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Consequences of cracks on ship structural integrity 
An investigation of hull girder ultimate strength and crack propagation on ship 
structures 
Master’s Thesis in the International Master’s Programme in Naval Architecture and 
Ocean Engineering 
DA WU AND QIAOJIAN YE 
Department of Shipping and Marine Technology 
Division of Marine  
Chalmers University of Technology 

 
ABSTRACT 

The ship structural integrity plays a significant role in ship structural safety and 
environmental protection. There are four types of limit states in ship design, 
serviceability limit states (SLS), ultimate limit states (ULS), fatigue limit states (FLS), 
and accidental limit states (ALS). This thesis will address two of these limit state 
assessment, namely ULS and FLS.  
In the ULS analysis, the incremental iterative approach is applied to estimate the 
ultimate strength of a ship’s hull girder. In this method, some factors which can affect 
the accuracy and calculation time and are further studied in the project. The analysis for 
buckling of a deck plate was carried out using both finite element method (FEM) and 
Common Structure Rules (CSR) for the accuracy and reliability comparison. 

For the FLS study the effect of fatigue cracks presence in ships on her structural safety 
and serviceability is investigated. A great number of survey report the existence of crack 
on structural components among the commercial ship fleets. Owing to the fact that it is 
not possible to repair all cracks immediately after they have been identified when the 
ship is on the sea, it is essential to predict the crack propagation speed under different 
operation conditions and encountered weather environment. At the same time the 
reduction of the ultimate strength of the hull girder due to the presentation of crack can 
be used as a criterion to evaluate the status of the ship’s structural safety. Consequently, 
the approach to solve the problem is divided into two parts, 1) evaluation of the ultimate 
strength and 2) crack propagation simulation. In the crack propagation simulation part, 
analytical handbook method, conventional finite element methods and extended finite 
element methods are used. Besides, both two dimensional and three dimensional 
geometries were considered. The stress intensity factors were extracted and used in 
Paris law to simulate the crack growth speed in the FRANC2D / 3D analysis; likewise 
the direct cyclic approach in ABAQUS was used in XFEM based fatigue analysis to 
plot the cycle number versus crack length curve. The results show that the crack 
propagation speed in 2-D case is faster than 3-D case under the same loads. If making 
a comparison between FRANC3D and ABAQUS analysis, the XFEM gives a more 
realistic result with much slower crack propagation speed.  
On this account, the results can be used as a reference for simplified the problem and 
provide a quantification of difference between different crack simulation methods in 
solving marine structural integrity problems. What is more, it provides a route to build 
a fast crack propagation prediction method in ship structures.  
Key words: buckling; crack propagation; FEM; fracture mechanics; progressive 

collapse analysis; ultimate strength; XFEM 
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Notations 
 ߝ ா Plating slenderness ratio corresponding toߚ
 ௜௝ Kronecker deltaߜ
 Relative strain ratio ߝ
 ଴ Specified minimum yield point of materialߪ
 ߝ ஼ଵ Beam-column buckling stress of longitudinal corresponding toߪ
 ஼ଶ Torsional-flexural buckling stress of longitudinal correspondingߪ

to ߝ 
 ߝ ஼ଷ Local buckling stress of longitudinal corresponding toߪ
 ஼஺ Critical buckling stress of longitudinal in axial compressionߪ
஼஺ߪ

ா  Critical buckling stress of longitudinal corresponding to ߝ 
஼௅ߪ

ா  Critical local buckling stress of a stiffener corresponding to ߝ 
஼௉ߪ

ா  Critical buckling strength of an unstiffened plate corresponding 
to ߝ 

 ஼் Critical torsional-flexural buckling stressߪ
஼்ߪ

ா  Critical torsional-flexural buckling stress of a stiffener 
corresponding to ߝ 

 ா(஼) Euler’s buckling stress of longitudinalߪ
ாிߪ   Euler’s buckling stress of flange 
ா௅ߪ  Elastic local buckling stress, which is the smaller value of ߪாௐ 

and ߪாி  
 ா் Elastic torsional-flexural buckling stressߪ
 ாௐ Euler’s buckling stress of webߪ
 ா௫ Elastic buckling stress of plating in longitudinal directionߪ
௎௉ߪ

ா  Ultimate strength of an unstiffened plate corresponding to ߝ 
 ௎௫ Ultimate strength in the longitudinal directionߪ
-௖௅ Critical buckling stress for associated plating corresponding to nߪ

half waves 
 Stress intensity range ܭ∆
 തതതത Equivalent stress intensity rangeܭ߂
Γ Contour surrounding the crack tip 
Г Warping constant 
࣡ Linear elastic energy release rate 
 Plating slenderness ratio ߚ
 Poisson's ratio ߥ
߱ Angular frequency 
߶, ߰ Level set functions 
 ௘ Effective sectional area of longitudinalܣ
 ௦ Sectional area of longitudinalܣ
 Young’s modulus ܧ
 Force ܨ
 Shear modulus ܩ
࣡ூ , ࣡ூூ , ࣡ூூூ Mode dependent energy release rates 
࣡ூ௖ , ࣡ூூ௖ , ࣡ூூூ௖ Mode dependent critical energy release rates 
࣡௖ Critical linear elastic energy release rate 
࣡௣௟ Energy release rate at Paris limit 
࣡௧௛ Threshold energy release rate 
 Stress intensity factor (in Section 3) ܭ



VIII 

 St. Venant torsion constant (in Section 4) ܭ
ூܭ , ூூܭ  ,  ூூூ Mode dependent stress intensity factorsܭ 
ூ௖ܭ , ூூ௖ܭ  ,  ூூூ௖ Mode dependent stress intensity factorsܭ 
 ௖ Critical stress intensity factorܭ
௠௔௫ܭ ,  ௠௜௡ Maximum and minimum stress intensity factorܭ 
 ௧௛ Threshold stress intensity factorܭ
ܰ Fatigue cycles 

௥ܲ Proportional linear elastic limit of structure, 0.6 for steel 
ܽ Crack length 
ܽ௜ Initial half crack length 
ܿଵ,  ܿଶ, ܿଷ, ܿସ Coefficients for ABAQUS' crack growth model 
݈ Length of plate 
,ݎ  Axes in a polar coordinate system ߠ
 Longitudinal spacing ݏ
 ௘ Effective width of platingݏ
௘ݏ

ா  Effective width of plating corresponding to ߝ 
 Plate thickness ݐ
ALS Accidental Limit States 
CAE ABAQUS' Complete ABAQUS Environment 
FE Finite Element 
FEM Finite Element Method 
FEQP Finite Elements with Quarter Points 
FLS Fatigue Limit States 
INP ABAQUS' analysis input file extension 
LEFM Linear Elastic Fracture Mechanics 
LSM Level Set Method 
MD Maximum Difference 
MERR Maximum Energy Release Rate 
MTS Maximum Tangential Stress 
NA Neutral Axis 
ODB ABAQUS' output database file extension 
RMSD Root Mean Square Difference 
SIF Stress Intensity Factor 
SLS Serviceability Limit States 
TMCP Thermo-Mechanically Controlled Processed 
ULS Ultimate Limit States 
VCCT Virtual Crack Closure Technique 
XFEM eXtended Finite Element Method 
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1 Introduction 
1.1 Background 
There are four types of limit states in ship design, serviceability limit states (SLS), 
ultimate limit states (ULS), fatigue limit states (FLS), and accidental limit states (ALS). 
These four limit states are key factors used to keep the ship structure in safe status (only 
ULS and FLS is considered in this thesis). The ship structural integrity analysis is 
essential in a ship’s design stage to ensure the ship structural safety, which will be 
indirectly benefit to sea environmental protection. For instance, the large oil tanker, the 
failure of hull structure could cause serious environmental pollution and ecological 
damage. According to the statistics data from ITOPF (International Tanker Owners 
Pollution Federation) (ITOPF, 2015), the oil spill pollution can be sorted by the spilled 
oil quantity, less than 7 ton, between 7 to 700 ton and greater than 700 ton. The ITOPF 
classifies three spill types at different operation conditions. When the spilled oil 
quantity is less than 7 ton, there are 12% of the accidents are result from the structure 
failure in totally 7864 accidents. In contrast the spilled oil quantity that is larger than 7 
but less than 700 ton, 53% of the totally 1355 accidents are caused by structure failure. 
However, when the spilled oil exceed 700 ton, 75% of the accidents are caused by the 
damage of ship structural integrity. On that account, compared with other factors which 
can lead to oil spill, the failure of ship structural integrity is the most important reason. 
Because the structure failure always makes much more serious consequences, and it is 
deserved to pay more attention in the ship structural integrity studies. 

For some ships with serious cracks observed onboard, ports authorities may have great 
concerns to approve the entrances of such ships due to the associated risks connected 
with the cracks. These ships need to be repaired in port, but nobody knows when and 
where the ship will collapse due to the crack and how the crack would influent the 
ultimate strength of ship. As a common sense, ships always take thousands tons of fuel 
oil, lubricating oil and million tons of cargo oil, which would lead to serious pollution 
and environmental issues, especially in a narrow area around ports. For port agencies, 
they are unwilling to undertake the risk of pollution. However, ship owners hope to 
have a place to repair the fleets as soon as possible. So there is an obvious contradiction 
to be resolved.  

To solve this contradiction, two things need to be taken into account. Firstly, the 
ultimate strength of ship structure need to be estimated. That is the application of ULS. 
It is necessary to estimate the ultimate strength before crack happening, and it provides 
the possibility to evaluate the strength reduction due to cracks. Secondly, the crack 
propagation need to be analyzed to investigate the influence of cracks. 
The hull girder strength is the most important strength in a ship structure. Besides the 
hull girder ultimate strength is related to the relationship between applied bending 
moment and corresponding curvature as shown in Figure 1.1. It is a value that can prove 
the ship structure is strong enough to take impact bending load in certain weather 
condition. In design processes, the linear elastic analysis is simple and fast, but it only 
shows the results in a limit stress range which cannot present the real material behavior 
and geometrical characteristics of ship structures. So an alternative method is applied 
instead to estimate the ultimate strength of ship structures in this thesis project. 
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Figure 1.1 General relationship between bending moment and curvature (Sun et al, 

2005). 
The aforementioned ULS is only considered under the intact structure conditions. 
However it has been found that there were, on average, 86 structural cracks per ship at 
any inspection on the commercial ships in the United States in 1980s (Jordan and 
Cochran, 1978). The existence of fatigue cracks in structural components plays a 
significant role of a ship’s safety. 

An estimation on the costs of failure due to crack and fracture has been done in 1983, 
concluding that $119 billion per year in 1982 dollars. Except for the loss of finical, the 
loss of human life and injury due to the fracture failure is unacceptable also. Although 
the stress in the structure is below the yielding or failure stress level, the crack can grow 
catastrophically if the length of the crack approaches to a critical value (Roylance, 
2001). This phenomenon becomes common when the high-strength materials are used, 
owing to cracks can modify the local stress to an area that the elastic analysis cannot 
cover. Since 1950s the high-strength steel has been wildly used in ship building, 
especially in these couple of decades, the invention of Thermo-Mechanically 
Controlled Processed (TMCP) highly reduces the cost and threshold of facilitating the 
high-strength steel usage. Nevertheless, in recent decades, many ships have been found 
crack and fracture accidents within two years after delivered from yards. Moreover, 
some of these tragedy happened in a calm water harbor. The survey reports show that 
these crack initialized at the corner of hatch coaming, then propagated along the main 
deck and end around the water line through the strake plates. When the vessels are 
navigating on the sea, the loads from wave and cargo trend to do a cyclic change, the 
fatigue and fracture problems then are popped out and cannot be ignored. Considering 
the whole ship consists with thousands of structural components, which will withstand 
aforementioned loads, any imperfection of material from the steel mill, the 
inappropriate fabrication from yards and the residual stress due to assembling and 
welding will be zoomed out dramatically on the whole vessel. Once cracks initialized, 
before being found out in the regular survey, they must will propagate under the cyclic 
loading. In order to estimate the safety window of the structure strength capability, a 
time estimation should be carried out before the catastrophe happens. The fracture part 
of this thesis discussed herein is designed to give a judgment on the way to simulate the 
crack propagation speed based on the current existing commercial software programs. 
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1.2 Objectives 
The overall objective of the thesis project is to establish a formal methodological 
procedure for structural integrity analysis of marine structures. Here it is referred to the 
ultimate strength assessment and crack propagation predication. To achieve such an 
ambition objective in a so short time period, the thesis project has been refined to carry 
out the following tasks. 

First for the ultimate assessment, though finite element method is accurate and intuitive, 
it is time-consuming in modelling and calculation. Incremental iterative approach can 
save a lot of time. MATLAB is applied to deduce the relationship between bending 
moment and curvature using incremental iterative approach. Due to ultimate strength 
has close relation with buckling strength, a buckling model should be analyzed to prove 
the load-end shortening curve has feasibility in real condition. 

The other important focus is to address the reliability and uncertainties of various 
methods which are state-of-the-art and widely applied for fatigue crack propagation. As 
the second part, from the fracture mechanics point of view, the primary goals of this 
thesis are to model crack propagation and estimate the crack growth speed on a certain 
ship structure component. Different methods and codes designed to predict the crack 
growth speed on both 2-D and 3-D problems are implemented in this thesis. By 
incorporating with different fracture mechanics code programs, a benchmark will be 
given following with an optimized procedure to analysis the fatigue fracture life on the 
naval structure. 

 

1.3 Limitations 
In the ultimate strength calculation, there is only one mid-ship cross section applied in 
this analysis, consequently the ultimate strength of one cross section cannot represent 
the entire ship structure. The material in this analysis is elasto-plastic behavior and the 
section is regarded as a soft region between two stiffened adjacent transverse frames. 
To simplify the calculation, the cross section of study region remains plane during the 
analysis when an incremental bending moment was applied on the structure. All the 
calculation is based on new build ship, in other word it means if some old ship with 
imperfection in structure, the feasibility of all the methods need to be checked in the 
future work. 

The fracture analysis in this thesis focuses on the crack propagation and limited in the 
linear elastic fracture mechanics. Basically a pure Mode I dominated condition is 
assumed herein. The homogeneous, isotropic material is used in the thesis. The Paris 
law model is selected with the parameters lies on the standards BS 7910 (BSI, 2000) to 
simulate the crack growth rates. 
 

