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Cooperation and learning in an asymmetric information setting with a suboptimal
teacher
JOHAN EK
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Abstract
There exists many different scenarios where an artificial intelligence (AI) may have
to learn from a human. One such scenario is when they both have to cooperate but
only the human knows what the goal is. This is the study of cooperative inverse
reinforcement learning (CIRL). The purpose of this report is to analyze CIRL when
the human is not behaving fully optimally and may make mistakes. The effect of
different behaviours by the human is investigated and two frameworks are developed,
one for when there is a finite set of possible goals and one for the general case
where the set of possible goals is infinite. Two benchmark problems are designed to
compare the learning performance. The experiments show that the AI learns, but
also that the humans behaviour has a large affect on learning. Also highlighted by
the experiments, is the difficulty of differentiating between the actual goal and other
possible goals that are similar in some aspects.

Keywords: Machine learning, artificial intelligence, reinforcement learning, cooper-
ation, cirl, computer science, project, thesis.
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1
Introduction

This chapter introduces the research filed of CIRL and explains the research leading
up to it and the connection to other research going on around it. The problem is also
made more concrete and the specifics characteristics distinguishing this project from
other research is stated along with the aim. An overview of the actual contributions
of the project is also presented along with a general outline of the report.

1.1 Background

The research field of artificial intelligence (AI) is an evergrowing area. It has gained
massive interest during recent years both from academia and the private sector
(A.E.S., 2016). As AI is tasked with solving new kinds of problems, new methods and
subfields of research are developed to handle it. Cooperative inverse reinforcement
learning (CIRL) is one such new area. It builds upon many layers of earlier research
that respectively still are active research topics.

The arguably most active area in artificial intelligence is that of machine learning
(ML). It is characterized by the ability of computer programs (AIs) to independently
learn from data, i.e. a programmer does not explicitly need to tell the program what
to do. ML has an advantage in cases where it is difficult to create explicit algorithms,
where a common such case is that of classification. Classification can for example
be used to determine whether an email is spam, or for recognizing objects in images.

In classification the AI commonly learns by being presented with a complete
training set, i.e. example problems and correct responses. But, in some problems,
learning is preferably done by trail and error. This is usually cases that require
trade-offs between long-term and short-term rewards (Sutton, Barto, et al., 1998).
The subfield reinforcement learning (RL) was developed for this reason and has suc-
cessfully been applied to board games and simple video games. It was, for example,
used by Google DeepMind’s Go playing computer program AlphaGo to beat the Go
world champion at the time (Shead, 2017).

A problem with RL is that a programmer needs to precisely define a reward
function, i.e. a performance criteria of how well the program is behaving. This
can in more than one way be a significant disadvantage in certain circumstances.
Creating a reward function is simple in problems such as games where a victory
equals a high score and a loss equals a low score. However, in a task like driving
a car, this is not as simple. There is no winner, instead the right balance between
many different safety measures, speed and comfort needs to be found. Most people,
even those who can not drive, can see the difference between a good driver and a
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1. Introduction

bad. At the same time, it is close to impossible to set up a comprehensive set of
criteria for differentiating between them.

An incorrectly specified reward function gives rise to the so called Value Align-
ment Problem (Hadfield-Menell, Russell, Abbeel, & Dragan, 2016). An AI trying to
optimize a poorly specified reward function can end up behaving very unpredictable.
Russel and Norvig (2010) gives the example of an assistant robot given the task of
cleaning up dirt. If it is rewarded every time it cleans up dirt, which may seem
reasonable, it will pour it all out again so that it can clean it up repeatedly and thus
receive a higher reward. This problem shows up in many places where it is hard
to define the reward function. Solving the Value Alignment Problem is crucial to
develop safe AIs such as self-driving cars and personal assistant robots.

A method for avoiding these problems with creating a reward function is inverse
reinforcement learning (IRL). The basic concept is that instead of providing the AI
with a reward function it should learn the reward function as well. The AI infers
the reward function by first observing an expert performing the task for some time.
This expert is usually a human who is experienced with the task. IRL has the
potential to solve the Value Alignment Problem. Since the AI is never completely
certain about its objective, it will naturally try to align its learned objective better
with that of the expert. IRL has with varying degrees of success been used to train
autonomous vehicles (Abbeel, Dolgov, Ng, & Thrun, 2008).

The complexity of the problem can be extended one step further by placing the
AI in a cooperative environment together with a human expert. The reasons for
cooperation can be that the expert can not complete the task alone, because it is
more efficient or since it improves learning in an early phase so that the AI can
complete the task alone later. Either way, the AI has to infer the objective and help
the expert at the same time. This is problematic since the AI may not be able to
learn the objective without helping the expert, and helping is not straightforward
when the objective is not known. The AI should not copy the humans behaviour,
but choose one that best completes the task together with the human. This may
result in a behaviour very different to that of the human. Direct communication
between the two agents could be allowed in some situations, but the goal is for the
AI to learn as much as possible independently. As an example situation of where
CIRL could be useful, imagine that you own a personal assistant robot and both
of you are folding laundry. You want the robots help making a three-way fold on a
tablecloth. However the robot has never folded anything before. It therefore needs
to observe your actions to understand that it is supposed to grab the other end of
the fabric and fold it the same way you do.

1.2 Aim
This project aims at aiding in taking the initial steps into the new field of cooperative
inverse reinforcement learning. The work on CIRL by Hadfield-Menell et al. (2016)
is the platform from which this research starts, but with a major difference in the
assumptions. This project is the first that strives to model the human agent as a
realistic person, meaning that the human may behave suboptimally and may not
understand the reasoning of the AI. How the exact behaviour of the human affects

2



1. Introduction

the learning ability of the AI will be of major interest.
The main goal of the project is to examine whether CIRL is achievable in the

general case with a suboptimal human agent. To prove this, the learning mechanism
behind a simple general case should be clear, and a simple experiment should show
learning in this environment. Or, alternatively, show why it is not possible. In
practice, this means designing a simple general CIRL environment as a test-bench
and then create a framework for the AI that learns the objective from the human.
This framework will be a set of assumptions and algorithms that can be applied to
any CIRL problem of a limited complexity.

The difficulty of the problem can be varied over a huge span, from very simple to
very hard. The starting point is therefore a simple case to improve understanding,
allowing continued work on the more complex cases. The simple case will be studied
more rigorously and in greater detail than the more complex problem, which will
mainly be a proof of concept. Ideally, the AI should learn the reward fast and
understand how to behave to maximize it. This will be tested on the developed
test-bench. The algorithms computational complexity will also be discussed. In
general, as few results have been published in this area, all new insights are helpful
to the continued research.

If the results show that the AI can learn the objective and also how to do it,
then it opens up a new way of training AIs. A way that seem very similar to how
an animal’s parent teaches their children. They are not able to explain what to do,
but they can show how to perform the specific task at hand. This way of teaching
could be very useful for training robots to perform tasks that humans already can
do, or needs to cooperate on. As an example, a personal household assistant robot
could be taught a new chore such as brewing coffee, by brewing it together with its
owner.

Objectives

• Identify the difficulties of learning in CIRL environments.
• Establish different models of how a human could behave.
• Create learning algorithms for the AI.
• Construct two testing environments for different levels of complexity.
• Evaluate the effect of different assumptions about human behaviour.
• Evaluate the effectiveness of the developed algorithms based on learning speed

and robustness.
• Identify optimization opportunities and propose areas of further research.

1.3 Problem
There exists a task and two agents who try to complete it in the best way possible.
One agent is a human who knows what the task is and the other is an AI who
does not know the task. The AI observes the human to try to understand the task
and how to help. The two agents can not communicate in any other way than
through their actions in the task environment. Both agents have full knowledge
of the environment and the available actions. However, the human is suboptimal

3



1. Introduction

and will therefore make some mistakes. At no point is any external information
provided to the AI about the task, and it will therefore never know for sure if it has
understood it correctly.

To limit the complexity of the problem, the number of states and actions are
assumed to be finite and small. The task is randomly chosen from a set of possible
tasks and is therefore not always the same. The set of possible tasks is also known
by both agents, as well as the probability of a task being selected. The project is
partially divided along the line of complexity. The major difference is whether the
set of possible tasks is finite or not. This project builds upon the work by Hadfield-
Menell et al. (2016) and generally follows the same formulations, definitions and
notations.

1.4 Related work

The work done in this project is inspired by Hadfield-Menell et al. (2016). The
main difference is the view of the human agent. While they model the human as
an optimal agent, trying to teach the AI in the best possible way, this project does
not make such strong assumptions. Instead the human is modeled to make mistakes
and be unaware of how to best teach the AI. In their continued work Palaniappan,
Malik, Hadfield-Menell, Dragan, and Russell (2017) take the optimal human one
step further and develop a fast algorithm for finding the human’s optimal teaching
behaviour given a specific task. This behaviour requires that the AI assumes that
the human is optimal and will provide the AI with the most information possible
about the task. This is in stark contrast to the human in this project, which is not
assumed to have the interest or ability to act in accordance with an algorithm.

CIRL is an extension to IRL as defined by Abbeel and Ng (2004). IRL also
assumes that the human is optimal. Interestingly, Hadfield-Menell et al. (2016)
proves that the human can teach the AI more by behaving in a special teaching way
that may be a suboptimal policy. In this project, a teaching policy that is also an
optimal policy will be tested.

