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Multiscale Modelling of Large-Amplitude Fluctuations in Tokamak Edge Plasmas
AXEL HALLENBERT
Department of Physics
Chalmers University of Technology

Abstract
For the efficient and safe operation of magnetic confinement fusion reactors, reli-
able theoretical descriptions of the dynamic behaviour of the confined plasma are
required. One proven, highly successful description is gyrokinetics, which describes
small amplitude turbulence in the core plasma. However, this description is ex-
pected to break down in the plasma edge, in the presence of large fluctuations and
an extremely steep pressure gradient.

Attempting to capture these edge conditions, in this thesis we use multiscale
analysis to produce a new set of equations we collectively refer to as Toroidal Kinetic
Reduced MHD (TKRMHD). These equations, suitable for describing ITG-like tur-
bulence, are fully kinetic, applicable in general field confinement configurations, and
capable of describing the collisional to weakly-collisional transition. As such this
description constitute a first step towards a first-principle description of L-mode
tokamak edge turbulence.

In this thesis we furthermore demonstrate that the TKRMHD equations can
be smoothly matched onto gyrokinetics through an intermediary set of equations,
derived from suitable subsidiary multiscale expansions. This is important because
gyrokinetic tokamak transport simulations strongly depend upon density and tem-
perature edge boundary conditions. This new matching may make it possible to
choose these conditions reliably, instead of relying on ad-hoc assumptions.

Keywords: gyrokinetics, L-mode, tokamak edge, multiscale analysis, ITG
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1
Introduction

Humanity faces a great challenge this century. Over the coming decades the human
population is projected to increase by several billions, particularly in developing
nations. Because there is a direct correlation between standard of living and energy
consumption, in order to achieve an increasing standard of living in both developing
and industrialised nations, our energy production necessarily must be increased.
At the moment, fossil fuels provide approximately 70% of our electricity and the
absolute majority of the energy used for transportation (both of people and goods).
However, easily exploitable fossil fuel sources are limited and may by some estimates
already be on the brink of depletion, with both oil and natural gas peak production
occurring within the next 20 years [1]. Additionally, currently available fossil fuel
reserves are predominantly located in politically unstable regions, making major
energy disruptions that could threaten national security a distinct risk.

Beyond dwindling fossil fuel reserves there is another reason our reliance on
fossil fuels is troubling: global warming caused by CO2 emissions. The various con-
sequences of this climate change are manifold and the possible feedback mechanisms
involved make accurate predictions difficult. Nevertheless, the scientific consensus is
that even a few degrees of global warming will prove catastrophic [2]. It is thus clear
that our current fossil energy production is unsustainable, even without accounting
for projected population growth or a future continuation of the economic growth
that has made the industrial world so prosperous the last 100 years.

Currently, the major alternatives to fossil fuels in use are various renewable en-
ergy sources and nuclear fission. Renewable energy sources like wind, hydroelectric,
and solar power are politically attractive and, being heavily subsidised, are under-
going rapidly expansion. However these sources are inadequate to fully cover our
energy consumption at current levels because the energy per land area they produce
is too low [1]. This leaves nuclear fission, an energy source that has many attractive
properties. Already nuclear power is economically viable, if beset by a prohibitive
up-front capital cost, and it produces hardly any CO2 pollution during operation.
Modern nuclear power plants are exceedingly safe and technological advances in re-
cent years have made long-term nuclear waste disposal seem ever more achievable.
Despite this, the possibility for nuclear expansion in the near future seems slim at
best. The public perception of nuclear power in Europe is decisively negative while
the risk of nuclear proliferation makes it politically non-viable to suggest such an
expansion.

If none of the currently available alternatives to fossil fuels are adequate to
solve the energy problem at hand, this paints a bleak picture of the near future.
Thankfully, there is a potential solution that is within reach. Nuclear fusion power,
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1. Introduction

though currently still in the experimental stages, possesses many attractive features
that makes it superior to conventional nuclear fission. First, fusion power does not
rely on neutron multiplication to sustain a chain reaction like fission power does.
Therefore, there is no need to store several years worth of fissile material within the
reactor to maintain the reaction. Indeed, a fusion reactor must be continually fuelled
to sustain its reaction, so there is no possibility of an uncontrollable runaway reaction
causing a meltdown. Furthermore, a fusion reactor only produces short-lived nuclear
waste from the interaction of neutrons with the reactor vessel and buildings. This
is a major advantage because such waste only needs to be safely handled for about
a hundred years. Additionally, this waste can not be used in a fashion that would
raise nuclear proliferation concerns. Finally and most importantly, while the limiting
fusion fuel tritium is extremely rare on earth, it can be bred from lithium by neutron
bombardment in large enough quantities to cover all of our energy consumption at
current levels for over 20 000 years. As such, fusion could conceivably completely
replace fossil fuels and single-handedly avert the coming energy crisis [1].

Despite its many attractive features, fusion possesses one crippling drawback.
In fusion reactions, two positively charged nuclei have to be brought together to
fuse. In order for this to happen the Coulomb barrier must be overcome which, for
appreciable cross sections, requires a relative kinetic energy of the order of 10-100
keV. If this sort of energy is to be supplied in thermal form the temperature must
be approximately 108 K and so the fuel must be provided as a plasma. This is such
a tremendous temperature, exceeding the temperature of the Sun’s core, that if the
plasma was in thermal contact with a material surface it would cause irreparable
damage. Therefore, in order to use fusion to safely generate power on Earth, we have
but two options: either generate the plasma in extremely brief pulses or suspend it in
a magnetic field configuration to limit thermal contact with the reactor vessel. Both
avenues have been pursued, but because magnetic confinement has demonstrated
better results over a longer time period, a greater amount of focus has been spent
on it [3].

Magnetic confinement works on the principle that electrically charged particles
in a magnetic field will undergo gyromotion, i.e. be strongly confined to spiral
around magnetic field lines. Therefore the particle flux across the magnetic field is
greatly reduced so that, if the magnetic field topologically forms a closed surface,
a plasma can be contained. Now, in order for there to exist any stable plasma
equilibrium the magnetic field must topologically be toroidal, with both toroidal
and poloidal components [4]. One configuration that satisfies these constraints,
and which is the focus of this thesis, is the tokamak, in which the poloidal field is
generated by the plasma itself by driving a toroidal current through it. Because of
their simple axisymmetry, tokamaks have been able to be extensively developed and
so constitute the cutting edge of current fusion reactors.

Of course, the goal of fusion power is not simply maintaining a steady-state
plasma. Ultimately, a reactor must produce more energy than it consumes and
ideally ignition, where no external power at all is needed, should be achieved. The
condition for this to occur is the famous Lawson criterion which states that the triple
product of the the plasma density, plasma temperature, and energy confinement time
(the energy stored divided by the power loss) must exceed a critical value while the
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1. Introduction

temperature simultaneously is maintained at a suitably high value [3]. This criterion
has still not been met by any experimental reactor, and the reasons for this can be
traced both to engineering inefficiencies, like the difficulty of creating large enough
superconducting magnets, and to a lack of scientific understanding of the plasma
within the reactor.

For obvious reasons, it is important to be able to predict the performance of
a tokamak in advance of its construction. To fully achieve this, it is necessary to
possess a first-principles description of plasma behaviour such that no possibly rele-
vant phenomenon is neglected. Such a description already exists for the core in the
form of a large-scale equilibrium, whose stability is determined from magnetohydro-
dynamics [5], in combination with turbulent small-scale fluctuations, described by
gyrokinetics [6]. Simulations of this kind have proven to yield accurate results that
have been repeatedly verified in experiments [7]. However, in the edge region there
is an extremely steep pressure gradient that renders this theory inapplicable. Fur-
thermore, there is mounting evidence that edge physics plays a vital role for overall
tokamak performance.

Among the many different kinds of tokamak behaviours that seem to originate
in edge physics, perhaps the most important and characteristic is the transition
from low confinement L-mode to high confinement H-mode [8]. This transition
occurs as a heating threshold is reached and causes the confinement time to rapidly
increase by about a factor of 2. As a result the pressure gradient in the edge region
rapidly steepens even further and becomes a pedestal upon which the shallower
core gradient can rest, resulting in a significant core temperature increase. This
is possible because the turbulent transport across the edge is quenched, which is
an extremely desirable feature. However, in going to H-mode the plasma becomes
unstable and exhibits short bursts of edge-localised modes (ELMs) that eject plasma
into the scrape-off layer towards the reactor wall [9]. There are many different kinds
of ELMs with different characteristics that range from moderately attractive to
devastating. Thoroughly understanding these ELMs and the L-H transition could
allow safe and efficient tokamak operation and is very desirable.

Now the focus of this thesis is not to study the L-H transition and indeed we
will not be concerned with the more extreme H-mode physics at all. This transition
is merely the most dramatic and noticeable edge physics effect, but there are sure
to be many more, even for L-mode operation, that impact general tokamak perfor-
mance and so also have to be described. To this end we will in this thesis develop
a framework for describing some of these phenomena that should be suitable for
common L-mode operation. Furthermore we will also investigate its compatibility
with the proven gyrokinetics of the tokamak core.
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2
Analysing Toroidal Plasmas

Thoroughly describing plasma edge physics to a sufficient degree for the purpose of
this thesis unsurprisingly requires a wide array of different mathematical techniques.
These range in nature from those well-known by any physicist to the esoteric only
applied within specific subsets of the field of plasma physics. As such, we will in
this Chapter present these different tools for those that are unfamiliar. We will start
by introducing the fundamental equations which form the basis for all subsequent
work in this thesis. Then we will proceed by discussing multiscale analysis, the
powerful tool which underpins both gyrokinetics and the new edge theory we shall
develop. Its power comes from the large separation of scales present in a typical
tokamak plasma, a fact we will next use when introducing straight field line motion
to describe a few typical plasma phenomena of interest to us. Having done this, we
will also find it suitable to introduce a set of coordinates, intimately linked to the
magnetic field, which will prove convenient in describing these plasma phenomena.
Logically we will then proceed to elaborate on the properties of the present fields
and distributions in two ways. First we will highlight the splitting of fluctuating
from non-fluctuating quantities and the mathematical implications of this splitting.
Finally we will then investigate the large-scale properties of the magnetic field and
the mathematical operations this allows us to introduce.

2.1 Fundamental Equations
A fusion reactor plasma is, at the most basic level, a collection of electrons and ions
contained by a powerful magnetic field. Even though the plasma density, in practice,
is so low that it can accurately be classified as a vacuum, the number density is still
on the order of 1020 m−3 [10]. Thus, it becomes completely infeasible to attempt to
describe the system in its entirety with every particle’s complete trajectory. This
is both because the computational complexity would be too high and because it is
impossible to know each particle’s exact position and velocity at any given moment.
Instead, we are immediately forced to use a statistical approach.

While producing a statistical description of a plasma we can thankfully utilise
our knowledge of the microscopic forces that determine individual trajectories. We
know that any non-relativistic plasma particle of species s obeys the equations of
motion

dr
dt = v,

dv
dt = qs

ms

(
E + 1

c
v×B

)
, (2.1)

where we have used Gaussian units which will be used throughout this thesis. To
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2. Analysing Toroidal Plasmas

use these deterministic equations to derive a statistical equation we now assign the
particle a probability distribution function over (r,v)-phase space so that at time t
it has probability fsd3rd3v to be within the infinitesimal phase-space volume d3rd3v
at (r,v). Then, by the equation of motion, it must at a later time have that same
probability to be within the infinitesimal volume at the correspondingly later point
on the trajectory. Thus the total derivative along the trajectory is zero, so [11, 12]

dfs
dt = ∂fs

∂t
+ v · ∇fs + qs

ms

(
E + 1

c
v×B

)
· ∂fs
∂v

= 0. (2.2)

After making two important conceptual modifications to this equation by changing
fs to be a distribution function over all particles of species s and letting E and
B be the ensemble averaged fields, neglecting microscopic self-generated fields, this
equation becomes the Vlasov equation. It describes how the distribution function
evolves over time, subject to given, self-consistent fields and in the absence of particle
interactions.

The Vlasov equation is not sufficient to completely describe a plasma. Colli-
sions, which intrinsically depend on the short-range self-generated fields, generally
play an important role in the plasma dynamics and so must be accounted for. This
is usually done by adding a collisional term to the right hand side of (2.2) to produce
the Boltzmann equation

dfs
dt = ∂fs

∂t
+ v · ∇fs + qs

ms

(
E + 1

c
v×B

)
· ∂fs
∂v

= C[fs]. (2.3)

In general, the form of the collisional term is some complicated integral so the Boltz-
mann equation is an integro-differential equation which are notoriously difficult to
handle. But since collisions in plasmas are predominantly small-angle, causing only
cause small deflections, the integral form can be simplified into a manageable form
known as the Fokker-Planck equation [13]. Before proceeding, it is worth stress-
ing the natural property that the collisional operator’s zeroth and energy velocity
moments vanish, because collisions conserve particles and energy [14].

Even after the inclusion of collisions the Boltzmann equation alone is still not
sufficient to fully describe the plasma. The electric and magnetic fields too have
to be specified in some fashion. Specifically, they have to be determined in a self-
consistent way that takes into account the self-generated macroscopic fields. This is
naturally done through Maxwell’s equations:

∇ · E = 4πρ, (2.4)
∇ ·B = 0, (2.5)
∂B
∂t

= −c∇× E, (2.6)

∇×B = 4π
c

j + 1
c

∂E
∂t
, (2.7)

where the charge density ρ and current density j are given by moments of the
distribution functions

ρ =
∑
s

Zse
∫

d3vfs, (2.8)
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2. Analysing Toroidal Plasmas

j =
∑
s

Zse
∫

d3vvfs. (2.9)

Equations (2.3)-(2.7) are sufficient to describe all non-relativistic plasma phe-
nomena. Indeed, they describe the plasma too completely. This is because they de-
scribe everything from light waves, through fast gyromotion, to slow bulk transport.
It is not possible to describe everything within this spectrum, either analytically
or computationally, because of the huge scale separation involved. Much work has
therefore been done over the last decades to reduce these equations in some fashion
and restrict them to only describe a select subset of phenomena. Continuing in this
tradition, we will proceed to do exactly this in the coming Chapters.

Because this thesis is focused on terrestrial fusion plasmas with negligible rela-
tivistic and Debye-scale effects, there are two natural restrictions we can immediately
use. Neglecting light waves, we will assume that v2

th,s/c
2 � 1 and ρ−2

s λ2
De � 1 where

vth,s is the thermal velocity of species s, ρs the typical gyroradius, and λDe the Debye
length. The first of these conditions allows us to ignore the displacement current in
Ampère’s law so it becomes

∇×B = 4π
c

j, (2.10)

while the second leads us to replace Gauss’ law with the quasineutrality condition[10]

ρ = 0. (2.11)

Of course, these limitations are not enough to make our equation system tractable
by themselves and we will have to restrict ourselves further. To this end, we will
employ a mathematical tool which will be described in the next Section.

2.2 Multiscale Analysis
While there are many different ways one can go about using the Fokker-Planck
equation to produce interesting physics, here we will describe a tool for this task
that is of primary importance for us. This tool is known as multiscale analysis,
or asymptotology [15], or perturbation methods [16], and can be found in many
different mathematical branches. As the name suggests, it relies upon an inherent,
large separation between different scales which allows one to treat them differently
in the problem at hand. Formally, if a problem contains a small parameter ε � 1
such as the ratio between two different scales then different terms can be expanded
in orders of ε.

In multiscale analysis one is more interested in how different quantities scale
with ε rather than what the actual value of ε is [16]. In a physics context, this
allows one to see how the dynamics of different orders, or equivalently scales, and
the interactions between them behave. Usually the lowest order dynamics alone is
that which is studied, neglecting other phenomena as higher order contributions.
Naturally, the lower order dynamics are expected to dominate when ε is small.
Indeed, in the not uncommon case where the multiscale expansion fails to converge
for finite ε-values the lowest order dynamics may still prove useful. This is because
the dynamics of different orders correspond to separate kinds of physics, interacting
only appreciably for larger ε-values.
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2. Analysing Toroidal Plasmas

Using multiscale analysis properly is not a straightforward matter, especially
in large, complex problems such as the one of interest to us. Choosing how to or-
der various terms to encapsulate the desired phenomena is almost an art. Failing
to make a proper choice will at best mean that the resulting theory will describe
some other set of physics than that of interest. In addition to this delicate choice,
there are also technical difficulties that have to be dealt with. Typically, in conjunc-
tion with the ordering choice, one introduces various quantities to study. Careless
choices at this stage could prove disastrous as the resulting equation system for these
quantities could be either under- or overdetermined. In the former case the lowest
order evolution of some quantities can only be determined by going to higher order,
which in turn introduces other quantities whose evolution must be determined at
even higher order, ad infinitum [15]. Such an ordering choice fails to simplify the
problem because it retains the full information of the original equation system and
all its dynamics. Thankfully for the purposes of this thesis, there is a remedy to
underdetermination of which we will make liberal use. That remedy is annihila-
tion operators, and for our purposes specifically the gyroaverage, the flux-surface
average, and the turbulence average which will be introduced in Sections 2.4-2.6.
Applying these operators will remove higher order terms and allow our equations to
be closed at a finite order.

