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Abstract
As the number of cores available on modern multiprocessor Systems-on-chip in-
creases, the traditional bus interconnection fails to provide enough scalability to
handle the increased network load. To handle these shortcomings, an interconnec-
tion network, called Network-on-chip, can be used to provide better performance and
scalability to the number of cores, supporting simultaneous transmission of multiple
messages from different cores. However, there are some security vulnerabilities in
this type of network. The network can be overloaded, potentially preventing crit-
ical applications to communicate properly, which can by achieved by an attacker
performing a denial-of-service attack. Attackers can also potentially deduce the
contents of network traffic based on fluctuations in response latencies, known as
timing side-channel attacks. By isolating traffic flows, the potential impact of these
problems can be reduced. This thesis presents a network-on-chip featuring three
techniques that provide the user with tools to isolate traffic flows. The three tech-
niques are (1) source throttling, (2) fixed virtual channel allocation per traffic flow,
and (3) fixed timeslots for the switch allocator. Source throttling can be used to
limit the traffic injection rate of problematic nodes. By statically allocating vir-
tual channels to high-priority flows, packets belonging to these flows can be given
contention-free access to resources of the NoC. Finally, schedulable switch allocator
timeslots prevent malicious nodes from using timing information to find out when
and what a node is transmitting. Through simulation, the different techniques’ ef-
fectiveness in protecting against attacks is evaluated. The results show that source
throttling can provide protection against denial-of-service attacks with few aggres-
sor nodes but cannot protect against timing side-channel attacks. Fixed allocation
of virtual channels effectively protects against denial of service attacks, even with
many aggressor nodes, but does not provide protection against timing side-channel
attacks. Separate switch allocator timeslots are not effective on their own, but by
combining fixed virtual channel allocation with separate switch allocator timeslots,
protection against timing side-channel attacks is shown to be possible.

Keywords: Computer, computer architecture, computer science, engineering, project,
thesis, Network-on-Chip, System-on-Chip, Interconnection networks.
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Glossary

Denial-of-Service A denial of service, DoS, attack aims to flood
specific parts of a network with traffic, caus-
ing it to become slower or stop functioning
correctly..

Flit A flow control unit, flit, is the data-carrying
entity of the network. Transmission of data in
a Network-on-Chip is done on a flit level..

Network-on-Chip Network-on-chip, or NoC, is a term that refers
to the interconnection network connecting re-
sources in a System-on-chip, SoC.

System-on-Chip System-on-chip, SoC, refers to an integrated
circuit that contains components of a com-
puter system such as CPU and memory on
one chip.

Virtual Channel Virtual Channels is a technique which is used
to improve performance of NoCs by allowing
several virtual channels for each physical chan-
nel in the network. The virtual channels take
turns accessing the physical channel.
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1
Introduction

In a modern multiprocessor System-on-Chip (SoC), the many different nodes such
as processor cores, memories, and caches, can be connected by a shared network
called Network-on-Chip (NoC) [2]. Since the NoC is a shared resource, packets in
the network can encounter contention. This contention can expose weaknesses in
the system, both in terms of performance degradation and security vulnerabilities.
Regarding the performance implications, increased congestion might lead to lower
throughput and increased latency for packets in the network as they have to wait
for resources to become available. This can both be due to several nodes sending
data to the same node as well as a single node sending excessive amounts of data,
flooding the network.
The increased congestion can also lead to problems regarding quality of service and
fairness within the network [3]. Congestion might lead to packets not arriving at
the destination within the required time, which can lead to problems in systems
that have real-time requirements. To combat this, techniques for ensuring quality of
service can be used. Nodes further away from the destination could also experience
higher latency due to the sent packets having to contest for shared network resources
at multiple points along their path.
From the security point of view, denial-of-service (DoS) attacks can cause perfor-
mance degradation and potentially cause system to stop functioning properly [4].
An attacker also could use compromised or malicious code to perform timing side-
channel attacks, possibly inferring sensitive information about the communicating
nodes by observing patterns in their communication [5]. This can for instance be
done by using the aforementioned congestion at shared links as a timing side-channel,
inferring data by analysing the throughput or latency of its response through the
network.

1



1. Introduction

1.1 Problem

The challenges described above can become problematic for systems in which secu-
rity is important or in cases where there are hard real-time constraints for critical
operations. To this end, keeping the traffic of certain nodes separated in the network
may provide the desired properties in order to alleviate these problems in terms of
security and performance predictability.
A possible way to combat the aforementioned issues is through isolation of traffic
flows within the network. By isolating flows, they would not compete for resources
at the same time, providing protection against denial-of-service and timing side-
channel attacks, and increasing performance predictability. Isolation of flows can
be implemented using a Weighted Fair Queuing (WFQ) scheduling scheme [6], but
this approach suffers from high requirements in terms of buffer size and complexity
of scheduling computations [7].
Another approach for traffic flow isolation is through replication of resources such
as links and routers. This would remove any interference between messages from
different nodes, but having multiple copies of hardware would be costly in terms of
both area and power consumption. There is, therefore, an opportunity to create a
high-performance NoC which can provide the strengths of physically isolated links
together with high throughput and comparatively low area overhead.
With regards to this, combining replication of some network components with several
techniques for security and performance isolation can deliver a high-performance
NoC with quality of service and dependability features. This thesis aims to explore
several possible designs of such a NoC, and compare them through simulation-based
evaluation.

1.2 Goals

The goal of the project is to explore possible designs of a NoC which ensure isolation
of flows, with focus on security and performance predictability aspects. The chal-
lenges lie in designing a network which is optimised for both of the aforementioned
parameters. The main scientific goals of the project are therefore:

• Implement techniques for isolation of flows in a Network-on-Chip.
• Evaluate the efficacy of the implemented traffic isolation techniques when used

to counteract denial-of-service and timing side-channel attacks.
To this end, three different isolation techniques were designed and implemented.
Each of the techniques were evaluated and compared using relevant performance
metrics. A baseline implementation was also used, which the subsequent designs
build upon. The three techniques are:

1. Source Throttling. By throttling traffic sources that overload the network
the level of congestion can be decreased. This is done by counting the num-
ber of flits that are injected into the network and disallowing further injection
once a quota is met. This increases the complexity of the router, which can
negatively impact area and power consumption, but provides a less congested

2



1. Introduction

network and prevents nodes from overloading the network with excessive traf-
fic. This approach aims to decrease the effectiveness of denial of service at-
tacks, providing security and increasing the performance predictability of the
attacked node.

2. Fixed Virtual Channel Allocation. Input virtual channels in each NoC
router can be statically allocated to specific source nodes for isolation of flows
in the network during virtual channel allocation. This approach allows for
separation of flows as the virtual channels are divided among the sources, but
can decrease performance of the network as less network resources are available
for each specific source node.

3. Separate Switch Allocator Timeslots. Temporal separation of access to
the shared crossbar allows for isolation between flows during switch allocation.
This is achieved through a configurable access schedule. Through this tech-
nique, flits originating from nodes that should not interfere do not compete for
switch arbitration in the same cycle. This design requires fixed virtual channel
allocation and a schedule for the switch allocation stage to be effective.

1.3 Approach
The three techniques, source throttling, fixed virtual channel allocation, and sep-
arate switch allocator timeslots are implemented independently of each other and
can be used either independently or in combination. This way, the system designer
can decide what isolation properties are desired for the specific use case.

1.3.1 Source Throttling
Source throttling decreases network congestion and can therefore prevent nodes from
flooding the network with excessive requests, for example during a denial-of-service
attack. This is especially important to counteract in the case of a low priority or
malicious node taking up crucial network resources, preventing critical flows from
accessing the resources. Furthermore, as the latency variations caused by sudden
bursts of requests in the network is decreased the reliability of the system increases.
Two problems that need to be solved in this approach are knowing when to throttle
and how much to throttle.
Since congestion means that network resources are taken up by one or several
sources, counting the available resources and making sure that they are below a
certain threshold, before allowing a source to send more packets, allows throttling
of a specific source. Baydal, et al. presents a solution that counts the number of
“free useful virtual channels”, and requires a sufficient amount of available virtual
channels before allowing injection into the network [4]. A similar solution with a
counter that keeps track of how many packets or flits the source has injected into
the network in a given time period is used in this project.
The second problem is how much to throttle. Being too aggressive with the throttling
can lead to degraded performance, since blocking too many requests can lead to
under-utilisation of the network. We tackle this problem by using a static throttling
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quota, and empirically test different configurations. This reduces the complexity of
the design while still providing high configurability. Using adaptive network-load-
aware throttling [8] could provide a better performance for the throttled system as
the network can adapt to the current traffic situation, but is also more complex to
implement as opposed to a static technique.
Our approach to implementing source throttling in our system can therefore be
described in the following way:

• Measure traffic intensity from every source node. Count the number of injected
flits per given time-period and throttle once a threshold is reached.

• A static throttling quota is used to reduce the complexity of the design.
The potential drawbacks of this approach are the performance degradation due to
exceedingly aggressive or loose throttling combined with the added overhead of the
flit-counting mechanism. This approach also impacts area and power consumption
of the system as extra logic is added to the routers.

1.3.2 Fixed Virtual Channel Allocation
By having separate allocated virtual channels for different flows, isolation between
flows in the virtual channel allocation stage is ensured through separation in space.
As VCs are allocated to separate sets of source nodes, determining how many VCs
can be allocated for each priority level is a challenge. Completely separating traffic
flows by statically allocating VCs reduces the variations in performance caused by
network congestion, thus providing security guarantees in terms of protection against
denial-of-service and timing side-channel attacks. However, the number of available
virtual channels is limited, meaning that compromises in the allocation of the virtual
channels have to be made.
To decide which packets should be allowed to use which virtual channel, a table
that defines which source nodes should be able to use what virtual channels is
implemented. The information regarding the allowed virtual channels is stored at
the head of each transmitted packet, informing the virtual channel allocator what
virtual channels are allowed for this specific source node.
The following approach is therefore used to enable fixed virtual channel allocation:

• Assign certain virtual channels to critical sources that allow them to utilise
the VCs without interference from other sources. The information regarding
allowed VCs should be included in the head flit of each packet.

• Mask virtual channel allocation requests based on the allowed VC information
at the head of each packet.

1.3.3 Separate Switch Allocator Timeslots
Separate switch allocator timeslots can be used to ensure that each VC in a router
is only allowed to forward a flit through a crossbar during its pre-allocated times-
lot. This decreases the effectiveness of timing channel attacks, due to an inability to
measure the latency of the requests. This functionality can be implemented through
a schedule where timeslots can be reserved for certain source nodes’ requests, sepa-
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rating access of the shared resources in time.
One of the problems with this approach is regarding how to synchronise the timeslots
between the different routers. In order to not impact performance too much, the
timeslot schedule needs to consider how flits pass through the network routers in
sequence. This pattern can be likened to a traffic light system, whereby scheduling
the on and off times, good traffic flow can be ensured. To support this, a global
counter is used.
This type of allocation can limit how fast a network can process flits from different
sources, since in the worst case flits might have to wait N − 1 time-slots for their
turn, where N is the number of unique timeslots. The impact of this problem would
however be lowered if flits are allowed during several timeslots, as well as by only
reserving some of the timeslots for the critical or high-security flows.
By reserving all timeslots, performance predictability is ensured, as the traffic flow
is defined before the system starts. This also provides security guarantees in terms
of protection against attacks aiming to deduce information based on fluctuations in
latency and in terms of protecting against denial-of-service attacks.
The following approach is therefore used to enable time separation of access to the
switch allocator:

• Create a schedule which defines what virtual channels and input ports should
be allowed to utilise the switch at each cycle.

• Mask switch allocation requests based on the schedule information.

1.3.4 Evaluation
The main performance metrics that are relevant for this project and are listed below.
Using these metrics allows for comparing the designs from several points-of-view,
showcasing the strengths and weaknesses of each of them. Comparing to a standard
benchmark also allows us to draw conclusions about if the suggested designs provide
a better system compared to the benchmark.

• Performance-oriented
– Throughput
– Latency

• Security
– Protection against Denial-of-Service attacks
– Protection against Timing Side-Channel attacks

In order to accurately test the performance of the system and how well it performs
from a security point of view, several different traffic models consisting of varying
flows should be tested. Two general approaches to this problem are using either
application-driven workloads or synthetic workloads [1]. While application-driven
workloads would be ideal, a more feasible approach is to use synthetic workloads for
testing, as these can be more easily designed and tuned. However, approaches for
creating more realistic synthetic flows do exist [9], [10].
We use a combination of different synthetic workloads when testing the system.
These workloads are used to simulate denial-of-service attacks, timing side-channel
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attacks, as well as uniform-random traffic for measuring the network performance.
The experimental setup and workloads are presented in detail in section 4.1.