A concept with many similarities to IRL and CIRL is developed by Lin, Beling,
and Cogill (2014). It is a Bayesian framework for Multi-agent IRL (MIRL), where
two agents then compete in an unknown stochastic environment. Similarly to CIRL,
the soundness of each agent’s behaviour then heavily depends on the behaviour of
the other agent.

Hadfield-Menell et al. (2016) also suggests that CIRL may be a solution to the
Value Alignment Problem. Carey (2017) shows that there is no guarantee for the
AI to be corrigible, which is necessary to solve the Value Alignment Problem. The
AI is only corrigible if it is uncertain about all things that could possibly have an
impact on the performance. Incorporating such a broad uncertainty is difficult.

Value Alignment Problems are also studied in other areas such as economics,
where they are referred to as principal–agent problems. An example could be an
employer trying to incentivise the employees to work in a way that maximizes profit.
Specifying the correct incentive is then a problem very similar to specifying a reward
function (Jensen & Meckling, 1976).
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1. Introduction

1.5 Contribution
This report contributes to the CIRL research by taking the initial steps into the
area of suboptimal human agents. An analysis of the problem is presented along
with two major results.

• For the AI to learn from the human it must make assumptions about the
human behaviour. A non-exhaustive list of possible such assumptions is pre-
sented and analyzed. These assumptions are then converted to explicit human
models and the ability of the AI to learn from these model humans is investi-
gated.

• Two frameworks with learning algorithms are presented for learning in a finite
and infinite reward space respectively. Their performances are tested and
evaluated on simple custom made example problems.

1.6 Overview
Chapter 2 is a review of the theory necessary for this project and presents mathe-
matical definitions of the problem. Chapter 3 presents new insights and frameworks
on how to solve the problem. In Chapter 4 the frameworks are tested experimentally
on the developed test-benches. Finally, in Chapter 5, the results of the experiments
are discussed and presented as a summary.
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2
Theory

This chapter reviews the necessary background theory for CIRL that is needed for
the developed frameworks. The problem is also given a solid mathematical definition
and explained in great detail. Some other mathematical tools are also presented that
will prove useful later.

2.1 Markov Decision Processes
One of the most common ways to model problems or tasks in the field of rein-
forcement learning is with the mathematical framework Markov Decision Processes
(MDPs). It models the problem as a stochastic control process in discrete time. At
every time step, the process is in a state and the controller (decision maker) can
select any action available at that state. The action causes the process to stochas-
tically move into a new state in the next time step. A reward is also given to the
decision maker in each time step. This reward can be either positive or negative
and is dependent on the process.

2.1.1 Definition
Definition 1 (Markov Decision Process) A framework that is characterized by
time t and a tuple, M=〈S,A, T (·|·, ·), R(·, ·), P0(·), γ〉, with the following definitions:
S a set of world states: s ∈ S.
A a set of actions: a ∈ A.
T (·|·, ·) a conditional distribution on the next world state, given previous state
and action: T (st+1|st, at).

R(·, ·) a reward function that maps world states and actions to real numbers:
rt = R(st, at) with r ∈ R.

P0(·) a distribution over the initial state P0(s0).
γ a discount factor: γ ∈ [0, 1].

The general MDP framework allows state and action space to be either finite or
infinite. However, many algorithms require that they are finite. The state transition
only depends on the current state and action and is conditionally independent on
all previous states and actions. This requirement is called the Markov property.
Usually, states can be defined in a way so that this necessary property holds. The
discount factor embodies the fact that time matters to the received reward. Without
it (identical to γ = 1) current and future rewards are equally important. There
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2. Theory

would then be no incentive to accumulate a reward as long as the possibility to do
so in the future does not diminish. On the other hand with γ = 0 only immediate
rewards matter.

2.1.2 Core problem
The point of interest in the MDP is how to chose a behaviour as to maximize the
expected discounted sum of rewards

U = E
[ ∞∑
t=0

γtrt
∣∣∣π]. (2.1)

Where π is referred to as a policy and defines the behaviour by designating an
action in each state, π(s) = a. The policy or policies that has the highest expected
discounted sum of rewards are referred to as optimal policies. A policy can either
be deterministic or stochastic.

2.2 Learning from demonstrations
In standard reinforcement learning, the agent explores the environment and tries to
adapt its behavior (policy) to maximize the received reward. The reward function
R is always part of the MDP, but in some cases it can be hard to specify. Then
the agent can not observe the reward and therefore not use it to guide its behavior.
However, the agent may be able to learn in other ways. One such way is to substitute
the reward with demonstrations of an expert acting in the MDP. The expert is
considered to act approximately optimally with regards to the unspecified reward.
This is called learning from demonstrations (LfD). The demonstrations can mainly
be used in three different ways:

1. Imitation learning: The agent simply tries to mimic the behaviour of the
expert regardless of whether it is optimal or not.

2. Inverse reinforcement learning: The agent only observes and tries to infer
the reward function R form the demonstrations.

3. Apprenticeship learning via inverse reinforcement learning: The agent
first infers the reward function and then tries to optimize its behaviour based
on the inferred reward function with regular reinforcement learning.

2.3 Cooperative Inverse Reinforcement Learning
Cooperative Inverse Reinforcement Learning is a modification of standard IRL and
apprenticeship IRL. In the control process (MDP) there are now two agents (decision
makers) instead of one. They each have a separate set of actions available to them.
Their combined action is called the joint action and it controls the process. The
difficulty lies in that only one agent knows the objective. The one without that
knowledge has to observe the other agents actions and infer the objective. The
two agents are usually a human that knows the objective and a robot, or AI, that
attempts to learn the objective.

7
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2.3.1 Definition

CIRL still fits in the MDP framework, but with some modifications. The standard
action is now split into two parts with separate action spaces. They can both be
considered separate actions or as two parts of the same action. Either way they are
together called a joint action and it controls the state transitions and the reward.
The fact that the reward is unknown by R is captured by the introduction of the
parameter θ that modifies the reward function, see Definition 2. θ is referred to as
a reward parameter and can be of any shape and size. In this project it represents
either an index or a vector. Recall the example from the Background section with
a household assistant robot folding laundry. Imagine that you and the robot are
holding on to either side of the tablecloth. The reward parameter θ would then
indicate if you want to make a two-way fold, a three-way fold, iron it or any other
possible objective you may have. A set of reward functions could have been used
instead of a set of possible θ. However, θ is introduced since searching for the
correct θ is more practical than searching for the correct reward function. The
reward function is here said to be parameterized.

A MDP modified to fit in the CIRL framework is referred to as a CIRL Game.
Hadfield-Menell et al. (2016) defines it in their paper and the same definition is used
here.

Definition 2 (CIRL Game) A two-agent Markov game M with identical payoffs
between a human or principal, H, and a robot or AI, R. The game is described by
a tuple, M = 〈S, {AH,AR}, T (·|·, ·, ·), {Θ, R(·, ·, ·; ·)}, P0(·, ·), γ〉, with the following
definitions:

S a set of world states: s ∈ S.
AH a set of actions for H: aH ∈ AH.
AR a set of actions for R: aR ∈ AR.
T (·|·, ·, ·) a conditional distribution on the next world state, given previous state

and action for both agents: T (s′|s, aH, aR).
Θ a set of possible static reward parameters, only observed by H: θ ∈ Θ.
R(·, ·, ·; ·) a parameterized reward function that maps world states, joint actions,

and reward parameters to real numbers. R: S ×AH ×AR ×Θ→ R.
P0(·, ·) a distribution over the initial state, represented as tuples: P0(s0, θ

∗).
γ a discount factor: γ ∈ [0, 1].

In the reward function, the reward parameter θ is distinguished from the other
parameters, R(s, aH, aR; θ), since it is static from the start of the game while the
others change. The initial state (s0, θ

∗), is sampled from P0 and consists of both a
world state s0 and the active (correct) reward parameter θ∗ ∈ Θ. To incorporate
that the AI does not know the objective, only the human is able to observe θ∗. The
bold font notation is introduced to indicate a joint action, a = (aH, aR), and the set
of joint actions, A = AH ∪AR. The asterisk does in general indicate correctness or
optimality, and written in combination with an action or a set of actions indicate
the optimal action at the given state. For example, a∗ indicates an optimal joint
action and AR

∗ indicates the set of optimal actions for H.
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2.3.2 Game procedure
The game is initialized by sampling a starting state s0 and a reward parameter θ∗.
Following the initialization, at each time step, both agents act. This results in a
state transition and a reward, see the box bellow.

The game does not contain a stopping criterion, but is in practice stopped and
the performance is evaluated at some point. If it is not desired for the agents to act
simultaneously, then we can allow a wait action that is chosen every other time step
such that they instead take turns acting.

Initialize
1. Sample an initial state (s∗0, θ) from P0.

For each time step t
2.1. Both agents observe the current state st and selects their actions aH

t and
aR
t independently.

2.2. Both agents receive the same reward rt = R(st, aH
t , a

R
t ; θ∗), without R

observing it.
2.3. The next state st+1 is sampled from the transition distribution

st+1 ∼ Pt(s′|st, aH
t , a

R
t )

2.3.3 Core problem
Analogously to a standard MDP, the point of interest in a CIRL game is how to
chose the actions aH

t and aR
t . Again the goal is to maximize the expected discounted

sum of rewards. But, since there are two agents, there are now also two policies,
πH and πR. Together they form a policy pair that is also referred to as the joint
policy, π = (πH, πR). Now each agent can not simply consider the current state
to determine how to act but also needs to consider what the other agent will do.
To incorporate this, the policies can depend on all previous states, actions and the
reward parameter (for H).