So far, this Section has been an abstract description of multiscale analysis.
Returning to the purpose of this thesis, we will now narrow the scope. Terrestrial,
magnetically contained fusion plasmas are invariably strongly magnetised. That is,
the magnetic field is strong enough that the typical gyroradius ρs of plasma particles
is much smaller than any other important length scale. It is therefore only natural to
use this scale separation to apply multiscale analysis with the ratio between ρs and
some other typical length scale as the expansion parameter. Indeed, this is a natural
basis for gyrokinetics [10] and will also be the basis for the theory to be developed in
the next Chapter. Of course, this is not the only kind of scale separation present and
selecting how to order these scale separations separates different theories. We will
go into greater detail of these orderings and their justifications for both gyrokinetics
and the new set of equations we will introduce in the following Chapters. However,
we will study one such scale separation further in the next Section, that between
the fast gyromotion and other slow particle motion.

2.3 Straight Field Line Motion

Generally, in order to solve the equations of motion (2.1) analytically, the field
configuration has to be in some kind of tractable form. Even without accounting
for short-range, self-generated fields, this is not the case in a tokamak so some
approximation has to be employed. The starting point for this is that the plasma
is suspended in a strong magnetic field. Now, if the magnetic field is uniform in
the direction of b, it is obvious that particles are constrained in the perpendicular
direction to gyrate around a guiding centre Rs with gyrofrequency

Ωs = qsB

msc
, (2.12)
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2. Analysing Toroidal Plasmas

and gyroradius
ρs = v⊥

Ωs

, (2.13)

like
v = v‖b + v⊥(cosϑe1 − sinϑe2), (2.14)

where we have introduced orthogonal unit vectors satisfying

b = e1 × e2. (2.15)

Of course, in a tokamak the magnetic field is not uniform. However, because the
magnetic field is so strong, the gyroradius is much smaller than the typical variation
length a of the magnetic field. Therefore, to lowest order in ρs/a and in the absence
of collisions, gyration around the field lines is still the dominant particle motion
in tokamaks. Nevertheless, it is known that collisional transport is insufficient to
account for the bulk of tokamak transport so that the full transverse motion has to
be specified further.

In studying particle motion beyond mere gyration, the first thing to note is that
in the presence of a spatially constant force F, a superposition of the aforementioned
gyromotion and a transverse drift

c

qsB2 F×B, (2.16)

clearly satisfies the equation of motion (2.1) [17]. The first such drift of importance
for this thesis is that arising from the electric field which we will denote by

uE = c

B2 E×B. (2.17)

In this thesis, this drift will prove to be of utmost importance, since its corresponding
term in the Fokker-Planck equation (2.3) will give rise to nonlinearity and produce
the dominant transport.

The second type of transverse drift is that arising from the non-uniformity of
the magnetic field which we denote by

VDs = b
Ωs

×
(
v2
‖b · ∇b + 1

2v
2
⊥∇ lnB

)
. (2.18)

In the first of these term, the force in question is the centripetal force that keeps the
guiding centre moving along the curved magnetic field lines. The second term in
contrast corresponds to a fictitious force, accounting for how a non-uniform magnetic
field strength causes the gyroradius to vary, as is obtained by Taylor-expanding the
magnetic field around the guiding centre and averaging the Lorentz force over an
assumed gyration [17].

In addition to these two perpendicular drifts there is one more kind of perpen-
dicular motion which will be of interest to us. Unlike the previous drifts, this motion
is not a guiding centre drift. Instead, it is a phenomenon which arises from the col-
lective motion of many particles, all undergoing gyromotion. When determining the
total fluid velocity of all these particles, if they are not uniformly distributed there
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2. Analysing Toroidal Plasmas

will be an imbalance in the amount of particles crossing surfaces during gyromotion
from either direction. As a result there is a net fluid velocity

c

qsnsB2 B×∇ps, (2.19)

called the diamagnetic drift [18].
Before we proceed further there is one final topic of particle gyromotion we

must discuss, the so called first adiabatic invariant. It is a commonly derived result
that the magnetic moment

µs = msv
2
⊥

2B , (2.20)

of a particle is to lowest order conserved in slowly varying, compared to the gyrofre-
quency, electric and magnetic fields like those of interest to us [17]. Indeed, it can
be shown to be the lowest order contribution to an exact invariant corresponding to
the gyromotion [18, 19]. In the next Section, we will see why this is an important
feature for a convenient mathematical description of gyromotion.

2.4 Catto-Transformed variables
For containment purposes rapid gyromotion is of little interest compared to slow
drifts across the containment vessel. Hence, when one wishes to describe trans-
port phenomena like in gyrokinetics or our proposed TKRMHD this rapid motion
should be averaged away. To this end, we return to the fundamental Fokker-Planck
equation (2.3) which is expressed in conventional (r,v)-variables. Though suitable
for comparison with experiments, these make it difficult to separate the two differ-
ent kinds of motion for analytical purposes. Instead we will make use of so called
Catto-transformed variables [20]. These are given by (Rs, εs, µs, ϑ, σ), where Rs is
the guiding centre position, εs the particle energy, µs the exact first adiabatic in-
variant, ϑ the gyroangle, and σ ∈ {−1, 1} indicates the direction of motion along
the field line[21],

Rs = r− 1
Ωs

b× v, (2.21)

εs = 1
2msv

2 + Zseϕ, (2.22)

µs = msv
2
⊥

2B +O
(
ε
T

B

)
. (2.23)

Because µ̇s = 0 in the absence of collisions, in Catto-transformed variables the
Fokker-Planck equation becomes ∂

∂t

∣∣∣∣∣
Rs,εs,µs,ϑ

+ Ṙs ·
∂

∂Rs

∣∣∣∣∣
t,εs,µs,ϑ

+ ε̇s
∂

∂εs

∣∣∣∣∣
t,Rs,µs,ϑ

+ ϑ̇s
∂

∂ϑ

∣∣∣∣∣
t,Rs,εs,µs

 fs = C[fs].

(2.24)
where all partial derivatives have explicitly been taken while holding remaining
variables fixed. As useful as this form will be for us in deriving TKRMHD and ma-
nipulating its equations the original (r,v)-coordinates are more intuitive and useful
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for comparison with experiments. We will therefore find it convenient to switch be-
tween these two systems, both by switching derivatives with the multivariable chain
rule and by Taylor expanding to switch between evaluating quantities at Rs or r.
Because we for convenience’s sake will neglect specifying what quantities are kept
fixed in these partial derivatives one simple rule should be kept in mind to avoid
confusion regarding the time-derivative: if no partial Rs-derivative is present in the
equation the time-derivatives that appear are taken with (r,v) fixed.

Having introduced Catto-transformed variables there are now two more prop-
erties of these variables that we will later find useful. The first is the explicit form
of complete velocity space integration in these coordinates which is given by∫

d3va =
∑
σ

∫ ∞
Zseϕ

dεs
∫ εs−Zseϕ

0
dµs

∫ 2π

0

Bdϑ
m2
s|v‖|

a, (2.25)

where a is an arbitrary function.
The second is the gyroaverage which is of vital importance for this thesis. This

is because the gyroaverage is the first of the annihilation operators we will use to
produce a closed equation system as described in Section 2.2. Additionally, it is
also the reason Catto-transformed variables lend themselves so well to discarding
uninteresting gyromotion. There are two different forms this operation can take,
either

〈a〉Rs
= 1

2π

∮
dϑa(Rs, εs, µs, ϑ, σ), (2.26)

or
〈a〉r = 1

2π

∮
dϑa(Rs(r, v⊥, ϑ), εs(r, v‖, v⊥, ϑ), µs(r, v‖, v⊥, ϑ), σ), (2.27)

where (εs, µs, σ,Rs) or (r, v‖, v⊥) are held constant, respectively [10]. The former
of these corresponds to averaging over a particle’s gyromotion, while the second
corresponds to averaging over all possible guiding centres at fixed distance from r.

2.5 Field Structure
Having described how to eliminate uninteresting gyromotion using the gyroaverage
in the previous Section we now turn to the quantities to which we will apply this
operation: the distribution functions fs. It is commonly seen in fusion plasmas
that a comparatively quiescent equilibrium can be distinguished from turbulent
fluctuations. In the core, the equilibrium constitutes the bulk of the plasma whose
transport properties we obviously wish to accurately describe so as to be able create
a sustainable fusion reaction. However, we also know that the fluctuations give rise
to the transport which presently prevents sustainable fusion. Both must therefore
be included in any useful theory, including ours.

To distinguish the quiescent equilibrium and turbulent fluctuations from both
each other and the total quantities we will be using two different notational conven-
tions. For scalar quantities like the distribution functions we will use a δ to signify
the fluctuating piece while the mean part, when discernible, will be represented by
a capital letter, like so

fs = Fs + δfs. (2.28)

11



2. Analysing Toroidal Plasmas

The only scalar quantity which will diverge from this pattern is the temperature Ts,
which will everywhere denote the full temperature.

Now for the electric and magnetic fields (and their magnitudes) we will use a
slightly different convention because we wish to keep the interpretation that lower
case vectors correspond to unit vectors. Thus we will keep the δ to signify fluctua-
tions but change the total fields to be denoted by a tilde, so that for the magnetic
field we have

B̃ = B + δB = B0 + B1 + δB. (2.29)
Here we have additionally introduced a decomposition of B into the time-independent
confinement magnetic field B0, which is to be specified independently, and the
plasma-generated non-fluctuating magnetic field B1. The notation here is sugges-
tive, as the former in this thesis will be larger than the latter in our multiscale
orderings. Therefore we will frequently make use of the lowest order expression

|B̃| = B̃ = |B0| = B, (2.30)

and define
b = B0

B
, b̃ = B̃

B
. (2.31)

Having introduced the decomposition (2.29) we will find it suitable to introduce
the potentials Ã and ϕ. We specify that the vector potential Ã satisfies the Coulomb
gauge

∇ · Ã = 0, (2.32)
and that it only determines the plasma-generated magnetic field

B1 + δB = ∇× Ã, (2.33)

so that the fields in terms of potentials are given by

B̃ = B0 +∇× Ã (2.34)

and
Ẽ = −∇ϕ− 1

c

∂Ã
∂t
. (2.35)

For the scalar potential ϕ we will commonly find that it is composed of only a
fluctuating part,

ϕ = δϕ. (2.36)
This is because of an important and severe limitation that we will make in this thesis.
We will assume that the bulk plasma is non-rotating. Then Debye-screening will
rapidly diminish the electric field strength inside the plasma and no large electric
field can be set up [22]. Of course substantial bulk rotation is present in all tokamaks
for stability purposes and should be accounted for. However, its inclusion was
omitted to limit the scope of this thesis. Although it would have given rise to a
plethora of new terms in the equations of the following Chapters the logic of the
arguments presented would not substantially change.

Although we have introduced a division into fluctuating and mean quantities we
have so far not specified precisely how this done. Proceeding to do just this, we now
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2. Analysing Toroidal Plasmas

introduce the second annihilation operator hinted at in Section 2.2: the turbulence
average. Typically, turbulent fluctuations occur at a perpendicular length scale l⊥
and frequency ω much smaller and higher than those associated with the system,
which are a and τ−1

E respectively. The turbulence average is then defined by picking
intermediate scales λ⊥ and T−1 and averaging over a perpendicular patch p of length
scale λ⊥ and an interval of T in the following way:

〈a〉turb = 1
T
∫
p d2r⊥

∫ t+T/2

t−T/2
dt′
∫
p

d2r⊥a(r⊥, l,v, t). (2.37)

Here l,v, t, where l is the distance along a field line, are kept constant [10]. This op-
eration now allows us to uniquely determine δfs by requiring its turbulence average
to vanish.

2.6 Field Geometry
In the previous Section we dealt with the difference between fluctuating and mean
quantities. Now we will proceed by elaborating on the structure of the mean mag-
netic field. Since we are interested in describing tokamaks the first obvious point to
note is the toroidal topology of the containment field. Specifically, inside the core
there exists a set of nested toroidal surfaces called flux surfaces whose normal vector
is everywhere tangent to the magnetic field. The innermost of these is a simple cir-
cle called the magnetic axis and the outermost, beyond which the field lines become
"open" and divert to the tokamak boundary, is intuitively called the last closed flux
surface (LCFS) [4]. Even though the focus in this thesis is the plasma edge we will
not at any point attempt to venture from the closed-field line region beyond the
LCFS to the scrape off layer.

The reason for limiting ourselves to the closed field region is because by re-
maining there we gain access to the final annihilation operator we need to close our
equation system: the flux surface average. This operator is most readily employed
by switching to Clebsch coordinates, a set of spatial coordinates that encapsulate
the magnetic field structure [23]. We will introduce two such sets of coordinates,
(ψ̃, α̃, l̃) for the exact field and (ψ, α, l) for the equilibrium field. In what follows
we will use the exact coordinates, but entirely analogous relations will hold for the
equilibrium coordinates.

The defining relation for our Clebsch coordinates is

B̃ = ∇ψ̃ ×∇α̃ = B̃∇l̃. (2.38)

Furthermore, ψ̃ is chosen to be the poloidal flux function which is constant on every
flux surface and defined by

ψ̃ =
∫
SP

dS · B̃, (2.39)

where SP is the surface of constant poloidal angle between the flux surface and the
magnetic axis [4]. After then choosing a suitable cut-off line on the flux surface so
that this system becomes single-valued over the (exact) flux surface l̃ becomes the
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2. Analysing Toroidal Plasmas

length from the branch cut along magnetic field lines and α̃ a index coordinate for
different magnetic field lines.

Given the intimate link between Clebsch coordinates and the magnetic field
structure as outlined above it is intuitive why they simplify flux surface averaging
so much. Because the poloidal flux ψ̃ is constant over flux surfaces we can choose
to define the flux surface average as

〈a〉ψ̃ = lim
∆ψ̃→0

(∫
∆(ψ̃)

d3ra
/∫

∆(ψ̃)
d3r

)
, (2.40)

where ∆(ψ̃) is the volume enclosed between the flux surfaces labelled by ψ̃ and
ψ̃ + ∆ψ̃. This can be shown to be equivalent to

〈a〉ψ̃ =
(
∂V

∂ψ̃

)−1 ∫
Sψ̃

dS
|∇ψ̃|

a = 1
V ′

∫
Sψ̃

dS
|∇ψ̃|

a, (2.41)

where Sψ̃ is the flux surface labelled by ψ̃ and V the volume it encloses [10]. By
then using the defining relation (2.38) to find the Jacobian 1/B̃ for our Clebsch
coordinates we arrive at the final, simple expression

〈a〉ψ̃ = 1
V ′

∫ dl̃dα̃
B̃

a (2.42)

for the flux surface average [24].
Equipped with the final expression for the flux surface average we can now

immediately deduce that applying it to any term of the form

B̃
∂

∂α̃

∣∣∣∣∣
ψ̃,l̃

a, or B̃
∂

∂l̃

∣∣∣∣∣
ψ̃,α̃

a (2.43)

will yield a vanishing result because l̃ and α̃ by toroidal geometry are periodic
coordinates. We will make use of this extensively in the subsequent Chapters to
remove three particular classes of terms.

