
Improving the scheduling policy for a Con-
tinuous Integration Server
Master’s thesis in Computer Systems and Networks

VIKTOR BERGLUND
ISAK ERIKSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020





Master’s thesis 2018

Improving the scheduling policy for a Continuous Integration Server

VIKTOR BERGLUND
ISAK ERIKSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020



Improving the scheduling policy for a Continuous Integration Server
VIKTOR BERGLUND
ISAK ERIKSSON

© VIKTOR BERGLUND, 2020. © ISAK ERIKSSON, 2020.

Supervisor: Marina Papatriantafilou, Department of Computer Science and Engi-
neering
Dimitrios Palyvos-Giannas, Department of Computer Science and Engineering
Advisor: Pontus Andersson, Ericsson AB
Examiner: Vincenzo Massimiliano Gulisano, Department of Computer Science and
Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Infinity symbol, continuously looping. Used under the Creative Commons
4.0 BY-NC license [1].

Typeset in LATEX
Gothenburg, Sweden 2020

iv



Improving the scheduling policy for a Continuous Integration Server
VIKTOR BERGLUND
ISAK ERIKSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Continuous integration (CI) is a method used in software development to make it
easier for developers to handle integration and testing of their code. By automating
this process the development process can be streamlined and sped up. One possible
way of achieving this could be to improve the scheduler in the CI system to handle
scheduling of integration jobs in a more efficient way.
Six scheduling algorithms are empirically evaluated: Longest Job First (LJF), Short-
est Job First (SJF), First In First Out (FIFO), Random priority and LJF/SJF with
an added aging factor. Tests were done on a Jenkins instance as well as a simula-
tion model developed for the thesis. The execution time of the jobs in the job sets
are assumed to follow the Pareto power-law probability distribution, which can be
summarized as "20 percent of the jobs account for 80 percent of the execution time".
Makespan and average response time are known measures in the scheduling literature
and we measure the algorithms against these. We also introduce the measure average
matrix response time, which we consider to be the most important for the objective
of this thesis.
Tests were carried out on a real Jenkins instance, a server used for building software
common in a continuous integration setting, and on a simulation model we devel-
oped. The model can simulate system slowdown when running more threads than
available cores.
Based on our tests we conclude that LJF with an added aging factor is the best
performing algorithm against the measure average matrix response time.

Keywords: continuous integration, scheduling, Jenkins

v





Acknowledgements
This thesis was conducted for Ericsson AB. We would like to thank our company su-
pervisor Pontus Andersson, as well as the whole Watson team for providing support
and knowledge during this whole process. We also want to thank our supervisors
Marina Papatriantafilou and Dimitrios Palyvos-Giannas for all the the good input
and their help with this thesis.

Viktor Berglund & Isak Eriksson, Gothenburg, May 2020

vii





Contents

1 Introduction 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 3
2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Parallel machines . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Non-preemptive scheduling . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Clairvoyant scheduler . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 Online scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Specific use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Problem Analysis 7
3.1 Sequential builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Defining a good schedule for a CI server . . . . . . . . . . . . . . . . 8
3.3 Avoiding bad co-scheduling . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Methods 11
4.1 Choice of algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Jenkins priority sorter plugin . . . . . . . . . . . . . . . . . . 12
4.2.2 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Risk of overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Evaluation 19
5.1 Local Jenkins testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.1 Job set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.2 Software setup . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.3 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.4 Local testing results . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.5 Single matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.6 Consecutive matrices . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Load testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.1 Software setup . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.3 Load testing results . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Simulation model testing . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



Contents

5.3.1 Test specification . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.2 Simulation testing results . . . . . . . . . . . . . . . . . . . . 29

5.4 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Discussion 37
6.1 Local Jenkins Instance . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Single matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.2 Consecutive matrices . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Load testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4.1 Other job set distributions . . . . . . . . . . . . . . . . . . . . 41
6.4.2 Heterogeneous machines . . . . . . . . . . . . . . . . . . . . . 42
6.4.3 Memory bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4.4 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4.5 Real world testing . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Related Work 44
7.1 Dynamic load index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Conclusion 47

Bibliography 49

x



1
Introduction

As software development projects grow larger and involve many developers it has
become common to use some kind of continuous integration (CI) solution [2]. The
main idea of CI is to make all developers cooperating on a software project check in
their code into a central repository daily. The code is automatically built and tested
to ensure it is working. By applying this technique, errors can be detected and fixed
faster and more easily. Getting that feedback fast should mean that no time has to
be spent on understanding the code again if the tests fail and the code needs to be
updated. Development may also be halted since other code may be dependent on
the code that is tested.

A CI server works together with a version control system such as Git or Subversion,
used to manage software projects involving several developers. The latest agreed-
upon versions of these software projects are called the baselines and are stored in a
central repository. The way of working dictates that developers first make changes
to their respective local copies of the software. When they feel confident about a
change they have made they send an update of this code to the central repository,
we refer to this as a commit. Before the baseline is updated with this commit, a
large part of the code has to be compiled and tested.

By using a CI server to compile and test new code instead of having the developers
do it manually, the efficiency of software development projects can be increased.
This is especially true for many of today’s enormous projects employing hundreds
of people. With this many people working on a project, even very small delays in
the workflow add up to many man-hours worth of waiting. This means that a great
deal of time can be saved by even further streamlining the integration process.

A possible way to improve this process is to improve the scheduling policy of the CI
server. Generating an optimal schedule for a set of jobs to run on parallel machines
is a well studied NP-hard problem that can come in many different variations. We
want to investigate if it is possible to improve the scheduling policy for a CI server
where the overarching goal is to minimize the amount of time spent on integration.

1



1. Introduction

1.1 Purpose

The purpose of this project is to reduce the amount of time it takes between a commit
occurring and the developer getting feedback from the testing system. By doing
this, considerable amounts of time could be saved, especially for larger companies
that employ thousands of software engineers [3]. We investigate what scheduling
objectives are relevant for this purpose when scheduling for a CI server and what
algorithms best serve these objectives.

This thesis is done in collaboration with Ericsson Lindholmen. Ericsson uses the CI
server Jenkins which is one of the most commonly used [4]. As a use case, we will
test the different scheduling policies on this server.

We also develop a simulation model to be able to carry out more extensive tests.
The model is developed using data gathered from measurements from our use case.

2



2
Preliminaries

This chapter introduces scheduling and CI concepts, the system model and the
algorithms to be evaluated.

2.1 System model

Our system model is illustrated in figure 2.1. The integration process starts when a
developer makes a code commit to a version control system. The CI server is alerted
by this commit and generates a set of jobs based on it. Such a job can do a number
of things, but in a CI setting a job generally compiles or tests code, or sets up an
environment for doing this. We refer to such a set of jobs that are triggered by the
same commit with the same release time as a job matrix.1 The jobs in a job matrix
then enter the central queue held by the CI server one-by-one in random order.

Jobs then run on machines, referred to as slaves, that have a specified number of
slots that determine how many jobs the slaves can run at the same time. The slaves
do not have any queues and only execute the jobs they get assigned. Which job gets
assigned to which slave is decided by the load balancer that assigns scores to slaves.
The slave with the highest score gets assigned the job at the front of the queue. In
the event of a tie, the slave with the lowest index is chosen.

In our system model, we assume that any job can run on any machine. This is also
true for a vast majority of the jobs in the system where we run our tests, with only
a small minority having a designated slave. Once a job is finished, feedback is sent
back to the developer.

1This terminology is derived from a common Jenkins plug-in called "Matrix Project Plugin".

3



2. Preliminaries

Figure 2.1: Overview of the developer environment, showing all the steps in the
integration process.

Scheduling problems can be specified in a number of ways. The following subsec-
tions describe the general constraints scheduling policies must respect in our system
model.

2.1.1 Parallel machines

Since there are multiple slaves on which the jobs can run, the system under consid-
eration is a system of parallel machines. Scheduling jobs on parallel machines - as
opposed to a single machine - with the objective of minimizing the finishing time is a
well studied NP-hard problem [5]. This means that no algorithm can be guaranteed
to find the optimal solution to this problem in polynomial time. This motivates a
heuristic approach.

2.1.2 Non-preemptive scheduling

Once a job has left the queue and started executing on a slave it cannot be inter-
rupted or moved to another machine, making the scheduling non-preemptive. A
motivation for this is that in a CI setting, a job may need to download a workspace
before execution. To move this job would then require the workspace to be down-
loaded again. Thus, in our system model, the scheduling is non-preemptive, which
is also the case for the Jenkins server. Non-preemptive scheduling decreases the
number of possible schedules and also limits the possible scheduling algorithms.