1.4 Related Work
There exist several different approaches on how to implement some of the techniques
presented in this thesis. This section will summarise the most relevant ones to this
project.

1.4.1 Source Throttling
Baydal, et al. have proposed and injection limitation mechanism for NoCs [4]. This
mechanism implements a throttling of requests when the network approaches a point
of saturation. Their proposed mechanism operates in the routing control unit and
counts the number of free output virtual channels in the direction that the flit is
travelling. This is done because it does not matter if output virtual channels in
a direction that is not going to be used are not available. Conversely, it does not
matter if most output virtual channels are free, if the ones that are going to be used
are full.
To decide whether or not to pause injection of requests, the number of useful output
virtual channels in the source router is compared to a fixed threshold value, and
when the number of free VCs fall below that value, injection requests are rejected.

1.4.2 Separation of Flows
In the QNoC architecture Bolotin, et al. introduce service levels for different classes
of flits [11]. Four flit classes are introduced, with different priorities. The flits of
different service levels are separated by different buffers, and higher-priority flits can
preempt lower priority flits. The service levels are stored in control wires. The ideas
of this kind of separation have inspired the separate virtual channels and separate
switch allocator timeslots techniques, where tables containing the allowed VCs and
allocated timeslots, which are then either stored in the flits themselves or in registers
that are read by the switch allocator.

1.4.3 Timing Side-Channel Attacks
Wang and Suh have proposed two techniques for handling timing channel problems
in NoCs, Spatial Network Partitioning (SPN), and Temporal Network Partitioning
(TPN) [5]. The SPN approach divides the NoC into different security domains, each
given a subset of the available cores. In TPN VCs are instead statically allocated
to different security domains.
The security domains can also be configured so that each of the domains only have
access to the switch allocation and link traversal router pipeline stages in every other
cycle. The TPN approach bears similarities both with our proposed separation of
virtual channels, as well as with the separate switch allocator timeslots. However,
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wheres TPN divides the network into two security domains, we opt for a config-
urable approach where each flow can be given complete isolation from other flows if
required.
SurfNoC, presented by Wassel, et al. [12], implements separate timeslots for com-
munication between different nodes by dividing flows into classes and implementing
a schedule for when the different are allowed to use the network resources. The
result is likened to a wave, where flits in a certain class wait for the “wave”, allowing
them to travel between the nodes when the wave arrives. The schedule is repeating
and allows for isolation between flit classes while still sharing network resources.
The idea of a repeating schedule defining when certain flows are allowed to use
the network resources is implemented in our approach for separate switch allocator
timeslots. However, we differentiate between flit directions instead of classes in our
approach.
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1.5 Outline
The thesis is organised as follows:
Chapter 1 introduces the thesis project, topic, and related work.
Chapter 2 presents the background and theory relevant for the understanding of

the thesis topic.
Chapter 3 introduces the three techniques for enabling isolation in the NoC.
Chapter 4 presents the results of the evaluation of the NoC, carried out through

simulation.
Chapter 5 concludes the thesis by summarising the key findings, discussing the

advantages and drawbacks of the proposed NoC and outlining possible future
work.
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2
Background

This chapter presents the basic concepts and relevant theory within the subject of
Networks-on-Chip. This allows the subsequent chapters to discuss the related theory
in greater depth.
In this chapter, an introduction to the network organisation, the NoC router, and
related concepts are presented. This includes the organisation of network messages,
topology, router organisation and pipeline, as well as techniques for increasing the
performance of the router. Basic flow control and routing theory is also presented.
The chapter concludes with an overview of the different attack patterns that the
presented techniques will be evaluated against.

2.1 Networks-on-Chip
Interconnection networks can be found in most digital systems containing at least
two components, where the interconnection network is “a programmable system that
transports data between terminals” [1]. These components can be processor cores,
memories, I/O devices, and more. Figure 2.1 illustrates an interconnection network
connection several components. The interconnection network itself can be organised
in a number of ways, ranging from buses to complex multi-dimensional networks.

Figure 2.1: An interconnection network connecting several nodes.

As late as the 1980s, buses were the most common type of interconnection networks
used [1]. However, as the number of components in the network increased, the
drawbacks of the bus became apparent. One of the main drawbacks of the bus is
that only one source can transmit on the bus in each clock cycle. Therefore, as the
number of sources increase, the bus utilisation increases as well.

9



2. Background

Nowadays, interconnection networks often consist of point-to-point networks, which
allow concurrency and potentially higher performance than bus-based networks [1].
These networks are used to send messages between the different components, here-
after referred to as nodes, in the network.

2.1.1 Packets and Flits

In the network, messages are sent in the form of packets. In turn, each packet can
contain one or more flow control units, flits. The data is then carried in these flits.
There are four different types of flits considered in this work.

• Head flits (H), which carry routing information such as source and destina-
tion nodes, virtual channel ID, and next route information, as well as a data
payload. The head flit is responsible for allocating necessary router resources,
meaning that all packets need to contain a head flit.

• Body flits (B), which always follow a head flit or another body flit, contain
the virtual channel ID and a data payload. The amount of body flits in a packet
are decided by the amount of data that needs to be transferred. Therefore,
not all packets contain a body flit.

• Tail flits (T), which follow a body or head flit, contain virtual channel ID
and a data payload. The tail flits deallocate the resources that the head flit
has allocated when it passes through the routers. If the packet length is longer
than one, the packet must contain a tail flit.

• Head-Tail flits (HT), represents a single flit packet. It is used when only a
small amount of data needs to be transferred, meaning that one flit is enough
to store all the necessary data. This flit both allocates and deallocates the
router resources.

The flits are divided into the organisation seen in Figure 2.2. The header part of the
flits is larger for Head or Head-Tail flits, as they are responsible for allocating network
resources and therefore require routing information such as source and destination.
Body and tail flits only need to follow the head flits, and therefore only require their
flit type and the VC ID.

Figure 2.2: Organisation of flits. Header flits carry routing information and there-
fore have a larger portion of the flit reserved for this information. This is called the
header field of the flit. The body and tail flits only have flit type and VC ID in their
header field.
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2.1.2 Flow Control
The flow control of the network determines the allocation of the resources in the
network [1]. A good flow control method should result in the network operating
close to the maximum performance possible, while a worse method might result in
worse performance. The goal of the flow control method is therefore to facilitate the
usage of the network’s resources in an efficient manner.
The resources that must be allocated in the network include physical channel band-
width, buffer space, and control state [1]. Packets are allocated a control state, and
the head flit of the packet contains the necessary information for routing the packet
to it’s destination. The subsequent body and tail flits follow the head flit, using
the resources allocated by the head flit. The tail flit then deallocates the network
resources.
One common technique for flow control in NoCs is wormhole flow control. With
wormhole flow control, the allocation of network resources such as buffers and chan-
nel bandwidth is done at flit level [13]. One problem with this mode of control is
that if the transmission of a packet blocks for some reason, all other packets follow-
ing this packet will also block. This means that packets get blocked while queuing
in the buffer, which is called Head-of-Line blocking [13]. By using virtual channels,
packets that would otherwise be blocked can use the otherwise idle channels.
The virtual channels technique divides the physical channels into several virtual
channels [1]. Through this, a packet that would otherwise be blocked by another
packet can utilise its virtual channel to still be allowed to pass through the router.
In the NoC considered in this thesis, both the input and output ports have several
virtual channels per port.
Furthermore, credit-based flow control is used together with the virtual channels in
the NoC considered in this thesis. With credit-based flow control each router keeps
track of the number of free buffer slots in each of the virtual channels of downstream
routers using a credit count [1].
Each time a flit is sent the credit count is decremented and if the counter reaches
zero no more flits can be transmitted until the credit count has once again increased.
Each time a flit has left the virtual channel at the downstream router a credit is
sent back to the upstream router, indicating that there is now another empty slot at
the virtual channel of the downstream router. The credit count is then incremented
at the upstream router. This means that flits are only allowed to be sent from the
upstream router if there are free buffer slots available at a virtual channel of the
downstream router.

2.1.3 Topology
The interconnection network is comprised of several nodes, as described in figure
2.1, and can be laid out in several different topologies. Some of the more common
topologies include ring, mesh, and torus. When deciding what type of topology to
use there are several factors to include in the decision, most importantly performance
and area cost [1].
This work will consider only the two-dimensional mesh topology, depicted in Figure
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Figure 2.3: A 4x4 mesh network of nodes with (x,y) naming. Each node can be
connected to another node in up to four directions: North, East, South, West.

2.3. In a two-dimensional mesh each node is named by their position in the network,
in the form of (x,y). For each node, five possible turns are possible for an incoming
flit. These are north, east, west, south, and local/resource.
Travelling in the north or south direction means travelling along the y-axis of the
mesh, while east and west represents the x-axis. The local port is used to either
transmit, inject a flit into the network, or receive, remove a flit from the network.
A flit can not skip a node on its route, meaning that to get from node (0,0) to (3,0),
all nodes along the x-axis have to be passed through on the way to the destination.

2.1.4 Routing
Routing packets is the act of selecting a path from the source to the destination in
the network [1]. Ideally, a routing algorithm should be able to balance the load of
the network such that the traffic has no impact on the throughput of the network.
There are two main types of routing algorithms: Oblivious, and Adaptive [1]. Obliv-
ious routing algorithms do not factor in any outer information when calculating a
route through the network. Deterministic routing is an oblivious routing algorithm
which always chooses the same path between two nodes, regardless of traffic and
other factors that might affect the network. The advantage of these algorithms is
that they are easily implemented and avoid deadlock. Due to this they can how-
ever lead to sub-optimal load balancing. Adaptive routing algorithms on the other
hand use information such as traffic and network state and history when calculating
a path. These algorithms can provide better routing decisions, but are also more
complex.
A routing algorithm can also be minimal or non-minimal [1]. A minimal route is
the shortest path from point A to B. If another path were to be taken, the route is
non-minimal. While using minimal routing provides low delay in a network with low
contention, non-minimal adaptive routing could reduce overall latency in a highly
congested network.
The dimension ordered XY routing algorithm is a deterministic routing algorithm
for 2D meshes [14]. In XY routing, the routers in a mesh network are named (x,
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Figure 2.4: Example of allowed (green) and disallowed (red) turns using XY rout-
ing. Node (0,0) sends a packet to node (2,2).

y) based on their horizontal (x) and vertical (y) placement within the mesh, as can
be seen in Figure 2.3. At each router, the algorithm compares the current location
(Cx, Cy) to the destination (Dx, Dy). When Cx = Dx & Cy = Dy we have arrived
at the destination. The algorithm first considers the x direction, routing the packet
along the x-axis until Cx = Dx. Then, the same procedure is repeated along the
y-axis until the packet arrives at the destination. Figure 2.4 shows an example of
allowed and disallowed turns using this routing algorithm.
An added benefit of the XY routing algorithm is that the route computation can be
carried out one network hop in advance. Using the XY dimension ordered routing
algorithm, the information needed to determine the direction at the next router is
the identity of that router, (x,y), and the destination identity (x’, y’). Once the
direction of the upcoming hop is known, the identity of the next router can be
determined as either (x±1, y), or (x, y±1). Combining this information with the
direction of the coming hop allows the algorithm to determine the route one router
in advance.
This technique removes the dependency between route computation and switch allo-
cation request, since when the flit arrives at the new router, the router computation
stage is already completed. This technique is called Next Route Computation, NRC.

2.1.5 Performance Metrics

Throughput and latency are two metrics that can be used to measure the performance
of a network [1]. Throughput describes the data rate of the network, how much
traffic that can travel through the network in a given time period and is measured
in bits per second. The throughput of the network is dependent on several factors
including the topology, routing, flow control and is expressed in terms of the whole
network.
Latency describes the amount of time needed for a packet to pass through the
network. The latency of a packet in the network can be divided into three categories,
head latency, serialisation latency and contention latency [1]. This gives us a total
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Figure 2.5: The organisation of a NoC router. The main components are the
input and output blocks, the crossbar (switch), the credit management units, virtual
channel allocator (VA), switch allocator (SA), and Next Route Computation (NRC).
The figure is adapted from [1].

latency of
T = Th + Ts + Tc.

The head latency is the time required for the head flit to travel through the network,
including time spent in routers and time spent on the physical links. This is affected
by the choice of topology and router configuration. The serialisation latency is the
time required for the rest of the packet to follow the head flit. The contention
latency on the other hand depends on the characteristic of the competing traffic.