1.4 Thesis outline 
This thesis begins in Chapter 2 and 3 with a review of fundamental knowledge – hull 
girder ultimate strength and fracture mechanics. Chapter 4 includes the analysis of 
ultimate strength and buckling. In ultimate strength analysis, it includes the relationship 
between bending moment and curvature, as well as the relationship between neutral 
axis position and curvature. In buckling analysis, the load-end shortening curve is 
proved. Chapter 5 demonstrates the procedure to model the crack in FRANC2D and 
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FRANC3D. Then the fracture propagation will be implement in ABAQUS without user 
defined subroutines and compared to the aforementioned methods in Chapter 6. Finally, 
conclusions are made in Chapter 7, following with Chapter 8 where an introduction 
about the future works will be given. Additional data, result, and codes can be found in 
the Appendices. 
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2 Ultimate strength 
The hull girder strength is the most basic strength in a ship structure. The hull girder 
ultimate strength is related to the relationship between applied bending moment and 
corresponding curvature. The maximum bending moment capacity shows the hull 
girder ultimate strength (Wang et al, 2011). There are several different methodologies 
to determine the hull girder ultimate strength capacity, such as nonlinear finite element 
method, Smith’s method, idealized structure unit method and incremental iterative 
approach. All of them are able to perform progressive collapse analysis. In this thesis, 
the incremental iterative approach is applied to calculate the ultimate strength. 

 

2.1 Methods of ultimate strength analysis 
There are many different methods existed in the industry practice for the ultimate 
strength analysis of ship structure, seen as Fig.2.1. Caldwell is the first person who 
started to calculate the ultimate hull girder strength (Yao, 2003). He regarded no 
strength reduction beyond the ultimate strength in yielding and buckling behavior. In 
his method, stiffened panels were idealized with equivalent thickness. He took the 
influence of buckling into consideration when he calculated the fully plastic bending 
moment of the cross-section. The yielding stress was multiplied by a strength reduction 
factor without an accurate magnitude at that time when calculate the buckled part. But 
in this method, the maximum capacity is overestimated due to the uncertain reduction 
factor. 

 
Figure 2.1    Different methods for calculating the ultimate strength. 

After Caldwell, the strength reduction factor was determined by more accurate method, 
such as Smith’s method. It is an advanced method compared with Caldwell’s method. 
This method divides the cross-section into individual stiffener and plating elements. 
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The assumption is that all the elements follow the beam theory, a plane cross-section 
remains plane. The behavior of elements follows the average stress-average strain 
relationship, without interaction between adjacent elements. The bending moment is 
applied with respect to instantaneous neutral axis of the cross-section at every 
incremental step so that no axial force exist. Although the Smith’s method is an 
advanced method, the accuracy of the results depends on the average stress-average 
strain relationship. 

Another alternative method to perform progressive collapse analysis is the idealized 
structure unit method (ISUM), which was suggested by Ueda (Yao, 2003). It is based 
on a matrix formulation, which is similar to the conventional finite element analysis 
(Wang et al, 2011). However, in this method, the definitions of elements are particular. 
In ISUM modeling, support members (or beam-columns), rectangular plates and 
stiffened panels are regarded as ISUM units. These structure members are at same size 
scale as themselves, shown as in Fig.2.2. 

 
Figure 2.2 Four main types of structure elements definition in ISUM method (Paik 

et al, 2002). 
Although FEM analysis is flexible and convenience in modeling structures, it is still 
complicated and time-consuming. Another widely accepted method is the Incremental 
iterative approach, which is based on Smith method described by Wang et al (2011).  
This method simplified the complex calculation and save a lot of time in the estimation 
of ultimate hull girder strength. It has some similarities with the two aforementioned 
methods and it will be applied in this thesis to estimate the ultimate strength of ship 
structure.  

 

2.2 Incremental iterative approach 
2.2.1 Calculation procedure 
Firstly, it is required to calculate the initial curvature when one element or some 
elements start to yield and buckle. The initial curvature value is applied to start the 
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iterative calculation with add an incremental value of curvature. The step size ∆݇ of the 
curvature should be ݇ி 300⁄ , where ݇ி  is the expected maximum required curvature. 
In some conditions, in order to simplify the calculation, the initial curvature in the first 
step can be also taken as ∆݇. The initial neutral axis position should be determined at 
the same time, as well as the distance from each element to this neutral axis.  

߯ = ߯ + ∆݇  (2.1) 

The strain of each structural element can be calculated by the product of curvature and 
distance at recent NA. 

௜ߝ = ߯ ∙  ௜  (2.2)ݖ
The stress relevant to the strain can be calculated through the relationship between 
stress and strain in ߪ −  .load-end shortening curve, which will be derived in 4.1.2 ߝ

These stress values are used in the calculation of the total force on the cross-section. 
The stress ߪ௜ is positive when the element under compression, or negative instead in 
tension condition. If the neutral axis is at a correct position, the force value should be 
no larger than ߜ, which is very close to 0. And the value of ߜ is a limitation of the 
accuracy of calculation. 

|∑ ௜ߪ ∙ |∙௜ܣ ≤  (2.3)  ߜ

Then the corresponding bending moment can be calculated if the force value satisfies 
the criterion. Besides the relationship between curvature and bending moment can be 
established as Equation 2.4. 

ܯ = ∑ ௜ߪ ∙ ∙௜ܣ ∙  ௜  (2.4)ݖ

In contrast, if the force value exceeds the critical value ߜ, the position of neutral axis 
need to be adjusted. In hogging condition, the structural elements above neutral axis are 
under tension and the structural elements beneath neutral axis are under compression. 
In other word, the stress value is positive in upper elements and negative in lower 
elements. If the force value is positive, the position of neutral axis should be move 
upwards, otherwise downwards and vice versa in sagging condition.  
The incremental step size for the neutral axis adjustment should be no larger than 
0.0001 m. Although the smaller value will give accurate results, it takes longer time to 
iterate. It is necessary to repeat the force calculation with the updated position of neutral 
axis until the equilibrium is satisfied. After recording the bending moment value 
corresponding to the curvature, add an increment of curvature to find out next 
corresponding bending moment. Figure 2.3 illustrates the flow chart of this method. 
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Figure 2.3    Calculation procedure for incremental iterative approach. 
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2.2.2 Assumptions 
When Incremental Iterative Approach is applied, following assumptions and limitations 
need to be set. 
1. The section studied in the ultimate strength calculation is regarded as a soft region 

between two stiffened adjacent transverse frames, shown in Figure 2.4. 
2. The moment of inertia of transvers main support members must satisfy Equation 

2.5.  

ܫீ ݅଴ ≥ 0.2 ቀ஻
௟
ቁ

ଷ
ቀ஻

௦
ቁൗ   (2.5)

 
3. The cross section of study region must remain plane during the analysis when an 

incremental bending moment is applied on the structure. 
4. The material behavior of steel in the structure is regarded as elasto-plastic. The 

stress-strain relationship can be found in ‘load-end shortening curve’ in section 
4.1.2. 

5. The stress in each element corresponding to each curvature can be obtain in load-
end shortening curve. Due to there are more than one type of buckling mode, a 
minimum value is selected for the ultimate strength calculation at a same strain or 
curvature. 

6. The interaction between each elements is neglected.  
 

 
Figure 2.4    A soft region between two stiffened adjacent transverse frames (ABS, 2012). 

2.2.3 Definition of structure elements 
It is similar to Smith’s method and ISUM, the cross-section need to be divided into 
different structure elements. There are three main types, plate elements, stiffened 
elements and cornered elements. Examples of individual structure are illustrated in 
Figure 2.5. 
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Figure 2.5    Definition of structure elements (Sun and Wang, 2005).  

2.2.4 Factors to consider in buckling analysis 
Bucking is a condition that structure starts to collapse and strength reduction. In section 
4.1.2, the load-end shortening curves show the relationship of stress-strain. During 
compression, when the load exceed a limitation, relationship of stress-strain is non-
linear, which means the occurrence of buckling. The limitation of load leading to 
buckling is the buckling capacity. In most condition, buckling capacity, which is the 
foundation of ultimate strength capacity estimation, is lower than the material yielding 
stress. The ultimate strength will appear when the summation of each element stress 
gets a peak. 

In buckling analysis, there are several factors, which relate to the accuracy of result, 
need to be considered. Material behavior, geometrical imperfections, boundary 
conditions and simultaneous acting loads are included. 

2.2.4.1 Material behavior 
In buckling analysis, material should be regarded as inelastic non-linear behavior 
material (ABS, 2012). Because there is no buckling in elastic and elastic-perfectly 
plastic material, which is illustrated in the material behaviors Figure 2.6. To gain a 
result close to actual behavior, the element material was regarded as bi-linear isotropic 
elasto-plastic material. The material properties include material yield strength, Young’s 
modules, and tangent modules. For high tensile strength steels with plastic behavior, 
the tangent modules is 1000Mpa. 
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Figure 2.6 There is no buckling in elastic and elastic-perfectly plastic material (Yao, 

2003). 

2.2.4.2 Geometrical imperfections 
The geometrical imperfections can be also called initial deflections. It is necessary to 
be consider in buckling analysis. The initial deflection has two main properties need to 
be determined before the buckling analysis, which are shape and maximum value of 
initial deflection.  

The shape of initial deflection is determined through the most critical failure mode. In 
general, the lowest buckling eigen-modes will be applied (ABS, 2012). However, as a 
result of combination loads and the slenderness of plate, the critical failure mode would 
be one of buckling eigen-modes different from the lowest one, shown in Figure 2.7.

 
Figure 2.7    Different buckling eigenvalue modes. 

The maximum value of initial deflections can be found in IACS Shipbuilding and 
Quality Repair Standard (Paik et al, 2008). In order to simplify the analysis, the 
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maximum value of initial deflections and total deflections can be calculated by the 
following equation: 

߱଴ = ௕
ଶ଴଴

  (2.6)
 

ω = ߱଴݊݅ݏ(௠గ௫
௔

గ௬)݊݅ݏ(
௕

)  (2.7) 

where ܽ is the length of plate, ܾ is the space of longitudinal, ߱଴ is the maximum value 
of initial deflections, m is half wave numbers. In any condition, the initial deflection 
cannot be greater than the maximum value. 

2.2.4.3 Plate model 
There are two main types of plate models in the analysis, which are one-bay and two-
plate models (Paik et al, 2008). In one-bay plate model, in Figure 2.8, the length is the 
space between transvers floors and width is the space between stiffeners. For two-bay 
plate model, the analysis region is the area inside the red dash line in Figure 2.9. The 
size of the plate is (1/2+1+1/2) times the size of one-bay plate. 

 
Figure 2.8    One-bay plate model (Paik et al, 2008). 

 
Figure 2.9    Two-bay plate model (Paik et al, 2008). 

2.2.4.4 Boundary conditions 
The boundary conditions can represent the actual response of the structures (ABS, 
2012). There are two main types of boundary conditions, free edge plate and continuous 
plate. Such as the bottom and deck plate, the edges should be regarded as simply support 
or clamped, but can be free to move in-plane and forced to remain straight. However, 
some other edges of structure element such as stringer web panel should be considered 
as free. The rotational restrain is only considered in the analysis involving the 
interactive effects between plate and stiffener.  
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Free edge plate condition is for the structure that has weak in-plane support along one 
or more edges. While continuous plate condition is for the structure that has in-plane 
support around the entire structure. The panel edges in both of them perpendicular to 
the stiffeners are regard as simply supported and the edges which are parallel to 
stiffeners should have rotational support. Furthermore, free edges in both of them can 
move inward. However, in free edge plate condition, if the ends of stiffeners are 
attached to adjacent structure, they should be regarded as supported sideway, otherwise 
they are simply supported. In continuous plate condition, the ends of stiffeners should 
be regarded as supported sideway. 

For unstiffened plate, panel edges are simply supported. Free edges are free to move in-
plane and continuous should remain straight. 

2.2.4.5 Acting loads 
The acting loads in the analysis includes biaxial in-plane compression and lateral 
pressure (ABS, 2012). In software analysis, to ensure the stability of plate, the axial 
load should act on one edge. The opposite edge to the acting load should be no 
translation. The lateral pressure should be applied first to create the deformed shape. 
Then the lateral pressure should be kept constant to enforce deflections in different 
patterns. Finally, to realize the geometrical imperfection, a very small force should be 
applied on the plate surface. Otherwise, there will be no buckling take place on the plate. 

2.2.4.6 Element size of nonlinear finite element models 
The element size of nonlinear finite element model should be small enough to describe 
the buckling deflections accurately (ABS, 2012). In general, the element size depends 
on the complexity of the geometry, acting loads and the element types. In any condition, 
the maximum size of element should be one fifth of a half-buckling wave length. 
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3 Fracture mechanics theory and methods 
This chapter introduces the fundamental knowledge on the fracture mechanics used for 
crack propagation prediction in this thesis. It starts with the literature reviewing of linear 
elastic fracture mechanics then the theories about the mixed crack mode and fatigue 
crack growth modes will be explained. The finite element method, both of conventional 
and extended FE methods, are also described later. 
 

3.1 Fracture mechanics literature review 
Fracture mechanics is the field of solid mechanics that deals with the behavior of 
cracked bodies subjected to stresses and strains. In order to investigate the material 
behavior during fracture, two approaches can be considered: 1) stress intensity approach 
and 2) energy-balance approach. The first approach states the stress state in vicinity of 
the crack tip directly, and has been wildly used in the engineering solutions (Roylance, 
2001). Three types of cracks, mode I, II and III, have been decided by literature as 
shown in Figure 3.1.  

 
Figure 3.1    The crack modes I) Mode I, II) Mode II and III) Mode III (Roylance, 2001). 