The first class of term that vanishes under the flux surface average is

B̃ · ∇a, (2.44)

which is easily seen to be precisely the second term in (2.43). The second kind is
the Poisson bracket

{b, c} = b̃ · ∇b×∇c = B̃

(
∂b

∂ψ̃

∂c

∂α̃
− ∂c

∂ψ̃

∂b

∂α̃

)
, (2.45)

where the final equality holds by virtue of the defining relation (2.38). Now if b is a
function of ψ̃ alone then the second of these terms vanishes while in the first term
b can be pulled through the α̃-derivative and vice versa for c. In either case the
Poisson bracket reduces to the first term in (2.43) with a = bc and so vanishes under
flux-surface averaging.
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The third and final class of terms which vanishes by flux surface averaging have
the structure

∇ ·
(
a∇× b̃

)
= ∇ ·

(
b̃×∇a

)
. (2.46)

To see that this vanishes under flux surface integration we use the specific form of
the divergence in Clebsch coordinates which, because |∇l̃| = 1 and the Jacobian is
B̃−1, is given by

∇ ·C = B̃
∂

∂ψ̃

(
|∇α̃|C · ∇ψ̃

)
+ B̃

∂

∂α̃

(
|∇ψ̃|C · ∇α̃

)
+ B̃

∂

∂l̃

( 1
B̃

C · ∇l̃
)
. (2.47)

Here the last two terms clearly vanish under flux surface averaging and so, by also
using the Poisson bracket (2.45), we find that

〈
∇ ·

(
a∇× b̃

)〉
ψ̃

= 1
V ′

∫
dl̃dα̃ ∂

∂ψ̃

(
|∇α̃|b̃×∇a · ∇ψ̃

)
= 1
V ′

∫
dl̃dα̃ ∂

∂ψ̃

(
|∇α̃|B̃ ∂a

∂α̃

)
.

(2.48)
Invoking axisymmetry the α̃-derivative can be moved through the ψ̃-derivative, at
which point it is clear that this expression vanishes [24].
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3
Toroidal Kinetic Reduced
Magnetohydrodynamics

Equipped with the mathematical tools described in the previous Chapter we are
now in a position to broach the main topic of this thesis: Toroidal Kinetic Reduced
MHD (TKRMHD). The specific form of this theory which will be developed in
this Chapter describes strong ion scale turbulence in the presence of sharp spatial
gradients. It is very similar to the recently proposed theory for describing the edge of
a tokamak operating in H-mode from Abel and Hallenbert [25], differing in principle
only by having slightly shallower spatial gradients. Thus, in tokamaks it may be
applicable in an intermediate region away from the gyrokinetic core toward the edge
region of the LCFS. Its suggestive name, and indeed its structure too, owes its
origin to Kulsrud’s Kinetic MHD [26, 27] and Strauss’ Reduced MHD [28], to whom
it shares similarities. Like the former, it neglects the high-collisionality assumption
of MHD by introducing a kinetic equation for the evolution of the non-Maxwellian
distributions. Like the latter, it relies heavily on the spatial anisotropy introduced
by the strong magnetic field for closure in the multiscale expansion. Nevertheless,
it is distinct from both, which the additional descriptor "toroidal", referring to its
inclusion of magnetic curvature effects, further clarifies.

In this Chapter we will derive the equations that constitute TKRMHD, starting
by introducing and justifying a set of fundamental orderings which we will apply
to the Fokker-Planck equation (2.24). By focusing on ion scale phenomena we will
have to retain the full ion kinetic equation but will be able to solve the lowest order
electron equation. In so doing we will reduce the full electron kinetic equation into
two equations describing the evolution of the electron density ne and temperature
Te, yielding a hybrid kinetic/fluid theory. However, manipulating the Fokker-Planck
equation in this fashion will fail to yield a closed set of equations. As such we will
finally have to close the equation system by manipulating the momentum equation
to produce a vorticity equation, describing the flux-surface-average component of
the electrostatic potential ϕ.

3.1 Ordering Scheme

In order to derive TKRMHD from the Fokker-Planck equation (2.24) we will perform
a multiscale expansion as described in Section 2.2. To this end we will need to
analyse relevant scales and carefully choose how to order them with respect to each
other for our present purpose of describing strong, gradient-driven plasma edge ion
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3. Toroidal Kinetic Reduced Magnetohydrodynamics

turbulence.
In any tokamak there are three obvious length scales that are set a priori by its

design. These are the typical tokamak scale a of the magnetic field and the typical
ion and electron gyroradii ρi and ρe. We also introduce two additional scales l⊥ and
l‖ to describe the fluctuating fields and distributions, one perpendicular and one
parallel. This is because the intense mean magnetic field creates strong anisotropy
by heavily restricting cross-field transport while leaving parallel transport relatively
unhindered.

In choosing how to order these length scales with respect to each other it makes
sense, because parallel motion is so unconstrained, to set

l‖ ∼ a, (3.1)

where here and henceforth ∼ is to be interpreted as "is of the same order as". In
contrast l⊥, which for us will roughly correspond to the width of the edge region, is
considerably smaller. Specifically, after using the strong magnetisation to assign

ε ≡ ρi
l⊥
� 1 (3.2)

as our fundamental expansion parameter we will set the anisotropy to be

l⊥
l‖
∼ ε. (3.3)

In terms of the conventional geometric tokamak quantities, the safety factor q and
the tokamak major radius R, we have a ∼ qR. Therefore these two orderings
correspond to the scaling relation

l⊥ ∼
√
ρiqR (3.4)

for the width of the edge region described by TKRMHD.
Proceeding to the time scales, we wish to describe plasma bulk transport which

near the edge occurs on the ion streaming time scale. Therefore we choose

ω ∼ vth,i
l‖
, (3.5)

where
vth,i =

√
2Ti
mi

(3.6)

is the ion thermal velocity so that, by using (3.3), we have

ω ∼ ε2Ωi, (3.7)

where
Ωi = ZieB̃

mic
(3.8)

is the typical ion gyrofrequency. With this timescale set we then order the collision
timescale to be the same,

νii
ω
∼ 1. (3.9)
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By doing so we can capture the phenomena in the entire range from weakly-collisional
to collisionless physics.

Of course, we are more interested in perpendicular drifts across the field than
parallel drifts, since these give rise to transport out of the tokamak. It is known
that anomalous transport is the dominant transport mechanism in tokamaks. This
transport is induced by the Ẽ × B̃ drift and is associated with the nonlinear ion
timescale

uE · ∇ ∼
|uE|
l⊥

= 1
l⊥

∣∣∣∣ cB b̃×∇δϕ
∣∣∣∣ , (3.10)

which we must therefore require to be of the same order as (3.5). This requires us
to consider the electric field as large by setting

eϕ

Ti
∼ 1. (3.11)

This ordering, in turn, requires us to consider O(1) fluctuations in the distribution
functions,

δfs
fs
∼ 1, (3.12)

because of the large Boltzmann response to the electric field [29]. This is only natural
because of the steep gradients and low density in the edge. These conditions cause
such strong turbulence that it becomes fruitless to attempt to discern any quiescent
equilibrium on the timescale of interest.

The fact that the density and temperature is so low in the edge region makes
it reasonable that we should treat the plasma β as small, which indeed is the case
in present tokamaks. Indeed, in order for our plasma not to be ballooning unstable
it can at most be of order

β = 8π
∑
s

nsTs

B̃2
∼ l⊥
l‖
∼ ε. (3.13)

This is because this instability is driven by pressure and stabilised by magnetic
curvature which are characterised by l⊥ and l‖ respectively [3, 30]. Naturally, we
choose to make use of this maximal ordering so as to capture all relevant physics
from when the plasma is stable below this limit to when instabilities arise.

As we have previously mentioned, we will be interested in ion-scale phenomena
because these dominate transport. The electrons, however, are still a very important
part of the system and we must choose how order their dynamics with respect to
the ion dynamics. Though they may differ substantially in a tokamak, there is no
inherent reason to order ion and electron temperatures differently in a scaling sense.
Therefore we should order their ratio as

Te
Ti
∼ 1. (3.14)

Then, with our β-ordering (3.13), if we do not wish to discard electron kinetic effects
in Alfvén waves we must order the electron/ion mass ratio as

me

mi

∼ β ∼ ε. (3.15)
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With this ordering electron and ion parallel motion will explicitly separate in our
ordering scheme. This will prove useful and allow us to solve the electron dynamics
to lowest order by separating similar terms for electrons and ions by order ε1/2.

All that remains now is to order the fluctuating fields with respect to the mean
fields. Of course, since we specify a non-rotating plasma the mean electric field
vanishes and we need only consider the magnetic field. Naturally, by our β-ordering
(3.13), B̃1 should be small compared to B̃0 because the low pressure of the plasma
should not seriously affect the intense external confining field. Indeed, for this reason
it must vary on the perpendicular scale l⊥ and parallel scale l‖. This implies that

|B̃1|
|B0|

∼ l⊥
l‖
∼ ε, (3.16)

because the magnetic field lines are displaced by at most l⊥ over a distance of l‖ and
these expressions are then both expressions for the tangent of the field lines.

Summarising the orderings we have chosen in this Section we will in our mul-
tiscale expansion use

l⊥
l‖
∼ β ∼ me

mi

∼ |B̃1|
|B0|

∼ ρi
l⊥
≡ ε,

eϕ

Ti
∼ Te
Ti
∼ δfs

fs
∼ 1, ω

Ωi

∼ νii
Ωi

∼ ε2. (3.17)

With these in hand, we can make use of them in the next Section and finally begin
to derive the equations that constitute TKRMHD.

3.2 Derivation of Equation System
Having introduced our ordering scheme (3.17) we now return to the Fokker-Planck
equation (2.24) in Catto-transformed variables (2.21)-(2.23). First we note that, to
lowest order, the derivatives present in this equation are given by [10]

Ṙs = v‖b̃ + c

B
b×∇

(
ϕ− v · Ã

c

)
+O(ε2vth,s) (3.18)

ε̇s = Zse
∂

∂t

(
ϕ− v · Ã

c

)
(3.19)

ϑ̇ = Ωs +O(εΩs) (3.20)

where to lowest order

b̃ = b + 1
B
∇× Ã = b− 1

B
b×∇Ã‖. (3.21)

Second, because our orderings render us unable to discern any quiescent mean dis-
tribution within the large-amplitude turbulence we will expand fs, ϕ, and Ã like

fs = f (0)
s + f (1/2)

s + f (1)
s + ... (3.22)

where the superscript indicate the ε-order. The reason we expand in powers of ε1/2
instead of ε is because vth,e is ε1/2 larger than vth,i in our ordering (3.17). Therefore
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terms proportional to vth,s will differ by this order for electrons and ions, requiring
us to expand like this to not disregard interactions between electron and ions arising
from these terms.

With these preliminary considerations we can now proceed by matching terms
order by order in the Fokker-Planck equation. Thankfully we only need repeat this
process until the lowest order dynamic equation where we will be able to close our
equation system. For ions, the fourth term in (2.24) dominates to O(εvth,if/l‖).
Thus we have

∂f (0)
s

∂ϑ
= 0, ∂f (1/2)

s

∂ϑ
= 0 (3.23)

so the ions are gyrophase independent up to O(εf).
Proceeding to O(εvth,i/l‖) many new terms enter, including the time derivative,

and so we find the dynamical equation

∂f
(0)
i

∂t
+
[
v‖b + c

B
b×∇

(
ϕ− v · Ã

c

)]
· ∂f

(0)
i

∂Ri

+ Zie
∂

∂t

(
ϕ− v · Ã

c

)
∂f

(0)
i

∂εi
+ Ωi

∂f
(1)
i

∂ϑ
= C[f (0)

i ].
(3.24)

However, the equation above contains f (1)
i , of which we have no knowledge. Thank-

fully, this term is annihilated by the the gyroaverage (2.26) and so after applying it
we are left with the first equation of TKRMHD, the ion kinetic equation:

∂f
(0)
i

∂t
+
[
v‖b + c

B
b×∇

(
ϕ−

v‖Ã‖
c

)]
· ∂f

(0)
i

∂Ri

+ Zie
∂

∂t

(
ϕ−

v‖Ã‖
c

)
∂f

(0)
i

∂εi
= C[f (0)

i ].
(3.25)

Here one should remember that all quantities are specifically to be evaluated at
Ri and that partial derivatives are to be taken keeping other Catto-transformed
variables fixed. In particular, this means that the time-derivative is not the usual
one, but also contains a piece owing to the rapid variation of ϕ.

Having determined the TKRMHD ion kinetic equation we now turn to the
electrons. Similar to ions the electron Fokker-Planck equation (2.24) is dominated by
the gyrophase dependent term and so to zeroth order f (0)

e is gyrophase independent.
However, because vth,e and thus νee is O(ε−1/2) larger than their ion equivalents,
for electrons the collision term and terms linear to v are moved from second to
first order compared to the ion equation. Accordingly the O(ε1/2vth,if/l‖) electron
Fokker-Planck equation becomes[

v‖b−
b
B
×∇(v · Ã)

]
· ∂f

(0)
e

∂Re

+ e

c

∂

∂t
(v · Ã)∂f

(0)
e

∂εe
+ Ωe

∂f (1/2)
e

∂ϑ
= C[f (0)

e ]. (3.26)

After now applying the gyroaverage (2.26) and using equation (3.21) this becomes

v‖b̃ ·
∂f (0)

e

∂Re

+ ev‖
c

∂Ã‖
∂t

∂f (0)
e

∂εe
= C[f (0)

e ]. (3.27)
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Equation (3.27) is a further constraint on the lowest order electron distribution
f (0)
e that we can use to examine its structure. The first step we will perform to this
end is, for reasons that will shortly becomes transparent, multiplying it by 1+ln f (0)

e

to transform it into

v‖b̃ ·
∂

∂Re

f (0)
e ln f (0)

e + ev‖
c

∂Ã‖
∂t

∂

∂εe
f (0)
e ln f (0)

e = (1 + ln f (0)
e )C[f (0)

e ]. (3.28)

Proceeding by integrating this over all velocities the second term vanishes as can
be seen by using the explicit expression for this operation in Catto-transformed
variables (2.25). In order to also remove the first term we will be forced to assume
the well-behaved closed field geometry described in Section 2.6. Upon then also
applying the flux surface average and using (2.25) the first term can be changed
into 〈∫

d3vv‖b̃ ·
∂

∂Re

f (0)
e ln f (0)

e

〉
ψ̃

=
〈

B̃ · ∂

∂Re

∫
d3v

v‖

B̃
f (0)
e ln f (0)

e

〉
ψ̃

=
〈

B̃ · ∇
∫

d3v
v‖

B̃
f (0)
e ln f (0)

e

〉
ψ̃

(3.29)

to lowest order. This is clearly of the form (2.43) and so vanishes as desired. Thus,
because the velocity integral of C[f (0)

e ] vanishes by particle conservation, the original
constraint (3.27) has been reduced to〈∫

d3vv ln f (0)
e C[f (0)

e ]
〉
ψ̃

= 0. (3.30)

To lowest order we can evaluate f (0)
e at r in (3.30) at which point it becomes a

well-known constraint which arises in the proof of the Boltzmann H-theorem. The
only function whose velocity-dependence satisfies it is a general Maxwellian with
an arbitrary flow [10, 14]. However, because we have restricted our attention to
stationary plasmas and because the only possible Boltzmann response we can have
is that arising from ϕ, we can specify that

f (0)
e = ηe(r)

(
me

2πTe(r)

)3/2

exp
(
− εe
Te(r)

)
(3.31)

where, to lowest order, Te is the electron temperature and ηe is related to the electron
density ne through

ηe = ne exp
(
−eϕ
Te

)
. (3.32)

Having deduced the Maxwellian nature of f (0)
e we now insert (3.31) into (3.27)

to determine the properties of Te and ηe. After dividing by f (0)
e we find, to lowest

order,

v‖b̃ · ∇
(

ln ηe −
3
2 lnTe

)
+ εe
Te
v‖b̃ · ∇ lnTe −

ev‖
cTe

∂Ã‖
∂t

= 0. (3.33)

This equation must obviously hold for arbitrary v so we can from the highest v-
power, only present in the second term, conclude that Te must be an exact flux
function,

Te = Te(ψ̃). (3.34)
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The fact that no electron temperature variation can occur on the exact flux surfaces
should come as no surprise. By our ordering (3.17) the rapid thermal velocity of
electrons causes electron convection along field lines to occur on a timescale much
shorter than the processes we are attempting to describe, which occur on the sound
time.

Using (3.34) in (3.33) we find the constraint

b̃ · ∇ ln ηe = e

cTe

∂Ã‖
∂t

. (3.35)

This is an important result because it implies that the parallel electric field can be
expressed as

b̃ · Ẽ = −b̃ · ∇
(
δϕ+ Te

e
ln ηe

)
= −b̃ · ∇λ (3.36)

so that Faraday’s law in turn can be expressed as

∂B̃
∂t

= ∇× (ueff × B̃) (3.37)

after defining the effective velocity field ueff through

ueff = c

B̃
b̃× (∇λ− Ẽ) = − c

B
b̃×∇

(
Te
e

ln ηe
)
. (3.38)

This effective velocity can, in a close analogy to the flux freezing of ideal MHD, be
shown to transport closed curves such that they keep enclosing the same amount
of magnetic flux [18]. Thus we find that the exact flux surfaces ψ̃ are convected
through (

∂

∂t
+ ueff · ∇

)
ψ̃ = ∂ψ̃

∂t

∣∣∣∣∣
ψ̃,α̃,l̃

= 0 (3.39)

and similarly for α̃ and l̃. Furthermore this implies that the nice toroidal flux surface
topology, which we assumed were present to derive (3.31), are conserved [24, 31].
Importantly then, though the magnetic field may change substantially the flux-
surface average will continue to be a permissible, consistent operation from moment
to moment. The system, as described by the TKRMHD equations, will not evolve
over time to a state that is incompatible with the TKRMHD assumptions.

