031195
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://www.ibm.com/downloads/cas/AWPB0Y7L
https://doi.org/10.1016/S0167-4048(03)00112-3
https://doi.org/10.1016/S0167-4048(03)00112-3
https://doi.org/10.1145/2019599.2019604
https://doi.org/10.1145/2019599.2019604
https://dl.acm.org/doi/abs/10.1145/2019599.2019604
https://dl.acm.org/doi/abs/10.1145/2019599.2019604
https://doi.org/10.1016/b978-1-55860-377-6.50023-2
https://doi.org/10.1016/b978-1-55860-377-6.50023-2
https://doi.org/10.1109/MCC.2016.100
https://etd.auburn.edu//handle/10415/7425
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://doi.org/10.1007/978-3-030-05063-4_42
https://doi.org/10.1007/978-3-030-05063-4_42
https://doi.org/10.1007/s10664-020-09818-7
https://arxiv.org/abs/1904.12742

Bibliography

Apr. 2015, pp. 171–172. isbn: 9781479919567. doi: 10.1109/ISPASS.2015.
7095802.

[22] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A
Longstaff. “Sense of self for unix processes”. In: Proceedings of the IEEE
Computer Society Symposium on Research in Security and Privacy. 1996,
pp. 120–128. doi: 10.1109/secpri.1996.502675.

[23] Mohamed Hedi Fourati, Soumaya Marzouk, Khalil Drira, and Mohamed
Jmaiel. “DOCKERANALYZER : Towards Fine Grained Resource Elas-
ticity for Microservices-Based Applications Deployed with Docker”. In:
2019 20th International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT). IEEE, Dec. 2019, pp. 220–225.
isbn: 978-1-7281-2616-6. doi: 10 . 1109 / PDCAT46702 . 2019 . 00049. url:
https://ieeexplore.ieee.org/document/9029138/.

[24] Holger Gantikow, Christoph Reich, Martin Knahl, and Nathan Clarke. “Rule-
Based Security Monitoring of Containerized Environments”. In: Communica-
tions in Computer and Information Science. Vol. 1218 CCIS. Springer, May
2020, pp. 66–86. isbn: 9783030494315. doi: 10.1007/978-3-030-49432-2_4.

[25] Li Zhong Geng and Hui Bo Jia. “A low-cost method to intrusion detection
system using sequences of system calls”. In: 2009 2nd International Conference
on Information and Computing Science, ICIC 2009. Vol. 1. 2009, pp. 143–146.
isbn: 9780769536347. doi: 10.1109/ICIC.2009.43.

[26] Xuan Dau Hoang, Jiankun Hu, and Peter Bertok. “A multi-layer model for
anomaly intrusion detection using program sequences of system calls”. In:
IEEE International Conference on Networks, ICON. 2003, pp. 531–536. isbn:
0780377885. doi: 10.1109/icon.2003.1266245. url: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.154.6718.

[27] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. “Intrusion detection
using sequences of system calls”. In: Journal of Computer Security 6.3 (1998),
pp. 151–180. issn: 0926227X. doi: 10.3233/JCS-980109.

[28] Intel. Intel® Virtualization Technology. 2018. url: https : / / www . intel .
com/content/www/us/en/virtualization/virtualization-technology/
intel-virtualization-technology.html.

[29] Dae Ki Kang, Doug Fuller, and Vasant Honavar. “Learning classifiers for mis-
use and anomaly detection using a bag of system calls representation”. In:
Proceedings from the 6th Annual IEEE System, Man and Cybernetics Infor-
mation Assurance Workshop, SMC 2005. Vol. 2005. 2005, pp. 118–125. isbn:
0780392906. doi: 10.1109/IAW.2005.1495942. url: https://ieeexplore.
ieee.org/abstract/document/1495942.

[30] Rupesh Raj Karn, Prabhakar Kudva, Hai Huang, Sahil Suneja, and Ibrahim
M. Elfadel. “Cryptomining Detection in Container Clouds Using System Calls
and Explainable Machine Learning”. In: IEEE Transactions on Parallel and
Distributed Systems 32.3 (Mar. 2021), pp. 674–691. issn: 1045-9219. doi:
10 . 1109 / TPDS . 2020 . 3029088. url: https : / / ieeexplore . ieee . org /
document/9215018/.

75

https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/secpri.1996.502675
https://doi.org/10.1109/PDCAT46702.2019.00049
https://ieeexplore.ieee.org/document/9029138/
https://doi.org/10.1007/978-3-030-49432-2_4
https://doi.org/10.1109/ICIC.2009.43
https://doi.org/10.1109/icon.2003.1266245
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.6718
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.154.6718
https://doi.org/10.3233/JCS-980109
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://doi.org/10.1109/IAW.2005.1495942
https://ieeexplore.ieee.org/abstract/document/1495942
https://ieeexplore.ieee.org/abstract/document/1495942
https://doi.org/10.1109/TPDS.2020.3029088
https://ieeexplore.ieee.org/document/9215018/
https://ieeexplore.ieee.org/document/9215018/

Bibliography

[31] Eric Knauss. Constructive master’s thesis work in industry: guidelines for ap-
plying design science research. Dec. 2020. arXiv: 2012.04966. url: http:
//arxiv.org/abs/2012.04966.

[32] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. “Spectre attacks: Exploiting speculative
execution”. In: Proceedings - IEEE Symposium on Security and Privacy.
Vol. 2019-May. Institute of Electrical and Electronics Engineers Inc., May
2019, pp. 1–19. isbn: 9781538666609. doi: 10.1109/SP.2019.00002.

[33] Loren Kohnfelder and Praerit Garg. “The threats to our products”. In:
Microsoft Security Development Blog (1999), p. 3. url: https : / / www .
microsoft . com / security / blog / 2009 / 08 / 27 / the - threats - to - our -
products/.

[34] J. Richard Landis and Gary G. Koch. “The Measurement of Observer Agree-
ment for Categorical Data”. In: Biometrics 33.1 (Mar. 1977), p. 159. issn:
0006341X. doi: 10.2307/2529310.

[35] Steve G. Langer and Todd French. “Virtual machine performance benchmark-
ing”. In: Journal of Digital Imaging 24.5 (Oct. 2011), pp. 883–889. issn:
08971889. doi: 10.1007/s10278-010-9358-6.

[36] Pavel Laskov, Patrick Dussel, Christin Schafer, and Konrad Rieck. “Learning
intrusion detection: Supervised or unsupervised?” In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 3617 LNCS.September 2005 (2014), pp. 50–
57. issn: 03029743. doi: 10.1007/11553595_6.

[37] Wenke Lee and Salvatore J Stolfo. “Data Mining Approaches for Intrusion
Detection”. In: Proceedings of the 7th Conference on USENIX Security Sym-
posium - Volume 7. SSYM’98. USA: USENIX Association, 1998, p. 6.

[38] Wei Li. “Using genetic algorithm for network intrusion detection”. In: (2004).
[39] Zhengmin Li, Zhaoxin Zhang, Xinran Liu, and Chunge Zhu. “Anomaly De-

tection for Container Cluster based on JointCloud Platform”. In: Proceed-
ings of the 2019 3rd International Conference on Compute and Data Analysis.
New York, NY, USA: ACM, Mar. 2019, pp. 26–30. isbn: 9781450366342. doi:
10.1145/3314545.3314567. url: https://doi.org/10.1145/3314545.
3314567.

[40] Hung Jen Liao, Chun Hung Richard Lin, Ying Chih Lin, and Kuang Yuan
Tung. Intrusion detection system: A comprehensive review. Jan. 2013. doi:
10.1016/j.jnca.2012.09.004.

[41] Yuhang Lin, Olufogorehan Tunde-Onadele, and Xiaohui Gu. “CDL: Clas-
sified Distributed Learning for Detecting Security Attacks in Containerized
Applications”. In: ACM International Conference Proceeding Series. Vol. 10.
2020. Association for Computing Machinery, Dec. 2020, pp. 179–188. isbn:
9781450388580. doi: 10.1145/3427228.3427236. url: https://doi.org/
10.1145/3427228.3427236.

[42] Linux Contributors. namespaces(7) - Linux manual page. 2019. url: https:
/ / man7 . org / linux / man - pages / man7 / namespaces . 7 . html (visited on
04/06/2021).

