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Stereo-to-Five Channels Upmix Methods
Implementation and Comparative Study
Panteleimon Papastergiou
Department of Architecture and Civil Engineering
Chalmers University of Technology

Abstract
The aim of several 3D audio concepts and products is to create a more immersive,
engaging and natural-sounded listening experience. Emerging audio signal process-
ing techniques, make it possible for regular stereo recordings to be compatible and
reproduced with multichannel home theatre or automotive loudspeaker audio sys-
tems.
In this thesis, various existing methods are investigated and implemented for con-
verting stereo recordings to four or five channels in the primary-ambience extraction
(PAE) framework. In that, audio signals are often considered linear combinations
of primary and ambient components. The former are assumed to be correlated,
whereas the latter uncorrelated. The basic function of the upmix systems is to
remove the correlated components from the electronic audio material, which are
intended for playback with loudspeakers behind the listeners, in a 3/2 or 2/2 con-
figuration. That way the decomposition facilitates the appropriate rendering for
spatial enhancement.
The upmixers, either keep the initial stereo recording in the frontal loudspeakers
or add a third central channel in the frontal setup to allow for off the "sweet spot"
listening. All the methods are implemented in the frequency domain using the widely
known short time Fourier transform (STFT) technique, except one. Central in the
development of the algorithms in frequency domain are the method of Principal
Components Analysis (PCA), the least squares estimates (LS), the normalized least
mean squares (NLMS) adaptive filter and certain ambience masking functions. On
the other hand, the core of the only time domain method is the least mean squares
(LMS) adaptive filter.
Assessment of the new upmix systems was accomplished in an objective and subjec-
tive way; firstly, using performance measures such as the ambience energy fraction
(EA) and the cross-correlation coefficient of primary and ambient components (φP
and φA respectively), and secondly with a listening test which requires from the
participants to judge the systems according to the overall impression.
The objective and subjective evaluation results suggest that a subjectively tuned
ambience masking function and the frequency domain NLMS algorithm provide
both promising upmix solutions and computational advantage.

Keywords: spatial audio, spatial enhancenment, upmix, primary ambience extrac-
tion, adaptive filtering, .

v





Acknowledgements
First of all I would like to thank my supervisors Jens Ahrens at Chalmers and
Jonatan Ewald at Volvo, for the helpful advice and productive collaboration and
of course for the fruitful discussions. Deep thanks to my family and all my good
friends for their endless support and love.

Panteleimon Papastergiou, Gothenburg, January 2018

vii





Contents

List of Figures xiii

List of Tables xix

1 Introduction 1

2 Fundamentals of Spatial Hearing 3
2.1 Binaural Localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 HRTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Interaural Cues . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Localization of Multiple Sources . . . . . . . . . . . . . . . . . 6

3 Mathematical Background 9
3.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Principal Components Analysis . . . . . . . . . . . . . . . . . . . . . 9
3.3 Least Squares Oprimization . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Frequency Domain NLMS Adapive Filter . . . . . . . . . . . . . . . . 14

4 Upmix Methods 17
4.1 Signal Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 PAE with Subjectively Tuned Mapping Function (Method of Avedano

Jot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 PAE with Scalar Ambience Masks(Method of Equal Levels of Ambience) 20
4.4 PAE with Principal Component Analysis (Method of Goodwin-Jot) . 22
4.5 PAE with Least Squares Estimates (Method of Faller) . . . . . . . . . 24
4.6 PAE with NLMS Adaptive Filter in Frequency Domain (Method of

Usher-Benesty) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 PAE with a Time Domain LMS Filter (Method of Aarts-Irwan) . . . 31

5 Up-Mix Results and Discussion 37
5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Formulation of Transient Pulse and Gaussian Noise . . . . . . . . . . 40
5.3 Results of Transient Pulse and Gaussian Noise . . . . . . . . . . . . . 41

5.3.1 Mapping Function (Method of Avedano-Jot) . . . . . . . . . . 42
5.3.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . 43
5.3.3 Scalar Ambience Extraxtion Mask (Equal Levels of Ambience) 44
5.3.4 Leas Squares Estimates (Method of Faller) . . . . . . . . . . . 45

ix



Contents

5.3.5 Time Domain LMS Filter (Method of Aarts-Irwan) . . . . . . 46
5.3.6 Normalized Least Mean Squares (Method of Usher-Benesty) . 47

5.4 Evaluation Metrics for the Transient Pulse and Gaussian Noise . . . . 48
5.4.1 Ambience Energy Fraction, EA . . . . . . . . . . . . . . . . . 49

5.4.1.1 Transient Pulse . . . . . . . . . . . . . . . . . . . . . 50
5.4.1.2 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . 51

5.4.2 Level Difference, L . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.2.1 Transient Pulse . . . . . . . . . . . . . . . . . . . . . 53
5.4.2.2 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . 54

5.4.3 Ambience Cross-Correlation Coefficient, φA . . . . . . . . . . 55
5.4.3.1 Transient Pulse . . . . . . . . . . . . . . . . . . . . . 55
5.4.3.2 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . 56

5.4.4 Primary Cross-Correlation Coefficient, φP . . . . . . . . . . . 57
5.4.4.1 Transient Pulse . . . . . . . . . . . . . . . . . . . . . 57
5.4.4.2 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . 58

5.5 Results of Commercial Recordings . . . . . . . . . . . . . . . . . . . 59
5.5.1 Ambience Extraction . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1.1 Mapping Function (Method of Avedano-Jot) . . . . 60
5.5.1.2 Principal Components Analysis . . . . . . . . . . . . 61
5.5.1.3 Scalar Ambience Extraction Masks (Equal Levels of

Ambience) . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.1.4 Least Squares Estimates (Method of Faller) . . . . . 63
5.5.1.5 Time Domain LMS Filter (Method of Aarts-Irwan) . 64
5.5.1.6 Normalized Least Mean Squares in Frequency Do-

main (Method of Usher-Benesty) . . . . . . . . . . . 66
5.6 Evaluation Metrics For Commercial Recordings . . . . . . . . . . . . 67

5.6.1 Ambience Energy Fraction, EA . . . . . . . . . . . . . . . . . 67
5.6.1.1 Congas-Single Source . . . . . . . . . . . . . . . . . . 67
5.6.1.2 Pop/Rock Excerpt-Multiple Sources . . . . . . . . . 68
5.6.1.3 Electric Guitar-Uncorrelated Signals . . . . . . . . . 69

5.6.2 Level Difference, L . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6.2.1 Congas-Single Source . . . . . . . . . . . . . . . . . . 71
5.6.2.2 Pop/Rock-Multiple Sources . . . . . . . . . . . . . . 72
5.6.2.3 Electric Guitar-Uncorrelated Signal . . . . . . . . . . 73

5.6.3 Ambience Cross-Correlation Coefficient, φA . . . . . . . . . . 75
5.6.3.1 Congas-Single Source . . . . . . . . . . . . . . . . . . 75
5.6.3.2 Pop/Rock-Multiple Sources . . . . . . . . . . . . . . 76
5.6.3.3 Electric Guitar-Uncorrelated Signals . . . . . . . . . 77
5.6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Subjective Evaluation 79
6.1 Participants and Stimuli Creation . . . . . . . . . . . . . . . . . . . . 79
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.1 Preliminary investigation . . . . . . . . . . . . . . . . . . . . . 82
6.3.2 Mean Absolute Difference Between Judgments . . . . . . . . . 85

x



Contents

6.3.3 Preference Scale for Up-mix Methods . . . . . . . . . . . . . . 86
6.3.4 Preference scale per audio stimulus . . . . . . . . . . . . . . . 88
6.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Conclusions and Future Work 93

Bibliography 97

A Appendix 1 I
A.1 Decorrelation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
A.2 Listening Test Instructions . . . . . . . . . . . . . . . . . . . . . . . . II
A.3 The Law of Comparative Judgement (Thurstone’s Law) . . . . . . . . III

xi



Contents

xii



List of Figures

2.1 Spherical coordinates. The start of the axes is considered to be the
center of the head. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Cone of confusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Phantom source panning, using a stereophonic reproduction system. . 6

3.1 The linear relationship of x and y, and two types of error. . . . . . . . 12

4.1 Mapping function dependent on the cross correlation coefficient with
Φ0 = 0.5 and different values for parameter σ . . . . . . . . . . . . . 19

4.2 Block diagram of ambience extraction, using the mapping function to
separate the ambience. It is made according to the diagram presented
in [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Ambience energy fraction as a function of the cross correlation coef-
ficient Φ and the level difference between the inputs . . . . . . . . . . 22

4.4 Orthogonal decomposition of a stereo signal (XL, XR) with principal
components analysis (PCA) . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Mixing signal s with lateral reflections n1 n2. Factor α determines
the direction in which the auditory event appears (made according to
the equivalent in [13]). . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Firstly, xi is filtered with a set of filtering coefficients, i.e. 1024-
tap finite-impulse response filter(FIR) and input xj is time-shifted,
typically with a delay of about 10 ms (500 samples). In the next step
the difference signal yj is calculated between the filtered xi and xj,
which can be transmitted with rear separate loudspeakers. yj has to
be orthogonal to xi. For this reason , the set of filtering coefficients
have to be adjusted accordingly. . . . . . . . . . . . . . . . . . . . . . 28

4.7 Impulse response model for the time-domain transfer function be-
tween 2 locations in a room (given in [45]). The first part of the
signal occurs up to Lr mixing time and affects the source image. It
consists of the primary sound and the early reflections. The rest of
the signal tail is the ambience. . . . . . . . . . . . . . . . . . . . . . 29

4.8 Impulse response and the corresponding kurtosis, calculated over 64
samples in every iterration. . . . . . . . . . . . . . . . . . . . . . . . . 31

4.9 Lissajous plot of a highly correlated signal. The bold lines represent
the new coordinate system, with y being the dominant signal and q
the remaining signal. They form the direction of the stereo image a. 33

xiii



List of Figures

4.10 (a) Direction of vector plots of stereo signals. (b) Three-channel rep-
resentation by doubling the angle a. . . . . . . . . . . . . . . . . . . . 33

4.11 Fluctuation of the direction of the stereo image a of the audio excerpt
presented in figure 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.12 3-D mapping showing front and surround channels. . . . . . . . . . . 35

5.1 Congas stereo channels and their correlation graph. The signal has
0.89 correlation coefficient . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Pop-rock stereo channels and their correlation graph. The signals
have 0.78 correlation coefficient . . . . . . . . . . . . . . . . . . . . . 38

5.3 Electric Guitar stereo channels and their correlation graph. The sig-
nals have 0.48 correlation coefficient . . . . . . . . . . . . . . . . . . . 38

5.4 On the left, correlated direct signal and uncorrelated decayed ambi-
ence in each channel, and on the right the signal’s correlation graph
with 0.23 correlation coefficient . . . . . . . . . . . . . . . . . . . . . 39

5.5 On the left, the correlated direct signal and Gaussian uncorrelated
noise in each channel, and on the right the signal’s correlation graph
with 0.014 correlation coefficient . . . . . . . . . . . . . . . . . . . . . 39

5.6 Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience. . 42

5.7 Initial Gaussian noise with correlated direct components and the cor-
responding extracted ambience. . . . . . . . . . . . . . . . . . . . . . 42

5.8 Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience. . 43

5.9 Initial Gaussian noise with correlated direct components and the cor-
responding extracted ambience. . . . . . . . . . . . . . . . . . . . . . 43

5.10 Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience. . 44

5.11 Initial Gaussian noise with correlated direct components and the cor-
responding extracted ambience. . . . . . . . . . . . . . . . . . . . . . 44

5.12 Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience. . 45

5.13 Initial Gaussian noise with correlated direct components and the cor-
responding extracted ambience. . . . . . . . . . . . . . . . . . . . . . 45

5.14 Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience. . 46

5.15 Initial Gaussian noise with correlated direct components and the cor-
responding extracted ambience. . . . . . . . . . . . . . . . . . . . . . 46

5.16 Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience. . 47

5.17 Initial Gaussian noise with correlated direct components and the cor-
responding extracted ambience. . . . . . . . . . . . . . . . . . . . . . 47

5.18 Ambient energy fraction and ambient level difference, originally in-
cluded in the signal, for the transient pulse . . . . . . . . . . . . . . . 48

5.19 Ambient energy fraction and ambient level difference, originally in-
cluded in the Gaussian noise signal. . . . . . . . . . . . . . . . . . . . 49

xiv



List of Figures

5.20 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.21 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.22 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.23 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.24 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.25 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.26 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.27 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.28 Initial congas left and right time signals and the corresponding ex-
tracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.29 Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience. . . . . . . . . . . . . . . . . . . . . . . 60

5.30 Initial electric guitar left and right time signals and the corresponding
extracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.31 Initial congas left and right time signals and the corresponding ex-
tracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.32 Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience. . . . . . . . . . . . . . . . . . . . . . . 61

5.33 Initial electric guitar left and right time signals and the corresponding
extracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.34 Initial congas left and right time signals and the corresponding ex-
tracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.35 Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience. . . . . . . . . . . . . . . . . . . . . . . 62

5.36 Initial electric guitar left and right time signals and the corresponding
extracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.37 Initial congas left and right time signals and the corresponding ex-
tracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.38 Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience. . . . . . . . . . . . . . . . . . . . . . . 63

xv



List of Figures

5.39 Initial electric guitar left and right time signals and the corresponding
extracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.40 Initial congas left and right time signals and the corresponding ex-
tracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.41 Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience. . . . . . . . . . . . . . . . . . . . . . . 65

5.42 Initial electric guitar left and right time signals and the corresponding
extracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.43 Initial congas left and right time signals and the corresponding ex-
tracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.44 Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience. . . . . . . . . . . . . . . . . . . . . . . 66

5.45 Initial electric guitar left and right time signals and the corresponding
extracted ambience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.46 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.47 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.48 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.49 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.50 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.51 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.52 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.53 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.54 a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of
Usher/Ben. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 Arrangement with three frontal and two rear loudspeakers, taken from
[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 3/2 setup during the experiment. . . . . . . . . . . . . . . . . . . . . 80
6.3 Photo taken from the recording session. . . . . . . . . . . . . . . . . . 81

xvi



List of Figures

6.4 Enabled interface of preference evaluation . . . . . . . . . . . . . . . 82
6.5 Box plots of accumulated responses, indicating preference for every

up-mix method. Every answer is the outcome of the pairwise com-
parisons of the systems investigated here. . . . . . . . . . . . . . . . 83

6.6 Box plots of accumulated participant responses, indicating preference
for every method and stage of the listening test. . . . . . . . . . . . . 84

6.7 Percentage of the "No preference" responses, over all participants, for
every session of the listening test. . . . . . . . . . . . . . . . . . . . 84

6.8 Average absolute difference and the corresponding 95 % confidence
intervals of judgments, over all method pairs and sessions, for every
participant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.9 Magnitudes of preference, assuming Case V from Thurstone’s law of
comparative Judgments and bootstrapped 95% confidence intervals . 88

6.10 Thurstone’s Case V preference scale for every type of audio excerpt . 89

A.1 Disabled GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
A.2 Enabled GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

xvii



List of Figures

xviii



List of Tables

6.1 A general example, showing the number of times each method S at
the side is preferred over each one at the top. . . . . . . . . . . . . . 87

6.2 The columns represent the preference score produced from every sub-
set of participants’ answers, indicated by the second subscript. The
rows refer to the preference for every method in every iteration. The
first subscript indicated the type of method i.e method a,b...f. . . . . 87