Mode I is a normal-opening mode, while mode II and III are shear sliding modes. ܭூ, 
 ூூூ are the parameters known as the stress intensity factor. The I, II and IIIܭ ூூ andܭ
subscripts denote the crack opening modes. These three factors demonstrate the stress 
states near the crack tip. The factor r1/2, in Equation 3.2, represents the singularity of 
the stress distribution in vicinity of the crack tip; the stress rises up to infinity when the 
r approaches to zero. Likewise the angular θ is another dependence. The factor K is in 
terms of the dependence on the specimen geometry F, far field applied stress σ and the 
crack length a, as shown in Equation 3.1. The critical stress intensity factor, ܭூ஼ , argues 
that the material can sustain crack tip stresses. The related failure stress, ߪ௙, can be 
expressed by crack length a and the fracture toughness as Equation 3.3 shown The 
stress intensity factor is used as a measurement in the linear elastic fracture mechanics 
(LEFM), which assumes small deformations and minimal yielding around the crack tip. 

ܭ =  (3.1)  ܽߨ√ߪܨ

௫ߪ = ௄಺

√ଶగ௥
cos ఏ

ଶ
ቀ1 − ݊݅ݏ ఏ

ଶ
݊݅ݏ ଷఏ

ଶ
ቁ + ⋯  

௬ߪ = ௄಺

√ଶగ௥
cos ఏ

ଶ
ቀ+ ݊݅ݏ ఏ

ଶ
݊݅ݏ ଷఏ

ଶ
ቁ + ⋯  (3.2) 

߬௫௬ =
ூܭ

ݎߨ2√
ݏ݋ܿ

ߠ
2 ݏ݋ܿ

ߠ3
2 ݊݅ݏ

ߠ
2 ⋯ 

௙ߪ = ௄಺಴
ఈ√గ௔

 (3.3) 
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An alternative method based on energy-balance approach provides the insight to the 
fracture process. As aforementioned, the stresses approach infinity at the perfectly sharp 
crack, even when the applied loads is small. However, the physical observation shows 
that the material generally trends to blunt the crack tip. Griffith (1920), who was aware 
of Inglis’ work on developing a fundamental approach to predicting fracture strengths, 
suggested an energy-balance approach instead of limiting at the crack-tip stresses 
directly. 

The strain energy will release if the crack grows to a certain length a then a area of 
materials that are conjunction with the free surfaces will unload, as shown in Figure 3.2. 
According to the Inglis solution, Griffith proposed the solution how to calculate the 
released energy. 

 
Figure 3.2    The concept of strain energy release rate (Roylance, 2001). 

As illustrated in Figure 3.2, the total strain energy ܷ released can be expressed as 
Equation 3.4: 

ܷ = − ఙమ

ଶ୉
∙  ଶ (3.4)ܽߨ

This strain energy is liberated as crack grows. During the process of crack forming, 
bonds will be separated away, and materials will absorb the energy that are released. 
The surface energy S is expressed as S = 2γa, where the factor 2 means two broken 
surfaces and γ is the surface energy (ܬ ݉ଶ⁄ ). Then the total energy associated with the 
crack growth is the sum of the material absorbed energy plus the liberated strain energy 
as illustrated in Figure 3.3. 
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Figure 3.3    Total energy associated with the crack growth (Roylance, 2001). 

Equation 3.5a represents the relation between the derivation of the summation of energy 
(S + U) and zero, it will give the critical crack length. Beyond the critical crack length 
ܽ௖, the crack growth turns to catastrophic. 

ப(ௌା௎)
பୟ

= ߛ2 −
ఙ೑

మ

ா
ܽߨ = 0 (3.5a) 

Solving the above equation, the failure stress associated with the critical crack length 
can be deduced to 

௙ߪ = ටଶாఊ
గ௔

 (3.5b) 

For a ductile material the plastic flow around the crack tip is significant, on this account 
most of the liberated strain energy was absorbed by energy dissipation in terms of the 
plastic deformation. Irwin (1948) and Orowan (1949) reported that the catastrophic 
fracture occurs when the strain energy is released at a rate, critical strain energy release 
rate, named as ࣡௖, which can be written as: 

௙ߪ  = ටா࣡೎
గ௔

 (3.6) 

The critical strain energy release rate ࣡௖, the far field stress ߪ௙ and the crack length a 
illustrate the interrelation of aspects of the fracture process. The strain release rate can 
be determined as Equation 3.7: 

࣡ = ப୙
பୟ

 (3.7) 

Comparing the Equation 3.3 and 3.6, the strain energy release rate can be written related 
with the stress intensity factor as Equation 3.8: 

ටா࣡೎
గ௔

= ௄಺಴

√గ௔
 (3.8) 

Rewriting the above expression as: 
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࣡ = ௄మ

ாത
  (3.9) 

തܧ = ቊ
,തܧ ݏݏ݁ݎݐݏ ݈݁݊ܽ݌ ݎ݋݂ 

ா
ଵିఔమ ,  (3.10) ݊݅ܽݎݐݏ ݈݁݊ܽ݌ ݁ݎ݋݂ 

Anderson (1995) and Rice (1968) reported a method, J-integral, to calculate the strain 
energy release rate by using a line integral around the crack tip as illustrated in Equation 
3.11 and Figure 3.4. In this expression, ܹ  is the strain energy density, ߜଵ௝  is the 
Kronecker delta, ௝݊ is the outward normal to the contour, ݑ௜ is the displacement and Γ 
is a contour surrounding the crack tip. For the homogenous and isotropic materials in 
LEFM, a relation between J-integral and stress intensity factor K was proposed by Shih 
and Asaro (1988), Equation 3.12 gives the aforementioned relation, where E is the 
Yong’s modulus and G is the shear modulus. 

J = ∫ ቀܹߜଵ௝ − ௜௝ߪ
డ௨೔
డ௫భ

ቁ୻ ௝݊݀Γ  (3.11) 

 
Figure 3.4    A two-dimensional contour integral approach. (Dassault, 2014b) 

J = ࣡ = ଵ
ாത

ூܭ)
ଶ + ூூܭ

ଶ) + ଵ
ଶீ

ூூூܭ
ଶ   (3.12) 

 

3.2 Fatigue crack growth models 
Cracks tend to grow under a cyclic loading. In 1961, Paris et al. (1961) described that 
the fatigue crack growth rate, ݀ܽ ݀ܰ⁄ , was related to the stress intensity reange, ∆K =
௠௔௫ܭ − ܽ݀ ௠௜௡. Theܭ ݀ܰ⁄  versus ∆K curve is shown in Figure 3.5 on a log-log plot, 
which can be divided into three regions: region I, region II and region III. 

In the region I, also known as threshold region, the curve asymptotically reaches the 
threshold value, ∆ܭ௧௛. This is the limitation of cracks propagation will start. In other 
word, the crack will not grow if the stress intensity range below the threshold value. 
The slope of the curve is approximately constant in the intermediate region and defined 
as notation m. Paris and Erdogan (1963) suggested a relation between ݀ܽ ݀ܰ⁄  and stress 
intensity range as expressed in Equation 3.13, where C and m are empirically 
determined material constants. 
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Figure 3.5    Crack growth rate versus stress intensity factor range curve. 

ୢୟ
ୢ୒

= C(∆ܭ)௠  (3.13) 

The above equation is also known as Paris law. Walker (1970) modified this relation 
by considering the stress ration, R = ௠௜௡ߪ ⁄௠௔௫ߪ , as expressed in Equation 3.14, where 
 .଴, m, and γ are empirically determined dataܥ

ୢୟ
ୢ୒

= ஼బ
(ଵିோ)೘(భషം)  ௠  (3.14)(ܭ∆)

The last region in Figure 3.5 is the unstable region. The curve becomes steep and the 
crack grows rapidly prior to final failure. The ܭ௠௔௫  asymptotically approaches the 
fracture toughness, ܭ௖. The influence of nonlinear properties become significant due to 
the large scale of yielding, in other words, the LEFM cannot be used in this region. 
Forman et al. (1967) gave a model-Forman equation-to demonstrate the behavior in this 
region.  

3.2.1 Crack growth direction 
The crack growth can be divided as two disciplines: 1) growth direction and 2) growth 
magnitude. Mixed-mode I and II crack growth has been studied for many years, 
different models have been established to predict the crack direction. Three of them are 
described herein: the maximum tangential stress criterion, the maximum energy release 
rate criterion and the zero ܭூூ criterion. 
The maximum tangential stress criterion (MTS) states that the extension angle of the 
crack growth is perpendicular to the maximum tangential stress at the crack tip. 
Equation 3.15 was reported as a parametric equation to describe this relation by 
Erdogan and Sih (1963): 

θ = ଵିݏ݋ܿ ቌ
ଷ௄಺಺

మ ାට௄಺
రା଼௄಺

మ௄಺಺
మ

௄಺
మାଽ௄಺಺

మ ቍ  (3.15) 
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The θ in above equation represents the propagation angle, this relation is determined 
by setting shear stress τ = 0, in the meanwhile, ߲ߪఏ ߠ߲ = 0⁄  . Some literature gives the 
maximum tangential stress, ߪఏ can be denoted as Equation 3.16. 

ఏߪ = ଵ
√ଶగ௥

ଶݏ݋ܿ ఏ
ଶ

ቂܭூܿݏ݋ ఏ
ଶ

− ݊݅ݏூூܭ3 ఏ
ଶ

ቃ  (3.16) 

For materials with isotropic properties, the tangential stress is related to the mode I 
stress intensity factor ܭூ

௥ , which is expressed in Equation 3.17; and a numerical 
algorithm is used to find the angle that maximizes ܭூ

௥. 

ூܭ
௥(ߠ) = ݎߨݓ√ఏߪ = cos ఏ

ଶ
ቂܭூܿݏ݋ଶ ఏ

ଶ
− ଷ

ଶ
 ቃ  (3.17)ߠ݊݅ݏூூܭ

The maximum energy release rate criterion (MERR) is proposed by Hussain et al. (1974) 
and developed from Griffith and Irwin’s work. This theory states that the crack will 
extent at an angle, θ, which maximizes the energy release rate, ࣡. The MERR assumes 
ூூூܭ = 0 and it has been proven working well in a mixed mode I – II condition. 

The last theory assume that the crack extension occurs in a direction where ܭூூ = 0 for 
isotropic and homogeneous materials (Cotterell and Rice, 1980). Cotterell and Rice 
analyzed the curved and kinked cracks and suggested that the MTS and MERR models 
meet the ܭூூ = 0 criterion once the crack has extended. However, this study has not 
been verified by any experimental data yet. 

Aforementioned models will result in slight difference. The MTS model will be used in 
this thesis. 

3.2.2 Crack growth magnitude 
Aforementioned Equation 3.13 demonstrates the interrelationship between crack 
growth magnitude and applied load cycles. It is obvious that the stress intensity range, 
 determines the crack growth magnitude per cycle. In single mode problems, the ,ܭ∆
stress intensity range can be defined by the maximum and minimum SIFs for each mode 
in one cycle as: 

ூܭ∆ = ூ,௠௔௫ܭ∆ − ூ,௠௜௡ܭ∆   (3.18) 

ூூܭ∆ = ூூ,௠௔௫ܭ∆ −  ூூ,௠௜௡ܭ∆

ூூூܭ∆ = ூூூ,௠௔௫ܭ∆ − ூூூ,௠௜௡ܭ∆  

Moreover for the cases of mixed mode loading, an equivalent stress intensity factor is 
required to apply the Paris law. Tanaka (1974) reported the equivalent SIF can be 
expressed as Equation 3.19 within model I –II. 

௘௤ܭ∆ = ඥ∆ܭூ
ସ + ூூܭ∆8

ସర   (3.19) 

Rhee and Salama (1987) suggested that the equivalent SIF can be conducted from the 
energy release rete, which is illustrated in Equation 3.20 

௘௤ܭ∆ = ඥ∆ܭூ
ଶ + ூூܭ∆

ଶ  (3.20) 

As a result, the Paris Law can be modified as Equation 3.21 by using equivalent stress 
intensity factor, ∆ܭ௘௤. 

ୢୟ
ୢ୒

= ௘௤൯௠೛ܭ∆௣൫ܥ   (3.21) 
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3.3 Finite element methods (FEM) 
3.3.1 Finite Elements with Quarter Points (FEQP) method 
The conventional finite elements method (FEM) has been developed since 1851. FEM 
has been widely used in dealing with continuous field problems, such as stress and 
strain analysis, fluid flow, heat transfer and electrical and magnetic fields. Nevertheless 
it shows difficulty to solve discontinuous field problems with prohibitively expensive 
computation to obtain accurate solutions. When the FEM is applied in solving fracture 
problems, many reports have stated that it is unattainable that the stress singularity at 
the crack tip from linear elements. Alternately, energy release rate and contour integral 
for J and K were analyzed to represent the behavior at the crack tip. 
In order to solve the stress singularity issues, the triangular crack tip element by Byskov 
(1970), and circular element by Wilson (1973) together with the rectangular elements 
by Hardy (1974) were developed to describe the crack tip. These special elements are 
characterized as specialized crack tip elements. 
In spite of that, it is still not convenience to setup the model for fracture problems. In 
1975, Henshell and Shaw (1975) reported a method to use quadratic elements instead 
of specialized elements. Henshell and Shaw moved the mid-side nodes of quadratic 
elements adjacent to the crack tip to their quarter portion location to represent the 1 ⁄ݎ√  
stress singularity. This methods is known as Finite Elements with Quarter Points 
(FEQP). Around the crack tip, a concentric meshing scheme is followed as depicted in 
Figure 3.6 and the typical process of this method proceeds as Figure 3.7. Because the 
explicit crack propagation is not possible, the mesh should be generated at each crack 
increment, which is known as re-meshing, which was proposed by Nicolas et al. (1999), 
to attain accurate results. In response to the deficiency of meshing using FEQP, Virtual 
Crack Closure Technique was developed by Rybicki and Kanninen (1977) in 1977. 

  
Figure 3.6    Typical focused mesh scheme for fracture mechanics evaluation (Dassault, 
2014a). 
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Figure 3.7    Flow chart of Finite Elements with Quarter Points method. 