4



2. Preliminaries

2.1.3 Clairvoyant scheduler

A scheduler that knows the characteristics of incoming jobs, such as execution time,
prior to running them is called clairvoyant, while a scheduler that does not is called
non-clairvoyant [6]. In a CI setting some code change is made by a developer. A
number of jobs are then generated. A job can, for example, be the compilation of a
number of files. During the development process, these files must be compiled many
times, often with very small changes. This means that the job compiling these files
will run a number of times. Thus, data from past runs of a job can be gathered. By
using this information it is possible to approximate the execution time of a job. By
using this approximation of how long it will take to execute a job the scheduler can
be seen as clairvoyant. Without knowing any characteristics of incoming jobs there
would be no information to base the scheduling decisions on, which would make
the scheduler operate blindly. This problem could be handled if preemptions were
allowed since decisions could then be made based on information revealed when the
jobs start running.

2.1.4 Online scheduling

Since jobs are triggered by code commits made by developers and not known in
advance by the server, jobs will enter the queue continuously, thus the scheduling
has to be performed online. Online schedulers are different from offline schedulers.
They perform the scheduling on a job set that is continuously changing, with no way
of knowing what it is going to look like in the future, whereas offline schedulers have
complete knowledge about the set of jobs beforehand [7]. For an online scheduler
to be reasonable it needs to be clairvoyant and/or preemptive. Otherwise, the
scheduler would be useless since it has no knowledge prior to scheduling a job and
the job cannot be moved after scheduling.

2.2 Specific use case

While continuous integration is a widespread concept, the way it is implemented
and used can differ from project to project. In this section we explain the main
characteristics of the system currently in use at Ericsson Lindholmen.

2.2.1 Environment

We are using the continuous integration server Jenkins [8]. This server is based on
the master-slave architecture, where the master holds a single scheduling queue and

5



2. Preliminaries

distributes jobs across several slaves. The jobs are distributed using a load balancing
algorithm that makes decisions based on the current load of the slaves, a high score
means a low load. The scores are calculated according to equation 2.1.

Score = #TotalSlots
0.5 + #BusySlots (2.1)

The Jenkins slaves are lightweight client programs running on virtual Linux machines
hosted on large server computers. The slaves may have a different amount of threads
available, however they are all configured to be able to run as many jobs in parallel
as they have threads.

6



3
Problem Analysis

This chapter analyses the problem at hand and defines the objectives a schedule for
a CI-server should be evaluated.

3.1 Sequential builds

Jobs are viewed as being part of a build pipeline, which is a general continuous
integration concept, where jobs have to be executed sequentially. The executions
consist mainly of building code and are therefore referred to as sequential builds.
The jobs are assigned different static priorities depending on how far along they are
in the pipeline. The further into the pipeline a job is, the higher its priority will
be. These static priorities trump the weight assigned to a job by the scheduling
algorithm. A higher priority job will always be run before a lower priority job, no
matter the scheduling policy. Thus, we can view the system as a combination of
several smaller queues, one for each priority level, as shown in Figure 3.1.

Every such queue contains jobs of a specific static priority. All the queues use the
same scheduling policy for intra-queue scheduling. If a policy can speed up the
execution of one queue then it will not affect the other queues negatively since they
would have to wait for all the jobs in that queue no matter what, given the different
static priorities. Furthermore, if the higher priority queue was executed faster, then
the system as a whole has to have saved time in the process. Thus we determine
that it is enough to consider only one queue in isolation during testing, i.e. only
using one level of static priority. The results for that one queue will be applicable
to all the different priority queues when combining them. This means that in our
system model we only consider a single queue.

7



3. Problem Analysis

Figure 3.1: Overview of the system, showcasing which parts run on the master.
Static priorities, overriding the dynamic priorities, in the same queue are equivalent
to having separate queues for every static priority level.

3.2 Defining a good schedule for a CI server

There are many objectives a schedule can be evaluated by. In the literature, concepts
such as throughput, average waiting time, average response time, makespan and
stretch are found [9] [5].

An assessment of ours is that scheduling for a CI server is special in that tests may
pass or fail and compilations may result in an error or be completed. A common
practice in software development is the aim to "fail fast" [10]. In our context, this
means that it is more important to know if a test on a piece of software fails than
to know if it succeeds since failure will mean that the bug has to be fixed and hence
the whole commit has to be redone. With this objective in mind, minimizing the
average response time of jobs - also referred to as flow time - is relevant. The average
response time is minimized by running a large number of jobs early, and thus more
tests will be done early. With more tests completed early, there is a higher chance
of a failure occurring early and thus a response can be sent faster (meaning that a
developer could be more efficient).

Another highly relevant measure for evaluating a schedule is minimizing itsmakespan.
The makespan is generally defined as the last completion time of a job from a set
of jobs. This relates directly to decreasing the total time spent on integration, and
generally the throughput of the system. Minimizing makespan for a set of n ma-
chines, n>2, is an NP-hard problem [5]. The problem is modeled as jobs with run
times running on machines and the problem is envisioned as a number partition
problem, i.e. partition a set of numbers into sets with equal sums, where the sums
represent schedules [11]. If every schedule is equally long, as little time as possible
will go to waste.

8



3. Problem Analysis

As stated, a developer makes a commit and then, usually, many parallel jobs are
carried out based on this commit. One single commit is thus generating a matrix
containing a lot of jobs with different execution times, but from the developer’s
perspective it can be seen as one single, large job. It is often the case that matrices
enter the system consecutively. This makes the average makespan of matrices a
relevant measure. Taking the average makespan of consecutive matrices will equal
the average response time when one matrix is viewed as one job. We will, therefore,
call this measure average matrix response time. A schedule might be good with
regards to the total makespan of a number of matrices but at the cost of making
a job from an earlier matrix wait. Trying to minimize the average matrix response
time will penalize this behavior.

If the job to machine ratio is low, i.e. if the load of the system is low, the scheduling
policy hardly makes a difference. Since there are enough resources such that every
time a job enters the queue it can be scheduled on an idle machine. We must,
therefore, determine a load where different policies can produce different schedules.

The most important measures of interest for scheduling on a CI-server is:

• Makespan

• Average response time

• Average matrix response time

3.3 Avoiding bad co-scheduling

Previous research on balancing the load for a Jenkins continuous integration server
has determined that a load balancer that assigns jobs to nodes according to equation
2.1 yields the best load balancing [12]. We use this formula for the load balancer.
The objective of load balancing, however, does not only depend on the decision to
choose which slave to place a job on but can also be served by assigning priority to
jobs. This is true since the above-mentioned formula only makes sure that all jobs
are evenly distributed onto the machines. It has no way of knowing what type of
jobs a machine has been assigned. For example, it could mean that one machine
only gets assigned very heavy jobs, while another only gets assigned lightweight
jobs. Such an uneven distribution of jobs could affect the execution times of jobs in
a negative way.

For the specific context of computer programs running on machines there are many
resources that are shared and influence the performance of the system. For example,
running all CPU intensive jobs on the same machine will influence the performance
in a negative way since the context switching needed by the CPU easily slows down
the execution time [13]. In scheduling for operating systems processes are often

9



3. Problem Analysis

differentiated into CPU-bound and IO-bound based on their respective resource
requirements [14]. To best utilize the resources on a computer, CPU-bound and
IO-bound processes should be scheduled to run together since they do not compete
over resources.

Following de Blanche we call a situation when jobs are scheduled on the same ma-
chine such that they influence their execution time negatively bad co-scheduling [15].
The influence of co-scheduling complicates the task of scheduling since a policy that
produces a good schedule when fixed execution times are assumed may unnecessarily
co-schedule tasks with similar resource requirements and thus making the makespan
or other relevant measures in effect, worse than another policy. There might be poli-
cies that under certain constraints systematically produce schedules with a lot of
bad scheduling and others that avoid it. This implies that how a policy co-schedules
jobs must be taken into consideration when evaluating what scheduling policy is
appropriate for a system.

In a CI context, which is centered around developing new software, it is common
with jobs that are set up to perform the compilation of code. Compilation is a
computation heavy task. As the code base of a project grows larger the compila-
tion of code for it gets more and more complex. To make sure that the increased
complexity of the code does not slow down the compilation, it is common to let the
build automation tools use several threads.1 While this might lead to an increase in
compilation speed in controlled environments, it could also lead to too many threads
starting doing heavy work which will slow down other processes on the computer.

Another issue related to co-scheduling is the number of slots on the slaves. The
number of slots determines how many jobs can be scheduled on a slave at the same
time. On the actual hardware, the number of physical cores of the slaves determines
how much computations can be done in parallel. While setting the number of slots
high means that more jobs can be dispatched from the queue, this may decrease the
throughput of the system. If there are more CPU-bound jobs than physical cores
scheduled on the same machine the overhead due to context switching will make it
more reasonable to execute some of the jobs sequentially. At the same time, too few
slots may underutilize the system.

1At Ericsson the common build automation tool called GNU Make is used to handle the com-
pilation, where the j-flag can be set to specify the number of threads [16].