Having solved for the lowest order electron distribution f (0)
e we now proceed to

the second order in the electron Fokker-Planck equation (2.24) which, after being
gyroaveraged like (3.25) and (3.27), is given by

∂f (0)
e

∂t
+ c

B
b×∇ϕ · ∂f

(0)
e

∂Re

− e∂ϕ
∂t

∂f (0)
e

∂εe
+ v‖b̃ ·

∂f (1/2)
e

∂Re

+ ev‖
c

∂A
(0)
‖

∂t

∂f (1/2)
e

∂εe

−
v‖
B

b×∇A(1/2)
‖ · ∂f

(0)
e

∂Re

+ ev‖
c

∂A
(1/2)
‖

∂t

∂f (0)
e

∂εe
= C[f (0)

e + f (1/2)
e ].

(3.40)

There are two obvious problems with this equation in its current form. Firstly, it
contains A(1/2)

‖ and f (1/2)
e of which we have no knowledge. Secondly, it is a dynamic
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equation for the full lowest order electron distribution f (0)
e , even though we already

know by its explicit form (3.31) that all information about it is contained in the two
functions ηe and Te. Both troubles can be remedied by neglecting the unnecessary
information contained in (3.40) through taking two of its velocity moments.

To obtain two dynamic equations for ne and Te from (3.40) we will multiply it
by 1 and εe/Te−3/2 respectively before integrating over all velocities. In both cases
we will find that the sixth and seventh term vanish because there is no zeroth order
electron flow and f (0)

e is even in v‖. Similarly, the collisional term vanish, by electron
number and energy conservation. That leaves the fourth and fifth terms containing
higher order variables. Introducing the lowest order parallel electron flow

u‖e =
∫

d3vv‖f
(1/2)
e (3.41)

and dropping the superfluous superscript on Ã‖ we discover that

∫
d3vv‖b̃ ·

∂f (1/2)
e

∂Re

+
∫

d3v
ev‖
c

∂Ã‖
∂t

∂f (1/2)
e

∂εe
= B̃ · ∂

∂Re

(
u‖e

B̃

)
(3.42)

because, from (2.25), the second term vanishes by virtue of its integrand being a
complete εe-derivative. Similarly, we find, after introducing the shifted, normalised,
lowest order parallel electron energy flow

q‖e =
∫

d3v
(
εe
Te
− 3

2

)
v‖f

(1/2)
e , (3.43)

using integration of εe by parts on the second term, and accounting for the extra
term arising from pulling εe through the Re−derivative that

∫
d3v

(
εe
Te
− 3

2

)
v‖b̃ ·

∂f (1/2)
e

∂Re

+
∫

d3v
(
εe
Te
− 3

2

)
ev‖
c

∂Ã‖
∂t

∂f (1/2)
e

∂εe

= B̃ · ∂

∂Re

(
q‖e

B̃

)
+ eu‖e

Te

(
b̃ · ∂ϕ

∂Re

− 1
c

∂Ã‖
∂t

)
.

(3.44)

Returning to the integral of the first three terms in equation (3.40), we now
find it convenient to switch back to the usual (r,v)-coordinates. With our orderings
the different derivatives are related through

∂

∂Re

= ∇+ e∇ϕ ∂

∂εe
+O

(
ε

L‖

)
, (3.45)

and
∂

∂t

∣∣∣∣∣
Re,εe,µe,ϑ

= ∂

∂t

∣∣∣∣∣
r,v

+ e
∂ϕ

∂t

∂

∂εe
+O (εω) . (3.46)

Therefore we find to lowest order that these three terms in (r,v)-coordinates, be-
cause ∇ϕ · uE = 0, can be combined into the simple expression(

∂

∂t
+ uE · ∇

)
f (0)
e . (3.47)
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Using the explicit Maxwellian form of (3.31) to evaluate the integrals it becomes
a simple matter to deduce that∫

d3v

(
∂

∂t
+ uE · ∇

)
f (0)
e =

(
∂

∂t
+ uE · ∇

)
ne (3.48)

and ∫
d3v

(
εe
Te
− 3

2

)(
∂

∂t
+ uE · ∇

)
f (0)
e

= −eϕ
Te

(
∂

∂t
+ uE · ∇

)
ne + 3

2ne
(
∂

∂t
+ uE · ∇

)
lnTe.

(3.49)

Having reached this point we can now combine equations (3.42), (3.44), (3.48),
and (3.49) to reduce (3.40) into the two dynamic equations(

∂

∂t
+ uE · ∇

)
lnne + 1

ne
B̃ · ∇

(
u‖e
B

)
= 0 (3.50)

and

− eϕ

Te

(
∂

∂t
+ uE · ∇

)
ne + 3

2ne
(
∂

∂t
+ uE · ∇

)
lnTe

+ B̃ · ∇
(
q‖e
B

)
= eu‖e

Te

(
b̃ · ∇ϕ+ 1

c

∂Ã‖
∂t

) (3.51)

where we have divided the first equation by the electron density ne.
Now equations (3.50) and (3.51) still contain u‖e and q‖e of which we currently

have no knowledge. We can remedy this by returning to Ampère’s law (2.10) which,
in its lowest order form, allows us to determine that

u‖e = c

e4πb · ∇ × B̃. (3.52)

This result naturally expresses the fact that, because the mass ratio and β is small,
the current is almost entirely carried by the electrons and, importantly, allows us to
eliminate u‖e. Even so, we will keep it in its current form in our equation system for
notational convenience. There is no similar relation we can use to find an expression
for q‖e, but this is no problem. Because Te is a flux function we can flux surface
average equation (3.51) to produce

−
〈
eϕ

Te

(
∂

∂t
+ uE · ∇

)
ne

〉
ψ̃

+
〈

3
2ne

(
∂

∂t
+ uE · ∇

)
lnTe

〉
ψ̃

=
〈
eu‖e
Te

(
b̃ · ∇ϕ+ 1

c

∂Ã‖
∂t

)〉
ψ̃

(3.53)

where q‖e has been eliminated. One might be worried that in so doing we would
discard necessary information about on-surface variation. However we have deter-
mined that Te is an exact flux function. Therefore we do not lose any information
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in switching to this equation to determine the evolution of Te because the in-surface
variation of ne is still described by equation (3.50).

At this point, we have in our hand the four equations, (3.25), (3.35), (3.50),
and (3.53), in which there appear five variables, f (0)

i , ne, Te, Ã‖, and ϕ. Of these,
we are currently only missing an equation to specify the evolution of ϕ. To this
end we can naturally return to the quasineutrality condition (2.11). This condition,
together with the expression (3.32) for the electron density and the correspond-
ing constraint (3.35) for ηe, clearly makes it possible to determine the on-surface
variation of ϕ. However, there remains a freedom in choosing how to divide the
flux-surface-dependence of ne between ϕ and ηe, which prevents this approach from
fully determining ϕ. Therefore, we need to employ some other method to determine
the flux-surface variation of ϕ, and this will turn out to be a vorticity equation.

3.3 The Vorticity Equation
In order to describe the perpendicular variation of ϕ in TKRMHD we will have to
turn away from the Fokker-Planck equation which we up to this point have been
focusing on. Instead our starting point will be the momentum equation

∂

∂t

(∑
s

ms

∫
d3vvfs

)
+∇ ·

(∑
s

∫
d3vmsvvfs

)
= 1
c
j× B̃, (3.54)

from which we will derive a vorticity equation that will turn out to contain precisely
the information about ϕ we are missing.

To commence our investigation of the vorticity equation, we find it convenient
to rewrite the momentum equation by separating out the uE-flow through

w = v− uE. (3.55)

Upon then defining
nsus =

∫
d3vvfs (3.56)

and
nsUs =

∫
d3wwsfs (3.57)

we can transform (3.54) into the form

∑
s

nsms

(
∂

∂t
+ uE · ∇

)
us −X = −∇ · p + 1

c
j× B̃ (3.58)

where
X =

∑
s

(∇ · πs − nsmsUs∇ ·Us + nsmsUs · ∇uE) (3.59)

and, because of gyrophase-independence, the total stress tensor∫
d3wmswwfs (3.60)
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has been divided into the gyrotropic pressure tensor

p = p⊥I + (p‖ − p⊥)b̃b̃ (3.61)

and the non-diagonal part π [25].
The momentum equation in the form of (3.58) contains the full information

of all quantities to all orders. Of course this is unnecessary for our purposes so we
restrict our attention by applying the orderings of (3.17). The first thing we then
find is that by estimating us as uE the left hand side is much smaller than the
right hand side, O(ε2p/l⊥) as compared to O(p/l⊥). This allows us to deduce an
expression for the perpendicular current which will shortly prove useful,

j⊥ = c

B
b̃×∇p⊥ −

c(p‖ − p⊥)
B

b̃× (b̃× (∇× b̃)) +O(ε2cB/l‖) (3.62)

where we have used b̃ · ∇b̃ = −b̃× (∇× b̃) and B̃ = B +O(ε2B).
The problem of having a dominating right hand side in the momentum equation

must be remedied when we now wish to proceed and arrive at a vorticity equation
for ϕ by taking ∇ · (b̃ × (3.58)/B̃). Thankfully, in this process we will be able
to make the dominating terms on the right vanish to appropriate order. This is
because Ampère’s law (2.10) can be used twice to manipulate the right hand side,
to O(ε2B/L‖), like

− b̃
B
×∇ · ((p‖ − p⊥)b̃b̃) = (p‖ − p⊥) b̃

B
×
(
b̃× (∇× b̃)

)
= (p‖ − p⊥)

(
1
B
∇× b̃−∇× b̃

B
− 4π
cB2 j⊥

)
= (p‖ − p⊥)

( 4π
cB2 (j− j⊥)− 1

B
∇× b̃

)
.

(3.63)

As such, using ∇ · j = 0 which follows from quasineutrality (2.11) and charge con-
servation, we find that

∇ ·
[

b̃
B̃
×
(
−∇ · p + 1

c
j× B̃

)]

= ∇ ·
[
−p⊥∇×

(
b̃
B

)
−
(1
c
− 4πp‖ − p⊥

cB2

)
j‖ −

p‖ − p⊥
B

∇× b̃
]
.

(3.64)

so that our vorticity equation becomes

∇ ·
[∑
s

nsms

B

(
∂

∂t
+ uE · ∇

)
b̃× us

]
−∇ ·

(
b̃
B
×X

)

= ∇ ·
[
−p⊥∇×

(
b̃
B

)
−
(1
c
− 4πp‖ − p⊥

cB2

)
j‖ −

p‖ − p⊥
B

∇× b̃
]
.

(3.65)

Even after having used (3.64), the right hand side of (3.65) is still one order
of ε larger than the left hand side. Thankfully, we can lower the relative order of
these terms one power of ε further by applying the flux-surface average. Upon so
doing, it is clear that the third term and part of the first term come to be of the
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form (2.46). The second term, similarly, comes to be of the form (2.43), as can
be seen by using the explicit form of the divergence in Catto-transformed variables
(2.47). Thus these terms vanish under the flux surface average and we are left with
the remaining part of the first term which takes the form〈

∇ ·
( 1
B2p⊥b̃×∇B

)〉
ψ̃
. (3.66)

Using the identity [32]
∇B × b̃ = 4π

c
j−B∇× b̃, (3.67)

we can rewrite (3.66) into
−
〈

j · ∇
(4πp⊥
cB2

)〉
ψ̃
, (3.68)

after which the dominating right hand side, as promised, has been reduced one power
of ε further.

In order to arrive at the final form of our flux-surface averaged vorticity equa-
tion from (3.65), we now use that the lowest order perpendicular particle flow is
given by

nsu⊥s = c

B
b×

[
∇
(
p⊥s
Zse

)
+ ns∇ϕ

]
(3.69)

to find that the first term on the left hand side becomes〈
∇ ·

[∑
s

nsms

B

(
∂

∂t
+ uE · ∇

)( ∇p⊥s
nsmsΩs

+ c∇ϕ
B

)]〉
ψ̃

. (3.70)

Upon then employing manipulations similar to those of appendix B in [25], we find
that the second term to appropriate order becomes〈

1
2BΩs

[
(∇ · b)∇2 − (∇b) : ∇∇

] ∫
d3w

msw
2
⊥

2 w‖fs

〉
ψ̃

. (3.71)

Finally, using (3.62) to separate perpendicular and parallel currents in (3.68), which
will prove useful in the next Chapter, we arrive at the final vorticity equation〈
∇ ·

(∑
s

nsms

B

(
∂

∂t
+ uE · ∇

)( ∇p⊥s
nsmsΩs

+ c∇ϕ
B

))〉
ψ̃

=
〈

1
2BΩs

[
(∇ · b)∇2 − (∇b) : ∇∇

] ∫
d3w

msw
2
⊥

2 w‖fs

〉
ψ̃

−
〈
j‖b̃ · ∇

(4πp⊥
cB2

)
− 8πp⊥

B4 b̃×∇p⊥ · ∇B −
4π(p‖ − p⊥)

B3 ∇× b̃ · ∇p⊥
〉
ψ̃

,

(3.72)

where, like previously mentioned, j‖ to lowest order is given by eu‖e. This equation
determines the flux-surface variation of the electrostatic potential ϕ, which, together
with the quasineutrality condition (2.11) for its on-surface variation, completely
determines ϕ.

At this point we have completed the TKRMHD equations. (3.25), (3.35),
(3.50), (3.53), and (3.72), together with the quasineutrality condition, fully describe
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the dynamics of f (0)
i , ne, Te, Ã‖, and ϕ. They self-consistently describe ITG-like

turbulence of large amplitude occurring in the near-edge region inside the LCFS.
Therefore they should prove suitable for describing tokamaks operating in L-mode.
They possess several important features which fluid or gyrofluid equations, the com-
mon edge plasma descriptions [33, 34], generally lack. These are their fully kinetic
nature, their ability to capture the collisional to weakly collisional transition, and
the fact that they are capable of being applied to general tokamak geometries.
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4
Shallow Gradient Toroidal Kinetic

Reduced
Magnetohydrodynamics

It is known that the tokamak core is well-described by gyrokinetics, but that this
description becomes increasingly inapplicable closer to the LCFS. In particular, the
steeper gradients drive the turbulence of this region to become stronger than in the
core, with longer wavelengths and larger amplitudes. This failure and the need to
accurately describe this region for safe tokamak operation was the imperative reason
for developing the TKRMHD equations of the previous Chapter. Of course, they are
inadequate to describe the extreme ELM-physics of H-mode operation as described
in their sister equations of Abel and Hallenbert [25]. Nevertheless, by virtue of the
orderings (3.17), which are tailored to describe the less extreme end of applicable
physics in the edge region, they should, in most configurations, be able to describe
some part of the edge.

Because physics happens on a continuous spectrum of scales and phenomena
we should be able to smoothly match the gyrokinetic core onto the TKRMHD edge.
This matching is what we will be concerned with in the next two Chapters. In this
Chapter we will explore what becomes of the TKRMHD equations as the driving
gradients are made shallower and the turbulence, in response, weakens. To this
end, we will employ a secondary multiscale expansion, subsidiary to the one we
used in the previous Chapter which will yield a nontrivial shallow gradient limit
of TKRMHD. This expansion will, significantly, make it possible to distinguish a
quiescent equilibrium from the turbulent motion. Because of this, we will have
to make heavy use of the mathematical tools of Chapter 2 to split the TKRMHD
equations into two different sets of equation describing both the rapid evolution of
fluctuating quantities and the slow evolution of mean quantities. In this Chapter
we will only deal with the former, leaving the latter for Chapter 6.

