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Machine Learning for Classifying Cellular Traffic
Learning how to Predict Overloads in the Cellular Network
ISABELLE FRÖLICH
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Today’s cellular network is ever growing, making the need for a mechanism that
can identify overloads greater each day. In this report a design science research
is conducted showcasing the possibilities to use the classification machine learning
algorithm naive Bayes to identify signaling overloads in a cellular network node.
The research shows that naive Bayes can be used to successfully identify the greater
majority of the possible overloads that could occur in a cellular node.
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Glossary

AP Application Processor - the payload of the administrative activities..

DP Device Processor - the payload of the user activities..

PM Performance Measurement - measures the performance of the SGSN-MME
node and contains a combination of AP and DP data..

SGSN-MME Serving GPRS Support Node and Mobility-Management Entity -
the node in the cellular network of interest in this report..
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1
Introduction

Today there are millions of mobile devices connected to the internet each day and
the amount keeps increasing [1]. Managing cellular traffic in a satisfying way to
keep the network’s users content is an important task for many telecom companies
[1]. The cellular network consists of a number of different nodes that route the right
data packets to the right phone and allows the phone to stay mobile without losing
any packets. In any given situation these nodes can become overloaded if it receives
extreme amounts of signals. This can happen at any time and place for a number
of different reasons, e.g. if many people try to connect to the network at the same
time. Today no mechanisms are in place that can identify the overloads before they
happen.

The signals being sent to and from a node can be saved in logs that contain perfor-
mance measurement (PM) data. PM data contains thousands of instances of thou-
sands of variables making it impossible for humans to interpret. The problematic
consequences of an overloaded node is currently minimized by different predefined
actions that decrease the functionality of the node. One of the predefined measures
is to measure the CPU load of the node and if the CPU load is too high certain calls
can be dropped from the network. Only when the node is already overloaded is it
visible to the people responsible.

The overload of a node is often caused by an extreme amount of signaling and if the
spikes in signaling and other critical patterns could be identified the overload might
be mitigated. Even if the problem is discovered only as much as an hour beforehand,
the appropriate action could be taken. For example a technician could be sent to
the location to mend the problem. No amount of testing can hinder a network from
becoming overloaded in an extreme situation. It is therefore of interest to try a new
approach, which could possibly circumvent the issues with the overloads.

In recent years it has become more popular to use machine learning to solve prob-
lems that involve a large amount of data [3]. More machine learning libraries and
guidelines have become available online which can facilitate the implementation of
the algorithms [3]. If one of the available machine learning techniques could be
used to classify data and predict possible overloads in a cellular network it might be
possible to prevent the overloads from happening at all.
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1. Introduction

As machine learning is good for handling large amounts of data it would be suitable
for finding patterns in the PM data that humans can not find. If the pattern
recognition is successful it could be used to send out a warning when the node is
about to be overloaded. By learning how to recognize a potentially problematic
patterns the computer could warn the administrator when the node needs backup
and technicians could be called in. This could decrease the downtime of the node
to a bare minimum which would be beneficial for the telecom companies and create
more reliable products for their end-users. If such an approach is successful it could
be a step on the way to create a node that has no unplanned downtime.

Many books on machine learning have been published [2] - [7] and papers have
applied machine learning in many different fields [10] [11]. But, there does not
exist much research about error handling in combination with machine learning and
especially not error handling in network components. As machine learning is a novel
problem solving technique the effectiveness of the chosen algorithms in this type of
problem is evaluated during the research and can in the future be compared to other
techniques.

The report aims to describe how to solve the problem by developing a prototype that
uses machine learning and draw conclusions from the findings. The work will be done
in collaboration with the telecom company Ericsson to gain hold of real world PM
data. The report is structured as follows; In chapter 2 the component of interest,
the SGSN-MME and the PM data is examined more closely. An overview of the
machine learning field and the different classification algorithms is also introduced
in that chapter. In chapter 3 the methodology and research questions answered in
this report can be found. After that, in chapter 4, the actual implementation of the
algorithm is showcased. In the following chapter the results of that implementation
is presented. The two last chapters discusses the results and draws conclusions from
the discussion and the results.
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2
Background

The background section will first describe the machine learning field as a whole in
order to later describe the different classification algorithms that have been consid-
ered in this paper. It will also describe the component in the cellular network that
the research concerns, the SGSN-MME node, and the data that it produces.

2.1 Machine Learning

In literature machine learning and pattern recognition are well defined concepts [2]-
[7]. There are a number of different algorithms that are used in machine learning.
Commonly these algorithms are categorized into two approaches; unsupervised- and
supervised learning [5]. Unsupervised learning means that the task is performed
without any previous reference points. In supervised learning, on the other hand,
the task is performed with some already known facts or examples. There is also
a middle ground where the algorithm uses a combination of the two approaches
called semi-supervised learning [5]. The nature of these algorithms is explained
more closely later in this chapter to provide a rationale for which type of algorithm
will be used in this thesis. A general picture of how machine learning works in
comparison to how normal programming works can be seen in figure 2.1.

Supervised learning utilizes an external resource called a teaching set as a reference
to optimize the algorithm [12]. This teaching set entails both the initial inputs
and the corresponding ideal outputs. With the teaching set the algorithm, learns
how to map input values to output values in the best way [7]. Supervised learning
algorithms work by first letting the machine know what input maps to which output
and then, with the help of that knowledge, the algorithm cam estimate the output.
Supervised learning algorithms are validated by entering input into the algorithm
for processing and then controlling that the output matches what is desired. Then,
the given output can be measured to estimate how effective the chosen algorithm
is. In this research, a supervised learning algorithm will be used to predict which
patterns will cause an overload in a node.

As mentioned, unsupervised learning algorithms do not receive a complete teaching
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2. Background

Figure 2.1: The general concept of how machine learning works versus how
regular programming works [12].

set to use in the learning phase. The teaching set used by unsupervised learners
only contains input without any corresponding labels that specifies the expected
output[5]. This means that no defined answers exist that the machine can map
the input against. As nothing is known about the input, no predictions about the
data can be made, instead the data is described or grouped in different ways[7]. To
measure the effectiveness of the chosen unsupervised learning technique the given
output and the expected output has to be evaluated [7]. There are a number of dif-
ferent algorithms of this kind but they all have in common that they only describe
the data. One of the most common unsupervised learning algorithms is clustering
which groups attributes with similar patterns together [12]. Another unsupervised
algorithm is association rules which is used for detection of patterns [12]. It is not
possible to provide these types of algorithms with the wanted output which makes
them useful for tasks were the label or category of the data is not known [7]. Un-
supervised learning is rarely used when there exist examples where the answers are
known and there exists no unsupervised classification algorithms [7]. Unsupervised
learning is instead often used for data mining [12].

The combination of the two earlier mentioned approaches is called semi-supervised
learning which is an approach that has evolved in the computer science community
in recent years. Semi-supervised learning uses a teaching set, as the previously
mentioned approaches, but the set only contains a very limited amount of examples
of input and its corresponding valid output. This requires a bit more of the algorithm
and of the data, as more assumptions has to be made to draw conclusions about it.
But, as the example data can be time consuming to put together, in certain cases,
for example when it comes to audio and video data, it is of interest to minimize
the amount of manual work. With the semi-supervised approach the algorithm has
a reference but not as much work needs to be done to provide the reference. In
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2. Background

some cases it is even more advantageous to have less data as too many data points
can make the data too complex to process. [5] Semi-supervised learning will not be
evaluated further in this thesis as there exists a lot of teaching data.

As mentioned these approaches are widely used in literature and they are supertypes
of a number of different techniques that can be used in machine learning [7]. Super-
vised learning is a supertype for, among others, the concepts of classification and
regression. While under the supertype unsupervised learning there are the concepts
of clustering and dimensionality reduction [7]. Semi-supervised learning can include
some of the concepts of both supervised- and unsupervised learning [5]. All of these
machine learning techniques are used to perform certain tasks and they are in turn
supertypes of the algorithms that are used to help solve these tasks. As classifica-
tion algorithms only exist under the supervised learning supertype; only supervised
algorithms will be considered further.