3.3.2 Mixed mode critical energy release rate 
In the engineering practice, the fracture occurs under a combination of different modes, 
consequently an equivalent critical value is required to consider the contributions from 
each mode. Wu and Reuter (1965) proposed the power law model, which is given by 
the following formula: 

ீ೐೜ೠ೔ೡ

ீ೐೜ೠ೔ೡ಴
= ቀ ಺ீ

ீ಺಴
ቁ

௔೘
+ ቀ ீ಺಺

ீ಺಺಴
ቁ

௔೙
+ ቀ ಺ீ಺಺

ீ಺಺಺಴
ቁ

௔బ
  (3.22) 

where ܩூ ூூܩ ,  and ܩூூூ  are energy release rates, ܩூ஼ ூூ஼ܩ ,  and  ܩூூூ஼  are the critical 
energy release rates for modes I, II and III respectively. The factors ܽ ௠, ܽ௡ and ܽ଴ are 
empirical constants. Because there is no a universally accepted method for determining 
the equivalent critical value, thus the power law is selected in this study. 

3.3.3 Virtual Crack Closure Technique (VCCT) 
Rybicki and Kanninen (1977) stated that the energy needed to grow a crack is equal to 
the work required to close a crack of the same length. Rybicki and Kanninen extent this 
work and developed the modified virtual crack closure integral method. According to 
this method the energy release rates can be expressed as the limitation between 
displacement and force. For Mode I and Mode II, the expression, Equation 3.23, is used 
to calculate the energy release rates, ࣡. Referring to Figure 3.8, F is the force required 
to keep nodes 2 and 5 separation; v are the displacement between nodes 1 and 6, d is 
the crack increment, and ℓ is the element length in front of the crack tip. 

࣡ூ = lim
ௗ→଴

1
2݀  ଵ,଺ݒ௬,ଶ,ହܨ

࣡ூூ = lim
ௗ→଴

ଵ
ଶௗ

 ଵ,଺  (3.23)ݑ௫,ଶ,ହܨ
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࣡ூூூ = lim
ௗ→଴

1
2݀  ଵ,଺ݓ௭,ଶ,ହܨ

 
Figure 3.8 The explanation of modified Virtual Crack Closure Technique in pure 

Mode I (Dassault, 2014a). 
For a pure Mode I problem, the first equation in Equation 3.23 can be deduced as below: 

࣡ூ = ଵ
ଶ

ఔభ,లிೡ,మ,ఱ
௕ௗ

  (3.24) 

where ࣡ூ  is greater than the critical value ࣡ூ௖ , node 2 and 5 will deboned and the 
fracture starts. When it comes to a mix-mode problem, the criterion can be determined 
as: 

f = ீ೐೜ೠ೔ೡ

ீ೐೜ೠ೔ೡ಴
≥ 1.0  (3.25) 

where ܩ௘௤௨௜௩ is the equivalent strain energy release rate, which is calculated at a node 
while the ܩ௘௤௨௜௩஼  is the critical equivalent strain energy release rate calculated based 
on the mode-mix criterion mentioned. The power law model, which is explained in 
Section 3.3.2, is selected in this study.  

3.3.4 Extended finite element method (XFEM) 
The methods mentioned so far belong to conventional finite element methods. 
Significant modeling and re-meshing works as crack extension are required to obtain 
accurate results, in response to the deficiency of FEQP modeling technology. 
Belytschko and Black (1999) introduced a numerical technique based on the partition 
of unity method of Babuska and Melenk (1996), also known as Extended Finite Element 
Method (XFEM). The XFEM extends the piecewise polynomial function space of 
conventional finite element methods with extra enrichment functions. The XFEM 
approach can be used where conventional FEM fails or the computation is prohibitively 
expensive. For instance, in XFEM, the discontinuity may not align with mesh. In other 
word, the discontinuity is independent of mesh. That means that the frequent re-
meshing is not required, and cracks could be modeled arbitrarily without considering 
the mesh. Therefore, this technique is widely used in many fields, such as composites 
and fracture mechanics.  
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For a linear elastic fracture problem, a crack can be represented as a combination of 
two sets of functions: Heaviside function - a discontinuous function - for representing 
displacement jump across crack face, and a set of asymptotic functions to model the 
crack tip singularity. Denoting the interior of the crack surface as Γ, crack tip as Λ, and 
nodes set as Ν. Let nodes belonging to elements cut by crack surface name as Ν ୻ and 
those nodes belonging to elements containing crack tip denote as Ν ஃ. Then the XFEM 
enriched displacement approximation can be expressed as Equation 3.26: 

ܷ௛(ݔ) = ∑ ூܰ(ݔ)ൣݑூ + (ݔ)ܪ ௃ܽ + ∑ Φఈ(ݔ)ܾ௄
ఈସ

ఈୀଵ ൧ ூ∈ࣨ ൬൜ ܬ ∈ ୻ࣨ
ܭ ∈ ஃࣨ

൰ (3.26) 

where ூܰ(ݔ) represents the conventional shape function at node i that belongs to 
continuous part and the corresponding nodal displacement is denoted as ݑூ. The term 
ܽ௃ is nodal enriched degree of freedom of the nodes that belong to crack surface; and 
the asymptotic crack tip nodes are given the enriched degree of freedom as ܾ௄

ఈ. The rest 
terms of (ݔ)ܪ represents the Heaviside distribution, in Equation 3.27, which is used to 
represent the discontinuous displacement field at the elements that across the crack line. 
In addition, Φఈ(ݔ) is the crack tip asymptotic function. 

H(x) = ൜+1, if(ݔ − (∗ݔ ∙ n ≥ 0
−1, otherweise   (3.27) 

 
Figure 3.10 The crack path and tip described by Heaviside and asymptotic terms 

(Dassault, 2014a). 

As depicted in Figure 3.10, the term ݔ in Equation 3.27 is an integration point, ݔ∗ is the 
colsest point to ݔ on the crack surface and n is the unit normal at ݔ∗.  

The Equation 3.28 demonstrates the displacement field basis functions for sharp crack 
in an isotropic linear elastic material. R and θ is a polar coordinate system originating 
at the crack tip and θ = 0 is parallel to the crack path, as described by Sukumar et al. 
(1999).  

,ݎ)௜ܨ} ௜ୀଵ{(ߠ
ସ ≡ ቄ√ݎ cos ఏ

ଶ
, ݎ√ sin ఏ

ଶ
, ݎ√ sin ఏ

ଶ
,ߠ݊݅ݏ ݎ√ cos ఏ

ଶ
 ቅ  (3.28)ߠ݊݅ݏ

Nodes to be enriched by Equation 3.27 and 3.28 are depicted in Figure 3.11, where the 
filled circles represent Heaviside nodes and crack tip enriched nodes are denoted by 
open circles. 
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Figure 3.11    The enriched terms to describe the crack (Krishna et al., 2014). 

3.3.5 Phantom node approach 
Belytschko and coworkers introduced phantom node approach based on the superposed 
element formulation reported by Hansbo, Belytschko and Black. According to this 
approach, the discontinuous displacement field can be superposed with elements that 
containing phantom nodes. The superposed elements originally combined together as a 
single element, when the crack grows across the elements, phantom nodes and real 
nodes move away each other, illustrated in Figure 3.12. This behavior is used as 
implementation of crack propagation in ABAQUS. Because the asymptotic crack tip 
enrichment functions is not included in the approach, in other word, the stress 
singularity at the crack tip will be ignored. 

 
Figure 3.12    The superposing of phantom nodes (Dassault, 2014a). 

3.3.6 Level set method 
Because the model within the XFEM framework is independent of the finite element 
mesh. This gives rise to the problem that how to keep tracking the evolution of the crack 
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as they are not explicitly defined. In order to solve this problem, Osher and Sethian 
(1988) introduced a method to track the boundaries of crack evolution, also known as 
the Level Set Method. In the level set method, two orthogonal level set functions ϕ and 
ψ are used to completely describe the crack. The ψ level set is used to track the crack 
body, while the ϕ level set is used to track the crack tip. The ϕ and ψ level set functions 
are defined such in the Equation 3.29. 

ψ(ݔ) < 0 below crack path ϕ(ݔ) < 0 behind crack tip  

ψ(ݔ) > 0 above crack path ϕ(ݔ) > 0 in front of crack tip (3.29) 

ψ(ݔ) = 0 along crack path ϕ(ݔ) = 0 at crack tip  

The nodal value of the function ϕ is the signed distance of the node fromt the crack 
face; while the velue of function ψ represents the distance of the node from an almost-
orthogonal surface passing through the crack front. Figure 3.13 gives an example of 
how the level set method works. 

 
Figure 3.13    An example to explain the ߶ and ߰ level set (Dassault, 2014a). 

Shi et al. (2010) incorporated XFEM into ABAQUS to analyze cyclic crack growth 
using a modified VCCT method for calculating the energy release rates at the crack tip. 
A standard VCCT procedure can be followed as below: 
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Figure 3.13    The flow chart to analyze crack growth based on modified VCCT. 
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4 Ultimate strength and buckling analysis  
In ultimate strength analysis, the relationship between bending moment and curvature, 
as well as the relationship between neutral axis position and curvature is illustrated. In 
buckling analysis, the load-end shortening curve is proved. 
 

4.1 Ultimate strength analysis 
The Figure 4.1 shows the mid-ship section study vessel, which is a 308,000DWT double 
hull VLCC. The cross-section of this VLCC is divide into 113 stiffened elements and 
12 corner elements. There is no unstiffened plate element in this study case, because all 
the plates of the cross-section were attached by T-profile stiffener. 

 
Figure 4.1    Mid-ship cross section with neutral axis position. 

In the mid-ship section graph, the red line represents the initial neutral axis position 
which is approximately 12.9 m from base line. During the calculation process of 
iterative incremental approach, the adjustment of this position would be significant to 
the final results. In hogging and sagging condition, it will move to opposite direction. 
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4.1.1 Types of Elements  
Because all the structure components in this ship are with stiffeners. There are only two 
structure elements in the definition. In Figure 4.2, there are only stiffened elements and 
corner elements without plate elements. So the calculation procedure can be simplified. 

 
Figure 4.2    Two types of structure elements in this study case (ABS, 2012). 

4.1.2 Load-end shortening curve 
The nonlinear behavior of hull material is different in different hull structure elements. 
As the material was regarded as elasto-plastic material, most of the elements would 
have a stress-strain curve shows in the Figure 4.3, Figure 4.8, Figure 4.9. The structure 
element is fully plastic beyond yield in tension. However, in compression, the nonlinear 
elasto-plastic behavior takes place in some structure elements. This kind of material 
behavior which shows different in tension and compression is called ‘load-end 
shortening’. Different type of elements have different load-end shortening curves. But 
in tensional condition, all elements are elastic-perfectly plastic material. 

4.1.2.1 Plate element 
There are two failure modes of plate element, yielding in tension and buckling in 
compression.  
When the unstiffened plate element is under tension, it was regarded as elastic-perfectly 
plastic material. 

 ఙ
ఙబ

= ൜ߝ, 0 ≤ ߝ ≤ 1
1, ߝ ≥ 1   (4.1) 

When plate is under compression, ߪ௎௉
ா  is the stress of unstiffened plate which should 

be not less than ߪ஼௉
ா , the critical buckling stress, and should be limited by ߪ௎௫ , the 

ultimate strength, shown in Equation 4.2.  

஼௉ߪ
ா ≤ ௎௉ߪ

ா ≤ ௎௫ߪ   (4.2) 

When ߝ ≤ ௎௫ߪ ⁄଴ߪ  

௎௉ߪ
ா =  (4.3)  ߝ଴ߪ

When ߝ > ௎௫ߪ ⁄଴ߪ  

ఙೆು
ಶ

ఙబ
= ቊ

ߙ                                                       ,ܥ > 1
ܥ ∙ ௦

௟
+ 0.1(1 − ௦

௟
)(1 + 1 ாߚ

ଶ⁄ )ଶ, ߙ < 1  (4.4) 

Where 

௎௫ߪ =  ଴  (4.5)ߪ௫ܥ
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௫ܥ = ൜
ߚ                       ,1 ≤ 1
2 ⁄ߚ − ,ଶߚ/1 ߚ > 1  (4.6) 

where ߚ is plating slenderness ratio. 

ாܥ = ൜
1, ாߚ                        ≤ 1
2 ாߚ − ாߚ/1

ଶ⁄ , ாߚ   > 1  (4.7) 

where ߚா is plating slenderness ratio corresponding to ߝ 

ாߚ =  (4.8)  ܧ/଴௣ߪ௡ߝටݐ/ݏ

Finally, the critical buckling strength of an unstiffened plate corresponding to ߝ can be 
determined by the following equation 

஼௉ߪ
ா = ቐ

ఙಶೣ
ఌ೙ ா௫ߪ                                        , ≤ ௥ܲߪ଴ߝ௡

଴[1ߪ − ௥ܲ(1 − ௥ܲ) ఙబఌ೙

ఙಶೣ
], ா௫ߪ > ௥ܲߪ଴ߝ௡   (4.9) 

 
Figure 4.3    Load-end shortening curve for plate element. 

4.1.2.2 Stiffener element 
There four failure modes of stiffened element. In tension condition, the material is fully-
plastic, so it is yielding in tension as other structure elements. In compression condition, 
there are three types of buckling models, beam-column buckling, torsional-flexural 
buckling and local buckling. 

Yielding in tension 
The load-end shortening curve same as that of unstiffened plate in tension.  

Beam-column buckling 
The beam-column buckling value can be calculated by the following equations.  
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Firstly, to determine the stress for beam-column buckling of longitudinal corresponding 
to ߝ, some other parameters need to be calculated.  

஼ଵߪ = ൝
ߝ                                       ,ߝ଴ߪ ≤ ஼஺ߪ ⁄଴ߪ

஼஺ߪ
ா ஺ೞା௦೐

ಶ௧
஺ೞା௦௧

≤ ஼஺ߪ
஺ೞା௦೐௧
஺ೞା௦௧

, ߝ > ஼஺ߪ ⁄଴ߪ   (4.10) 

where ߪ஼஺ is critical buckling stress of longitudinal in axial compression computed by 
Equation 4.11. In the calculation of critical buckling stress of longitudinal in axial 
compression, the Euler’s buckling stress of longitudinal ߪா(஼) need to determined by 
Equation 4.12. 