4.1 Shallow Gradient Subsidiary Expansion

With the aim of seeing how our TKRMHD equations (3.25), (3.35), (3.50), (3.53),
and (3.72) behave closer to the gyrokinetic core as the gradients become shallower we
now look to find a suitable subsidiary expansion to apply. Initially, we must decide
how this subsidiary expansion will change the fundamental ordering (3.17). As we
have already hinted, we expect the turbulence, being largely driven by the gradients,
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to reduce in amplitude until a quiescent equilibrium emerges. Therefore we introduce
the separation (2.28) of mean and fluctuating quantities in this subsidiary expansion.
In so doing, we also separate the typical turbulent length scales l⊥ and l‖ from the
equilibrium length scales L⊥ and L‖ because they will come to differ as we leave the
edge region.

As (3.2) is the defining relation for the expansion parameter ε in the TKRMHD
multiscale expansion it is natural that we return and modify it in our subsidiary
expansion. The lengthening of L⊥ is naturally considered to be as the fundamental
difference from the original expansion. Thus, we choose to introduce the small
subsidiary expansion parameter ξ through

ρi
L⊥

= εξ. (4.1)

Of course, in order for it to be valid for us to consider this a subsidiary expansion
we must require that ε� ξ and that as ξ → 1 we recover the initial ordering (3.17).
The former condition will prove beneficial as it will allow us to instantly disregard
any terms arising which are of higher order in ε, even when they are of lower order
in ξ.

Equipped with the fundamental ordering (4.1), and having introduced these
different length scales, we now must order them with respect to each other. Addi-
tionally, we must also choose how to order the size of the fluctuations with respect
to mean quantities. However, these are really all the changes we can make from the
original ordering (3.17) because we are still interested in similar phenomena occur-
ring on the same ion parallel streaming time scale. Therefore we will keep β, me,
mi, Te, Ti, ω, Ωi, and νii ordered the same.

To guide us in choosing the remaining orderings we note that we wish to de-
scribe the strongest turbulence which gives rise to most of the transport. As ex-
plained in Barnes et al [29], this is the so called outer scale turbulence which is
characterised by two conditions: that the turbulent parallel length scale is the same
as the system scale,

l‖ ∼ L‖ ∼ a, (4.2)

and that the linear drive is comparable to the nonlinear decorrelation, which for our
stationary plasma where ϕ = δϕ can be expressed as

c

B
b̃×∇δϕ · ∇Fs ∼

c

B
b̃×∇δϕ · ∇δfs. (4.3)

Having employed the outer scale conditions, we are almost at a point where we
can uniquely determine how to order all unknown quantities with respect to each
other. We only need to additionally use quasineutrality in the form of [29]

eδϕ

Ts
∼ δfs

Fs
, (4.4)

and fix the nonlinear timescale to be the ion parallel streaming timescale (3.5). Then
we find that

eδϕ

Ts
∼ δfs

Fs
∼ l⊥
L⊥
∼ ξ2. (4.5)
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In conclusion, to summarise what we have determined in this Section the subsidiary
expansion ordering is given by

β ∼ me

mi

∼ ε,
eδϕ

Ti
∼ Te
Ti
∼

l‖
L‖
∼ a

l‖
∼ 1, ω

Ωi

∼ νii
Ωi

∼ ε2,

eδϕ

Ts
∼ δfs

Fs
∼ l⊥
L⊥
∼ ξ2,

L⊥
l‖
∼ |B̃1|
|B0|

∼ ρi
l⊥
≡ ε

ξ
. (4.6)

4.2 Fluctuation Equations

Equipped with the subsidiary ordering (4.6), we can now return to full TKRMHD
equations and see how they change. Because we have separated the distribution
functions into mean and fluctuating quantities it is clear that we must extract equa-
tions governing the evolution of both from the original equations. We can achieve
this by using the turbulence average (2.37) to separate the two from each other.

Initially however, by turning to the ion kinetic equation (3.25), we will not
need the turbulence average. This is because, after expanding into fluctuating and
non-fluctuating parts, to lowest order in ε and ξ (3.25) reduces to

v‖b̃ ·
∂Fi
∂Ri

= C[Fi], (4.7)

after dropping superfluous superscripts and using (3.21) for the lowest order expres-
sion of b̃. Equation (4.7) obviously contains only Fi and so we can use it to deduce
information about the equilibrium, knowing nothing more about the fluctuations.
Indeed, it is clearly of a similar but simpler form than the electron constraint (3.27).
By exactly the same argument as the one we used for the electrons we immediately
deduce that the ion equilibrium in the subsidiary expansion is Maxwellian,

Fi = Ni(r)
(

me

2πTi(r)

)3/2

exp
(
− εi
Ti(r)

)
. (4.8)

Inserting this back into equation (4.7) then yields, similarly to the electrons, the
result that Ni(r) = Ni(ψ̃) and Ti(r) = Ti(ψ̃) are exact flux functions of b̃. As the
Boltzmann response is purely fluctuating, we see that the mean distribution depends
spatially only through ψ̃. In particular, this allows us to write

∂Fi
∂Ri

= ∂Fi

∂ψ̃
∇ψ̃, (4.9)

to lowest order. This will be convenient for comparisons to gyrokinetics as it is in
the same form as [10].

Having deduced the Maxwellian nature of the ion equilibrium we now proceed
to determine the equations governing the turbulence. We do this by subtracting the
turbulence-averaged part of to the TKRMHD equations, which will eliminate any
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terms not containing fluctuating quantities. Starting with the ion kinetic equation
(3.25) it is a simple matter to determine that this procedure leaves us with

∂δfi
∂t

+
[
v‖b̃ + c

B
b×∇

(
ϕ−

v‖δA‖
c

)]
· ∂δfi
∂Ri

+ ∂Fi

∂ψ̃

c

B
b×∇

(
ϕ−

v‖δA‖
c

)
· ∇ψ̃ − ZieFi

Ti

∂

∂t

(
δϕ−

v‖δA‖
c

)
= C[fi],

(4.10)

after using (4.9).
Having determined how the ions behave in the subsidiary expansion, we now

wonder if we can deduce any information about how the electron dynamics change.
To this end, we turn first to equation (3.35) for the evolution of Ã‖. Because A‖, and
indeed all mean quantities, by our ordering is assumed to be quiescent so its time
derivative is slow, we find that this equation, to lowest order, reduces to a constraint
on ηe,

b̃ · ∇ηe = 0. (4.11)
Unsurprisingly we find that ηe is a flux function and so the electron Maxwellian
(3.31), like the ions, is a flux function to lowest order.

Before proceeding to the next order in (3.35), we momentarily change focus to
equation (3.53) for the evolution of Te. By using the explicit expression (3.52) to
order u‖e we find that one term dominates the rest so that to lowest order〈(

∂

∂t
+ uE · ∇

)
lnTe

〉
ψ̃

= 0. (4.12)

Here, because Te is a flux function, we find upon using the explicit Poisson bracket
expression (2.45) that

〈uE · ∇ lnTe〉ψ̃ = ∂Te

∂ψ̃

〈
c

B
b×∇δϕ · ∇ψ̃

〉
ψ̃

= −c∂Te
∂ψ̃

〈
B
∂

∂α̃

(
δϕ

B

)〉
ψ̃

(4.13)

where we have used the fact that to lowest order the α̃-derivative does not act on B.
Because of axisymmetry, this is clearly of the form (2.43) and so vanishes. Therefore,
we conclude that, in addition to being a flux function, the electron temperature is
constant on the ion parallel streaming time scale,

∂Te
∂t

= 0. (4.14)

Now that we have explored the ion and electron equilibria, we return to equa-
tion (3.35). Using (3.32), with the new information that ηe is a flux function, we
find after proceeding to the next order past (4.11) that the evolution of δA‖ is given
by

e

cTe

∂δA‖
∂t

= b̃ · ∇
(
δηe
ηe

)
= b̃ · ∇

(
δne
ne
− eδϕ

Te

)
. (4.15)

Proceeding to the final two equations (3.50) and (3.72) it is a straightforward
procedure to extract the lowest order fluctuating piece from each. Starting with
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(3.50) we find that it reduces to(
∂

∂t
+ uE · ∇

)
δne + uE · ∇ne + B̃ · ∇

(
u‖e
B

)
= 0. (4.16)

Similarly, we find upon meticulously checking the order of every term in equation
(3.72) and using (3.52) that two terms dominate so that it reduces to〈∑

s

nsms

B

(
∂

∂t
+ uE · ∇

)(
∇2
⊥δp⊥s

nsmsΩs

+ c∇2
⊥δϕ

B

)〉
ψ̃

= 0. (4.17)

At this point we have completely determined the equations governing the tur-
bulence at the outer scale, in the shallow gradient TKRMHD limit our subsidiary
expansion constitutes. The electron temperature has ceased to be an independent
variable and our original five TKRMHD equations have been reduced to the four
equations (4.10), (4.15), (4.16), and (4.17). However, by separating quantities into
mean and fluctuating quantities we have introduced more variables whose variation,
in this Section, has been treated simply as slow. Obviously we must also determine
how they evolve, especially because they describe the bulk transport which is of
primary importance for tokamak plasma confinement. However, this calculation is
postponed to chapter 6 and in the next Chapter we instead examine a subsidiary
expansion of gyrokinetics on the fluctuation time scale.
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5
Steep Gradient, Long Wavelength

Gyrokinetics

In Chapter 3 we developed TKRMHD in order to explore some of the tokamak edge
physics that conventional gyrokinetics fails to describe. Nevertheless, because con-
ventional gyrokinetics has been so successful in describing the core we were guided
to attempt to find an intermediary theory so that we can smoothly transition from
the gyrokinetic core to the TKRMHD physics closer to the edge. In the previous
Chapter we approached this from the TKRMHD side by performing a shallow gra-
dient subsidiary expansion to arrive at a new set of equations. Now we will start
from conventional gyrokinetics and attempt to reach that same set of equations.

We begin by presenting conventional gyrokinetics, in the absence of sonic ro-
tation, and compare it to the TKRMHD limit of the previous Chapter. This com-
parison will then guide us in how we should approach the problem of reducing
gyrokinetics to a matching set of equations. First, we will find that gyrokinetics’ is
too general in that it describes both ion and electron scale motion, treating them on
equal footing. Therefore we will immediately turn to the reduced gyrokinetic model
of Abel and Cowley [24] which separates out the relevant ion scale dynamics by
taking the low mass ratio limit. We will then proceed by finding the low β-limit of
these equations before employing a non-trivial long wavelength limit to arrive at the
desired result with matching equations describing the turbulence. In this process we
will specifically have to devote considerable efforts in manipulating the gyrokinetic
equations to produce a vorticity equation. Having then matched the two set of tur-
bulent equations onto each other we will in the next and final Chapter turn to the
transport equations, matching these between the two sets of intermediary equations
as well.

5.1 Conventional Gyrokinetics

Gyrokinetics is a fully kinetic theory describing plasma turbulence on scales compa-
rable to the gyroradius [6, 35]. It can be derived in an entirely analogous manner to
the way we derived TKRMHD in Chapter 3 by using a multiscale expansion. The
standard gyrokinetic ordering by which this multiscale expansion is performed is,
using the same notation as in the rest of this thesis, given by [6]

ω

Ωs

∼ νs
Ωs

∼ l⊥
l‖
∼ |δB|
|B̃|
∼ δfs

Fs
∼ 1√

ωtheat
∼ ρs

a
≡ ε� 1 (5.1)
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while other dimensionless quantities, e.g. β and me/mi, are treated as order unity.
Now we will not be using this ordering in order to derive gyrokinetics from scratch.
Instead we will merely summarise the resulting equations in the absence of sonic
flows, for a thorough derivation see [10].

With the gyrokinetic ordering (5.1), like in the subsidiary TKRMHD ordering
(4.6), the rapid gyromotion is averaged away and the lowest order mean and fluctu-
ating distributions become gyrophase independent. Furthermore, in the absence of
rotation the mean distributions reduce to Maxwellians with density ns(ψ) and tem-
perature Ts(ψ) being mean flux functions. Their slow evolution in the gyrokinetic
transport equations we will leave until Chapter 6 after we have completely matched
the turbulent gyrokinetic equations to the TKRMHD limit of Chapter 3.

Turning to the fluctuating distribution δfs, the non-adiabatic response

hs = δfs + Zseδϕ

Ts
Fs. (5.2)

is usually separated out. Then the lowest order fluctuating quasineutrality condition
becomes ∑

s

Z2
s e

2nsδϕ

Ts
=
∑
s

Zse
∫

d3v 〈hs〉r (5.3)

in accordance with (4.4). Here we note that this equation immediately determines
the electrostatic potential fully, in contrast to the elaborate vorticity equation of
TKRMHD. This is a large difference which will prove cumbersome to remedy when
matching the two together.

The next equation of gyrokinetics is the evolution equation for hs, known as
the gyrokinetic equation:[

∂

∂t
+
(
v‖b + VDs + 〈Vχ〉Rs

)
· ∂

∂Rs

]
hs − 〈C[hs]〉Rs

= ZseFs
Ts

∂

∂t

〈
δϕ− v · δA

c

〉
Rs

− ∂Fs
∂ψ
〈Vχ〉Rs

· ∇ψ
(5.4)

where
〈Vχ〉Rs

= c

B
b× ∂

∂Rs

〈
δϕ− v · δA

c

〉
Rs

, (5.5)

is the fluctuating guiding centre drift velocity. This equation describe how the
turbulent particles, or more particularly their guiding centres, drift and diffuse in
the large-scale mean magnetic field and small scale self-generated fields while being
driven by the gradients of the mean distributions.

The final equations needed to close gyrokinetics are obtained from Ampère’s
law and describe the evolution of δB which, within this ordering, is conveniently
described by δA‖ and δB‖. The parallel and perpendicular fluctuating components
of this law then, respectively, yields

∇2
⊥δA‖ + 4π

c

∑
s

Zse
∫

d3vv‖ 〈hs〉r = 0, (5.6)
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and
∇2
⊥
δB‖B

4π +∇⊥∇⊥ :
∑
s

∫
d3v 〈msv⊥v⊥hs〉r = 0. (5.7)

Equations (5.3), (5.4), (5.6), and (5.7) constitute the full gyrokinetic equations for
hs, δϕ, δA‖, and δB‖ which we will now proceed to, by taking various limits, incre-
mentally transform into (4.10), (4.15), (4.16), and (4.17).

5.2 Low-Mass-Ratio and Low-β Limits
Proceeding from the gyrokinetic equations we commence by separating the ion and
electron scale dynamics by taking the low mass ratio limit

me

mi

→ 0. (5.8)

In addition to this limit we will fix the fluctuation timescales, including the nonlinear
timescale, to be that of the ion parallel streaming time ω = vth,i/a. This leaves
the ion kinetic equation unchanged but allows the electron kinetic equation to be
solved and thus the fast electron dynamics to be eliminated like in TKRMHD,
although the procedure is considerably more involved. Thankfully, this limit has
been thoroughly explored by Abel and Cowley [24] and so we may simply quote the
resulting equations, in their simpler non-rotating form.

In going to the low mass ratio limit it becomes convenient to introduce the
exact flux surfaces already familiar to us from TKRMHD, with that same magnetic
field (3.21). This is because then the solution for the ion scale fluctuating electron
distribution which one obtains may be expressed as

δfe = eζ(r)
Te

Fe + (ψ̃ − ψ)∂Fe
∂ψ

+
(
εe
Te
− 3

2

)
δTe(ψ̃)
Te

Fe, (5.9)

where Te(ψ) and Fe(ψ,v) are mean flux functions. However, for this result to be
valid one moderate constraint has to hold true. The electrons must trap and de-
trap rapidly enough so that there is no distinction to be made between trapped
and passing electrons, so that they all sample the entire flux surface within a typ-
ical fluctuation period [24]. Because we are considering ITG-like turbulence in the
edge region where electron and ion temperatures are of similar, moderate magni-
tude, unlike in the high-temperature core, the electron collision frequency νee should
greatly exceed the typical fluctuation frequency ω. Therefore this constraint is not
unreasonable as it indeed should hold true in the majority of cases.