10



4
Methods

This chapter describes the implementation of the scheduling algorithms investigated
in this thesis, testing environment and specification of how the tests were carried
out.

4.1 Choice of algorithm

Depending on the objective and the specific circumstances different scheduling al-
gorithms are appropriate. In this thesis, we investigate six different algorithms that
fulfill the constraints outlined at the end of section 3.2. All these algorithms contin-
ually dispatch jobs from the front of the queue as long as there are free slots in the
system. When a new job arrives it gets placed in its proper place in the queue based
on the weight assigned to it by the current scheduling algorithm. The algorithms
are:

Longest Job First (LJF): assigns a weight to jobs based on the execution time of
the job, the longer the execution time the greater the weight.

Shortest Job First (SJF): assigns weight based on the execution time of the job,
the shorter the job the greater the weight.

First In, First Out (FIFO): assigns weight based on how long a job has stayed in
the queue.

Random: assigns a random weight to jobs.

LJF/SJF-aging: assigns weight according to job execution time, but also adds the
time spent in the queue scaled with an aging factor.

These algorithms will be measured against the objectives explained in section 3.2.
LJF and SJF suffers from the problem of starvation. Starvation happens when low
priority jobs are continually denied access to a machine [17]. FIFO and LJF/SJF-

11



4. Methods

aging do not suffer from this problem since when a job has entered the queue it is
guaranteed that it will eventually run if we assume no crashes and finite execution
times. For the Random algorithm, all jobs can eventually be expected to run,
given enough time. In practice however, a job may have to wait in the queue an
unacceptably long time.

In a non-preemptive setting with a non-clairvoyant scheduler, we assess that FIFO
is the best policy. It will at least guarantee fairness, which means that all jobs
will eventually get a chance to run since no job will ever be allowed to jump the
queue. This means that it might still have its merits, despite the simple approach to
scheduling, since basic fairness is one of the most important aspects of a scheduling
system. While another policy would have no metric to base a schedule on, which
would mean it would assign the jobs a weight completely at random. However,
our scheduler is clairvoyant, hence other policies than FIFO may produce a better
schedule, based on the information known about the jobs arriving.

For a single matrix, we expect FIFO to perform the same as Random since the jobs
from the matrix will enter the queue as fast as possible. This will result in random
arrival time. When more than one matrix is in the system, however, FIFO will make
sure the jobs from each matrix are scheduled together. No jobs from a newer matrix
will get scheduled before a job from an older matrix. For a single matrix, the aging
factor becomes irrelevant since all jobs enter with the same release time.1

The merit of the Random algorithm is that it in most cases achieves a shuffled queue,
which could be beneficial in some cases, particularly with regards to load balancing
[15].

4.2 Implementation details

This section describes the implementation of our different scheduling algorithms
in Jenkins as well as a simulation model we developed to be able to make more
extensive testing.

4.2.1 Jenkins priority sorter plugin

Jenkins has core functionality that is supposed to be stable with custom features
being added by plugins. The plugins, as well as the Jenkins core code, are written
in Java. To implement the different scheduling algorithms we modified an already
existing Jenkins plugin called "Priority Sorter" which has support for static priorities

1Jenkins jobs from the same matrix have a δ inter-arrival time, but this δ is very small.

12



4. Methods

[18]. The static priorities allow the administrator of the system to give a job a pre-
determined priority, to allow for some jobs to always be run before others.

The implementation of the Jenkins queue is defined in the core of Jenkins, it is not
desirable to change it directly. The development must, therefore, be done with its
characteristics in mind. The Jenkins queue is sorted every five seconds, and when a
new job arrives the job gets inserted into its proper place based on its weight. The
job at the front of the queue is assigned an execution slot at a slave by the load
balancer as soon as there is one available. Rather than directly manipulating the
queue one can change how the items are ranked in the queue.

The sorting of the queue depends on the compareTo function from the Comparable
java interface, which enables instances of classes to be compared. When the queue is
sorted, the compareTo method is called and the weights of two items are compared.
By modifying how the weight is set for items - jobs in our case - one modifies how
the queue will be sorted. Low weight means a high priority. The algorithms were
implemented in the following way:

LJF: The weight of a job is based on its estimated execution time, which is calculated
by the standard Jenkins function getEstimatedDuration(). It takes an average of
the execution time of the job during its last three runs. The weight assigned by LJF
has to be multiplied by −1 to make longer jobs higher prioritized than shorter jobs.

SJF: getEstimatedDuration() is used to assign weights for SJF as well. But since
SJF looks to prioritize short jobs the result of it does not need to be modified further.

Random: When a job enters the system it is given a pseudo-random weight. The
random number is generated using the standard Java function Math.random(),
which generates a number from 0.0 to 1.0 with an approximately uniform distri-
bution.

FIFO: At the start of this thesis work FIFO was the default scheduling policy used.
There was already an implementation of FIFO in the Priority Sorter plugin. When
comparing jobs for the scheduling it compares the timestamp of when the two jobs
had entered the queue. Information which is readily available in Jenkins.

Aging: To make sure no jobs get starved when using LJF or SJF it is possible
to add an age aspect. Every time a comparison is made between two jobs, their
respective time in the queue is taken into account. The weights that are used in
compareTo when aging is enabled are calculated according to equation 4.1. For our
experiments, an aging factor of ten was chosen. With the job set we were using
this meant that no jobs from a newer matrix would get scheduled before jobs from
earlier matrices, i.e. a FIFO policy on the matrix level.

weight = weight - timeInQueue() * agingFactor (4.1)

13



4. Methods

To make it possible for the users to change between the different sorting algorithms
and update the aging factor to suit their needs a user interface was implemented
that is usable from the Jenkins web interface.

One factor which could cause some noise in our measurements is that when using
job matrices, the sub-jobs arrive sequentially with a very small release time apart.
This means that the initial distribution of jobs at free slots will be done randomly
since there is only one item in the queue when the dispatching is done. Since this
noise factor only comes into play when the queue is empty, its impact is proportional
to the jobs-to-slots ratio.

4.2.2 Simulation model

The Jenkins plug-in requires testing in real-time. The jobs have a lower limit to their
duration since making the jobs too short will make noise factors severe. Furthermore,
the server needs to be restarted to change configurations. To be able to make more
tests with different kinds of job sets, a model of the system was developed.

The risk of overload, where the system is slowed down due to bad co-scheduling,
increases as the number of slots increase. At the same time, more jobs can be carried
out in parallel as the number of slots increase. The simulation model takes both
these factors into consideration. When several heavy jobs are assigned to a machine
the execution time is increased according to measurements from the real system, the
tests are described in section 5.2. In this model, we assume that if the execution
time of a job exceeds a certain threshold it is also heavy. This assumption is made
based on observations from our specific use case. The simulation model enables us
to randomly generate a lot of matrices. The pseudo-code is shown on page 16.

A node is represented as a list of slots. A slot is represented as an index in this list.
Each index corresponds to a tuple that represents the time left before a new job
could be assigned to this slot, information about whether the job is heavy or light
and what matrix the job belongs to. Jobs are taken from a queue and fills up all
slots which means that the number in the tuple is set to be the duration of the job.
If the job is longer than a threshold time, it is set to be heavy.

The model starts by distributing jobs from the queue onto all empty slots. On what
node is determined by a load balancer function, defined by the same equation as in
our system model. Once all slots are occupied or the queue is empty the system
starts stepping forward "in time" with an interval. This interval is set using the
delta variable. When stepping forward, all jobs at the nodes are decreased with
the delta value. The delta value is divided by a factor dependent on how many heavy
jobs have been assigned to the node. More heavy jobs mean that it is decreased
with a smaller amount to simulate the extra time it will take to execute due to the
overload. However, it is still registered as if delta-time has passed as long as there

14



4. Methods

are positively valued slots on the node. When a job’s duration reaches zero it is
removed from the slot and another job takes its place if there are jobs left.

To calculate makespan we declare a list filled with zeroes where each index represents
a node. If something moves on the node we add delta to it and at the end returns
the maximum of this list. To calculate average response time we declare a list where
each index represents a node, this index then represents a list filled with empty lists
where each index represents a slot. We add delta to each slot for every iteration.
When we change job we copy this value and change index. When all jobs have been
executed we sum all values and divide by the number of values. To calculate the
average matrix response time we mark every job as belonging to a matrix. When a
job is finished we check what matrix this job belonged to and update the time on
the corresponding matrix.

The queue is implemented as a list, which makes it simple to mimic the different
scheduling strategies. To simulate LJF and SJF the queue is sorted and reversed and
just sorted, respectively. Since the jobs are taken one by one from the front of the
list this makes sure they are selected in the correct order. To add the aging factor
the list is split into four equal parts prior to sorting. These smaller lists are then
sorted separately before they are all combined into one list, which is used as the final
queue. This accurately mimics the scenario where new jobs enter the system when
there are already older jobs waiting in the queue, with the aging factor preventing
jumping the queue.