One of the mentioned supervised learning techniques is regression [7]. Regression
algorithms learn how to estimate an output value for a given input value by fitting
the values to form a prediction function, i.e. numeric prediction [3]. The other
mentioned supervised learning technique, classification, is used to identify which
class a given data point belongs to [3]. The machine learns this technique by using
the algorithms to analyze the mapping between the data in the teaching set and the
corresponding valid output. This is often done by looking at the attributes of the
input data to recognize patterns that might occur [12]. These algorithms include, for
example, decision trees [6], neural networks [3], naive Bayes [12] or nearest neighbor
[12] that are used in different situations. As this research focuses on classification,
only classification algorithms will be evaluated further.

2.2 Classification Algorithms

In this section a number of machine learning algorithms used when performing
classification tasks are described. As there are more classification algorithms than
can be described in this report only the most common ones will be mentioned in
section 2.2.1 and 2.2.2. The algorithms are often useful in similar situations and the
effectiveness of an algorithm when solving a certain problem can only be measured
after it is implemented[9]. Therefore, no conclusions about their effectiveness can
be showcased in this sections. Instead, it focuses on describing the algorithm’s
characteristics and common areas of use. The algorithms are classified into two
groups; white box methods and black box methods [12]. White box methods provide
models that are more or less easily understood. Black box methods, on the other
hand, provide models that are nearly impossible to understand.

Problems with classification algorithms includes overfitting and underfitting data.
Overfitting a model means that the model follows the variations in the data very
well. Each peak and valley is modelled by the algorithm and not one data point
is missed by the model. But the problem of overfitting is that humans often make
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2. Background

mistakes, for example, mistakenly entering the wrong value. This mistake is then
reflected in the model which will affect the reliability of the algorithm negatively.
Besides mistakes other factors can influence the data negatively, for instance, faults
in the measuring systems. This undesirable data is called noise and can slip through
if a model is overfitted. The opposite problem is an underfitted model which does
not model the data well and can miss small, but important, patterns. Both problems
are equally bad, and it is therefore important to find the right balance that creates
a representative model of the data. Examples of both underfitting and overfitting
can be seen in figure 2.2 where the nearest neighbor algorithm is affected by both
problems. K stands for the number of examples considered when placing a new
object.[12]

Figure 2.2: The problem of underfitting and underfitting the nearest neighbor
algorithm [12].

As mentioned it is important to evaluate the performance of the algorithm to know
how well it worked in a certain situation, one way of doing this is to measure the
accuracy of the chosen classification algorithm. A measurement of the accuracy of
a classification algorithm can be computed in a number of different ways but only
measures for classification tasks with two classes are considered. The most simple
way to measure the accuracy is to compare the number of correctly predicted classes
to the number of instances in a test set [12]. This type of accuracy is calculated
with this formula:

(TN + TP )/(TN + TP + FN + FP )
Where TN and TP stands for true positives and negatives and FN and FP stands
for false positives and negatives [12][16]. A positive class is the class is the class that
is of most interest and the negative class is the class of less interest. For example if
we are predicting if an email message is spam or not the positive class is the spam
class and the negative class is the non-spam class.

A true negative happens when an instance is classified correctly and belongs to the
class of low interest or the negative class [16]. A true positive is also an instance
classified correctly but which belongs to the class of interest or the positive class
[16]. A false positive happens when the algorithm wrongly classifies an instance
in the class that that indicates that something of interest has happened. A false
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positive is often accepted as opposed to a false negative as a false negative results
in an important event being missed. If the number of correctly predicted classes is
close to the total amount of instances, the accuracy is good [12]. A similar way of
estimating the accuracy is to include the number of false positives in the equation,
then the formula is:

(TN + TP + FP )/(TN + TP + FN + FP )

This measurement is used in situations where it is of high importance to avoid a false
negative but a false positive does not entail any far-reaching consequences [12]. This
measure can sometimes be of greater interest than the first mentioned measurement
of accuracy as it better illustrates how many events of interest that are missed.

Even though the above mentioned accuracy models provide a measure of the per-
formance of the algorithm other measures could add even more insight about the
performance of the algorithm [12]. The problem with the accuracy model is that
if the existence of instances of one class is very low the algorithm will not have to
predict that class very often and the accuracy can therefore seem to be better than
it is. If, for example, the accuracy is 99% and one of the classes only appears in 1%
of the instances the accuracy does not say anything about the performance of the
algorithm [12]. Therefore other complementary measures have been developed to
evaluate the performance of the algorithms. One of these measures is the Matthews
Correlation Coefficient which measures if the prediction could have happened by
chance or if the prediction is deliberate [20].

Matthews correlation coefficient is one of the most common correlation coefficients
used when evaluating the performance of binary machine learning classifiers [18][17][19].
Matthews correlation coefficient can take on any value between -1 and 1, where -1
indicates that the predictions have a negative correlation with the accurate results,
0 that the predictions have been assigned randomly and have no correlation with
the correct classes and 1 that the predicted classes fully correlate with the accurate
classes [20]. The equation for the coefficient is:

(TP ∗ TN − FP ∗ FN)/
√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP, TF, FN and FP are abbreviations for the same concepts as explained
earlier [21].

2.2.1 White Box Methods

White box methods are a type of machine learning algorithms that create a model of
the underlying data that can be understood by a human. This model can be useful
when interpreting the results of the given machine learning algorithm as it provides
information about why the results look like they do. The model can also be used
to find new and interesting patterns in the data that was not visible beforehand.
White box methods can be other algorithms than classification algorithms, but this
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section only focuses on white box algorithms that are classification algorithms as
well. [12]

Decision Trees
Decision trees are well defined classification algorithms [12] which are sometimes
called classification trees [7][14]. A decision tree is, just as the name suggests, a
tree structure where each node in the tree represents a decision that has to be made
in order to traverse down the tree[12]. Decision trees are binary, i.e. each parent
node has a maximum of two children and they can handle both numerical and other
attributes[14]. They operate by taking the decision with the highest abstraction
level first, i.e. the factor that seems to be the most influencing one [3]. This initial
decision will divide the data into two groups. Then the algorithm continues down
the tree making more and more fine grained decisions, partitioning the tree each
time[5]. Finally, it arrives at the smallest concluding decisions, called the terminal
or leaf node. If the decision is final is determined by a given criteria, for example;
the tree size or the percentage of nodes with the same class [12]. An example of this
process can be seen in figure 2.3 were the rings marked with a "n" are the nodes and
the squares marked with a "l" are the leaves. The conditions where the tree splits
are the division criteria.

Figure 2.3: An example of how a decision tree works [14].

The decision tree is quite easy to follow with a clear outcome that makes it suitable
for applications in processes that require a transparent workflow [4]. There is a
number of different algorithms that use decision trees, the most prominent one
being the C5.0 algorithm [12]. This algorithm contains features to minimize the risk
of overfitting or underfitting the decision tree as both of these problems are common
when using decision trees [12]. A technique specific to this algorithm that minimizes
these two problems is called pruning and entails removing branches that are not
supposed to affect the classification [14]. Decision trees are commonly used with
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2. Background

problems where the solution needs to be transparent. This lead to the algorithm
being one of the most popular in the banking industry where transparency is a
requirement [12]. For example, the algorithm can be used when performing online
purchases that requires a persons bank credit to be pre-approved [12].

Classification Rules
The classification algorithm classification rules, sometimes called rule learners, is
a variation of the decision tree that instead uses different rules as splitting criteria
which are formulated in a standard programmatic way with "if" and "then" state-
ments. The rules are used as decision makers to conclude when the tree should split
and are comprised of two components: antecedents and consequents. Antecedents
are pre-conditions that have to be met, i.e. the "if" statement. The antecedents
describe values that the attributes can take on and are followed by a consequent.
The consequent is the outcome if the antecedents are fulfilled, i.e. the "then" state-
ment. Classification rules are even easier to understand than decision trees as they
clearly describe why a split was made. As opposed to decision trees classification
rules are separate from the model and do not have to be applied in a certain order.
Classification rules are suitable for the same tasks as decision trees are, they can for
example be used when identifying reasons for hardware failures. [12]

Nearest Neighbor
Nearest neighbor algorithms group objects from the teaching set with the same
classifier together and looks at how their attributes are similar, an example of this
can be seen in figure 2.4 [3]. When a new object is introduced the algorithm looks
at the known examples and their attributes to determine in which classifier the new
object should be placed [3]. Nearest neighbor algorithms commonly use Euclidean
Distance to measure how “close” the object’s attributes are to the attributes in the
teaching set [5]. The class the input belongs to can be determined by looking at
only the example which is closest to the object. Another option is to look at several
of the closest examples and choosing the class that is represented most often [5].
How many examples that should be considered in the nearest neighbor algorithm is
a trade-off [12]. Too few examples can cause noise or errors in the data to affect the
outcome and the result will be overfitted. Choosing too many examples can cause
the data to be underfitted which causes the algorithm to ignore trends that are not
as obvious as big trends. The amount of examples considered using the nearest
neighbor algorithm usually varies between 3-10 examples [12].