2.2 Router Architecture
The router in a NoC in general consists of input units, a route computation unit,
virtual channel and switch allocators, a switch, and output units. An example figure
of a router can be seen in Figure 2.5. The packets arriving at the router first enter
into the input block of its input port and a route is computed, which determines
the output port of the packet. Then, a Virtual Channel is reserved in the Virtual
Channel Allocation (VA) stage. After a VC has been reserved, the Switch Allocation
(SA) stage arranges a crossbar connection between input and output blocks, which
the individual flits then use to travel through to the selected output block.
In a mesh topology there are in general five possible directions for a flit to take:
North, East, South, West, and Local/Resource, illustrated in Figure 2.6. This means
that for an incoming flit from incoming direction D, there are four possible outgoing
directions. The direction of an incoming head flit is calculated by the routing unit,
based on the destination field in the header of the flit.
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Figure 2.6: A router with the five possible flit directions in a mesh network marked
out. The directions are North, East, South, West, and Resource/Local. Flits are
injected to the network through the resource port.

2.2.1 Router Pipeline
The process of traversing a router and continuing through the network is done in
a pipeline consisting of several steps. The general pipeline has five stages, which
can be seen in Figure 2.10. This section will briefly describe the different stages.
The virtual channel allocator and switch allocator implementations will be described
more thoroughly in Sections 2.2.2 and 2.2.3.

• Next Route Computation, NRC
• Virtual Channel Allocation, VA
• Switch Allocation, SA
• Switch Traversal, ST
• Link Traversal, LT

Figure 2.7: The standard router pipeline, consisting of five stages. The link traver-
sal stage is carried out between routers.

During Next Route Computation, information in the header flit of a packet is used to
select the appropriate output port based on the destination of the packet, gathered
from the header-section of the head flit (see Figure 2.2) [1]. The result of the routing
computation is placed in the route field of the virtual channel state. As described
in Section 2.1.4 this is can be done one hop in advance in our case, meaning that
the result is already available once the flit arrives at the router.
Using this information, a VC request is sent to the VA stage, requesting an output
virtual channel at the desired output port. The VA stage keeps track of reserved
(used) VCs, and reserves new ones to incoming requests. Therefore, incoming VA
requests are combined with the current available VCs, creating an arbitration re-
quest.
VC arbitration selects one among V virtual channels and is done for each input
port. A grant signal is generated to winning requests, and the list of reserved VCs
is updated. The granted VC ID is output to the input block.
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In the next step, the head flit enters switch allocation. The SA stage consists of
several steps, shown in Figure 2.8. In the first credit check stage credits at the
output virtual channel are checked. In order to be able to send the flits from the
input VC to the output VC there needs to be at least one credit (available buffer
slot) at the output VC.

Figure 2.8: The Switch Allocation stage of the router pipeline.

The arbitration is then performed in two steps, input and output arbitration. The
input arbitration selects one out of V input virtual channels for each of the P ports.
The output arbitration then selects one out of the input port requests. A grant is
given to the requests that win both input and output arbitration.
In the final SA stage, grants are propagated to the input and output ports and
crossbar selection signals are generated. The flit is now allowed to traverse the
switch.
The last stage of the router pipeline is the switch traversal, which includes the
physical transmission of signals, placing the information from the input VC into the
output VC associated with the requested output port.

2.2.2 Virtual Channel Allocator

The virtual channel allocator performs the virtual channel allocation pipeline stage,
VA, which is responsible for selecting an available virtual channel to the head flits
that win switch allocation. This process is done in parallel to next route computation
and switch allocation. As previously described, the head flit is assigned the specific
virtual channel ID, which is then passed on to body and tail flits in the packet. A
block diagram of the VA and SA stages can be seen in Figure 2.9.
To keep track of the available VCs, a tracker containing information about the status
of each of the VCs is used. This tracker gets information regarding the credit status
for each of the VCs along with information about which VCs are reserved. The VC
status is set to available for VCs that are both unreserved and have available credits.
The VA stage receives VA-requests from the input port and informs the SA stage
which output ports have available VCs. SA only has to consider ports with available
output VCs, meaning that output ports without available VCs are discarded by the
SA stage.
If the network is not congested, more than one VC may be available at the output
port. Therefore, V:1 arbitration is performed among the V available virtual channels
using a fixed priority arbiter [15]. The winning VC is forwarded to the SA stage.
Here, the SA stage reserves the winning VC for the winning output port, sending a
reserve signal back to the VC tracker. The selected VC is now not available for new
incoming flits until it has been released.
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Figure 2.9: A block diagram describing VA and SA stages of the router pipeline
without any of the isolation techniques implemented.

2.2.3 Switch Allocator

The switch allocation pipeline stage is done in the switch allocator, which grants
requesting flits access to the crossbar connecting input and output ports. After
passing through the router, the winning flits also get access to the link connecting
the current router to the next router, allowing the packet of the winning head flit
to progress through the pipeline and go into the next router.
The switch allocator receives its requests from the input block, where the flits will
be considered for switch allocation. During credit check the head flits with available
output port VCs (information sent from the virtual channel allocator), are consid-
ered for arbitration. Head flits without available VCs are discarded. The credit
check also filters out body and tail flits in the case of their allocated VC not having
enough credits to allow transmission.
The requests that are allowed through go through two separate stages of arbitration
using input-first separable allocation, as described by Becker and Dally [16]. In the
first arbitration step, input arbitration (IA), a V:1 round-robin priority arbitration
among the V virtual channels is performed. Up to one VC per input port is granted,
allowing that input port to contest for output arbitration. Following the input
arbitration, output arbitration (OA), is performed. The output arbitration is a
round-robin priority arbitration of (P-1):1, where P is the number of ports of the
router. Since a router cannot transmit messages to itself, only the P-1 remaining
ports have to be considered for OA.
After IA and OA are completed, the winning requests are propagated to necessary
parts of the router, alongside control signals. These control signals allocation in-
formation to the VC tracker, VC reservation or release, credit management, and
crossbar signals corresponding to the winning VC and input output port pair. Sub-
sequently, switch traversal can be performed in the next cycle.
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2.2.4 Combined VC and Switch Allocation
The traditional router pipeline consists of five stages. Since the latency of the
network is related to the number of stages in the pipeline, reducing the number of
stages can decrease latency, given that the latency of each stage does not increase
[1]. By combining the NRC, VA, and SA stages, these can be performed in parallel.
The next route computation determines the output port of the flit for the next
router, which can be calculated at the same time as simultaneously requesting both
an output virtual channel and access to the corresponding output port.
If successful, this reduces the pipeline by two steps, lowering latency. The combined
VA and SA stages grants a free output VC to head flits that win switch allocation
in the same cycle [17]. Doing these two operations in one cycle reduces the depth of
the pipeline by one cycle, saving one cycle per hop in the network. By combining
VC allocation and switch allocation using this method, the header flit that wins SA
is granted a free output VC immediately [17]. This saves a clock cycle per network
hop by combining the VA and SA pipeline stages.

Figure 2.10: The combined pipeline, where the NRC, VA, and SA stages are
performed in parallel.

2.3 NoC Security Vulnerabilities
As the number of nodes such as processor cores, memories, and caches on a SoC
continues to increase, so does the potential traffic patterns and attacks that can
disrupt the functionality of the NoC. This section will present two of these potential
disruptions and available remedies against them.

2.3.1 Denial-of-Service Attacks
When the traffic in a network is approaching the saturation point, severe perfor-
mance degradation can be observed [4]. As the number of requests in a network
increase, the contention of the shared network resources such as links and switches
also increase. Additionally, in cases where traffic is non-uniform the load on cer-
tain parts of the network can increase, causing further congestion [18]. Strategies
to avoid congestion include using network status to design routing algorithms [18],
limiting the rate of injection into the network once a saturation point is reached [4],
and adaptive routing strategies, avoiding congested parts of the network [1].
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A type of attack which attempts to reduce the capacity of a network is denial-of-
service (DoS) attacks [19]. The attack is performed by sending large volumes of
requests to a destination node such as a website, with the purpose of overloading
the network, causing performance degradation. In terms of Networks-on-Chip, this
type of attack can be performed by sending large volumes of packets to a node,
which can decrease throughput and increase latency at the point of congestion. In a
robustness analysis for mesh networks under DoS attacks performed by Fang, et al.,
[20], several guidelines to reducing the effectiveness of DoS-attacks are presented.
These include a defence mechanism that detects unusual behaviour, the usage of
appropriate routing algorithms, starvation avoidance, and output selection based
on neighbouring nodes’ information. Furthermore, the deterministic XY routing
algorithm is shown to perform better than adaptive routing algorithms for moderate
attack rates, while the adaptive algorithms perform better under higher attack rates.

2.3.2 Timing Side-Channel Attacks
Shared resources can lead to different nodes affecting the timing of applications run-
ning on other nodes due to interference the shared network resources [5]. Examples
of such resources are links, buffers, and switches. Through this interference, mali-
cious nodes can infer information about other applications. This type of attack is
called timing channel attacks.
In these types of attacks the fact that multiple flows are contending for shared re-
sources is exploited. By using the variations in latency and throughput for requests,
information about the data sent can be inferred.
This can be achieved by an aggressor node that intentionally floods a key part of
the network used by the victim node, and measures latency as a way to determine
when and how much traffic is flowing through that part of the network. This can
for instance be used to estimate the fraction of ’1’ bits in an RSA key [5]. These
types of attacks are called side-channel attacks.
Another way to exploit the latency is through covert channel attacks [5]. In these
types of attacks, two nodes that should not be allowed to communicate can exchange
information by exploiting shared resources. For example, by letting a high injection
rate represent a ’1’ bit, and a low injection rate represent a ’0’ bit, two nodes can
exchange info without directly communicating.
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2.4 Countermeasures Against NoC Security Vul-
nerabilities

The vulnerabilities described in the previous section have been previously researched
and different countermeasures have been proposed. This section will summarise
some of these countermeasures.

2.4.1 Throttling
Sources that flood the network with requests can potentially occupy network re-
sources such as switches and links, potentially blocking other flows, resulting in
degraded performance of the network. This is the goal of denial-of-service attacks.
An approach to solving this problem is source throttling [4].
The goal of source throttling is to minimise the harmful impact that sources can
cause by flooding the network with requests. This problem is more prevalent when
certain sources are sending packets in bursts comprised of large chunks, instead of
sending evenly spread out requests [1]. Reducing the level of burstiness reduces
delay and jitter in the network, something that might otherwise affect other flows
[1]. The rate and burstiness of flows can be represented using ρ for the average rate
of the flow and σ for burstiness. With this model, during a specific epoch (period
of time), the rate of injection into the network should not exceed σ + ρT , where T
is the epoch.
A general approach to source throttling is to keep track of how many flits have been
injected into the network within a certain time-frame T and compare this number
to a threshold value, here called budget, B = σ + ρT . This approach would be
light-weight, as it only requires a counter for the local input port of each router, and
a corresponding signal indicating whether or not the source should be throttled.
The source throttling signal can be represented as a one-bit output signal that is
initially set to one, indicating that flits should be allowed to be injected into the net-
work. As a flit enters the network through the input port the counter corresponding
to the port is incremented. Once the budget is reached, the output signal is set to
zero, indicating that flits should not be allowed to enter the network. The signal is
then reset once a certain time has passed, again allowing flits to be injected into the
network.
When the signal is set to zero, all requests to switch allocation from the local port
are discarded, stalling the insertion of requests from the local port. When the signal
is set to one again, the requests are allowed to pass through the router.
The general approach effectively implements source throttling, but contains several
drawbacks. Consider Table 2.1 where source node (0,0) sends a packet to each of the
two destination nodes (0,2) and (2,1). Using XY-routing, in this example the first
packet will travel only in the Y-direction, while the second packet will first travel
along the X-direction to (2,0), before going one step along the Y-direction to (2,1).
This means that the two packets will not use any of the same resources, except for
the router at the source node. Therefore, rejecting the second packet due to the
traffic introduced by the first packet does not make sense from a performance point
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of view, as these two packets do not affect the same parts of the network.

Table 2.1: Two packets of flits sent from source node (0,0) to two different desti-
nations. The two packets will not use the same network resources.