15



4. Methods

Simulation Model: Pseudo code describing our simulation model. The simulation
was run for each slots value, 1 to 16.2

nodes = 2
node = [(0,LIGHT/HEAVY,MATRIX)] * slots, makespans = [0] * nodes
avgRespTimes = [] * nodes * slots, avgMakespans = [0] * nodes
delta = 0.1
activeSlot = True
slowdown = [1,1,1.4,1.8,2.2 ...]
while activeSlot or queue not empty:

activeSlot = False
if there are free slots and queue not empty:

activeSlot = True
node = loadBalancer.getNode()
job = queue.removeFirst()
if job > heavyThreshold:

weightedJob = (job.size,HEAVY,job.matrix)
else:

weightedJob = (job.size,LIGHT,job.matrix)
slot = node.getFirstFreeSlot()
node[slot] = weightedJob

else:
for all nodes

deltaMoved = False
heavyJobs = countHeavyJobs(node)
for all non-empty slots on node:

deltaMoved = True
node[slot][0] = node[slot][0]

- delta/slowdown[heavyJobs]
avgRespTime[node][slot].getLast() += delta
if node[slot][0] <= 0:

node[slot].clear()
maxVal = avgRespTime[node][slot][-1]
if node[slot][2] == matrix0
and maxVal > avgMakespan[0]:

avgMakespan[0] = maxVal
else if node[slot][2] == matrix1
and maxVal > avgMakespan[1]:

avgMakespan[1] = maxVal
avgRespTime[node][slot].add(maxVal)

else:
activeSlot = True

if deltaMoved:
makespans[node] += delta

2Python source code can be found at https://github.com/ondaapotekaren/jenkinsModel

16



4. Methods

4.3 Risk of overload

In addition to the simulation model, to get an estimation of how the risk of overload
caused by bad co-scheduling affects the system, the predicted slowdown can be
calculated in a more general way based on the measurements specified in section
5.2. These calculations assume a randomly sorted queue.

We start by assuming a binomial distribution of heavy jobs onto a machine with a
specific number of slots. A machine has n slots that can be regarded as n trials.
An assignment of a heavy job onto the machine counts as a success and has the
probability p 3. A random variable X is defined as the number of heavy jobs on the
machine. Furthermore, we take a probability P (X = k) to mean that P (X = k) of
the time the machine has this number of heavy jobs on it. From our measurements,
we have a specific overload scalar xk for each k, such that if k heavy jobs are
simultaneously running on a machine we get xk slowdown. This means that we can
define a slowdown function f that gives the slowdown, given the probability of p
and the number of slots n on a machine.

P (k;n; p) = P (X = k) =
(
n

k

)
pk(p− 1)n−k (4.2)

f(n, p) =
n∑

k=1
xkP (k;n, p) (4.3)

The probabilities of the different scenarios occurring for different job sets are showed
in figure 4.1. The graph is showing the probability of overload at a varying number
of slots and how it is changing given different levels of heavy jobs in the system.
The different lines represent different probabilities of assigning a heavy job to a
slot, which corresponds to the percentage of heavy jobs in the system. They are
calculated according to equation 4.3.

As we can see the risk for overload increases if the amount of slots on the machine is
increased. But the machine which is supposed to run the jobs assigned to the slots
has a set amount of threads available. Thus the same amount of resources will have
to be spread on a larger amount of jobs, which will always lead to a slowdown in
the execution of those jobs.

3We keep p the same regardless of how many heavy jobs have been dispatched, this simplifies
the calculation and enables us to model the sampling as with replacements. We believe that this
property becomes more reasonable as the size of the queue grows.

17



4. Methods

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2  4  6  8  10  12  14

S
lo

w
do

w
n

Slots

p=0.05
p=0.1

p=0.15
p=0.2

p=0.25

Figure 4.1: Slowdown predicted by the model for different amounts of heavy jobs
in the job set when the number of available slots is increased. Each line represents
a different probability of heavy jobs in a job set.

18



5
Evaluation

This chapter presents the results. This is done in three parts. Section 5.1 presents
the results from tests made on a local Jenkins instance. Section 5.2 presents the
results from load tests. Finally, section 5.3 presents the results from tests performed
using the simulation model.

Below is a table summarizing how the algorithms were tested. Matrix size refers
to the size of matrices tested, while job set size refers to the total amount of jobs
tested in each test.

Test Algs.
tested Tests Matrix

size
Job set
size Measure Description

Local Jenkins
instance with
a single matrix

LJF
SJF

Random
FIFO

30 100 100
Makespan

Avg. response
time

One matrix for each
test, execution time
fixed for all jobs.

Local Jenkins
instance with
consecutive
matrices

LJF
SJF

Random
FIFO

LJF-aging
SJF-aging

30 100 500

Makespan
Avg. matrix
response time
Avg. response

time

One matrix every
30 seconds for a to-
tal of five matri-
ces, execution time
fixed for all jobs.

Simulation
with overload

LJF
SJF

Random
LJF-aging
SJF-aging

1000 25 100

Makespan
Avg. matrix
response time

Avg. response time

Model of the sys-
tem, with overload
values based on
measurements.
Four matrices fill
up the queue with
no release time
apart

Simulation
no overload

LJF
SJF

Random
LJF-aging
SJF-aging

1000 25 100

Makespan
Avg. matrix
response time

Avg. response time

Model of the sys-
tem, does not ac-
count for overload
of the system. Four
matrices fill up the
queue with no re-
lease time apart

19



5. Evaluation

Summary table: Tests that were run to evaluate the different algorithms.

5.1 Local Jenkins testing

For these tests we assumed that there was no interference between jobs, i.e. if all
heavy jobs run on the same machine their execution time will not be affected. To
simulate different loads on the system the number of available slots was varied from
five up to 100.

The purpose of testing using a real Jenkins instance was to evaluate how well the
different algorithms performed with regards to the defined objectives: minimizing
response time, makespan and average matrix response time.

5.1.1 Job set

For the job sets, we assumed a Pareto distribution. A Pareto distribution is a
general type of distribution popularly described by the 80-20 rule, where 20 percent
of the causes account for 80 percent of the effects and vice versa [19]. The Pareto
distribution is found in different circumstances, among others: load testing, web
services, wealth distribution and bugs in software. We also observed this distribution
in our use case where 20% of the jobs accounted for about 80% of the execution time.

For the tests, we generated ten Pareto distributed matrices that were used for all
the different policies. To generate these we used the NumPy package, which is a
package for scientific computing [20]. It has a built-in function that can generate a
Pareto distributed data set. An α = 1.161 value was used to achieve an exact 80-20
distribution.

We performed two types of tests: single matrix and consecutive matrices. For the
single matrix tests, one matrix was run and completed before the next one was run.
When testing with consecutive matrices five matrices were run at the same time
but with a 30 second release time between them. This is a good approximation
of a real CI system, where the developers are continually adding new jobs to the
queue before all earlier jobs are completed. The five matrices were all running a
different generated Pareto distributed job set, to further simulate reality. The aging
factor described in section 4.2.1 only comes into consideration when running multiple
matrices at once, it does not affect the queuing of jobs from the same matrix.

We ran every policy with ten different job matrices, four times each. The number
of available slots was varied from five up to 100. The first run after every restart
repeatedly produced slower execution times, thus we discarded the results from the
first run after every restart. We could not find the root of this behavior, but one

20



5. Evaluation

possible reason could be that no values had been cached yet. We computed an
average, first for the three tests and then for the ten different matrices.

5.1.2 Software setup

To be able to automate the testing process, Jenkins’ built-in command-line interface,
Jenkins CLI, was used. Jenkins CLI makes it possible to manage the Jenkins server
from the command line, which made it possible for us to fully automate the testing.
We created bash scripts that would set up the Jenkins server, start our test matrices
and change between the scheduling algorithms. After every run of a job, Jenkins
produces and stores a log file with all the information about the build, including
build duration and start time. These log files contained all the information we
needed to evaluate our policies. After each test, we ran a Python script to scrape
all the files created for the data and compile it into the information we wanted, e.g.
the makespan of the matrices run. The information was saved as a CSV file which
made it easy to use gnuplot to create graphs.

For these tests, the jobs only ran the Unix command sleep for a different amount
of time. By keeping the jobs that simple we made sure that the tests would not
interfere with other tasks running on the machines. This decision was taken in
accordance with our supervisor at Ericsson.

To get reliable results the same job set should be used when comparing the different
scheduling algorithms. If different job sets are used many more tests must be done to
get closely reliable results. Real-world job sets derived from our use case are highly
variable between runs. Running just compilation with no network requirements can
be highly susceptible to caching, reading from disk and competing resource usage
on the underlying hardware. However, using sleep meant that the only thing that
affected the time it took to complete all the jobs was the scheduling policy used.