6.3 Possible artifacts for the upmix algorithms implemented in the the-
sis, having as inputs the stimuli used for the subjective evaluation
described in the present chapter. . . . . . . . . . . . . . . . . . . . . 92

xix



List of Tables

xx



1
Introduction

The concept of reproducing sound with more than two loudspeaker setups is not
novel. It has been a while since the first time surround reproduction systems have
been installed for domestic and automotive use, with the 5.1 setup being the most
frequently used [1]. The evolving technology has also yielded audio signal transmis-
sion with broad spectral bandwidth, highly effective spatial sound recording tech-
niques and configurations incorporating multiple loudspeakers. For instance, in 7.1
the angle is decreased among loudspeakers, whereas as mentioned in [2], elevated
loudspeakers are introduced in systems like 9.1 11.1. In addition, the fast paced de-
velopment of virtual reality video has emerged the need for 3-D audio reproduction.
Spatial sound has also gained ground in critical applications associated with route
guidance of people having seriously defective vision [3] and with flight navigation
systems [4].
It is apparent that, spatial sound systems have to be able to interact with dif-
ferent audio channel formats, because it’s not always technically-and financially-
advantageous to use recording techniques, typical for every reproduction system
[11]. Thus, compatibility turns out to be a very important issue. Besides, the vast
majority of commercial music is recorded in stereo format. Therefore, certain signal
processing techniques have to be employed, in order to convert the stereo recordings
to multichannel formats, maintaining the quality of audio information and enhancing
the listening experience.
Extensive research has been conducted for spatial audio processing [6], [7] and spatial
audio coding, which comprises spatial audio scene coding (SASC) [5] and directional
audio coding (DirAC) [8]. The aim is to decompose the input audio signal into non-
diffuse and diffuse sound. The calculated diffuse sound in the channels differs from
positive and negative correlations, which deviates from the ambience definition given
in the primary-ambience extraction framework investigates in the present thesis. In
SASC, the the Gerzon localization vector [9] is used to carried out localization
analysis, separately for both the separated components. In DirAC, the primary
sound is rendered applying vector base amplitude panning (VBAP) [10], while the
diffuse sound is decorrelated and played back by rear loudspeakers. The aim for
these signal processing techniques is to achieve spatial sound reproduction with
every sound system configuration.
In [12] He refers to a broad category of methods, which attempts to solve the com-
patibility mismatch of audio channels with different loudspeaker numbers, as audio-
remixing. It includes two subcategories producing the inverse results; the downmix
and upmix of audio signals. The former class of methods reduces the number of
channels, whereas the latter creates surround information and in some cases also
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1. Introduction

extracts a central front channel for off the "sweet" spot listening, recalculating the
weights and the energy [13].
The downmix process is employed to create 3-D audio environments radiated from
stereo setups, as discussed in [14]. Such applications are very useful in portable
audio devices, like cellphones and mp3 players. Moreover, in [15] a downmixed
audio channel, along with spatial cues, is used for multichannel audio rendering.
On the other hand, upmix is the enhancement of sound reproduction, creating lis-
tening environments, which essentially incorporate spatial properties extracted from
and added to the stereo format. In a framework of upmix, a sound event is considered
as a combination of primary (or direct) and ambient (or reverberant) component
[17]. The primary signal is an aggregation of directional sources, while the ambience
is the diffuse part, ideally coming from all directions with the same energy [44].
At first, it was Orban who developed a method for extracting pseudo-stereo from
monophonic signal [16]. To date, the upmix concept has been further evolved by
several methods, based on primary-ambience separation. For instance, in [17] a
time-frequency mapping function identifies and masks the ambient component, as-
suming that the ambience has equal ratios to the initial stereo channels. A similar
method in [19], differently defines the mask function, assuming equal levels of am-
bience. However, principal component analysis (PCA) remains the most broadly
investigated with [21], [22] and [20] as examples. According to [23], the idea is to
reduce the dimensions of an input’s data set, by creating a new one with orthog-
onal components, retaining most of the variation of the initial data. It is further
assumed, that the principal components have significantly higher amplitude than
the ambience in the channels. Another method for primary-ambience separation is
described in [13]. It is based on calculation of the least squares (LS) estimates of the
signal components, while the normalized least mean (NLMS) squares are employed
in [24].
That’s exactly the first stage of the master thesis work; to study the existent lit-
erature for primary-ambience decomposition and to identify the most promising
stereo-to-five (or four) upmix approaches. The next steps are the implementation
of the identified methods and the perceptual evaluation (user study) according to
listeners’ preference, of each one of them . The latter also constitutes the fundaen-
tal aim of the project, which is the elicitation of an inference in respect
to the listeners’ greater preference for an upmix method, reproduced by
the fixed 5.1 loudspeaker setup. Of course, for methods which have alterna-
tive versions, like PCA, a representative one resulting in the optimal separation is
implemented here.
In a nutshell, the thesis is structured as follows: the second chapter introduces
the most important aspects related to human hearing, while chapter three contains
the mathematical background, of the primary-ambience extraction framework. In
chapter four the upmix methods are described and in five the ambience extraction
algorithms are assessed by simulations with objective measures, while in chapter six
the subjective evaluation results are presented and discussed. In the end, chapter
seven concludes this thesis work and points out possible future work.
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2
Fundamentals of Spatial Hearing

This chapter presents the thesis background related to binaural hearing. Since, the
upmix conversion is reproduced by a 5.1 surround system, the estimated dimension
of the sources is the lateral one. Thus, the fundamentals of localization cues of
human hearing mechanism and the localization of sources on the horizontal plane
are briefly described in the forthcoming sections.

2.1 Binaural Localisation

2.1.1 HRTF

The sound events take place in the three dimensional space. The most common co-
ordinate system are the cartesian and the polar coordinate system. They determine
the definition of any physical event. Sound events are better described by the polar
or spherical system. The dimensions of distance, azimuth and elevation are used
for the particular context. Figure 2.1 depicts the dimensions, considering the centre
human head as the centre of this imaginable sphere. Distance (r) is the direct path
from the center of the head to the sound event. Azimuth (φ) is the angle between
the source at 0◦ and at a random position on the horizontal plane, whereas elevation
(θ) is the equivalent on the median plane.
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2. Fundamentals of Spatial Hearing

Figure 2.1: Spherical coordinates. The start of the axes is considered to be the
center of the head.

The human ability to localize sounds is based on the different paths the sound fol-
lows to reach every ear. The head-related transfer functions (HRTF) describe the
spectrum filtering, caused by the interactions of the waves with the head, torso and
pinna. More specifically, the HRTF is defined as the ratio of the sound pressure at
the ears, to the pressure measured by a microphone placed at the position repre-
senting the middle of the head, in the free field [25]. Since, these functions depend
on the frequency and the polar coordinates, for both ears in frequency domain it
applies that,

HL(f) = PL(f)
P0(f) , (2.1)

HR(f) = PR(f)
P0(f) (2.2)

where f denotes the frequency.

As it may be implied, the HRTFs also depend on the different properties of the head
and torso of the people. In time domain, one refers to the head related impulse
response (HRIR) [12].

2.1.2 Interaural Cues
Regarding the types of localization cues, there are monaural and interaural ones.
The monaural cues are interpreted by the human brain as information only at one
ear and they are associated with the identification of the distance of the source, the
elevation angle and the median plane. On the other hand, the interaural cues are
related with the signal differences at both ears. They are linked to the azimuth
localisation.
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2. Fundamentals of Spatial Hearing

Interaural time difference (ITD) and the interaural level difference (ILD) are intro-
duced by Rayleigh in his duplex theory in [26]. The ITD indicates the difference in
time the sound travels to the left and right ears. The sound waves coming from a
sound source, which is located sideways to the head will first reach the ear closest
to the source and then the ear at the opposite side of the head. At the same time,
the ILD refers to the level and spectral differences, induced by the head’s filtering
effect. The lowest frequency threshold, above which the dominant cue is deemed to
be the ILD, is 1500 Hz [27]. At lower frequencies, the wavelength is larger than the
ears distance, hence the phase difference is detectable, while at higher frequencies
the delay becomes less perceivable. Yet, the threshold is mostly a region of values,
because it is related with the distance between the ears, which differs for various
listeners. An average value is given to be 22 to 23 cm [12].
However, ITD and ILD aren’t necessarily adequate for flawless localization. The
front-back confusions occur [25], where the front sounds are perceived as back and
vice versa. That happens, when a sound source is located on the surface of the
cone and successively yields identical ITD and ILD. That is the so-called cone of
confusion problem [28] and it shown in figure 2.2. The phenomenon fades out and
the elevation is thoroughly perceived, when the frequency content of the signal is
increased, enhancing the ability for monaural localization. Moreover, in [25], it is
also pointed out that the increased duration of a stimulus could lead to proper
localization as well.

Figure 2.2: Cone of confusion.

In a very reverberant room, the reflections change the original signal that arrives at
the ears, causing colouration of certain frequency bands. In that case low-frequency
ITD cues are responsible for the correct source localization. The ability of the human
hearing system to distinguish the angle of an incidence of a sound wave being firstly
radiated by a source, i.e the direct sound component, is called the precedence effect
[29]. When two sources are present and the delay of the radiation is more than 1
ms, then two separate events are perceived.
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2. Fundamentals of Spatial Hearing

2.1.3 Localization of Multiple Sources
The perception of a single sound source is different from that of multiple sound
sources. According to Blauert in [25] the sound events can be considered as perceptu-
ally separate, when the sound sources are incoherent, whereas coherent sound sources
are governed by summing localization. That usually applies for sound sources ac-
tivated with time difference under 1 ms. Coherent sources activated after a couple
milliseconds would be perceived as echo, effect that is audible in rooms with weak
absorptive materials. Thus, either identical or signals with difference in level and/or
phase, regardless of the frequency content, are considered as coherent.
The multitude in frequency content of several sources being simultaneously active,
also constitutes a factor that contributes to perceive different sources as distinct
auditory events. For instance, it is remarkable how easily the people can distinguish
the instruments’ nuance during concert. However, a signal may be masked by an-
other, when the frequency properties are very similar and their level difference is
almost identical. In [31], it is proposed that a signal with higher amplitude masks
another with lower, within a certain time frame as well as within the same frequency
band.
In situations when two loudspeaker signals are coherent or wide-sense coherent,
only a single source is perceived. That source is called phantom or virtual and its
location mainly depends on the level and phase difference of the signals arriving at
the ears. Varying levels of signals in phase is a technique commonly employed in
the stereo sound mix. The presence of the phantom source is related to the signal
intensity at the loudspeakers and it is explained by the stereophonic law of sines
firstly introduced by Blumlein in [32] and depicted in 2.3.

Figure 2.3: Phantom source panning, using a stereophonic reproduction system.

In [10] it is suggested that,
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2. Fundamentals of Spatial Hearing

sinφ

sinφ0
= a1 − a2

a1 + a2
(2.3)

where a1 and a2 are the gain factors, φ is the angle between the axis normal to the
head and the direction of the virtual source, and φ0 is the angle between the central
axis and the loudspeaker position. For the angles 0◦< φ0<90◦ and −φ0< φ<φ0,
while the gain take values between 0 and 1.
However, in case the listener’s head is rotated, the law of tangent describes more
correctly the situation

tanφ

tanφ0
= a1 − a2

a1 + a2
(2.4)

where 0◦< φ0<90◦ and −φ0< φ<φ0, while the gain take values between 0 and 1.
It usually happens an auditory event to be created at different angles between the
loudspeakers, by controlling the time and/or the level difference of the signals. This
effect is attributed to summing localization [32]. Figure 2.3 depicts a single virtual
source scenario, appearing close to the left loudspeaker. The for stable loudness of
the virtual source, the volume is calculated by

C = a2
1 + a2

2 (2.5)
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3
Mathematical Background

3.1 Correlation
The definition of correlation is crucial to the development of the upmix methods
presented in the next chapters. It’s a measure for description of random data like
audio signals. Based on Melchior [33], as autocorrelation function is defined the
measure for the linear statistic dependence of two values of a real random variable
x1(t) at a time lag τ :

Rx1x1(τ) = lim
T→∞

1
T

∫
T

x1(t)x1(t+ τ)dt (3.1)

In a similar fashion, the cross-correlation is the measure of a linear statistical cor-
relation of two random variables x1(t) and x2(t) at a time lag τ :

Rx1x2(τ) = lim
T→∞

1
T

∫
T

x1(t)x2(t+ τ)dt (3.2)

Then, the cross-correlation coefficient Φx1x2(τ) is defined as

Φx1x2(τ) = Rx1x2(τ)√
Rx1x1(0)Rx2x2(0)

(3.3)

To further generalize, when introducing the zero mean functions x1z(t) and x2z(t),
equation 3.4 becomes

Φx1x2(τ) =
limT→∞

1
T

∫
T
x1z(t)x2z(t+ τ)dt√(

limT→∞
1
T

∫
T
x2

1z(t)dt
)(

limT→∞
1
T

∫
T
x2z(t)2dt

) (3.4)

where the factors in the denominator represent the quadratic mean and generally
defined as

x2
z(t) = lim

T→∞

1
T

∫
T

xz(t)2dt (3.5)

3.2 Principal Components Analysis
In general, Principal Components Analysis (PCA) is one of the most powerful sta-
tistical methods for multivariate data analysis [34]. It has been used for a variety of
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3. Mathematical Background

different fields, ranging from natural and social sciences to multiple engineering ap-
plications. The aim is to reduce the dimensions of a set of data, without any explicit
requirements on the probability density characteristics of the data. The original set
of data, including independent variables is linearly transformed to a smaller set of
uncorrelated variables, that are easier to understand and manipulate for further
analysis. Moreover, as proposed in [35], PCA is also a method for monitoring and
identification of correlation patterns among signals. Then, following the notation
and description suggested in [36].
Let x1, x2, x3 be three signals and S is the corresponding cross-spectral density
matrix in the frequency domain,

S =

S11(f) S12(f) S13(f)
S21(f) S22(f) S23(f)
S31(f) S32(f) S33(f)

 (3.6)

which is a Hermitian matrix, that is to say S = S∗T = SH , denoting that the
matrix is equal to its conjugate transposed. In addition, it is also assumed that the
cross-spectral density matrix is written as

S(f) = E[X∗(f)Y(f)T ] (3.7)
where X and Y are column vectors of the same length, T denotes the corresponding
transposed vector and ∗ the complex conjugate, and E[.] is the expectation operator.
Suppose that all the rows and the columns of the matrix are linear independent,
then S is written by decomposing the matrix to its eigenvalues:

S = UΛUH (3.8)
where Λ is the diagonal matrix containing the eigenvalues of S and U is the unitary
matrix, with rows representing the eigenvectors. To further elaborate, imagine for
instance three virtual signals z1, z2 and z3 that are mutually uncorrelated and from
which x1, x2, x3 are retrieved. One could also use the more than three virtual signals
to make up x1, x2, x3, but for the sake of PCA explanation, lets stick to this concept
here. Then, again in the frequency domain, it applies that

X(f) = H(f)Z(f) (3.9)
or

X1(f)
X2(f)
X3(f)

 =

h11(f) h12(f) h13(f)
h21(f) h22(f) h23(f)
h31(f) h32(f) h33(f)


Z1(f)
Z2(f)
Z3(f)

 (3.10)

Therefore, the spectral density matrix is defined by

SXX(f) = S = H∗(f)SZZ(f)HT (f) (3.11)
which is equivalent to equation (3.8), because SZZ is a diagonal matrix, derived
from the uncorrelated z signals, and H∗ = U. It is implied that the eigenvalues of
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3. Mathematical Background

S are the power spectra of the virtual signals z, which successively means that their
magnitudes constitute the principal components.
The virtual coherence function between the ith virtual signal zi and the jth measured
signal xj is given as

γ2
zixj

(f) =
|Szixj(f)|2

Szizi(f)Sxjxj(f) (3.12)

where the coherence is estimated by the eigenvalues and eigenvectors of S and
Szixj(f) = hji(f)Szizi(f).