πH : [S ×AH ×AR]∗ ×Θ→ AH (2.2)
πR : [S ×AH ×AR]∗ → AR (2.3)

The asterisk indicates in this case a sequence of any length of the set. It can be read
as: to any power (less than the current time step). In our case, this means that the
policy can be a function of all states and actions in all previous time steps and the
reward parameter (for H).

Another key concept is that of value V (s), which i related to the expected
discounted sum of rewards. "The value of a state is the expected sum of dis-
counted rewards under the initial distribution of reward parameters and world states"
(Hadfield-Menell et al., 2016). It indicates how favorable it is to occupy a state given
that actions are made according to some policy. In the CIRL setting, it has the fol-
lowing formula.

V πP0(s) = Eθ∗∼P0

[
U
∣∣∣s0=s,π

]
= Eθ∗∼P0

[ ∞∑
t=0

γtR(st, aH
t , a

R
t ; θ∗)

∣∣∣s0=s, πH, πR
]

(2.4)
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The optimal joint policy is the policy pair that maximizes the value in each state
if the two agents are allowed to communicate and coordinate perfectly before H
observes θ∗. This is not the same as the best possible policy pair, called the solution
of a CIRL Game. The reason is that if both agents knew the objective θ∗, and
were allowed to communicate and coordinate throughout the game, then they could
calculate the solution and achieve a better result. Now instead, H can theoretically
calculate the solution since H observes θ∗ (Hadfield-Menell et al., 2016). But H can
not mediate it to R in other means than through its actions. Following this policy
can therefore be a poor choice for H if R is following some non-compatible policy.
Instead the optimal policy to the CIRL Game involves active learning, teaching and
many other aspects that the solution of the CIRL Game does not have to consider.
For example, the solution to the task of cleaning a house is for both agents to start
cleaning right away. But, if R does not know that that is the task, then the optimal
policy would be to first instruct R to clean so that they can cooperate.

2.3.4 The difficulty of finding a good policy
To follow a policy is simple, the difficult part is to come up with a good policy. Both
agents need to come up with their own policies that together maximize the received
reward. There are many challenges with creating policies that can handle this. The
actions made by the human generally provide little information about what the AI
should do. The specific task will also greatly affect the ability of the AI to learn.
For example, if it is at all possible for the human to complete the task alone, or if
there exists some symmetry in the game that can be exploited.

The behaviour of the human is also important to consider. What does she do
when she can not complete the task alone and the AI is not providing any help, and
how does this affect the AI’s understanding. There can also be problems regard-
ing whether to prefer exploring to improve the reward function approximation or
whether to exploit the current approximation although it may be wrong (Armstrong
& Leike, 2016).

2.3.5 Delimitations
CIRL can exist in many different variations and the variation discussed in this paper
is characterized by a few different aspects. Firstly, the states and actions are discrete
and finite. Secondly, the state transition distribution T is considered to be known,
or approximately known, by previous exploration of the environment. Thirdly, the
goal is to approximate θ∗ as well as possible, instead of trying to maximize the
reward. However, the accumulated reward is also considered in some cases. The
last point is not very excluding, since it turns out that trying to find the correct θ
and maximizing the reward often rely on each other.

2.4 Q-Learning and optimality
Q-learning is a model free reinforcement learning technique that will prove useful
for solving CIRL problems. For any finite MDP, it will eventually find an optimal
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policy. It does that by giving a score to each action in each state, that is a measure
of how good that action is at a specific state. The higher the value the better the
action is. In a standard MDP, at is a standard action, but in CIRL it is changed to
a joint action. Since Q-learning is model free, it does not require a transition model
and can instead use observations, but if one is available it can be used to speed up
the algorithm. The update rule for Q-learning is

Q(st, at)← (1− α) ·Q(st, at) + α
(
rt + γ ·max

a

{
Q(st+1, a)

})
. (2.5)

Where α is the learning rate, γ is the discount factor and an observation is a tuple
〈st, at, rt, st+1〉. Here st is the current state, at is the action, rt is the obtained
reward and st+1 is the next state at time t + 1. With enough time, Q-learning will
find Q∗ which holds the expected discounted reward for taking each action. Q∗ is
also used to define what an optimal action is. A joint action is considered optimal
in a state iff it has a Q-value higher than or equal to all other actions in that state.
All components of an optimal joint action, and only those component actions, are
considered optimal. I.e. iff a is optimal then so are the components {aH, aR}. If a
policy always takes an optimal action then it constitutes an optimal policy.

2.5 Bayes’ theorem
Bayes’ theorem, or alternatively Bayes’ rule, is used for updating a prior probability
with new information. For example, assume that, for any given day, there is a 30 %
risk of rain. When you wake up you see that the sky is gray. You can then incorpo-
rate this observation into the prior probability of rain with Bayes’ rule. Maybe you
then calculate that the posterior probability of rain is 70 %.

P (A | B) := P (B | A)P (A)
P (B) (2.6)

Here P (A | B) is the posterior probability of observing event A given that event B
happened and P (A | B) is the direct opposite. P (A) and P (B) are the independent
probabilities for event A and B. In the example P (A | B) would be the posterior
risk of rain, i.e. 70 %. P (A | B) represents how likely the sky is to be gray before
it rains. P (A) is the probability of rain, i.e. 30 % and P (B) is the independent
probability of a gray sky.

2.6 Softmax
The softmax function is commonly used in AI research to convert a set of real valued
numbers into probabilities. Assuming a set of number, xi ∈ R, the softmax function
converts these into a new set of numbers, pi ∈ (0, 1], that all together add up to one,∑
i pi = 1.

pi := exi∑
j e

xj
= exp(xi)∑

j exp(xj)
(2.7)
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θ can represent many different mathematical object and take any shape and size.
The specifics change the appropriate approach to finding θ∗. Therefore, this chapter
is divided into sections depending on what type of θ representation is being discussed.
Θ is only known by R in the simplified version of the problem, however θ’s shape
and size is always known and fixed for a specific problem. In the LfD setting,
demonstrations are provided by a human expert. This can be interpreted in two
different ways in the CIRL setting. Either the expert is playing optimally with or
without knowing what R will do. H can also behave in many other ways as will be
discussed in the first section of this chapter.

3.1 Assumptions

Of major importance in CIRL is what assumptions are made about the behaviour
of H. In IRL the standard assumption is that H, also known as the expert, is
approximately following the optimal policy π∗. In CIRL, H only has control over
one part of the joint action and the optimallity of action aH depends on aR. As a
result, an analogous assumption can not directly be made in CIRL. Instead the first
step is to consider what H assumes about the policy of R, πR. There are many
possible such assumptions, where some are listed below. For example, H can assume
that πR ∈ AR

∗ , which is that R always takes an action that is part of an optimal
joint action.

When H’s assumption about πR is determined, an assumption about the opti-
mality of H can be made. Also here are many possibilities and some of them are
listed below.

3.1.1 Overview of assumptions

For several reasons, it is infeasible to create an accurate model of how a human would
behave in a cooperative task. People can have different knowledge and experience
about the task. They can be differently prone to make mistakes and can in general
not be expected to know how the AI behaves. As a result, the assumed behaviour
of H is simplified and approximated. Some possible assumptions are listed here,
they will later be used to create explicit models of human behaviour. The list of
assumptions does not come close to being exhaustive. Instead, they are chosen to
be simple and to hopefully yield interesting results.
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The human’s assumptions about the AI

A1.1 R knows what H will do and acts optimally accordingly, i.e. R solves
max
πR

E
[
U |πH, πR, θ∗

]
.

A1.2 R is independently behaving optimally with respect to θ∗, i.e. the policy is
part of some optimal joint policy

πR ∈ argmax
π

E
[
U |π, θ∗

]
.

A1.3 In each state, R will repeat the same action as done when previously visiting
the state,

πR(st) = aR
t′ .

Where t′ is the time state st was last visited. Remember that this is only what
the human is expected to assume, it does not need to be strictly followed.

A1.4 In each state, R will stochastically select an action based on the observed
selection frequency. For example, if a1 has been selected three times and a2
one time, then action a1 has a three times greater probability of being selected
the next time the state is visited,

πR(st) ∼ P (aR|st) = ν(st, aR)∑
a′∈AR ν(st, a′)

.

Where ν(s, a) is the number of times action a has been played in state s.

Assumptions about the human’s optimality

A2.1 H selects with uniform probability one action that is the best response to the
assumed action of R,

πH(st) ∈ argmax
aH∈AH

{
Q∗θ∗(st, aH, aR)

}
.

A2.2 The probability of H to select an action is relative to how close to optimal
that action is. Each actions corresponding Q-value can be used to determine
this probability. An action with a higher value would be chosen with a higher
probability,

πH(st) ∼ P (aH|st) ∼ Q∗θ∗(st, aH, aR).
A2.3 H chooses actions in a way as to better teach R about θ∗ (this is an informal

assumption, see policy Teaching in Appendix A for an implementation).