5.1.3 Hardware setup

For these tests, both the Jenkins master and the Jenkins slaves were run locally, on
the same computer. The computer in question was a virtual machine that was set up
using VMware, with access to 8 threads. The threads were mapped to the threads
on an Intel(R) Xeon(R) CPU E5-2670 v3 2.30 GHz, with 12 cores and 24 threads,
that was used in the server computer. The virtual machine was also assigned 32 GB
of RAM.

The Jenkins master and the Jenkins slaves were run on the same computer and use
the loopback network interface. This way the behavior of both the slaves and the
master is identical to if they were connected by a network with a very small delay.

21



5. Evaluation

5.1.4 Local testing results

Two types of tests were carried out on a local Jenkins instance: single matrix and
consecutive matrices. These are presented in separate sections below.

5.1.5 Single matrix

One of the potential situations that is interesting to look into is how well the system
schedules a single matrix that enters the system, without having other matrices in
the queue. Figure 5.1 describes the makespan for four different algorithms when
increasing the number of slots. Figure 5.2 describes the average response time.

Figure 5.1 clearly shows LJF to be the best policy for achieving a minimal makespan.
After 20 slots the makespan does not decrease, indicating that the longer jobs in the
matrices set the bound on the makespan and hence LJF performs optimally. We
observe that the difference between strategies decreases when the number of slots
increases. Which is expected since we are approaching the point when there are
enough slots for every job to execute immediately.

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 5  10  15  20  25  30  35  40  45  50

M
ak

es
pa

n 
[s

ec
]

Slots

LJF
SJF

Random
FIFO

Figure 5.1: Comparison of the makespan achieved by the different algorithms when
scheduling a single matrix.

Just as stated in section 3.2 to get a good average response time as many jobs as
possible have to be executed as early as possible. Thus it is no surprise that SJF

22



5. Evaluation

produced the best scheduling when it comes to improving the response time, which
can be seen in figure 5.2. Since LJF has an approach to scheduling that works the
complete opposite of SJF, placing all the shortest jobs at the end of the queue, it
will produce a very bad schedule when it comes to response time. However, the
difference is more apparent the fewer slots there are in the system.

Both figure 5.2 and 5.1 support the statement from section 4.1 that FIFO and
Random should perform equally. Since there is no other matrix in the system FIFO
cannot make use of its scheduling feature and it performs as another form of Random.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5  10  15  20  25  30  35  40  45  50

A
ve

ra
ge

 r
es

po
ns

e 
tim

e
 [s

ec
]

Slots

LJF
SJF

Random
FIFO

Figure 5.2: Comparison of the average response times between algorithms for a
single matrix

5.1.6 Consecutive matrices

The total makespans for the group of matrices for the different strategies are shown
in figure 5.3. Once again LJF is the best strategy for optimizing the makespan of a
group of matrices. By adding the aging factor the makespan is increased a little.

23



5. Evaluation

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 5  10  15  20  25  30  35  40  45  50

M
ak

es
pa

n 
[s

ec
]

Slots

LJF
SJF

Random
FIFO

LJF aging
SJF aging

Figure 5.3: Makespans achieved by the different algorithms when five consecutive
matrices were run with 30 second release time apart.

Figure 5.4 is showing the results from the measurement that we deem the most
important in a CI setting, the average matrix response time in a group of matrices.
LJF with an added aging factor is consistently the best strategy. SJF, which has
been the worst strategy when it comes to the entire makespan, also performs well
when an aging factor is added to it.

24



5. Evaluation

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 5  10  15  20  25  30  35  40  45  50

A
ve

ra
ge

 m
at

rix
 r

es
po

n
se

 ti
m

e 
[s

ec
]

Slots

LJF
SJF

Random
FIFO

LJF aging
SJF aging

Figure 5.4: Average matrix response time achieved by the different algorithms
when five matrices were run with 30 seconds release time apart.

The average response time for all individual jobs in the matrices is shown in figure
5.5. When it comes to the response time there clearly is no better way to schedule
than using SJF. While using SJF with aging however, the strategy loses its main
advantage since it does not produce a schedule with good response times.

25



5. Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5  10  15  20  25  30  35  40  45  50

A
ve

ra
ge

 r
es

po
ns

e 
tim

e
 [s

ec
]

Slots

LJF
SJF

Random
FIFO

LJF aging
SJF aging

Figure 5.5: Average response time achieved by the different algorithms when five
matrices were run with 30 seconds release time apart.

5.2 Load testing

As explained in section 3.3 it is not always positive to schedule too many heavy jobs
simultaneously at the same slave. Dispatching as many jobs as possible from the
queue will lead to more jobs being executed in parallel but it could also lead to the
machine becoming overloaded and actually performing slower. We will investigate
this issue by:

1. Finding the threshold when a machine will get overloaded.

2. Finding how much slowdown the overload will cause.

3. Modelling the risk of overload in the system to take this factor into consider-
ation when evaluating scheduling policy.

To examine how bad overloading the system would affect the execution time of jobs
on an overloaded machine we created a reference job that would perform a finite
task while the system was overloaded. By comparing how long it took to complete
the reference job we could see how bad the overload affected the machine.

26



5. Evaluation

5.2.1 Software setup

The reference job calculated the first 5000 decimals of π using the Unix command
bc. It was run in parallel with one to ten heavy jobs, running during the entire
duration of the reference job. The heavy jobs were all running stress on four
threads, to mimic the system in our use case, to consume as much CPU power as
possible. Stress is a deliberately simple workload generator that has been used in
a lot of research projects to generate work [21]. For each amount of heavy jobs, one
through ten, ten runs were done to ensure the results were reliable.

A Python script was used to compile all the test data into a CSV file to allow for
easy use with the plotting software gnuplot to create graphs of the results.

5.2.2 Hardware setup

These tests were run on a virtual machine with eight threads, virtualized using
VMware on a physical machine using an Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40
GHz with 14 cores and 28 threads and 16GB of RAM.

5.2.3 Load testing results

Figure 5.6 shows how the execution time of the reference job increases when it has to
run in parallel with heavy jobs. The figure clearly indicates that the machines may
indeed become overloaded. An increase in execution time is noticeable as soon as the
number of heavy job threads exceeds the number of threads on the machine. Given
the setup described in 5.2.1 and 5.2.2 it is logical that this increase in execution
time starts taking effect when the two heavy jobs are occupying the eight threads
available at the machine. For the reference job to be able to execute, the system has
to resort to context switching which will always lead to increased execution time.
With ten heavy jobs running simultaneously at the same slave a severe slowdown
can be observed. It takes about five times as long to finish a job compared to when
it was run together with more lightweight jobs.

27



5. Evaluation

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0  1  2  3  4  5  6  7  8  9  10

E
xe

cu
tio

n 
tim

e 
[s

ec
]

Heavy jobs

Figure 5.6: The execution time of the reference job when run together with heavy
jobs. A considerable slowdown is observed when the amount of heavy jobs is in-
creased.

Given this knowledge, it is clear that another area where it is possible to improve a
CI system is to make sure to not schedule too many heavy jobs together. There are
many different ways to avoid these situations. In section 7.1 we discuss one way to
handle this problem.

From figure 5.6 we can view the slowdown factor as the ratio between the execution
time when the reference job is running by it itself and together with a discrete
number of heavy jobs. We can then define the set slowdowns = {f(x)/f(0)|x ∈ Z+}
where f(x) is the function in the figure. Furthermore, this set was used as input to
the models described in sections 4.2.2 and 4.3 which are evaluated below in section
5.3.

5.3 Simulation model testing

In addition to the tests described in section 5.2 and 5.1 that were run using a real
Jenkins instance, we also ran tests on a simulation model of the system. The model
calculates the makespan, average response time and average matrix response time
of the schedules produced by the different algorithms.

This model enabled us to both run many more tests than when using a real Jenkins

28



5. Evaluation

instance and also simulate what would happen if we adjusted the number of slots on
the slaves. The overload factor can also be taken into consideration. We simulated
1000 runs with the number of slots ranging from five to 15 on two slaves. A new set
of jobs was generated for every run. A run includes all slot tests. The same job set
is used for all different algorithms to properly compare them. This gave us new and
more reliable data over the data from the Jenkins instance tests.

5.3.1 Test specification

The simulation model was written in Python 3. The model simulates how a real
Jenkins instance would behave, with a load balancer, scheduler and the possibility
to change the number of slaves and slots.

For the tests, we generated 1000 Pareto distributed matrices the same way as de-
scribed in 5.1.1.

In the model, long jobs are also always regarded as heavy. To implement this we
set a threshold so that the 20 percent longest jobs in the matrix are also heavy. We
believe this is a reasonable assumption since to merit threading, a job can’t have too
minuscule resource requirements, otherwise, the overhead introduced would exceed
the gain.