System Identification with PCA
-See [36]: It will probably help to the presentation.
Suppose X denotes a column vector of observations with correlation matrix

RXX = E[XXT ] (3.13)
As discussed in the previous section, let X be determined by a set of uncorrelated
processes Z, through a transformation process denoted by the matrix T

X = TX (3.14)
and then the correlation matrix becomes

RXX = TE[ZZT ]TT = TRZZTT (3.15)
where RZZ = Λ containing the eigenvalues of RXX , because the observations in Z
are considered uncorrelated. So,

RXX = TΛTT (3.16)
.
The previous equation express the decomposition of RXX to its eigenvalues and
corresponding eigenvectors, which are the columns of the orthogonal matrix T

T =
[
t11 t12
t21 t22

]
(3.17)

Assuming that x, y are the input and the output of a system and zero mean

RXX = E

 [x
y

] [
x y

]  =
[
E[xx] E[xy]
E[xy] E[yy]

]
=
[
σ2
x σxy

σxy σ2
y

]
(3.18)

where σ2
x is the variance of the variable x, given by

σ2
x = E[(x− µx)2] (3.19)

The eigenvalues are

det(RXX − λI) =
∣∣∣∣∣σ2
x − λ σxy
σxy σ2

y − λ

∣∣∣∣∣ = 0 (3.20)
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that gives

λ1,2 =
σ2
x + σ2

y ±
√

(σ2
x + σ2

y)2 + 4σ2
xy

2 (3.21)

The eigenvectors t1 and t2 corresponding to these eigenvalues are orthogonal and
define a basis set of the data, as shown in Figure 11.7.

3.3 Least Squares Oprimization

Again, according to [36], imagine two random variables X and Y , which might be
considered having an input(X)-output(Y ) connection. Let xi and yi be measures of
this process, where i = 1, 2, ..., N . The aim is to find a linear relationship between
the variables, so as y = bx. The optimal linear relationship is determined by the
slope b. Therefore the error has to be measured between the line and the data points
of the set. Two cases are depicted in figure 3.1

Figure 3.1: The linear relationship of x and y, and two types of error.

In Case 1 the error is calculated in the direction of y axis. Since y is the output of the
system, potential errors of the input are neglected. In Case 2, both input and out-
put errors are taken into account, by choosing its direction normal to the output line.

Case 1

The factor b1 optimizes y = b1x and minimizes the sum of the square errors∑N
i=1(ei)2.

The definition of the error is
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ei = yi − b1xi (3.22)

The error function or the so-called cost function J is introduced:

J = 1
N

N∑
i=1

(yi − b1xi)2 (3.23)

The error has to be minimized with respect to b1, thus the minimum of the function
needs to be found. The derivative of the cost function considering b1 as variable is
set equal to 0

dJ

db1
= 2
N

N∑
i=1

(yi − b1xi)(−xi) = 0 (3.24)

Then b1 is computed by

b1 =
∑N
i=1 xiyi∑N
i=1 x

2
i

(3.25)

The numerator is the cross-correlation of two variables x and y and the denominator
is the variance of x assuming zero mean. Then, assuming a large number of samples
N:

b1 = σxy
σ2
x

(3.26)

Case 2

In contrast to the previous case the error is defined as vertical to the line y = b2x.
The process followed for estimating the factor b2 is the same as before Then, it is
calculated by

ei = yi − b2xi√
1 + b2

2

(3.27)

The cost function becomes

J = 1
N

N∑
i=1

(ei)2 = 1
N

N∑
i=1

(yi − b2xi)2

1 + b2
2

(3.28)

Then again, in order to derive the minima

dJ

db2
= 1
N

N∑
i=1

2(yi − b2xi)(−xi)
(1 + b2

2) − 1
N

N∑
i=1

(yi − b2xi)2(2b2)
(1 + b2

2)2 (3.29)

The result is

b2
2σxy + b2(σ2

x − σ2
y)− σxy = 0 (3.30)

which yields
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b2 =
(σ2

y − σ2
x)±

√
(σ2

x − σ2
y)2 + 4σ2

xy

2σxy
(3.31)

The solution which best fits equation 3.30 or in other words that minimizes the error
function J

b2 =
(σ2

y − σ2
x) +

√
(σ2

x − σ2
y)2 + 4σ2

xy

2σxy
(3.32)

3.4 Frequency Domain NLMS Adapive Filter
The main reason for utilizing frequency domain adaptive filters is to deal with long
impulse responses. Implementing filters for such signals in time domain reduces the
computational efficiency of the algorithm. Hence, the signal in sectioned to blocks
in frequency domain to deal with this problem [50].
The following are already stated in Haykin’s [50] and in Usher’s [45] work.
In general an input signal vector at time l could be written as

x(l) = [x(l), x(l − 1), ..., x(l −N + 1)]T (3.33)
Then, if k is the block index and L the block length, time l is linked to the k and L
by defining

l = kL+ i (3.34)
where i = 0, 1, ..., L− 1 and k = 1, 2, ...
The input data for a block k can be written in the form of a new matrix as

x(k)′ = [x(kL),x(kL+ 1), ...,x(kL+ L− 1)]T (3.35)
For k block the weight vector is defined as

w(k) = [w0(k), w1(k), ..., wL−1(k)]T (3.36)
The convolution of the input signal with the weight sequence is given by

y(kL+ i) =
N−1∑
j=0

wj(k)x(kL+ i− j) (3.37)

where i = 0, 1, 2, ..., L− 1
or

y(k)′ = [y(kL),y(kL+ 1), ...,y(kL+ L− 1)]T (3.38)
The desired and the corresponding error signal will be d(kL + i) and e(kL + i) =
d(kL+ i)− y(kL+ i)
Applying Fourier transform, with the method of overlap-save [51], the N tap weights
of the filter are padded with an equal number of zeros, i.e M = 2N . That means
50% of overlap
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W(k) = FFT

[
w(k), 0, ..., 0

]
(3.39)

where the amount of zeros is N
Accordingly, in the frequency domain it is

X(k) = diag

(
FFT

[
x(kN −N), ..., x(kN − 1), x(kN), ..., x(kN +N − 1)

])
(3.40)

which is an M-by-M diagonal matrix, containing two adjacent blocks of samples.
It will also be that

Y(k) = X(k)W(k) (3.41)
and

y(k) = F−1Y(k) (3.42)
where F−1 denotes the inverse Fourier transform of the matrix.

Multiplying two vectors in frequency domain corresponds to circular convolution of
the vectors in time domain. That yields undesired wraparound aliasing [45], [52]
when converting the output back to time domain. Therefore only the last N samples
are retrieved because the other N samples are the product of circular convolution.
For the error, it can also be assumed that

e(k) = [e(kN), e(kN + 1), ..., e(kN +N − 1)]T (3.43)
In the frequency domain the error signal is padded with N zeros as before, in order
to avoid aliasing.

E(k) = FFT

[
0, ..., 0, e(k)

]
(3.44)

From Haykin [50] the weights in the block LMS algorithm are updated according to
the equation

w(k) = w(k − 1) + µ
L−1∑
i=0

x(kL+ i)e(kL+ i) (3.45)

for a kth block.
From Parseval’s theorem [51], energy density spectrum of the frequency domain
blockX(k), given in 3.40, is equal to the power estimate of the signal in time domain.
The energy density spectrum is defined as the square of the complex signal. In order
to properly normalize the algorithm in equation 3.45 and in frequency domain, a 2N
power estimate vector is used according to [45] and [53]:

P(k) = λP(k − 1) + (1− λ)||X(k)||2 (3.46)
where λ is a smoothing constant and 0 < λ < 1.
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For a kth block it also applies that

m(k) = µ diag[P0(k)−1, ...,P2N−1(k)−1] (3.47)

where µ is the step-size parameter.
Therefore the normalized equation for the filter update is

W(k) = W(k − 1) + m(k)X(k)HE(k) (3.48)
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4
Upmix Methods

The present chapter describes the various upmix techniques belonging to the primary-
ambience extraction scheme. They are all implemented in a time-frequency analysis-
synthesis manner, using the well studied short time Fourier transform (STFT), ex-
cept the method of Aarts-Irwan [20], which is developed in time-domain. The rest
are initially presented in [17], [22], [24], [13], [19] and they constitute the most
important and promising approaches for 2-to-5 conversion. Subjective evaluation
experiments have shown that, the listening experiences created with these most of
the systems are in general, more preferred than the conventional stereo reproduction.

4.1 Signal Formulation

According to Rumsey in [43], reverberation is added in the stereo recordings, either
by artificial or natural fashion. The first refers to the studio case, when audio
engineers add digital reverberation in the mix. However, in live recordings, the
microphones are usually spatially placed, capturing except the direct signal, the
room’s sound reflections or the diffuse field of the sound wave. Hence, the ambience
is naturally embedded in the recording. Therefore a general signal model is formed
in time domain as

xi(t) =
[

N∑
j=1

cj(t) ∗ dij(t)
]

+
[

N∑
j=1

cj(t) ∗ aij(t)
]

(4.1)

where i is the index for every channel of the stereo signal, i.e. i=1 or 2, cj(t)
represents each source, with N being the total amount of them. These sources are
assumed to be convolved with a room impulse response, which include a direct dij
and an ambient component aij. This convolution process describes the equation
(4.1). Yet, Faller follows an alternative signal convention, which will be explained
in the corresponding section.
Schroeder in [18], gave a statistical definition for the ambience, that is the expo-
nentially decaying, ergodic and stochastic process normally distributed with a mean
of zero. Ergodic means that, the statistical properties of random process can be
deduced by a sufficiently long sample derived from the signal.
Since, most methods extract the ambience using STFT, a time-frequency represen-
tation of the previous signal model, could be as given by Goodwin-Jot in [22]:

~Xi[k, l] = [xi[k, l], xi[k, l − 1], ...]T (4.2)
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~Xi[k, l] = ~Pi[k, l] + ~Ai[k, l] (4.3)

where k is a subband index and l is a time index and each STFT tile is considered
as a column vector in time.

Although, the assumptions made are a rational and quite elegant simplification,
it is better to be perceived as approximations, since they are not totally solid.
However, the methods extracting the ambience in the time-frequency plane, deal
also with cases where multiple sources are simultaneously active, thus several direct
components exist in the signal. Moreover, in PCA the primary signal has to have
higher energy than the ambience, which is also not entirely true in reality.

4.2 PAE with Subjectively Tuned Mapping Func-
tion (Method of Avedano Jot)

The method discussed in this section is developed by Avedano-Jot and described
in [17]. The ambience levels are deemed to be uncorrelated, having approximately
equal energy in every channel:

|| ~Ai(t)||2 ' || ~Aj(t)||2 (4.4)

The technique separates the uncorrelated signals in the left and right channels from
the direct components, which are correlated in a stereo signal. Then, two new signals
are generated including most of the ambient information.
The idea stems from the binaural processing of hearing, which includes the calcula-
tion of the cross correlation between the channels, in each critical band [25].
The signal processing front-end consists of a discrete short-time Fourier transform
(STFT), converting to the time-frequency plane, in which the correlation at every
frequency band will be high in regions where the direct component is dominant,
whereas in areas with prevailing reverberation the corresponding correlation will be
low.
It has already been mentioned that the STFTs of the channel signals xi(t) are
~Xi(k, l), where k is the frequency index and l is the time index. Audio signals are
in general non stationary, hence the statistics of a signal will change with time. In
order to keep track of these changes a forgetting factor λ is introduced. Hence,
iterative definition of cross-correlation (i 6= j) and auto-correlation (i = j) is given as:

rij(k, l) = λrij(k, l − 1) + (1− λ) ~Xi(k, l)H ~Xj(k, l) (4.5)

where T indicates transposition, ∗ indicates complex conjugation and H indicates the
corresponding Hermitian matrix. Also, different values of λ can be used in different
frequency bands. However, λ is set to a value close to 1 ( not 1 though) because the
calculation will be ill-defined for λ = 1 [19].

Then the inter-channel short-time coherence function or cross correlation
coefficient becomes
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Φ(k, l) = rLR(k, l)
[rLL(k, l)rRR(k, l)]1/2 (4.6)

which is real and will have values close to one in regions where the primary signal is
dominant. However, it will be close zero in regions dominated by the reverberation
and surrounding noise(ambience).
Extracting the ambience of the stereo, a weighting non-linear function of the short-
time coherence is used:

~Ai(k, l) = ~Xi(k, l)Γ[Φ(k, l)] (4.7)

where ~Ai(m, k) is the ambience vector having applied Fourier transform and i rep-
resents any channel of the stereo. The non-linear function Γ behaves in such a way
that low correlated regions are not modified, whereas the high correlated ones are
severely attenuated. Hence, the direct component is removed. Furthermore, in order
to avoid artifacts, the function has to be smoothed. Since the hyperbolic tangent
features this behavior, the mapping function is defined as

Γ[Φ] = (µ1 − µ0

2 )tanh[σπ((1− Φ)− Φ0)] + µ1 + µ0

2 (4.8)

where µ1, µ0 define the range of the output, i.e. the upper and lowest threshold, and
σ controls the slope of the function. Figure 4.1 illustrates the masking function (Γ)
as function of the cross correlation coefficient Φ and the parameter σ.

Figure 4.1: Mapping function dependent on the cross correlation coefficient with
Φ0 = 0.5 and different values for parameter σ

In general µ1 is set to one, since the non-coherent regions has not to be enhanced.
On the contrary, µ0 controls the floor of the function and its value is small, but
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greater than zero to minimize subtraction-like artifacts at the output. In the thesis
the rest coefficient values are set to µ0 = 0.1 and Φ0 = 0.5.
In case the primary signal components are panned completely to one side, the cross-
correlation coefficient will be close to zero, that is the extracted ambience is ill-
defined. Therefore the signals have to have comparable energies.

Figure 4.2: Block diagram of ambience extraction, using the mapping function to
separate the ambience. It is made according to the diagram presented in [17].

In figure 4.2 a block diagram of the ambience extraction is depicted. The STFT
parameters used in every iteration are a Hanning window with of 1024 samples in
every iteration, 75% overlap and 256 samples as hop size . Then, the time domain a
by the time-frequency equivalentmbience signals are made by applying the ISTFT
via the overlap-and-add (OLA) method.