This type of algorithm is called a lazy learner as it does not create a model of the data
that it uses in the classification process [12]. Instead, it simply consults the teaching
set to classify the input. This makes the algorithm very quick in the learning phase.
However, the downside of this is that it makes the algorithm relatively slow in the
classification phase [14]. The nearest neighbor algorithm does not, as opposed to
many other algorithms, make any assumptions about the distribution of the data,
which means that it can be used with most types of distributions and types of data
[12]. As mentioned the nearest neighbor algorithm looks at the characteristics of
the attributes and groups the input with the group that it is most similar to [12].
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2. Background

Figure 2.4: An example of how the nearest neighbor algorithm works [12].

It is therefore useful for face recognition and similar tasks as it is able to group a
multitude of complex attributes together and create clear groups of them [12]. It
does on the other hand not perform well with attributes were the boarders of the
groups are fuzzy and hard to define [12].

Naive Bayes
Naive Bayes is a form of probabilistic learning that uses probability to calculate the
chance of a certain outcome, called an event [12]. As it is one of the supervised
learning algorithms it uses a teaching set to learn how the data works [14]. The
teaching set is used to create a model that is representative for the data. After
the teaching phase it is ready to receive input [12]. To map the input to the right
group it groups known events in the model with patterns similar to the input, which
are identified by examining their respective attributes [12]. The group will then be
used to calculate how many of the instances in that, that led to a certain outcome.
The percentage calculated is the chance of the outcome happening again given the
provided input. This is calculated with the help of the Bayes theorem seen in figure
2.5.

Naive Bayes relies on a number of assumptions for the algorithm to work, this is
why it is called “naive”. For example it assumes that the different attributes are
independent of each other, i.e. that they do not affect one another, it also assumes
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that all attributes are equally important [14]. This means that no attribute should
affect the outcome more than another attribute [12]. Even though the algorithm
assumes this it can still, in some cases, provide good results if the assumptions
are broken [12]. This has made naive Bayes a very popular algorithm that suits a
multitude of different classification problems. If the assumptions are however met
the algorithm is even more suitable for solving the problem at hand and is very quick
in doing so. It also has the benefit of providing accurate results in situations were
some data is noisy or incomplete [12]. The ease of use has made the naive Bayes
algorithm popular when classifying junk mail. It can also be used when creating
weather reports and for detecting anomalies.

Figure 2.5: Bayes theorem - The underlying formula for naive Bayes.

Bayes theorem uses three different probabilities to calculate probability of an event
happening given certain attribute values as can be seen in figure 2.5. The chance of
an event A happening given the attribute value B is called the posterior probability.
The posterior probability is calculated using the likelihood, the prior probability
and the marginal likelihood. The likelihood is the probability that attribute value B
occurred with event A in the past. The prior probability is the chance that event A
will happen. And the marginal likelihood is the chance that the attribute will take
on value B. [12]

To calculate the probabilities the algorithm uses the standard deviation (calculates
how much the values vary from the mean) and the mean of each attribute in a class.
If there are two classes the mean and standard deviation needs to be calculated for
each attribute in both cases, i.e. there will be 2*(number of attributes) calculations.
These values are used to calculate the probability of a certain value belonging to a
class. If the posterior probability exceeds 50% the input should be assigned to the
class that specifies that event A will happen. If the chance is under 50% it should
be assigned to the class that specifies that the event will not happen.[12]

Naive Bayes can classify continuous numeric variables in two ways, the first one
being by binning the data. Binning means that the data is sorted into intervals that
can be of varying size, but this method leads to information loss [12]. The other
method is to use the Gaussian probability density function which assumes that the
underlying distribution is normal [15]. This way of classifying instances is sometimes
called the Gaussian classifier and uses the probability density function to calculate
the probability of a variable belonging to a certain class [15]. The function uses
the value of one variable x, the mean of the variables in the investigated classµ and
the standard deviation of the variables in the investigated class σ to calculate the
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probability of that value belonging to the class with the following function:

(1/
√

2 ∗ π ∗ σ2) ∗ e−(x−µ)2/2σ2

2.2.2 Black Box Methods

There are a many other algorithms that can perform classification tasks besides
the ones mentioned in the previous section. The algorithms described above are
relatively easy to understand and the models they create are transparent and acces-
sible. Other methods are not as transparent and comprehensible which gives them
the name black box methods. Two of these algorithms are Neural Networks and
Support Vector Machines (SVM) . Both these algorithms produce models that are
complex and hard to understand, which is why they were classified as black box
methods. However, even though they are hard to understand, they can be very ac-
curate when modeling certain real world problems. Neural Networks come from the
neuroscience field and uses concepts first discovered when studying how the brain
works to perform complex machine learning tasks. Support Vector Machine uses a
multidimensional space to map features to the correct output. [12]

Support Vector Machines
Support Vector Machines can be used for both classification tasks and to create
linear regression models for numeric predictions as well as for many other problems
but, are most popular when classifying patterns. They have for example been used
when classifying text, like recognizing what language a text is written in. SVM uses
what is called a hyperplane to separate data into groups with the same classifier.
This hyperplane can stretch over multiple dimensions and is therefore useful when
modeling real world problems that has a large amount of features. The hyperplane
is chosen by finding the plane that separates the data and has the maximum margin
on both sides of the data. This hyperplane is called maximum margin hyperplane
(MMH) and is important as it is the best way of separating the data so that future
data points are classified correctly. The support vectors are the points in the dataset
from both classes that are closest to the MMH. The support vectors allow the
algorithm to be memory efficient even with large amounts of data, as only the
vectors need to be saved for future reference. [12]

The mentioned MMH is only applicable when the data can be separated by a straight
plane. If this is not the case another method that allows data points to be on
different sides of the plane is used. In this case the so called "cost" of the data point
is calculated by estimating the distance from the proposed line. The plane is placed
so that the cost of the data points on the different sides is minimized. As SVMs
are used in such a wide variety of problems they use a number of different ways to
estimate how the training data should be separated. They can also use kernels to
trick the algorithm to view the data in a linear way. The SVM uses a number of
different techniques to model the data and have proven to be very accurate. The
algorithm is not very sensitive to noise nor overfitting and has recently gained a lot
of support in the form of easy to use libraries for many different languages. It can

12



2. Background

also model problems with a very large amount of features, even though the training
process istime consuming. The downside is that the model that is created by the
algorithm is very hard to interpret, which makes it difficult to draw conclusions from
it. [12]

Neural Networks
Neural Networks can also model a number of different problems just as the SVMs
and they can even be used for unsupervised learning. The network started out as a
model of the human brain that was used to showcase how a brain functioned. Later
research evolved and the algorithm was used to model more versatile problems. The
algorithm has for example been used for speech recognition in phones and turning
handwriting into speech. The neural network can model very complex problems.
This is due to the fact that a network can contain several hundreds of artificial
neurons, which each take a number of weighted variables as input. These neurons,
with the help of a function, are used to calculate the output.

The actual network is defined by three different properties; an activation function,
a network topology and a training algorithm. The first characteristic of a Neural
Network is its activation function. The activation function transforms the input
and then forwards the output to the rest of the network if a certain threshold value
is met. There are a number of different threshold functions that can be used to
determine if and how the output should be forwarded. One of these functions is
the unit step activation function, which is a binary function that forwards the value
if the threshold is met, and does nothing if it is not met. The most commonly
used activation function is the sigmoid function which allows non-binary output in
a range from 0 to 1. [12]

The network topology is also an important part of the Neural Network. The topology
is for example determined by how many neurons and layers that are present in the
network. For an easy classification task only one layer might be needed, with one
neuron for each input feature. But for more complex tasks multiple layers, called
hidden layers, can be added to increase the computational power. The topology is
also defined by the direction of the data flow, which is either forward or both forward
and backward. The last property that defines a Neural Network is the training
algorithm. The most developed and used training algorithm is backpropagation
which iterates over the neurons to estimate the weights of the input. The technique
is slow and produces a model that is too complex to understand. However it has
proven to be a very accurate and versatile machine learning algorithm. [12]

2.3 SGSN-MME Node

The SGSN-MME is one of the nodes that forms the cellular network and is the
node of interest in this research. The SGSN-MME is a node in the cellular network
that, among other things, handles the mobility of a phone connected to the network.
The SGSN part of the acronym stands for Serving GPRS Support Node (GPRS in
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the acronym stands for General Packet Radio Service). SGSN handles the mobility
of the entities, for example mobile phones, connected to the 2G/3G network. The
MME part of the acronym stands for Mobility-Management Entity. The MME
handles the mobility of the entities attached to the 4G network. This node handles
incoming traffic and routes the traffic onward in the network.