76

https://arxiv.org/abs/2012.04966
http://arxiv.org/abs/2012.04966
http://arxiv.org/abs/2012.04966
https://doi.org/10.1109/SP.2019.00002
https://www.microsoft.com/security/blog/2009/08/27/the-threats-to-our-products/
https://www.microsoft.com/security/blog/2009/08/27/the-threats-to-our-products/
https://www.microsoft.com/security/blog/2009/08/27/the-threats-to-our-products/
https://doi.org/10.2307/2529310
https://doi.org/10.1007/s10278-010-9358-6
https://doi.org/10.1007/11553595_6
https://doi.org/10.1145/3314545.3314567
https://doi.org/10.1145/3314545.3314567
https://doi.org/10.1145/3314545.3314567
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1145/3427228.3427236
https://doi.org/10.1145/3427228.3427236
https://doi.org/10.1145/3427228.3427236
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html

Bibliography

[43] Linux Manual Page. sysdig(8) - Linux manual page. url: https://man7.org/
linux/man-pages/man8/sysdig.8.html (visited on 04/27/2021).

[44] Fei Tony Liu, Kai Ming Ting, and Zhi Hua Zhou. “Isolation forest”. In:
Proceedings - IEEE International Conference on Data Mining, ICDM. 2008,
pp. 413–422. isbn: 9780769535029. doi: 10.1109/ICDM.2008.17.

[45] Zhen Liu, Nathalie Japkowicz, Ruoyu Wang, Yongming Cai, Deyu Tang, and
Xianfa Cai. “A statistical pattern based feature extraction method on system
call traces for anomaly detection”. In: Information and Software Technology
126 (Oct. 2020), p. 106348. issn: 09505849. doi: 10.1016/j.infsof.2020.
106348.

[46] Chengzhi Lu, Kejiang Ye, Wenyan Chen, and Cheng-Zhong Xu. “ADGS:
Anomaly Detection and Localization Based on Graph Similarity in Container-
Based Clouds”. In: 2019 IEEE 25th International Conference on Parallel and
Distributed Systems (ICPADS). Vol. 2019-Decem. IEEE, Dec. 2019, pp. 53–
60. isbn: 978-1-7281-2583-1. doi: 10.1109/ICPADS47876.2019.00016. url:
https://ieeexplore.ieee.org/document/8975844/.

[47] Mary L. McHugh. “Interrater reliability: The kappa statistic”. In: Biochemia
Medica 22.3 (2012), pp. 276–282. issn: 13300962. doi: 10.11613/bm.2012.
031. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/.

[48] Mendeley. url: https://www.mendeley.com (visited on 03/01/2021).
[49] MEYER RA and SEAWRIGHT LH. “A virtual machine time-sharing system”.

In: IBM Systems Journal 9.3 (1970), pp. 199–218. issn: 00188670. doi: 10.
1147/sj.93.0199.

[50] NIST - National Institute of standards and technology. NIST - National Vul-
nerability Database. url: https://nvd.nist.gov/ (visited on 04/04/2021).

[51] Animesh Patcha and Jung Min Park. “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends”. In: Computer Net-
works 51.12 (Aug. 2007), pp. 3448–3470. issn: 13891286. doi: 10.1016/j.
comnet.2007.02.001.

[52] F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M
Blondel, P Prettenhofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D
Cournapeau, M Brucher, M Perrot, and E Duchesnay. “Scikit-learn: Machine
Learning in Python”. In: Journal of Machine Learning Research 12 (2011),
pp. 2825–2830.

[53] David M. W. Powers. Evaluation: From Precision, Recall and F-Factor to ROC
, Informedness, Markedness & Correlation. Tech. rep. December. 2007. url:
https://arxiv.org/abs/2010.16061.

[54] Rajsimman Ravichandiran, Hadi Bannazadeh, and Alberto Leon-Garcia.
“Anomaly Detection using Resource Behaviour Analysis for Autoscaling
systems”. In: 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft). IEEE, June 2018, pp. 192–196. isbn: 978-1-5386-4633-
5. doi: 10.1109/NETSOFT.2018.8460025. url: https://ieeexplore.ieee.
org/document/8460025/.

[55] Areeg Samir, Nabil El Ioini, Ilenia Fronza, Hamid R Barzegar, Van Thanh Le,
and Claus Pahl. “A Controller for Anomaly Detection, Analysis and Manage-
ment for Self-Adaptive Container Clusters”. In: 2020.

77

https://man7.org/linux/man-pages/man8/sysdig.8.html
https://man7.org/linux/man-pages/man8/sysdig.8.html
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1016/j.infsof.2020.106348
https://doi.org/10.1016/j.infsof.2020.106348
https://doi.org/10.1109/ICPADS47876.2019.00016
https://ieeexplore.ieee.org/document/8975844/
https://doi.org/10.11613/bm.2012.031
https://doi.org/10.11613/bm.2012.031
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/
https://www.mendeley.com
https://doi.org/10.1147/sj.93.0199
https://doi.org/10.1147/sj.93.0199
https://nvd.nist.gov/
https://doi.org/10.1016/j.comnet.2007.02.001
https://doi.org/10.1016/j.comnet.2007.02.001
https://arxiv.org/abs/2010.16061
https://doi.org/10.1109/NETSOFT.2018.8460025
https://ieeexplore.ieee.org/document/8460025/
https://ieeexplore.ieee.org/document/8460025/

Bibliography

[56] Areeg Samir, Nabil El Ioini, Ilenia Fronza, Hamid R Barzegar, Van Thanh Le,
and Claus Pahl. “Anomaly Detection and Analysis for Reliability Management
in Clustered Container Architectures”. In: 2020.

[57] Areeg Samir and Claus Pahl. “A Controller Architecture for Anomaly Detec-
tion, Root Cause Analysis and Self-Adaptation for Cluster Architectures”. In:
2019.

[58] Areeg Samir and Claus Pahl. “Anomaly Detection and Analysis for Clustered
Cloud Computing Reliability”. In: The Eleventh International Conference on
Cloud Computing, Grids, and Virtualization. 5. May 2019, pp. 110–119.

[59] Areeg Samir and Claus Pahl. “Detecting and localizing anomalies in container
clusters using markov models”. In: Electronics (Switzerland) 9.1 (Jan. 2020).
issn: 20799292. doi: 10.3390/electronics9010064.

[60] Areeg Samir and Claus Pahl. “Detecting and predicting anomalies for edge
cluster environments using hidden markov models”. In: 2019 4th Interna-
tional Conference on Fog and Mobile Edge Computing, FMEC 2019. Insti-
tute of Electrical and Electronics Engineers Inc., June 2019, pp. 21–28. isbn:
9781728117966. doi: 10.1109/FMEC.2019.8795337.

[61] Areeg Samir and Claus Pahl. “DLA: Detecting and localizing anomalies in con-
tainerized microservice architectures using markov models”. In: Proceedings -
2019 International Conference on Future Internet of Things and Cloud, Fi-
Cloud 2019. Institute of Electrical and Electronics Engineers Inc., Aug. 2019,
pp. 205–213. isbn: 9781728128887. doi: 10.1109/FiCloud.2019.00036.

[62] Areeg Samir and Claus Pahl. “Self-adaptive healing for containerized cluster
architectures with hidden Markov models”. In: 2019 4th International Confer-
ence on Fog and Mobile Edge Computing, FMEC 2019. Institute of Electrical
and Electronics Engineers Inc., June 2019, pp. 68–73. isbn: 9781728117966.
doi: 10.1109/FMEC.2019.8795322.

[63] Scikit-learn.org. Who is using scikit-learn? — scikit-learn 0.24.2 docu-
mentation. url: https : / / scikit - learn . org / stable / testimonials /
testimonials.html (visited on 05/12/2021).

[64] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons,
2014.

[65] Sachchidanand Singh and Nirmala Singh. “Containers & Docker: Emerging
roles & future of Cloud technology”. In: Proceedings of the 2016 2nd Interna-
tional Conference on Applied and Theoretical Computing and Communication
Technology, iCATccT 2016. Jan. 2017, pp. 804–807. isbn: 9781509023981. doi:
10.1109/ICATCCT.2016.7912109.

[66] Vindeep Singh and Sateesh K. Peddoju. “Container-based microservice
architecture for cloud applications”. In: Proceeding - IEEE International
Conference on Computing, Communication and Automation, ICCCA 2017.
Vol. 2017-Janua. Institute of Electrical and Electronics Engineers Inc., Dec.
2017, pp. 847–852. isbn: 9781509064717. doi: 10.1109/CCAA.2017.8229914.

[67] Siddharth Srinivasan, Akshay Kumar, Manik Mahajan, Dinkar Sitaram,
and Sanchika Gupta. “Probabilistic real-time intrusion detection system for
docker containers”. In: Communications in Computer and Information Sci-

78

https://doi.org/10.3390/electronics9010064
https://doi.org/10.1109/FMEC.2019.8795337
https://doi.org/10.1109/FiCloud.2019.00036
https://doi.org/10.1109/FMEC.2019.8795322
https://scikit-learn.org/stable/testimonials/testimonials.html
https://scikit-learn.org/stable/testimonials/testimonials.html
https://doi.org/10.1109/ICATCCT.2016.7912109
https://doi.org/10.1109/CCAA.2017.8229914

Bibliography

ence. Vol. 969. Springer Verlag, Sept. 2019, pp. 336–347. isbn: 9789811358258.
doi: 10.1007/978-981-13-5826-5_26.