3.1.2 Assumption reasonableness
To create a framework for CIRL, there needs to be one assumption of each type,
i.e. one about H’s assumption about R’s behavior and one about the optimality
of H. Since the goal is to create a realistic framework, the reasonableness of these
assumptions is discussed. They are not all realistic assumptions but that does not
mean that R can not learn from a human agent with those assumptions.

A1.1: is not realistic because R has for no level of human optimality any way of
knowing how H will act beforehand.

A1.2: is not realistic since R does not observe θ∗.
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A1.3 & 1.4: are reasonable if a default action or probability is assumed in the non-visited
states. However, it may be hard for H to remember and act in accordance
with this.

A2.1: is not realistic since it requires H to know all the optimal actions and never
make a mistake.

A2.2: is not realistic but may be a good approximation depending on how exactly
the probabilities are constructed.

A2.3: can be realistic in some scenarios where such actions are easy to identify.
All assumptions will be tested and compared in different settings and combinations
in this report. The main focus and the basis for the developed frameworks will be
on assumption A1.1 in combination with A2.2.

3.1.3 Assumed policies of H
To rigorously test the effect of these assumptions, they need to be defined mathe-
matically as policies forH. Note that in many cases, there are more than one optimal
action. This does not affect the stochastic policies but for deterministic policies ties
are broken at random (making them not fully deterministic).

Each pair of assumptions result in a different policy for H. The algorithms in
this report assume that assumptions A1.1 and A2.2 are correct. Notice that even
though they are both deemed unrealistic that does not imply that they are not good
assumptions to make. For example, assumption A1.1 states that H expects R to
always respond optimally to the actionH made. It is unrealistic that R will do that.
However, it is not unrealistic for a human to make this assumption and behaving as
if it were true may be efficient for teaching R.

To create the assumed human policy, the softmax function is used as a heuristic
to turn Q-values into probabilities. For a given state all possible actions are given a
nonzero probability of being chosen. This probability is dependent on the Q-values
of all those actions joined with their respective best action pairs for R.

πH ∼ P (aH | s) :=
exp

(
η ·Q∗θ∗(s, aH, aR

∗ )
)

∑
aH∈AH exp

(
η ·Q∗θ∗(s, aH, aR

∗ )
) (3.1)

aR
∗ is shorthand notation for saying that this action is the optimal response to aH,

i.e. it is the optimal action for R given aH. η ∈ [0,∞) is an optimality parameter.
With a high value, the probability for H to chose a good action is also high. It
is used to change how close to optimal H behaves. Q∗θ∗ holds the precise expected
sum of discounted rewards for an optimal policy and the correct reward parameter.
Q-values are used since they are well established and easy to use. This policy is
referred to as ApproxOpt. The other tested policies are called Optimal, Teaching,
IndeOpt, Repeating and FreqRep. They are based on some of the other assumptions
listed above. When acting in accordance with Optimal,H chooses a random optimal
action. Teaching is similar to Optimal, but actions are chosen in a way as to provide
more information. IndeOpt is another kind of optimal behaviour that considers R’s
available actions in grater detail. In Repeating and FreqRep, the choice of action
are affected by the previous choice in the same state. The definitions of all policies
and what assumptions they use can be found in Appendix A.
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3.2 θ as a finite index
The first scenario to be analyzed is the simplified case when θ is a finite index,
|Θ| = n with 0 < n < ∞. In this case R is also allowed to observe Θ. Since the
transition distribution is known, the optimal Q can be calculated for each θ before
training starts. The notation Q∗θ is introduced for this purpose. It holds the precise
expected sum of discounted rewards for an optimal policy and the reward parameter
θ. The idea is to look at what actions R could have taken and what actions H took
to compare that to what H probably would have taken when pursuing each possible
θ. All in line with the ApproxOpt policy. This can be used to gradually update the
belief about which θ is correct. There also needs to be a way of deciding what action
R should take to learn the most about θ∗ and accumulate reward.

In this scenario, a probability distribution over the possible θ is introduced. This
distribution is denoted φ(θ)

t . Since θ∗ is sampled from the P0 distribution, φ(θ)
0 should

be initialized to the same distribution

φ
(θ)
0 = P0(θ), ∀θ ∈ Θ. (3.2)

φ
(θ)
t is then updated in each time step.
These ideas are translated into the code used in the experiments. Directions of

where to find the code can be found in Appendix B.

3.2.1 Testing environment
CIRL is a relatively new idea and no standard benchmark exists for testing algo-
rithms. The game used by Palaniappan et al. (2017) could technically be used, but
since the setting of the algorithms are different the results can not be compared
directly. Therefore, a new game is created specifically for this setting.

The introduced testing environment is a simple deterministic grid game referred
to as SimpleGridGame, see Figure 3.1. The game consists of a grid with 5 × 3
squares. The agents each occupy one square (green) and can move between them.
The agents available actions are AH = {←,→, wait} and AR = {←,→, ↑, ↓, wait}.
The arrows indicate a step made in the corresponding direction and the wait action
makes the agent stay where it is. Note that although the same notation has been
used for simplicity on some actions for both H and R, they are not technically the
same. H is limited to moving along the top most row while R can move around
in the bottom two rows. The game has 4 possible reward parameters, |Θ| = 4.
Each with a reward of 1 when both agents are occupying the corresponding squares
(yellow). Each reward parameter has an equal chance of being selected and at the
start of the game one of them is chosen at random. The choice is observed by H
but not by R. For example, if θ2 = θ∗ then the goal is for both players to move to
their corresponding square labeled with θ2. If they both occupy them at the same
time then they receive a reward. They need to cooperate since only H knows where
R should move and neither of them will gain anything from H moving to the goal
alone. The dilemma, in this game, is that for all reward parameters the goal square
is the same for H. This is a deliberate design choice since it will test R’s ability to
draw conclusions from minor differences in H’s actions that depend on θ∗.
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Figure 3.1: The testing environment for the simplified setting. H and R can take
a step in any direction at each time step but may not cross the wide line separating
row 0 and 1. The shown configuration is the starting state s0. The goal is for both
agents to move to the correct yellow squares.

3.2.2 Updating beliefs
The assumption is made that the probability of H selecting an action is proportional
to the action’sQ-value compared to the other available actions’Q-values, as specified
by policy ApproxOpt. These probabilities can be used to update R’s beliefs over θ
in a Bayesian fashion. A minor modification to the ApproxOpt policy results in a
likelihood update for each θ

Pθ(aH
t | st) :=

exp
(
η ·Q∗θ(st, aH

t , a
R
∗ )
)

∑
aH∈AH exp

(
η ·Q∗θ(st, aH, aR

∗ )
) . (3.3)

Pθ(aH
t | st) is the likelihood that H would have chosen action aH

t given state st and
that the reward parameter is the correct one, θ = θ∗. aR

∗ is the optimal action for
R given aH. Finally, η ≥ 0 is the optimality parameter that determines how much
weight is put on each observation. This likelihood can now be used together with
Bayes rule to update φ.

φ
(θ)
t+1 := φ

(θ)
t Pθ(aH

t | st)∑
θ′∈Θ φ

(θ′)
t Pθ′(aH

t | st)
(3.4)

For policies Repeating and FreqRep, a slightly different likelihood is used that
takes into account the assumption of repetition. These likelihoods can be found in
Appendix A.

3.2.3 Action selection
The objective of R is to maximize the reward, and the highest Q-value informs R
about what action to take. But, a problem is that the Q-values are different for
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each θ, and θ∗ is only estimated with a probability distribution. It is therefore not
clear what action to select. Instead the action with the highest expected value can
be chosen.

πR(st) : = argmax
aR∈AR

{
E
[
Q∗
]}

= argmax
aR∈AR

{
E
[ ∑
θ∈Θ

Q∗θ(st, πH, aR)φ(θ)
t

]}

= argmax
aR∈AR

{∑
θ∈Θ

∑
aH∈AH

Q∗θ(st, aH, aR)Pθ(aH | st)φ(θ)
t

} (3.5)

Similarly to the likelihood, Pθ(aH | st) is the probability for H to choose action aH

given that θ = θ∗. πH is referred to as a non-static policy since the action in a given
state may change when φ(θ) changes.

A problem is that this is a purely exploitative approach to selecting an action,
which is fine if H’s actions clearly indicate the correct θ. But if they do not provide
any guidance, then R needs to do something else. Since observations in new states
can provide new information, R should explore those states.

3.2.4 Promoting exploration

In some situations, R will actively have to act in a way to learn more from H. This
can for example happen if the action with the highest expected Q-value is to not
do anything (wait) and the actions H makes does not provide any new information.
Then exploration can the be useful. It can be carried out in many ways and at
different times. ε-greedy is one well known method of exploration. This method
chooses a random action in each time step with probability ε. However, as Θ is
known, there are likely more efficient approaches to exploration.

3.2.4.1 When to explore

Exploration is less useful when R is certain about θ∗, and more useful when R
is uncertain. It is also not necessary when the actions H take provide enough
information on their own. Comparing φ

(θ)
t−1 and φ

(θ)
t indicates whether the belief

for any θ has been increased. If the probability of the most likely θ is constantly
increasing by at least some constant factor, then R is learning more. If not then it
may be better to explore.