Cycle 0 1 2 3 4 5
Flit type H B T H B T
Destination (0,2) (0,2) (0,2) (2,1) (2,1) (2,1)

Another potential drawback is if the budget gets met immediately after the head
flit has passed through the throttling stage. Since the head flit contains the des-
tination data and allocates resources for the following body and tail flits, network
resources could potentially be locked up while not being used. Locking up and not
using network resources can cause the same problems as if the network was flooded,
essentially removing the positive effects of the source throttling.
Therefore, allowing E extra flits to pass through the network if the head flit has
gotten through reduces the performance loss due to the “only head flit gets through”
problem. The new budget can therefore be described as B+E, where B is the original
budget, and E is the number of extra flits that are allowed through if the head flit
gets accepted.
This approach adds some extra complexity, as another budget-check is needed. An-
other approach would be to let the whole packet through if the head flit is within
budget, by only comparing head flits to the budget. This approach could work for
shorter packet lengths, but for longer packets containing a large number of body
flits this could instead significantly reduce the effect of the source throttling.
Consider a case where B = 64, T = 90 cycles, and the packet length is 30. In this
case, two whole packets would pass through the source throttling mechanism, and
the third one would start sending. In this case, letting the whole packet continue
through the network would mean that we eliminate any effect the source throttling
has. On the other hand, by only letting the first four flits pass through router
resources can be deemed wasted, as they will be idle for a large chunk of the epoch
T . Note that the idle resource cannot be used by flits from any other packet, as
they are allocated to the first packet.
With these examples in mind, we consider the middle road of allowing a certain
number of extra flits to be a suitable trade-off. As we can see from the example,
the optimal number of extra flits that should be allowed through depends on the
situation, which means that the system designer should be allowed to configure this
number.

2.4.2 Network Partitioning
Timing side-channel attacks utilise the fact that the delay introduced when multiple
nodes are using shared resources can be read by an adversary [5]. By measuring
the latency and noticing latency increases when a target node is using the network,
information about the transmitted information can possibly be inferred.
Two possible approaches to remove the possibility of timing side-channel attacks by
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separating high and low-security flows are spatial and temporal network partitioning
[5]. In spatial partitioning, the network is divided into several clusters, where routing
is restricted such that routers within the same cluster may only be used to route a
packet belonging to a specific cluster. In this way, the flows belonging to different
clusters are spatially separated, removing the possibility for a flow from another
cluster to perform a timing channel attack.
In temporal network partitioning, the network resources are instead time-multiplexed,
where flows belonging to a certain security class are allocated specific timeslots in the
shared router resources such as switch allocation and link traversal. This approach
can lower the performance of the network as it reduces the number of resources that
can be used by the different flows.
Both of the above-mentioned techniques require classification of flows. This can be
done similarly to the classes presented in the QNoC architecture [11]. Both the
spatial and temporal partitioning techniques provide static allocation of resources,
meaning that they cannot be changed to accommodate changing network require-
ments. This can incur high costs in terms of performance, as certain resources might
be underutilised.
An efficient countermeasure against timing-channel attacks is presented by Wang
and Suh [5] and uses a priority-based arbitration scheme with a static limiting
mechanism. This technique provides one-way information leak protection. Flows
are assigned security levels where low priority is assigned to high-security flows, and
high priority is assigned to low-security flows. This means that when two flows
from these security classes request arbitration at the same time, the low-security
flow wins arbitration. The flows are further isolated by assigning a subset of the
available virtual channels to each of the security classes. This is done to remove
head-of-line blocking between the different security classes.
Since the low-security flits always win arbitration, a denial-of-service attack could
potentially be performed by a low-priority node. To combat this, the authors use a
throttling mechanism of low-security flows similar to that described Section 2.4.1.
The technique described provides a one-way protection against information-leak,
protecting high-security resources from leaking information to low-security resources.
However, the fact that low-security flows are allowed to always win arbitration versus
the high-security flows can cause problems. The throttling mechanism introduced
has several drawbacks that might cause the performance of the network to be de-
graded. These drawbacks are described and discussed in Section 2.4.1.

2.4.3 Traffic Management
Another proposed remedy against timing side-channel attacks is presented by Rein-
brecht, et al. [21], the “Gossip NoC”. The Gossip NoC analyses the traffic in the
network to detect potential timing side-channel or distributed timing side-channel
attacks. The NoC uses two stages, detection and protection.
In the detection stage the network is monitored and in case of suspected attacks gen-
erates gossip messages, which alert neighbouring nodes of potential attacks. When
the number of Gossip messages reach a confidence level, the routing algorithm of
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the following packets is changed from XY routing to YX routing. This changes the
route that packets take through the network.
This approach grants the network dynamic protection against timing side-channel
attacks, but suffers from the fact that attackers might become aware of the routing
algorithm change and adapt the attack accordingly. The solution to this problem
offered by the authors is to limit the number of nodes that can run external code,
limiting the potential number of attackers.

23



2. Background

24



3
Design

This chapter describes the design of the three proposed isolation techniques, their
advantages and their drawbacks. Before presenting the techniques, an overview of
the identified vulnerabilities and suitable countermeasures is presented below.
Denial-of-service attacks operate by overloading the network resources by sending
large amounts of requests to a part of the network, with the goal of disrupting
normal operation of the targeted victim node. This type of attack relies on being
able to overload shared resources such as routers, buffers, and links. This is made
possible through a large number of requests, either by using many attacking nodes
or through a high injection rate from a few nodes.
The characteristics of this type of attack indicates that a possible way of reducing the
effectiveness can be to reduce the injection rate of untrusted nodes. If the number
of requests that can be injected into the network during a given time is limited,
a single adversary is blocked from disrupting the service of other nodes using this
tactic. However, if more nodes participate in the attack, this approach must be
tuned such that the combined injection rate is lower than the threshold.
Another way of tackling this problem can be through separation of router resources.
If untrusted nodes can only access a subset of all the available resources, the trusted
nodes can still operate without being affected by the overload in the resources allo-
cated to the untrusted nodes. With this in mind, we identify that both partitioning
of the virtual channels and the switch allocator can be used to separate trusted and
untrusted flows.
By allocating a portion of the available resources to either trusted or untrusted
sources, we partition the network. This can lead to performance degradation, as
less resources will be available for the normal operation of the network. Therefore,
it is important that these techniques are highly customisable to suit many different
scenarios.
The timing side-channel attack exploits the fact that contention over shared re-
sources can show latency differences in traffic when a targeted traffic flow is trans-
mitting over a route in the network that the attacking node is also using for transmis-
sion. This type of attack relies on the network not being able to handle the incoming
requests without delay if there are multiple flows utilising the shared resources at
the same time.
This means that, like denial-of-service attacks, continuous message transmission
from an aggressor is used to carry out the attack. Thus, limiting the injection rate
of an aggressor might reduce the effectiveness of this attack. However, the flows still
share the resources, and the attack may therefore still be able to be carried out if
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the aggressor adjusts its injection rate, since the important metric to the attacker
is the latency fluctuations.
A technique that eliminates the root of the problem is partitioning of the network.
If an aggressor and a targeted victim node are not allowed to use the same resources
at the same time, the aggressor cannot deduce any information about whether or
not the victim flow is active. Here, the access to both virtual channels and the
switch allocator affects the latency of a flow, meaning that by separating the flows’
access to these, the potential for carrying out timing side-channel attacks should be
reduced.
In summary, we see that for both of these attacks, source throttling and network
partitioning can serve as effective countermeasures. We therefore identify three
areas through which to provide isolation. These include source throttling, limiting
the injection rate of aggressor nodes, and two static network partition techniques,
fixed virtual channel allocation, and separate switch allocator timeslots.
This remainder of this chapter will describe the proposed design of a NoC with
capabilities to isolate flows. The design consists of the three approaches to isolation
of flows described above and build upon a basic NoC as described in Chapter 2.

3.1 Source Throttling
To combat the problems related to the congestion of the network that occurs during
denial-of-service attacks we propose an extension to the general source throttling
approach presented in Section 2.4.1. This technique tracks the number of flits that
are injected into the network via the local resource port, throttling sources that
exceed the predetermined static threshold (here referred to as budget). The over-
budget flits are disqualified from switch allocation and instead wait in the input VC
buffers.
However, since a source can send requests to several different destinations, utilising
different network resources, simply throttling all incoming requests from a source
can harm performance more than necessary. Therefore, the throttling mechanism
should be aware of the destination of the packets and not only the number of flits
injected within a given time frame.
Our approach to source throttling extends each of the routers with a source throttling
controller, which reads data from the input port belonging to the local resource,
counting the flits that are injected into the network. The design divides the source
throttling into two separate stages for the flit counting and the budget check. A
second budget check is also added to the switch allocator to handle over-budget
head flits that can otherwise get through the source throttling controller due to the
one cycle latency in updating the flit counter. The additions in the router between
the input block and switch allocator can be seen in orange in Figure 3.1.
The source throttling mechanism has three parameters that affect the rate of throt-
tling:

• Budget (B) is the number of flits that are allowed to be injected to the
network from a source node, per destination node. A flit originating from
node (x,y) with the destination (x’,y’) can only be injected as long as the
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Figure 3.1: The block diagram of the input block, switch allocator, and virtual
channel allocator of the router with the isolation techniques implemented. The
added functionality for source throttling is shown in orange, fixed VC allocation in
red, and the separate switch allocator timeslots in yellow.

corresponding flit counter is less than B.
• Extra Budget (E) is an extra budget that allows up to E extra flits to be

injected from a source node, per destination node. The extra budget prevents
shorter packets from being throttled in the middle of the packet, potentially
reducing head-of-line blocking at the source node.

• Epoch (T) represents the number of clock cycles before the flit counters are
reset and flit injections are allowed at throttled source nodes.

The throttling quota ranges from 0 flits per T cycles, up to T flits per T cycles, and
can therefore be described as

Quota = min
{

B + E

T
, 1

}
. (3.1)

The parameters and their possible values are shown are show in Table 3.1. The
epoch and extra budget are set globally, while the budget is set for each of the
source nodes. This allows the system designer to choose which sources to throttle.
For example, we can throttle all processor cores that run third-party software.

Table 3.1: The parameters and their possible values for the source throttling
technique.

Parameter Budget, B [flits] Extra Budget, E [flits] Epoch, T [cycles]
Possible values 0 ≤ B ≤ T 0 ≤ E ≤ size(Packet)-1 T > 0

27



3. Design

3.1.1 Stage One: Flit Counting
The first stage of the throttling process, flit counting, counts the injected flits based
on their destination and increments their respective counters. As seen in Figure 2.2,
the header field of the head flits contain the destinations and VC IDs of the packet.
Since the body and tail flits to do not contain destination information, these values
need to be stored and reused when the rest of the flits in the packet go through the
controller’s counting mechanism. The key observations to be considered are:

• Head flits allocate the output port VC, which is then used by all flits in the
packet.

• Body and tail flits always follow the head flit in the same VC, but they can
be interleaved with flits from other packets when traversing the links between
routers.

The two observations mean that we know that if the head flit of packet P gets
allocated VC0, the next flit in that VC will be a body or tail flit from the same
packet. This information can be used to increment the correct destination counter
for all flits of the same packet. This is done by storing the VCID and destination
for each of the VCs when a head flit arrives. This mapping is then used for all
subsequent body flits that have the same VCID. After the tail flit has arrived, the
mapping between destination and VC is reset.
The process performed in stage one is presented in Algorithm 1. For head flits, their
destination is gathered and the counter corresponding to the destination of the flit
is incremented. For body and tail flits the mapped VC-destination pair is used to
determine the destination and increment the counter. Since the head flit allocates
the virtual channel, which is then released by the tail flit, the body flits with the
same VC-ID as the last recorded head flit will always have the same destination.

Algorithm 1 Source throttling controller stage 1
Precondition: F is an incoming flit from the local resource, Cx is the counter for

destination x, M is a tuple containing the most recent (VC-ID: destination)
pair.

1: function Flit-Count(f)
2: if F.type ∈ {H, HT} then
3: x ← F.vcid
4: d ← F.dst
5: M ← (x, d)
6: Cd ← Cd + 1
7: else if F.type ∈ {B, T} then
8: if F.vcid == M.vcid then
9: d ← M.dst

10: Cd ← Cd + 1
11: end if
12: end if
13: end function
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3.1.2 Stage Two: Budget Check
In the second stage, budget check, flits that have entered the output port VCs are
checked against the budget and the flow is throttled if it is over-budget. Since the
output port VC does not necessarily have the same VCID as the input port VC,
the mapping between VCID and destination has to be performed in this stage as
well. Furthermore, due to the previously described trade-off in how to handle the
problems when only the head flit gets through, the body and tail flits are compared
against the extended budget B + E.
Algorithm 2 shows the steps taken to find the requests that should be filtered out.
Incoming flits are filtered out if they are over-budget. For header-flits, this is done by
collecting the destination from the flit and then comparing the value of the counter
to the budget, B. If the flit is over-budget, the flit will not be allowed through. A
signal notifying the source throttling controller that additional body and tail flits
will not be allowed is also activated. If the counter is under budget, the flit is allowed
through and additional body and tail flits are allowed.
For body and tail flits the destination is gathered from the mapping performed
when the head flit passes through, which is then used to compare the destination
counter to the extended budget, E. The flits are allowed through if they are under
the extended budget and allowed (due to an in-budget head flit previously passing
through).