[68] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. “Container security: Issues,
challenges, and the road ahead”. In: IEEE Access 7 (2019), pp. 52976–52996.
issn: 21693536. doi: 10.1109/ACCESS.2019.2911732.

[69] Yongzhong Sun, Kejiang Ye, and Cheng-Zhong Xu. “PLMSys: A Cloud Moni-
toring System Based on Cluster Performance and Container Logs”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics). Vol. 12403 LNCS. Springer
Science and Business Media Deutschland GmbH, 2020, pp. 111–125. isbn:
9783030596347. doi: 10.1007/978-3-030-59635-4_8.

[70] Olufogorehan Tunde-Onadele, Jingzhu He, Ting Dai, and Xiaohui Gu. “A
Study on Container Vulnerability Exploit Detection”. In: 2019 IEEE Interna-
tional Conference on Cloud Engineering (IC2E). IEEE, June 2019, pp. 121–
127. isbn: 978-1-7281-0218-4. doi: 10.1109/IC2E.2019.00026. url: https:
//ieeexplore.ieee.org/document/8790061/.

[71] Vmware. Hypervisor. url: https://www.vmware.com/topics/glossary/
content/hypervisor (visited on 02/12/2021).

[72] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar
Buyya. “Cost of virtual machine live migration in clouds: A performance
evaluation”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 5931 LNCS. Springer, Berlin, Heidelberg, 2009, pp. 254–265. isbn:
3642106641. doi: 10.1007/978-3-642-10665-1_23.

[73] Vulhub. GitHub - vulhub/vulhub: Pre-Built Vulnerable Environments Based
on Docker-Compose. url: https://github.com/vulhub/vulhub (visited on
04/26/2021).

[74] Tao Wang, Jiwei Xu, Wenbo Zhang, Zeyu Gu, and Hua Zhong. “Self-adaptive
cloud monitoring with online anomaly detection”. In: Future Generation Com-
puter Systems 80 (Mar. 2018), pp. 89–101. issn: 0167739X. doi: 10.1016/j.
future.2017.09.067.

[75] Wei Wang, Xiao Hong Guan, and Xiang Liang Zhang. “Modeling program
behaviors by hidden markov models for intrusion detection”. In: Proceedings of
2004 International Conference on Machine Learning and Cybernetics. Vol. 5.
2004, pp. 2830–2835. isbn: 0780384032. doi: 10.1109/icmlc.2004.1378514.

[76] Yulong Wang, QixuWang, Xingshu Chen, Dajiang Chen, Xiaojie Fang, Mingy-
ong Yin, and Ning Zhang. “ContainerGuard: A Real-Time Attack Detection
System in Container-based Big Data Platform”. In: IEEE Transactions on
Industrial Informatics (2020), pp. 1–1. issn: 1551-3203. doi: 10.1109/TII.
2020.3047416. url: https://ieeexplore.ieee.org/document/9309057/.

[77] Christina Warrender, S Forrest, and Barak A Pearlmutter. “Detecting in-
trusions using system calls: alternative data models”. In: Proceedings of the
1999 IEEE Symposium on Security and Privacy (Cat. No.99CB36344) (1999),
pp. 133–145.

[78] Roel Wieringa. “Design science as nested problem solving”. In: Proceedings of
the 4th International Conference on Design Science Research in Information

79

https://doi.org/10.1007/978-981-13-5826-5_26
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1007/978-3-030-59635-4_8
https://doi.org/10.1109/IC2E.2019.00026
https://ieeexplore.ieee.org/document/8790061/
https://ieeexplore.ieee.org/document/8790061/
https://www.vmware.com/topics/glossary/content/hypervisor
https://www.vmware.com/topics/glossary/content/hypervisor
https://doi.org/10.1007/978-3-642-10665-1_23
https://github.com/vulhub/vulhub
https://doi.org/10.1016/j.future.2017.09.067
https://doi.org/10.1016/j.future.2017.09.067
https://doi.org/10.1109/icmlc.2004.1378514
https://doi.org/10.1109/TII.2020.3047416
https://doi.org/10.1109/TII.2020.3047416
https://ieeexplore.ieee.org/document/9309057/

Bibliography

Systems and Technology, DESRIST ’09. New York, New York, USA: ACM
Press, 2009, p. 1. isbn: 9781605584089. doi: 10.1145/1555619.1555630.
url: http://portal.acm.org/citation.cfm?doid=1555619.1555630.

[79] Claes Wohlin. “Guidelines for snowballing in systematic literature studies
and a replication in software engineering”. In: ACM International Confer-
ence Proceeding Series. New York, New York, USA: ACM Press, 2014. isbn:
9781450324762. doi: 10.1145/2601248.2601268.

[80] Kejiang Ye, Yangyang Liu, Guoyao Xu, and Cheng Zhong Xu. “Fault
Injection and Detection for Artificial Intelligence Applications in Container-
Based Clouds”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics). Vol. 10967 LNCS. Springer Verlag, June 2018, pp. 112–127. isbn:
9783319942940. doi: 10.1007/978-3-319-94295-7_8.

[81] Dit Yan Yeung and Yuxin Ding. “Host-based intrusion detection using dy-
namic and static behavioral models”. In: Pattern Recognition 36.1 (Jan. 2003),
pp. 229–243. issn: 00313203. doi: 10.1016/S0031-3203(02)00026-2.

[82] Zhuping Zou, Yulai Xie, Kai Huang, Gongming Xu, Dan Feng, and Darrell
Long. “A Docker Container Anomaly Monitoring System Based on Optimized
Isolation Forest”. In: IEEE Transactions on Cloud Computing (Aug. 2019),
pp. 1–1. issn: 2168-7161. doi: 10.1109/TCC.2019.2935724. url: https:
//ieeexplore.ieee.org/document/8807263/.

80

https://doi.org/10.1145/1555619.1555630
http://portal.acm.org/citation.cfm?doid=1555619.1555630
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1007/978-3-319-94295-7_8
https://doi.org/10.1016/S0031-3203(02)00026-2
https://doi.org/10.1109/TCC.2019.2935724
https://ieeexplore.ieee.org/document/8807263/
https://ieeexplore.ieee.org/document/8807263/

A
Appendix 1

Table A.1 presents the results for all evaluations conducted. The table uniquely
identifies each evaluated technique by its run id, which is a single line of text. The
run id is composed of the parameters used when evaluating the technique, and is
structured in the following way:

[model]_[model_parameters]_[feature_extractor]_[feature_extractor_parameters]_none

The _none at the end is not used and can be ignored. For instance, the run id
iForest_100_auto_fv_100_none can be decomposed into:

Model: Isolation Forest
iTrees: 100
Contamination: auto
Feature extraction: Frequency Vector
∆T : 100 ms

Table A.1: Raw results from all evaluations

Run ID FPR Detected %
iForest_100_auto_fv_100_none 95.45% 12.99%
iForest_100_auto_fv_200_none 100.00% 13.07%
iForest_100_auto_fv_50_none 100.00% 13.19%
iForest_100_auto_n_gram_10_none 13.64% 0.82%
iForest_100_auto_n_gram_3_none 18.18% 1.85%
iForest_100_auto_n_gram_5_none 13.64% 1.21%
iForest_100_auto_sw_10_5_none 95.45% 6.76%
iForest_100_auto_sw_11_11_none 90.91% 6.92%
iForest_100_auto_sw_11_6_none 95.45% 7.53%
iForest_100_auto_sw_23_12_none 95.45% 8.35%
iForest_100_auto_sw_7_4_none 81.82% 5.09%
iForest_100_custom_0.01_0.01_n_gram_3_none 81.82% 0.73%
iForest_100_custom_0.01_0.01_n_gram_5_none 81.82% 0.83%
iForest_100_custom_0.01_0.01_sw_10_5_none 90.91% 0.92%
iForest_100_custom_0.01_0.01_sw_11_11_none 86.36% 0.92%
iForest_100_custom_0.01_0.01_sw_11_5_none 95.45% 0.94%