஼஺ߪ = ൝
ா(஼)ߪ                                     ,ா(஼)ߪ ≤ ௥ܲߪ଴

଴[1ߪ − ௥ܲ(1 − ௥ܲ) ఙబ
ఙಶ(಴)

], ா(஼)ߪ > ௥ܲߪ଴
  (4.11) 

ா(஼)ߪ = గమா௥೐
మ

௟మ   (4.12) 

௘ݎ = ට ூ೐
஺೐

  (4.13) 

where ݎ௘ is radius is the gyration of area, ܣ௘.  

The critical buckling stress of longitudinal corresponding to ߝ can be calculated by 
Equation 4.14. 

஼஺ߪ
ா = ቐ

ఙಶ(಴)

ఌ೙ ா(஼)ߪ                                       , ≤ ௥ܲߪ଴ߝ௡

଴[1ߪ − ௥ܲ(1 − ௥ܲ) ఙబఌ೙

ఙಶ(಴)
], ா(஼)ߪ > ௥ܲߪ଴ߝ௡   (4.14) 

௘ݏ
ா =  (4.15)  ݏாܥ

ாܥ = ൜
1, ாߚ                         ≤ 1
2 ாߚ − ாߚ/1

ଶ⁄ , ாߚ   > 1  (4.16) 

 
Figure 4.4    Load-end shortening curve for beam-column buckling. 
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Torsional-flexural buckling 
The torsional-flexural buckling can be calculated by the following equations. To 
determine the stress for torsional-flexural buckling of longitudinal corresponding to ߝ, 
the critical torsional-flexural buckling stress, critical buckling stress for associated 
plating corresponding to n-half waves and elastic torsional-flexural buckling stress are 
needed to be calculated firstly.  

஼ଶߪ = ൝
ߝ                  ,ߝ଴ߪ ≤ ஼்ߪ ⁄଴ߪ
ఙ಴೅

ಶ ஺ೞାఙೆು
ಶ ௦௧

஺ೞା௦௧
, ߝ > ஼்ߪ ⁄଴ߪ   (4.17) 

஼்ߪ = ቊ
ா்ߪ ா்ߪ                                     , ≤ ௥ܲߪ଴

଴[1ߪ − ௥ܲ(1 − ௥ܲ) ఙబ
ఙಶ೅

], ா்ߪ > ௥ܲߪ଴
  (4.18) 

ா்ߪ =
಼

మ.లା(೜ഏ
೗ )మГା಴బ

ಶ ( ೗
೜ഏ)మ

ூబା ಴బ
഑೎ಽ

( ೗
೜ഏ)మ

 (4.19)  ܧ

 
Figure 4.5    Sectional dimensions of a stiffened plate (Sun and Wang, 2005). 

During the calculation for elastic torsional-flexural buckling stress and critical buckling 
stress for associated plating corresponding to n-half waves, the following parameters 
need to be determined. The parameters are influenced by the sectional dimensions of 
the stiffened plate which is illustrate in Figure 4.5. In this case ܾଵ equals to ܾଶ. 

ܭ =
௕೑௧೑

యାௗೢ௧ೢ
య

ଷ
  (4.20) 

଴ܫ = ௬ܫ + ௭ܫ݉ + ଴ݕ)௦ܣ +  ଴)  (4.21)ݖ

݉ = 1.0 − 0.7)ݑ − ௗೢ
௕೑

)  (4.22) 
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ݑ = 1 − 2 ௕భ
௕೑

  (4.23) 

଴ܥ = ா௧య

ଷ௦
  (4.24) 

Г ≅ ௭௙݀௪ܫ݉
ଶ + ௗೢ

య ௧ೢ
య

ଷ଺
  (4.25) 

௭௙ܫ =
௧೑௕೑

య

ଵଶ
ቀ1.0 + 3.0 ௨మௗೢ௧ೢ

஺ೞ
ቁ  (4.26) 

௖௅ߪ =
గమா(೛

ഀାഀ
೛)మ(೟

ೞ)మ

ଵଶ(ଵି௩మ)
  (4.27) 

The critical torsional-flexural buckling stress of a stiffener corresponding to ߝ can be 
estimated by Equation 4.28. 

஼்ߪ
ா = ቐ

ఙಶ೅
ఌ೙ ா்ߪ                                       , ≤ ௥ܲߪ଴ߝ௡

଴[1ߪ − ௥ܲ(1 − ௥ܲ) ఙబఌ೙

ఙಶ೅
], ா்ߪ > ௥ܲߪ଴ߝ௡  (4.28) 

 
Figure 4.6    Load-end shortening curve for torsional buckling. 

Local buckling of stiffeners 
Same as the previous two types of buckling, to calculate stress for local buckling of 
longitudinal corresponding to ߝ , some other parameters should be determined at the 
first step. 

஼ଷߪ = ൝
ߝ                 ,ߝ଴ߪ ≤ ஼௅ߪ ⁄଴ߪ
ఙ಴ಽ

ಶ ஺ೞାఙೆು
ಶ ௦௧

஺ೞା௦௧
, ߝ > ஼௅ߪ ⁄଴ߪ   (4.29) 

஼௅ߪ
ா = ቐ

ఙಶಽ
ఌ೙ ா௅ߪ                                        , ≤ ௥ܲߪ଴ߝ௡

଴[1ߪ − ௥ܲ(1 − ௥ܲ) ఙబఌ೙

ఙಶಽ
], ா௅ߪ > ௥ܲߪ଴ߝ௡   (4.30) 
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Where:  

ா௅ߪ = min (ߪாௐ,  ாி)  (4.31)ߪ

ாௐߪ = ݇௦
గమா

ଵଶ(ଵି௩మ)
(௧ೢ

ௗೢ
)ଶ  (4.32) 

݇௦ =  ௦  (4.33)ܥ4

௦ܥ = ቐ
1.0, ݎܾܽ ݁݁ݐ ݎ݋ ݈݁݃݊ܽ ݎ݋݂
ݏ݁ݐ݈ܽ݌ ܾ݈ݑܾ ݎ݋݂        ,0.33
ݎܾܽ ݐ݈݂ܽ ݎ݋݂              ,0.11

  (4.34) 

ாிߪ = 0.44 గమா
ଵଶ(ଵି௩మ)

(௧೑

௕మ
)ଶ  (4.35) 

 
Figure 4.7    Load-end shortening curve for local buckling.  

As the three failure mode has different stress value during buckling, the lowest value 
of them should be selected as the critical value. In Figure 4.8, the blue curve is for 
Beam-column buckling, red is for torsional-flexural buckling and green is for local 
buckling. 
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Figure 4.8    The comparison for the three kind of buckling in stiffened element 

4.1.2.3  Corner element 
Corner elements were regarded as stocky elements, which can be idealized as elastic-
perfectly plastic material. 

ఙ
ఙబ

= ൝
ߝ            ,1− < −1
1          ,ߝ ≤ ߝ ≤ 1
ߝ                 ,1 > 1

  (4.36) 

 
Figure 4.9    Load-end shortening curve for corner element. 
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4.1.3 Result of ultimate strength 
It can be seen in Figure 4.10 when the curvature is in a small range around 0, the 
material behavior is linear elastic. But starting from 1 and -1 in hogging and sagging, 
moment-curvature relationship starts to be nonlinear. At this time, a little number of 
components start to yield, while other components close to neutral axis still follow 
linear elastic behavior. When the moment-curvature curve reaches a peak value, most 
of the components at compression side has already reached their critical buckling stress 
and the occurrence of strength reduction happens in some components. So the moment-
curvature begins to drop which follows the elasto-plastic behavior. 

 
Figure 4.10    Relationship between bending moment and curvature 

From the moment-curvature curve, the ultimate strength is around 12,500,000 kNm and 
-9,000,000 kNm in hogging and sagging condition respectively. Compared with the 
designed moment 9,900,000 kNm and -7,200,000 kNm for hogging and sagging in 
harbor, this results calculated by incremental iterative approach is sufficient to cover 
the maximum designed moment. It means that the designed value is relatively 
conservative compared with the calculation result from incremental iterative approach. 

On the other side, because of the incremental iterative approach only consider one cross 
section, this value is not accurate enough to represent the entire hull structure in 
complicated load condition. However, it still can be a reference to evaluate the ship 
ultimate strength. 

In general, the collapse is always firstly occur at the components which are most far 
away from neutral axis. Due to the stress at neutral axis is 0, a gradient stress 
distribution will act on the cross-section. Local collapse starts from deck or bottom to 
the components which are close to neutral axis. Because of the elasto-plastic material 
behavior, strength of yielded components would remain constant at yielding stress. 
However, strength of buckled components would reduce due to buckling. So the total 



CHALMERS, Shipping and Marine Technology, Master’s Thesis X-15/328 38

force of the entire cross section would not remain 0. To keep the total force remain 0, 
neutral axis should move to maintain the force equilibrium. From the Figure 4.11, after 
the ultimate strength was attained, neutral axis moves to yielding side. 

 
Figure 4.11    Relationship between neutral axis position and curvature 
In hogging condition, the cross-section above neutral axis is in tension and beneath 
neutral axis is in compression. So yielding takes place at deck, while buckling takes 
place at bottom. When the curvature started to grow from beginning, due to elastic 
material behavior, the movement of neutral axis position is not obvious. Then after 
further increase of curvature, deck plate starts to yield and outer bottom plate starts to 
buckle. The position of neutral axis drops a little. At this time, result from the yielding 
in deck, the effectiveness of deck plate cannot remain as before. When the neutral axis 
position value reaches valley, the ultimate strength attained, and entire bottom structure 
has already buckled. Due to the strength reduction caused by buckling, the neutral axis 
position move upward quickly after the valley point.  
Vice versa in sagging condition, the cross-section above neutral axis is in compression 
and beneath neutral axis is in tension. So yielding takes place at bottom, while buckling 
takes place at deck. The direction of neutral axis movement in sagging condition is 
opposite to that in hogging condition. At the beginning, the position of neutral axis does 
not change significantly. However, after the ultimate strength has reached, the height 
of neutral axis decreases in a rapid speed to compensate the strength reduction from 
buckling.  

Finally, the ultimate strength value in sagging condition is smaller than that in hogging 
condition. This is because bottom and deck is under compression in hogging and 
sagging condition respectively. The bottom is much stronger in compression load. 
Compared with bottom plates, deck plates have less stiffeners and less components. 
Therefore, buckling is much easier to take place at deck than at bottom. 
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4.2 Buckling analysis  
To simplify the analysis, an unstiffened plate in the deck was applied. The material of 
this plate is elasto-plastic A36 high tensile strength steel. The yielding stress of A36 
high strength steel is 355MPa and the tangent modules is 1000MPa. The plate thickness 
is 19 mm, which has already minus 3 mm corrosion margin of plate. The length and 
width of the plate is 5250 mm and 855 mm, which is the space of transvers floor and 
longitudinal stiffeners respectively, shown in Figure 4.12. In this analysis, one-bay plate 
model was adopted to simplify the analysis. 

 
Figure 4.12    An one-bay plate model. 

4.2.1 Boundary conditions and Load 
In this model, the boundary condition at four edges are all simply support without 
displacement in Z direction. To simulate the bi-axial compression, the boundary 
condition at D edge should be no displacement in any direction. And the rest of three 
edges can be move freely in plane.  
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Figure 4.13    Boundary conditions at four edges. 

There are three types of acting load in this model. It can be seen in Figure 4.14. A is a 
compression load acting on one edge. B and C are lateral pressure and a small force 
acting on the plate surface respectively. As in the buckling analysis, an imperfection of 
shape is required. The effect of load C is to make a tiny imperfection or initial deflection 
of the plate surface. 

 
Figure 4.14    Acting load on the plate. 
The C load lead to a small deflection which is less than the maximum value and in an 
allowable range. This initial deflection can be regard as the imperfection of shape 
geometry. 
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Figure 4.15    Initial deflection of the plate. 

The most critical buckling condition can be find after the loads acting on the plate model. 
In this plate model, the most critical buckling condition can be four half-wave condition 
in this analysis, in Figure 4.16. As a matter of fact, the half-wave number is determined 
by the eigenvalue analysis. It can be explained by the combination of different factors, 
such as geometrical shape, material behavior, boundary conditions and combination of 
acting loads. If one or several of them are changed, the most critical condition may 
become other buckling eigen-modes. 

 
Figure 4.16    Deformation shape for the most critical buckling mode with four half-

waves. 
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Figure 4.17    Von-Mises stress distribution when the plate starts to buckle. 

4.2.2 Result of buckling analysis 
As the load is a linear function of time in ANSYS, the load will increase by the time 
step. Finally, the entire plate was buckled due to the compression load, Figure 4.18. The 
behavior of plate material becomes plastic. Then some parts of the plate start to yield.  

 
Figure 4.18    Deformed shape and the Von-Mises stress distribution of the plate. 
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Figure 4.19    Stress ratio versus strain curve 

The stress ratio is the ratio between applied stress and yielding stress. The applied stress 
is caused by the axial compression load. In Figure 4.19, the plate material act as elastic 
firstly until it starts to buckle. The critical buckling stress of this plate is approximate 
220 MPa which is the peak value for the applied stress. When the applied stress reach 
a peak, it starts to drop and converge around 210 MPa. Compared with the critical 
buckling stress for this plate in common structure rules, the value from FEM calculation 
is 4.5%  smaller than the rule result, which means if  FEM is applied in buckling analysis, 
the result can be accurate and more close to the real buckling condition. 
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5 Crack propagation estimation in Franc2D/3D 
The crack growth speed and relevant structural behavior will be investigated in this 
chapter. The simulation will be implemented in three different commercial software. 
The comparison and benchmark study will be carried out to define the difference 
between aforementioned programs.  

In this study, the crack starts with an initial crack, ܽ଴, then crack propagates until the 
crack length reaches to a given length (60mm in Franc2D and 3D, about 20 mm in 
ABAQUS). During the propagation, growth rates follow the crack growth model Paris 
law. Different methods mentioned in Section 3 are performed in the analysis; the 
procedures and results will be described in the following sections. 
 

5.1 Introduction of FRANC2D and FRANC3D 
As regards to determine the stress intensity factors, FRANC2D version 3.1 and 
FRANC3D version 6.0 were selected to find out SIF values. These two programs are 
developed by Cornell University and Cornell Fracture Group. FRANC2D, also known 
as two-dimensional Fracture Analysis Code incorporates the 2-D problems with 
arbitrary crack geometries based on the Finite Element Method. 