3.1.3 Throttling Implementation
The throttling itself is carried out through signals sent to the switch allocator.
When a flit causes the counter to go over-budget, as seen in Algorithm 2, a met-
budget signal is activated. The signal stays active until the start of the next epoch,
upon which the destination counter is decreased by a value of B. This allows the
throttled source to send at most B + E flits in each epoch, where the over-budget
flits will be kept in the FIFO buffer.
The throttle signal from the source throttling controller acts as a mask that filters
out SA requests from the local resource port of the input block when the signal is
active. The budget check stage is added to SA between input and output arbitration,
see Figure 3.2. The throttle signal is activated when the budget is met and more
than B clock cycles has passed in the epoch. Even though we allow between B and
B + E flits to pass through at the start of the epoch, the destination counters are
still incremented and the met-budget signal activated as usual. The throttle signal
therefore disregards the met-budget signal for B cycles at the start of the epoch.
However, since one cycle is required to update the destination counter registers,
one over-budget flit could pass through the throttling check even though it should
not. To combat this problem, a met-budget signal for specific VCs is sent from
the source throttling controller to the switch allocator, along with a signal that
is activated when the current flit is a head flit. When both of these signals are
active, requests from head flits that erroneously got through input arbitration due
to the above-mentioned “first flit through” problem will be removed before output
arbitration.
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Algorithm 2 Source throttling controller stage 2
Precondition: F is an incoming flit from the local resource, Cx is the counter for

destination d, M is a tuple containing the most recent (VC-ID: destination) pair.
N is the extra budget.

1: function Budget-Check(f)
2: for each output port VC do
3: if F.type ∈ {H, HT} then
4: x ← F.vcid
5: d ← F.dst
6: M ← (x, d)
7: if Cd > B then
8: Throttle
9: Disallow B/T flits

10: end if
11: else if F.type ∈ {B, T} then
12: if F.vcid = M.vcid then
13: d ← M.dst
14: if Cd > B + N ∨ B/T-flits not allowed then
15: Throttle
16: end if
17: end if
18: end if
19: end for
20: end function

3.1.4 Drawback of Proposed Approach
Even though the proposed approach removes the problem of flits to different des-
tinations blocking each other, head of line blocking can still occur. Head of line
blocking occurs when one or more flits are blocked, stalling the transmission. Flits
that reside behind a throttled packet in the virtual channel FIFO buffer then get
blocked even if would be allowed to pass given that they were not blocked.
This problem can occur if a destination counter is over-budget, disallowing future
injections with that destination during the epoch. All flits that are in the same
input block VC then get blocked until the start of the next epoch. The feature of
allowing extra flits helps mitigate this problem by allowing smaller packets to finish
transmitting, which can allow another packet to a different destination to get to the
head of the queue.
Another drawback of this approach relates to the area requirements of the imple-
mentation. For each of the destinations, a separate counter is required. This means
that if there are N×M sources in the network, each router needs N ·M−1 counters
to count the flits to all possible destinations.
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Figure 3.2: The budget check extension to the switch allocator. This check is only
added for the local port, meaning that all other ports are unaffected by this change.

3.2 Fixed Virtual Channel Allocation to Traffic
Flows

By allocating each source a subset of the available virtual channels, different flows
inside the network can be separated inside the router. To support this, we propose
an approach where each of the local sources is given a set of allowed virtual channels
that the flits originating from that source are allowed to use.

3.2.1 Approach
Our approach to enabling separate virtual channels for different flows utilises a
configuration table with information about the allowed virtual channels for each
of the nodes, and is shown in red in Figure 3.1. This information is stored in
one-hot encoding in the header field of the head flit of each packet, increasing the
size of the header field by the number of VCs at each port the NoC, see Figure
3.3. Furthermore, in our implementation the original structure of the VA stage is
replaced and instead VC allocation is performed in parallel to the SA stage.

Figure 3.3: The organisation of flits with the separate virtual channels extension,
shown in red, increasing the size of the header field of head flits. Only the H and
HT flits are changed.

The information regarding the allowed VCs for packets originating from a specific
source is configured using a table that specifies the allowed virtual channels for each
of the source nodes. In a N×M mesh network this is represented by a N×M array
of vectors of size V , where V is the number of virtual channels per port.
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Figure 3.4: Layout of the updated SA stage, allowing for separate VCs.

Table 3.2 shows one such possible configuration. In this example, the virtual chan-
nels with ID 0, 1, and 3 are shared among several different sources, while VC2 is
reserved for node (0,2). This means that even though VC2 might not be used in a
cycle, it cannot be used by a packet from any other source. This provides isolation
between the flows as they cannot contend for the same virtual channels.

Table 3.2: Example of VC allocation using the separate virtual channel technique
in a 4x4 NoC. Node (0,2) is the only node that can use VC number 2 in all routers,
providing isolation of flows.

x/y 0 1 2 3
0 {0,0,1,1} {0,0,1,1} {0,0,1,1} {0,0,1,1}
1 {0,0,1,1} {0,0,1,1} {0,0,1,1} {0,0,1,1}
2 {0,1,0,0} {0,0,1,1} {0,0,1,1} {0,0,1,1}
3 {1,0,1,1} {1,0,1,1} {1,0,1,1} {1,0,1,1}

In order to support the fixed allocation of virtual channels, the virtual channel
allocator was replaced. Since all possible VCs are pre-configured, the traditional
VC allocation stage is replaced by a functionally equivalent arbitration between the
allowed VCs, performed in parallel to the switch allocation. The two new steps
perform the same functionality as the traditional VA stage, and can be seen in
Figure 3.4, Allowed VC Computation and Allowed VC Arbitration.
The first stage, Allowed VC Computation, is responsible for masking incoming re-
quests with the allowed VCs. This is done in a three step process:

1. Upon incoming SA request for header flits, extract the direction of the packet
and the allowed VCs from the head flit.

2. Ensure that at least one allowed VC is available at the chosen direction, by
using the Used VC -table and performing a credit check at the allowed output
VCs.

3. Mask the request with the allowed and available VCs and return the result.
The operations carried out in the allowed VC computation stage are show in Figure
3.5. The allowed VCs and next route computation result (direction) are part of the
header field of the head flits and are sent from the input block to the switch allocator.
The requested direction is paired with the number of allowed VCs for that specific
output port, and a credit check is carried out. The result of this computation is
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matched with the available VCs at the requested direction. The resulting allowed
requests are then sent to allowed VC arbitration and input arbitration for SA.

Figure 3.5: The Allowed VC computation stage. This operation filters out all VCs
that are not allowed, not free, or do not have enough credits available.

The second stage, Allowed VC Arbitration, is comprised of arbitration of the allowed
VCs using a round-robin fixed priority arbiter. One of the possible output virtual
channels is selected, and the result is sent to the result propagation stage. In the
result propagation stage, the granted VC is matched with the grant of the output
arbitration and propagated to the following entities in the router pipeline. The used
VC table is also updated, marking the granted VC as unavailable until the tail flit
of the packet has passed.
In order to ensure that only VCs that are granted both by the allowed VC arbitration
and output arbitration are marked as used, the signal to the Used VC table is only
updated once a matching grant has been given in both of these steps in the same
cycle.

3.2.2 Cost of Implementation
This proposed approach modifies the VC allocator, and carries out all VC arbitration
calculations in the switch allocator. This means that the switch allocator gets more
complex as more logic and registers are added. To reduce the potential negative
performance effect of this change, the new steps have been designed to be done
in parallel with switch allocation, keeping the same combined VA and SA stages
approach as in the standard version of the NoC.
This change might however increase the critical path latency of the network, as the
complexity of the virtual channel allocation increases. In the standard version of
the NoC, any free VC with available credits is chosen by the incoming head flit,
while in this design there is a further constraint that the VC must also be allowed.
This extra step adds extra complexity to the virtual channel allocation as flits from
input VCs have to be matched with a free and allowed output VC.
This approach might also decrease the performance of the network depending on
the traffic pattern, as less resources in the form of virtual channels are available for
each individual flow. Even though this might not cause problems with low network
load, higher loads might increase the number of congestion-related problems in the
network.
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3.3 Separate Switch Allocator Timeslots
The third proposed isolation technique consists of assigning separate switch allocator
timeslots to different flows. This technique can reduce the possibilities of timing side-
channel attacks by only allowing flits to use the switch during their pre-allocated
and reserved timeslot, by preventing other flits from using that timeslot for switch
traversal. Since there are two arbitration stages in the SA stage of the router
pipeline, requests going into both input and output arbitration need to be handled.
Flits entering a router have four key pieces of information that need to be consider
for switch allocation: input port, input and output virtual channel IDs, and output
port (direction). An incoming flit comes through input port Pin in V CX and goes
to output port Pout. By assigning a table of allowed VCs for the input ports and a
table allowed input ports for the output ports, the tables can be iterated through
in set intervals to create separate switch allocator timeslots. The extended switch
allocation (SA) stage of the router pipeline is shown in Figure 3.6, and in yellow in
Figure 3.1.

Figure 3.6: The extended SA stage, allowing for separate switch allocator times-
lots.

In the implementation of this technique, there are two options considering how to
handle unused reserved timeslots:

1. Never allow other flits to use unused reserved timeslots.
2. Allow other flits to use a reserved timeslot if there is no allowed flit present.

The first alternative is to restrict usage of reserved timeslots strictly to allowed flits.
This ensures a higher level of isolation and higher predictability of performance, but
might lead to lower network performance due to a potentially large amount of unused
timeslots. The second option allows for higher utilisation of network resources, but
would decrease the level of isolation that is provided.
If all idle timeslots were allowed to be reused by any other source node, an attacker
could perform a timing side-channel attack, sending requests and examine the la-
tency pattern in the responses. This could potentially allow the attacker to infer
information by examining the activity of other sources. This defeats the isolation
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purpose, but allows for higher performance as unused timeslots are not left idle.
To handle this problem, we allow each timeslot to be configured to be reusable or
non-reusable. Additionally, which source should be allowed to reuse the timeslot
can also be configured.
The separate switch allocator timeslots technique is configured by two tables, the
input port and output port tables. Here, there are several different parameters that
decides the functionality of the technique. The number of timeslots, N, decides how
many independent timeslots to split the allocator schedule into.
The input port table is shown in Table 3.3 and contains fields for allowed VC,
whether the timeslot is reserved, reusable, and which source is allowed to reuse the
timeslot. The output port table is shown in Table 3.4. In the output port table the
reserved field is integrated in the field which describes the allowed input port. If
the allowed input port is set to the number of ports (five in the standard case), the
timeslot will be unreserved. Otherwise it is reserved.

Table 3.3: The input port table parameters for the separate switch allocator times-
lots technique.

Parameter VCID Reserved Reusable Source ID
Possible values 0 ≤ VC ID ≤ NUM_VCS-1 0 ∨ 1 0 ∨ 1 2 · 3

Table 3.4: The output port table parameters for the separate switch allocator
timeslots technique. Each entry is in the form of a vector of size N.

Parameter Input port ID Reusable
Possible values 0 ≤ IP ID ≤ NUM_PORTS 0 ∨ 1

The required amount of bits for each of the table entries are described in Table 3.5.
This means that the total table size per router can be described as

S = N((BV CID + 1 + 1 + 2 · 3) + (BP ort−ID + 1)) = N(9 + BV CID + BP ort−ID) (3.2)

where N is the number of ports, BV CID is the number of bits in the VCID, the
reserved and reusable bits are one bit per entry each, the source ID is six bits, and
BP ort−ID is the number of bits in the port IDs.

Table 3.5: The fields and their size for both the input and output port tables.

Input port table Output port table
Content VCID Reserved Reusable Source ID Direction Reusable
Bits per entry log2 (V Cs) 1 1 2 log2 (Ports) 1

3.3.1 Input Arbitration Masking
After the credit check, the resulting input arbitration request vector is forwarded to
IA masking. From the input and output port tables the allowed VCs, the reserved
bit, and allowed input ports are extracted, as shown in Figure 3.7.
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Figure 3.7: The Input Arbitration masking stage, performed after credit check
and before input arbitration.