I

A. Appendix 1

Run ID FPR Detected %
iForest_100_custom_0.01_0.01_sw_11_6_none 90.91% 0.93%
iForest_100_custom_0.01_0.02_n_gram_3_none 86.36% 1.01%
iForest_100_custom_0.01_0.02_n_gram_5_none 86.36% 1.16%
iForest_100_custom_0.01_0.02_sw_10_5_none 90.91% 1.27%
iForest_100_custom_0.01_0.02_sw_11_11_none 86.36% 1.26%
iForest_100_custom_0.01_0.02_sw_11_5_none 95.45% 1.28%
iForest_100_custom_0.01_0.02_sw_11_6_none 90.91% 1.27%
iForest_100_custom_0.01_0.03_n_gram_3_none 86.36% 1.11%
iForest_100_custom_0.01_0.03_n_gram_5_none 86.36% 1.35%
iForest_100_custom_0.01_0.03_sw_10_5_none 90.91% 1.50%
iForest_100_custom_0.01_0.03_sw_11_11_none 86.36% 1.47%
iForest_100_custom_0.01_0.03_sw_11_5_none 95.45% 1.52%
iForest_100_custom_0.01_0.03_sw_11_6_none 90.91% 1.51%
iForest_100_custom_0.01_0.04_n_gram_3_none 86.36% 1.42%
iForest_100_custom_0.01_0.04_n_gram_5_none 86.36% 1.59%
iForest_100_custom_0.01_0.04_sw_10_5_none 90.91% 1.69%
iForest_100_custom_0.01_0.04_sw_11_11_none 86.36% 1.67%
iForest_100_custom_0.01_0.04_sw_11_5_none 95.45% 1.69%
iForest_100_custom_0.01_0.04_sw_11_6_none 90.91% 1.69%
iForest_100_custom_0.01_0.05_fv_100_none 72.73% 2.19%
iForest_100_custom_0.01_0.05_fv_200_none 63.64% 2.16%
iForest_100_custom_0.01_0.05_fv_50_none 86.36% 2.16%
iForest_100_custom_0.01_0.05_n_gram_10_none 86.36% 1.75%
iForest_100_custom_0.01_0.05_n_gram_20_none 68.18% 1.85%
iForest_100_custom_0.01_0.05_n_gram_3_none 86.36% 1.58%
iForest_100_custom_0.01_0.05_n_gram_5_none 86.36% 1.81%
iForest_100_custom_0.01_0.05_sw_10_5_none 90.91% 1.86%
iForest_100_custom_0.01_0.05_sw_11_11_none 86.36% 1.85%
iForest_100_custom_0.01_0.05_sw_11_5_none 95.45% 1.87%
iForest_100_custom_0.01_0.05_sw_11_6_none 90.91% 1.87%
iForest_100_custom_0.01_0.05_sw_23_12_none 86.36% 1.85%
iForest_100_custom_0.01_0.05_sw_7_4_none 81.82% 1.76%
iForest_100_custom_0.01_0.07_fv_100_none 77.27% 2.70%
iForest_100_custom_0.01_0.07_fv_200_none 63.64% 2.66%
iForest_100_custom_0.01_0.07_fv_50_none 86.36% 2.64%
iForest_100_custom_0.01_0.07_n_gram_10_none 86.36% 2.10%
iForest_100_custom_0.01_0.07_n_gram_20_none 68.18% 2.14%
iForest_100_custom_0.01_0.07_n_gram_3_none 86.36% 1.90%
iForest_100_custom_0.01_0.07_n_gram_5_none 86.36% 2.11%
iForest_100_custom_0.01_0.07_sw_10_5_none 90.91% 2.23%
iForest_100_custom_0.01_0.07_sw_11_11_none 86.36% 2.21%
iForest_100_custom_0.01_0.07_sw_11_5_none 95.45% 2.22%
iForest_100_custom_0.01_0.07_sw_11_6_none 90.91% 2.19%
iForest_100_custom_0.01_0.07_sw_23_12_none 86.36% 2.19%

II

A. Appendix 1

Run ID FPR Detected %
iForest_100_custom_0.01_0.07_sw_7_4_none 81.82% 2.12%
iForest_100_custom_0.02_0.02_n_gram_3_none 90.91% 1.58%
iForest_100_custom_0.02_0.02_n_gram_5_none 95.45% 1.71%
iForest_100_custom_0.02_0.02_sw_10_5_none 95.45% 1.92%
iForest_100_custom_0.02_0.02_sw_11_11_none 95.45% 1.91%
iForest_100_custom_0.02_0.02_sw_11_5_none 95.45% 1.92%
iForest_100_custom_0.02_0.02_sw_11_6_none 90.91% 1.92%
iForest_100_custom_0.02_0.03_n_gram_3_none 90.91% 1.68%
iForest_100_custom_0.02_0.03_n_gram_5_none 95.45% 1.91%
iForest_100_custom_0.02_0.03_sw_10_5_none 95.45% 2.15%
iForest_100_custom_0.02_0.03_sw_11_11_none 95.45% 2.12%
iForest_100_custom_0.02_0.03_sw_11_5_none 95.45% 2.16%
iForest_100_custom_0.02_0.03_sw_11_6_none 90.91% 2.15%
iForest_100_custom_0.02_0.04_n_gram_3_none 90.91% 1.99%
iForest_100_custom_0.02_0.04_n_gram_5_none 95.45% 2.14%
iForest_100_custom_0.02_0.04_sw_10_5_none 95.45% 2.35%
iForest_100_custom_0.02_0.04_sw_11_11_none 95.45% 2.32%
iForest_100_custom_0.02_0.04_sw_11_5_none 95.45% 2.34%
iForest_100_custom_0.02_0.04_sw_11_6_none 90.91% 2.33%
iForest_100_custom_0.02_0.05_n_gram_3_none 90.91% 2.15%
iForest_100_custom_0.02_0.05_n_gram_5_none 95.45% 2.36%
iForest_100_custom_0.02_0.05_sw_10_5_none 95.45% 2.51%
iForest_100_custom_0.02_0.05_sw_11_11_none 95.45% 2.50%
iForest_100_custom_0.02_0.05_sw_11_5_none 95.45% 2.51%
iForest_100_custom_0.02_0.05_sw_11_6_none 90.91% 2.52%
iForest_100_custom_0.03_0.03_n_gram_3_none 95.45% 2.40%
iForest_100_custom_0.03_0.03_n_gram_5_none 95.45% 2.74%
iForest_100_custom_0.03_0.03_sw_10_5_none 95.45% 2.84%
iForest_100_custom_0.03_0.03_sw_11_11_none 95.45% 2.82%
iForest_100_custom_0.03_0.03_sw_11_5_none 95.45% 2.87%
iForest_100_custom_0.03_0.03_sw_11_6_none 95.45% 2.90%
iForest_100_custom_0.03_0.04_n_gram_3_none 95.45% 2.71%
iForest_100_custom_0.03_0.04_n_gram_5_none 95.45% 2.97%
iForest_100_custom_0.03_0.04_sw_10_5_none 95.45% 3.03%
iForest_100_custom_0.03_0.04_sw_11_11_none 95.45% 3.02%
iForest_100_custom_0.03_0.04_sw_11_5_none 95.45% 3.04%
iForest_100_custom_0.03_0.04_sw_11_6_none 95.45% 3.08%
iForest_100_custom_0.03_0.05_n_gram_3_none 95.45% 2.87%
iForest_100_custom_0.03_0.05_n_gram_5_none 95.45% 3.19%
iForest_100_custom_0.03_0.05_sw_10_5_none 95.45% 3.20%
iForest_100_custom_0.03_0.05_sw_11_11_none 95.45% 3.20%
iForest_100_custom_0.03_0.05_sw_11_5_none 95.45% 3.22%
iForest_100_custom_0.03_0.05_sw_11_6_none 95.45% 3.26%
iForest_100_custom_0.04_0.04_n_gram_3_none 95.45% 3.57%