The decomposition (5.9) is useful because then the fluctuating electron tem-
perature, which is an exact flux function δTe(ψ̃), and the field ζ fully describe the
electron behaviour. This second quantity which describes part of the density fluc-
tuation has physical importance in that it constitute the non-electric drift part of
the field-line velocity

ueff = c

B
b̃×∇(δϕ− ζ) (5.10)

which we note coincides with the analogous TKRMHD effective velocity (3.38) in its
subsidiary expansion. This velocity field, like (3.38) for TKRMHD, can be shown
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to conserve magnetic flux and so preserve the magnetic topology. Thus it follows
for the exact Clebsch coordinates that they evolve through(

∂

∂t
+ ueff · ∇

)
ψ̃ = ∂ψ̃

∂t

∣∣∣∣∣
ψ̃,α̃,l̃

= 0 (5.11)

and similarly for α̃ and l̃.
Having found the solution (5.9) the electron kinetic equation reduces to two

equations for ζ and δTe. The first of these, after using the parallel Ampère’s law
(5.6) for the parallel electron flow, is given by(

∂

∂t
+ ueff · ∇

)(
eζ

Te
−
δB‖
B

)
ne +B

∂

∂l̃

(
c

4πeB∇
2δA‖ +

∑
s=i

Zs
B

∫
d3vv‖ 〈hs〉r

)

− cTe
eB

{
δB‖
B

,
δTe
Te

}
ne = V̂D · ∇(ψ̃ − ψ)

(
∂ lnNe

∂ψ
+ ∂ lnTe

∂ψ

)
ne − V̂D · ∇

δTe
Te

ne

+ V̂D · (δϕ− ζ)ene
Te

+ c
∂

∂α̃

(
ζ − δB‖

Te
eB

)
∂ lnNe

∂ψ
ne − c

∂δB‖
∂α̃

neTe
eB

∂ lnTe
∂ψ

,

(5.12)

where
V̂D = −cTe

eB
b× (b · ∇b +∇ lnB), (5.13)

is the Maxwellian-averaged electron magnetic drift velocity. The second equation,
which determines δTe, is given by〈(

∂

∂t
+ ueff · ∇

)(
3
2
δTe
Te
−
δB‖
B

)
ne

〉
ψ̃

= −
〈

7
2V̂D · ∇(ψ̃ − ψ) ∂

∂ψ̃

(
δTe
Te

+ lnTe
)
ne

〉
ψ̃

−
〈

V̂D · ∇(ψ̃ − ψ)∂ lnNe

∂ψ̃
ne

〉
ψ̃

+
〈

V̂D · ∇(δϕ− ζ)ene
Te

〉
ψ̃

.

(5.14)

Though there are many details we glossed over in the derivation of (5.12) and
(5.14) by simply quoting the final equations there is one intermediary result of
importance to us. It is found that

∂δA‖
∂t

= cb̃ · ∇(ζ − δϕ) (5.15)

which can replace the parallel Ampère’s law (5.6) in determining δA‖.
Unlike the last few equations above, the final two equations of the low mass

ratio limit of gyrokinetics are straightforwardly obtained. Simply inserting (5.9) into
the quasineutrality condition (5.3) and the perpendicular force balance (5.7) yields

1
ne

∑
s=i

Z2
s ensδϕ

Ts
= −eζ

Te
− (ψ̃ − ψ)∂ lnNe

∂ψ
+
∑
s=i

Zs
ne

∫
d3v 〈hs〉r , (5.16)
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and

∇2
⊥
δB‖B

4π =
∑
s=i
∇⊥∇⊥ :

∫
d3vms 〈v⊥v⊥hs〉r + ene∇2

⊥(ζ − δϕ)

+ ne∇2
⊥(ψ̃ − ψ)

(
Te
∂ lnNe

∂ψ
+ Te

∂ lnTe
∂ψ

)
+ ne∇2

⊥δTe,

(5.17)

respectively.
Here we will immediately reduce these equations further. We know that in

TKRMHD the fluctuating parallel magnetic field does not enter while here it does.
This is easily remedied by noting that in equation (5.17) all terms on the right hand
side are of order O(εps/l2⊥) while the left hand side is of order O(εB2/l2⊥) by virtue of
the gyrokinetic ordering (5.1). Of course β is, in gyrokinetics unlike in TKRMHD,
assumed to be of order unity so that they are of a similar size. We now wish to
discard this general assumption by letting

β → 0, (5.18)

which is something we naturally wish to do when approaching the edge with its
lower density and temperature. The reason we only now take this limit is because
the reduced mass ratio subsidiary expansion was a necessary precursor, requiring
the Alfvén speed to be smaller than the electron thermal speed, or equivalently
me/mi � β. Strictly speaking then we are then not freely taking the low β-limit
but using a subsidiary expansion in small β satisfying this condition. Nevertheless,
the result is the same in that equation (5.17) becomes unbalanced so that to lowest
order it reduces to

∇2
⊥δB‖ = 0, (5.19)

whose only permissible solution is

δB‖ = 0. (5.20)

Having taken the low β-limit and extracted from equation (5.17) that δB‖
vanishes we can then discard it. As for the remaining equations there are no tricky
pitfalls to be avoided as we simply have to remove all terms involving δB‖. Doing
this, the quasineutrality condition (5.16) and the ion kinetic equation (5.4) remain
completely unchanged while (5.14) is only slightly modified to〈(

∂

∂t
+ ueff · ∇

)
3
2
δTe
Te

ne

〉
ψ̃

= −
〈

7
2V̂D · ∇(ψ̃ − ψ) ∂

∂ψ̃

(
δTe
Te

+ lnTe
)
ne

〉
ψ̃

−
〈

V̂D · ∇(ψ̃ − ψ)∂ lnNe

∂ψ̃
ne

〉
ψ̃

+
〈

V̂D · ∇(δϕ− ζ)ene
Te

〉
ψ̃

.

(5.21)

Equation (5.12) however loses several terms and simplifies to(
∂

∂t
+ ueff · ∇

)
eζ

Te
ne +B

∂

∂l̃

(
c

4πeB∇
2δA‖ +

∑
s=i

Zs
B

∫
d3vv‖ 〈hs〉r

)
− c ∂ζ

∂α̃

∂ lnNe

∂ψ
ne

= V̂D · ∇(ψ̃ − ψ)
(
∂ lnNe

∂ψ
+ ∂ lnTe

∂ψ

)
ne − V̂D · ∇

δTe
Te

ne + V̂D · ∇(δϕ− ζ)ene
Te

.

(5.22)
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5.3 Outer Scale Long Wavelength Limit

At this point our modified gyrokinetic equation system consists of (5.15), (5.16),
(5.21), (5.22), and finally the unmodified ion kinetic equation (5.4). Obviously we
must further manipulate these five equations to reduce them into the four TKRMHD
equations (4.10), (4.15), (4.16), and (4.17) we wish to match them onto. To this end,
we will now perform a final subsidiary expansion of exactly the opposite kind to that
which we used in Chapter 4 for TKRMHD, leaving a final similar ordering. Thus, we
will steepen the perpendicular gradients, driving the small gyroscale turbulence to
increase and its typical wavelength to lengthen into the typical outer scale turbulence
of [29].

Because the gyrokinetic ordering (5.1) makes no distinction between the parallel
and the perpendicular scales L‖ and L⊥ of the mean distributions it is logical to
choose as an expansion parameter

ξ ≡ L⊥
L‖
. (5.23)

In so doing we separate the two scales as in the TKRMHD ordering (4.6). Hence we
must clarify that the original expansion parameter in the gyrokinetic ordering (5.1)
now refers to

ε ≡ ρi
L⊥

. (5.24)

This is the natural choice because the strength of the turbulence (in terms of trans-
port), and consequently the size of the fluctuations, are controlled by this quantity.

We now turn to the outer scale conditions of (4.2), (4.3), and (4.4) we used
in the TKRMHD subsidiary expansion. Obviously we wish to reuse them now in
order to arrive at the same equations. Yet again we find that they will suffice in
order to determine how the remaining length scales should be order with respect to
each other and how large the fluctuations should be in comparison to the quiescent
equilibrium. First we use the first condition to set the parallel length scales to be
the system scale

L‖ ∼ l‖ ∼ a. (5.25)

Then in order to fulfil the remaining two conditions we are obliged to use the ordering

eδϕ

Ts
∼ δfs

Fs
∼ l⊥
L⊥
∼ ε

ξ
. (5.26)

Obviously then as ξ → 0 when the mean gradients steepen the turbulence increases
in amplitude as a response to this increasing driving mechanism. Additionally, while
we have already fixed the parallel turbulence wavelength to the long a-scale, this
furthermore implies that

ρi
l⊥
∼ ξ (5.27)

so that as ξ → 0 the perpendicular turbulence wavelength also increases and we
obtain a (particular) long wavelength limit.

42



5. Steep Gradient, Long Wavelength Gyrokinetics

The choices above constitute all the ordering changes which arises in our long-
wavelength limit. The primary result then is the separation of the magnetic drift
timescale

VDi
l⊥

(5.28)

from the other timescales present in the problem: the ion parallel streaming timescale,
the fluctuation drift timescale, and the collisional timescale. All of these remain or-
dered as vth,i/l‖ while the magnetic drift slows to O(ξvth,i/l‖). This is an intuitive
result because the strong spatial anisotropy we have introduced in this subsidiary
expansion does not change the mean magnetic field. As such, only the magnetic
drift is not amplified and the magnetic drift timescale separates away.

The first major consequence of the diminishing magnetic drift can be seen by
turning to equation (5.21). There all terms on the right-hand side are magnetic
drift terms and thus the left hand side dominates. By using (5.11) the derivative
can obviously be interchanged with the flux-surface average and so because all of
δTe, Te, and ne are flux functions to lowest order we find that this equation reduces
to the simple result

∂δTe
∂t

∣∣∣∣∣
ψ̃,α̃,l̃

= 0. (5.29)

Thus, in accordance with the TKRMHD equations, δTe vanishes and we can drop
this equation and focus on the remaining four.

The first equation in question is the ion kinetic equation (5.4) which becomes[
∂

∂t
+
(
v‖b + 〈Vχ〉Rs

)
· ∂

∂Rs

]
hs − 〈C[hs]〉Rs

= ZseFs
Ts

∂

∂t

〈
δϕ− v · δA

c

〉
Rs

− ∂Fs
∂ψ
〈Vχ〉R · ∇ψ.

(5.30)

Evaluating the gyroaverages in this equation it becomes exactly the TKRMHD
ion kinetic equation (4.10) because they both describe the lowest order gyrophase
independent ion distribution, hs and δfs respectively. This is because all b in that
equation can to lowest order be switched to b̃ (but not vice versa) and b, as referred
to here, is labelled as b̃ there through (3.21).

Proceeding to the equation describing the parallel vector potential (5.15) it
remains unchanged,

∂δA‖
∂t

= cb̃ · ∇(ζ − δϕ), (5.31)

in a very similar form to the comparable TKRMHD equation (4.15) which it now is
a trivial matter to find that it is equivalent to. Using (5.9) to find that

δne = eζne
Te

+ (ψ̃ − ψ)∂ne
∂ψ

, (5.32)

we find upon inserting this that the right hand side of (5.31) becomes

b̃ · ∇
(
δne
ne
− eδϕ

Te

)
− b̃ · ∇

[
(ψ̃ − ψ)∂ lnne

∂ψ

]
= b · ∇

(
δne
ne
− eδϕ

Te

)
, (5.33)
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because, by using that ψ̃ and ne are exact flux functions, the final term is seen to
be one order ξ lower than the others. Inserting this back into (5.31) it becomes
precisely the outer scale TKRMHD equation (5.9).

Turning now to equation (5.22) for ζ which becomes(
∂

∂t
+ ueff · ∇

)
eζ

Te
ne +B

∂

∂l̃

(
c

4πeB∇
2δA‖ +

∑
s=i

Zs
B

∫
d3vv‖ 〈hs〉r

)

= c
∂ζ

∂α̃

∂ lnNe

∂ψ
ne.

(5.34)

we find that it does not take much work to prove that it is equivalent to the
TKRMHD equation (4.16) for the density variation δne. Indeed the expression
the l̃-derivative acts on is nothing but the lowest order electron parallel velocity ue‖
as determined from the parallel Ampère’s law (5.6) [24]. This term is then already
the exact same term as the last in (4.16). Now the first term we can manipulate
into (

∂

∂t
+ uE · ∇

)[
δne − (ψ̃ − ψ)∂ne

∂ψ

]

=
(
∂

∂t
+ uE · ∇

)
δne + uE · ∇ψ

∂ne
∂ψ

+ ∂ne
∂ψ

(
∂

∂t
+ uE · ∇

)
ψ̃

=
(
∂

∂t
+ uE · ∇

)
δne + uE · ∇ne + ∂ne

∂ψ

c

B
b×∇ζ · ∇ψ̃.

(5.35)

where we, in order, have used first (5.10) and (5.32), then the slow variation of ne
and ψ, and finally (5.11). Because the final term here is to lowest order the same as
the right hand side of (5.34) through the Poisson bracket (2.45) we can thus rewrite
(5.34) as (

∂

∂t
+ uE · ∇

)
δne + uE · ∇ne + B̃ · ∇

(
u‖e
B

)
= 0, (5.36)

exactly in the form of (4.16).

5.4 The Vorticity Equation
In the previous Section we were able to match our outer scale gyrokinetics with
three of the four outer scale TKRMHD equations in a straightforward fashion. We
are now left with only one TKRMHD equation which we have yet to match onto:
the vorticity equation (4.17) for the flux-surface averaged part of the electrostatic
potential δϕ. The procedure for this final step however will not be anywhere near as
easy as the rest of the equations. It does not suffice to merely study the gyrokinetic
quasineutrality condition, which still is given by

1
ne

∑
s=i

Z2
s ensδϕ

Ts
= −eζ

Te
− (ψ̃ − ψ)∂ lnNe

∂ψ
+
∑
s=i

Zs
ne

∫
d3v 〈hs〉r . (5.37)

Instead we will have to return to before our final subsidiary expansion and use all
four equations (5.22), (5.6), (5.16), and (5.4). This is because of a cancellation that
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will occur in our manipulations, forcing us to retain terms of higher order in ξ. In
particular, we will have to include the magnetic drift terms, making it clear that the
magnetic geometry enters our equations through the vorticity equation.

Now, in order to produce a vorticity equation we will turn to the identity

1
ni

∫
d3vFi

(〈
〈δϕ〉Ri

〉
r
− δϕ

)
= (Γ0 − 1)δϕ = Ti

miΩ2
i

∇2
⊥δϕ (5.38)

which follows by Taylor expanding δϕ from r to Ri and back while using

〈v⊥〉r = 0, 〈v⊥v⊥〉r = v2
⊥
2 (I− b̃b̃). (5.39)

With this identity it should be apparent how we should be able to produce a term of
the same form as that in the vorticity equation (4.17). We will begin by introducing
the substitution

hi = (ψ̃ − ψ)∂Fi
∂ψ

+ Zie

Ti
Fi 〈δϕ〉Ri

+ gi (5.40)

into the quasineutrality condition (5.16) to produce

ne
eζ

Te
=
∑
s=i

Z2
s eTi

miTsΩ2
i

ns∇2
⊥δϕ+

∑
s=i

Zs

∫
d3v 〈gs〉r . (5.41)

With equation (5.41) in hand we immediately proceed by inserting it into
equation (5.22) after first changing ueff to uE in that equation, which is permissible
to lowest order in ε. In so doing we eliminate ζ and make the δϕ-Laplacian appear
more similar to the desired term in (4.17), as we are left with(

∂

∂t
+ c

B
b×∇δϕ · ∇

)∑
s=i

Z2
s e

msΩ2
s

ns∇2
⊥δϕ+

(
∂

∂t
+ c

B
b×∇δϕ · ∇

)∑
s=i

Zs

∫
d3v 〈gs〉r

+B
∂

∂l̃

(
1
B

(
c

4πe∇
2δA‖ +

∑
s=i

Zs

∫
d3vv‖ 〈gs〉r

))
− c ∂ζ

∂α̃

∂ lnNe

∂ψ̃
ne

= V̂D · ∇(ψ̃ − ψ)
(
∂ lnNe

∂ψ
+ ∂ lnTe

∂ψ

)
ne + V̂D · ∇(δϕ− ζ)ene

Te
.

(5.42)

At this point, we need only apply the flux surface average for the first term to
completely match the term in the vorticity equation, up to a constant factor. In so
doing the third term of (5.42) vanishes by being of the form (2.43). Similarly the
sixth term also vanishes because, to lowest order in ε, the α̃-derivative does not act
on any of Ne, ne, or B so it can be converted into a total-α̃-derivative of the form
(2.43). Thus we have〈(

∂

∂t
+ c

B
b×∇δϕ · ∇

)∑
s=i

Z2
s e

msΩ2
s

ns∇2
⊥δϕ

〉
ψ̃

−
〈

V̂D · ∇(δϕ− ζ)ene
Te

〉
ψ̃

+
〈(

∂

∂t
+ c

B
b×∇δϕ · ∇

)∑
s=i

Zs

∫
d3v

(
1 + v2

⊥
2Ω2

i

∇2
⊥

)
gs

〉
ψ̃

= 0
(5.43)
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where we have only kept terms up to O(ξεnivth,i/l‖). Thus we have expanded the
integrand to second order and eliminated the fifth term because, to lowest order in
ε
〈
V̂D · ∇ψ̃

〉
ψ̃

= 0 [24], so that term’s order is lowered by two powers of ξ.