If the timeslot is not reserved, the computations of this stage are disregarded and
the input arbitration functions like normal, with the incoming SA request being
passed along to input arbitration. If the timeslot is reserved, the input VC ID is
masked with the allowed VC from the input port table, leaving the request active
only in the allowed VCs.
If the incoming request for the reserved timeslot is zero, meaning that no request is
present, another VC is allowed to reuse that timeslot if the reusable bit in Table 3.5
is set, and the source ID matches that in the table. If any source should be able to
reuse the timeslot, the source ID value is set to the number of nodes in the network,
(N,N) for a N ×N mesh network.
In the next step, if the resulting request is equal to zero (no allowed requests) and the
timeslot is reusable, the original SA request is sent to input arbitration. Otherwise,
the masked request is sent.

3.3.2 Output Arbitration Masking
After input arbitration, the resulting grant vector is sent through the OA masking
stage, where the grant vector is masked with the allowed input port, before entering
output arbitration. Once output arbitration is completed, the results are propagated
to other parts of the router.
Figure 3.8 describes the layout of the OA masking stage. In this stage, the allowed
IP is read from the output port table and compared to the value in the output
arbitration vector. For each bit of the request vector, if a match is found, the output
arbitration request is passed through to OA. If no match is found, the corresponding
bit is set to zero.
This stage features the same reusability functionality as the input arbitration mask-
ing stage, allowing a specified source, or any source, to reuse an unused timeslot.
The timeslot is only reused if there is no incoming request from the reserved input
port.
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Figure 3.8: The Output Arbitration masking stage, performed after input arbitra-
tion.

3.3.3 Performance Implications
Separate switch allocator timeslots extend the functionality of the switch allocator,
without significantly changing the overall structure of the router or the pipeline.
However, the critical path is affected by the required modifications, as the table
lookups for both IA and OA masking are done in the same cycle as their results are
used.
To mitigate the effect of these lookups, the tables can be read one cycle in advance,
and be done in parallel to the other work in the SA stage. The results of the table
lookups are placed in registers, which are then checked by the IA and OA masking
stages.
In the register version, only register reads are needed, instead of performing a table
lookup. Note that the IA and OA masking stages do not change, only the way the
parameters are read. The updated version of the extended SA stage is shown in
Figure 3.9.
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Figure 3.9: The updated SA stage. Tables are read one cycle in advance, and
results are placed in registers that are read during execution.

3.4 Design Summary
Three techniques for providing isolation of flows have been presented:

• Source Throttling
• Fixed Virtual Channel Allocation
• Separate Switch Allocator Timeslots

The three techniques all change the router to various degrees. They have all been
designed to be able to be enabled or disabled using a mode selector register, allowing
for a high degree of versatility in choosing what techniques to use. They can be used
independently or in combination, based on the system requirements.
Source Throttling adds a new module to the router, the source throttling controller.
This increases the area of each of the routers. Since the operations are done in
parallel with the pipeline, the pipeline is not affected in any other way than the
wires and logical AND-gates required for masking the SA requests with the throttle
signals.
The Fixed Virtual Channel Allocation technique operates in parallel with the SA
stage, masking input arbitration requests and output arbitration grants. Since the
original VC allocator is replaced with a functionally equivalent system, but with
added functionality, some effect on the latency of the system is expected. The
switch allocation is affected by the masking of requests, but is otherwise unaffected
by the implementation of the technique.
Lastly, the Separate Switch Allocator Timeslots technique inserts two extra stages
to the switch allocator, input and output arbitration masking. This means that the
critical path of the router is extended. To mitigate this problem, the table lookups
are done one cycle in advance, reducing the effect to a register lookup along with
masking of requests.
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Evaluation

This chapter describes the results of the simulations that were carried out in order
to verify the performance of the proposed isolation techniques. Short comments on
the evaluation will be provided, but the general discussion is presented in Chapter
5.
The rest of this chapter is divided as follows. First, an overview of the experimen-
tal setup is presented, including simulation specific information and terminology.
Then, the evaluation of the isolation techniques against denial-of-service attacks is
presented, followed by the evaluation of the timing side-channel attack prevention
and performance impacts of the techniques. The chapter concludes with a summary.

4.1 Experimental Setup
To accurately evaluate the proposed techniques, a model of the NoC with isolation
features was implemented using Register Transfer Level abstraction. This imple-
mentation builds upon a 3-stage pipeline NoC, here called the Standard NoC. The
router architecture and pipeline stages are described in chapter 2. The network was
modelled in SystemVerilog.
Both the standard NoC and the NoC with isolation were implemented in a 4 × 4
mesh network with 5 ports per router and 4 VCs per port and were simulated using
QuestaSim. The clock period for the simulation was 500 picoseconds, corresponding
to a frequency of 2 GHz.
Synthetic traffic flows were used to simulate the network. The denial-of-service
attack and timing side-channel attack traffic were manually configured and are de-
scribed in their corresponding sections. The traffic flow for determining the per-
formance penalty of using the proposed NoC with isolation features was a uniform
random traffic flow which was generated using Matlab.
To simulate sources transmitting and receiving packets, a simulation setup with a
packet generator, packet queue, transmitter and receiver was used. A block diagram
of the simulation is presented in Figure 4.1.
A stimulus file containing a description of the traffic to be injected into the network
is read by a packet generator which generates the packet to be transmitted. These
packets are placed in a FIFO packet queue while waiting to get injected into the
network. The queue continuously updates the packet generator of the number of
packets stored in the queue. Once the transmitter accepts the packet an acceptance
message is sent to the queue, indicating that the packet can be removed from the
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Figure 4.1: Block diagram of the simulation setup. The queue size signal is used
for closed loop simulations.

queue. The queue size is then decreased.
The transmitter then injects the packet into the network from the local port of
the router specified in the stimulus file. The packet travels from the source to the
destination through the routers in the network. After leaving the local output port
of the destination, it is received by the receiver.
If the traffic type is set to send responses for received packets, the receiver notifies
the packet generator that a response should be sent. The response is then generated
by the packet generator and inserted at the front of the packet queue. The response
packets are placed at the front of the FIFO queue in order to reduce the time the
response packet spends outside the network.

4.1.1 Simulation Types
Two different types of simulation approaches were used, open loop and closed loop
simulations. The denial-of-service and performance evaluations use an open loop
simulation, while the timing side-channel attack evaluation use a closed loop sim-
ulation. In an open loop simulation the network no feedback on the state of the
network is considered during simulation, while in a closed loop simulation, the sys-
tem gets information about the state of the network, inserting feedback loops in the
system [1].
In this simulation the packet generator receives feedback from the packet queue
regarding the size of the queue, shown between the packet queue and packet gen-
erator in Figure 4.1. This is important for the latency-sensitive simulations carried
out when simulating denial-of-service and timing side-channel attacks.
The lifetime of a packet is measured from the time it is generated to the time it is
completely received at the destination. It is because of this fact that the response
packets are placed at the top of the packet generator queue waiting outside the
network. If packets would have to wait in a queue, the latency of the packet would
be artificially higher due to to the time spent in the queue. By limiting the queue
size and inserting responses at the top of the queue allows us to measure the time
that the packets spend in the network.

4.1.2 Isolation Configurations
The three different isolation techniques that were tested are all configurable by the
system designer. All techniques have static configurations, meaning that changes to
the configurations are done before startup, and can not be changed during runtime.
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The source throttling technique has three parameters that affect the rate of throt-
tling, Budget (B), Extra Budget (E), and Epoch (T). The budget specifies how many
flits that are allowed to be injected at each source node during an epoch. Once a flit
counter at the source node gets larger than B flits, further injection is prevented.
The extra budget allows up to E extra flits be injected after the counter reaches
B flits. The epoch describes the number of clock cycles before the flit counters
get reset. If a source node is throttled, it will be allowed to inject flits again after
the epoch of T cycles has passed. These parameters and their allowed values are
described in greater detail in Section 3.1 and Table 3.1. During simulation of the
Denial-of-Service and timing side-channel attacks, the aggressors were configured to
be throttled with varying throttling quotas, while the victim and destination nodes
were not throttled.
The fixed virtual channel allocation technique allows the system designer to decide
which sources should have access to which VCs. The configuration is done on a
per-source basis, meaning that each of the sources can be allocated as many VCs
as necessary, and that several sources can be allowed to use the same VCs. The
allowed VCs are stored in a table of vectors in one-hot encoding. Table 3.2 shows a
possible configuration of VC allocation.
The separate switch allocator timeslots technique is scheduled on a per-port basis.
This allows for a high level of granularity in the configuration, and allows the system
designer to configure the schedule down to cycle-level. The configurations used for
the simulations are shown in the format previously described in Tables 3.3 and 3.4.

4.2 Protection Against Denial-of-Service Attacks
In order to simulate a Denial-of-Service attack, a traffic pattern designed to overload
key links in a mesh network was designed. We call this traffic pattern Aggressor-
Victim. One node is acting as the victim of the attack and sends out intermittent
bursts of 10 packets at a low injection rate, while several other nodes are attempting
to interfere by continuously injecting packets at a high injection rate.
Four configurations with differing amount of aggressors were used. The traffic pat-
tern setups used for this simulation are shown in Figure 4.2. This traffic pattern
means that the links between nodes {0,1}, {1,1}, {2,1}, {2,2}, where the victim
node is attempting to send packets, will be congested to different degrees as a result
of the aggressor nodes sending large amounts of requests to node {2,2}.
To showcase the effects of a denial-of-service attack, we simulate the network both
with and without the aggressor traffic, shown Figure 4.3. Without any aggressor
traffic, the latency for victim traffic injected in bursts of 10 packets with an injection
rate of 0.5 flits/node/ns, has an average delay of 8.5 ns. When the aggressor traffic
is introduced, but without any isolation features enabled, we see a substantial delay
increase for the victim node, as the network fills up with requests faster than they
can be handled. The average victim node packet latency is now instead 62.6 ns, a
637% increase of the latency compared to when the victim is not under attack.
Before introducing the isolation techniques, we note that the different techniques
are expected to have different impacts both on the victim traffic and the aggressor
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(a) One aggressor. (b) Two aggressors.

(c) Four aggressors (d) Six aggressors.

Figure 4.2: Different configurations of the aggressor-victim traffic pattern. Node
{0,1} (green) sends packets to node {2,2} (orange), but experiences congestion in
the network due to interfering traffic from the red nodes, sending a large volume of
requests to node {2,2}.
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Figure 4.3: The latency increase of the victim node incurred by the denial-of-
service attack. The average packet latency increases by 740% compared to the
baseline.

traffic. The source throttling is implemented in a way such that it can be configured
differently for each of the routers, allowing for throttling of any router that is deemed
not to be trusted. The throttling can reduce the injection rate of any router, but
cannot affect the traffic after a flit has been injected into the network.
The fixed virtual channel allocation technique allows for isolation of flows during the
virtual channel allocation stage, by reserving VCs for the different sources. However,
flits must still contend for switch allocation, meaning that they are not unaffected
by other traffic flows that are travelling along the same route.
The separate switch allocator timeslots technique on the other hand ensures isolation
for the switch allocation, but does not differentiate between the contents of the
virtual channels. Therefore, a combination of separate virtual channels and separate
switch allocator timeslots is required to isolate both virtual channel allocation and
switch allocation.
To determine the usefulness of each of the isolation techniques in protecting against
denial-of-service attacks, all three techniques were simulated and their results recorded.

4.2.1 Source Throttling
Source throttling restricts the number of flits that can be injected into the network
from the local port during a given period, called epoch. The allowed number of
flits depends on the allowed Budget and Extra Budget. In this simulation, different
Budget values were tested using the Aggressor-Victim traffic pattern. The aggressor
nodes were throttled using different budgets, while the victim node was not throttled.
Four different aggressor setups were used, shown in Figure 4.2.
The simulation was carried out using closed loop simulation, meaning that the packet
generator waited for the queue to empty before generating new packets. The ag-
gressor traffic was setup such that the unrestricted injection rate of the aggressors
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was 2.5 flits/node/ns with an average packet size of 3, representing a high network
load. This corresponds to a “next-packet latency” of 2.4 cycles, meaning that pack-
ets would be generated faster than they can be injected into the network in an
open-loop simulation. This setup was chosen in order to simulate aggressor sources
overloading the network.
The tested configurations shown in Figure 4.4 are described in Table 4.1. The latency
increase compared to the baseline is of 7.4 times, only varying slightly between the
different configurations.