III

A. Appendix 1

Run ID FPR Detected %
iForest_100_custom_0.04_0.04_n_gram_5_none 95.45% 3.69%
iForest_100_custom_0.04_0.04_sw_10_5_none 95.45% 3.83%
iForest_100_custom_0.04_0.04_sw_11_11_none 95.45% 3.87%
iForest_100_custom_0.04_0.04_sw_11_5_none 95.45% 3.85%
iForest_100_custom_0.04_0.04_sw_11_6_none 95.45% 3.83%
iForest_100_custom_0.04_0.05_n_gram_3_none 95.45% 3.73%
iForest_100_custom_0.04_0.05_n_gram_5_none 95.45% 3.91%
iForest_100_custom_0.04_0.05_sw_10_5_none 95.45% 4.00%
iForest_100_custom_0.04_0.05_sw_11_11_none 95.45% 4.04%
iForest_100_custom_0.04_0.05_sw_11_5_none 95.45% 4.02%
iForest_100_custom_0.04_0.05_sw_11_6_none 95.45% 4.01%
iForest_100_custom_0.05_0.05_n_gram_3_none 95.45% 4.47%
iForest_100_custom_0.05_0.05_n_gram_5_none 95.45% 4.64%
iForest_100_custom_0.05_0.05_sw_10_5_none 95.45% 4.79%
iForest_100_custom_0.05_0.05_sw_11_11_none 95.45% 4.87%
iForest_100_custom_0.05_0.05_sw_11_5_none 95.45% 4.88%
iForest_100_custom_0.05_0.05_sw_11_6_none 95.45% 4.85%
iForest_100_exact_fv_100_none 45.45% 5.22%
iForest_100_exact_fv_200_none 36.36% 5.39%
iForest_100_exact_fv_50_none 50.00% 5.20%
iForest_100_exact_n_gram_10_none 59.09% 3.52%
iForest_100_exact_n_gram_3_none 59.09% 3.43%
iForest_100_exact_n_gram_5_none 72.73% 3.51%
iForest_100_exact_sw_10_5_none 68.18% 3.67%
iForest_100_exact_sw_11_11_none 63.64% 3.63%
iForest_100_exact_sw_11_6_none 68.18% 3.62%
iForest_100_exact_sw_23_12_none 72.73% 3.52%
iForest_100_exact_sw_7_4_none 54.55% 3.55%
iForest_150_custom_0.02_0.02_sw_10_5_none 95.45% 1.94%
iForest_150_custom_0.02_0.02_sw_11_5_none 95.45% 1.92%
iForest_150_custom_0.02_0.02_sw_11_6_none 95.45% 1.90%
iForest_150_custom_0.02_0.03_sw_10_5_none 95.45% 2.16%
iForest_150_custom_0.02_0.03_sw_11_5_none 95.45% 2.14%
iForest_150_custom_0.02_0.03_sw_11_6_none 95.45% 2.13%
iForest_150_custom_0.02_0.04_n_gram_3_none 90.91% 1.87%
iForest_150_custom_0.02_0.04_n_gram_5_none 90.91% 2.23%
iForest_150_custom_0.02_0.04_sw_10_5_none 95.45% 2.34%
iForest_150_custom_0.02_0.04_sw_11_5_none 95.45% 2.33%
iForest_150_custom_0.02_0.04_sw_11_6_none 95.45% 2.30%
iForest_150_custom_0.02_0.05_sw_10_5_none 95.45% 2.48%
iForest_150_custom_0.02_0.05_sw_11_5_none 95.45% 2.50%
iForest_150_custom_0.02_0.05_sw_11_6_none 95.45% 2.47%
iForest_150_custom_0.03_0.03_sw_10_5_none 100.00% 2.87%
iForest_150_custom_0.03_0.03_sw_11_5_none 95.45% 2.88%

IV

A. Appendix 1

Run ID FPR Detected %
iForest_150_custom_0.03_0.03_sw_11_6_none 95.45% 2.86%
iForest_150_custom_0.03_0.04_sw_10_5_none 100.00% 3.05%
iForest_150_custom_0.03_0.04_sw_11_5_none 95.45% 3.07%
iForest_150_custom_0.03_0.04_sw_11_6_none 95.45% 3.04%
iForest_150_custom_0.03_0.05_sw_10_5_none 100.00% 3.18%
iForest_150_custom_0.03_0.05_sw_11_5_none 95.45% 3.25%
iForest_150_custom_0.03_0.05_sw_11_6_none 95.45% 3.21%
iForest_150_custom_0.04_0.04_n_gram_3_none 95.45% 3.46%
iForest_150_custom_0.04_0.04_n_gram_5_none 95.45% 3.67%
iForest_150_custom_0.04_0.04_sw_10_5_none 100.00% 3.83%
iForest_150_custom_0.04_0.04_sw_11_5_none 95.45% 3.84%
iForest_150_custom_0.04_0.04_sw_11_6_none 100.00% 3.85%
iForest_200_auto_fv_100_none 95.45% 12.82%
iForest_200_auto_fv_200_none 100.00% 12.83%
iForest_200_auto_fv_50_none 100.00% 12.72%
iForest_200_auto_n_gram_10_none 9.09% 0.85%
iForest_200_auto_n_gram_3_none 18.18% 1.64%
iForest_200_auto_n_gram_5_none 13.64% 1.25%
iForest_200_auto_sw_10_5_none 95.45% 6.55%
iForest_200_auto_sw_11_11_none 95.45% 6.74%
iForest_200_auto_sw_11_6_none 95.45% 7.38%
iForest_200_auto_sw_23_12_none 95.45% 8.24%
iForest_200_auto_sw_7_4_none 81.82% 4.99%
iForest_200_custom_0.01_0.01_n_gram_3_none 81.82% 0.75%
iForest_200_custom_0.01_0.01_n_gram_5_none 81.82% 0.76%
iForest_200_custom_0.01_0.01_sw_10_5_none 90.91% 0.91%
iForest_200_custom_0.01_0.01_sw_11_11_none 86.36% 0.92%
iForest_200_custom_0.01_0.01_sw_11_5_none 95.45% 0.93%
iForest_200_custom_0.01_0.01_sw_11_6_none 90.91% 0.92%
iForest_200_custom_0.01_0.02_n_gram_3_none 86.36% 1.01%
iForest_200_custom_0.01_0.02_n_gram_5_none 81.82% 1.12%
iForest_200_custom_0.01_0.02_sw_10_5_none 90.91% 1.26%
iForest_200_custom_0.01_0.02_sw_11_11_none 86.36% 1.26%
iForest_200_custom_0.01_0.02_sw_11_5_none 95.45% 1.29%
iForest_200_custom_0.01_0.02_sw_11_6_none 90.91% 1.26%
iForest_200_custom_0.01_0.03_n_gram_3_none 86.36% 1.18%
iForest_200_custom_0.01_0.03_n_gram_5_none 81.82% 1.37%
iForest_200_custom_0.01_0.03_sw_10_5_none 90.91% 1.48%
iForest_200_custom_0.01_0.03_sw_11_11_none 86.36% 1.49%
iForest_200_custom_0.01_0.03_sw_11_5_none 95.45% 1.51%
iForest_200_custom_0.01_0.03_sw_11_6_none 90.91% 1.46%
iForest_200_custom_0.01_0.04_n_gram_3_none 86.36% 1.40%
iForest_200_custom_0.01_0.04_n_gram_5_none 81.82% 1.52%
iForest_200_custom_0.01_0.04_sw_10_5_none 90.91% 1.67%

V

A. Appendix 1

Run ID FPR Detected %
iForest_200_custom_0.01_0.04_sw_11_11_none 86.36% 1.66%
iForest_200_custom_0.01_0.04_sw_11_5_none 95.45% 1.70%
iForest_200_custom_0.01_0.04_sw_11_6_none 90.91% 1.64%
iForest_200_custom_0.01_0.05_fv_100_none 72.73% 2.19%
iForest_200_custom_0.01_0.05_fv_200_none 63.64% 2.17%
iForest_200_custom_0.01_0.05_fv_50_none 86.36% 2.17%
iForest_200_custom_0.01_0.05_n_gram_10_none 77.27% 1.74%
iForest_200_custom_0.01_0.05_n_gram_20_none 68.18% 1.81%
iForest_200_custom_0.01_0.05_n_gram_3_none 86.36% 1.56%
iForest_200_custom_0.01_0.05_n_gram_5_none 81.82% 1.75%
iForest_200_custom_0.01_0.05_sw_10_5_none 90.91% 1.82%
iForest_200_custom_0.01_0.05_sw_11_11_none 86.36% 1.84%
iForest_200_custom_0.01_0.05_sw_11_5_none 95.45% 1.87%
iForest_200_custom_0.01_0.05_sw_11_6_none 90.91% 1.83%
iForest_200_custom_0.01_0.05_sw_23_12_none 86.36% 1.87%
iForest_200_custom_0.01_0.05_sw_7_4_none 86.36% 1.84%
iForest_200_custom_0.01_0.07_fv_100_none 77.27% 2.70%
iForest_200_custom_0.01_0.07_fv_200_none 63.64% 2.68%
iForest_200_custom_0.01_0.07_fv_50_none 86.36% 2.62%
iForest_200_custom_0.01_0.07_n_gram_10_none 77.27% 2.09%
iForest_200_custom_0.01_0.07_n_gram_20_none 68.18% 2.18%
iForest_200_custom_0.01_0.07_n_gram_3_none 86.36% 1.89%
iForest_200_custom_0.01_0.07_n_gram_5_none 81.82% 2.09%
iForest_200_custom_0.01_0.07_sw_10_5_none 90.91% 2.19%
iForest_200_custom_0.01_0.07_sw_11_11_none 86.36% 2.19%
iForest_200_custom_0.01_0.07_sw_11_5_none 95.45% 2.21%
iForest_200_custom_0.01_0.07_sw_11_6_none 90.91% 2.13%
iForest_200_custom_0.01_0.07_sw_23_12_none 86.36% 2.21%
iForest_200_custom_0.01_0.07_sw_7_4_none 86.36% 2.20%
iForest_200_custom_0.02_0.02_n_gram_3_none 90.91% 1.60%
iForest_200_custom_0.02_0.02_n_gram_5_none 90.91% 1.88%
iForest_200_custom_0.02_0.02_sw_10_5_none 95.45% 1.91%
iForest_200_custom_0.02_0.02_sw_11_11_none 95.45% 1.90%
iForest_200_custom_0.02_0.02_sw_11_5_none 95.45% 1.92%
iForest_200_custom_0.02_0.02_sw_11_6_none 95.45% 1.94%
iForest_200_custom_0.02_0.03_n_gram_3_none 90.91% 1.77%
iForest_200_custom_0.02_0.03_n_gram_5_none 90.91% 2.13%
iForest_200_custom_0.02_0.03_sw_10_5_none 95.45% 2.13%
iForest_200_custom_0.02_0.03_sw_11_11_none 95.45% 2.13%
iForest_200_custom_0.02_0.03_sw_11_5_none 95.45% 2.13%
iForest_200_custom_0.02_0.03_sw_11_6_none 95.45% 2.13%
iForest_200_custom_0.02_0.04_n_gram_3_none 90.91% 1.99%
iForest_200_custom_0.02_0.04_n_gram_5_none 90.91% 2.27%
iForest_200_custom_0.02_0.04_sw_10_5_none 95.45% 2.31%