Two exploration parameters are introduced here together with the respective
values used in this report. The values are specifically chosen for SimpleGridGame
and selected based on experience to yield good results. κ = 50% is the threshold
for exploration. If any θ has a probability that is larger then κ of being correct
no exploration will be done. δ = 2% is the minimum increase in probability for
exploration not to be preferred. I.e. if the most likely θ is not at least δ more likely
after a time step then R should explore.
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3.2.4.2 How to explore

If R pursues the correct reward parameter θ∗, then H should start performing
approximately optimal with regards to that θ. If H does not, then it is likely not
the correct reward parameter. This is an insight for more efficient exploration. If it
is indicated that exploration is needed by the exploration parameters, then R could
randomly sample a θ based on φ. R can then behave optimally with respect to the
randomly chosen θ and see how H reacts, this method is called Thompson sampling
(Russo, Roy, Kazerouni, & Osband, 2017). It is not simple to determine for how
long to pursue θ. Therefore, a method of duration doubling can be used. It doubles
the exploration duration each time exploration is needed.

The exploration policy is

πR(st) := argmax
aR∈AR

{
Q∗θ′(st, aH

∗ , a
R)
}

(3.6)

where θ′ is the randomly sampled reward parameter and aH
∗ is an action that is

optimal in pair with aR.

3.3 θ as a matrix over states
Limiting θ to a finite set can be simple and practical for some applications. It
does however also limit the application areas. All rewards are functions of the
state and joint action. The space of all possible reward functions can therefore be
covered by a matrix representing the reward for all state and joint action pairs,
θ(s, aH, aR) ∈ R. But, due to a lack of time, the problem will be simplified to only
cover a general reward function over the state, θ(s). It should be possible to expand
the methodology to cover the truly general case without too much effort.

When only the shape of θ is known there is an infinite number of possible reward
parameters and Q∗θ can therefore not be calculated for all of them. What can be
done instead is to use Q-learning to get a form of measurement of how effective
an action is at changing the state closer to every other state. This can be used to
guess where H is moving towards. For every observation, R can then update the
estimation θt(s). All policies will be tested in this setting as well.

3.3.1 Testing environment
The introduced testing environment for the general problem is also a deterministic
grid game. It is referred to as GeneralGridGame and can be seen in Figure 3.2. The
game is designed to allow for infinitely many reward functions and to be constantly
changing, so that the agents are forced to move around. It consists of a grid with
6 × 3 squares. The agents each occupy one square (green and blue) and they can
move in the grid. The agents available actions are AH = AR = {←,→, wait}.
The arrows indicate a step made in the corresponding direction and the wait action
makes the agent stay where it is. Note that, although the same notation has been
used for simplicity on some actions for both H and R, they are not technically the
same. H is limited to moving along the topmost row and R in the middle row.
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There is also a yellow square moving back and forth along the bottom row. Figure
3.2 shows the starting state. The yellow square moves all the way to the right one
step at a time, then waits one turn and moves all the way back. When it is back it
waits one turn and then repeats the process indefinitely.

There is now no finite set of possible reward parameters. Instead the reward can
be any function of the state. The goal for R is therefore to find the correct reward
for each state, i.e. find the values θ∗(s), ∀s ∈ S. However, H needs to have a reward
parameter in mind to teach it to R. Therefore, a reward parameter is chosen and
used for all experiments. It is the one with a reward of 1.0 when both agents and
the yellow square all occupy the same column and 0.0 otherwise. The agents need
to cooperate since they both have to be in the same column as the yellow square at
the same time for them to receive a reward. This information has to be mediate to
R by H.

Figure 3.2: The testing environment for the general setting. H and R can move
left, right or wait at each time step. They are both limited to moving in their
respective rows. The shown configuration is the starting state s0 ∈ S. The goal is
for both agents to occupy the same column as the yellow square. This is complicated
by the fact that it keeps moving back and forth.

3.3.2 Action efficiency measure
R can not measure how much aligned the actions of H are with the different θ
since there are infinitely many possible θ. What R can measure is how effective
the actions taken by H are at changing the state closer to any other states. It is a
measurement that relates all states to each other by how fast the state can change
from one to the other. The time is indicated for each action in every state. It is
an abstract measurement and the time is calculated by taking a specific action in a
state and thereafter following the optimal path. Returning to the example of folding
laundry, this measurement would indicate how effective an action like placing the
table cloth on the ironing board is for making the first fold (note very), vice versa
or any other combination of states and actions.

The measurement is represented by q∗(s, aH, aR, s′) where (aH, aR) is the joint
action made in state s and s′ is the goal state. The values of q∗ are produced by
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performing Q-learning a total of |S| times, one for each possible goal state. Each
time the reward for moving to state s′ is 1.0, s′ is also an absorbing state.

q∗(s, aH, aR, s′) := Q∗s′(s, aH, aR) (3.7)
Where Q∗s′ is the result of Q-learning with the reward

R(s, aH, aR; θ) =

1 s = s′

0 otherwise
. (3.8)

The result is that q∗ holds values in range [0, 1] representing the effectiveness of
taking actions (aH, aR) in state s for reaching state s′. The discount γ has to be
strictly less than one for this to work, otherwise all actions are equally optimal.

3.3.3 Updating beliefs
R updates the approximation θt(s) with every observation. To simplify the problem
the approximated rewards are, without loss of generality, scaled to the interval
between minus one and one, θt(s) ∈ [−1, 1]. This can be done since the rewards of
θ∗ are finite. θt(s) may then not be similar to θ∗(s), but the policy derived from it
hopefully will.

H is again assumed to follow the ApproxOpt policy. However, due to lack of
time an ideal way to update θt(s) is not searched for. Instead, θt(s) is updated
with a simple heuristic that for each s′ compares the most and the least effective
action, for moving to s′, with the action chosen by H. Unless all actions are equally
effective, this creates an interval [blow, bhigh] that is mapped to [−1, 1]. The action
performed by H is then mapped to a value in this interval. Over time all values
from all observations are averaged. The idea is that states that H mostly moves
towards get a value close to 1.0. For states that H is indifferent about the value
averages close to 0.0. States that H avoids get a value close to -1.0.

blowt (s′) = minimum
aH∈AH, aR∈AR

{
q∗(st, aH, aR, s′)

}
bhight (s′) = maximum

aH∈AH, aR∈AR

{
q∗(st, aH, aR, s′)

}
wt(s′) = maximum

aR∈AR

{
q∗(st, aH

t , a
R, s′)

} (3.9)

blowt (s′) is the effectiveness of the least effective action for changing the state closer
to s′, whereas bhight (s′) is the most effective. wt(s′) is the value of the action that H
chose, in pair with the best action R could have chosen. If blowt (s′) 6= bhight (s′), then
H had to make a choice between actions and θt(s′) can be updated according to

αs′ = ν(s′)
ν(s′) + 1

θt(s′) = αs′θt−1(s′) + (1− αs′)
(
2 · wt(s

′)− blowt (s′)
bhight (s′)− blowt (s′)

− 1
) (3.10)
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Here ν(s′) is the number of times θt(s′) has been updated. αs′ is the learning rate
equal to taking the average of all updates. The bottom formula is the mapping from
[blow, bhigh] to [−1, 1] and update. The result is that every state has an approximated
reward attributed to it that is the average of the values wt ∈ [−1, 1]. For policies
Repeating and FreqRep a slightly different heuristic is used that takes into account
the assumption of repetition. These heuristics can be found in Appendix A.

3.3.4 Action selection
Since R always has an approximation of the reward function, θt(s′), Q-learning
can be used to select actions. The approximation is updated in each time step
and therefore Qt(s, aH, aR) also has to be updated in each time step to utilize the
latest approximation. It is done by running the Q-learning algorithm again and
Qt(s, aH, aR) is now indexed by the time step to highlight that it changes. Usually,
this takes time but since θt(s′) only changes a little in each update, Q-learning can
use θt−1(s′) for initialization, making it complete much faster.

Taking the action with the highest Q-value results in the policy

πR(st) := argmax
aR∈AR

{
Qt(st, aH

∗ , a
R)
}

(3.11)

where all ties are broken randomly and aH
∗ is an action that is optimal in pair with

aR. This policy greedily tries to maximize the reward, which is good if θt(s′) is
an accurate enough approximation so that πR is an optimal policy. It is also an
acceptable policy if the actions made by H provide enough information for θt(s′) to
eventually be an accurate enough approximation. But if it does not provide enough
information, then R needs to explore.

The method called ε-greedy, also mentioned in Section 3.2.4, is used to intro-
duce an exploration behaviour. This method of exploration is chosen because of its
simplicity. During the experiments on GeneralGridGame, a value of 0.1 is used for
ε since it is a commonly used value (Sutton et al., 1998).
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4
Experiments

This chapter explains the experimental setup, the different performance measure-
ments and the actual results. The setup is different for the two frameworks and the
chapter is therefore divided along that line. Important observations are highlighted
and some effort is put into decoding what R learns.

4.1 θ as a finite index
The experiments are designed to test if R can reliably find θ∗ and, if successful, how
long it takes. R has a probability distribution over the different θ and can never
become completely certain about which is correct, since H is assumed to make
mistakes. It is R’s assigned probability of θ∗ being correct, φ(θ∗), that is measured,
together with the median time to get the first reward. The median is chosen since
in some cases a reward is never received. All experiments regarding a finite theta
are carried out in SimpleGridGame.