Figure 2.6: Picture of one version of the SGSN-MME node [1].

The SGSN-MME is made up of a number of identical cards placed in a box as can
be seen in figure 2.6. The cards are numbered with odd numbers ranging from 1 up
to the maximum of the number of cards possible in that specific node. These cards
handle the traffic that comes though the SGSN-MME and a balancing algorithm
controls that each card handles the same amount of traffic to make sure that a
single card does not get overloaded while the other ones are empty. Each card
contains multiple cores which are split up into groups that handle different types
of traffic. The amount and type of data handled by the node at a certain point in
time can be saved as a node dump that contains information about the node and its
traffic. These node dumps, or logs, are only created if something goes wrong in the
node or if someone has explicitly instructed the node to create a node dump. The
node dump contains the PM data which is produced by the node. More about the
PM data is found in the next section.

2.4 PM-Data

PM data consists of numerous numerical counters and variables that keep track
of the signal traffic in the SGSN-MME node. A counter can only be incremented
and counts the number of times a certain type of signal arrives in the node. For
example; if an idle phone tries to connect to the node a counter that keeps track of
the number of idle attachment attempts is incremented. The variables, also called
gauges, on the other hand can both be incremented or decremented. The gauges
show, for example, the number of attached units at a certain point in time. The
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PM data produced by the SGSN-MME node is written in a node dump, or a log,
that can be saved and used to analyze the signaling patterns of the node. Below, in
figure 2.7, a draft of what such a node dump could look like is presented.

Figure 2.7: Sample of a node dump from 2015 where the node was overloaded
after three days.

There are two types of signals that the gauges and counters keep track of; user
plane payload (DP - Device Processor) and control plane payload (AP - Application
Processor). DP is the signals that the user is accountable for, for example when
the user uses the cellular network to consume data by streaming a video. AP is
the signals that are produced in the background and is more of an administrative
nature. One example of this administrative signals is keeping the phone connected
to the network even when it is moving around but not in use which allows the phone
to be mobile without loosing connection. This type of signalling is not only affected
by how much a user uses their phone, but also by more physical aspects such as how
much space there is between mobile towers in a given area. PM data shows both
AP and DP signaling.

The PM data consists of 4010 counters and gauges which all keep track of different
signals. As can be seen in figure 2.7 the counters and gauges, both referred to as
variables, have names that explain what they are measuring. For example, the third
column in figure 2.7 counts the number of attached entities with processes that are
suspended. Another possible variable name is for example: AttIdle1_1_E(AP). The
initial acronyms explain what the variable is measuring, for example the amount of
attached idle entities. The numbers following the explanation shows the number of
the card that the information applies to. The number of the card is odd numbered
from 1_1 to 1_23 in the node dumps which they are also named in the physical
entity. The single capitalized letter after the numbers show which type of traffic
is measured. E stands for 4G traffic, U stands for 3G and G stands for 2G. The
brackets contain which type of data is measured by this variable, which is AP, DP
or both.
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The values of the variables are added to the PM-data ones every hour but the
PM data is only saved if an overload occurs. If and overload occurs, the point
in time when the overload happened can be gathered from the logs which include
alarms with time stamps. The alarms can be used to identify when the overload
happened and hence also which variable values that are measured before and after
the overload. The variable values that are recorded during the hour the overload
is happening is hereafter called the transition instance. The instance of variable
values that is recorded the hour before the overload has happened is called the
pre-transition instance.

A database at Ericsson stores some of the node dumps which contain the PM data
produced by SGSN-MME nodes used by real customers. The logs produced by the
node shows the overloads but, as it contains a multitude of different variables and
is several megabytes in size, it is difficult to analyze it and find the overloads. It is
also problematic to locate the elements of interest. It is therefore not practical for
a human to interpret the signaling patters that can be gathered from the logs. The
data could however be analyzed by a machine if it knew what it was looking for.
If the logs that are produced when a node is overloaded are used as a teaching set
for a machine learning algorithm, it could be used to find patterns that human eyes
can not find.

2.5 Related Work

There are many different studies that make use of the mentioned algorithms and
apply them to their respective fields. Machine learning has for example been used
in social sciences [10], finance [11] and many other fields. Many studies on the
application of machine learning has also been made in the telecommunications and
internet fields were many different classification algorithms has been applied to a
variety of problems [24][22][23]. A common machine learning classification task is
to classify different types of internet traffic [24] [22]. This problem has, for example,
been solved with decision trees, naive Bayes and Neural Networks. Another problem
in the same field is the classification of malicious code in the network [23]. This
problem has also been solved using naive Bayes and decision trees.

There are other similar work that uses machine learning to predict the amount of
traffic, for example, in cloud computing, in distributed systems and in different
applications [25][26][27]. This work also focuses on predicting peaks in the CPU
load, but in other fields and with other data. A number of these problems are
solved with Gaussian processes and Bayesian learning, often in a combination of
the two, with successful results [25][26]. It has also been solved using Euclidean
distance [27]. Although there exists a lot of research about machine learning and
much research has been conducted to investigate how to predicting overload, not
much research has been done on predicting overloads in the cellular network.

Several reports has explored the difference between the algorithms discussed in sec-
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tion 2.2. The Third IEEE International Conference on Data Mining discusses the
difference of the classification algorithms naive Bayes, SVM and decision trees [28].
The report states that there are no significant differences in the prediction accu-
racy between the three, even though the accuracy varies slightly between them
[28]. Another report discusses the difference between naive Bayes, SVM and nearest
neighbor when applied to another classification task[29]. This report declares that
naive Bayes and SVM provided better predictions than nearest neighbor but that
naive Bayes needed more training data than SVM and SVM needed time consum-
ing manual tuning to perform well [29]. Several other comparing studies has also
been performed with varying results, but no study concluding the best algorithm
for classifying overloads is found.
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3
Methodology

To evaluate if it is possible to use machine learning when classifying patterns in the
PM data, a design science research will be used. The first section in this chapter
introduces the research questions and how they will be answered. The second section
will give a specification of how the design research will be performed and what steps
is taken during the research.

3.1 Research Questions

To start the research it is important to choose an algorithm that can classify the
data instances as good, no overload has occurred, or bad, an overload has occurred.
This will be done by evaluating the different algorithms considered in the literature
review. After the evaluation an algorithm that can use a teaching set to classify data
patterns will be chosen. The classes will be one of two: data with a high probability
of overloading the node or data that has a low probability of overloading. This will
be answered with the following research question:

Which machine learning algorithm is suitable to use when predicting if a node in
the cellular network is about to be overloaded?

When this question is answered an examination of the PM data has to be done to
make sure that machine learning can be used to classify patterns in this data which
could include preparations of the data in different ways. The second question is
therefore:

How can machine learning be used to identify the patterns in the PM data that causes
CPU overloads in the SGSN-MME node?

When an algorithm is been chosen it will be used to create a prototype that shows
whether it is possible to classify the data that produces the high CPU loads. This
algorithm is evaluated to draw conclusions on whether it is suitable for the problem
or not, which will answer the question:
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Is it suitable to use a classification algorithm to predict overloads in the cellular
network?

3.2 Research Methodology

The research is organized into three steps to follow the design science research that
is specified below. The first step is only performed once but the two last steps are
iterated over two times. The first iteration separates itself from the second as only
one node dump is used, while the second implementation uses four node dumps. The
difference is that with the one node dump the files does not have to be combined
and formatted in a different way. The three steps are specified below:

• The research starts out with an evaluation of all the different classification
machine learning techniques. This is done by the literature review in chapter
2 which is carried out with the structure of the PM data in mind. The different
algorithms suitability for classifying the data is evaluated. The outcome of this
step is that the machine learning algorithm Naive Bayes is chosen.