In order to proceed from this point we must now evaluate the gs-integral up
to second order in ξ, i.e. vth,iεξF0i/L‖. Thus we return to the full ion gyrokinetic
equation (5.4) into which we insert the substitution (5.40) to produce

∂

∂t
gi + (v‖b + VDs + 〈Vχ〉Ri

· ∇gi − 〈C[hi]〉Ri

= −∂Fi
∂ψ

[(
v‖b + VDi + 〈Vχ〉Ri

)
· ∇(ψ̃ − ψ) + ∂

∂t
(ψ̃ − ψ) + 〈Vχ〉Ri

· ∇ψ
]

− Zie

Ti
Fi

(
v‖b + VDi + 〈Vχ〉Ri

· ∇ 〈δϕ〉Ri
+ 1
c

∂

∂t
〈v · δA〉Ri

)
.

(5.44)

Evaluating the gyroaverages that appear in this equation and using equation (5.15)
for δA‖ it becomes a tedious if straightforward exercise to produce

(
∂

∂t
+ v‖

(
b− 1

B
b×∇δA‖

)
· ∇+ c

B
b×∇δϕ · ∇

)
gi − 〈C[hi]〉Ri

+ ∂Fi
∂ψ

(
∂

∂t
+ c

B
×∇δϕ · ∇

)
ψ̃ = −VDi · ∇

(
(ψ̃ − ψ)∂Fi

∂ψ
+ Zie

Ti
Fiδϕ+ gi

)

− c

B
×∇ v2

⊥
2Ω2

i

∇2
⊥

(
δϕ−

v‖δA‖
c

)
· ∇gi

− ∂Fi
∂ψ

[
v‖b · ∇(ψ̃ − ψ) + c

B
b×∇

(
v2
⊥

2Ω2
i

∇2
⊥

)(
δϕ−

v‖δA‖
c

)
· ∇ψ̃

]

− Zie

Ti
Fi

{[
v‖b + c

B
b×∇

((
1 + v2

⊥
2Ω2

i

∇2
⊥

)(
δϕ−

v‖δA‖
c

))]
· ∇ 〈δϕ〉Ri

+ v‖

(
1 + v2

⊥
2Ω2

i

∇2
⊥

)
b̃ · ∇(ζ − δϕ)

}
.

(5.45)

Our next task is integrating equation (5.45) over all velocities. In doing so
we must keep in mind that the quantities in this equation are to be evaluated at
Ri and not the usual r which facilitates easy integration by allowing derivatives
and integrals to be interchanged. To still make use of this we Taylor expand all
quantities around r, still only keeping terms to second order in ξ. In so doing we
will find that all linear Taylor terms vanish by gyrophase independence if by nothing
else. Furthermore, only the left hand side is of order vth,iεξ−1F0i/L‖ and so needs
to be expanded to second order which will result in two new terms arising. Taking
this into consideration and recalling the definition of V̂D (5.13) the integration can
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be performed with the result(
∂

∂t
+ c

B
b×∇δϕ · ∇

)∫
d3v

(
1 + v2

⊥
2Ω2

i

∇2
⊥

)
gi +B

∂

∂l̃

∫
d3vv‖

1
B

(
1 + v2

⊥
2Ω2

i

∇2
⊥

)
gi

+ c
∂ζ

∂α̃

∂ni
∂ψ

= 1
ZiTe

V̂D · ∇
[
(ψ̃ − ψ)∂pi

∂ψ
+ Zieδϕ

Ti
pi

]
−
∫

d3vVDi · ∇gi

− c

B
b×∇

∫
d3v

v2
⊥

2Ω2
i

∇2
⊥

(
δϕ−

v‖δA‖
c

)
· ∇gi −

2
3
∂pi
∂ψ

c

BΩ2
i

b×∇∇2
⊥δϕ · ∇ψ̃

− c

B

∫
d3vb×∇

(
1
Ωi

b× v · ∇
(
δϕ−

v‖δA‖
c

))
· ∇ 1

Ωi

b× v · ∇gi

− c

B
b×∇

∫
d3v

(
v2
⊥

2Ω2
i

∇2
⊥

(
δϕ−

v‖δA‖
c

))
· ∇gi.

(5.46)

Of course we wish to quickly move past this ugly intermediate result because we are
really only interested in its flux-surface averaged form which is given by〈(

∂

∂t
+ c

B
b×∇δϕ · ∇

)∫
d3v

(
1 + v2

⊥
2Ω2

i

∇2
⊥

)
gi

〉
ψ̃

=
〈

V̂D · ∇
(
eδϕ

Te
ni

)〉
ψ̃

−
〈∫

d3vVDi · ∇gi
〉
ψ̃

−
〈
c

B
b×∇

∫
d3v

v2
⊥

Ω2
i

∇2
⊥

(
δϕ−

v‖δA‖
c

)
· ∇gi

〉
ψ̃

−
〈
c

B

∫
d3vb×∇

(
1
Ωi

b× v · ∇
(
δϕ−

v‖δA‖
c

))
· ∇ 1

Ωi

b× v · ∇gi
〉
ψ̃

(5.47)

where we used precisely the same arguments as in (5.42) to eliminate similar terms
in the same fashion.

We can now insert equation (5.47) into our emerging vorticity equation (5.43).
Before doing this however we note that the three terms

V̂D · ∇(δϕ− ζ)ene
Te
−
∑
s=i

V̂D · ∇
Zseδϕ

Te
ns +

∑
s=i

Zs

∫
d3vVDs · ∇gs, (5.48)

by using the expressions (5.2), (5.32), and (5.40) to exchange ζ and gi for δne and
δni, can be combined into

V̂D · ∇
(
eδϕ

Te
ne − δne + (ψ̃ − ψ)∂ne

∂ψ

)
−
∑
s=i

V̂D · ∇
Zseδϕ

Te
ns

−
∑
s=i

1
Te

V̂D · ∇
(
Zse(δϕ− 〈δϕ〉Ri

)ns − (ψ̃ − ψ)∂ps
∂ψ

)

+
∑
s=i

c

eB

(
b× (b · ∇b) · ∇δp‖s + b×∇ lnB · ∇δp⊥s

)
= 1
Te

V̂D · ∇
(

(ψ̃ − ψ) ∂p
∂ψ

)
+ c

eB

(
b× (b · ∇b) · ∇δp‖ + b×∇ lnB · ∇δp⊥

)
.

(5.49)

47



5. Steep Gradient, Long Wavelength Gyrokinetics

In the equation above the first term, by the same argument as the corresponding
term in (5.43), is one order ξ too small so we can drop it. As for the remaining terms
they have a suggestive form, being very similar those we manipulated in Section 3.3
in order to derive the TKRMHD vorticity equation. Employing the same vector
manipulations then we have that

b
B
× (b · ∇b) · ∇δp‖ + b

B
×∇ lnB · ∇δp⊥ = ∇× b ·

∇δp‖
B
− b×∇

( 1
B

)
· ∇δp⊥

= ∇× b ·
∇(δp‖ − δp⊥)

B
+∇×

( b
B

)
· ∇δp⊥ = ∇ ·

[
(δp‖ − δp⊥)

B
∇× b + δp⊥∇×

( b
B

)]
(5.50)

which are the fluctuating parts of two of the three terms under the divergence in
(3.64), and importantly the term that does not vanish under the flux-surface average.
This provides a clear indication that we are on the right track in re-deriving the
vorticity equation, because in the subsidiary gyrokinetic ordering the fluctuating
part dominates over the non-fluctuating part. Now the same argument we used to
go from (3.64) to (3.72) still holds for the fluctuating part alone and we find that
in the subsidiary gyrokinetic ordering (5.26) the right-hand side of (3.72) is still of
higher order than the left hand side so the three terms of (5.48) can be neglected
as small. Thus upon inserting equation (5.45) into (5.43) we currently have

〈(
∂

∂t
+ c

B
b̃×∇δϕ · ∇

)(∑
s=i

Z2
s e

msΩ2
s

ns∇2
⊥δϕ

)〉
ψ̃

=
〈∑
s=i

cZs
B

∫
d3vb×∇

(
1

Ω2
s

(b× v · ∇)2
(
δϕ−

v‖δA‖
c

))
· ∇gs

〉
ψ̃

+
〈∑
s=i

cZs
B

∫
d3vb̃×∇

(
1
Ωi

b× v · ∇
(
δϕ−

v‖δA‖
c

))
· ∇ 1

Ωi

b× v · ∇gi
〉
ψ̃

.

(5.51)

Equipped with equation (5.51) it is clear the we must now find a means of
converting the two terms on the right hand side into the perpendicular pressure
term of (3.72). To this end we will employ another identity similar to (5.38) for the
perpendicular pressure which is given by

∫
d3vmib× vg = − 1

Ωi

∇⊥δp⊥. (5.52)

This identity is easy to derive from (5.2) and (5.32) by Taylor expanding the gy-
rophase independent g from Ri to r before integrating to find this pressure moment.
It is therefore natural that we use return to the ion gyrokinetic equation (5.44), mul-
tiply it mib × v and Taylor expand before integrating over all velocities. Keeping
terms up to order O(ξ−1εpi/L‖) we find that all terms on the right hand of (5.44)
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is of a higher order and so we are left with the left hand side which becomes(
∂

∂t
+ c

B
b̃×∇δϕ · ∇

)
1
Ωi

∇⊥δp⊥s

− mic

ΩiB

∫
d3vb× v

(
b×∇

(
b× v · ∇

(
δϕ−

v‖δA‖
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· ∇g

)

+mi
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( 1
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b× v · ∇g
)
− c

Ωi

∇⊥
(
∂pi
∂ψ

∂ζ

∂α̃

)
= 0.

(5.53)

Applying B−1∇· and flux-surface averaging the equation above we find that
the perpendicular pressure component of the vorticity equation is given by〈

1
B

(
∂

∂t
+ c

B
b̃×∇δϕ · ∇

)
∇2
⊥
δp⊥i
Ωi

〉
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+
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+
〈
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δϕ−
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〉
ψ̃

+
〈
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B
∇ ·

∫
d3vb× vv‖b̃ · ∇

( 1
Ωi

b× v · ∇g
)〉

ψ̃

= 0.

(5.54)

Summing this equation over all ion species and adding it to equation (5.51) multi-
plied by (e/c) we then finally find that we have reproduced the outer scale TKRMHD
vorticity equation (4.17) from gyrokinetics:〈∑

s

nsms

B

(
∂

∂t
+ uE · ∇

)(
∇2
⊥δp⊥s

nsmsΩs

+ c∇2
⊥δϕ

B

)〉
ψ̃

+
∑
s=i

〈
ms

B
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∫
d3vb× vv‖b̃ · ∇

( 1
Ωs

b× v · ∇g
)〉

ψ̃

=
〈∑

s

nsms

B

(
∂

∂t
+ uE · ∇

)(
∇2
⊥δp⊥s

nsmsΩs

+ c∇2
⊥δϕ

B

)〉
ψ̃

+
〈

1
BΩs

[
(∇ · b)∇2 − (∇b) : ∇∇

] ∫
d3w

msw
2
⊥

4 w‖fs

〉
ψ̃

= 0.

(5.55)

To arrive at this result, in the final term we have moved the parallel derivative
through the integral and carefully calculated gyroaverages with the unit vectors of
equation (2.15) and further used the identities

∇ei · b = −∇b · ei, (5.56)

which follow from the fact that these vectors are orthogonal, and

b · ∇ lnB = −∇ · b, (5.57)

which follows from the vanishing divergence of B, to move derivatives into the desired
form.
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Having reached this stage, we have found that the turbulent equations of
TKRMHD and gyrokinetics can be smoothly matched onto each other in the in-
termediate outer scale limit. However, we are not quite done. In the final Chapter
we will proceed to the transport equations to also match them up to their TKRMHD
counterparts. Only then can we fully say that the intermediary limits fully describe
the same physics.
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We now turn our attention to bulk plasma transport. Because both the electron and
ion mean distributions are Maxwellian and thus characterised by the parameters
ni, ne, Ti, and Te we will need to find four equations that determine the evolution
of these quantities. We will find it convenient to begin with gyrokinetic transport
because it is well understood with readily available transport equations. We will
thus find it easy to simply order the various terms in these equations using our
subsidiary expansions of gyrokinetics to eliminate small terms Furthermore, here
our simplifying choice of no sonic rotation will drastically reduce the complexity
of the full transport equations. With the resulting limit transport equations in
hand, in a form whose physical interpretation is readily available, we can turn to
our TKRMHD-limit and derive its transport equations from scratch. Guided by
the gyrokinetic transport equations it will prove to be a short process to use the
TKRMHD orderings to arrive at those same transport equations, fully completing
the matching between TKRMHD and gyrokinetics.

6.1 Gyrokinetic Transport
In order to determine the gyrokinetic transport equations for our subsidiary expan-
sion of the previous Chapter in a simple fashion we will immediately make use of two
things: the lack of any sonic flows and the low β. These conditions allow us to treat
the confining field geometry as fixed over the transport timescale because the low
density, quiescent plasma then cannot give rise to sufficiently large self-generated
field to seriously impact the mean field. As such, the ion density transport across
flux surfaces in conventional gyrokinetics, as described in Abel et al [10], initially
reduce to

∂

∂t
〈ni〉ψ + ∂

∂ψ
〈Γi〉ψ = 0, (6.1)

where

〈Γi〉ψ =
〈∫

d3vC[Fi] (Ri − r) · ∇ψ
〉
ψ

+
〈∫

d3vF
(nc)
i VDs · ∇ψ

〉
ψ

− 〈ni〉ψ I(ψ)
〈E ·B〉ψ
〈B2〉ψ

+
〈∫

d3vhi 〈Vχ〉r · ∇ψ
〉
turb,ψ

(6.2)

is the radial particle flux (because it crosses the flux surfaces ψ) and F
(nc)
i ∼ εFi

describes neoclassical corrections to the Maxwellian Fi. Here the first term repre-
sents classical collisional transport, while the second and third describe neoclassical
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transport arising from the non-uniformity of B and time-varying magnetic fields,
and the final term comprises turbulent transport.

Now the radial flux in the form of (6.2) is obviously ordered with respect to
the gyrokinetic orderings (5.1), so upon further applying our subsidiary orderings
we can reduce it further. Of these terms we naturally expect the turbulent flux〈∫

d3vhi 〈Vχ〉r · ∇ψ
〉
turb,ψ

(6.3)

to dominate in our subsidiary expansion because the turbulent amplitude greatly in-
creases. As such, we also expect that this term should set the subsidiary gyrokinetic
transport order to be

1
τE
∼ ε2

ξ2
vth,i
l‖
. (6.4)

Going term by term to check our assumption (6.4), we first note that because of
the important low mass ratio result that 〈E ·B〉ψ vanishes [24] the first neoclassical
term vanishes. Using our final outer scale ordering (5.26) for the remaining two
terms the first collisional term and the second neoclassical term are indeed found to
be an order ξ smaller than the final turbulent term. Thus, we find the unsurprising
result that in the outer scale limit the strong turbulence dominates in determining
transport through

∂ni
∂t

+
〈
∇ ·

〈∫
d3vhi 〈Vχ〉r

〉
turb

〉
ψ

= 0. (6.5)

Proceeding to the heat transport equation the procedure is just the same.
Starting from

3
2
∂

∂t
〈ni〉ψ Ti + ∂

∂ψ
〈qi〉ψ = POhm

i + P comp
i + P turb

i +
〈
C

(E)
i

〉
ψ

(6.6)

where

〈qi〉ψ =
〈∫

d3v
miv

2

2 C[Fi](Rs − r) · ∇ψ
〉
ψ

− 5
2piI(ψ)〈E ·B〉ψ

〈B2〉ψ

+
〈∫

d3v
miv

2

2 F
(nc)
i VDi · ∇ψ

〉
ψ

+
〈∫

d3v
miv

2

2 hi〈Vχ〉r · ∇ψ
〉
turb,ψ

(6.7)

is the radial heat flux and the terms on the right are different heat sources. Entirely
analogous to Γi, it is clear that this flux to the same order (6.4) is dominated by its
final turbulent term. As for the remaining source terms, the ohmic heating

POhm
i = 〈E ·B〉ψ

Zie

B

∫
d3vv‖F̂1i (6.8)

vanishes by the smallness of the mass ratio, the compressional heating

P comp
i =

〈
ps∇ ·

(
∂ψ

∂t

∇ψ
|∇ψ|2

)〉
ψ

(6.9)
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vanishes by the slowly varying magnetic field configuration, while the collisional
energy transfer

C
(E)
i =

∫
d3v

msv2

2 C[Fs] (6.10)

between species again vanishes by the smallness of the mass ratio. The turbulent
heating

P turb
i = Zie

〈∫
d3vhi

∂

∂t

(
δϕ−

v‖A‖
c

)〉
turb,ψ

, (6.11)

however is unsurprisingly of the same order as the turbulent heat flux so that

3
2
∂

∂t
niTi+

〈
∇ ·

〈∫
d3v

miv
2

2 hs〈Vχ〉r
〉
turb

〉
ψ

= Zie

〈∫
d3vhi

∂

∂t

(
δϕ−

v‖δA‖
c

)〉
turb,ψ

(6.12)
is the ion heat transport equation for our subsidiary gyrokinetics expansion.