Figure 4.4: The effect of source throttling using different budget (B) values in a
closed-loop simulation with an unrestricted injection rate of 2.5 flits/node/ns using
six aggressor nodes and one victim node (see Figure 4.2d). In this simulation E=2,
T=32.

Table 4.1: The configurations used during the simulation showed in Figure 4.4.

Configuration Budget [flits] Extra budget [flits] Epoch [cycles]
Orange 12 2 32
Grey 16 2 32
Yellow 24 2 32

The results show that even though as little as 37.5% of all available timeslots were
used during an epoch (B/T = 0.375), the nature of the attack pattern is such
that the network is still too congested for the source throttling to influence the
victim’s latency. Setting the throttling budget to a value close to zero would offer
better protection to the victim, but that would also severely degrade communication
originating from the aggressor nodes.
Additionally, simulations with four, two, and one aggressors were carried out. The
results of the simulations with two and four aggressors show the same pattern as
the simulation with six aggressors, but indicate that when the number of aggressors
decreases, the overall latency also decreases. In this case, the simulation with four
aggressors resulted in roughly the same latency as the six aggressor case, with an
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Table 4.2: Comparison of average victim latency increase compared to the baseline
using source throttling with a differing amount of aggressor nodes.

Number of aggressors Victim latency increase
6 7.4×
4 6.2×
2 1.4×

average victim latency increase of 6.2 times. The two-aggressor simulation resulted
in an average victim latency increase of 1.4 times, showing that the network is
significantly less congested. The comparison of the three cases can be seen in Table
4.2 and the simulation results can be seen in Appendix 1, Figures A.1, A.2.
In the simulation with only one aggressor, a different pattern can be discerned.
When setting B = T , thus providing no isolation, a victim latency increase of 26%
is noticed. However, as the budget is decreased, the victim latency increase due to
the attack is reduced. With B = 8, corresponding to a usable timeslot quota of
B/T = 0.25, the latency increase is 10%. An opposite effect is seen on the aggressor
node, which has its latency increased by 172% when 0.25 of the timeslots in an
epoch are available. A breakdown of the aggressor latency increase can be seen in
Appendix Table A.1

Figure 4.5: Effect of source throttling with one aggressor node and varying budget.
As the budget decreases, so does the victim latency.

The results indicate that when the number of aggressors is larger than one, source
throttling does not provide satisfactory isolation, as the network is still congested
due to the number of nodes injecting malicious requests. Using fewer attackers
leads to lower overall latency, but the increased latency because of the attack is still
substantial.
When only one aggressor is used the source throttling instead has an effect on the
victim latency. The latency increase due to the denial-of-service attack is decreased
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Table 4.3: The latency decrease achieved when running the aggressor-victim traffic
pattern in a system with 4 VCs per port with different amount of VCs allocated to
the victim node.

Victim Configuration Latency decrease
1 isolated VCs 63.9%
2 isolated VCs 82.3%
3 isolated VCs 84.5%

Figure 4.6: Comparison of the packet with latency using different configurations
of fixed VC allocation using the aggressor-victim traffic pattern.

as the aggressor budget decreases. This indicates that for one aggressor, source
throttling can give protection against denial-of-service attacks. However, as the
aggressor is throttled, the aggressor latency instead increases substantially.

4.2.2 Fixed Virtual Channel Allocation
For the fixed virtual channel allocation technique different amount of isolated VCs
were tested. When performing the Aggressor-Victim simulation with six aggressors,
using different configurations of the number of virtual channels allocated to the
victim, the effects of providing more virtual channels to the victim node can be
seen.
The results are shown in Figure 4.6 and Table 4.3, indicating that allocating one
fourth of the available VCs to the victim results in an average packet latency decrease
of 63.9%. As more VCs are allocated this number approaches 85%. The largest
difference in victim node performance is when going from zero to one allocated VCs.
Allocating a second and third VC to the victim decreases the latency marginally,
but diminishing returns can be observed.
Running the simulation with fewer aggressors resulted in the victim latency being
decreased further. Using one and two aggressor nodes, one VC allocated to the
victim and three VCs to the aggressors led to the victim node performing at the
baseline level of latency, thus successfully completely masking out the denial-of-
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Figure 4.7: Victim latencies during a denial-of-service attack using different
amount of aggressor nodes. In these simulations, one VC is allocated to the victim
and the rest of the network shares the other VCs.

service attack at the cost of allocating one of four VCs to the victim. A graph of
the simulations using different number of aggressors can be found in Figure 4.7.
From the evaluation results we can see that the fixed VC allocation technique pro-
vides a significant protection against a denial-of-service attack, effectively eliminat-
ing the latency that is introduced when 75% of the available VCs are allocated to
the victim node in the scenario with six aggressors. However, allocating this many
resources to a single node (or a trusted set of nodes) means that the other nodes
receive almost no resources, limiting their throughput and increasing the packet
latency.
The aggressive reallocation of resources can be reasonable if you are certain that
the other nodes are malicious, but if you instead aim to isolate trusted nodes from
all nodes that for example run third-party software, leaving this little resources for
the third-party nodes might have performance implications, depending on the use
case. Therefore, simply striving to reduce the latency of the victim node might not
always be the best tactic, as the whole system has to be taken into consideration.
When only one or two aggressors are present allocating one VC to the victim flow
is enough, meaning that the effect on the rest of the network will not be as large.
Still, the optimal number of VCs for each flow will have to be empirically tested and
fine-tuned for each system.
In summary, the fixed VC allocation technique provides good isolation for protec-
tion against this type of DoS attacks among the proposed techniques, by effectively
isolating the victim flow from the aggressor flows. By enabling configurable alloca-
tion of the virtual channels, isolation from aggressor flows can be achieved, allowing
the victim(s) to operate without being affected by the request flooding from the
aggressors.
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4.2.3 Separate Switch Allocator Timeslots
The performance of the third technique, separate switch allocator timeslots, depends
on the chosen schedule. The challenge then lies in creating an appropriate schedule,
allocating a suitable number of timeslots to each flow.
In the context of protection against denial-of-service attacks the goal is to remove
the flow from the network congestion. To this end, a schedule which allows the
victim node to pass through the network using only reserved datapath timeslots
can be constructed. The two techniques of fixed VC allocation and separate switch
allocator timeslots were combined, and a schedule configuration allocating half of
the timeslots of the router ports along the route depicted by the green arrow in
Figure 4.2 was constructed.
VC0 was reserved for the victim flow, while the remaining VCs were shared among
the aggressors. In the schedule, described in Table 4.4, the number of unique times-
lots was set to eight. All ports were set to be reusable if they were not actively
used by the allowed VC or port. The table only includes the actively used routers
and ports along the victim path, all the other routers and ports were set to be
unreserved.

Table 4.4: The input allowed VCs (upper) and output allowed input port directions
(lower) port tables used to provide isolation using fixed VC allocation and allocator
timeslots. All timeslots are set to be reusable. The input port directions are North,
East, South, West, Resource, and U means Unreserved.

x y North East South West Local
0 1 U U U U 00120023
1 1 U U U 00120023 U
2 1 U U U 00120023 U
2 2 00120023 U U U U

x y North East South West Resource/Local
0 1 U RRUURRUU U U U
1 1 U UUWWUUWW U U U
2 1 U U WWUUWWUU U U
2 2 U U U U UUNNUUNN

The results of the simulation show that allocating one VC and half of the allocator
timeslots to the victim flow effectively. This is shown in Figure 4.8. Compared to the
average benchmark latency of 19.1 ns per packet, the isolation techniques reduced
this to 11.6 ns, representing a speedup of 1.64x. However, the average latency of the
aggressors was also increased from 106 ns to 164 ns, representing a 54% increase in
latency.
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Figure 4.8: Latency results for separate switch allocator timeslots along with
fixed VC allocation with an aggressor injection rate of 0.375 flits/node/ns. The
benchmark latency when isolation is disabled and the results for only using fixed
VC allocation are included for reference.

4.2.4 Denial-of-Service Protection Summary
In summary, the simulations of the denial-of-service attacks show that the perfor-
mance penalties incurred from these attacks can be alleviated by using one or several
of the techniques. Using source throttling proved to be effective when only one at-
tacker was present. In this case, the victim latency was reduced as the aggressor
was throttled. This provides better reliability in the performance of the victim node,
as even though an attacker is present the victim node can still function normally.
When more aggressors were present the amount of source throttling required to keep
the network from becoming congested would render the aggressor nodes useless for
normal operation.
Fixed VC allocation proved effective against denial-of-service attacks, isolating the
victim traffic flows from the aggressors. With only one or two aggressors present, al-
locating one VC to the victim flows removed all effects of the denial-of-service attack.
Further separating the traffic flows based on separate switch allocator timeslots also
proved effective, but manually scheduling switch allocation timeslots did not provide
any advantage over only using fixed VC allocation in our configuration. Allocating
more timeslots to the victim would in turn increase the aggressor latencies, thus
reducing the performance of other network activities.

4.3 Protection Against Timing Side-Channel At-
tacks

In timing side-channel attacks, the malicious node(s) exploit the fact that a victim
node that transmits messages to a destination node takes up network resources,
meaning that other nodes that transmit messages to that same destination node will
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experience an increase in latency. By doing this, the malicious node can determine
when, and possibly what, the victim is transmitting.
The goal of the isolation techniques in this scenario is to hide the latency increases
caused by the victim node transmitting to the destination node. To that end,
a version of the Aggressor-Victim traffic pattern is used, which features only one
victim and one attacker. To enable the aggressor to measure the response time
latency (RTL) of a message, the destination node sends a response back to the
aggressor. A visualisation of the simulated traffic is shown in Figure 4.9. The
packet size and response packet size for the simulations was set to 3.

Figure 4.9: The traffic pattern used for simulating a timing side-channel attack.
The aggressor relies on the response time latency to deduce whether the victim is
transmitting.

To establish a baseline for the proposed NoC, it was simulated using an aggressor
injection rate of 1.63 flits/node/ns and a packet size of 3. The NoC was configured to
not provide any isolation in this simulation. The results of this simulation is shown
in Figure 4.10, and show that the victim node experiences a latency of around 10
ns when transmitting. The aggressor node has a latency of around 12.5 ns when no
victim traffic is present. When the victim starts transmitting, the latency rises to
around 19 ns, an increase of over 50%.
This increase in latency comes from that fact that the two flows meet at node {2,1},
contending for resources in the shared router. Furthermore, it can be noted that
there is also some effect on the latency of the victim flow, as the contention for
resources leads to some flits having to wait longer than they would have otherwise
had to.

4.3.1 Source Throttling
Source throttling allows for a reduction of the injection rate of a source by chang-
ing the budget values of the source throttling mechanism. Figure 4.11 shows the
difference in latency of the aggressor node under different budget values.
As can be seen in the results, changing the number of allowed flits has an effect
on both the latency for the whole simulation, and the latency difference when the
victim node transmits. An injection rate of 1.63 flits/node/ns and 3 flits per packet
corresponds to a delay between packets of 3.7 cycles. This means that for every
four cycles, one packet will be injected into the network. With this injection rate,
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Figure 4.10: Victim and aggressor latency of the NoC when a timing side-channel
attack is performed. The aggressor response time latency difference when the victim
is transmitting clearly shows that victim traffic is present.

Figure 4.11: Comparison of aggressor response time latency under different
budget values under a timing side-channel attack using an injection rate of 1.63
flits/node/ns. Victim injections included for visualisation purposes. The Extra
budget was set to 2, and the epoch to 32 cycles.
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the network is able to handle the traffic without incurring large latencies when no
isolation is provided, shown previously in Figure 4.10.
However, when source throttling is introduced, differences in the latency for the
aggressor can be seen. For high budgets, the traffic is not affected compared to the
baseline case of the budget being equal to the epoch, B = T . The breaking point
occurs when the throttle budget is set to 26 flits per epoch of 32 cycles. This is
equal to allowing a quota of 0.81 of all cycles to be used, plus up to two extra cycles
if the head-flit gets through the throttling mechanism. If the budget is decreased
further, the latency will continue to increase as the quota of usable cycles decreases.
We can also observe that for B=26 we notice that after about 820 ns, the network
saturates and the latency increases up to the level of the lower budget simulations.
Looking further into this, we can examine the difference in throttling budgets. Fig-
ure 4.12 shows the difference in average packet latency when we compare the two
throttling budgets in a simulation without a victim node. This indicates that for
the injection rate of 1.63 flits/node/ns, a quota 0.84 of all cycles need to be usable
in order to not saturate the network.
This discovery means that we can also examine what occurs when the injection rate
is decreased. Figure 4.13 shows what occurs when the aggressor injection rate is
reduced. In this case, we instead see a steady packet latency that is more stable,
similar to that of the higher budget example in with the higher injection rate.