4.3 PAE with Scalar Ambience Masks(Method of
Equal Levels of Ambience)

In general, here the auto-correlation and the cross-correlation coefficient are com-
puted as

rLL = ~XH
L
~XL =

N∑
l=1

xL(l)∗xL(l) = || ~XL||2 (4.9)

rRR = ~XH
R
~XR =

N∑
l=1

xR(l)∗xR(l) = || ~XR||2 (4.10)

Φ(k, l) = rLR
(rLLrRR)1/2 =

~XH
L
~XR

|| ~XL|| || ~XR||
(4.11)

In general the ambience signals are uncorrelated both mutually and with the primary
components. Moreover, the cross-correlation coefficient magnitude of the primary
signals is one, except for some level and phase differences, which allows for the next
assumption
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rLR = ~PH
L
~PR (4.12)

and successively

|rLR| = ||~PL|| ||~PR|| (4.13)

As in the subjectively tuned mapping function in section 4.2, the ambience levels in
both channels are assumed to be equal, thus

IA = || ~AL|| = || ~AR|| (4.14)

and the ambience levels are calculated according to

|| ~AL|| = αL|| ~XL|| and || ~AR|| = αR|| ~XR|| (4.15)

These equations imply that the calculation of the ambience energy predicates the
determination of the scalar masks αL and αR.
For the total signal energy in every channel is reasonable to presume that

|| ~XL||2 = ||~PL||2 + || ~AL||2 and || ~XR||2 = ||~PR||2 + || ~AR||2 (4.16)

where ~PL, ~PR and ~AL, ~AR are the primary and ambient components respectively.
Combining equations (4.13), (4.14) and (4.16) gives

|rLR|2 = I4
A − I2

A(rLL + rRR) + r2
LLr

2
RR (4.17)

It is required that the ambience energy is less than or equal to the total signal energy,
i.e. 2I2

A ≤ rLL + rRR. Therefore, the solution is

I2
A = 1

2(rLL + rRR −
√

(rLL − rRR)2 + 4|rLR|2 (4.18)

and as a result from equations (4.19)

αL = IA

| ~XL||
and αR = IA

| ~XR||
(4.19)

The ambience energy fraction is estimated as the ratio of the total extracted ambi-
ence to the total energy of the inputs, namely

EA = ||
~AL||2 + || ~AR||2

|| ~XL||2 + || ~XR||2
(4.20)

or

EA = 1−

√
(rLL − rRR)2 + 4|rLR|2

rLL + rRR
(4.21)

Equation (4.38) is plotted as a function of the level difference between the channels
and the cross-correlation coefficient Φ. The graph is shown in figure 4.3 and actually
explains the behavior of the method. The ambience energy fraction is 1 only for
uncorrelated signals with equal levels, whereas for identical signals with correlation
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of 1, the ambience ratio is 0, without being affected by the level difference. When
the input signal levels are equal (rLL = rRR), the ambience energy fraction is a linear
function of Φ. Nonetheless, while the level difference increases, the stronger signal is
interpreted as increasingly primary, because the method is based on the assumption
that the ambience in both channels has equal levels.

Figure 4.3: Ambience energy fraction as a function of the cross correlation coeffi-
cient Φ and the level difference between the inputs

4.4 PAE with Principal Component Analysis (Method
of Goodwin-Jot)

The signal model of equation (4.3) is slightly alternated in [22]:

~Xi[k, l] = ~Pi[k, l] + ~Ai[k, l] = ρi[k, l]~u[k, l] + ~Ai[k, l] (4.22)
where k is a subband index and l is a time index.
Several assumptions are made as before, in order to adjust the signal properties
to the method. However, the notion of orthogonality is explicitly introduced to
describe the uncorrelated primary and ambient signals.
The primary component ~u has to be specified, in equation 4.22. This unit vector
best describes the set of channel vectors in signal space and it is calculated as the
linear combination of the signal vectors

~u = cL ~XL + cR ~XR (4.23)
Then, the orthogonal primary and ambient components can be derived from each
channel, by projecting onto u:

~Pi = (~uH ~Xi)~u (4.24)
of the ith channel signal and
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~Ai = ~Xi − ~Pi (4.25)
No signal information is lost during the decomposition because primary and ambient
add up to the original. The best choice for the unit vector u lies on the assumption
that most of the signal energy corresponds to the primary component, hence it
minimizes the energy in the residual ambience. PCA is based on a singular value
decomposition (SVD) of the covariance matrix:

[
~XL

~XR

][
~XL

~XR

]H
=
[
~u0~u1

][ λ0 0
0 λ1

][
~u0~u1

]H
(4.26)

where ~u0 and ~u1 are the orthonormal eigenvectors, forming the orthonormal basis
for the signal space, and λ0 is the largest eigenvalue. Therefore, the signals can be
written as

~XL = (~uH0 ~XL)~u0 + (~uH1 ~XL)~u1 (4.27)
~XR = (~uH0 ~XR)~u0 + (~uH1 ~XR)~u1 (4.28)

Since ~u0 is the unit vector that maximizes the energy, whereas ~u1 minimizes it:

Eu = |~uH ~XL|2 + |~uH ~XR|2 = ~uH
[
~XL

~XR

][
~XL

~XR

]H
~u (4.29)

The maximized and minimized energy are represented by the eigen values by the λ0
and λ1 as:

Eu0 = ~uH0
[
~XL

~XR

][
~XL

~XR

]H
~u0 = ~uH0 λ0~u0 = λ0 (4.30)

Eu1 = ~uH1
[
~XL

~XR

][
~XL

~XR

]H
~u1 = ~uH1 λ1~u1 = λ1 (4.31)

where the largest and smallest eigenvalues of the matrix XXH is then computed
according to:

λ0 = 1
2[rLL + rRR + ((rLL − rRR)2 + 4|rLR|2)1/2] (4.32)

λ1 = 1
2[rLL + rRR − ((rLL − rRR)2 + 4|rLR|2)1/2] (4.33)

which is used to find the vectors ~u0 and ~u1 , which occur fro equations (4.27) and
(4.28)

~u0 = rLR ~XL + (λ0 − rLL) ~XR (4.34)
~u1 = rLR ~XL + (λ1 − rLL) ~XR (4.35)

which in this form are not scaled to the unit-norm. After scaling the primary and
ambient component are estimated for each channel as the projection of the channel
signal onto the principal vector and minor vectors:
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~Pi =
(
~uH0

~Xi

~uH0 ~u0

)
and ~Ai =

(
~uH1

~Xi

~uH1 ~u1

)
(4.36)

Figure 4.4: Orthogonal decomposition of a stereo signal (XL, XR) with principal
components analysis (PCA)

The primary and ambience energy fraction derived with PCA can be written as:

EP = λ0

rLL + rRR
= 1

2 + 1
2

(√(rLL − rRR)2 + 4|rLR|2

rLL + rRR

)
(4.37)

and

EA = λ1

rLL + rRR
= 1

2 −
1
2

(√(rLL − rRR)2 + 4|rLR|2

rLL + rRR

)
(4.38)

From the previous formulas, it follows that the ambience fraction is 0 for fully
correlated signals, whereas the primary is 1, which means that all the signal energy
is correctly attributed to primary part of the signal. On the other hand, fully
uncorrelated signals of equal energy (rLL ' rRR) have the same primary and ambient
ratio, which is equal to 1/2. The latter implies that, half of the signal energy is ill-
defined as primary, a fact which actually stems from the signal assumption that the
primary component has most of the signal energy in the mix. As a consequence,
PCA behaves more efficiently for inputs which are highly correlated.

4.5 PAE with Least Squares Estimates (Method
of Faller)

In the present method, introduced by Faller in [13], direct and diffuse sound are
separated with least-squares estimation (multichannel Wiener filtering). In this
way, the diffuse signals are statistically independent. A slightly different realization
of the signal model and notation is used by the author, which is kept here for fidelity
with the method’s concept.
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In equation 4.39, signal d represents the direct sound from a direction determined
by the factor α. The lateral reflections correspond to r1 and r2. This, constitutes a
decomposition of the stereo with one auditory event (figure 4.5), thus:

x1(n) = d(n) + r1(n) (4.39)

x2(n) = αd(n) + r2(n) (4.40)

Figure 4.5: Mixing signal s with lateral reflections n1 n2. Factor α determines the
direction in which the auditory event appears (made according to the equivalent in
[13]).

The decomposition is carried out independently in a number of frequency bands in
the time-frequency plane, by using the STFT technique-with the parameters as in
section 4.2. Hence, the signal model is formulated as:

~X1(k, l) = ~D(k, l) + ~R1(k, l) (4.41)

~X2(k, l) = ~D(k, l) ~A(k, l) + ~R2(k, l) (4.42)
where, k is the subband index and l is the time index.
~X1, ~X2 are stereo subband signals. The aim is to calculate estimates for D, ~A, ~R1,
~R2. A short time estimate of the power of X1 is

Px1(i, k) = E[X2
1 (i, k)] (4.43)

where E[.] is the short time averaging operation and PR = PR1 = PR2 .
The normalized cross correlation between left and right:

Φ(i, k) = E[X1(i, k)X2(i, k)]√
E[X2

1 (i, k)]E[X2
2 (i, k)]

(4.44)
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which actually can be calculated by the equation (4.6).
A, PD and PR are computed as function of the estimated PX1 PX2 and Φ by solving
the equation system, where

PX1 = PD + PR (4.45)

PX2 = A2PD + PR (4.46)

Φ = AD√
PX1PX2

(4.47)

and they are solved for A, PD and PR,

A = B

2C (4.48)

PD = 2C2

B
(4.49)

PR = PX1 −
2C2

B
(4.50)

with

B = PX2 − PX1 +
√

(PX1 − PX2)2 + 4PX2PX1Φ2 (4.51)

and

C = Φ
√
PX2PX1 (4.52)

Least-Squares Estimation of D, R1 and R2

The least squares estimates of D, R1 and R2 are functions of A,PD and PR.
For each i and k, the signal is estimated as

D̂ = w1X1 + w2X2 = w1(D +R1) + w2(AD +R2) (4.53)

The estimation error is

E = (1− w1 − w2A)D − w1R1 − w2R2 (4.54)

The weights w1,w2 are optimal in a LMS sense when the error is orthogonal to X1
and X2:

E[EX1] = 0 (4.55)

E[EX2] = 0 (4.56)

which yields two equations
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(1− w1 − w2A)PD − w1PR = 0 (4.57)

A(1− w1 − w2A)PD − w2PR = 0 (4.58)

from which the weights are computed and similarly the R1 and R2. Therefore, six
weights are estimated, w1, w2, w3, w4, w5 and w6

Postscaling

D̂ is scaled to obtain an estimate of D with power PD

D̂′ =
√
PD√

(w1 + aw2)2PD + (w2
1 + w2

2)PR
D̂ (4.59)

R̂′1 R̂
′
2 are equivalently calculated as

R̂′1 =
√
PR√

(w1 + aw2)2PD + (w2
1 + w2

2)PR
R̂1 (4.60)

R̂′2 =
√
PR√

(w1 + aw2)2PD + (w2
1 + w2

2)PR
R̂2 (4.61)

N ′1 N
′
2 which represent the extracted ambience are played with the two side speakers,

for stronger impression of envelopment, whereas the estimated A determines the
angle σ of the auditory event relative to ±σ0, as in [37] (see also figure 2.3)

σ = sin−1(A− 1
A+ 1sinσo) (4.62)

Each time-frequency tile the output signal channels are computed as

Ym = δ(m− 1)N̂ ′1 + δ(m−M)N̂ ′2 + [δ(m− l)α1 + δ(m− l− 1)α2]
√

1 + A2Ŝ ′ (4.63)

where m is the output channel index, 2 6 m 6 4 and δ(m) = 1 at m = 0 or 0
otherwise. The signals with 1 and 5 indices are the loudspeakers on the sides. α1
and α2 are the amplitude panning factors computed with the stereophonic law of
sines.

4.6 PAE with NLMS Adaptive Filter in Frequency
Domain (Method of Usher-Benesty)

This following described upmix system is initially presented in [24]. The signals at
sample time t are xi(t) and xj(t), where i 6= j. A summary of the signal processing is
shown in figure 4.6. In the proposed ambience extractor upmix system. The filters
wij wji are adapted over time so that the level of the error signals is minimized.
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The purpose of delay D allows for nonminimum phase impulse responses, so as the
filtered input to be time-shifted relative to the unfiltered one.

Figure 4.6: Firstly, xi is filtered with a set of filtering coefficients, i.e. 1024-
tap finite-impulse response filter(FIR) and input xj is time-shifted, typically with
a delay of about 10 ms (500 samples). In the next step the difference signal yj
is calculated between the filtered xi and xj, which can be transmitted with rear
separate loudspeakers. yj has to be orthogonal to xi. For this reason , the set of
filtering coefficients have to be adjusted accordingly.

Adding a delay to xi before extracting the yi allows for time-alignment of the two
input signals, in case of the direct sound arrives first in one of the channels. Con-
sidering the signals are produced by two microphones spaced up to the 3.4 m, the
delay D is set approximately to 10 ms. .

Signal Model

An alternative concept for the signal model is described here. The input xi(t) ( or
xj(t)) is defined as

xi(t) =
Lr−1∑
l=0

s(t− l)di,l +
L∑

l=Lr
s(t− l)ri,l, i = 1 or 2 (4.64)

where, the 1st term is the convolution between the source s(t) and the direct part
coefficients of Lr length. The 2nd term is the convolution of s(t) with the length
reverberant part coefficients of L-Lr length(see figure 4.7).
The time-varying source samples and the time-invariant IRs are defined as vectors:

•
sd(t) = [s(t), s(t− 1), ..., s(t− Lr + 1)]T (4.65)

•
sr(t) = [s(t− Lr), s(t− Lr − 1), ..., s(t− L)]T (4.66)
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Figure 4.7: Impulse response model for the time-domain transfer function between
2 locations in a room (given in [45]). The first part of the signal occurs up to Lr
mixing time and affects the source image. It consists of the primary sound and the
early reflections. The rest of the signal tail is the ambience.

•
di = [di,0, di,1, ..., di,Lr−1]T (4.67)

•
ri = [ri,0, ri,1, ..., ri,L−Lr−1]T (4.68)

So, equation 4.64 can be written as:

mi(t) = sTd (t)di + sTr (t)ri (4.69)

or, for convenience

mi(t) = sd,i(t) + sr,i(t) (4.70)

Definitions and Notation

The ambience extractor must remove the correlated components in the two signals.
Therefore, an adaptive filter is applied to one input signal to shape it as similar as
possible to the other. Then, by subtracting the filtered signal from the other, the
correlated regions are removed.
Filtering xj by the adaptive filter wij gives yi(n):

yi(t) =
M−1∑
l=0

xj(n− l)wij,l (4.71)

or in a vector form

yi(t) = xj
T (t)wij (4.72)

where
•

xj(t) = [xj(t), xj(t− 1), ..., xj(t−M + 1)]T (4.73)
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•
wij = [wij,0, wij,1, ..., wij,M−1]T (4.74)

The yi(n) is subtracted from the the unfiltered xi signal sample-by-sample. Then,
the error signal ei occurs:

ei(t) = xi(t−D)− yi(t) (4.75)

Optimization Criterion

The algorithm changes the adaptive filter coefficients, thus the aim is to minimize
the level of the error signals. This is expressed as a ’performance index’ or ’cost’
scaler J and it follows that

Ji(wij) = E[ei(t)2] (4.76)

where E[.] is the statistical expectation operator
When J attains its minimum value, the state of the adaptive filter is called the ’op-
timal state’.

Adaptation Algorithm

The NLMS algorithm is described in [50]:

wij(t) = wij(t− 1) + α

δ + xTj (t)xj(t)
xj(t)ei(t) (4.77)

with 0 < α < 1 and δ is a regularization constant added to the power estimate
to ensure against computational problems for low input levels. Implementing the
method in frequency domain, 50% overlap is used, as in [45].

Principle of Orthogonality

The optimal state is achieved when

E[xj(t)ei(t)] = 0 (4.78)

A radiated signal by the rear loudspeakers, which is uncorrelated with either xi or
xj, normally doesn’t contain any component affecting the source image.

Assumptions

Using the statistical expectation operator E[.] similar assumptions are made, as in
the previous methods:

1. The direct components are at least partially correlated:

E[dTi (t)dj(t)] 6= 0 or E[sTd,i(t)sd,j(t)] 6= 0 (4.79)
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2. The reverberant components are uncorrelated with each other as :

E[rTi (t)rj(t)] = 0 or E[sTr,i(t)sr,j(t)] = 0 (4.80)

3. The two reverberant IRs are uncorrelated with both early parts as:

E[rTi (t)di(t)] = 0 or E[sTr,i(t)sd,i(t)] = 0 (4.81)

4. The two reverberant path IR is decaying random noise with a normal distri-
bution and a mean of zero as follows:

E[ri(t)] = 0 or E[sr,i(t)] = 0 (4.82)

Selection of the Filter Length

The length of the adaptive filter has to allow for removal of the direct components.
Thus, it is considered to be the length of the direct components (Lr). Successively,
the reverberant component is defined as the part of an impulse response where the
local distribution is normal. It is stated that the ambient samples have kurtosis of
3. Kurtosis is a measure of normality [18]. The definition of kurtosis is

kurtosis = E[x− µ]4
σ4 (4.83)

where, µ is the mean and σ the standard deviation of x. In order to determine the
start of the reverberant component in the adaptive filter, the kurtosis is calculated
for different filter taps, averaging over with 64 samples in every iteration. Taking
into account that normal distribution is observed above approximately 1000 samples
(23ms), the filter length is set at 1024 samples.