4.1.1 Illustrative example
An example round of SimpleGridGame is used to illustrate the underlying behavior
that causes the results in the next section. It is a short round of the game, ended
the moment any positive reward is received. H is following the Teaching policy and
the result is that R assigns the highest probability to the correct θ, see Figure 4.1
and Table 4.1.

4.1.2 Comparison of assumptions
What is sought after is learning when H follows the ApproxOpt policy. However,
since the behaviour of H is integral to learning, the effect on the performance of
all discussed polices will be measured. The experiments are run 10 000 times since
the confidence, φ(θ∗), goes up and down with the mistakes that H makes and the
variance is quite large. All simulations lasts for 60 time steps to guarantee that all
interesting learning behaviour is captured. Unlike in the illustrative example a high
reward can here be accumulated.

4.1.2.1 Testing incorrect optimality assumptions

The parameter η can be seen as either the assumed optimality of H, or the inference
strength of each observation for R. The parameter does not have a clear connection
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(a) t=0, a=(w,w) (b) t=1, a=(w, ↓) (c) t=2, a=(←, w) (d) t=3..6, a=(w,w)

(e) t=7, a=(w,→) (f) t=8, a=(w,→) (g) t=9, a=(w,w) (h) t=10, a=(w,←)

(i) t=11, a=(w,←) (j) t=12, a=(w,←) (k) t=13, a=(←,←) (l) t=14

Figure 4.1: A typical round of SimpleGridGame with the Teaching policy. Each
snapshot is captioned with the corresponding time step and the actions taken by the
agents, a = (aH, aR). The correct reward parameter is θ2. Following the Teaching
policy makesH not move closer to the goal unlessR is equally far from it. Therefore,
H chooses the wait action in the first two time steps. H could be even more clear by
moving away from the goal when R moves towards an incorrect goal. During time
steps 3,..,6, no agent makes any move. This causes R to become more confident that
one of the goals on the bottom row is correct. At time step 7, R chooses to explore
θ3. This does not immediately provide any new information. Therefore, R explores
again in the next time step. θ3 is randomly chosen again and now explored for two
time steps. This is a shortened game that ends when the first reward is received.

to the real world and will have to be approximated. The result of using an incorrect
value, i.e. ηR 6= ηH, is therefore explored here. Figure 4.2 shows the result when R
assumes a value, lower or higher, than the correct value. Table 4.2 shows the median
time it takes until the first reward is received. They quite clearly shows that when
R assumes a too high value, the learning speed increases but so does the variability.
The reason is that R draws a conclusion directly that is most often correct but quite
often wrong too. The opposite effect can be seen when R assumes a too low value.
But even here the difference between runs is quite large which is problematic. The
net effect is that the median time to receive the first reward is almost constant.

An incorrect conclusion is usually made whenHmakes a mistake in the first time
step. R then presumes that the correct θ is in the other row, i.e. row 1 as opposed
to 2 or vice versa. With ηH = 1.0 and γ = 0.9 this happens quite often. It may then
take a long time, if ever, before any of the θ on the other row is explored, especially
if ηR is large. The graphs are a bit misleading since the value is very varying for
a single run. Going up and down in unison with the mistakes that H makes. It is
worth noticing the percentage of runs whereR fail to ever attribute θ∗ a likelihood of
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t φ
(θ0)
t φ

(θ1)
t φ

(θ2)
t φ

(θ3)
t aH

t aR
t Exploring

0 0.250 0.250 0.250 0.025 wait wait -
1 0.222 0.222 0.278 0.278 wait ↓ -
2 0.195 0.195 0.305 0.305 ← wait -
3 0.154 0.154 0.346 0.346 wait wait -
4 0.119 0.119 0.381 0.381 wait wait -
5 0.090 0.090 0.410 0.410 wait wait -
6 0.067 0.067 0.433 0.433 wait wait -
7 0.049 0.049 0.451 0.451 wait → θ3
8 0.035 0.035 0.465 0.465 wait → θ3
9 0.032 0.034 0.581 0.353 wait wait θ3
10 0.029 0.025 0.712 0.234 wait ← -
11 0.025 0.018 0.813 0.144 wait ← -
12 0.020 0.015 0.872 0.094 wait ← -
13 0.014 0.010 0.881 0.095 ← ← -
14 0.010 0.007 0.899 0.085 - - -

Table 4.1: The beliefs R has over the different θ, and the actions both agents
choose in each time step. φ(θ0)

t and φ(θ1)
t falls quickly towards zero but φ(θ2)

t and φ(θ3)
t

moves asymptotically towards 50 %. At time step 7, R starts exploring, providing
new information at time step 9. The key piece of information is that H does not
move closer to the goal whenR is close to θ3, indicating that θ3 6= θ∗. This eliminates
θ3 as a possible assumption and left is only θ2.

over 50 %. At ηH = ηR = 1.0 about 27 % fail to do so and at ηH = 2.0, ηR = 1.0 this
value is around 18%. When η approaches infinity, ApproxOpt approaches Optimal
and the results for that is presented in the next section.

ηR: 0.1 0.5 1.0 2.0 10.0 20.0
Median time: 17 16 16 16 18 17

Table 4.2: The median time until the first real positive reward is received. The
median is used since in some runs no positive reward is ever received. The values
does not differ by any significant amount. Interestingly, there is no clear relation
between the time and the value of η. But values close to the actual value of 1.0
could be better, unless it is just a fluctuation. The median is taken over 10000 runs.

4.1.2.2 Various kinds of optimal human behaviour

Three kinds of optimal behavior are proposed for H. Their effect on the learning
ability of R can be seen in Figure 4.3. The median time until the first reward
is received is shown in Table 4.3. The Teaching and Optimal policies perform
better than any other policy. Teaching performs the best. They both learn faster
on average and does that without increasing the variability. It is also here worth
noticing the percentage of runs where R fail to ever attribute θ∗ a likelihood of over
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(a) R assumes a too low value.

(b) R assumes a too high value.

Figure 4.2: The solid lines show the confidence φ(θ∗), i.e. the estimate R has of
θ∗ being correct. This is measured with six different values of η for R while the
value stays the same for H, i.e. the human agent has the same policy each time.
The values are 0.1, 0.5, 1.0, 2.0, 10.0 and 20.0 for R and 1.0 for H. The dotted
lines show the average deviations between runs on both sides of the mean, i.e. the
average result of all values lower or higher than the total average. All values are
averaged over 10 000 runs of 60 time steps. Notice that the learning speed increases
when R assumes a higher η value, but at the same time the average deviation also
increases, even though it is always quite large.
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Figure 4.3: The solid lines show φ(θ∗), i.e. the estimate R has of θ∗ being correct.
This is measured for the three different optimal policies and the default ApproxOpt
policy. R assumes that H is following ApproxOpt with η = 1.0. The dotted lines
show the average deviations between runs on both sides of the mean, i.e. the average
result of all values lower or higher than the total average. All values are averaged over
10 000 runs of 60 time steps. IndeOpt perform almost identically to the ApproxOpt
policy and their lines overlap. Optimal performs better and Teaching better again,
this time without increased variability. Notice also that Teaching achieves a very
high value at first but falls down to a lower level afterwards.

50 %. For Optimal it is 13 % of the times. For IndeOpt 27 % and for Teaching 0 %
compared to 27 % for ApproxOpt. Here all η = 1.0.

A new consequence of the exact formulation of the likelihood function, the use of
Q-values and the game design is apparent in Figure 4.3. The estimate gets very high
at first for the Teaching policy but later falls back down to a lower but still high
level. The reason is that when both agents are at θ∗, H will stay in place. However,
staying in place is equally optimal for all θ and this will cause the probabilities to
even out a bit.

Policy: Optimal IndeOpt ApproxOpt Teaching
Median time: 13 16 16 12

Table 4.3: The median time until the first real positive reward is received. The
median is used since in some runs, no positive reward is ever received. The poli-
cies Optimal and Teaching perform significantly better than the other. Teaching
performs marginally better than Optimal. For IndeOpt and ApproxOpt it takes the
same time to receive a reward. The median is taken over 10 000 runs.
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Figure 4.4: The solid lines show φ(θ∗), i.e. the estimateR has of θ∗ being correct. It
is measured for the two different policies with repeating behaviour, Repeating and
FreqRep, and the default ApproxOpt policy. R is aware of the repeating behaviour
and does therefore use a modified likelihood, see Appendix A. The dotted lines show
the average deviations between runs on both sides of the mean, i.e. the average result
of all values lower or higher than the total average. All values are averaged over 10000
runs of 60 time steps. Repeating has a very high variability and worse performance
than ApproxOpt in the long run, but it does initially learn faster. FreqRep learns
very slowly.

4.1.2.3 Repeating policies

There are two proposed policies for H that assumes some kind of repetition, these
are Repeating and FreqRep. If R is aware of the repeating behaviour it could
improve learning. Figure 4.4 and Table 4.4 show the results from the experiments,
which quite clearly shows that neither of these polices perform well. In fact, they
perform significantly worse. Less than half ever receive any reward. Interestingly
though, Repeating initially learns faster than ApproxOpt but then falls down to a
lower level.