5.3.2 Simulation testing results

Figures 5.7, 5.8 and 5.9 show the average of the makespan, average response time
and average matrix response time without overload of 1000 randomly generated
Pareto distributed job matrices of size 100. Figures 5.10, 5.11 and 5.12 show the
same but with overload added to the model. A matrix is scheduled onto two nodes
with a varying number of slots according to five different algorithms. Since FIFO
and Random are equal when all jobs enter with the same release time, they are equal
in this model. We calculate the average and standard deviation for all the different
policies.

When comparing the overload to the non-overload case we observe an increased
execution time and some added noise. However, the general shape of the graphs are
not changed, nor are their relations to each other. For all measurements, it is clear
what algorithms are the best except in the average matrix response time case. Here
the results are varying depending on the amount of parallelism.

A general tendency is that all polices show a diminishing gain when parallelism is
increased. The exception to this is LJF when measured against makespan - shown
in figure 5.10 - which increases when the number of nodes exceeds six.

29



5. Evaluation

 6000

 8000

 10000

 12000

 14000

 16000

 2  4  6  8  10  12  14

M
a
k
e
s
p
a
n

 [
s
e
c
]

Slots

LJF
SJF

Random
LJF-aging
SJF-aging

Figure 5.7: The makespan of the different algorithms without slowdown as the
number of available slots increases.

 0

 1000

 2000

 3000

 4000

 5000

 2  4  6  8  10  12  14

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 [

se
c]

Slots

LJF
SJF

Random
LJF-aging
SJF-aging

Figure 5.8: Average response time without slowdown

30



5. Evaluation

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 2  4  6  8  10  12  14

A
v
e
ra
g
e

 m
a
k
e
s
p
a
n

 [
s
e
c
]

Slots

LJF
SJF

Random
LJF-aging
SJF-aging

Figure 5.9: Average makespan without slowdown

Figure 5.10: The makespan of the different algorithms with slowdown as the
number of available slots is increased.

31



5. Evaluation

Figure 5.11: The average response time of the different algorithms with slowdown
as the number of available slots is increased.

32



5. Evaluation

Figure 5.12: The average matrix response time of the different algorithms with
slowdown as the number of available slots is increased.

Table 5.1 and table 5.2 show the standard deviation for all the algorithms tested
in the simulation. The figures in table 5.1 are for the test cases without slowdown,
i.e. the overload factor is set to zero. While the figures in table 5.2 were run with
an overload factor to simulate the slowdown. From the figures, we observe that the
standard deviation is higher in the slowdown case. We believe that this is explained
by the noise in the simulations caused by the added overload.

33



5. Evaluation

Table 5.1: Standard deviation for all metrics for the different algorithms tested
with no slowdown taken into account.

34



5. Evaluation

Table 5.2: Standard deviation for all metrics for the different algorithms tested
with slowdown factor taken into account.

35



5. Evaluation

5.4 Summary of results

We summarize our results in a table below and compare the algorithms against
each other with regard to the different measurements. We categorize the algorithms
relative to each other as bad, medium, good or best. The overload and non-overload
models did not change any of these relations and are therefore not shown as separate.

Algorithm Avg. response
time Makespan Avg. matrix

response time
LJF Bad Best Good
SJF Best Bad Worst

Random Medium Medium Bad
FIFO Bad Medium Medium

LJF-aging Bad Medium Good
SJF-aging Bad Bad Medium

Result table: Summary of our main results.

36



6
Discussion

6.1 Local Jenkins Instance

This section contains our discussion about the results observed when testing both a
single matrix and consecutive matrices.

6.1.1 Single matrix

As we can see it is not possible to optimize the system with regards to both response
time and makespan. Since LJF and SJF work in the complete opposite way and they
are the algorithms that produce the best makespan and response time, respectively.
So it seems that the user has to make a choice about which measurement is the
most important in their use case. Or by using FIFO or Random to achieve a system
which is not geared towards minimizing any of the two measurements in particular,
but lies somewhere between.

If the failure rate of jobs in the system is independent of their length a shorter
average response time for each job makes a lot of sense. Especially if some kind of
mechanism for "fail fast" is in place. As discussed in section 3.2 fail fast means that
the system should stop all testing as soon as a failure has occurred and reported
back to the appropriate developer. By operating in this way the developer will get
a faster response when there is something that needs to be fixed, instead of having
to wait for all the tests to complete. And since something needs to be changed
anyway, which means running all tests again, it’s better to abort them as soon as
possible when finding an error. One caveat is that this reasoning holds under the
assumption that the fail rate is independent of job length. This might not always be
a reasonable assumption since longer jobs may be performing more tests, and thus
have a higher fail rate.

37



6. Discussion

6.1.2 Consecutive matrices

The consecutive matrices scenario is the most relevant for a larger CI system where
there are several commits, that will trigger matrices, that enter the system.

LJF produces the best overall makespan and SJF the best average response time,
as in the single matrix case.

We judge that average matrix response time is the most relevant measure since a
matrix is generated by a commit and the commit is accepted when all tests have
passed. If the overall makespan is prioritized over the average it means that a devel-
oper that was almost finished has to wait for an incoming matrix. Since a commit
generates a matrix, minimizing the average matrix response time is equal to mini-
mizing the average response time of a commit, from the developer’s point of view.
This means that the time for the developer is decreased, while also guaranteeing
fairness.

As can be seen, LJF-aging is the scheduling algorithm that is best for minimizing
the average matrix response time. FIFO is quite good since no individual jobs from
a matrix get left behind and are allowed to increase the average. When studying
the single matrix case we can observe that LJF performs the best. FIFO on an inter
matrix level but sorting the jobs inside a matrix according to LJF, which in effect
is LJF-aging, naturally produces the best average matrix response time.

When looking at the average matrix response time both LJF and SJF, without
aging, perform as bad as the Random strategy. This further confirms the fact that
being able to ensure a fair scheduling policy, with no starvation, is very important
to also achieve good execution times.

6.2 Simulation model

Considering the makespan, both with and without slowdown all polices but LJF
show a diminishing gain when parallelism is increased. LJF does not change its
makespan when the number of slots exceeds six, indicating that this policy already
achieves an optimal solution for many of the job matrices tested. SJF produces the
worst makespan, which is not surprising since it actively schedules in the opposite
way compared to LJF. Random is better and the aging modified policies produce
makespans between Random and their non-aging modified counterparts.

Figure 5.10 shows the makespan of the same job matrices as in figure 5.7, this time
with slowdown added in the model. The improved makespan gained by increased
parallelism is counteracted by the increasing risk of overload when the number of
slots increases. For Random the improvement in makespan is 64% in figure 5.7

38



6. Discussion

t0

t1 t2

Figure 6.1: Execution of jobs in case 1.

while being only 22% in figure 5.10. LJF, on the other hand, shows an increase
in makespan when the number of slots exceeds six. This is not surprising since
it was not affected by the increased parallelism but still suffers from overload. If
this assumption is correct the same effect will be seen for the other algorithms as
well, once they have reached the point where additional slots is not reducing the
execution time. The notion that the gain from parallelizing the system to a greater
extent is diminished is also supported by the model in section 4.3. In figure 4.1 it
is clearly shown that as the number of available slots goes up, the slowdown factor
increases with it. And because of this, the improvement to makespan in figure 5.10
is mediocre compared to the improvement achieved in figure 5.7, for LJF it is even
slightly negative.

LJF is an interesting case. Although the increased parallelism increases the risk
and severity of overload - since more heavy jobs are simultaneously running - it also
decreases the time of the overload. Imagine a scenario where there are three heavy
jobs with execution times two, one and one. If these jobs are scheduled on two slots,
they will cause overload during the entire execution time. If they are scheduled on
three slots instead, they will only cause overload during half the execution time, but
this overload will be more severe. As long as the overload factor is increasing linearly,
proportionally to the number of heavy jobs on a machine, a simple proof can show
that these two scenarios will result in the same time consumption. We describe the
overload with the help of a constant k that is multiplied with the number of heavy
jobs n. We can then integrate this time consumption over their original execution
time along the axis t. The two cases are depicted in picture 6.1 and 6.2. We have
three jobs 0,1,2 with their respective length: t0 > t1 > t2 and t0 > t1 + t2. The
method of the proof will be to divide the executions into regions and sum their
respective time consumption and then show that they are the same for case one and
two.

The first case can be divided into two regions. The first region is from 0 to t1+t2
In this case we have n + 1 heavy job running. The second case is the rest of the
duration, from t1 + t2 to t0. In this case, n jobs are running.

∫ t1+t2

0
(n+ 1)kdt = (n+ 1)k(t1 + t2) (6.1)

∫ t0

t1+t2
nkdt = nk(t0 − t1 − t2) (6.2)

39



6. Discussion

t0

t1

t2

Figure 6.2: Execution of jobs in case 2.