Figure 4.8: Impulse response and the corresponding kurtosis, calculated over 64
samples in every iterration.

4.7 PAE with a Time Domain LMS Filter (Method
of Aarts-Irwan)

The algorithm presented here adds a center channel, reformulating the entire front
stage and produces a monophonic ambient channel. In order to maintain backward
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and forward compatibility, the energy preservation criterion is used to create multi-
channel matrices [38].

Center Channel

Klipsch, in [39] suggests that a center loudspeaker improves the quality of stereo
sound reproduction, reproducing the signal

√
2(xL + xR). The factor

√
2 preserves

the total frontal energy, yet a major drawback is that the image becomes narrow
due to crosstalk with L and R.
Based on PCA, the method produces two vectors indicating the direction of the
dominant y and the remaining q signal, depicted in figure 4.9. Their directions are
perpendicular to each other, formulating a new coordinate system . These are used
as basis signals in the matrix decoding
At time index l(integer), each sample of a stereo pair is defined as

x(l) = [xL(l)xR(l)]T (4.84)
and

y(l) = wT (k)x(l) (4.85)
where

w(l) = [wL(l)wR(l)]T (4.86)
is the weighting vector corresponding to the left and right channels respectively.
The optimal weighting vectors are found by maximizing the energy of equation (4.85)
with respect to w:

∂E[y2(l)]
∂w

= 0 (4.87)

where E[.] is the expected value. By means of the steepest descent method [50], a
least-mean-square(LMS) algorithm is derived with y(l−1) as input. Hence, for each
channel

wL(l) = wL(l − 1) + µy(l − 1) ∗ [xL(l − 1)− wL(l − 1)y(l − 1)] (4.88)

wR(l) = wR(l − 1) + µy(l − 1) ∗ [xR(l − 1)− wR(l − 1)y(l − 1)] (4.89)
where µ is the step size.
In [40] is shown that the algorithm is stable and input signal dependent if and only
if

0 < µ <
2

xT (l)x(l) (4.90)

The direction of the stereo image in terms of an angle is given in radians by:

α(l) = arctan
[
wL(l)
wR(l)

]
(4.91)
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With L corresponding to α = π
2 and R to α = 0, figure 4.11 shows that α fluctuates

around π/4 creating a phantom source almost equidistant between L and R. The
algorithm is able to detect abrupt changes in localization within a short period of
time.

Figure 4.9: Lissajous plot of a highly correlated signal. The bold lines represent
the new coordinate system, with y being the dominant signal and q the remaining
signal. They form the direction of the stereo image a.

A pair of stereo signals is defined by the unit length vector of equation 4.86. Mapping
the stereo vector onto a three-channel vector, the angle α is doubled, creating a new
mapping 4.10.b. The projections of the vector are

cLR = w2
R − w2

L (4.92)

cC = 2wLwR (4.93)

Figure 4.10: (a) Direction of vector plots of stereo signals. (b) Three-channel
representation by doubling the angle a.
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4. Upmix Methods

Figure 4.11: Fluctuation of the direction of the stereo image a of the audio excerpt
presented in figure 4.9

Surround Channels

The conversion in fig.4.10 works only for non-negative a. If it’s negative, no gain
can be derived for the central channel. In this case, extra information should be
used. The ambience effects can be derived by subtracting the left and right original
channels (xL − xR), which are represented by the remaining signal q.
In case |y| ' |q|, the distribution presented in figure 4.9 is no longer an ellipse, but
a circle. Hence, a is ill-defined and the correlation coefficient ρ is estimated. Here,
the notation is slightly different for the correlation coefficient, because a different
iterative calculation procedure is followed, gi in [41]:

ρ̂ = ρ̂(k − 1) + γ
[
2xL(k)xR(k)− [xL(k)2 + xR(k2)]ρ̂(k − 1)

]
(4.94)

γ is the step size determining the time constant.
In case |y| < |q|, which is possible since −1 ≤ ρ ≤ 1, the input signal are considered
uncorrelated:

ρ0 =

ρ, 0 ≤ ρ ≤ 1
0, otherwise

(4.95)

3-D Mapping

Deducing from above, both the direction of the stereo image a and the cross-
correlation coefficient ρ are used to avoid ambiguity when |y| ' |q|. The latter
is related with the angle β, shown in figure 4.12, which represents the actual sur-
round information with respect to the front channel sounds:

β(l) = arcsin[1− ρ0(l)] (4.96)
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and

0 ≤ β(l) ≤ π

2 (4.97)

Therefore, it is briefly summarized that,
• q(remaining) increases → weak correlation of inputs → β increases → total

distribution to front channels is reduced
• strong correlation of inputs → β approximately zero → larger contribution to

the front channels.

Figure 4.12: 3-D mapping showing front and surround channels.

The recalculation of the projections is necessary, due to the lift of the direction
vector (unit length) by an angle β:

c′LR = cLRcosβ (4.98)

c′C = cCcosβ (4.99)

cS = sinβ (4.100)

Matrixing

As mentioned above, the energy preservation criterion has to be fulfilled. A matrix
preserves energy if and only if its columns are of unit length and pair-wise orthogonal.
If the product of two orthogonal matrices is also orthogonal, the backward-forward
compatibility can be achieved. Thus,


uL(l)
uR(l)
uC(l)
uS(l)

 =


cL(l) gwL(l)
cR(l) gwR(l)
cC(l) 0

0 cS(l)


[
y(l)
q(l)

]
(4.101)

At the left-hand side of eq.4.101 the signals for L, R and C loudspeakers are in-
dicated, while uS denotes the monphonico surround signal. The basis signals are
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4. Upmix Methods

obtained by rotating the coordinate system of xL and xR, hence a weighted sum of
the inputs

y(l) = wL(l)xL(l) + wR(l)xR(l) (4.102)

q(l) = wR(l)xL(l)− wL(l)xR(l) (4.103)

and

cL =

−cLR, cLR < 0
0, otherwise

(4.104)

cR =

cLR, 0 ≤ cLR

0, otherwise
(4.105)

where g is the gain coefficientto control the energy preservation.
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5
Up-Mix Results and Discussion

In this chapter, the performance of the algorithms is presented, compared and inves-
tigated, based on audio inputs with different correlation characteristics. The results
display is divided into two parts. The first discusses the algorithms’ possibilities,
using a transient pulse and a stereo Gaussian noise signal as inputs. The signals
are made in Audacity, containing a correlated primary and an uncorrelated ambient
component. They can be perceived as extreme, very specific and simplified cases.
The reason for this approach is to provide a fundamental understanding of how the
primary-ambience separation works and to efficiently control the study, obtaining a
more clear qualitative and quantitative image.

The second focus on three different types of audio signals, each one representing a
recording commonly found in a regular musical recording; a single source of congas
(see chapter 5.1 for further information about the recording), a regular pop-rock
item with multiple sources like drums, guitar, bass and electronics, and an excerpt
of electric guitar mostly hard-panned. Their time signals are displayed in figures
5.1, 5.2, 5.3 respectively.

The objective measures, which are used here, aim to quantify the effect the differ-
ent audio stimuli have on the up-mix results. These measures heve already been
developed and introduced in [19]. In the first analysis section, figures are plot-
ted illustrating the ambience energy fraction EA, ambience level difference L and
the cross-correlation of ambience extracted from each channel φA. Furthermore,
since the simple stereo signals are synthesized knowing a priori the primary and
ambient components, the primary cross-correlation φP and the primary-ambient
cross-correlation are calculated and presented as well.
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5. Up-Mix Results and Discussion

Figure 5.1: Congas stereo channels and their correlation graph. The signal has
0.89 correlation coefficient

Figure 5.2: Pop-rock stereo channels and their correlation graph. The signals have
0.78 correlation coefficient

Figure 5.3: Electric Guitar stereo channels and their correlation graph. The signals
have 0.48 correlation coefficient
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5. Up-Mix Results and Discussion

Figure 5.4: On the left, correlated direct signal and uncorrelated decayed ambience
in each channel, and on the right the signal’s correlation graph with 0.23 correlation
coefficient

Figure 5.5: On the left, the correlated direct signal and Gaussian uncorrelated
noise in each channel, and on the right the signal’s correlation graph with 0.014
correlation coefficient

5.1 Evaluation Metrics
The discussed ambience extraction methods have as a mutual property the calcula-
tion of the cross-correlation of the left and right input signals. In other words, they
attempt to remove the primary components by assuming high correlation of direct
components. For this reason, they are assessed within a mutual framework utilizing
the same metrics. The metrics have been extracted in every time-frequency frame,
with a length of 1024 samples, that is the size of each block of FFT.
At first,the fraction of ambience energy is estimated. EA is the ratio of the ambience
energy extracted from both channels to the total signal energy

EA = ||
~AL||2 + || ~AR||2

|| ~XL||2 + || ~XR||2
in dB (5.1)
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The ambience level difference is defined as the ratio between the left and the right
channel. Thus, it can be coalculated by the following formula :

L = ||
~AL||
|| ~AR||

in dB (5.2)

where ~AL and ~AR are the ambient estimated components.
In general, conducting several simulations by using Gaussian Noise the discrepancies
are reduced and more secure conclusions are inferred.
Assessing the results in terms of cross-correlation coefficients of the derived ambient
and primary components, the ideal values to be expected have to take values between
0 and 1. The formulas for these measures are

φA =
~AL

H ~AR

|| ~AL|| || ~AR||
(5.3)

and

φP =
~PL
H ~PR

|| ~PL|| || ~PR||
(5.4)

Despite the fact that some methods either extract the energy of the direct signal
e.g PCA or produce three frontal channels e.g Aarts-Irwan and Faller’s method, the
cross-correlation of the primary signal is only used for the simple types of signals
( the pulse and the Gaussian noise). The energy of direct sound in every channel
is calculated by subtracting the ambience energy || ~Ai||2 from the the total signal
energy || ~Xi||2. Therefore, the result of the subtraction yields the autocorrelation of
the primary component ||~Pi||2.

5.2 Formulation of Transient Pulse and Gaussian
Noise

As mentioned a transient stereo signal is used as input t to test the algorithm. It is
shown in figure 5.4. The same sinusoidal pulse in both channels is convolved with
different uncorrelated and exponentially decaying artificial room impulse response.
Of course, the primary components are identical, implying high correlation. In
general the input transient stereo signals are made in accordance with the format
of the following the equation.

~XL = ρL ~P + ~AL (5.5)

~XR = ρR ~P + ~AR (5.6)

where ~P , ~AL and ~AR denote the primary and ambient components, in each channel
respectively and ρL, ρR are the panning coefficients. For the coefficients and the
ambient levels, it applies that

ρ2
R + ρ2

L = 1 (5.7)
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and

‖ ~AL‖ ' ‖ ~AR‖ (5.8)

Gaussian noise signals depicted in figure 5.5 is also used, in order to sufficiently
display certain features of the methods, with a deterministic signal as input. In a
nutshell, this type of noise is defined as the signal with Gaussian (normal distri-
bution) probability density function (PDF) [54]. This means that, the PDF of a
random variable x is normally distributed as:

p(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 (5.9)

where µ is the mean value and σ is the standard deviation.

Using such stimuli, it is computationally and optically more efficacious to assess the
performance of each algorithm. Let alone, these simple and fixed signals can lead to
more secure conclusions, about how the up-mix methods work. In addition, when
dealing with more than two system comparisons, the brief duration of these signals
is not actually a problem for most of the methods, giving trustworthy results and
significantly reducing the simulation processing time.

In the present case the levels of the primary components, existing in both channels,
are identical. Hence, the panning coefficients are equal such that ρL = ρR. The
ambience is extracted in the frequency domain, under the same STFT scheme, as
implemented and mentioned in the previous chapters. A 1024 points analysis and
synthesis Hanning window is used, with 75% overlap, to avoid undesired aliasing
effects when converting the signals to time domain using the overlap-add synthesis
technique.

5.3 Results of Transient Pulse and Gaussian Noise

The following figures show the results obtained for a transient pulse and Gaussian
noise, both having correlated direct components. A preliminary examination of the
graphs, proves that every method has notable results, separating the previously
known embedded ambience.
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5. Up-Mix Results and Discussion

5.3.1 Mapping Function (Method of Avedano-Jot)

Figure 5.6: Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience.

Figure 5.7: Initial Gaussian noise with correlated direct components and the cor-
responding extracted ambience.
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5. Up-Mix Results and Discussion

5.3.2 Principal Component Analysis

Figure 5.8: Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience.

Figure 5.9: Initial Gaussian noise with correlated direct components and the cor-
responding extracted ambience.
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5.3.3 Scalar Ambience Extraxtion Mask (Equal Levels of
Ambience)

Figure 5.10: Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience.

Figure 5.11: Initial Gaussian noise with correlated direct components and the
corresponding extracted ambience.
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5.3.4 Leas Squares Estimates (Method of Faller)

Figure 5.12: Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience.

Figure 5.13: Initial Gaussian noise with correlated direct components and the
corresponding extracted ambience.
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5. Up-Mix Results and Discussion

5.3.5 Time Domain LMS Filter (Method of Aarts-Irwan)

Figure 5.14: Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience.

Figure 5.15: Initial Gaussian noise with correlated direct components and the
corresponding extracted ambience.
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5.3.6 Normalized Least Mean Squares (Method of Usher-
Benesty)

Figure 5.16: Initial stereo pulse with correlated direct components, convolved with
room impulse responses, and the corresponding extracted ambience.

Figure 5.17: Initial Gaussian noise with correlated direct components and the
corresponding extracted ambience.
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5.4 Evaluation Metrics for the Transient Pulse
and Gaussian Noise

The signals depicted in figures 5.4 and 5.5 are used as inputs. In that case there
is a prior knowledge for the signal features, which are also made according to the
specifications described in section 5.2. Taking into account the dependency of the
algorithms’ efficiency on the signal properties, one has to better monitor the input
samples to thoroughly assess the methods with the recommended measures of section
5.1.
Figure 5.18 shows the ambience energy fraction and the ambience level difference
initially produced for the transient signal (shown in figure 5.4). Ideally, the results
from the up-mix systems follow the behaviour of the curves depicted in figure 5.18.
Furthemore, in figure 5.18b, the level difference fluctuates around or just below 0
dB, indicating a discrepancy from the requirement for equal levels in both channels.
This is something to be expected, since the signal is made by a simple convolution
between a sinusoidal pulse and an artificial room impulse response, which differs in
both channels.

(a) (b)

Figure 5.18: Ambient energy fraction and ambient level difference, originally in-
cluded in the signal, for the transient pulse

The original embedded ambience and level difference of fully uncorrelated Gaussian
noise, with correlated direct components, (presented in figure 5.5), are shown in
figure 5.19. In this occasion, the ambient levels in the channels are more balanced
than before, wiggling steadily with time from -1 to 1 dB.
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(a) (b)

Figure 5.19: Ambient energy fraction and ambient level difference, originally in-
cluded in the Gaussian noise signal.