Policy: Repeating FreqRep ApproxOpt
Median time: > 60 > 60 16

Table 4.4: The median time until the first real positive reward is received. The
median is used since in some runs no positive reward is ever received. The policies
Repeating and FreqRep perform significantly worse than the others. In more than
half of all runs no reward is received at all. The median is taken over 10 000 runs.
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4.2 θ as a tensor over state-action pairs
The performance of the learning algorithm for infinite reward parameter space is
here tested on the GeneralGridGame environment. The experiments are designed
to test how well πR can approximate the optimal policy and how long it takes. R
can never know for sure what the optimal policy is. The performance is measured
in two ways. The first is by taking the fraction of actions in R’s policy πR that does
not belong to the set of optimal actions AR

∗ . The second is by counting how often
H and R are in the right position to receive a reward.

4.2.1 Comparison of assumptions
Just as when θ was a finite index, the effect of different assumptions are measured on
the learning rate, see Section 4.1.2 for detailed explanations. The most important
measurement is still that of ApproxOpt, since it is how a human is assumed to
behave. However, this framework does not consider the optimality of H, thus no
incorrect assumptions will be tested. The experiments are run 100 times since the
variance is quite low. The simulations lasts for 700 time steps to guarantee that all
interesting learning behaviour is captured.

4.2.1.1 Different kinds of optimal human

The performance of the three different kinds of optimal policies and ApproxOpt can
be seen in Figure 4.5 and Table 4.5. IndeOpt has again a very similar performance
to that of ApproxOpt. Optimal and Teaching performs much better then the other
policies. However, the version of Teaching constructed for this stetting failed to
make any significant improvement on learning compared to Optimal. At first R
has a random policy and on average about 70 % of the actions in that policy are
non-optimal. After learning this value falls to about 35 % for the best policies and
about 45 % for ApproxOpt.

The learning appear to follow a specific pattern each time. At first, in the initial
1-2 time steps, the learned policy gets slightly worse, to about 75 % error rate. This
could be cased by the specifics of the game and that the policy is affected in all
states, even those that are far away and little is known about. After that, the policy
improves dramatically for a few time steps and then is gets worse again. Finally
after a sort period of decreasing performance the learned policy continually improves
before reaching a, somewhat, steady level.

4.2.1.2 Repeating policies

The result of the two repeating policies, Repeating and FreqRep, is here presented
and compared to ApproxOpt, see Figure 4.6 and Table 4.6. FreqRep starts similarly
to the others, but does not learn as much in the initial fast learning period. Instead,
it slowly but steadily continues to learn during the whole simulation and reaches
about the same level as ApproxOpt at the time limit.

Repeating learns about the same amount as ApproxOpt during the initial fast
period. But, after that, when the performance for ApproxOpt levels out, Repeating
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Figure 4.5: The solid lines show the fraction of actions in πR that are not optimal
actions. This is measured for the three different optimal policies, Optimal, IndieOpt
and Teaching, as well as the default ApproxOpt policy. R assumes that H is
following ApproxOpt with η = 1.0. The dotted lines show the average deviations
between runs on both sides of the mean, i.e. the average result of all values lower or
higher than the total average. Teaching and Optimal learns faster than ApproxOpt
and IndeOpt which are very similar. Notice the similarities in the learning pattern
for all policies. All values are averaged over 100 runs of 700 time steps.
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Policy: Optimal IndeOpt ApproxOpt Teaching
H: 0.859 0.531 0.526 0.840
R: 0.725 0.455 0.448 0.730

Both: 0.725 0.322 0.314 0.730

Table 4.5: The average fraction of times that each agent is in the same column
as the yellow square. The same is also measured for when both agents are in that
column at the same time. If they both are, they receive a reward. Notice that
Teaching and Optimal has a similar performance and they perform significantly
better than the others. The average is taken over 100 runs.

keeps learning through the whole simulation and reaches a level similar to Teaching
and Optimal at the end. Interestingly, if the simulation is run for long enough, both
the repeating policies as well as Teaching and Optimal all level out at the same
performance level which is an error rate of about 30 %. However, the repeating
policies accumulate reward slower than all other policies.

Policy: Repeating FreqRep ApproxOpt
H: 0.324 0.306 0.527
R: 0.230 0.184 0.454

Both: 0.097 0.095 0.319

Table 4.6: The average fraction of times that each agent is in the same column
as the yellow square. The same is also measured for when both agents are in that
column at the same time. If they both are, they receive a reward. Notice that both
repeating policies accumulate very little reward. The average is taken over 100 runs.

4.2.2 Analysis of the learned θ

To see what R actually learns, the group of states which are attributed a reward of
1.0 is analyzed after a typical learning epoch of 700 time steps with the Teaching
policy. The goal states, i.e. those where all three squares are in the same column, are
in that group. Unfortunately, there are also some other states in there, states that
R could not distinguish from the actual goal states. These are almost exclusively
states where H is in the right place but R is one or two steps in front or behind, see
Figure 4.7. The actions of H can likely not be used to infer any difference between
them. Even Repeating suffers from this problem.

For those policies that are suboptimal, no state has an attributed reward of 1.0.
The reason is that the rewards are approximated with averages, and a suboptimal
action will have a value of less than 1.0. Therefore, a single mistake will reduce the
average. However, those same states that are hard to differentiate and the correct
states are almost always attributed the highest reward among all states.
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Figure 4.6: The solid lines show the fraction of actions in πR that are not optimal
actions. This is measured for the two different repeating policies, Repeating and
FreqRep, along with the default ApproxOpt policy. R is aware of the repeating
behaviour and does therefore use a modified likelihood, see Appendix A. The dotted
lines show the average deviations between runs on both sides of the mean. Both
repeating policies behave quite differently from the other policies. The period of fast
learning in the beginning stops earlier for FreqRep than for other policies, but it
does continue to improve for the entire training epoch and reaches roughly the same
level as ApproxOpt at the end. Repeating has a similar period of fast learning as
ApproxOpt, but the performance does not level out. Instead, it continues to learn,
and after some time it it performs very well. All values are averaged over 100 runs.

(a) R is one step away
from the correct position.

(b) R is in the correct
position.

(c) R is two steps away
from the correct position.

Figure 4.7: Three kinds of states that R often attribute a reward of 1.0 to. Only
the states where all three squares are in the same column, (b), is supposed to have
a reward of 1.0. This indicates that the difference in reward between them can not
be inferred from the actions H makes.
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5
Conclusion

This chapter discusses and summarizes the report. Potential explanations for ob-
served phenomena are presented and the outcome of many design choices are ana-
lyzed. Necessary and possible further development is also presented. The summary
contains the most important conclusions drawn from this project.

5.1 Discussion
Many topics are discussed and they are divided into three different sections. The
first concerns the results and observations form the experiments. The second deal
with the taken approach to achieve CIRL in the setting of this project. The final
section concerns potential an necessary further development.

5.1.1 Results
The results show quite clearly that the way H behaves greatly affect the learning. R
assumes thatH will make mistakes, but the closer to optimalH behaves, the fasterR
learns. Even if H never makes any mistakes, learning can in some cases be improved
by behaving in special ways that teaches R more (see definition of Teaching),
as performing actions in different states can mediate different information. It is
therefore important forH to occupy those states that mediate the most information.
We see that regardless what assumption R has about the optimality of H, ηH, on
average the performance will be the same after enough time. However, assuming
a too high value for the optimality of H will result in an initial faster learning
rate but also a larger variance between tries. The variance is troublingly large
for all experiments. One reason is that R becomes too confident and is therefore
not exploring new potential θs. This problem would have to be solved before the
framework can be used in any applications. A starting point could be to always
consider the number of observations that has been made and not only the current
belief. This information could be used to avoid making a conclusion to early.

The policies used by H are not taken from the behavior of any actual person
and may therefore not be representative. The results do however highlight that
behaviour is important and that an AI can learn from a suboptimal human teacher.
If H is capable of making mistakes, then it is important to consider that. But, if no
mistakes are made, it may improve learning. The policy Teaching is not realistic,
since it requires H to never make any mistakes. But, an approximately optimal
teaching policy could be created which may be more realistic, and this should be
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explored.
The games used for testing were designed to be challenging but not impossible.

They were not meant to resemble any real world problems. Each framework was
solely tested on one game, thus the results from the experiments can not be assumed
to transfer to any other setting. There was an unforeseen consequence of using Q-
values in the particular way of the simple setting (finite reward parameter space)
and the design of SimpleGridGame. Namely that R’s belief about the θs tend to
equalize to the same probability unless they are constantly reinforced. Whether this
is always a drawback is unclear, but in this case, it is not an advantage. The game
design may also have caused the identical performance of ApproxOpt and IndeOpt,
since they only differ if there are a different number of optimal actions in pair with
H’s actions.

The repeating policies does not perform very well in the simple setting. Surpris-
ingly though, given enough time, they both learn as much as Optimal and Teaching
in the general setting (infinite reward parameter space) if given enough time. For
most policies H assumes that R will behave in the same way every time a state is
visited. Therefore, H will also behave in the same way and the same information is
obtained each time a state is visited. With the repeating policies however, H has
different assumptions about R’s behaviour at different times. It depends on what
action R took in that state the previous times it was visited. Since R’s policy is
partially random, H will eventually have assumed all or many possible behaviours
of R. Each new assumption provides a new piece of information. It is not clear
why repetition does not work as well in the simple setting. It could be since many
times only a few states are ever visited as opposed to in GeneralGridGame, where
the state is always changing regardless of what actions are taken. It is also not clear
why Teaching performs better than Optimal in the general setting. Maybe the
same logic for improving teaching in the simple setting does not hold in the general
one.