• The second step is that an analysis of the possibilities of using that machine
learning technique when classifying patterns in the PM data that precedes
critical problems is carried out. This is done by manually evaluating the PM-
data to get a better understanding of what it looks like. After the manual
inspection is performed a script that formats the data in a suitable way for it
to work with the naive Bayes algorithm is developed.

• After the algorithm is chosen and the data is transformed into a suitable format
that works with the Naive Bayes algorithm a proof-of-concept is developed.
The proof-of-concept is used to showcase how a machine learning technique
can be used to classify PM data and includes measurements of accuracy and
correlation to the underlying data so that the algorithm can be evaluated.

Design science research focuses on showcasing how a novel technique can be used
in practice to gain more understanding of a certain phenomena [13]. This research
method is chosen as it uses a practical implementation to build the knowledge base.
By designing a prototype that uses machine learning it is possible to analyze how
well the algorithm fit the problem and if it should be used in future similar problems.
The most important part about design science research is to produce new knowledge
or to strengthen the knowledge about a particular problem. The design science
research process can be seen in figure 3.1.

The first step in the design science research is the Awareness of Problem. This step
includes creating awareness of a problem which for example can be a gap in the
knowledge base of the research field. This can be done by identifying a new problem
or a applying a novel solution to a known problem. The outcome of this step is
the proposal and the problem statement which is developed in the beginning of the
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Figure 3.1: Process when performing design science research [13].

research. The essence of this output is the research questions, which can be found in
the previous section. The problem statement in the proposal describes the problem
and is used in the next step, suggestion. In the suggestion phase a suggestion of
how the problem should be solved is created. The proposal and the tentative design
which is the outcome of the suggestion phase are closely connected. This is because
the design is started already in the proposal and is then more closely specified in
the suggestion phase. This phase in the research is performed with the help of
a literature review. The literature review is done in order to suggest a suitable
algorithm for this problem and is specified below in a subsection.

When the literature review is done and the suggestion of the appropriate algorithm
is made the development phase can start. In this case the development phase is the
application of the algorithm on the given problem. The development phase started
with the data being transformed into a suitable format. After that a solution with
the Naive Bayes algorithm is developed. When the implementation is done the
algorithms suitability and the outcome of the implementation is evaluated, which
is the evaluation step. The evaluation includes metrics that measure how well the
implementation works and what is gained from the implementation. The evaluation
phase is described in the results and discussion chapter in this report. From the
evaluation and the measurements conclusions can be drawn and possible future
improvements can be suggested. This is the conclusion chapter in this report. The
outcome of the process should be new knowledge that contributes to the research
field.
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3.2.1 Literature Review

In order to get broad knowledge of the machine learning field as a whole and to
be able to decide on a suitable algorithm for the problem, a literature review is
conducted. In this research the literature review is not the main part of the research,
hence the literature review is relatively small and focused on specific algorithms.
The databases Google Scholar and Chalmers Library are searched for phrases such
as "Machine Learning" and "Pattern recognition". Books and articles that describes
the machine learning field are used to get a broad overview of the different algorithms
and the field as a whole. After that the most mentioned algorithms are investigated
more closely. As this report focuses on classifying data only classification algorithms
are covered in more detail.

One of the classification algorithms mentioned in section 2.2.1 and section 2.2.2
sections will be used for the research in this thesis. Different algorithms are suitable
for different problems and even if one technique is chosen it is not obvious if that
algorithm is the most efficient one [9].

3.2.2 Preparation of Data

The data used with the first implementation of naive Bayes is real world data re-
ceived from Ericsson. This node dump contains 4020 different counters and gauges
that affected the CPU load during the time the dump was created. The values of
these counters and gauges, hereafter referred to as variables, were recorded the year
2015 from 21 November 00:00:02 to 30 November 23:00:02. The variable values were
recorded each hour which counts to a total of 240 instances of each variable. The
values of many of these variables did not change during the time that the node
produced the data. To apply the machine learning algorithm naive Bayes the data
has to vary in time as described in section 2.2.1. This is because the algorithm
cannot calculate the standard deviation of a variable that does not vary and as the
standard deviation is essential to calculating the probability static variables has to
be removed.

The previously described node dump, hereafter called the full node dump, is the
only found node dump that contains all available variables. No other node dumps
that contain all variables besides the full node dump is found in the database, but
three other node dumps that could be used are found. The three node dumps are
from the year 2015 and are seen as suitable as they contain a good mix of recorded
data from both before the overload and after the overload. This makes the nodes
suitable as the algorithm needs to learn both the patterns of an overload and the
patterns when nothing goes wrong. These three node dumps contain both types of
events and the point in time of the of the overload could also be identified with the
help of the logs of alarms that are stored in the system.

The original node dumps are in the form of regular text documents, the .txt format,
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with the vertical bar, “|”, separating the columns in a row and a newline separating
the rows. The data is turned into an excel, .csv, spreadsheet before the process
of reducing the variables takes place. The text document is converted into a .csv
file by entering it as input in an excel sheet where the variables are separated from
eachother by specifying the vertical bar as a separator. After the data is converted
a column at the end of the file needs to be added that specifies which class each row
of data belongs to. The classes are always added in supervised learning to teach the
algorithm which type of data is bad and which is good [12]. A row of data in the
csv file contains all existing variables in that file and their values at a certain point
in time and is called an instance. Each instance in a file needs to belong to a class
which is used to label the data and is one of two classes: no overload has occurred
(good = class 0) or an overload has occurred (bad = class 1). The events; bad or
good, are mutually exclusive and an instance can hence only belong to one of the
available classes.

The exact point in time when the node starts overloading can be gathered from the
recorded alarms that come with the node dump, which in the first node dump is after
approximately one third of the time had passed. The full node dump only contains
one pre-transition instance and one transition instance, i.e. the first instance that
is labeled as 1 as described in 3.2.2, as each node dump only covers one overload
occasion. When the time the overload occurs has been discovered the instances are
assigned classes, which means that 35% of the 240 instances in the full node dump
are labeled with the class 0 and 65% of the instances are labeled with the class 1.
The second node dump is chosen because it has a fair amount of variables, but it
only contains bad events which means that it contains no transitions. This node
dump is recorded the year 2015 from 21 November 00:00:02 to 30 November 23:00:01
just as the full node dump. It has 462 variables in common with the full node dump
and also contains 240 instances. As the overload alarms happen before the the node
dump starts all of the instances are labeled with class 1, the bad class, and hence
the node dump does not contain a transition instance.

The third node dump has 306 variables in common with the full node dump and the
second node dump and it contains 273 instances. The data of the third node dump
is also recorded the year 2015 from 21 November 00:00:00 to 2 December 10:00:01
and contains one transition from class 0 to 1. In this node dump the problems occur
at the end of the file which means that most of the instances in this file are labeled as
good. Approximately 95% of the data is labeled as good, class 0, and 5% of the data
is labeled as bad, class 1. Finally the fourth node dump is labeled. This node dump
also has 306 variables in common with the other files and contains 1171 instances.
This file also contains both good and bad events, approximately 10% good events
and 90% bad events, which means that it contains one transition instance. The
node dump is recorded from 21 November 00:00:02 to 8 December 10:00:01 the year
2015 and the problems start 24 November around 13:00:00. All mentioned node
dumps record the variable values each hour, with few exceptions when a recording
that hour is missed. The implementation of the script that formatted the data is
found in chapter 4.
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3.2.3 Development

The chosen algorithm is decided to be one of the classification algorithms described in
2.2 and therefore also a supervised learning algorithm. Naive Bayes is recommended
in many books as a classification algorithm that has produced good results in the past
[12][2][14]. Naive Bayes is also described as useful when evaluating many variables
simultaneously and the variables are treated with the same importance. This is
interesting as many small signaling patterns can be combined to create big patterns
that can be of importance. Therefore naive Bayes is chosen as the machine learning
algorithm to use with this problem.

The teaching set that the algorithm is fed with is real world node dumps that has
been saved from previous node failures. These node dumps are explained in greater
detail in the section 3.2.2 The first node dump is used to make sure that naive Bayes
can be used in this type of problem and with the implementation described in chapter
4. The first implementation using the full node dump becomes the first prototype.
The exact implementation of the first prototype of the implementation of the naive
Bayes algorithm can be found in chapter 4. After the initial implementation is
done the second implementation iteration takes place. The second implementation
focuses on enabling the algorithm to analyze several node dumps. This is done by
providing the algorithm with more data and validating that it works in the same
way with the new data.