5.4.1 Ambience Energy Fraction, EA

The graphs 5.20 and 5.21 show the ambience energy fraction (EA) with time, given
by equation (5.1). In general, the curves appear to follow the trend of the original
embedded fraction. The mapping function among the presented methods achieves
the best results, by totally coinciding with the original curve. There is almost no
leakage to the primary signal, since it fully coincides with the reference curve of
the original contained ambience. Only a small fraction of residual ambient energy
is present in the primary component, as it starts increasing slightly later than the
reference line [17]. In general, the extracted energy fraction is accurately calculated
from most of the methods, except Aarts-Irwan system with the transient as input
(figure 5.20a) and PCA. In the first case, the level curve fluctuates between -8 and -
12 dB lower than the expected vales. As it is noted in the description of the method
in section 4.7, the weights wL and wR are calculated by the LMS algorithm and
they actually constitute the solutions of the Wiener-Hopf equations (in [50], page
104). Therefore, the step-size µ prevents from reaching an optimal solution and the
algorithm performs a random motion around the minimum point, which is the so
called gradient noise.
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5.4.1.1 Transient Pulse

(a) (b)

(c) (d)

(e) (f)

Figure 5.20: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.

The pulse is non-stationary, meaning that the statistical properties of the signal vary
over time [49] and the filter solutions will be non-stationary as well. Hence, there will
be a difference between the optimal and the existent filter state. Notwithstanding,
for the Gaussian noise, which is a wide sense stationary signal, namely its mean and
autocorrelation properties are time invariant, LMS extracts the ambience with even
more precision, as it is depicted in figure 5.21a. The same could apply for the NMLS
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algorithm, since it is simply normalized by a regularization constant. However, the
EA for the NMLS (Usher-Benesty) is even closer to the optimal solution for each
signal type, yielding a very accurate ambience fraction.

5.4.1.2 Gaussian Noise

(a) (b)

(c) (d)

(e) (f)

Figure 5.21: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.

Equal Levels, PCA and Faller’s method appear to have similar behaviour with each
other when calculating the energy fraction. They fluctuate between 0 and -5 dB,
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with PCA being a bit lower in levels. Therefore, it can be deduced that small por-
tions of ambience signal are misinterpreted as primary. The effect is most prominent
in PCA, which is actually in line with the description of the PCA performance in
chapter 4.4 and initially defined in [22]. This is an inherent disadvantage of the
method, considering the emerging limitation . Signals of similar energy(|| ~XL||2 =
|| ~XR||2) and completely uncorrelated with each other imply that, just about half of
the signal energy is mischaracterized as primary. This can be seen in equation (4.38).
More precisely, one of the channels is then educed as primary, which subsequently
means that PCA becomes less advantageous for stereo uncorrelated channels. It also
indicates that certain input signal features are required to obtain reliable results with
PCA.
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5.4.2 Level Difference, L

5.4.2.1 Transient Pulse

(a) (b)

(c) (d)

(e) (f)

Figure 5.22: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.
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5.4.2.2 Gaussian Noise

(a) (b)

(c) (d)

(e) (f)

Figure 5.23: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.

It is apparent, in regard to the ambient level difference depicted in figures 5.22 and
5.23, that PCA occurs severe fluctuations in the range from 20 to -50 dB. On one
hand, the extracted ambience is almost hard-panned to the right channel, which
means that almost the entire ambience energy is attributed to the right channel,
inducing a quite unfavourable artifact. On the other hand, figure 5.23 shows that
PCA curve harshly fluctuates. Accordingly, the ambience is ill-defined in this case
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and probably will occur severe artifacts in real-time listening conditions. On the
contrary, the mapping function follows, with high precision, the originally isolated
ambience, while Equal Levels and Faller’s method remove exactly the same amount
of ambience from each channel.

5.4.3 Ambience Cross-Correlation Coefficient, φA

5.4.3.1 Transient Pulse

(a) (b)

(c) (d)

(e) (f)

Figure 5.24: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.
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5.4.3.2 Gaussian Noise

(a) (b)

(c) (d)

(e) (f)

Figure 5.25: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.
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5.4.4 Primary Cross-Correlation Coefficient, φP

5.4.4.1 Transient Pulse

(a) (b)

(c) (d)

(e) (f)

Figure 5.26: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.

57



5. Up-Mix Results and Discussion

5.4.4.2 Gaussian Noise

(a) (b)

(c) (d)

(e) (f)

Figure 5.27: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.

Discussion
Figures 5.24-5.25 and 5.26-5.27 show the ambience and primary cross-correlation,
given by equations 5.3 and 5.4 respectively. In the former graph, the mapping
function and Equal Levels method produce ambience cross correlation close to zero,
with values ranging from -0.1 to 0.1 for the Gaussian noise and higher fluctuation
for the transient, yet uncorrelated signals. Usher-Benesty’s method also produces
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ambient signals with correlation close to zero (figure 5.24f), a fact which is more clear
for the Gaussian noise (figure 5.25f) Faller’s method and PCA generate ambience
with negative cross-correlation. The explanation has already been given for the PCA
case in section 5.6.3.4. For Faller’s method, it seems that the high negative values of
φA is a result of primary components with opposite phases leaked to the ambience.
At the same time, the high ambience correlation produced by Aarts-Irwan method
means that, the transient is not affected by the decorrelation filter applied, whereas
in figure (figure 5.25a) the ambience of Gaussian noise is significantly decorrelated.
Last but not least, in figures 5.26 and 5.25 the primary cross-correlation is depicted
the first time instants, where the primary signal is initially present. The measure
is correctly calculated for almost all the methods. Faller’s and PCA also appear
to estimate a part of the ambience as primary, in the Gaussian noise case (figure
5.25e). This is probably attributed to the insufficient energy difference between the
primary and the ambience. At the same time the mapping function misinterprets a
small amount of ambience of the transient signal as primary , reaching high levels
of correlation at 0.06 s. However, this is probably residual primary signal with
very low levels. On the contrary, as depicted here Usher-Benesty’s method slightly
underestimates the primary component, for both signal types.

5.5 Results of Commercial Recordings

5.5.1 Ambience Extraction

The results 1ensued from the implementation of the up-mix algorithms are depicted
in sections, from 5.1.1 to 5.1.6. The original left and right audio signals are plotted
along with the elicited ambience for every method, in order to gain an overview of
the magnitude of the decomposition. Although, the specific graphs are only avail-
able for an eyeball inspection, they directly reveal some of the systems’ merits and
weaknesses. In general, the derived ambience signals from all the methods have
decreased amplitude compared to the original signal. That is actually what it is
expected to happen, since the part of the signal responsible for the reverberance
imagery have less amplitude than the direct components [44].

1Aarts-Irwan method extracts a monophonic ambient signal. In order to duplicate the channel,
without maintaining exactly the same properties, decorrelation is applied in order to reduce the
similarity of the signals. These techniques affect the phase of the signal, without altering its
magnitude.
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5.5.1.1 Mapping Function (Method of Avedano-Jot)

Figure 5.28: Initial congas left and right time signals and the corresponding ex-
tracted ambience.

Figure 5.29: Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience.

Figure 5.30: Initial electric guitar left and right time signals and the corresponding
extracted ambience.

The most extensive problems are pointed out in the hard panned uncorrelated part
of the electric guitar. The majority of the methods either give ambience channels
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with very low amplitude (methods of PCA, Eq.Levels, Faller,Aarts-Irwan) in the
channel containing the main source, or in contrast they yield signals having very
high amplitude, as in Avedano-Jot and Usher-Benesty. In the former cases, all
the methods produce at least audible results except PCA. The reason lies in the
assumption of PCA, that the direct components are dominant in an audio mix.
Hence, due to substantial more energy in the left channel, all the signal energy
is attributed to the primary component. As for the methods overestimating the
ambience, this simply happens because the direct components do not exist in the
left channel and they cannot be canceled out, since the cross correlation assumptions
are critical to the algorithms proper operation.

5.5.1.2 Principal Components Analysis

Figure 5.31: Initial congas left and right time signals and the corresponding ex-
tracted ambience.

Figure 5.32: Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience.
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Figure 5.33: Initial electric guitar left and right time signals and the corresponding
extracted ambience.

5.5.1.3 Scalar Ambience Extraction Masks (Equal Levels of Ambience)

Figure 5.34: Initial congas left and right time signals and the corresponding ex-
tracted ambience.

Figure 5.35: Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience.
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Figure 5.36: Initial electric guitar left and right time signals and the corresponding
extracted ambience.

5.5.1.4 Least Squares Estimates (Method of Faller)

Figure 5.37: Initial congas left and right time signals and the corresponding ex-
tracted ambience.

Figure 5.38: Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience.
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Figure 5.39: Initial electric guitar left and right time signals and the corresponding
extracted ambience.

Apparently, all the upmix algorithms achieve low levels with a single source signal,
but Aarts-Irwan’s method seems to deviate from the general trend in figure 5.40,
with the amplitude being even lower and very close to zero, separating only a certain
amount of ambience. The reason is the high correlation of congas’ channels (figure
5.1). It is attributed to the method’s function, where fully correlated signals produce
almost zero amplitude [20].

5.5.1.5 Time Domain LMS Filter (Method of Aarts-Irwan)

Figure 5.40: Initial congas left and right time signals and the corresponding ex-
tracted ambience.
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Figure 5.41: Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience.

Figure 5.42: Initial electric guitar left and right time signals and the corresponding
extracted ambience.

Regarding the ambience attributed to the pop-rock item, the amplitude is lower than
that of the original music clip, but Usher-Benesty’s method seem to yield a subop-
timal separation. In figure 5.44 the ambience appears to have multiple prominent
peaks, deviating from the relatively uniform visual impression, namely with little
amplitude difference from the original channels, along several signal time instants.
Therefore, the method doesn’t lead to a sufficient separation, having as inputs sig-
nals with more than two sources [45]. On the other hand, with multiple sources and
high correlation the method of Aarts-Irwan extracts reverberation of higher ampli-
tude (figure 5.41), than with a single source. The latter possibly indicates that high
correlation isn’t necessarily a deterrent factor for ambience extraction. The system
never extracts the ambience, when the stereo channels are fully identical. In cases
with high correlation and utilizing the particular up-mix system, one derives at least
a part of the ambience.
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5.5.1.6 Normalized Least Mean Squares in Frequency Domain (Method
of Usher-Benesty)

Figure 5.43: Initial congas left and right time signals and the corresponding ex-
tracted ambience.

Figure 5.44: Initial pop-rock excerpt left and right time signals and the corre-
sponding extracted ambience.

Figure 5.45: Initial electric guitar left and right time signals and the corresponding
extracted ambience.
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5.6 Evaluation Metrics For Commercial Record-
ings

The next subsections depict in graphs and analyze the algorithms’ performance ac-
cording to the fraction of extracted ambience energy (EA = || ~AL||2+|| ~AR||2

|| ~XL||2+|| ~XR||2
), the cross

correlation coefficients of the ambience (φA = ~AL
H ~AR

|| ~AL|| || ~AR||
) and the level difference

(L = || ~AL||
|| ~AR||

), all defined in section 4.1. The results are obtained with the congas, the
pop-rock excerpt and the electric guitar as inputs.

5.6.1 Ambience Energy Fraction, EA

5.6.1.1 Congas-Single Source

(a) (b)

(c) (d)

(e) (f)

Figure 5.46: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.
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5.6.1.2 Pop/Rock Excerpt-Multiple Sources

(a) (b)

(c) (d)

(e) (f)

Figure 5.47: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.
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5.6.1.3 Electric Guitar-Uncorrelated Signals

(a) (b)

(c) (d)

(e) (f)

Figure 5.48: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.

Discussion
In figure 5.46 the ambience energy fraction EA curve fluctuates from -40 dB to 0
dB for most of the methods. Yet, the amount of ambience yielded by Aarts-Irwan
is very low, i.e. below -30 dB, whereas Usher-Benesty slightly and partially over-
estimates the ambience with a few peaks at 10 dB or slightly over 0 dB. It is also
observed that PCA, Eq.Levels and Faller’s curves follow approximately the similar

69
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trend, with the last two having more or less the same magnitude. The mapping
function, Eq.Levels and Faller graphs also have similar shape and levels in figures
5.47c,d and 5.48c,d. For the pop item, the algorithms seem to equivalently perform
as in the congas. Moreover most of the curves follow a smoother trend than before,
indicating probably a more clear distinction between the embedded primary and
ambient components. However, even if Aarts-Irwan system extracts higher propor-
tion of ambience than in the first signal case, the magnitude of EA still is quite
lower (10 to 20 dB) than the rest of the methods. PCA also never exceeds -5dB. On
the contrary, Usher-Benesty overestimate the ambience in the signal with multiple
sources, an artifact attributed, as it is reported, to the time-invariant convergence
of the filter. For recordings with several sources active at different times, several
adaptive filters could be utilized in parallel, as in echo cancellation [46]. For the last
uncorrelated signal in figure 5.48, all methods extract a low level signal as ambience,
but the mapping function and Usher-Benesty either extracting a large amount of
the signal or wrongly computing the weights in the NMLS algorithm, respectively
in each case. This happens, as the direct components don’t exist at all in one of the
channels. The latter will probably destroy the source image, transposing it more to
the direction of the rear loudspeakers.
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5.6.2 Level Difference, L

5.6.2.1 Congas-Single Source

(a) (b)

(c) (d)

(e) (f)

Figure 5.49: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.
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5.6.2.2 Pop/Rock-Multiple Sources

(a) (b)

(c) (d)

(e) (f)

Figure 5.50: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.
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5.6.2.3 Electric Guitar-Uncorrelated Signal

(a) (b)

(c) (d)

(e) (f)

Figure 5.51: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.

Discussion
Regarding the levels of ambience for all the types of signals, Aarts-Irwan, Eq.Levels
and Faller’s produce exactly the same amount of signal from every channel. In
addition, the mapping function and NMLS (Usher-Benesty) graphs fluctuate around
zero from -10 to 10 dB, meaning that in average the algorithms approximately
separate equivalent amount of ambience in every channel (figures 5.49, 5.50). As
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we have already described, the exception is of course the case of uncorrelated item,
where they either remove the largest part or overestimate it, respectively. Thus the
findings here is just a confirmation of what has already been inferred in previous
discussion sections. At the same time,the PCA levels wiggling around zero (figures
5.49 and 5.50), but they occur very prominent peaks, implying that the ambience
might also be left or right weighted. Hence, severe panning corrupts the stability of
the ambience image [48]. Yet, this is to be expected, since PCA method is susceptible
to mischaracterization of the ambience, if the signal doesn’t fulfill very strict signal
assumptions, initially defined in [22] and [19] and presented in section 4.1.
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5.6.3 Ambience Cross-Correlation Coefficient, φA

5.6.3.1 Congas-Single Source

(a) (b)

(c) (d)

(e) (f)

Figure 5.52: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.
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5.6.3.2 Pop/Rock-Multiple Sources

(a) (b)

(c) (d)

(e) (f)

Figure 5.53: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.
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5.6.3.3 Electric Guitar-Uncorrelated Signals

(a) (b)

(c) (d)

(e) (f)

Figure 5.54: a) Method of Aarts/Irwan, b) Method of Avedano/Jot, c) Method of
Eq. Levels, d) Method of Faller, e) Method of PCA, f) Method of Usher/Ben.