5.1.2 Approach
A thorough search of the literature about IRL and CIRL yielded no instances of
other researchers using Q-values to determine the intent of H. One reason could be
that the state transitions T are usually not known to the agent in RL. The Q-values
can then not be calculated at the start. However, since CIRL focuses on other
problems than learning the transitions, Q-values are well suited here. If it would
be desirable to apply these frameworks to problems where the transitions are not
known, then they could likely be combined with regular RL methods to learn the
transitions simultaneously.

The framework for the general case has one specific advantage over the simplified
one; It needs less meta parameters. It does not try to guess the optimality of the
human and only uses one parameter for exploring. However, they both need to guess
the discount factor of H, which is an abstract concept to a human. The effect of
incorrectly guessing the implicit discount factor of the human was not tested, but
should be to guarantee the robustness of the framework.

For many real world scenarios it is not realistic to have a finite state space.

33



5. Conclusion

Continuous state spaces can be finitely discretized but some information does get
lost in the process. There is no clear way of how to adapt the presented frameworks
for the continuous cases but they can hopefully guide the development of ones that
can, and this should be looked into in future research.

Since the framework for the general setting was not carefully analyzed, there
exist some shortcomings. A minor one is that the reward only considers states, it
should be possible to expand the methodology to cover the truly general case without
too much effort. A larger problem is that states that H mostly moves towards, but
is not actually interested in, are also attributed a high reward. If the humans
level of optimality were to be considered also in the general case, that information
could be used to statistically determine whether those difficult states are of interest.
For the simple case, we can directly tell what R concludes about θ∗, specifically the
probability that it is correct. In the general case, the measurement of interest is how
closely approximated θ∗ is. But, it is made more difficult since R does not know in
what range the values of θ∗ are in. This is why the performance is measured on the
policy rather than θ. Another, possibly better, way of measuring the performance
is to calculate the value of the policy, but this is quite time consuming.

q∗ works well but there are likely much more efficient ways of drawing conclusions.
It does take a long time to compute q∗ and Qθ, but since this only needs to be done
once, before any training begins, it is not too problematic. UpdatingQ in the general
case is probably not too problematic either. Since q∗ changes very little between
every time step, it does not take long to update Q. But, it depends on how long a
time step is in an actual application and the available computing resources.

The policy Repeating performed very well in the general case, but it is not
reasonable to expect a human to remember all actions that he or she has made
previously. It is possible though, that a relaxed version of Repeating can be created.
It may also not be that hard for humans to understand the teaching policy even if
they can make mistakes. Combining those two policies may create an realistic and
well performing policy. However, results like those by Palaniappan et al. (2017) can
probably never be achieved with a suboptimal human.

5.1.3 Future work

The results and frameworks presented in this report is a good starting point, but
there are still several parts that should be researched and improved. Both presented
frameworks needs further development. Developing a framework that works with
continuous state and action spaces would be interesting, potentially by using arti-
ficial neural networks. They could be used to approximate the Q-values and the
q-values. It should also be tested how well R can take over both roles after having
played with H for some time.

It is possible that very good results could be achieved by allowing the agents
to communicate by a limited amount, where it should be investigated to see how
burdensome it is for H to give R some guidance. And also if direct guidance can be
given without increasing the potential risk of causing Value Alignment problems.
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5.2 Summary
This project has managed to take some initial steps into the field of Cooperative
inverse reinforcement learning with a suboptimal human agent. The problems faced
in this area were discussed and potential solutions were presented. One such problem
is how to model the behaviour of a human agent. A few different models were
developed and their realism was discussed. One of these models was then selected to
be the foundation for the development of two CIRL frameworks for slightly different
scenarios. These two frameworks were analyzed and then tested on developed bench-
mark games. Tests were made and compared for all developed human agent models.
The results clearly show learning and some interesting behaviours of the frameworks.
It is also evident that the behaviour of the human agent has a large affect on learning.
Even though the human is not expected to behave optimally, the AI learns faster if
the human does. If there are multiple optimal policies, then they can have different
teaching capability. The results and insights from this project are very interesting,
and it is clear that more research is needed.
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A
Policies

A.1 Policies for H
The definitions of all policies and the assumptions they use are presented here.

1.1 & 2.1 Optimal: H plays any optimal action with uniform probability.

πH ∼ U(AH∗ ) (A.1)

1.1 & 2.2 ApproxOpt: H probabilistically plays an action based on the softmax
of that action’s Q-value paired with the best joint aR.

πH ∼ P (aH) :=
exp

(
ηQ∗θ∗(s, aH , aR)

)
∑
aH∈AH exp

(
ηQ∗θ∗(s, aH , aR)

) , (aH , aR) ∈ A∗ (A.2)

1.1 & 2.3 Teaching: Similar to Optimal but avoids moving towards the goal if
there exists other optimal actions.

1.2 & 2.2 IndeOpt: Similar to ApproxOpt but H now assumes that R may not
play the action that is optimal in pair with aH . Instead R may play any optimal
action. Here AR∗ is dependent on aH and s.

πH ∼ P (aH) :=
exp

( η

| A∗ |
∑
aR
∗ ∈AR

∗
Q∗θ∗(s, aH , aR∗ )

)
∑
aH∈AH exp

( η

| A∗ |
∑
aR
∗ ∈AR

∗
Q∗θ∗(s, aH , aR∗ )

) (A.3)

1.3 & 2.2 Repeating: Similar to ApproxOpt but R is assumed to repeat the last
action in this specific state. aRp is the action selected by R the previous time s was
visited.

πH ∼ P (aH) :=
exp

(
ηQ∗θ∗(s, aH , aRp )

)
∑
aH∈AH exp

(
ηQ∗θ∗(s, aH , aRp )

) (A.4)

1.4 & 2.2 FreqRep: Similar to ApproxOpt but R is assumed to stochastically
select an action based on the observed selection frequency. ν(s, aR) is the fraction
of times aR has been chosen in s.

πH ∼ P (aH) :=
exp

(
η
∑
aR∈AR Q∗θ∗(s, aH , aR)ν(s, aR)

)
∑
aH∈AH exp

(
η
∑
aR∈AR Q∗θ∗(s, aH , aR)ν(s, aR)

) (A.5)
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A. Policies

A.2 Likelihoods when θ is a finite index
Since R always assumes that H is following the ApproxOpt policy, except for the
repeating policies, only the repeating policies needs a different likelihood function.
ApproxOpt:

Pθ(aHt | st) :=
exp

(
ηQ∗θ(st, aHt , aR∗ )

)
∑
aH∈AH exp

(
ηQ∗θ(st, aH , aR∗ )

) . (A.6)

Repeating:

Pθ(aHt | st) :=
exp

(
ηQ∗θ(s, aH , aRp )

)
∑
aH∈AH exp

(
ηQ∗θ(s, aH , aRp )

) (A.7)

FreqRep:

Pθ(aHt | st) :=
exp

(
η
∑
aR∈AR Q∗θ(s, aH , aR)ν(s, aR)

)
∑
aH∈AH exp

(
η
∑
aR∈AR Q∗θ(s, aH , aR)ν(s, aR)

) (A.8)

A.3 θ as a matrix over states
The default update and action selection as well as those for the repeating policies.

A.3.1 Updating beliefs for repeating policies
Since R always assumes that H is following the ApproxOpt policy except for the
repeating policies, only the repeating policies needs a different update.

ApproxOpt:

at(s′) = minimum
aH∈AH ,aR∈AR

{
q∗(st, aH , aR, s′)

}
bt(s′) = maximum

aH∈AH ,aR∈AR

{
q∗(st, aH , aR, s′)

}
vt(s′) = maximum

aR∈AR

{
q∗(st, aHt , aR, s′)

} (A.9)

Repeating:

at(s′) = minimum
aH∈AH

{
q∗(st, aH , aRp , s′)

}
bt(s′) = maximum

aH∈AH

{
q∗(st, aH , aRp , s′)

}
vt(s′) = q∗(st, aHt , aRp , s′)

(A.10)

FreqRep:

at(s′) = minimum
aH∈AH

{ ∑
aR∈AR

q∗(st, aH , aR, s′)ν(s, aR)
}

bt(s′) = maximum
aH∈AH

{ ∑
aR∈AR

q∗(st, aH , aR, s′)ν(s, aR)
}

vt(s′) =
∑

aR∈AR

q∗(st, aHt , aR, s′)ν(s, aR)

(A.11)
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A.3.2 Action selection for repeating policies
The default policies that R follows and the modified versions for repeating policies.

ApproxOpt:

πR(st) := argmax
aR∈AR

{
maximum
aH∈AH

{
Qt(st, aH , aR)

}}
(A.12)

Repeating:

πR(st) := argmax
aR∈AR

{
Qt(st, aH , aR), aH=argmax

aH∈AH

{
Qt(st, aH , aRp )

}}
(A.13)

FreqRep:

πR(st) := argmax
aR∈AR

{
maximum
aH∈AH

{
Qt(st, aH , aR)ν(s, aR)

}}
(A.14)
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B
Code

The code used in this project can be found in the GitHub repository at
https://github.com/cajoek/CIRL.
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