While FRANC3D can analysis three-dimensional fracture problems based on boundary 
element method. The Displacement Correlation Method is used in this program to 
determine the stress intensity factors. Propagation direction is evaluated at discrete 
points along the crack front using 2-D plane strain equations that is applied in the plane 
normal to the crack front tangent. The crack growth magnitude is calculated using 
simple expressions such as Paris’ model with a supplied maximum extension. In total, 
the procedure in FRANC3D can be summarized as: 
1) Accurate extraction of stress intensity factors along an 3-D crack front, 

2) Determination of the direction of extension and the crack growth increment based 
on the stress intensity factors, 

3) The effect of neighboring features. 
 

5.2 Estimation in FRANC2D 
5.2.1 Analysis procedures and models 
A two-dimensional longitudinal stiffener is considered herein to determine the crack 
path and simulate crack growth. The cross section profile of the stiffener is a 500 mm 
height and 10 mm thick. The length of the stiffener is 3000 mm and connected with an 
attached plate at the middle point along the longitudinal direction. Two types of width 
(200 mm and 300mm) of the attached plate are analyzed, as shown in Figure 5.1. A 50 
MPa tension load is applied at left and right ends of the stiffener. The top free surface 
of the attached plate is fixed in three translation degrees of freedom, while the left and 
right free surface of the base plate is fixed in vertical and transverse translation degrees 
of freedom. ASMT A36 steel is commonly used in marine industry, and the material 
properties are given in Table 5.1. 
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Table 5.1    The material data of ASMT A36 steel. 

C m E 
 

MPa 

ν σy 
 

MPa 

KIC 
mm/cycle

൫MPa√݉݉൯௠ 

JIC 

N/mm 

5.21e-13 3 210000 0.3 250 2977 42.2 

The study cases is combined with three cases, 1) a analytical case (without attached 
plate), 2) the width of the attached plate equals to 200 mm and 3) the width grows to 
300 mm. Table 5.2 illustrates the detail of the geometry information. 

 
Figure 5.1    The geometry profile of 2-D case. 
Table 5.2 Difference of cycle counting between different geometries. 

Case No. Case 
name 

W 
mm 

L 
mm 

H1 
mm 

H2 
mm 

t1 
mm 

1 Analytical -- 3000 500 1000 10 

2 W = 200 200 3000 500 1000 10 

3 W = 300 300 3000 500 1000 10 

The meshes of the analyzed model were implemented with the relevant preprocessor 
(Casca). The meshed model was created as shown in Figure 5.2. The finest mesh size 
of 1 mm around the crack tip region limits the lower bond of mesh densities, in contrast 
the coarsest size reaches to 5 mm. The Paris law equation was used to determine the 
crack growth rates with the constants in the equation listed in Table 5.1. All of the 
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material properties that did not apply to the crack analysis in this thesis were left at 
default values. FRANC2D processed crack growth by increasing the crack length with 
a user defined value, 5 mm, until the crack length reached to 60 mm. The stress intensity 
factors for a bitterly crack length was determined by an interpolation in MATLAB 
based on the data retrieved from FRANC2D, by using the cubic spline interpolation 
tool – csapi() and fnval(). Cycles were counted over each increment for the final 
estimate of fatigue fracture life in MATLAB codes following the Paris law, which is 
shown in Appendix B. 

 
Figure 5.2    The two-dimensional meshing scheme. 

The stress intensity factor is an important parameter of elaborating the crack status. The 
load independent factor, geometry factors, are then investigated. The geometry factor 
of analytical model was given by empirical formulations (Anderson, 1994): 

ܨ ቀ௔
௪

ቁ = 1.22 − 0.231 ቀ௔
௪

ቁ + 10.550 ቀ௔
௪

ቁ
ଶ

− 21.710 ቀ௔
௪

ቁ
ଷ

+

30.382 ቀ௔
௪

ቁ
ସ

…  (5.1) 

where a is the crack length and w means the height of the stiffener. The reverent stress 
intensity factor was then calculated by Equation 5.2 (Moreira et al., 2009). 

ூܭ = ܨܽߨ√ߪ ቀ௔
௪

ቁ  (5.2) 

In order to demonstrate the difference between each geometry, the Root Mean Square 
Difference (RMSD) was calculated as Equation 5.3 and the maximum difference 
calculation is presented in Equation 5.4. The value n represents the total number of 
crack length used to calculate cycle numbers. 

ܦܵܯܴ = ඨଵ
௡

෎ ቀ ஼௬௖௟௘௦ ௜௡ ௖௨௥௥௘௡௧ ௚௘௢௠௘௥௧௥௬
஼௬௖௟௘௦ ௜௡ ௔௡௔௟௬௧௜௖௔௟ ௚௘௢௠௘௧௥௬

− 1ቁ
௞

ଶ
௡

௄ୀଵ

× 100% (5.3) 

% Diff = max ቀ ஼௬௖௟௘௦ ௜௡ ௖௨௥௥௘௡௧ ௚௘௢௠௘௥௧௥௬
஼௬௖௟௘௦ ௜௡ ௔௡௔௟௬௧௜௖௔௟ ௚௘௢௠௘௧௥௬

− 1ቁ × 100%  (5.4) 
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5.2.2 Results in FRANC2D analysis 
Comparison of geometry factors 
From Figure 5.3 it can be seen that the analytical case shows a totally different trend 
compared with the other two geometries. For the analytical case, the geometry factor 
keep rising as the crack grows, the factors of No.2 and 3 cases are dropping instead. 
What is more, the geometry factor of geometry No.3 shifts up almost parallel with the 
No.2 geometry. That implies that the larger width of the attached plate gives rise to a 
bigger geometry factor at each crack length proportionally. 

 

Figure 5.3    Comparison of geometry factors, ܨ ቀ௔
௪

ቁ, during the crack propagation. 

Comparison of crack propagation speed 
Figure 5.4 plots the cycle number counting versus crack length curves in three different 
geometry cases. In the figure, the crack grow from the initial crack length of 5 mm to 
60 mm. It is obviously that the extra attached plate gives rise to a faster crack growth 
speed, in other word the wider attached plate the higher speed will be retrieved. On this 
account the attached plate will accelerates the crack propagation speed as the increase 
of width of the attached plate. 
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Figure 5.4 Comparison of cycle counting with crack propagation for different 

geometries. 
Table 5.3 shows the difference between three geometries. For the geometry No. 2 case 
(W=200 mm), the crack grows about 54% faster than the analytical case, and the 
maximum difference approaches to 74.5%. On the other hand, the maximum difference 
in the geometry No. 3 case (W=300 mm) is about 82% with the RMSD value of 64.6%. 
Figure 5.5 plots the difference of cycle number counting. 

Table 5.3 Difference of cycle counting between different geometries. 

Case 
No. Case name 

Cycle % Difference 

Max. RMSD 

1 Analytical -- -- 

2 W = 200 -74.5 54.3 

3 W = 300 -81.7 64.6 
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Figure 5.5 Difference in cycle counting during crack propagation for No.2 case and 

No.3 case compared with analytical case (No. 1 case). 
 

5.3 Estimation in FRANC3D 
5.3.1 Analysis procedures and models 
Three-dimensional longitudinal stiffener is analyzed in FRANC3D to find out the crack 
propagation behaviors. The geometry is similar to the two-dimensional case, except for 
the inverse angle bar is used instead of flat bar. The geometry dimension is illustrated 
in Table 5.4 and Figure 5.6. Aforementioned (in Section 5.2) loads and boundary 
conditions were applied and the material properties used for analysis are given in Table 
5.1. 

 
Figure 5.6 The crack tip meshing template in FRANC3D. 
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Table 5.4 Geometry parameters of study case in FRANC3D. 

Case 
No. 

Case 
name 

W 
mm 

W1 
mm 

L 
mm 

B 
mm 

H1 
mm 

H2 
mm 

t1 
mm 

t2 
mm 

1 W = 200 200 150 3000 1000 500 1000 10 20 

2 W = 300 300 150 3000 1000 500 1000 10 20 

The modeling and meshing of the structure were implemented in ABAQUS, and the 
quadratic tetrahedron elements were selected since the mid-side nodes in this type 
elements is needed. In order to reduce the computation time, the whole model was 
divided into two parts: the region where was in the vicinity of the crack was defined as 
local model; the rest of the mode was defined as the global model. The program 
FRANC3D meshed the model and defined an initial circle crack near the intersection 
corner of the attached plate and inverse angle bar, as illustrated in Figure 5.8. As 
mentioned in Section 5.2.1, the crack was manually grown from ܽ௜  to ܽ௖ . At each 
increase, the FRANC3D required a re-meshed model to match the new geometry. A 
circular partition strategy, which is defined in FRANC3D as a template as illustrated in 
Figure 5.7a, was used to evaluate the stress intensity factors and J-integral by using 
contour integrals method.  

 
Figure 5.7a The example of crack tip meshing template in FRANC3D (Fracture 

Analysis Consultants Inc, 2011). 

SIFs can be extracted from the J for a LEFM problem using Equation 5.5, while the 
direction of the propagation was determined by the "kink" angle, which was defined by 
the amount that the crack will deviate from the self-similar direction measured in a plane 
perpendicular to the crack front. Figure 5.7b demonstrates the definition of the kink angle, 
which is calculated by following the max tensile stress algorithm (MTS) mentioned in 
Section 3.2.1. The resulting of mesh is shown in Figure 5.8. 
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Figure 5.7b    The definition of the “kink angle” θ (Fracture Analysis Consultants Inc, 

2011). 

 
Figure 5.8    The meshed geometry No.2 in FRANC3D. 

J = ࣡ =  ଵ
ா

ூܭ)
ଶ + ூூܭ

ଶ) + ଵ
ଶீ

ூூூܭ
ଶ  (5.5) 

There was a distribution of K values along the crack front in a three-dimensional 
problem, and there might not be an obvious crack dimensions that uniquely 
characterized the crack length. In order to solve these issues, a user defined path was 
selected to describe the crack path and relevant stress intensity factors. Because the K 
values are numerical results, they tend to be "noisy" and frequently show spurious 
behavior near free surfaces where the assumptions and numerical techniques used to 
compute the K can break down. Due to this reason, the 10% inside of the free surface 
path is selected, which is shown in Figure 5.9. 
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Figure 5.9 The user defined paths of the crack during crack propagation. The left 

figure shows the selected path on flange plate; the left figure illustrated 
the path on web plate. 

Once the SIFs were extracted at each crack increase, a cycle by cycle counting method 
was implement based on the Paris Law, which is discussed in Section 3.2. A cubic 
spline interpolation technique was used to plot the SIFs versus crack length curve, 
where the stress intensity factors for a given arbitrary crack length can be extracted 
from. FRANC3D computes separate stress intensity factors for all three modes of 
fracture (ܭூ, ܭூூ, and ܭூூூ), however only one stress intensity factor range is required 
for calculating the crack growth rates. In this analysis, the ∆K can be expressed as 
௠௔௫ܭ − ௠௜௡ܭ   in each cycle. Because the ܭூ ூூܭ <<   and ܭூூூ , then mode one stress 
intensity factors is used to computing the maximum and minimum defective stress 
intensity factors. All of above mentioned relation of stress intensity factors are 
expressed in Equation 5.6. According to this algorithm, codes were programed in 
MATLAB to plot the crack length versus cycle number curve, which is shown in 
Appendix B. 

௠௔௫ܭ
௘௤௨௜௩௔௟௘௡௧ =   ூ,௠௔௫ܭ

௠௜௡ܭ
௘௤௨௜௩௔௟௘௡௧ =  ூ,௠௜௡ (5.6)ܭ

௘௤௨௜௩௔௟௘௡௧ܭ∆ = ௠௔௫ܭ
௘௤௨௜௩௔௟௘௡௧ − ௠௜௡ܭ

௘௤௨௜௩௔௟௘௡௧   

The complexity of three-dimensional problem is that the additional flange plate give 
extra elastic stiffness than two-dimensional case. In order to inventive the different 
crack propagation behaviors on these plate receptively, the difference analysis was 
carried out. The RMSD and maximum difference are determined in Equation 5.7 and 
5.8. 

ܦܵܯܴ = ඨଵ
௡

෎ ቀ ∆௄ ௢௡ ௪௘௕ ௣௟௔௧௘
∆௄ ௢௡ ௙௟௔௡௚௘ ௣௟௔௧௘

− 1ቁ
௞

ଶ
௡

௄ୀଵ

× 100% (5.7) 

% Diff = max ቀ ∆௄ ௢௡ ௪௘௕ ௣௟௔௧௘
∆௄ ௢௡ ௙௟௔௡௚௘ ௣௟௔௧௘

− 1ቁ × 100% (5.8) 
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5.3.2 Results in FRANC3D analysis 
Stress intensity factor history 
Figure 5.10 shows the stress intensity factors history on the web plate of the No.2 case 
(The result on No.1 case are shown in Appendix A.). Each horizontal line in Figure 
5.10 means the SIF values along the crack front at each step. It’s obviously that the 
stress intensity factor increase as crack propagation. In addition, the SIF values varies 
slightly along the crack front, after the crack propagates beyond the attached plate 
influencing region, the SIF values start to keep even.  

 
Figure 5.10 The stress intensity factor history on web plate at each step of 

propagation (No.2 case). 

Comparison of geometry factors between flange and web plates (No.2 case) 
The geometry factor curves on flange and web plates, in Figure 5.11, demonstrate that 
factors keep dropping down from the initial crack length to about 20 mm length, then 
on both flange and web plates, the geometry factors rise up as crack length increasing. 
The phenomenon on the dropping stage agrees with the observation in two-dimensional 
cases. After the cracks grow beyond 20 mm, the behavior of cracks propagate turns to 
be similar to the analytical case in two-dimensional analysis. 
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Figure 5.11 Comparison of geometry factors, ܨ(ܽ), during the crack propagation 

(No.2 case). 