5.6.3.4 Discussion

Figures 5.52, 5.53 and 5.54 show the correlation of the channels containing the
ambience, for every up-mix system. It is directly pointed out that PCA produces
signals with negative correlation -1, because the signal space is formulated, so that
the initial projections of the signal vectors on the ambience eigenvectors ~u1, (see
the Method in section 4.4) lie in identical linear but opposite directions. Also,
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Faller’s method extracts ambience signals with negative correlation, a fact which is
corroborated by the findings in [19].
On the other hand, the ambience cross-correlation of the method of Aarts-Irwan
is high, with minor fluctuations close to 1 for all the input types. Yet, this is to
be expected since the specific method yields only one channel of ambience and the
second is filtered through a 4th order all-pass filter, as developed by Potard in [47].
A higher order all-pass filter could be used as well to achieve higher decorrelation,
however over 8th order the amplitude outputs are significantly affected. As for the
rest of the methods, not a clear image is available in respect to the ambience cor-
relation. Thus, simpler input signal have to be used in order to draw a conclusion
about them. As a result, a disadvantage of the objective measures emerges here.
They are dependent on the capacity of the methods to extract the ambience and on
the specific properties of the signals, which possibly pose several limitations for ef-
ficient ambience separation. Therefore, the correlation analysis, mostly investigates
the up-mix systems susceptibility to deviations from the ideal signal forms.
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6
Subjective Evaluation

A preference evaluation experiment is designed and undertaken, in order to vali-
date the degree of appreciation of the discussed two-to-five upmix algorithms. The
method employed and the final results are presented and discussed in the current
chapter.

6.1 Participants and Stimuli Creation

This study looks into the effect of the six upmix methods on listeners preference
and attempts to discuss possible reasons determining users judgment.
The experiment was carried out in the "Listening Room for Quality Test" at the
department of Applied Acoustics at Chalmers University of Technology. It is con-
sidered a rather dry room with absorption treatment everywhere, except floor and
reverberation time (RT60) of approximately 0.5s. A conventional 3/2 loudspeaker
configuration is used, according to ITU-R-775-3 standards and as shown in figures
6.1 and 6.2. The front and rear speakers are placed at ± 30o and ± 120o respectively,
to the normal of the center. More specifically, the equipment used throughout the
test is comprised by:

• Five Genelec 8030A studio monitors
• A Macbook Pro late 11 laptop
• Presonus Firestudio audio interface
• Cables

The loudspeakers are calibrated so as to radiate equal sound pressure levels at the
listener’s position, which is considered the sweet spot at 60 cm from every monitor.
Since a part of the room is used for the experiment, the conventional value for
speakers emitted levels(78±2 dB) in [55] is considered too loud for the allocated
space. After an extensive listening, the SPL value is adjusted and attenuated to
65 dB. This seems to create a more natural, homogeneous and smoothed acoustic
experience for the users, who were sitting on a non-rotating chair throughout the
listening test.
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6. Subjective Evaluation

Figure 6.1: Arrangement with three frontal and two rear loudspeakers, taken from
[1]

Figure 6.2: 3/2 setup during the experiment.

Three different stimuli are used as input sources for the upmix algorithms. An
excerpt of trumpet, congas and male voice speaking. Although, they are not rep-
resentative of a wide range of potential stereo recording items, their simplicity is
believed that sufficiently unveils the advantages and downsides of each algorithm.
The stimuli are recorded in the reverberant room (figure 6.3) at the facilities of
Volvo Cars in Torslanda in Gothenburg (Sweden), by playing back the material
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through speakers and then recording them using X/Y microphone technique. The
material used is anechoic recordings or at least dry recordings, hence any additional
reverberation is only added by the microphone setup and the reverberant room.

Figure 6.3: Photo taken from the recording session.

First, the items are recorded with two speakers at 1.5 m each to the microphones
and 1 m distance between each other. Then, the same thing is recorded again with
one speaker, which is moved closer to 30 cm from the microphones to get more direct
sound in the mix.
Nineteen people took part in the experiment. Some of them are considered experts,
who are able to describe an auditory event in detail and they have a background
in implementing and participating in subjective evaluation tests. However, the vast
majority are either first or second year postgraduate students at the Division of
Applied Acoustics, at Chalmers University of Technology, who had already experi-
enced at least once a listening test session. All of them have reported no hearing
impairments.

6.2 Method
In order to reduce the complexity and the errors of manually collecting the answers
from the participants, and to better control the test, a software interface is created
in SuperCollider 6.4.
The subjects could switch between stimuli and each time the excerpt is paused and
not stopped, providing the opportunity to carefully listen and judge. Once the
stimuli have been listened, the participants could express the magnitude of their
preference by setting the handle of a horizontal slider accordingly. Moreover, the
value of preference of every judgment is displayed in a small rectangle next to the
slider. In case of indecision, a "No preference" choice is allowed as well, positioned in
the middle of the bar. The slider represents a continuous scale of numerical values,
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which spans from -5 to 5 and it allows for more elaborate analysis than a forced
binary stimulus selection. [56].

Figure 6.4: Enabled interface of preference evaluation

The audio stimuli were presented to listeners according to paired comparison frame-
work. It is favoured over other, mainly for its simplicity as it facilitates the procedure
for participants and at the same time allows for direct comparisons. In general, re-
ducing or avoiding participants fatigue was a a rule of thumb kept while designing
the test. On the other hand, this very rule also sets several limitations related to the
duration. For instance, using more sources as stimuli could be more time-consuming
and cumbersome, whereas reducing them would possibly yield, at least, less reliable
results. Thus, each stimulus duration is kept 15 s long, playing in a loop, unless the
participant decides to stop it or proceed to the next pair .
The experiment consists of three parts determined by the type of stimuli each time.
The three audio items were processed by each of the six described up-mix systems
and for every stimulus fifteen unique pairs are formed, namely 3 ∗ 15 = 45 unique
pairs, hence 45 collected answers in total. A training session of four pairs is preceded
every stage of the experiment, so that the participants could get a broad idea and
familiarize themselves with possible extreme and very similar cases, reflecting the
full preference scale of the slider (see in Appendix A.2). As a consequence, the total
number of pairs, determining the duration of the experiment is 4 ∗ 3 + 3 ∗ 15 = 57
pairs per participant. In average, the time taken to every listener to fulfill the test
lasts from half an hour to one hour.

6.3 Results

6.3.1 Preliminary investigation
In figure 6.5, box plots and the spread of participants’ responses are displayed, in
order to acquire a relatively clear overview of the scope of the answers, denoting
preference for every up-mix method. The box plots show the median values, the
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interquartile range (upper and lower quartile) and possible outliers (e.g. in "Ush-
er/Benesty" box plot). The median values are mostly negative on the scale range
(from -5 to 5). However, this is attributed to the position each stimulus had in every
pair, because they are randomly assigned to buttons "A" and "B".

Figure 6.5: Box plots of accumulated responses, indicating preference for every
up-mix method. Every answer is the outcome of the pairwise comparisons of the
systems investigated here.

The responses in figure 6.5 represent the preference for every method over another,
resulting from the comparison judgments of the pairs. It can be observed, that the
preference answers in most methods cover the whole scale range except for Faller’s.
A slightly more confined box plot occurs, with significantly reduced density and
number of answers. Another observation one could make is that there are answers
of preference very close to zero in every box plot, especially in PCA. In that case, all
the answers between -0.5 and 0.5 are discarded, because either the "No preference"
choice is ill-defined, due to lack of a certain mark displaying the middle of the bar on
the interface, or they are not considered a clear appreciation for a certain method.
Nonetheless, these indefinite data doesn’t seem to corrupt the results, as they are
very few. The presented ones will be used to elicit the final preference scale.
In addition, the data are decomposed to answers per method and session, plotted in
figure 6.6. The latter shows the level of potential dependency of audio items upon
the up-mix methods, namely which way the spatial version quality of each stereo
recording is affected by processing it with every algorithm. Faller’s box plots display
high inconsistencies, with the trumpet and voice session gathering none and very
few moderate preference choices respectively, whereas significantly more participants
choose this system during the congas session, with answers covering almost every
preference scale. Moreover, discrepancies appear at Eq.Level’s method, with the
congas responses being limited to a part of the preference scale and covering mostly
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the moderate area of the scale. Regarding the rest of the methods, the responses
appear to have a higher degree of homogeneity among the different parts of the
experiment, with box plots following approximately the similar trend.

Figure 6.6: Box plots of accumulated participant responses, indicating preference
for every method and stage of the listening test.

Figure 6.7: Percentage of the "No preference" responses, over all participants, for
every session of the listening test.

To complete the preliminary investigation, the pie charts in figure 6.7 depict the
percentage of "No preference" judgments throughout every stage of the experiment,
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pool over all participants. Thus, it is apparent that the percentage of "No preference"
choices is approximately the same either looking at congas, trumpet or voice part of
the test. They also are just below 20%, which doesn’t seem to corrupt the results
with many "No preference" selections. This could likely be an indication about
very identical listening experience or an implication about severe artifacts induced
by some methods, posing difficulties to participants to make a choice. It must be
underlined that only the zero ratings are kept, because they directly denote clear
indecision. The values very close to 0, such as -0.1 or 0.1 and -0.2 or 0.2 are discarded
for accuracy.

6.3.2 Mean Absolute Difference Between Judgments

In every stage of the experiment there are fifteen unique pairs of up-mix methods and
each one of them is repeated three times for every participant. Thus, in figure 6.8
the average absolute difference of judgments is displayed, along with the respective
95% confidence intervals, so as to identify potential deviations of participants’ scores
and in which extent the methods’ impact on listeners’ preference remain unbiased by
the stimuli. For instance, in case values are very small, then there are insignificant
deviations between judgments and each method scores on average similar scores.
The horizontal line represents the mean over all participants.

It is remarkable, that only the 19th participant has a value slightly higher than the
subjects’ mean. Moreover, a relatively stable and global rate of changing preference
is formalized, since the confidence intervals are small enough and approximately
of the same width, with the exception of those belonging to participants P7, P9,
P12,P14. Nonetheless, there is a moderate rate of changing selections, which un-
derscores that the preference varies for different stimuli up-mixing with the same
method. Still, the results maintain a certain degree of independence from the used
stimuli, since the average is in the middle of the scale. As the percentage of no pref-
erence responses is relatively low (below 20%), it is pointed out that the outcome is
mainly based on preference responses.
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Figure 6.8: Average absolute difference and the corresponding 95 % confidence
intervals of judgments, over all method pairs and sessions, for every participant.

6.3.3 Preference Scale for Up-mix Methods

The law of comparative judgments [57] and especially maximum likelihood method
[58], assuming Thurstone’s Case V (see Appendix A.3), is used to extract the scaling
of preference. The data are processed according to Matlab code introduced in [59].
In a nutshell, the law of comparative judgments assumes that every potential choice
is a Gaussian random variable and Case V additionally assumes all options have
identical variance σi. Then, the magnitude of preference scale is derived by the
number of times a stimulus is chosen over another.

The corresponding 95% confidence intervals for each of the preference scale values
are calculated in a similar way as in [60], which follows the bootstrapping technique
[61]; the scale is calculated several times for every sample of data selected from
the original set. Eighty iterations are performed and each one of them consists of
slightly less than 50% of the total data.

To be more precise, in a session being represented by a type of stimulus, e.g. congas,
the number of judgments for a pair of upmix methods, say A-B, are as many as the
entire number of participants, i.e. 19. From these total amount of data, 9 answers
are randomly selected (that’s why less than 50% of data is drawn) for every pair.
Then, the proportion matrix is made, as in [73] showing the number of times a
method is preferred over the others, for all the stimuli. A theoretical example of the
type of matrix created is depicted in table 6.1.
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S1 S2 S3 S4 S5 S6

S1 — N1>2 N1>3 N1>4 N1>5 N1>6
S2 N2>1 — N2>3 N2>4 N2>5 N2>6
S3 N3>1 N3>2 — N3>4 N3>5 N3>6
S4 N4>1 N4>2 N4>3 — N4>5 N4>6
S5 N5>1 N5>2 N5>3 N5>4 — N5>6
S6 N6>1 N6>2 N6>3 N6>4 N6>5 —

Table 6.1: A general example, showing the number of times each method S at the
side is preferred over each one at the top.

Successively, the preference magnitudes are computed, through the maximum likeli-
hood method, having the matrix as input. The process is repeated several times, so
as to achieve a Gaussian distribution of the data. In addition, suppose in table 6.2,
the columns represent the number of each subset (the second subscript), whereas
the rows refer to the six investigated methods (the first subscript). In the last stage,
the total preference magnitudes are computed as the average x̄, of every row. Yet,
before that, the results from every iteration are normalized to the range 0-1.

xa1 xa2 xa3 ... xa80
xb1 xb2 xb3 ... xb80
... ... ... ... ...
xf1 xf2 xf3 ... xf80

Table 6.2: The columns represent the preference score produced from every subset
of participants’ answers, indicated by the second subscript. The rows refer to the
preference for every method in every iteration. The first subscript indicated the
type of method i.e method a,b...f.

To compute the confidence intervals for every method, i.e. for every row, which the
data are normally distributed in. The following formula for the confidence intervals
is used

CI = x̄± Zp/2
σ√
n

(6.1)

where σ is the standard deviation, Zp/2 is the student’s t inverse cumulative distri-
bution function and n is the number of samples.
However, when estimating the preference magnitudes and for accuracy, the cases
where an audio excerpt is always preferred over another are dealt with as follows;
a no preference choice is attributed to the method that is never preferred and the
counts of preference for the method that is always preferred are not taken into
account, while counting the total number of responses.
The values determining the elicited scaling of preference are displayed by bar charts
and the confidence intervals by error bars in figure 6.9. Directly the plots show
that the method of Avedano-Jot is the most preferred, whereas Faller’s method is
the least appreciated, followed by Aarts-Irwan method. Although,the magnitudes
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clearly differ from each other, the differences among Eq.Levels, PCA and Usher-
Benesty methods are somehow marginal. The latter derived results highlight that,
the methods having their front cha along with the ambient signals (methods of Faller
and Aarts-Irwan) are in general less preferred than methods suggesting the original
stereo recording as front channels. The results reliability is corroborated by the fact
that the confidence intervals are quite narrow, apart from a small overlap between
Eq.Levels and PCA, which occurs the broader error bar of all. It can be deduced that
the weaknesses of these algorithms are mainly a combination of heavy processing
and the type of stimuli used. For example and looking at figures 6.6 and 6.5, Faller’s
method is never favourable over others during the trumpet session, yet this doesn’t
hold in the congas session. As a result, not only the spatial enhancement plays a
critical role in the up-mix methods, but the preservation of the front sound image,
which also contributes to the optimal spatial quality of a virtual sound environment.

Figure 6.9: Magnitudes of preference, assuming Case V from Thurstone’s law of
comparative Judgments and bootstrapped 95% confidence intervals

6.3.4 Preference scale per audio stimulus
Apart from the elicited preference scale for every method, the data are further an-
alyzed and categorized by audio stimulus used, in every one of the three sessions of
the experiment. Then, Thurstone’s scaling is extracted again and depicted in figure
6.10.
This time, more insight is gained in respect to which method is favourable through-
out every stage of the listening test and what is the corresponding ranking. Depend-
ing on the stimulus, the preference varies for every item. Although high deviations
occur for PCA, Aarts/Irwan, and Avedano/Jot, it is stated that, at least for two
stimuli, i.e. sessions, either there are no discrepancies at all or they are insignifi-
cant. For instance, the levels for the former methods after an abrupt surge, they
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occur values between 0.8 and 1, while even though Avedano/Jot’s method is the
second least appreciated in the voice session, the dip is still more than half of the
preference scale. The rest of the systems appear to have a smoother behaviour,
with Usher/Benesty’s being the smoothest. On one hand, this likely suggests the
latter method has a stable rate of preference for every audio material and it’s the
least affected by the type of stimulus on the other. In general, it can be pointed
out that the algorithms have a strong effect, if not a stronger, on the generated
preference scale. It is also noted, that in the present case the confidence intervals
are not calculated, because the data are sufficient to implement the bootstrapping
processing.