VI

A. Appendix 1

Run ID FPR Detected %
iForest_200_custom_0.02_0.04_sw_11_11_none 95.45% 2.30%
iForest_200_custom_0.02_0.04_sw_11_5_none 95.45% 2.33%
iForest_200_custom_0.02_0.04_sw_11_6_none 95.45% 2.31%
iForest_200_custom_0.02_0.05_n_gram_3_none 90.91% 2.15%
iForest_200_custom_0.02_0.05_n_gram_5_none 90.91% 2.51%
iForest_200_custom_0.02_0.05_sw_10_5_none 95.45% 2.47%
iForest_200_custom_0.02_0.05_sw_11_11_none 95.45% 2.48%
iForest_200_custom_0.02_0.05_sw_11_5_none 95.45% 2.50%
iForest_200_custom_0.02_0.05_sw_11_6_none 95.45% 2.50%
iForest_200_custom_0.03_0.03_n_gram_3_none 95.45% 2.36%
iForest_200_custom_0.03_0.03_n_gram_5_none 95.45% 2.80%
iForest_200_custom_0.03_0.03_sw_10_5_none 100.00% 2.89%
iForest_200_custom_0.03_0.03_sw_11_11_none 95.45% 2.84%
iForest_200_custom_0.03_0.03_sw_11_5_none 95.45% 2.88%
iForest_200_custom_0.03_0.03_sw_11_6_none 95.45% 2.86%
iForest_200_custom_0.03_0.04_n_gram_3_none 95.45% 2.59%
iForest_200_custom_0.03_0.04_n_gram_5_none 95.45% 2.94%
iForest_200_custom_0.03_0.04_sw_10_5_none 100.00% 3.07%
iForest_200_custom_0.03_0.04_sw_11_11_none 95.45% 3.00%
iForest_200_custom_0.03_0.04_sw_11_5_none 95.45% 3.08%
iForest_200_custom_0.03_0.04_sw_11_6_none 95.45% 3.04%
iForest_200_custom_0.03_0.05_n_gram_3_none 95.45% 2.75%
iForest_200_custom_0.03_0.05_n_gram_5_none 95.45% 3.18%
iForest_200_custom_0.03_0.05_sw_10_5_none 100.00% 3.23%
iForest_200_custom_0.03_0.05_sw_11_11_none 95.45% 3.19%
iForest_200_custom_0.03_0.05_sw_11_5_none 95.45% 3.24%
iForest_200_custom_0.03_0.05_sw_11_6_none 95.45% 3.23%
iForest_200_custom_0.04_0.04_n_gram_3_none 95.45% 3.48%
iForest_200_custom_0.04_0.04_n_gram_5_none 95.45% 3.66%
iForest_200_custom_0.04_0.04_sw_10_5_none 100.00% 3.85%
iForest_200_custom_0.04_0.04_sw_11_11_none 95.45% 3.82%
iForest_200_custom_0.04_0.04_sw_11_5_none 95.45% 3.86%
iForest_200_custom_0.04_0.04_sw_11_6_none 95.45% 3.84%
iForest_200_custom_0.04_0.05_n_gram_3_none 95.45% 3.64%
iForest_200_custom_0.04_0.05_n_gram_5_none 95.45% 3.89%
iForest_200_custom_0.04_0.05_sw_10_5_none 100.00% 4.00%
iForest_200_custom_0.04_0.05_sw_11_11_none 95.45% 4.00%
iForest_200_custom_0.04_0.05_sw_11_5_none 95.45% 4.03%
iForest_200_custom_0.04_0.05_sw_11_6_none 95.45% 4.03%
iForest_200_custom_0.05_0.05_n_gram_3_none 95.45% 4.33%
iForest_200_custom_0.05_0.05_n_gram_5_none 95.45% 4.73%
iForest_200_custom_0.05_0.05_sw_10_5_none 100.00% 4.81%
iForest_200_custom_0.05_0.05_sw_11_11_none 100.00% 4.85%
iForest_200_custom_0.05_0.05_sw_11_5_none 100.00% 4.85%

VII

A. Appendix 1

Run ID FPR Detected %
iForest_200_custom_0.05_0.05_sw_11_6_none 100.00% 4.84%
iForest_200_exact_fv_100_none 45.45% 5.19%
iForest_200_exact_fv_200_none 36.36% 5.39%
iForest_200_exact_fv_50_none 50.00% 5.19%
iForest_200_exact_n_gram_10_none 54.55% 3.55%
iForest_200_exact_n_gram_3_none 68.18% 3.35%
iForest_200_exact_n_gram_5_none 59.09% 3.50%
iForest_200_exact_sw_10_5_none 68.18% 3.65%
iForest_200_exact_sw_11_11_none 59.09% 3.59%
iForest_200_exact_sw_11_6_none 72.73% 3.55%
iForest_200_exact_sw_23_12_none 63.64% 3.57%
iForest_200_exact_sw_7_4_none 54.55% 3.67%
iForest_250_custom_0.02_0.02_sw_10_5_none 95.45% 1.92%
iForest_250_custom_0.02_0.02_sw_11_5_none 95.45% 1.92%
iForest_250_custom_0.02_0.02_sw_11_6_none 95.45% 1.92%
iForest_250_custom_0.02_0.03_sw_10_5_none 95.45% 2.14%
iForest_250_custom_0.02_0.03_sw_11_5_none 95.45% 2.15%
iForest_250_custom_0.02_0.03_sw_11_6_none 95.45% 2.13%
iForest_250_custom_0.02_0.04_n_gram_3_none 90.91% 1.90%
iForest_250_custom_0.02_0.04_n_gram_5_none 86.36% 2.10%
iForest_250_custom_0.02_0.04_sw_10_5_none 95.45% 2.32%
iForest_250_custom_0.02_0.04_sw_11_5_none 95.45% 2.33%
iForest_250_custom_0.02_0.04_sw_11_6_none 95.45% 2.31%
iForest_250_custom_0.02_0.05_sw_10_5_none 95.45% 2.45%
iForest_250_custom_0.02_0.05_sw_11_5_none 95.45% 2.50%
iForest_250_custom_0.02_0.05_sw_11_6_none 95.45% 2.49%
iForest_250_custom_0.03_0.03_sw_10_5_none 95.45% 2.86%
iForest_250_custom_0.03_0.03_sw_11_5_none 95.45% 2.85%
iForest_250_custom_0.03_0.03_sw_11_6_none 95.45% 2.90%
iForest_250_custom_0.03_0.04_n_gram_5_none 95.45% 2.94%
iForest_250_custom_0.03_0.04_sw_10_5_none 95.45% 3.05%
iForest_250_custom_0.03_0.04_sw_11_5_none 95.45% 3.03%
iForest_250_custom_0.03_0.04_sw_11_6_none 95.45% 3.09%
iForest_250_custom_0.03_0.05_n_gram_3_none 95.45% 2.84%
iForest_250_custom_0.03_0.05_n_gram_5_none 95.45% 3.17%
iForest_250_custom_0.03_0.05_sw_10_5_none 95.45% 3.18%
iForest_250_custom_0.03_0.05_sw_11_5_none 95.45% 3.20%
iForest_250_custom_0.03_0.05_sw_11_6_none 95.45% 3.27%
iForest_250_custom_0.04_0.04_n_gram_3_none 95.45% 3.37%
iForest_250_custom_0.04_0.04_n_gram_5_none 95.45% 3.63%
iForest_250_custom_0.04_0.04_sw_10_5_none 100.00% 3.84%
iForest_250_custom_0.04_0.04_sw_11_5_none 95.45% 3.87%
iForest_250_custom_0.04_0.04_sw_11_6_none 95.45% 3.83%
iForest_50_auto_fv_100_none 95.45% 13.04%