Figure 5.12 plots the difference of stress intensity factor range between web and flange 
plates. The SIF range value on web is bigger than flange when the curve is above zero 
and vice versa. The maximum difference is about 8% and the RMSD is about 4%, which 
is smaller than 5%. It implies that the difference between them turns to zero as the 
increase of crack length. Consequently both of web and flange plate can determine the 
fracture toughness of the inverse angle bar. In other word, one can simplifies the 
problem and keep eyes only on web or flange plate only. The results in No.1 case are 
shown in Appendix A. 

 
Figure 5.12 Difference of stress intensity factor ranges between flange and web plates 

(No.2 case). 
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Comparison of crack propagation speed between flange and web plates (No.2 case) 
The Figure 5.13 and 5.14 verifies the aforementioned conclusion. The cycles counting 
number versus crack length curves on web and flange plate match each other very well. 
The difference of cycle numbers between them shows that the RMSD is only 2% when 
the crack grows to 60 mm. 

 
Figure 5.13 Comparison of cycle counting with crack propagation for flange and web 

plates (geometry No.2 case). 
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Figure 5.14 Difference of cycles counting number between flange and web plates 

(geometry No.2 case). 

Comparison of crack propagation speed on web plate between No.1 and No.2 cases 
Recalling the result from two-dimensional case, the wider attached plate will give rise 
to a higher crack growth speed. This result works well in three-dimensional case as well. 
Figure 5.15 proves this phenomenon, moreover the RMSD value in Figure 5.16 shows 
the 300 mm width attached plate accelerates the crack propagation speed about 27% 
than 200 mm case. However it’s almost three times larger than the value obtained in 
two-dimensional case. 
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Figure 5.15    Comparison of cycle counting during crack propagation on web plate 

between No.1 and No.2 cases. 

 
Figure 5.16 Difference of cycles counting during crack propagation on web plate 

between No.1 and No.2 cases. 

Comparison of crack propagation path on web plates between No.1 and No.2 cases 
In Figure 5.17, the cracks on web plate are presented. In both No.1 and No.2 cases, the 
cracks turn close to the direction where the attached plate locates, and then the cracks 
show the tendency of growing vertically. The wider attached plate pulls the crack 
further from the initial location. 
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Figure 5.17 Comparison of crack growth path on web plate between No.1 and No.2. 

cases. 
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6 Crack propagation estimation in ABAQUS 
(XFEM) 

6.1 Analysis procedures and models 
The XFEM based directly low-cycle fatigue analysis was carried out to evaluate the 
ability of crack propagation. Being different from the conventional FEM fracture 
analysis, the XFEM allows a crack to propagate along a solution dependent path without 
meth dependence. Because the crack tip asymptotic functions is ignored when the crack 
is propagating in a XFEM analysis, the stress intensity factors and strain energy release 
rates cannot be calculated in this analysis. However the ABAQUS allows the output of 
energy release rate, and the Equation 3.13 gives the possibility to convert the energy 
release rate to stress intensity factor. Due to the time limitation and expensive 
computation power, the XFEM analysis was only carried out in No.2 case herein. 
The whole mode consists with two parts: a three-dimensional solid part modeling the 
geometry of No.2 case mentioned in FRANC3D analysis (in Section 5.3); and a three-
dimensional shell part representing the initial crack. The focused meshing strategy was 
applied to maximize the number of elements in the vicinity of crack propagation zone 
while reducing the mesh density elsewhere. This strategy will help to obtain a 
converged result and reduce the computation time. In Figure 6.1, which depicts the 
partitioning scheme, the minimum element size is 1 mm while the maximum size 
reaches to 50mm. In the enrichment elements region where the crack was placed, the 
C3D8 elements were selected for a better accuracy. The other geometry were meshed 
with C3D8R elements.. 

 
a) Boundary conditions and applied loads with the representation of global meshing 
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b) Focused meshing scheme in vicinity of enriched region on flange plate. 

 
c) Focused meshing scheme in vicinity of enriched region on web plate. 

Figure 6.1    Meshing scheme of model and boundary conditions setting in a XFEM 
analysis. 

The analysis was carried out under two steps: a static general step and a direct cyclic 
step. The loads rise up to ߪ௠௔௫ at the end of static step then the cyclic load will oscillate 
between ߪ௠௔௫ and ߪ௠௜௡. The loading amplitude curve is shown in Figure 6.2. It can be 
seen that the cyclic load follows a sinusoidal curve, which can reduce the stabilization 
ratios compared to a triangular shaped curve. In addition, this setting help to reduce the 
computation times and assist stabilization in each cycle. 
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Figure 6.2    Load definition in XFEM analysis. 

In order to calculate the stabilized cyclic response of the structure directly, the 
ABAQUS uses a truncated Fourier series to construct a displacement function that 
describes the response of the structure at all times t during a load cycle with period T. 
The residual, which is the differences between the applied load and the internal forces 
are calculated using a Fourier series of the same form as the displacement solution as 
well. The Fourier Series used for nodal displacement and residuals are presented in 
Equation 6.1 and 6.2 respectively.  

(ݐ)തݑ = ଴ݑ + ∑ ௞ݑ)
௦ ݐ߱݇݊݅ݏ + ௞ݑ

௖ ௡(ݐ߱݇ݏ݋ܿ
௞ୀଵ   (6.1) 

തܴ(ݐ) = ܴ଴ + ∑ (ܴ௞
௦ݐ߱݇݊݅ݏ + ܴ௞

௖ ௡(ݐ߱݇ݏ݋ܿ
௞ୀଵ   (6.2) 

Where:  

 ത: nodal displacementݑ
 ଴: unknown constant displacement coefficientݑ
௞ݑ

௦ ௞ݑ ,
௖ : unknown periodic displacement coefficients 

തܴ: nodal residual vector 
ܴ଴: an unknown constant residual coefficient  
ܴ௞

௦ , ܴ௞
௖: unknown periodic residual coefficients 

߱: the angular frequency  
 time :ݐ
 

 
Figure 6.3 A displacement function at all times t during a load cycle with period T 

at different iterations (Dassault, 2014). 
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The ABAQUS requires that the ratio of the maximum residual coefficient to the time 
averaged force,Cܴ௡

ఈ , and the ratio of the maximum correction to the displacement 
coefficients to the largest displacement coefficient, C ௡ܷ

ఈ, are less than the tolerances. 
The user-specified tolerances Cܴ଴

ఈ and C ଴ܷ
ఈ are used to detect the plastic ratchetting. 

All of aforementioned ratios were left as default value, 0.005. The number of Fourier 
terms was set as 25 to reduce the expensive of calculation and assists the convergence. 
A fixed time increment was set to 0.05 without temperature effects engaged. The critical 
energy release rate, ܩூ஼ ூூ஼ܩ ,  and ܩூூூ஼ , was set to 42.2 N/mm and the power 
coefficients were assumed to a value of unity. These parameters shown in Section 5.2.1 
are used herein. 
The onset of fracture is controlled in ABAQUS with Equation 3.2.1 in Section 3.2, 
while the crack growth rates are determined by the Paris law, which is in terms of ∆࣡, 
in Equation 6.4 where c1, c2, c3 and c4 are empirical constants determined based on 
material. Constants c1 and c2 were both set to zero, which means that the growth starts 
immediately when a stable ∆࣡  is obtained. Equation 6.5 and 6.6 are deducted to 
determine the constants c3 and c4. The value of C and m is selected according to the 
recommendation value form BS 7910, which is used as a guidance for marine structure 
designs. 

N = ܿଵ(∆࣡)௖ଶ  (6.3) 
ௗ௔
ௗே

= ܿଷ(∆࣡)௖ర  (6.4) 

ܿଷ = ௠(ܧ)ܥ
ଶൗ   (6.5) 

ܿସ = ௠
ଶ

  (6.6) 

As mentioned in Section 3.2, the Paris law is only valid in the region 2 of crack growth. 
The energy release rate threshold, ࣡௧௛ , defines the lower bound of crack growth; the 
࣡௣௟ , defines the upper bound where the crack growth rate turns to unstable. As 
recommended by Dowling (2007), the critical stress intensity factor can be selected as 
the upper bound, in other word, that means that ࣡௣௟/࣡௖should be set to 0.999. Because 

the K௧௛, 63 ܰ/݉݉ଷ
ଶൗ  as recommended in BS 7910, is much smaller than the fracture 

toughness of the selected material, the ratio of ࣡௣௟/࣡௖ was set to 0.001. Consequently, 
the crack growth tends to occur at all applied loads. Figure 6.4 explains the meaning of 
above notations. 
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Figure 6.4 An explanation of notation of parameters to define the Paris regime 

(Dassault, 2014). 
Once the fracture criterion, described in Equation 3.3.4 in Section 3.3.3 reached, the 
elements is completely fractured; while the real nodes is separated apart from its 
coincident phantom node. The number of cycles to fracture this element, which is 
calculated according to Equation 6.3, will be added to the total cycle count and then the 
analysis repeats until to a user defined maximum limitation or the analysis will stop 
when the fracture ratio ࣡௣௟/࣡௖  is reached. However, it is undesirable because the 
computational cost is prohibitively expensive when  ࣡௣௟/࣡௖ criterion satisfies. Thus in 
this study, a reasonable limitation of total cycle number was defined to terminate the 
computation. 
For discontinuous analysis the default time integration scheme in ABQUS may result 
in premature cutbacks and termination. ABAQUS abandons iterations and cutbacks the 
time increment if the residuals are found increasing in two consecutive iterations after 
 ଴ equilibrium iterations. On the other hand, the starting point for the logarithmic rateܫ
of convergence checks, ܫோ, is another routine. The discontinuous analysis option allows 
the user increase the value of ܫ଴ from 4 to 8 and ܫோ  from 8 to 10. Moreover, the ܫ஺ 
parameter controls the maximum number of cutbacks in one increment. In this study, 
this value was increased from 5 to 20 in both static and direct cyclic step. 
An INP file was manually compiled since the ABAQUS CAE does not support the 
directly low-cycle fatigue analysis currently. 
In the program FRANC3D, the new crack front is determined based on an extrapolation 
technique. The kink angle and extension curve-fits domain the direction and shape of 
the incoming crack front in the next step. In addition, the crack increment is in 
proportion with the SIF value. As mentioned in Figure 5.10, the difference of SIF values 
along the crack front is small, thus the crack growth along the front in each step keeps 
same speed more or less. Figure 6.5 shows the cracks on the outwards surface of flange 
and web plate have a similar increment in each step. This will give rise to the different 
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of crack propagation behaviors between FRANC3D analysis and XFEM analysis, 
which can be seen in the coming section. 

 
Figure 6.5 New front fit based on kink angle and extension curve-fits in FRANC3D. 

The shaded grey area is initial crack boundary edge. The black dots on 
the original crack front correspond to the fitted front points, where the 
extension and kink angle are applied to produce the new fitted points. 
The new front points as green dots, and the curve fit shown as a blue line 
(Fracture Analysis Consultants Inc, 2011). 

Since there is no output request of crack tip locations and the crack length in current 
version of ABAQUS, a user designed algorithm was compiled in Python to extract and 
calculate crack tip coordinates as well as the propagation length from ODB output 
database file. The code is shown in Appendix B. The scheme of the code is tracking the 
status of the first element close to the most outwards surface of the flange and web 
plates. Due to the complexity of three-dimensional problems, the crack front along the 
thickness direction is ignored in this study; on the other hand, this decision matches the 
path of crack selected in Section 5.3 when FRANC3D analysis was carried out. 

The RMSD analysis, defined in Equation 6.7 and 6.8 were used to find out the 
difference of crack propagation speed between XFEM and FRANC3D. 

ܦܵܯܴ = ඨଵ
௡

෎ ቀ ௡௨௠௕௘௥ ௢௙ ௖௬௖௟௘௦ ௜௡ ௫௙௘௠
௡௨௠௕௘௥ ௢௙ ௖௬௖௟௘௦ ௜௡ ௙௥௔௡௖ ଷௗ

− 1ቁ
௞

ଶ
௡

௄ୀଵ

× 100%  (6.7) 

% Diff = max ቀ ௡௨௠௕௘௥ ௢௙ ௖௬௖௟௘௦ ௜௡ ௫௙௘௠
௡௨௠௕௘௥ ௢௙ ௖௬௖௟௘௦ ௜௡ ௙௥௔௡௖ ଷௗ

− 1ቁ × 100%  (6.8) 
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6.2 Results in ABAQUS analysis 
Crack growth history in No.2 case 
The crack growth histories are shown in Figure 6.6, it is easy to realize that the telltale 
sign of the crack propagation behaviors are different from what has been seen from 
FRANC3D analysis. In ABAQUS analysis, the crack along the flange face will grow 
first and then the web outward free face will fracture; after both cracks on the top 
surface of flange and web plate complete, the crack tries to propagate inside along the 
thickness direction.  

  

a) step time = 30000 s b) step time = 2.0E6 s 

  

c) step time = 7.0E6 s d) step time = 1.0E7 s 

Figure 6.6 Crack propagation history in ABAQUS XFEM analysis. a) step time at 
30000 seconds, b) step time at 2.0e6 seconds, c) step time at 7.0e6 
seconds, and d) step time at 1.0e7 seconds. 

Comparison of crack propagation speed between flange and web plates (No.2 case) 
Figure 6.7 plots the crack propagation speed on flange (red line) and web (blue line) 
plates. As a result, the speed on the flange plate is faster than web plate. The crack on 
flange plate keeps an almost constant growth speed until it reaches to about 14mm, then 
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it propagates with a slower speed. Nevertheless, the crack on the web plate has two 
periods of blunt stage. A lot of cycle numbers are spent during the crack growing from 
3 mm to 4mm and 12mm to 13.5mm. Figure 6.6 approves this phenomenon, the crack 
on the web plate “stops” twice, one is between 0.2e6 to 2e6 cycles and the other one is 
from 3.2e6 to 5e6 cycles. The result in No.1 case will be shown in Appendix A. 

 
Figure 6.7 Comparison of cycle counting during crack propagation on flange and 

web plates (No.2 case). 