Figure 6.10: Thurstone’s Case V preference scale for every type of audio excerpt

6.3.5 Discussion
The results show a clear preference for the Avedano/Jot method, while that of
Usher/Benesty is the second most selected. They are followed by Equal Levels and
PCA, which score slightly but clearly lower, because their confidence intervals don’t
appear to overlap with those of the first two methods. On the contrary, methods
introducing five channels, like Faller and Aarts/Irwan, scored the lowest preference,
which means that increasing the number of channels is not necessarily beneficial for
surround sound primary-ambient decomposition methods.
Notwithstanding, taking into account the context simplicity which the experiment is
designed upon, the reasons behind the obtained results vary. As it has already been
mentioned, some methods are inextricably tied to the features of the stimuli, like for
instance PCA, Aarts-Irwan and Faller. For them, the audio content is possibly not
suitable hence, it cannot be assumed that these methods will never perform better
in another listening test session, using different audio material as input. This fact
is asserted, for PCA and Aarts-Irwan methods by looking at figure 6.10. Preference
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has been shown to these methods using as stimuli a trumpet and a voice. Both have
scored above 0.7 and Aarts-Irwan system is the most preferred for the session where
the input is a voice.
Moreover, due to audible undesirable artifacts of certain methods, it is somehow
unclear, whether and which degree the listeners’ criterium is affected by a forced
choice between stimuli bearing unfavourable effects. That is to say, it is ambiguous
to which extent the least worst choice determines the listeners’ decision. Yet, this is
something to be expected, since some up-mixers induce several types of distortion to
the audio recordings; depending on the stimuli, Faller’s method occur a front image,
which sounds rather compressed, lacking in naturalness in the and in Eq. Levels
the reverberance image is sometimes unstable, though not always prominent, with
the sound being instantaneously hard-panned and consecutively switching between
the rear speakers. The same problem is found in PCA for both the front and
reverberance imagery, deteriorating the performance of the upmix.
It also happened that some participants informally reported that in a few cases,
the front sound source image was more transposed to the right rather in the center.
This type of distortion is related to perceptual confusion of the spatial geometry,
due to sound features present in both the front and back channels. Even though the
rear channels were attenuated by 3 ms, the value it doesn’t constitute a perceivable
time difference, contributing to a sufficient separation between the front and the rear
image. The most appropriate range of values span from 10 ms stated by Rumsey in
[63] to 30 ms suggested by Dressler in [64] or even 40 ms reported in [65].
Moreover, neither the decorrelation filter used is adequate to mitigate the described
distortion. Another reason could possibly affect the image stability; at least for
Usher’s method [45], it has also been shown that the ambient image is sometimes
unevenly rendered and reproduced by the loudspeakers in the back. It is supposed
that the extracted ambience theoretically bears a high degree of diffuseness. Yet, in
reality, transients being present in the signals amplify the directivity of the monitors.
Hence, the ambient image might be left or right weighted, through radiation of
localization cues, which constitute another type of reverberance image distortion.
The main artifacts occurred in the listening test for every method are summarized
in table 6.3.
In respect to the attributes that affect people’s preference, there are several consid-
erable studies investigating the importance of multiple perceptual properties. Not
only the spatial characteristics of an upmix system are usually taken into consid-
eration, but also the timbral quality. In [66] it has been shown that it is twice as
important as the spatial quality. Successively in the same study, it is inferred that,
the quality of the source image channels is more important for experienced audience,
however the quality of the rear channels is considered an attribute of greater impor-
tance for the inexperienced audience. On the other hand, researches in [67] and [68]
excel the importance of attributes related to spatial sound. However, Berg in [69]
reports contradictory definitions of the attribute of ’envelopment’. Therefore, it is
somehow complex to distinguish among features, which crucially affect the listener
preference and the particular level of knowledge was maintained until very lately. In
2017, while the present master thesis work was carried out, a brand new study was
released. Francombe et al. in [70] and [71] attempt to define those attributes that
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mostly influence a spatial sound listening experience. Their findings primarily in-
troduce the ’amount of distortion’ and ’bandwidth’ as the most important elements,
which discriminate systems with large differences. The former is defined as the total
level of distortion and the latter as how broad is the spectral content of the chan-
nels. This matches with the subjective results in the present thesis. The method of
Avedano-Jot, with minimum or non audible amount of distortion, is clearly differ-
entiated from the other up-mixers, while the amount of audible distortion is mostly
associated with the front image produced for certain stimuli by Faller’s method.
Although, for this system, artifacts in the front channels are reported in [13], their
specific type is not mentioned.
’Enveloping’ and ’horizontal width’ are also found in [70] and [71] to greatly influence
the preference. However their influence becomes more relevant, when the quality of
evaluated systems is really high, so as they are only corrupted with limited or non
audible amount of distortion. Therefore, at least for Avedano-Jot and Usher Benesty,
the good level of immersion produced by the sound field and the extended width of
the image geometry affects listeners’ choice, despite the artifacts being present in
the ambience signals. Furthermore, attributes like ’level of reverb’, ’phasiness’ and
’spectral resonances’ are also important, but they usually are properties defined by
rather experienced listeners.
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Mapping Function (Method of
Avedano/Jot)

In a few cases the ambience
sounds unnatural

PCA

Severe instabilities in the ambi-
ence image. The sound is consec-
utively being switching between
the rear speakers. The same ef-
fect in the primary signal, but less
pronounced.

Scalar Mask (Eq. Levels of Ambi-
ence)

The ambience is consecutively be-
ing switching between the rear
loudspeakers.

LMS estimates (Faller’s Method) Distortion is occurred in the front
image.

NLMS (Method of Usher-Benesty)

The ambience is corrupted by
noise at low amplitudes. Trans-
posed front image. Ambience un-
evenly distributed due to tran-
sients.

Time Donain LMS (Method of
Aarts-Irwan)

For correlated imputs, either no
ambience channels are produced
or channels with very low ampli-
tude

Table 6.3: Possible artifacts for the upmix algorithms implemented in the thesis,
having as inputs the stimuli used for the subjective evaluation described in the
present chapter.
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The present master thesis investigates the major two-to-four or five upmix cate-
gories, in the primary-ambience extraction (PAE) framework. The essential aim
of the research is an attempt to infer which of the implemented methods is better
preferred by the listeners. The basis for each one of them is a masking function
(or mapping function), either subjectively tuned-as in Avedano-Jot’s method-or an-
alytically obtained by simply assuming equal ambience levels, principal components
analysis (PCA), a combination of PCA and a least mean square (LMS) algorithm,
a normalized least mean squares algorithm (NMLS) and a method based on least
squares estimation (Wiener filtering). The assumption that the primary and ambi-
ence are uncorrelated, or vector-wise orthogonal, is common for all methods and it
is the basic precondition for extraction algorithms.
Subsequently, the systems are evaluated through objective measures, using as inputs
both regular stereo recordings and signals created to bear specific properties, like the
uncorrelated stereo impulse and the Gaussian noise. The latter are made in accor-
dance to the specific signal model assumptions, better highlighting the algorithms’
advantages and disadvantages. In addition, the primary and ambient components
are known beforehand, thereby the decomposition is effectively monitored. In a
preliminary context, the methods manage to separate the ambience for every given
signal type, however secure conclusion can be drawn, when observing the metrics
for the deterministic signals. They suggest that the mapping function (method of
Avedano/Jot), the Equal Levels method, the LS estimates (Faller’s method) and
the NLMS filter (method of Usher-Benesty) have very similar behavior both among
them and with the theoretical graphs. An exception could be the fluctuated ambi-
ence correlation curves. Yet it is considered a good approximation, since the values
are quite low and around zero. Faller’s method and PCA yield ambience channels
with negative cross-correlation coefficient. On the other hand, it is apparent that
the mapping function and the NLMS method insufficiently adapt to signals with
sources panned solely to one channel.
Despite the objective metrics offer a useful insight regarding the upmix operation,
equivalently important information about the quality of the surround systems is
derived by the listeners’ feedback through a listening test. Besides, these applications
are intended for commercial use. In general, the methods are assessed according to
overall preference, using stimuli containing a single source. The findings indicate the
mapping function as the most preferred, with NLMS adaptive filter coming next.
However, in human voice session the results are narrowly differentiated, in that
the Aarts-Irwan method is favored over the others, whereas the mask is the least
appreciated, higher only than Faller’s method. Hence, in the present upmix scheme
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is not possible to completely separate the methods from the input stimuli, a fact
which is already been deduced from the objective evaluation as well.
Evaluating the algorithms according to overall preference implies that a set of at-
tributes may have affected the listeners’ decision. For instance ’enveloping’, ’amount
of distortion’, ’bandwidth ’ and ’naturalness’ constitute possible criteria of appre-
ciation for the participants. As a consequence, it is not very easy to point out in
specific the attributes which contribute the most to listeners’ decision. Nonethe-
less, recent studies have proved, that there is a trend towards ’enveloping’, ’quality
of output’ and ’horizontal width’. Then, along with the balanced rendering of the
ambience channels to the rear loudspeakers, it is equally important to maintain the
quality of the front image. Distorted source image is probably the principal key
factor for some methods’ low performance. All in all, the essential conclusin is that
the decisive factor for judging a method over another is the severity of various sorts
of artifacts corrupting the channels’ quality of every method.

Future Work

Although, the two-to-five channels upmix investigation carried out here covers the
major and most promising approaches, some of them actually represent classes of
methods rather than unique and absolute implementations without any room for
improvement. Hence, some of them like PCA and NLMS adaptive filter are rather
general realization of concepts belonging to PAE scheme, with satisfactory compu-
tational cost. Therefore, variations of the existing systems could be programmed
and tested as well .
Firstly, a version of PCA explained in [12] aims to deal with time-shifted primary
components in a stereo channel, a fact commonly observed in commercial audio.
This actually violates one of the basic signal assumptions, in that the primary parts
are correlated in both channels. In other words they are misinterpreted as ambience.
Secondly, a complementary step could be added in the NMLS algorithm as included
in [45]. By applying cross-talk, i.e signal leakage from one to another, effective
separation is enabled for signals with hard-panned sources. Moreover, a different
implementation of the NLMS algorithm could also be done, which is a combination
of the method in section 4.6 and the system designed in [72]. It allows for a ’look-
ahead’ in time of the input signal, so that the filter state will be able better track
the optimal solution.
In chapter 5, the ground truth for the algorithms’ performance is evaluated based
on the cross-correlation coefficient between the extracted and truly embedded am-
bience. Although, these metrics assess the overall performance of the upmix, they
are unable to further analyze the systems, in order to provide with details about
the performance degradation. At least for the methods using LMS and PCA, some
measures introduced in [48] could also be used. These are the distortion-to-signal
ratio (DSR), the leakage-to-signal ratio (LSR) and the interference-to-signal ratio
(ISR). The latter quantifies the amount of uncorrelated primary signal extracted
from the stereo signal. The first two measure the amount of amplitude scaling of
the extracted ambience as compared to the true ambient component and the amount
of undesired ambience in the extracted primary (and vice versa), respectively. Con-
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sidering that some upmix methods do not extract the primary component, only a
limited use of these metrics can be attempted at the moment.
The listening test could be redesigned and improved, yielding information towards a
process, that corresponds to a solid product development. For instance, the location
of the study should be that of interest, namely the place in which the system would
be installed, as the automotive and domestic environment. Regarding the partici-
pants, inexperienced listeners should participate to the experiment, because they are
the bulk of the future users of the product. In that case, a reliability study should
be added to measure the ability of the people to perform the requested task. Here,
it is omitted, because most of the participants are students with limited spare time
for side activities in an academic environment. Therefore, further extending the
duration of the test could actually constitute a problem. In addition, stimuli with
more than one sources should be used to test the algorithms, so as to investigate
the their effect on different kinds of music.
Taking into account that some methods don’t introduce a central loudspeaker in
the front, rendering schemes for widening of source image could be used as well.
Such techniques are the already mentioned vector based amplitude panning [10] and
universal spatial audio coding [74]. A more advance step, would be the real-time
upmix of stereo signals, using the equivalent recursive version of the cross-correlation
in equation (4.5).
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Appendix 1

A.1 Decorrelation Filter

%% Deco r r e l a t i on F I l t e r based on Potard ’ s recommendation

%% IIR Deco r r e l a t i on f i l t e r ( a l l−pass )

func t i on [ wavout , polb , pola ,A,B] = DecAllPass (N, wav)% N i s f i l t e r order−even number

A = rand (N/2 , 1 )∗0 . 9 ; %
B= ( rand (N/2 ,1)−0.5)∗2∗ pi ; % random phase

% make complex numbers
[ r ea l , imag ] = po l 2 ca r t (B,A) ;
compli = r e a l +1 i ∗ imag ;
% second part i s complex con jugate s r oo t s
compli ( (N/2)+1:N) = conj ( compli ) ;
% make denominator polynomial
pola=poly ( compli ) ;
% make numerator polynomial
% c o e f f i c i e n t s in r e v e r s e order to get a l l ? pass re sponse polb=pola ( l ength ( pola ) : ? 1 : 1 ) ;
polb = pola ( l ength ( pola ) : −1 : 1 ) ;
% f i l t e r input s i g n a l
wavout=f i l t e r ( polb , pola , wav ) ;

I



A. Appendix 1

A.2 Listening Test Instructions

Thank you very much for your participation!

In the present test you will be asked to indicate the magnitude of your overall
preference when comparing a pair of audio stimuli("stimulus A" and "stimulus B").
The scale of preference, represented by the slider will range from

Strong preference for A

to

Strong preference for B

Below there are two screenshots of the GUI in two different modes disabled and
enabled.

Figure A.1: Disabled GUI

Figure A.2: Enabled GUI
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By pressing ’A’ or ’B’ you switch between the two stimuli of the pair. If and only
if you listen to each one at least once, a handle will appear on the slider that you
can move to indicate your response. Each time, the value of the slider will appear
in a white box next to the bar. Once you have given a response, the button "Next
stimuli" will enable and you will proceed to the next pair
Bear in mind that for some pairs, it might be hard to decide. In these cases, there
is also the "No preference".

Always remember: There are no right and no wrong answers!!! It is
not tested the ability to perform the task, but the way you perceive the
stimuli.

The experiment is split into 3 parts. Before every part a training session takes place,
as a familiarization with the interface and to get an idea of the possible range of
stimuli. In the "Training Session" your responses are not recorded. Take your time.
When the experiment begins the title is changed to "Regular Session".

In a nutshell:
• 3 parts
• 4 pairs of training x 3 training sessions
• 45 pairs of experiment

A.3 The Law of Comparative Judgement (Thur-
stone’s Law)

In Thurstone’s model, it is assumed that an option’s quality is a Gaussian random
variable. The difference between the means of two distributions, during the dis-
criminal processes specifies the difference on the psychological continuum, between
the sensations of two stimuli. Standard deviation units are used to quantify the
differences between the means of the distributions. If there are several stimuli of
similar type being judged according to a certain attribute, then a proportion matrix
is obtained like the table created in 6.1, including the percentage of a time a stimulus
is selected over another. Therefore, the problem to be solved is to assign a single
value on a linear scale. Then, the following equation is introduced, as given in [73] :

Rj −Rk = zjk
√
σ2
i + σ2

k − 2rikσiσk (A.1)

where Rj and Rk are the mean psychological values assigned to two stimuli, zjk
is the deviation from the mean corresponding with the proportion of occasions a
stimulus a is judged over stimulus b, σi and σj are the standard deviations of distri-
butions Rj and Rk respectively, and rjk is the correlation between the Rj and Rk.

Thurstone’s Case V

Thurstone introduced five cases of the method. The most important is case 5, in
which it is assumed that the standard deviations are equal and uncorrelated, so
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Rj −Rk = zjkσi
√

2 (A.2)

Further assuming that the unit of the scale is σi
√

2, the equation A.3 becomes

Rj −Rk = zjkσi (A.3)
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