VIII

A. Appendix 1

Run ID FPR Detected %
iForest_50_auto_fv_200_none 100.00% 12.95%
iForest_50_auto_fv_50_none 100.00% 12.98%
iForest_50_auto_n_gram_10_none 13.64% 0.94%
iForest_50_auto_n_gram_3_none 18.18% 2.16%
iForest_50_auto_n_gram_5_none 18.18% 1.38%
iForest_50_auto_sw_10_5_none 95.45% 6.98%
iForest_50_auto_sw_11_11_none 95.45% 8.45%
iForest_50_auto_sw_11_6_none 100.00% 7.31%
iForest_50_auto_sw_23_12_none 95.45% 8.35%
iForest_50_auto_sw_7_4_none 86.36% 6.14%
iForest_50_custom_0.01_0.01_n_gram_3_none 77.27% 0.71%
iForest_50_custom_0.01_0.01_n_gram_5_none 90.91% 0.81%
iForest_50_custom_0.01_0.01_sw_10_5_none 90.91% 0.92%
iForest_50_custom_0.01_0.01_sw_11_11_none 90.91% 0.92%
iForest_50_custom_0.01_0.01_sw_11_5_none 95.45% 0.93%
iForest_50_custom_0.01_0.01_sw_11_6_none 95.45% 0.94%
iForest_50_custom_0.01_0.02_n_gram_3_none 81.82% 0.97%
iForest_50_custom_0.01_0.02_n_gram_5_none 90.91% 1.22%
iForest_50_custom_0.01_0.02_sw_10_5_none 90.91% 1.26%
iForest_50_custom_0.01_0.02_sw_11_11_none 90.91% 1.27%
iForest_50_custom_0.01_0.02_sw_11_5_none 95.45% 1.27%
iForest_50_custom_0.01_0.02_sw_11_6_none 95.45% 1.27%
iForest_50_custom_0.01_0.03_n_gram_3_none 81.82% 1.16%
iForest_50_custom_0.01_0.03_n_gram_5_none 90.91% 1.39%
iForest_50_custom_0.01_0.03_sw_10_5_none 90.91% 1.50%
iForest_50_custom_0.01_0.03_sw_11_11_none 90.91% 1.49%
iForest_50_custom_0.01_0.03_sw_11_5_none 95.45% 1.51%
iForest_50_custom_0.01_0.03_sw_11_6_none 95.45% 1.51%
iForest_50_custom_0.01_0.04_n_gram_3_none 81.82% 1.39%
iForest_50_custom_0.01_0.04_n_gram_5_none 90.91% 1.59%
iForest_50_custom_0.01_0.04_sw_10_5_none 90.91% 1.68%
iForest_50_custom_0.01_0.04_sw_11_11_none 90.91% 1.67%
iForest_50_custom_0.01_0.04_sw_11_5_none 95.45% 1.69%
iForest_50_custom_0.01_0.04_sw_11_6_none 95.45% 1.67%
iForest_50_custom_0.01_0.05_fv_100_none 72.73% 2.19%
iForest_50_custom_0.01_0.05_fv_200_none 59.09% 2.16%
iForest_50_custom_0.01_0.05_fv_50_none 86.36% 2.17%
iForest_50_custom_0.01_0.05_n_gram_10_none 86.36% 1.82%
iForest_50_custom_0.01_0.05_n_gram_20_none 77.27% 1.75%
iForest_50_custom_0.01_0.05_n_gram_3_none 81.82% 1.48%
iForest_50_custom_0.01_0.05_n_gram_5_none 90.91% 1.73%
iForest_50_custom_0.01_0.05_sw_10_5_none 90.91% 1.86%
iForest_50_custom_0.01_0.05_sw_11_11_none 90.91% 1.85%
iForest_50_custom_0.01_0.05_sw_11_5_none 95.45% 1.87%

IX

A. Appendix 1

Run ID FPR Detected %
iForest_50_custom_0.01_0.05_sw_11_6_none 95.45% 1.87%
iForest_50_custom_0.01_0.05_sw_23_12_none 86.36% 1.87%
iForest_50_custom_0.01_0.05_sw_7_4_none 81.82% 1.83%
iForest_50_custom_0.01_0.07_fv_100_none 77.27% 2.69%
iForest_50_custom_0.01_0.07_fv_200_none 63.64% 2.65%
iForest_50_custom_0.01_0.07_fv_50_none 86.36% 2.64%
iForest_50_custom_0.01_0.07_n_gram_10_none 86.36% 2.14%
iForest_50_custom_0.01_0.07_n_gram_20_none 77.27% 2.11%
iForest_50_custom_0.01_0.07_n_gram_3_none 81.82% 1.89%
iForest_50_custom_0.01_0.07_n_gram_5_none 90.91% 2.16%
iForest_50_custom_0.01_0.07_sw_10_5_none 90.91% 2.16%
iForest_50_custom_0.01_0.07_sw_11_11_none 90.91% 2.20%
iForest_50_custom_0.01_0.07_sw_11_6_none 95.45% 2.20%
iForest_50_custom_0.01_0.07_sw_23_12_none 86.36% 2.20%
iForest_50_custom_0.01_0.07_sw_7_4_none 81.82% 2.12%
iForest_50_custom_0.02_0.02_n_gram_3_none 90.91% 1.48%
iForest_50_custom_0.02_0.02_n_gram_5_none 95.45% 1.85%
iForest_50_custom_0.02_0.02_sw_10_5_none 95.45% 1.94%
iForest_50_custom_0.02_0.02_sw_11_11_none 95.45% 1.92%
iForest_50_custom_0.02_0.02_sw_11_5_none 95.45% 1.88%
iForest_50_custom_0.02_0.02_sw_11_6_none 95.45% 1.92%
iForest_50_custom_0.02_0.03_n_gram_3_none 90.91% 1.67%
iForest_50_custom_0.02_0.03_n_gram_5_none 95.45% 2.02%
iForest_50_custom_0.02_0.03_sw_10_5_none 95.45% 2.18%
iForest_50_custom_0.02_0.03_sw_11_11_none 95.45% 2.14%
iForest_50_custom_0.02_0.03_sw_11_5_none 95.45% 2.13%
iForest_50_custom_0.02_0.03_sw_11_6_none 95.45% 2.16%
iForest_50_custom_0.02_0.04_n_gram_3_none 90.91% 1.90%
iForest_50_custom_0.02_0.04_n_gram_5_none 95.45% 2.21%
iForest_50_custom_0.02_0.04_sw_10_5_none 95.45% 2.36%
iForest_50_custom_0.02_0.04_sw_11_11_none 95.45% 2.32%
iForest_50_custom_0.02_0.04_sw_11_5_none 95.45% 2.31%
iForest_50_custom_0.02_0.04_sw_11_6_none 95.45% 2.33%
iForest_50_custom_0.02_0.05_n_gram_3_none 90.91% 1.99%
iForest_50_custom_0.02_0.05_n_gram_5_none 95.45% 2.35%
iForest_50_custom_0.02_0.05_sw_10_5_none 95.45% 2.54%
iForest_50_custom_0.02_0.05_sw_11_11_none 95.45% 2.50%
iForest_50_custom_0.02_0.05_sw_11_5_none 95.45% 2.48%
iForest_50_custom_0.02_0.05_sw_11_6_none 95.45% 2.52%
iForest_50_custom_0.03_0.03_n_gram_3_none 95.45% 2.56%
iForest_50_custom_0.03_0.03_n_gram_5_none 95.45% 2.63%
iForest_50_custom_0.03_0.03_sw_10_5_none 95.45% 2.91%
iForest_50_custom_0.03_0.03_sw_11_11_none 95.45% 2.88%
iForest_50_custom_0.03_0.03_sw_11_5_none 95.45% 2.87%