In order to specify the difference of the propagation speed on flange and web plates, 
the difference study was carried out. Figure 6.8 illustrates that the crack on the web 
plates always need more cycle number than on flange plate. Then difference trends to 
reduce during the growth of cracks. At beginning, the difference peaks to 260%, the 
value drop to 50% at end instead. An oscillation zone appears during the crack 
propagates from 12 mm to 14mm. It shows significant different from the result in 
FRANC3D analysis (Section 5.3.2), which gives the result that flange and web plates 
keep a similar propagation speed. 
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Figure 6.8 Difference of cycles counting during crack propagation between web and 

flange plates (No.2 case). The curve above zero means that the cycle 
number for a given crack length on web plate is larger than flange plate. 

Comparison of geometry factors on web plate between XFEM and FRANC3D 
analyses (No.2 case) 
Figure 6.9 depicts the geometry factors from the crack length 2 mm to 20mm. The blue 
curve represents the result from XFEM analysis while the red one is from FRANC3D. 
The difference between these two curves shows the deviation between through 
thickness crack (FRANC3D analysis) and the shallow surface crack (XFEM analysis). 
When the crack length grows further than 7 mm, the geometry factor of the shallow 
surface crack becomes smaller than the thorough thickness crack for a given crack 
length. This implies that more cycles are spent on fracturing the inside materials, 
consequently dragging down the crack propagation speed. This phenomenon is 
invisible in the FRANC3D, while revealed by ABAQUS XFEM analysis. The result in 
No.1 case will be given in Appendix A. 
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Figure 6.9 Comparison of geometry factors, F(a), during the crack propagation on 

web plate (No.2 case). 

Comparison of crack propagation speed on web plate between XFEM and 
FRANC3D analyses (No.2 case) 
Figure 6.10 plots the number of cycles versus the crack length curve on the web plate 
in No.2 case. The blue line represents the result from XFEM analysis and the other line 
comes from analysis using FRANC3D. A tremendous difference between these two 
curves reveals that the XFEM analysis gave a much slower simulation of the crack 
propagation speed than FRANC3D. On that account, a large number of cycles are spent 
on fracturing the elements along the thickness direction in XFEM analysis; in other 
word, the analysis in FRANC3D overestimated the crack propagation speed. 

 
Figure 6.10 Comparison of cycle counting during crack propagation on web plate 

between XFEM and FRANC3D analysis (No.2 case) 
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Figure 6.11 shows the difference of crack propagation speed on web plate between 
XFEM and FRANC3D analysis. At the beginning of the propagation, the crack growth 
speed in XFEM is slower than in FRANC3D, when the crack length became greater 
than 4 mm, a local peak difference, 275%, reached. Then the difference oscillated 
around 150% and following with a surge to 310% when the crack grew to 14 mm. The 
maximum difference is about 312% and the RMSD gives the value of 224%. 

 
Figure 6.11 Difference of cycles counting number on web plate between XFEM and 

FRANC3D analysis (No.2 case). The curve above zero means the cycle 
numbers for a given crack length on web plate is larger than flange plate 
and vice versa when the curve below zero. 

Comparison of crack propagation path on web plate between XFEM and 
FRANC3D analyses (No.2 case) 
As described in Section 3.2.1, the direction of the crack path is determined by the stress 
intensity factors. Figure 6.12 plots the crack propagation path on the web plate in No.1 
and 2 cases. Both the results from FRANC3D and XFEM show the same trends of the 
propagation direction, however, the paths deviate away as cracks grow downwards. 
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Figure 6.12    Comparison of crack path on web plate between FRACNC3D and XFEM 

analysis. 
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7 Conclusion 
The thesis has implemented the incremental iterative approach to perform the ultimate 
strength analysis of ship structures. The FE method is also applied to estimate the local 
buckling behavior of a simple plate structure to provide input for the ultimate strength 
assessment in the mid-section of the ship structure.  

The incremental iterative approach is a sufficient method that is based on Smith’s 
method. During the calculation, there are several parameters need to be emphasized 
here. Firstly, when calculating the total force on the aimed cross section, the force value 
should be zero, if the position of neutral axis is correct. But it is not easy to satisfy that 
criterion in real conditions. In terms of the current theories, there is still no exact 
limitation of this error. However, if the threshold for the error is too small, the 
calculation time will be very long and it is hard to converge to a satisfied force value. 
In contrast, if the threshold for the error is too large, the neutral axis will be not at the 
correct position, despite the force value is satisfied. As a result, the accuracy will be 
decreased. In this analysis, the threshold for error was set at 10 N, which makes the 
calculation in a relatively fast speed and can get an accurate result. 
It also should pay attention to the adjustment of neutral axis, which is related accuracy 
of results and calculation speed. Large adjustment makes it hard to find out the correct 
neutral axis position. And it is very easy to fall and drop into an infinite loop. However, 
small adjustment is accurate enough in the correct position movement, but it takes too 
much time to iterate. In this analysis, it was set at 0.0001m as rule required.  

The combination of the adjustment for neutral axis and the force error dominate the 
moment iterative computation time. But there is one more parameter can affect 
calculation time, the incremental step of curvature. Compared with the previous both 
parameters, the incremental step affects the time directly. Small incremental step value 
would give more point on the moment-curvature curve. It would not influent the 
accuracy a lot, but makes the curve smooth. In this analysis, there are 60 points in the 
curve. Combined with the other two parameters, the average calculation time is 21 min 
on a Core i5 2.6 GHz CPU with 4 GB of memory PC. So compared with FE software, 
this is a very fast calculation speed. 
In fracture analysis, the primary aim of the study is to investigate the difference when 
various commercial software used to model the crack propagation and estimate fatigue 
fracture life on a ship structural component. 

Although a great number of researches have been done on the single edge-crack flat 
plate specimens, the influence of the attached additional plate, which forms an inverse 
T shape together with the base flat plate, is still unknown. Unlike the single edge-crack 
flat plate, the high stress concentration around the connection region in this type of 
structure gives rise to a different behavior of the crack propagation. On a flat plate, the 
geometry factor will climb up as the growth of the crack. However, the introduction of 
the attached plate will dramatically increase the geometry factor as well as the stress 
intensity factors. As long as the crack propagates, the geometry factors will sharply 
drop and then turn to even. A hypothesis of this phenomenon is that at the early stage 
of the crack growth, the stress concentration domains the value of the high geometry 
factor. When the crack propagates enough far away the initial crack zone, the additional 
attached plate will provide higher stiffness than the flat plate, and gives a relevant small 
geometry factor. 
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The drawback of the high stress intensity factor during the early stage of the crack 
propagation is that the crack growth speed in the inverse T shape structure is much 
higher than the single edge-crack flat plate. This leads to this shape structure will state 
in a lower fatigue strength capacity than the flat plate structure. On the other hand, the 
width of the attached plate plays an important role too. Wider plate will lead to a higher 
growth speed. It is clear that the wider plate will not only increase the stiffness of the 
whole structure but the stress concentration also. When the width of the attached plate 
increases 50%, the RMSD of the cycle counting will surge about 20%. In some case, 
the wider attached plate means a stronger connection, but in the meanwhile, this design 
reduce the fatigue strength. 
As a key component in the ship structure, the inverse angle bar is wildly used in ship 
design. The flange plate of the inverse angle bar makes the problem much more 
complex, as the problem is extended from 2-D to 3-D space. Right now, the FE methods 
to simulate the crack propagation in a 3-D structure are either conventional FEM or 
extended FEM. Both of them request the usage of solid elements and dramatic 
expensive computation power. 
In the analysis of using FRANC3D, the normal crack growth magnitude is determined 
by user and the relevant growth magnitude alone the crack front is determined based on 
interpolation. This setting implies that the simulation accuracy is based on the density 
of the user defined crack increment at each step. However, if the density is too high, 
that will give rise to the difficulty of re-meshing; on the other hand, the low density will 
sacrifice the accuracy of results. Another significant problem is that this method cannot 
correctly simulate the crack propagation along the thickness direction, because the 
crack growth along the crack front is determined by interpolation. The observation from 
results demonstrates that cracks on flange plate and web plate will propagate 
simultaneously, which deviates from the XFEM results. Due to above reasons, the 
simulation in FRANC3D simplified the realistic condition and accelerate the crack 
propagation speed. 
Only considering the results in FRANC3D analysis, for an initial circle crack, the crack 
on the flange and web plates almost grow in a same speed, within 10% difference. 
Moreover, it is similar to the result in 2-D analysis, wider attached plate leads to a higher 
propagation speed. 
Due to the above mentioned limitations, the XFEM based low-cycle fatigue analysis 
was used as a reference. The XFEM results tell that the crack will form on the flange 
plate at the early stage firstly, then the crack will start to propagate on the web plate. 
The FRANC3D ignores the difference of sequence of the crack growth on flange and 
web plates. Furthermore, the crack propagation speed simulated in XFEM is much 
slower than that in FRANC3D. The deviation between them is right the time spent on 
the thickness direction crack growth. Although the XFEM gives more realistic results, 
the prohibitively expensive computation time cannot be ignored. For a 10e7 cycles 
simulation in this study, it took more than 12 hours on a Core i7 3.0 GHz CPU with 8 
GB of memory PC. If the output recorded at each frequency, the ODB file can reach to 
100 GB per simulation. However, once the model has been set, human power can be 
free from the tedious operations and performances.  
These results show that the 2-D problem is easy to be manipulated in current 
commercial software. The program FRANC3D satisfies the requirement to simulate the 
crack propagation on a 3-D ship structural component, but the accuracy need to be 
verified carefully. At last the XFEM based low-cycle fatigue analysis in ABAQUS is 
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the most directly way to observe the crack propagation, however the computation power 
request limits its application.  
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8 Future works 
In the ultimate strength analysis, several extra methods should be applied to calculate 
the ultimate strength. More structure models should be built in FEA to investigate the 
ultimate strength, since there is only one unstiffened plate applied in this thesis. The 
whole ship FEA is preferred to introduce to improve the accuracy of the results. In the 
FEA, it is easy to find out the weak and buckled position. Consequently, it can be a 
guide for the reinforcement of local structures. 

The current studies carried out in this thesis covered both 2-D and 3-D problems, but 
due to the special geometries, the results herein cannot be supported by any experiment 
data. In order to verify and improve the confidence of the results, several extra steps 
should be implemented in the future. 

To begin with, the analytical case (which is describe in Section 5.2), should be carried 
out in ABAQUS using XFEM. Therefore the accuracy of the XFEM result can be 
judged. Secondly, the convergence shall be analyzed to prove the accuracy of results. 
In addition, in the FRANC3D analysis, a smaller increment of the crack in each step 
can be tried to investigate the sensitivity of such factors. Moreover, when the XFEM 
analysis is implemented, the “W=200” case will be completed as well. Then the crack 
propagation speed in No.1 and No.2 cases can be compared each other. Likewise, the 
crack growth will be ended until the crack length reaches to 60mm if the computation 
power is allowed. Despite the XFEM is mesh independent, a convergence study still 
need to be carried out to find out the best meshing scheme. 

Finally the cracked structure component shall be involved in the hull girder ultimate 
strength study. The influence and effects of the crack on the ULS can be studied. As a 
consequence the reduction of the ultimate strength due to the presence of fatigue cracks 
can be investigated. What is more, an estimation of the time window of keeping ship 
safe can be evaluated as a suggestion of the shipping management and maintenance. 
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Appendix A 
The following figures show the additional result discussed in Section 5 and 6. Figure 
A.1 to A.3 list the results of SIF history in 2-D and 3-D cases. Figure A.4 to A.7 
represent the SIF values along the crack front at each step in the FRANC3D analysis. 
Next, Figure A.8 to A.11 show the comparison of geometry factors and stress intensity 
factor ranges in FRANC3D analysis, following with the comparison of cycle numbers 
between flange and web plates (Figure A.12 to A.15). Finally the comparisons between 
FRANC3D and XFEM analysis are illustrated from Figure A.16 to A.21. 

 
Figure A.1    Stress intensity factor history in FRANC2D analysis. 

 
Figure A.2    Stress intensity factor history in FRANC3D analysis (No. 1 case). 
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Figure A.3    Stress intensity factor history in FRANC3D analysis (No. 2 case). 

 
Figure A.4 The stress intensity factors history on web plate at each step of 

propagation (No.1 case). 
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Figure A.5 The stress intensity factors history on flange plate at each step of 

propagation (No.1 case). 

 
Figure A.6 The stress intensity factor history on web plate at each step of 

propagation (No.2 case). 
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Figure A.7 The stress intensity factors history on flange plate at each step of 

propagation (No.2 case). 

 
Figure A.8 comparison of geometry factors, ܨ(ܽ), during the crack propagation 

(No.1 case). 
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Figure A.9 Comparison of geometry factors, ܨ(ܽ), during the crack propagation 

(No.2 case). 

 
Figure A.10 Difference of stress intensity factor range between flange and web plates 

(No.1 case). 
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Figure A.11 Difference of stress intensity factor range between flange and web plates 

(No.2 case). 

 
Figure A.12 Comparison of cycle counting during crack propagation on flange and 

web plates (No.1 case). 
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Figure A.13 Comparison of cycle counting during crack propagation for flange and 

web plates (No.2 case). 

 
Figure A.14 Difference of cycles counting number between flange and web plates. 

(No.1 case). 
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Figure A.15 Difference of cycles counting number between flange and web plates 

(No.2 case). 

 
Figure A.16 Comparison of geometry factors, F(a), during the crack propagation on 

flange plate (No.2 case). 
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Figure A.17 Comparison of geometry factors, F(a), during the crack propagation on 

web plate (No.2 case). 

 
Figure A.18 Comparison of cycle counting during crack propagation for XFEM and 

FRANC3D analysis on flange plate (No.2 case). 
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Figure A.19 Comparison of cycle counting during crack propagation for XFEM and 

FRANC3D analysis on web plate (No.2 case) 

 
Figure A.20 Comparison of crack path on flange plate for results from FRACNC3D 

and XFEM. 
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Figure A.21    Comparison of crack path on web plate for results from FRACNC3D and 

XFEM 
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Appendix B 
This appendix is the collection of codes. The MATLAB codes (with the file extension 
“m”) were developed in version 2013b; while the PYTHON codes (with the file 
extension “py”) were completed in version 2.7. 
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curvature2sigma.m 
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Load-end_shortening_curve_drawing.m 
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main.m 
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initializeStr.m 
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process.m 
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textReader.m 

 