The algorithm is run 200 times for each combination of files. The first 200 runs will
only include the full node dump, the next 200 runs will include the second node
dump and the full node dump, the third 200 runs the third, second and full node
dumps and the last runs will use the fourth, third, second and full node dumps. For
each run the accuracy and the Matthews correlation coefficient will be calculated.
The accuracy is measured in two ways, one measurement calculates the amount
of correctly classified instances and one measurement calculates the same thing
but includes the false positives. The values of the correlation coefficient and the
accuracies are recorded each run and the mean of these measurements are used as the
final measurements which shows the performance of the algorithm with the different
combinations of files. The amount of correctly classified transition instances is also
measured in two ways. One measurement identifies the amount of correctly identified
overloads when they happen and one measurement shows the amount of identified
overloads at least an hour before they happen. As mentioned these measurements
use the transition instance and the pre-transition instance to calculate the amount
of these instances that are correctly identified. The three files together contain three
transition instances and three pre-transition instances.

3.2.4 Evaluation

When validating the prototype 75% of the data will be used to train the algorithm,
which is approximately the same as three node dumps. The data which will be used
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to train the algorithm is randomized to make sure that instances from each files are
used and to not introduce any bias. The remaining 25% of the instances will be
used to test how well the algorithm works. The measurements that will be used
to evaluate the algorithm are the accuracy measurements and the the Matthews
correlation coefficient. As stated in section 2.2 the measurement value -1 states that
the algorithm’s predictions have a negative correlation with the underlying data,
which means that the predictions are opposite of what they should have been. 0
indicates that the classes have been assigned by random which is the worst value
as it indicates that the predictions have nothing to do with the underlying data.
Anything above 0 indicates that the predictions correlate with the data, where 1
means that they fully correlate. Anything above 0.5 will be seen as a good result
and the closer the result is to 1 the better the algorithm is.

The accuracies are also used as a performance measurement to evaluate the algo-
rithm. The amount of bad instances out of the total amount of instances is 65%
which means that the accuracy of the algorithm at least needs to exceed 65% for the
accuracy to say anything about the performance of the algorithm [21]. Therefore
anything above 70% is seen as acceptable, 80% is seen as satisfactory and 90% is
seen as a valuable classifier. The accuracy measurement that includes the number of
false positives can be used to calculate the number of false negatives, i.e. how many
overloads that are missed. Preferably the amount of missed overloads is below 10%.

The time saved can be estimated by investigating the amount of transitions from the
good class, 0, to the bad class, 1, are correctly identified. As previously indicated
the files contain variable values with time stamps an hour apart from each other.
At the moment there exists no foresight when predicting the overloads, the baseline
is therefore zero. If the prediction can save any time at all this is time gained. The
downside of the prediction is that the time stamps are relatively far apart but alarms
can occur between the time stamps. It is therefor hard to predict how much time is
saved, if the time is not exactly an hour. It is only possible to estimate how many
of the transitions are identified correctly and hence that time has been saved, but
not how much time is saved.
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4
Implementation

The implementation section describes in detail how the naive Bayes algorithm is
implemented with the PM data in the node dumps. The first section describes the
first iteration where naive Bayes is implemented with a single node dump file. The
second section describes how the implementation of naive Bayes is done with several
node dump files.

4.1 First Implementation

The first iteration of Naive Bayes uses the only node dump that contains all of the
4020 possible variables as input. This file is made up of 240 instances each contain-
ing variable values for all of the variables. An example of such an instance of PM
data, including headers and time stamps, from the first node dump can be seen in
figure 4.1 which illustrates the data before it is formatted. The first implementation
step is to format the data to suit the naive Bayes algorithm which leads to a min-
imization of variables. This is done by writing a script in Python that takes a csv
file as input and turns it into a list. From this list all constant variables are removed
by comparing the values in the same variable column to each other. If the values
do not differ from one another the entire column with that variable is removed as
static variables can not be used with the naive Bayes algorithm [12].

Figure 4.1: An example of four different variable values in a single instance of
PM data before it has been formatted.

The script also formats the data in a way that is suitable for the algorithm by firstly
removing the headers, which are not part of the data. Secondly the initial column,
which only shows the current time and day, is removed as this column does not
provide any value. As mentioned in chapter 3 a column of classification values is
added in the end of the csv file and this column is kept intact through the whole
process. The classification column is not changed or removed even if the values of
the classification are static, e.g. all instances belong to class 0. After the data is
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formatted and all of the constant variables are removed only 2110 variables are left
in the list which is a reduction of 1910 variables from the original list. When the
process is done the list is again turned into a csv file stripped of all unnecessities.
A draft of what the stripped file looks like can be seen in figure 4.2.

Figure 4.2: A draft of the first node dump after formatting is performed.

After the formatting the remaining 2010 variables are split into a training set and a
test set which are randomly assigned data instances based on a specified split ratio
of 0.75. This leads to 75% of the formatted and labeled data instances in the first
node dump being used to train the naive Bayes algorithm. An image of the split
of this full node dump can be seen in figure 4.3 The algorithm is then trained by
building a model of the underlying data of the training set, which essentially is a
set of summaries of standard deviations and mean values for all of the instances
belonging to each class. An example of what a summary can look like can be seen
in figure 4.5 where the standard deviations and means of five variables has been
calculated for both classes.

Figure 4.3: Illustrates how the full node dump is split into a training set and a
test set.

The set of summaries is then used to predict the classes of each of the instances in the
test set, the remaining 25% of the data. The probability of a certain variable value
belonging to a certain class is calculated with the help of the Gaussian probability
density function with the help of the set of summaries developed in the training
phase. The standard deviation and mean from the current investigated class and
variable is used. The probability of that variable value belonging to that class is then
multiplied with the probability of the next variable’s value belonging to the same
class. This is done until all variable values probabilities have been multiplied and
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the product of this multiplication is the probability of the entire instance belonging
to that class. The probability of the same instance belonging to the other class is
then calculated in the same way. An example of the probabilities of six different
instances belonging to the two different classes can look like, can be seen in figure
4.4.

Figure 4.4: An draft of what the probability assignment can look like.

Because large amount of variables present the probability of an instance belonging to
a class decreases with each variable. For example if the probability of a variable value
belonging to a certain class is 0.9, a very high probability, and the same probability of
all other variable values belonging to that same class is also 0.9 the total probability
will be 1.0652 ∗ 10−92. Therefor all of the the probabilities are amplified with the
same value for the effects to be visible in the final calculated probability of the entire
instance belonging to the class. The probabilities are organized in a similar way as
the summaries with one probability value for each class.

Figure 4.5: An example of what a summary created in the learning phase can
look like.

To predict which class the instance belongs to the probability of the instance be-
longing to one class is compared to the probability of the instance belonging to the
other class. The class with the highest probability is then predicted to be the cor-
rect class of the instance. The predicted classes of the test set are then compared
to the correct classes and the accuracy of the model is computed. The accuracy is
computed in two different ways, one percentage measurement which measures how
many of the instances that are classified correctly and one percentage measurement
which measures the amount of the correctly classified instances together with the
false positives. The second mentioned measurement is useful as it can be used to
calculate how many false negatives that occur, i.e. the amount of overloads that
are missed with the algorithm. Finally the Matthews correlation coefficient is cal-
culated with the formula described in section 2.2 which describes the chance of the
classification happening randomly.

The number of correctly identified transitions, i.e. when the class label switches
from no overload (class 0) to overload occurring (class 1), is also measured two
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times. To create these measurements the location of the transition is first identified.
If the only transition present in the full node dump is labeled with class 1 the
overload is classified correctly. The second measurement calculates if the instance
before the overload was classified as an overload. As the instances that are used
as a test set are set randomly the algorithm is run 200 times and the accuracies,
Matthews correlation coefficient and transition percentages are calculated each time
for a correct value for the evaluation. The mean of these values are used to evaluate
the accuracy and the coefficient to give a picture of how well the algorithm worked
with the problem.