X

A. Appendix 1

Run ID FPR Detected %
iForest_50_custom_0.03_0.03_sw_11_6_none 100.00% 2.85%
iForest_50_custom_0.03_0.04_n_gram_3_none 95.45% 2.79%
iForest_50_custom_0.03_0.04_n_gram_5_none 95.45% 2.83%
iForest_50_custom_0.03_0.04_sw_10_5_none 95.45% 3.09%
iForest_50_custom_0.03_0.04_sw_11_11_none 95.45% 3.06%
iForest_50_custom_0.03_0.04_sw_11_5_none 95.45% 3.05%
iForest_50_custom_0.03_0.04_sw_11_6_none 100.00% 3.02%
iForest_50_custom_0.03_0.05_n_gram_3_none 95.45% 2.88%
iForest_50_custom_0.03_0.05_n_gram_5_none 95.45% 2.97%
iForest_50_custom_0.03_0.05_sw_10_5_none 95.45% 3.27%
iForest_50_custom_0.03_0.05_sw_11_11_none 95.45% 3.25%
iForest_50_custom_0.03_0.05_sw_11_5_none 95.45% 3.22%
iForest_50_custom_0.03_0.05_sw_11_6_none 100.00% 3.21%
iForest_50_custom_0.04_0.04_n_gram_3_none 95.45% 3.58%
iForest_50_custom_0.04_0.04_n_gram_5_none 95.45% 3.77%
iForest_50_custom_0.04_0.04_sw_10_5_none 100.00% 3.84%
iForest_50_custom_0.04_0.04_sw_11_11_none 95.45% 3.88%
iForest_50_custom_0.04_0.04_sw_11_5_none 100.00% 3.87%
iForest_50_custom_0.04_0.04_sw_11_6_none 100.00% 3.88%
iForest_50_custom_0.04_0.05_n_gram_3_none 95.45% 3.67%
iForest_50_custom_0.04_0.05_n_gram_5_none 95.45% 3.91%
iForest_50_custom_0.04_0.05_sw_10_5_none 100.00% 4.02%
iForest_50_custom_0.04_0.05_sw_11_11_none 95.45% 4.06%
iForest_50_custom_0.04_0.05_sw_11_5_none 100.00% 4.04%
iForest_50_custom_0.04_0.05_sw_11_6_none 100.00% 4.07%
iForest_50_custom_0.05_0.05_n_gram_3_none 95.45% 4.49%
iForest_50_custom_0.05_0.05_n_gram_5_none 95.45% 4.62%
iForest_50_custom_0.05_0.05_sw_10_5_none 100.00% 4.88%
iForest_50_custom_0.05_0.05_sw_11_11_none 95.45% 4.83%
iForest_50_custom_0.05_0.05_sw_11_5_none 100.00% 4.86%
iForest_50_custom_0.05_0.05_sw_11_6_none 100.00% 4.87%
iForest_50_exact_fv_100_none 50.00% 5.17%
iForest_50_exact_fv_200_none 36.36% 5.40%
iForest_50_exact_fv_50_none 50.00% 5.22%
iForest_50_exact_n_gram_10_none 63.64% 3.55%
iForest_50_exact_n_gram_3_none 54.55% 3.51%
iForest_50_exact_n_gram_5_none 59.09% 3.59%
iForest_50_exact_sw_10_5_none 63.64% 3.62%
iForest_50_exact_sw_11_11_none 59.09% 3.59%
iForest_50_exact_sw_11_6_none 59.09% 3.47%
iForest_50_exact_sw_23_12_none 68.18% 3.51%
iForest_50_exact_sw_7_4_none 63.64% 3.57%
iForest_500_custom_0.01_0.05_n_gram_20_none 68.18% 1.82%
iForest_500_custom_0.01_0.05_n_gram_5_none 86.36% 1.72%

XI

A. Appendix 1

Run ID FPR Detected %
iForest_500_custom_0.01_0.05_sw_10_5_none 95.45% 1.80%
iForest_500_custom_0.01_0.05_sw_11_11_none 86.36% 1.86%
iForest_500_custom_0.01_0.05_sw_11_5_none 95.45% 1.87%
iForest_500_custom_0.01_0.05_sw_11_6_none 95.45% 1.86%
iForest_500_custom_0.01_0.07_n_gram_20_none 68.18% 2.18%
iForest_500_custom_0.01_0.07_n_gram_5_none 86.36% 2.08%
iForest_500_custom_0.01_0.07_sw_10_5_none 95.45% 2.14%
iForest_500_custom_0.01_0.07_sw_11_11_none 86.36% 2.17%
iForest_500_custom_0.01_0.07_sw_11_5_none 95.45% 2.17%
iForest_500_custom_0.01_0.07_sw_11_6_none 95.45% 2.17%
iForest_500_custom_0.02_0.02_sw_10_5_none 95.45% 1.93%
iForest_500_custom_0.02_0.02_sw_11_5_none 95.45% 1.92%
iForest_500_custom_0.02_0.02_sw_11_6_none 95.45% 1.91%
iForest_500_custom_0.02_0.03_sw_10_5_none 95.45% 2.16%
iForest_500_custom_0.02_0.03_sw_11_5_none 95.45% 2.15%
iForest_500_custom_0.02_0.03_sw_11_6_none 95.45% 2.14%
iForest_500_custom_0.02_0.04_n_gram_3_none 90.91% 1.89%
iForest_500_custom_0.02_0.04_sw_10_5_none 95.45% 2.32%
iForest_500_custom_0.02_0.04_sw_11_5_none 95.45% 2.33%
iForest_500_custom_0.02_0.04_sw_11_6_none 95.45% 2.33%
iForest_500_custom_0.02_0.05_sw_10_5_none 95.45% 2.46%
iForest_500_custom_0.02_0.05_sw_11_5_none 95.45% 2.51%
iForest_500_custom_0.02_0.05_sw_11_6_none 95.45% 2.50%
iForest_500_custom_0.03_0.03_sw_10_5_none 95.45% 2.89%
iForest_500_custom_0.03_0.03_sw_11_5_none 95.45% 2.91%
iForest_500_custom_0.03_0.03_sw_11_6_none 95.45% 2.87%
iForest_500_custom_0.03_0.04_n_gram_3_none 95.45% 2.69%
iForest_500_custom_0.03_0.04_n_gram_5_none 95.45% 2.83%
iForest_500_custom_0.03_0.04_sw_10_5_none 95.45% 3.05%
iForest_500_custom_0.03_0.04_sw_11_5_none 95.45% 3.09%
iForest_500_custom_0.03_0.04_sw_11_6_none 95.45% 3.06%
iForest_500_custom_0.03_0.05_n_gram_3_none 95.45% 2.82%
iForest_500_custom_0.03_0.05_n_gram_5_none 95.45% 2.99%
iForest_500_custom_0.03_0.05_sw_10_5_none 95.45% 3.19%
iForest_500_custom_0.03_0.05_sw_11_5_none 95.45% 3.26%
iForest_500_custom_0.03_0.05_sw_11_6_none 95.45% 3.24%
iForest_500_custom_0.04_0.04_n_gram_3_none 95.45% 3.53%
iForest_500_custom_0.04_0.04_n_gram_5_none 95.45% 3.70%
iForest_500_custom_0.04_0.04_sw_10_5_none 100.00% 3.83%
iForest_500_custom_0.04_0.04_sw_11_5_none 100.00% 3.84%
iForest_500_custom_0.04_0.04_sw_11_6_none 95.45% 3.84%

XII

	List of Figures
	List of Tables
	Introduction
	Problem Domain and Motivation
	Research Questions and Research Goals
	Contributions
	Scope
	Structure of the Thesis

	Background
	Virtualisation
	Virtual Machines
	Containerisation
	Firecracker

	Docker
	Threat Landscape and Security
	STRIDE

	Threat Protection Approaches
	Static Analysis
	Behavioural Analysis
	Machine Learning-based Analysis

	Runtime Security

	Related Work

	Approach
	Snowballing Search Approach
	Tools and Traceability
	Search Strategy
	Study Selection Criteria
	Study Selection Procedure
	Data Extraction and Synthesis

	Refining a Monitoring Technique

	Results of Literature Review
	Snowballing
	Extracted Data
	Citation Matrix

	Inter-rater Reliability Test
	Literature Review Analysis

	Implementation
	Data Source
	Alternative Sources

	Data Representation
	Bag of System Calls
	One-hot Encoding

	Feature Extraction
	Frequency Vector
	Sliding Window
	n-gram

	Anomaly Detection
	Baseline Technique: k-nearest neighbours
	Refined Technique: Isolation forest

	Simulation Environment Tools
	Heimdall - System Call Monitoring Tool
	Hlin - Anomaly Detector Evaluation Framework

	Evaluation
	Simulation Environment
	Creating Vulnerable Docker Containers
	Collecting System Call Logs
	Normal Load Generation
	Exploitation

	Evaluation Metrics
	Iteration 0 (baseline)
	Iteration 1
	Iteration 1: Parameters
	Iteration 1: Evaluation

	Iteration 2
	Iteration 2: Parameters
	Iteration 2: Evaluation

	Iteration 3
	Iteration 3: Parameters
	Iteration 3: Evaluation

	Iteration 4
	Iteration 4: Parameters
	Iteration 4: Evaluation

	Refined Monitoring Technique

	Discussion
	Containers vs Firecracker
	Existing Monitoring Techniques
	Improving a Technique for Container Security Monitoring
	Evaluation of the Proposed Technique

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion
	Future Work

	Bibliography
	Appendix 1