Adding 6.1 to 6.2 results in:
k(t0n+ t1 + t2) (6.3)

The second case can be divided into three regions. The first region is from 0 to t2,
when n + 2 jobs are running. The second region is from t2 to t1 when n + 1 jobs
are running and the third one is from t1 to t0 when n jobs are running.

∫ t2

0
(n+ 2)kdt = (n+ 2)k(t2) (6.4)

∫ t1

t2
(n+ 1)kdt = (n+ 1)k(t1 − t2) (6.5)

∫ t0

t1
nkdt = nk(t0 − t1) (6.6)

Adding 6.4 to 6.5 and 6.6 results in:

k(t0n+ t1 + t2) (6.7)

6.3 and 6.7 are equal and hence our proof is finished.

That the increase in makespan for LJF is so very slight when slots are increased
can be explained by the above effect. It is most prominent for this algorithm since
all heavy jobs are clustered in the beginning regardless of the number of slots. For
other algorithms, we hypothesize that the risk of overload simply increases when
the number of slot increases which would explain their greater slowdown. However,
the overload factor is not linear, as there is no overload when scheduling two heavy
jobs on the same machine. This means that it is possible to run two heavy jobs
on the same machine without it affecting the execution times of the heavy jobs or
other non-heavy jobs on the machine. More slots should mean that this overload
situation becomes less common. This could explain the small increase in makespan
we however still observe for LJF.

40



6. Discussion

For the average response time, the results indicate that SJF is the best policy, as
expected.

For the average makespan, LJF-aging is the best policy when a few slots are available
but LJF becomes the better policy when the number of slots increases. That LJF-
aging is good is not surprising since the measure average makespan punishes non-
fair behavior which LJF-aging avoid. However, when parallelism increases LJF gets
better. This can be explained by the fact that is is the job that finishes last in the
matrix that determines the average makespan. The effect of letting short jobs from
earlier matrices wait on longer jobs from later matrices does not affect the average
makespan if the short jobs none the less get to finish earlier than the longer ones in
their matrix. This situation becomes more common when the amount of parallelism
is increased since then there are enough slots such that the short jobs can get to
finish earlier than the longer ones. Overload does not change the behavior in any
significant way.

6.3 Load testing

Given how much of a slowdown that was observed in section 5.2.3 is obviously very
important to try to minimize its number of occurrences. It does not take very many
heavy jobs running in parallel to completely erase the improvements achieved by any
of the scheduling algorithms. None of the tested algorithms actively tries to avoid
this situation. Furthermore, it is hard to know how much overload can be avoided by
changing the scheduling policy since we cannot compare it to an optimal schedule.
We only compare the schedules produced by the tested algorithms to each other.
Nonetheless, overload needs to be taken into consideration when deciding which
scheduling policy and load balancer to use, and how they influence each other. In
some cases, it might be worth it to reduce the amount of slots available to reduce
the risk of overload.

6.4 Future work

Below we propose some future work that could be carried out to further investigate
and possibly improve scheduling for a CI server.

6.4.1 Other job set distributions

To further examine how the algorithms perform it could be interesting to analyze
them using another job set. Several different job sets have been used to evaluate

41



6. Discussion

them already, but they have all followed a Pareto distribution. There are many
other distributions which are commonly seen that could be tested. The jobs could,
for example, follow a normal distribution, which is a very common way for data to
present itself.

6.4.2 Heterogeneous machines

In all our experiments we assumed that the machines were all homogeneous, i.e. they
all used the same hardware. In a realistic scenario, this is not always true. It would
be interesting to test the algorithms on a system where the machines were not all
built in the same way, since this could greatly influence the results. It would mean
that it is very important to not only schedule a long job first but equally important
to place it on the machine that can execute it as fast as possible. If that machine is
busy, a decision has to be made about waiting for that machine or choosing another,
slower machine. These types of decisions can easily become very complex.

6.4.3 Memory bus

There are several resources in a modern computer that can suffer from slow down
when they get overloaded, apart from the CPU. One such resource that could be
investigated further is the memory bus. Accessing the memory is a very common
action in a computer, which will always need to make use of the memory bus. If too
many jobs were to use the bus at the same time it is possible that similar behavior
could be observed as when too many processes try to use the CPU simultaneously.

6.4.4 Simulation model

The simulation model can be extended to also include failures and a "fail fast" policy
such that matrices are aborted if one of the jobs fail. How the algorithms perform
under different fail rates could then be tested. Lastly, our slowdown factor is derived
from measurements taken in a live system. Instead, the model could be extended so
that it could simulate varying slowdown factors. With a different slowdown factor,
the algorithms may be affected differently. The best algorithm for a very small
slowdown factor might not perform as well when overloading the system means
higher overhead.

42



6. Discussion

6.4.5 Real world testing

An interesting research setup would be to test the scheduling algorithms in a real
world setup were we gather a large set of actual CI jobs. These jobs could then be
scheduled again by the different algorithms and the execution time measured. The
technical problem with this approach is to gather representative and good enough
live data. If this can be done we believe that the result from this type of testing
would be the most reliable way of evaluating the different algorithms.

43



7
Related Work

The literature on scheduling is vast, and problems can be specified in a number of
ways. The book Scheduling: Theory, Algorithms, and Systems provides a general
theoretical background, description of common algorithms and proofs [5]. It offers
an entry point to be able to classify what kind of scheduling problem one is concerned
with. Scheduling in this sense is not limited to programs running on a computer
but can as well be e.g. runways at airports or crews at a construction site. However
the same principles are applicable. The book makes a separation between determin-
istic and stochastic models. Deterministic models are models where the properties
of the system have known values, for example the execution times of the jobs to
be scheduled are known. For the stochastic models on the other hand, only the
probability distribution of the properties are assumed. The literature for stochastic
models is less extensive. A further distinction is then made between parallel- and
single machines. The system model at hand for this thesis is a system of parallel
machines. One of the measures we investigate in the thesis is the makespan. To
find an optimal schedule with regards to makespan on parallel machines, without
preemptions and in a deterministic model is an NP-hard problem [5]. The author
proves this by reducing the problem to the partition problem which is known to be
NP-complete.

In the scheduling literature a classic, often cited paper about this problem is Bounds
on Multiprocessing Timing Anomalies [22]. The paper is short but dense and
presents a mathematical proof for the worst case bounds for the random algorithm
and for longest job first. Longest job first is shown to have the better worst case
bound.

Scheduling online mixed-parallel workflows of rigid tasks in heterogeneous multi-
cluster environments evaluates a number of algorithms for scheduling mixed-parallel
workflows - which means a mix of task parallelism and data parallelism with prece-
dence constraints between them [23]. Data parallelism means that the same task
can be executed concurrently on different cores since the data can be split into in-
dependent sections. Task parallelism means that different tasks can run on different
cores. The system model differs compared to ours since we only have to consider task
parallelism. The input to be scheduled is defined to be acyclic graphs where edges
between nodes represent dependencies between tasks. However, the experimental

44



7. Related Work

approach is related to the one in this thesis. Rather than giving a formal proof for
the worst case bounds on their algorithms a simulation model of a scheduling system
is developed. Four algorithms are suggested and tested against the measure "average
turnaround time". Where turnaround time is defined as the total elapsed time for
a collection of interdependent tasks including the waiting time incurred from any
precedence constraints. This measure is similar but not identical to our measure
"average matrix response time". The difference being that we have no precedence
constraints between tasks in a matrix.

Mixed Data-Parallel Scheduling for Distributed Continuous Integration is specifically
focusing on scheduling in a CI context [24]. The system model - however - differs
from the one defined in this thesis. The model is similar to the above mentioned
article, tasks are modeled to have dependencies in between each other and represent
the dependencies between builds. The heuristic algorithms tested are based on this
property as well as simulations to approximate finishing times. This differs from our
system model where no precedence constraints exist between jobs and the execution
times of jobs are assumed a priori.

The doctoral thesis A Slowdown Prediction Method to Improve Memory Aware
Scheduling discusses the issue of co-scheduling tasks for memory-intensive appli-
cations and ways to combat this issue [15]. This thesis focuses on computation-
intensive applications and the problems of co-scheduling these.

7.1 Dynamic load index

One way to try to actively avoid bad co-scheduling would be to have a feedback
mechanism where the system will continually keep track of how high of a load there
is on every slave and report this back to the central CI server. This information can
then be used to schedule the jobs without causing an overload situation on any node.
One way of implementing this approach would be to keep two separate queues, one
for heavy jobs and one for lighter jobs. Once a slave reports back to the master that
it is close to overloading, the system starts scheduling jobs from the lighter queue
for that slave. When the slave once again reports that it can handle a heavy job the
system goes back primarily scheduling heavy jobs for that slave again.