4.2 Second Implementation

The implementation of the naive Bayes algorithm with several files is done in a sim-
ilar way, with the main difference being that the preparation of the data beforehand
is done differently. The second formatting script is also a Python script but which
is implemented to take a list of strings pointing to the location of the node dumps
as input. The implementation takes the first csv file the string is pointing to and
adds the variables of this file to a list. The csv file the second string in the list
is pointing to is then opened and the variables in that file are added to another
list. The variables in the new list are iterated and compared to the variables in the
original list. If the new variable’s header matches a header added in the original list
the values of the variable in new list are appended to the matching variable’s list in
the original. This is done for all variables in all csv files in the list of strings.

After the files are combined all of the headers are removed as they no longer serve
a purpose and the inital time stamp column is also removed. The second step of
the process is then to remove the variables from the original list that do not have
as many values as the variable with the most values. This step is important as the
naive Bayes algorithm can not evaluate instances that do not have values for all of
the variables in the list. The variables that are of the maximum length are therefore
used as a baseline and all other variables that do not meet the requirement are
removed. The last step of the implementation is the same as in the implementation
of the script that works with a single file and that is to check whether the list
contains static variables and if so remove them. The list is thereafter turned into a
csv file again that works with the same implementation of naive Bayes as mentioned
in the previous section. The only difference in the csv files is that the file with the
combined node dumps contain more instances of the data but with fewer variables
included which can be seen in figure 4.6.

The only difference in the naive Bayes implementation that uses several combined
node dumps is the calculation of the measurements that measure the amount of
identified transitions. When several files are used, several transitions need to be
identified. This means that when four files are combined three transitions need to
be correctly identified instead of one. One of the files does, as mentioned, not contain
any transitions and will therefore not be inspected. This is done by evaluating the
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Figure 4.6: Illustrates how the combined node dumps are split into a training set
and a test set.

amount of correctly classified transitions 200 times and calculating the mean of these
values.
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5
Results

The results of the implementation of naive Bayes is shown in section 5.1 and section
5.2. The results in section 5.1 describe how well the naive Bayes algorithm worked
with a limited amount of data. The results in section 5.2 describe the results when
the algorithm was fed with a bigger amount of data.

5.1 First iteration

This section describes the results of one run with the naive Bayes algorithm on
the only node dump with a full set of variables. Figure 5.1 shows the resulting
measurements from this run. The available data is split into four parts were three
parts of the data, 180 instances, is used as a training set and one part is used as
a test set, 60 instances. 157 of the total 240 instances are classified as bad and
83 instances are classified as good. The accuracy of the algorithm is calculated in
two different ways both described in section 2.2. The first measurement in figure
5.1 shows the accuracy calculated by dividing the number of correct prediction of
classes with the total amount of instances.

Figure 5.1: Results of one run with the Naive Bayes algorithm with one node
dump.

As the classes of the variables in the test set are known the number of correct
estimations can be counted and the accuracy with the test is approximately 92%.
The second measurement shows the accuracy but with the false positives included
which is about 93%, i.e. 93% of the data was classified correctly or classified as bad
when it actually was good. This means that 7% of the data is classified as good,
no overload happening, when actually it is bad, overload happening. The Matthews
correlation coefficient lies at 0.8 which means that the predictions most likely could
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not happen by chance. Any value above 0 constitutes as good and anything close
to 1 as very good [20].

The amount of correctly classified transitions is approximately 70% which means
that the only transition present in the file is incorrectly classified 30% of the time.
The instance that precedes the overload is also classified as an overload 70% of the
time. This means that in 70% of the runs the overload was identified an hour or
more before it happens.

5.2 Second iteration

The results of a run with the naive Bayes algorithm with the full node dump and
the second node dump is described in this section. Figure 5.3 shows the resulting
measurements from this run. In this file the 480 instances are split into 360 instances
used as the training set and 120 instances used as the test set and all of these
instances are classified as bad. This file contains 462 variables which is a reduction
of 1548 variables from the full file. The accuracy of the algorithm with these two
files is 84.73%, which is roughly a drop of 7% compared to when the algorithm was
run with one file. The total accuracy, i.e. the amount of correctly labeled classes
and the amount of false positives, is approximately 86% which is also a drop of 7%.

Figure 5.2: Results of one run with the Naive Bayes algorithm with two node
dumps.

The Matthews correlation coefficient is calculated to 0.81 which is a drop by 0.01
from the first run. The number of correctly identified transitions is 86% which is a
raise of 16%. The amount of instances preceding the overload classified as overloads
is also 86% which is also a 16% raise even though the file does not contain any
more transitions. After this run the third node dump is added to the combined file
which makes the total number of instances 753. These instances are split into 564
instances which make up the training set and 189 instances which make up the test
set shown in figure 5.3. 273 of these instances comes from the third file were 33 of
these instances are classified as bad and 240 are classified as good. The third node
dump only contains 306 of the 462 variables the previous files had in common.

The accuracy of the naive Bayes algorithm with the three mentioned node dumps
is 92.09% which is an increase of 7% from the run with two node dumps. The total
accuracy is 92.10% which is fairly the same as the accuracy which only measures
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Figure 5.3: Results of one run with the Naive Bayes algorithm with three node
dumps.

the correctly classified instances. The correlation coefficient is calculated to be 0.825
which is a bit higher than the coefficient is in the run before. The amount of correctly
identified transitions is 100% which is an increase of 14% from the run before. The
instance prior to the overload is identified as an overload 66% of the time. The last
node dump added to the file is the fourth node dump which contains 418 instances
of which 333 are classified as bad and 85 are classified as good. This makes the
total number of instances in the combined file 1171 instances long. The fourth node
dump also has 306 variables in common with the other files as the third node dump
had.

Figure 5.4: Results of one run with the Naive Bayes algorithm with four node
dumps.

The fourth run containing all of the node dumps combined has an accuracy of 76.74%
which is the lowest score of all of the run and is a drop by 15% from the run with
three files. The total accuracy is a bit higher, 88.84%, which is only a drop with 3%
from the run before. The Matthews correlation coefficient is also the lowest so far,
calculated to 0.55. The amount of identified transitions is 88% which is a decreased
by 12%. The instance before the overload is classified as an overload 54.8% of the
time. In table 5.1 a summary of all the runs with the naive Bayes algorithm can
be found. The table includes the total number of combined instances as well as the
combined number of good and bad instances. Besides that it also shows how many
variables are used with the algorithm and the results of the accuracy measurements
and the calculated Matthews correlation coefficient. The measurement of the total
accuracy has been used to calculate the amount of false positives, i.e. how many
instances are classified as good (0) when they should have been classified as bad (1).
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1 Log 2 Logs 3 Logs 4 Logs
Combined nbr of Instances 240 480 753 1171
Combined Bad Instances 157 397 430 763
Combined Good Instances 83 83 323 408
Nbr of Common Variables 2010 462 306 306
Accuracy 92.002% 84.737% 92.093% 76.737%
Total Accuracy 93.149% 85.987% 92.098% 88.836%
Amount of False Negatives 6.851% 14.013% 7.902% 11.164%
Matthews Correlation Coefficient 0.825 0.808 0.849 0.550
Identified Transitions 70.323% 86% 100% 88.167%
Pre-Identified Transitions 70.323% 86% 66.167% 54.833%

Table 5.1: A table of all different measurements of the runs with the naive Bayes
algorithm.
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6
Discussion

This chapter discusses the results obtained by using the naive Bayes algorithm with
the node dumps produces by the SGSN-MME and also includes threats to validity
and possible future work. The first section discusses the results of the research in
relation to the research questions. The second section discusses the validity threats
to the research and the third chapter describes the possible future work that could
be performed.

6.1 Research Questions

The research that was carried out with three research questions in mind as the re-
search was planned to include three steps. The first step was to identify an algorithm
that could be used with the problem, the second step was to prepare the data and
to implement the algorithm with that data and the third step was to evaluate the
outcome. These steps and the results from them will be discussed in this section.
The first research question was:

Which machine learning algorithm is suitable to use when predicting if a node in the
cellular network is about to be overloaded?