Because we have employed the low-mass ratio limit and focused on ion scale
turbulence the gyrokinetic electron transport equations are most suitably treated
in a different fashion, employing the exact instead of the lowest order flux surfaces.
The electron particle transport equation, properly taking into account the small-
mass ratio limit beyond conventional gyrokinetics, is then simply given by [24]

1
Ṽ ′

∂

∂t

∣∣∣∣∣∣
ψ̃,α̃,l̃

Ṽ ′Ne + 1
Ṽ ′

∂

∂ψ̃
Ṽ ′〈Γe〉ψ̃ = 0. (6.13)

Here, because the radial particle flux 〈Γe〉ψ contains an integral over the trapped
particle distribution gte, which vanishes in the small mass ratio and collisional limit
under consideration here, it becomes a simple matter of using our ordering of slowly
varying magnetic fields to move Ṽ ′ through the time derivative to obtain

∂

∂t

∣∣∣∣∣∣
ψ̃,α̃,l̃

Ne = 0. (6.14)

The electron heat transport equation, similarly, is given by

3
2Ṽ ′

∂

∂t

∣∣∣∣∣∣
ψ̃,α̃,l̃

Ṽ ′〈Ne〉ψ̃Te + 1
Ṽ ′

∂

∂ψ̃
Ṽ ′〈qe〉ψ̃ = P turb

e + P comp
s + C(E)

s . (6.15)

Here we can immediately deduce that to the transport order (6.4) the electron
radial heat flux 〈qe〉ψ vanishes for the same reason as 〈Γe〉ψ, that the compressional
heating P comp

s vanishes by the slow mean field evolution, and that the interspecies
collisional heat transfer C(E)

s vanishes by the small mass ratio. That leaves us with
the turbulent heating

P turb
s = −e

〈∫
d3v

(
εe
Te
− 3

2

)
δTe
Te

Fe
∂

∂t

∣∣∣∣∣∣
ψ̃,α̃,l̃

ζ

〉
turb,ψ̃

+ e〈Neζ∇ · ueff〉turb,ψ̃. (6.16)

Clearly the first of these terms vanishes in the subsidiary expansion because it
constrains δTe to be 0. The second term in turn is of order O(ξ) slower than the
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ion transport timescale (6.4) so that we, after using (6.14) and again disregarding
derivatives acting on V ′, find the electron heat transport equation

∂

∂t

∣∣∣∣∣∣
ψ̃,α̃,l̃

Te = 0, (6.17)

which concludes our subsidiary gyrokinetics transport equations. Before turning to
match these up to the subsidiary TKRMHD transport equations in the next sectino,
it is worth notiing that the electron transport equations in the forms of (6.14) and
(6.17) principally expresses the fact that electrons equilibrate so quickly along the
field line that they essentially become adiabatic.

6.2 Toroidal Kinetic Reduced Magnetohydrody-
namics Transport

Equipped with the gyrokinetic transport equations we will now show that they co-
incide with the outer scale TKRMHD transport equations that we will now develop.
Our starting point will be a return to the pre-subsidiary expansion TKRMHD equa-
tions, starting with the ion kinetic equation (3.25), in order to determine precisely
how slow this transport is and what equations govern it. Though we return to the
full equation before the subsidiary expansion, we will still keep the subsidiary expan-
sion ordering, retaining terms of different orders so as to see what their influence is
on the transport. However, we will neglect all higher order ε-terms and will find this
adequate because higher order ξ-terms will prove describe the dominant transport
mechanism. Furthermore we will keep the confining magnetic field fixed over the
transport timescale which is natural because our low β should prevent the plasma
from significantly altering the background field.

In studying the TKRMHD ion kinetic equation (3.25) we find it convenient
to once again switch derivatives to the normal r,v-variables through (3.45) and
(3.46), both because this will simplify integrals and because slow, large scale mean
quantities are more intuitively understood through these. Using (3.45) and (3.46)
to switch derivatives in the ion kinetic equation we find that it becomes

∂

∂t
(Fi + δfi)−

Ziev‖
c

∂δA‖
∂t

∂

∂εi
(Fi + δfi)− C[Fi + δfi]

+
[
v‖b̃ + c

B
b×∇

(
δϕ− 1

c
v‖δA‖

)]
·
(
∇− Zse∇δϕ

∂

∂εi

)
(Fi + δfi) = 0.

(6.18)

Integrating this equation is a straightforward matter because upon using (2.25) it is
immediately found that all terms involving εi-derivatives can be turned into exact
derivatives which vanish under velocity integration. As for the remaining terms, the
derivatives are now expressed in conventional r,v-variables which commute with the
integral so that we arrive at

∂

∂t
(ni + δni) + c

B
b×∇δϕ · ∇(ni + δni) +∇ · (b̃u‖ini)

+
∫

d3v
(
v‖b̃−

v‖
B

b×∇δA‖
)
· ∇δfi = 0,

(6.19)
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by defining
niu‖i =

∫
d3vv‖fi. (6.20)

Equation (6.19) in its present form describes fully many different scales to the point
of uselessness. We must now extract from it the relevant slow transport, which we
will do by using the turbulence average of (2.37). Applying this operator the rapid,
small scale fluctuation (in the perpendicular direction) is removed as any term linear
in fluctuating quantities by definition vanish. Importantly, because this really is a
fixed integration it commutes with derivatives so we can for example move a short-
scale gradient O(l−1

⊥ ) through the turbulence average which then eliminates any such
short-scale dependence in favour of the slower O(L−1

⊥ )-dependence. Of course this
is not necessary as the turbulence average still eliminates such fast scales, but this
manipulation makes it very apparent.

We now take advantage of this lowering of order when turbulence averaging
(6.19) to produce

∂ni
∂t

+∇ ·
〈
δni

c

B
b×∇δϕ

〉
turb
−∇ ·

〈∫
d3v

v‖
B
δfib×∇δA‖

〉
turb

+
〈
∇ · (b̃u‖ini)

〉
turb

= ∂ni
∂t

+∇ ·
〈∫

d3v
c

B
b×∇

(
δϕ−

v‖δA‖
c

)
δfi

〉
turb

+
〈
∇ · (b̃u‖ini)

〉
turb

= 0,

(6.21)

where the u‖i-term have to be kept because we do not know that it vanishes to high
enough order. Nevertheless, it can be removed by flux surface averaging so that we
arrive at

∂ni
∂t

+∇ ·
〈∫

d3v
c

B
b×∇

(
δϕ−

v‖δA‖
c

)
δfi

〉
turb,ψ̃

= 0, (6.22)

which is the TKRMHD ion particle transport equation. This equation matches
the gyrokinetic ion particle transport equation (6.5) and defines the ion transport
timescale to be given by

1
τE
∼ ξ4vth,i

l‖
. (6.23)

We now return to the ion kinetic equation (6.18) in order to find the next
transport equation, the heat transport equation determining the evolution of Ti. To
this end we proceed in a similar fashion by now taking the miv

2/2-moment of (6.18).
Using Catto-transformed variables for partial integration in ∂/∂ε-terms) yields

3
2

(
∂

∂t
+ uE · ∇

)
(ni + δni)(Ti + δTi) + Zie∇δϕ ·

∫
d3v

(
v‖b̃−

v‖
B

b×∇δA‖
)
δfi

+
∫

d3v
miv

2

2

(
v‖b̃ + c

B
b×∇

(
δϕ− 1

c
v‖δA‖

))
· ∇rδfi

+∇ · (b̃q‖ini) +
∫

d3v
Ziev‖
c

∂δA‖
∂t

(Fi + δfi) = 0,
(6.24)

where
niq‖i =

∫
d3vv‖v

2fi. (6.25)
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After then applying the turbulence average we are left with

3
2
∂

∂t
niTi +

∫
d3v

miv
2

2

〈
c

B
b×∇

(
δϕ− 1

c
v‖δA‖

)
· ∇rδfi

〉
turb

+
〈
∇ · (b̃q‖ini)

〉
turb

+ Zie

〈
∇δϕ ·

∫
d3v

(
v‖b̃−

v‖
B

b×∇δA‖
)
δfi

〉
turb

+ Zie

〈∫
d3v

v‖
c

∂δA‖
∂t

δfi

〉
turb

= 0,

(6.26)

after dropping small terms.
Comparing (6.26) with the the gyrokinetic heat transport equation (6.12) we

find that, except for the third term, only the fourth term does not immediately
match. In order to remedy this we turn to the outer scale TKRMHD ion kinetic
equation (4.10). In that equation we now change the derivatives, which is permissible
to lowest order, before integrating over all velocities to produce

∂

∂t

∫
d3vδfi +

∫
d3v

(
v‖b̃ + c

B
b×∇

(
δϕ−

v‖δA‖
c

))
· ∇δfi

+
∫

d3v
c

B
b×∇δϕ · ∇ψ∂Fi

∂ψ
−
∫

d3v
Zie

Ti

∂

∂t
δϕFi = 0.

(6.27)

From this point we proceed by multiplying this expression by δϕ before applying
the turbulence average. Since it is an integral, we use it to integrate by parts in
order to produce〈

∂

∂t
δϕ
∫

d3vδfi

〉
turb

+
〈
∇δϕ ·

∫
d3v

(
v‖b̃−

v‖
B

b×∇δA‖
)
δfi

〉
turb

−
〈∫

d3v
c

B
b×∇δϕ

2

2 · ∇ψ∂Fi
∂ψ

〉
turb

+
〈∫

d3v
Zie

Ti

∂

∂t

δϕ2

2 Fi

〉
turb

= 0.
(6.28)

Here the third term vanishes by flux-surface averaging and the time-derivative in
the fourth term can be commuted through the turbulence average to make it slow
enough to be neglected compared to the first two terms. Putting this information
together into (6.26) we find the outer scale TKRMHD ion heat transport equation
becomes

3
2
∂

∂t
niTi +

∫
d3v

miv
2

2

〈
c

B
b×∇

(
δϕ− 1

c
v‖δA‖

)
· ∇rδfi

〉
turb

+
〈
∇ · (b̃q‖ini)

〉
turb

= Zie

〈∫
d3v

∂

∂t

(
δϕ−

v‖δA‖
c

)
δfi

〉
turb

(6.29)

which matches the GK ion heat transport equation (6.12) after flux-surface averaging
to remove the q‖i-term.

We now turn to the matter of determining the electron transport equations.
We will obtain them in exactly the same fashion we did the ion transport equations
(6.21) and (6.29), by returning to the TKRMHD equations before the subsidiary
expansion, then applying said expansion and using the turbulence average. Starting
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with the electron particle transport equation we take as our starting point equation
(3.50) in its flux-surface averaged form〈(

∂

∂t
+ uE · ∇R

)
ne

〉
ψ̃

= 0. (6.30)

Using (3.39) with the fact that the effective velocity (3.38) in the subsidiary expan-
sion becomes

ueff = uE −
cTe
eBNe

b×∇δne, (6.31)

we can switch time derivatives to convert (6.30) into

〈 ∂

∂t

∣∣∣∣∣∣
ψ̃,α̃,l̃

+ cTe
eBNe

b×∇δne · ∇

 (Ne + δne)
〉
ψ̃

= 0. (6.32)

Proceeding by applying the turbulence average at fixed ψ̃ this becomes

∂Ne

∂t

∣∣∣∣∣
ψ̃,α̃,l̃

= 0, (6.33)

to ion transport order, because the term quadratic in δne-term is of order ξ2 too
small.

The TKRMHD electron temperature equation is similarly obtained from equa-
tion (3.53) in the form

−
〈
eϕ

(
∂

∂t
+ uE · ∇

)
ne

〉
ψ̃

+
〈

3
2ne

(
∂

∂t
+ uE · ∇

)
Te

〉
ψ̃

=
〈
eu‖e

(
b̃ · ∇ϕ+ 1

c

∂Ã‖
∂t

)〉
ψ̃

.

(6.34)

Once again using (3.52) to order the final term we find that it vanishes to ion
transport order. Applying the turbulence average to the remaining two terms the
first also vanishes to ion transport order upon using the order-lowering effect of
moving derivatives through the turbulence average. That leaves the second term
which, by using that Ne is a flux function and precisely the same manipulations as
for (6.30), reduces to

∂Te
∂t

∣∣∣∣∣
ψ̃,α̃,l̃

= 0. (6.35)

At this point we have completed our task. The TKRMHD electron transport
equation (6.33) and (6.35) clearly match the correspond gyrokinetic equations (6.14)
and (6.17) at which point we have fully demonstrated that the two equations system
coincide in their respective subsidiary limits. This is an important result for two
reasons. First, on a conceptual level this demonstrates that while the gyrokinetic
ordering (5.1) breaks down approaching the edge with its steepening gradients, gy-
rokinetics itself instead morphs into a different set of equations. On a practical
level this intermediary matching may prove fruitful in future endeavours to reliably
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determine suitable boundary conditions for gyrokinetics transport simulations. Be-
cause these simulations sensitively depend on the boundary conditions, which in the
majority of cases are currently set by ad hoc assumptions, the significance of this
result can hardly be overstated.
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7
Conclusions

In this thesis we have developed the TKRMHD equation system, consisting of (3.25),
(3.35), (3.50), (3.53), and (3.72), from a first-principles multiscale expansion. These
equations constitute a self-consistent description of large amplitude ITG-like tur-
bulence in the near-edge region inside the LCFS and so should be applicable for
tokamak L-mode operation. Importantly they are fully kinetic, applicable in gen-
eral geometry, and capable of capturing the weakly collisional to collisionless transi-
tion. These are advantages over the current main edge descriptions which are either
in the form of fluid equations which inherently neglect kinetic effects, or gyrofluid
equations whose validity becomes dubious at low collisionality.

One weakness of the TKRMHD equations is that they do not describe any
obvious transport of buoyant filaments. As such they fail to desribe the origin of the
observed plasma blobs being launched into the scrape-off layer [36]. Hence, either
these must form even closer to the LCFS, or a sharp filamentary structure, governed
by the H-mode sister equations of Abel and Hallenbert [25], must arise to produce
them. Nevertheless, the TKRMHD equations still constitute an initial step towards
a first principles description of an L-mode tokamak edge.

In addition to deriving the TKRMHD equations, we have also demonstrated
that they can be made to smoothly transition onto the gyrokinetic core through
an intermediary set of equations, both for fluctuations and for transport. This
is important on a conceptual level because it proves that gyrokinetics does not
abruptly break down at the edge but instead smoothly transitions into a different
set of equations. Of course this is expected, but confirmation is still an encouraging
result. Furthermore this is important on a practical level because current gyrokinetic
transport simulations rely on ad hoc assumptions to produce suitable boundary
conditions at the top of the pedestal. By instead employing TKRMHD to move
closer to the LCFS and beyond, where the boundary conditions are much more
readily determined, this conceptual weakness is remedied.

Though TKRMHD in the form of this thesis is a promising first step towards
a description of an L-mode tokamak edge, it is by no means complete in its present
form. In its current form the TKRMHD equations have two main deficiencies which
arise from restricting assumptions we made in our derivation. First and foremost
the severe restriction of no sonic rotation should be relaxed, since in the majority
of realistic scenarios this condition should not hold. Secondly, but less vitally, by
developing a barely collisional version of TKRMHD we could increase the range of
applicabilty further. Apart from these immediate and natural extensions there is
much else that could also be done in the pursuit of a fuller description of the L-mode
edge. One natural thing would be to attempt to match TKRMHD onto another set
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of equations in the other direction, to a collisional theory in the open field line
region beyond the LCFS. Then the entire tokamak plasma could be aptly described
by smoothly matching these regions together with natural boundary conditions.
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