In [25] Sharifian et al. propose an algorithm with a similar approach. They apply
the thought of a feedback system and groupings of different jobs to a web server.
Their algorithm produces significant time improvements but introduces additional
overhead into the system due to the complex nature of it.

The major drawback of using a feedback mechanism to solve the dynamic load index
problem is that it makes the system much more complex. First of all two queues
need to be maintained and the state of every slave has to be continually updated.
The communication between the master and the slave also needs to become much

45



7. Related Work

more robust. A way to approximate both the resource usage on slaves and resource
requirements must also be implemented. On the other hand if, long jobs are also
heavy, as we have assumed in our model, this classification becomes easier.

An additional aspect of the complexity is that dependencies between the load bal-
ancer and the scheduler are introduced since the load balancer needs to keep track of
which of the two queues held by the scheduler to dispatch jobs from. Making these
two components that should work separately dependent on each other is another
reason why it is hard to justify this approach.

46



8
Conclusion

The thesis investigates how to improve a CI server by choosing an appropriate
scheduling algorithm. We conclude that average matrix response time - a measure-
ment introduced in this thesis - is the most relevant measure for our system model.
Furthermore, we believe that our system model corresponds to a common CI archi-
tecture. The job sets used in our empirical evaluation were set to follow a Pareto
distribution. This is based on observations from our use case.

For the objective of minimizing the average matrix response time LJF with an
added aging factor is the best algorithm according to our measurement on a Jenkins
instance.

To be able to take machine overload into consideration and make more extensive
testing a simulation model was developed. When considering both the overload and
non-overload case, LJF produces the best makespan according to our simulation
model, LJF and LJF-aging produce the best average matrix response time and SJF
produces the best average response time.

An overloaded system diminishes the gain of parallelism. Both our mathemati-
cal model and our simulation model indicates this. This is true for all algorithms
and measurements. Nearly every algorithm improves for all measurements when
increasing the job parallelism but the gain is diminished due to the increased risk
of overload. The exception is LJF which early on achieves an optimal makespan
and thus the makespan will only increase due to the overload factor caused by the
increased parallelism.

47



8. Conclusion

48



Bibliography

[1] [Online, accessed May 29, 2018]. url: https : / / pngimg . com / download /
41163.

[2] Martin Fowler and Matthew Foemmel. “Continuous integration”. In: Thought-
Works http://www. thoughtworks. com/Continuous Integration. pdf 122 (2006),
p. 14.

[3] Ericsson Company Facts. url: https://www.ericsson.com/en/about-
us/company-facts (visited on 03/13/2018).

[4] Martin Heller.What is Jenkins? url: https://www.infoworld.com/article/
3239666/devops/what-is-jenkins-the-ci-server-explained.html (vis-
ited on 05/17/2018).

[5] Michael L. Pinedo. Parallel Machine Models (Deterministic). Cham: Springer
International Publishing, 2016. isbn: 978-3-319-26580-3. doi: 10.1007/978-
3-319-26580-3_5. url: https://doi.org/10.1007/978-3-319-26580-
3_5.

[6] Chandra Chekuri et al. “Multi-processor scheduling to minimize flow time
with ε resource augmentation”. In: Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing. ACM. 2004, pp. 363–372.

[7] Susanne Albers. “Better bounds for online scheduling”. In: SIAM Journal on
Computing 29.2 (1999), pp. 459–473. issn: 00975397.

[8] Jenkins Press Information. url: https : / / jenkins . io / press / #about -
jenkins (visited on 03/05/2018).

[9] Nikhil Bansal. “Algorithms for flow time scheduling”. PhD thesis. School of
Computer Science, Carnegie Mellon University, 2003.

[10] Sandeep Sivanandan. “Fail Fast-Fail Often: Enhancing Agile Methodology us-
ing Dynamic Regression, Code Bisector and Code Quality in Continuous In-
tegration (CI)”. In: arXiv preprint arXiv:1506.08725 (2015).

[11] Stephan Mertens. “The easiest hard problem: Number partitioning”. In: Com-
putational Complexity and Statistical Physics 125.2 (2006), pp. 125–139.

[12] Joacim Andersson and Pontus Andersson. “Increasing the Performance of a
Continuous Integration Server”. MA thesis. Chalmers University of Technol-
ogy, June 2016.

49

https://pngimg.com/download/41163
https://pngimg.com/download/41163
https://www.ericsson.com/en/about-us/company-facts
https://www.ericsson.com/en/about-us/company-facts
https://www.infoworld.com/article/3239666/devops/what-is-jenkins-the-ci-server-explained.html
https://www.infoworld.com/article/3239666/devops/what-is-jenkins-the-ci-server-explained.html
https://doi.org/10.1007/978-3-319-26580-3_5
https://doi.org/10.1007/978-3-319-26580-3_5
https://doi.org/10.1007/978-3-319-26580-3_5
https://doi.org/10.1007/978-3-319-26580-3_5
https://jenkins.io/press/#about-jenkins
https://jenkins.io/press/#about-jenkins


Bibliography

[13] Chuanpeng Li, Chen Ding, and Kai Shen. “Quantifying the cost of context
switch”. In: Proceedings of the 2007 workshop on Experimental computer sci-
ence. ACM. 2007, p. 2.

[14] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating system
concepts essentials. John Wiley & Sons, Inc., 2014.

[15] Andreas De Blanche. “A Slowdown Prediction Method to Improve Memory
Aware Scheduling”. PhD thesis. Chalmers University of Technology, 2016.

[16] GNU Make. url: https : / / www . gnu . org / software / make/ (visited on
04/30/2018).

[17] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating system
concepts essentials. John Wiley & Sons, Inc., 2014. Chap. 6, p. 279.

[18] Priority Sorter. url: https://plugins.jenkins.io/PrioritySorter (vis-
ited on 04/19/2018).

[19] Mitsuo Gen and Runwei Cheng. Genetic algorithms and engineering optimiza-
tion. Vol. 7. John Wiley & Sons, 2000.

[20] NumPy. url: http://www.numpy.org/ (visited on 05/14/2018).
[21] stress project page. url: https://people.seas.harvard.edu/~apw/stress/

(visited on 05/14/2018).
[22] CHEN PENG et al. “Timing-Anomaly Free Dynamic Scheduling of Condi-

tional DAG Tasks on Multi-Core Systems.” In: ACM Transactions on Em-
bedded Computing Systems 18.5s (2019), p. 1. issn: 15399087. url: https:
/ / search . ebscohost . com / login . aspx ? direct = true & AuthType = sso &
db=edb&AN=139108206&site=eds-live&scope=site&custid=s3911979&
authtype=sso&group=main&profile=eds.

[23] Yi-Rong Wang, Kuo-Chan Huang, and Feng-Jian Wang. “Scheduling online
mixed-parallel workflows of rigid tasks in heterogeneous multi-cluster environ-
ments”. In: Future Generation Computer Systems 60 (2016), pp. 35–47.

[24] O. Beaumont et al. “Mixed Data-Parallel Scheduling for Distributed Contin-
uous Integration”. In: 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops PhD Forum. May 2012, pp. 91–98. doi:
10.1109/IPDPSW.2012.7.

[25] Saeed Sharifian, Seyed A Motamedi, and Mohammad K Akbari. “A content-
based load balancing algorithm with admission control for cluster web servers”.
In: Future Generation Computer Systems 24.8 (2008), pp. 775–787.

50

https://www.gnu.org/software/make/
https://plugins.jenkins.io/PrioritySorter
http://www.numpy.org/
https://people.seas.harvard.edu/~apw/stress/
https://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=edb&AN=139108206&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=edb&AN=139108206&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=edb&AN=139108206&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=edb&AN=139108206&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
https://doi.org/10.1109/IPDPSW.2012.7

	Introduction
	Purpose

	Preliminaries
	System model
	Parallel machines
	Non-preemptive scheduling
	Clairvoyant scheduler
	Online scheduling

	Specific use case
	Environment


	Problem Analysis
	Sequential builds
	Defining a good schedule for a CI server
	Avoiding bad co-scheduling

	Methods
	Choice of algorithm
	Implementation details
	Jenkins priority sorter plugin
	Simulation model

	Risk of overload

	Evaluation
	Local Jenkins testing
	Job set
	Software setup
	Hardware setup
	Local testing results
	Single matrix
	Consecutive matrices

	Load testing
	Software setup
	Hardware setup
	Load testing results

	Simulation model testing
	Test specification
	Simulation testing results

	Summary of results

	Discussion
	Local Jenkins Instance
	Single matrix
	Consecutive matrices

	Simulation model
	Load testing
	Future work
	Other job set distributions
	Heterogeneous machines
	Memory bus
	Simulation model
	Real world testing


	Related Work
	Dynamic load index

	Conclusion
	Bibliography