This question was answered with the help of the literature review where different
algorithms were evaluated to find an algorithm that worked with the PM data. One
answer to this question is therefore naive Bayes as it was chosen as the classification
algorithm to use with this problem. Naive Bayes was picked because it can consider
many different variables at the same time and it also treats all variables equally which
allows it to identify patterns that could seem insignificant to other algorithms. But
even though naive Bayes was chosen many other algorithms could probably have
worked just as well. When this question was answered it was possible to consider
the answer to the next question, which was:

How can machine learning be used to identify the patterns in the PM data that causes
CPU overloads in the SGSN-MME node?
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As all machine learning algorithms work differently the suitable algorithm had to be
chosen before the next question could be answered. Naive Bayes, for example, needs
the standard deviations of the variables for it to be able to predict classes, which
means that all variables that do not have a standard deviation, i.e. static variables,
had to be removed. When naive Bayes was chosen the data could be prepared in
the correct way for it to work with the algorithm. The answer to this question will
therefore be that the data has to be prepared in a certain way for machine learning
to work with it. The exact way the data was prepared can be seen in chapter 4, but
it essentially included removing all static variables, classifying the data as good or
bad, removing unnecessary information and making sure that all instances contain
the same variables.

The second part of the answer of this question is the actual prototype that used
naive Bayes to predict the classes, more close details on this can also be found in
chapter 4. As seen in chapter 4 and 5 the prototype was successful in using naive
Bayes to classify data instances from the PM data. Which leads up to the third
question which is:

Is it suitable to use a classification algorithm to predict overloads in the cellular
network?

This question can be answered by evaluating the measurements implemented with
the first and second prototype of the naive Bayes algorithm. As seen in chapter
5 the results of running the naive Bayes algorithm with the available node dumps
are relatively good. The accuracies all exceed 70% as was stated as the threshold
value in chapter 3. The Matthews correlation coefficient is also relatively good as
it always exceeds 0.5. The most successful runs was the first and third run were
both runs exceeded an accuracy of 90% and the Matthews correlation coefficient was
above 0.8. The second run had a bit inferior results in the accuracy department,
but the Matthews correlation coefficient was still lied above 0.8 The worst run was
the fourth run were exact accuracy lied below 80% and the accuracy including the
false positives lies just below 90%. The Matthews correlation coefficient in the third
run lies just above 0.5.

Looking at the numbers presented in the previous paragraph the algorithm has per-
formed well in all areas. The values of the accuracy measurements and the Matthews
correlation coefficient are all above the required thresholds. The performance of the
algorithm is the worst when it is run with all four node dumps, but it still exceeds
the threshold even in this run. The maximum amount of missed overloads is 14%
which happens in the second run when only two files are used, which could be due
to the fact that only instances classified as overloads are introduced in this run.
Both the second and fourth run misses more overloads than wanted. The amount
of missed overloads was preferably below 10%, but this problem might be amended
gives that the file is optimized with more data. Overall the algorithm performs well
in all runs, but it performs worse when the percentage of good instances is lowered.
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The number of identified transitions varies but the pattern is that the amount of
correctly identified transitions increases with the amount of data. In the combination
were three logs are used the transitions are identified a 100% of the times which
suggests that the teaching set the algorithm uses could be optimized further. This
could create a version of the algorithm that identifies the large majority of the
overloads before they occur. The instances that precede the overload are classified in
the good class, class 0, but the measurement measures how many of these instances
are classified as overloads. This measurement shows that many of the instances
preceding the overload are identified as overloads, which means that it might be
able to identify the overloads even earlier. If the instances preceding the overload
were also classified as overloads it could be possible to identify them more than an
hour ahead of time.

The amount of instances that are identified as overloads before the overload occurs
decreases with the amount of training data. This seems logical as the algorithm
better can learn when the overload is happening when more transitions exist in
the training data. For the algorithm to both be better at identifying the overloads
before they are happening and after they have happened more node dumps that
contain transitions should be used. The most important measurement of them all
is the amount of identified transitions because this is the key classification task for
the algorithm. If the algorithm is not able to identify the transitions it is not able
to identify the overloads. It is therefore a positive indication that the amount of
identified transitions is as high as 100% in some of the cases as it indicates that the
algorithm can be optimized with more training data to produce good results.

6.2 Validity Threats

An identified threat to this research is that the number of possible real world node
dumps in the database that could be used with the implementation in this thesis
was relatively limited. In the beginning of the research a total of nine node dumps
were identified as being likely candidates to use with the naive Bayes algorithm. The
amount of available real world data was limited from the start but these nine files
were identified and chosen as they had recorded overloads in the node of interest. At
a closer examination it was found that many of the files did not contain the amount
of variables they were supposed to contain. Only one node dump with a full set of
variables was found and it was therefore decided that one prototype that used the
full set of variables and one prototype that only used the common variables in all
node dumps was to be developed.

Another problem was that most of the node dumps contained a very small amount
of good instances or no good instances at all. The low amount of good values is
not representative for the real world events as good events stands for about 99% of
the real world events and the bad events are exceptions not the rule. It is therefore
important that a relatively large amount of good instances is present in the files
for the algorithm to be valid. A third problem with a number of the node dumps
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was that they contained variables without headers which made it problematic to
combine them with other files. These node dumps were therefore excluded from the
research which decreased the number of node dumps to only four.

In the four chosen files only 33% of the instances were labeled as good and 65%
were labeled as bad. Another problem is that all used node dumps together only
contain three transition instances and one pre-transition instance. The consequence
of this is that the algorithm had to work with a limited amount of data which might
result in a model that only works with specific problems. An overload could happen
because of a number of different reasons and because of many different abnormal
signaling patterns. If all of these events are not represented in the node dumps used
to train the algorithm the algorithm can not make a model of such events. This
could therefore lead to these specific problems being missed in real world use of the
algorithm and therefore the generalizability of the method could be limited.

Another threat to the research is the limited amount of variables. The only full node
dump contains all of the variables but the other node dumps contain less than half
of the total amount of variables. This is a problem since the node dumps chosen
should by specification contain all of the variables but many of them have not been
recorded. This could mean that the cause of the overload lies in one, or several, of
the non-recorded variables which will be missed by the algorithm.

6.3 Future Work

If naive Bayes is chosen as the machine learning technique that will be used to
identify the overloads in the SGSN-MME node it needs to be validated with more
real world data as a first step of action. More real world data that includes both
good and bad events is needed to fully optimize the algorithm. This could make the
algorithm as robust as it needs to be for it to be used to identify overloads in real
time with the node. Then if the accuracy of the optimized algorithm is as good or
better than it is in this research possible preventative software mechanisms should
be evaluated so that the algorithm could be integrated in the current system. As
there is an alarm system already in place, the one that identifies the overloads when
they happen, the algorithm could be integrated with that alarm system to warn
technicians about possible coming overloads. If the technique is successful it could
be extended to other nodes in the network.
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7
Conclusion

This thesis has aimed to evaluate the possibilities of using a classification machine
learning technique with numerical data from a specific node in a cellular network.
Several machine learning algorithms were considered during the process as many
classification algorithms could be used to solve the problem, but naive Bayes was
ultimately chosen as the algorithm of choice. The reason for this was that the
multitude of signaling variables that the PM data contains are all seen as equal
by the naive Bayes algorithm which allows them to be combined to create bigger
effects. The proof of concept was then used to evaluate if the chosen technique could
be used to predict overloads in the component of interest in the cellular network.
The proof of concept resulted in several measurements that were used to evaluate
the prototype.

The research showed that the proposed machine learning technique worked well with
the problem at hand since the algorithm was able to identify the majority of the
overloads it was presented with. The Matthews correlation coefficient is high enough
to indicate that the algorithm did not predict the classes that it did by chance. The
study also shows that the accuracy of the algorithm varies depending on the amount
and type of data that is used as input. It illustrates examples were a greater amount
of data does not directly imply a greater accuracy as one might have expected. It
also seems as though the accuracy increases when the both classes are represented
equally in the data.

More research on the topic needs to be performed but the research seems to indicate
that naive Bayes can be used to predict overloads in hardware components with
the use of numeric data. This has to be tested with, for example, other nodes in
the cellular network or other hardware components. The research gives a concrete
example of how a classification algorithm can be used to predict extreme events. This
example should be applicable to other similar situations were a component only can
handle a limited amount of signaling. The classification can then be used to take
appropriate action to minimize the problems that could occur if the component is
overflowed with signals.

Limitations to the study includes the minimal amount of available data which makes
it difficult to draw conclusions about generalizability. Also the solution has only been
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applied to one specific node in the cellular network and it is not certain that the
solution would work as well with other nodes. As a conclusion it can be said that
the proposed machine learning technique worked well with the problem at hand even
though it needs to be further evaluated to conclude if it can be generalized to other
contexts.
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