Figure 4.12: The difference in average packet response latency and injected packets
between B=26 and B=27, showing that this is the point when the network eventually
saturates. The injection rate is 1.63 flits/node/ns, E=2, T=32.

Drawing from this, a complete simulation with the lower injection rate was carried
out. The results from this simulation are shown in Figure 4.14, showing that with
this decreased injection rate, the saturation does not occur at the same quota of
available cycles, reducing the latency of the aggressor traffic. However, this also
reintroduces the latency difference, meaning that the protection against timing side-
channel attacks is removed.
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Figure 4.13: The difference in average packet response time latency when the
injection rate is reduced from 1.63 to 1.36 flits/node/ns. There is no victim traffic
and the configuration is: B=26, E=2, and T=32.

Figure 4.14: Simulation results with an injection rate of 1.36 flits/node/ns, B=26,
E=2, T=32. The difference between victim traffic and no victim traffic can be seen
in the aggressor latency differences pictured in orange and grey.

From these results, the following observations can be made:
• If a low budget is set, the latency difference seen when victim traffic is injected

disappears, but the latency of the aggressor more than doubles.
• If an “optimal” budget for a certain aggressor injection rate is found, the

latency difference reappears, potentially allowing timing side-channel attacks.
These observation show that if we opt for a high level of throttling with low quotas of
available cycles the latency of the potential aggressor rises significantly. This might
hurt the performance of nodes that are not aggressors, but still are throttled. Also,
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if a budget level that does not incur this latency increase is found through empirical
testing, it instead introduces the same latency differences as when no isolation is
used.
The latency difference is not as obvious, but still visible and possible to be exploited
by adversaries. Furthermore, this also means that an aggressor that is throttled
and is penalised with the higher latency to remove the possibility of timing side-
channel attacks can reduce its injection rate to again see the latency differences.
This indicates that source throttling might not be an optimal isolation approach to
protect against timing side-channel attacks.

4.3.2 Fixed Virtual Channel Allocation
Separating the virtual channels for the victim and aggressor flows has a small effect
on the variation in the victim latency, as can be seen in Figure 4.15. Depending
on the number of virtual channels allowed for the aggressors the latency differs, but
the shape of the latency responses stay roughly the same.
As the results indicate, only isolating the flows through virtual channel allocation
is not enough to properly mask out the increased congestion while the victim is
transmitting. Since we only isolate the virtual channels the requests still contend
for switch allocation, meaning that there is still contention in the network.

Figure 4.15: The latency difference of the aggressors when allocated 1, 2, and 3
VCs using the fixed VC allocation technique. The victim has one VC by itself. The
latency difference is noticed in all three cases when the victim transmits.

4.3.3 Separate Switch Allocator Timeslots
In order to test the effectiveness of separating victim and aggressor flows by schedul-
ing them in different timeslots, a schedule that separated them at their meeting
point, node {2,1}, was created. The schedule configurations of the specific node
with 8 separate timeslots can be seen in Table 4.5. All input other output timeslots
were configured to not be reserved, meaning that any flow can use them. Addition-
ally, VC0 was allocated to the victim flow and VC2 to the aggressor. The destination
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Figure 4.16: Aggressor packet latencies for the fixed VC allocation and separate
switch allocator timeslots at different aggressor injection rates.

was configured to be able to use all VCs for the response packets. This schedule
setup corresponds to giving each of the two nodes 37.5% of the available timeslots.

Table 4.5: The schedule configured for testing the separate switch allocator times-
lots technique, showing the allowed input ports for the south output port. The
victim packets come from the west port, and the aggressor from the north port. N
= North, W = West, E = East, R = Local Resource.

x y Output Port South Reusable
2 1 NNNWWWER No

Several different injection rates were tested, with higher injection rates leading to
higher latencies as packets had to wait in the network. Figure 4.16 shows the
latencies for the injection rates, providing an aggressor latency that is not several
times higher than the zero load latency. Appendix Figure A.3 shows all tested
injection rates. The results indicate that when the table is configured as above, the
isolation techniques are able to effectively remove the latency differences.
Even though isolation can be provided at all the tested injection rates, the latency
of the aggressor node still needs to be kept in mind. With an injection rate of
0.375 flits/node/ns, the tested setup was able to provide a latency increase of 26%,
corresponding to a speedup of 0.79× for the aggressors. Higher injection rates lead
to higher latency increases, and lower injection rates had no difference compared to
the value of the 0.375 flits/node/ns injection rate. Therefore, a latency increase is
expected to be introduced using this technique with non-reusable timeslots.
Allowing the unused timeslots at node {2,1} to be reused by any source yields
different results. Even though the average packet latency of the aggressor decreases
somewhat, a differing pattern in the latency graph can be seen when the victim
transmits, shown in Figure 4.17. This latency difference, although small, jeopardises
the protection against timing side-channel attacks, potentially allowing an adversary
to deduce when the victim is transmitting. The average packet latency decrease
when allowing the unused timeslots in node {2,1} to be reused amounts to a speedup
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Table 4.6: Response time latency differences for different injection latencies com-
pared to the zero load latency.

Injection rate [flits/node/ns] Latency Speedup
Zero Load Latency 13500 N/A
0.375 f/n/ns 17000 0.79
0.4 f/n/ns 18590 0.73
0.5 f/n/ns 19245 0.70

Figure 4.17: The difference in Response Time Latency (RTL) for the aggressor
between allowing reuse of unused timeslots and not allowing it. A lower average
packet latency is noted, but also a differing pattern when the victim is transmitting.

of 1.02×, or 2%.
By only allowing the victim node to reuse the unused timeslots the victim latency
can be decreased somewhat while still keeping the same aggressor latency as in the
case of no unused timeslots. Figure 4.18 shows the difference in victim latencies
with different reusability configurations. We can see that only allowing the victim
to reuse the timeslots brings the latency closer to the baseline case. This however
comes at a cost of increased complexity of the scheduling, as the victim has to be
scheduled to reuse the timeslots in its path to the destination node.

56



4. Evaluation

Figure 4.18: The difference in victim latency for different reusability schedules. By
allowing only the victim to reuse timeslots a lower victim latency can be achieved.

4.3.4 Timing Side-Channel Protection Summary
In summary, the proposed implementation of source throttling does not provide
a good protection against timing side-channel attacks. It is possible to remove
the latency effect, but this comes at a cost of significantly higher latency for the
aggressor. If all nodes running third-party code gets treated as a potential aggressor,
this would mean severe performance implications for these nodes.
Furthermore, if the aggressor notices that it is being throttled, it can simply lower
its injection rate to the point where the latency spikes are once again noticeable.
These drawbacks show that source throttling is not a suitable technique to protect
against timing side-channel attacks.
Fixed VC allocation as an independent technique is not able to protect against
timing side-channel attacks. As could be observed in the results, the technique does
not provide any meaningful protection against the latency effect, as the victim and
aggressor are still fighting for switch allocation in the same timeslots.
Separate switch allocator timeslots together with fixed VC allocation does provide a
good protection against timing side-channel attacks. By combining fixed VC alloca-
tion with scheduling the shared router timeslots so that no contention occurs between
the victim and aggressor, the latency difference effect completely disappeared. This
does however require careful planning of the timeslot scheduling, and an injection
rate that is low enough to be handled by a subset of all available resources in the
network. Allowing unused timeslots to be reused once again introduces the latency
difference effect, but also reduces latency of the aggressor node slightly.
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4.4 Performance Impact of the Proposed Tech-
niques

Since the techniques add extra functionality to the NoC and modify several router
pipeline stages, the potential performance penalty introduced by enabling the tech-
niques can be determined by measuring the latency at the point of saturation. To
that end, a simulation of uniform random traffic from each of the sources was per-
formed both with a version of the NoC without any isolation techniques implemented
and one with the isolation techniques enabled. During these simulations, the tech-
niques were configured to not provide any isolation when they were enabled, so
the network functioned like the techniques were not enabled. To achieve this, the
following settings were used:

• Source Throttling: B = T and E = 0, essentially letting T flits through during
the time period of T flits, eliminating any effect of the throttling.

• Fixed virtual Channel Allocation: Configuring Table 3.2 so that all sources
have access to all VCs, which is the same as if the technique would have been
disabled.

• Separate Switch Allocator Timeslots: By configuring the input and output
port tables to be unreserved for all timeslots.

By measuring the impact of the different techniques at the injection rate where
the network saturates, the static overhead that each of the techniques introduce
was recorded. Figure 4.19 shows the throughput and latency of the NoC with the
isolation features enabled, but without providing any isolation, compared to the
values when the standard NoC is used. From the results, we can see that the
network saturates at the same injection rate, 1.3 flits/nodes/ns. However, the NoC
with the isolation features has slightly higher latency for the measured points.

Figure 4.19: The performance achieved by the standard and isolation-enabled
NoCs with no isolation enabled. A throughput difference of under 0.5% and a
latency difference of 3.47% is noticed for the NoC with isolation features at the
saturation point of 1.3 flits/node/ns.
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At the saturation point, there are small differences in the performance, as can be seen
in Table 4.7. At an injection rate of 1.3 flits/node/ns, the throughput difference is
0.47%, while the latency increases by 3.72%. These differences can be derived from
the extended VA-stage in the fixed VC allocation technique, described in Figure
3.1. Latency measurements with each of the techniques used independently show a
latency increase when the fixed VC allocation is being used. All in all, the static
performance penalty for enabling isolation of flows is relatively small.

Table 4.7: The throughput and latency measurements when the injection rate is
set to 1.3 flits/node/ns.

Configuration Throughput TP diff. Latency Lat. diff.
Standard NoC 0.00043383 100% 21614 ns 100%
NoC with isolation 0.00043179 99.53% 22417 ns 103.72%

4.5 Summary
The three proposed isolation techniques have been tested against two types of attacks
that might occur in a NoC. First, a denial-of-service attack was simulated. The
evaluation of the different techniques showed that for this specific type of attack,
using a fixed VC allocation, where the victim node and aggressor nodes did not share
any VCs proved to be the most effective. Using separate switch allocator timeslots in
conjunction with the fixed VC allocation also proved useful, as a decrease in victim
latency was achieved.
Source throttling did not show any promising results when the number of aggressors
was larger than one. In these cases, the number of aggressor nodes were too many
for the network to handle even when the throttling budget was decreased. With
only one aggressor the source throttling technique showed promising results, as the
latency of the victim node was decreased as the available timeslot quota of the
aggressor was decreased.
In the timing side-channel attack scenario we were able to show that an aggressor can
bypass the source throttling technique by lowering its injection rate until the latency
differences become apparent again. Additionally, when the aggressor was throttled
to the point that no latency difference was able to be noticed it experienced a
severely increased average packet latency. With this information the aggressor could
potentially notice that it is being throttled and adjust its injection rate accordingly.
Fixed VC allocation proved to not be useful on its own since the switch allocator
is still shared among all sources. Through this, the aggressor could still notice the
latency difference.
When using both fixed VC allocation and separate switch allocator timeslots the
latency differences were able to be masked out. This came at a cost of increased
aggressor latency, but provided protection against the attack. Allowing the victim to
reuse timeslots also allowed the victim latency to be decreased while still providing
protection from the attack. When any source could reuse idle timeslots, a small
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latency difference could be noticed, potentially allowing the aggressor to perform
the attack.
Regarding performance, a throughput decrease of 0.47% and a latency increase
of 3.72% was noticed at the network saturation point, at an injection rate of 1.3
flits/nodes/ns. This means that the provided isolation only comes at a small per-
formance cost to the system.
In summary, we have shown that fixed VC allocation provides good protection
against denial-of-service attacks, and that combining this technique with separate
switch allocator timeslots allows for protection against timing side-channel attacks.
Source throttling can be used to protect against denial-of-service attacks with one
aggressor, but was not able to protect against timing side-channel attacks.
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The design of the system is comprised of three separate approaches to providing
isolation of flows, which based on the needs of the user can be used either alone
or at the same time. The different approaches each have their own advantages
and drawbacks, which will be discussed in this chapter. First, the source throttling
approach will be discussed, followed by fixed virtual channel allocation, and separate
switch allocator timeslots. The thesis is then concluded by summarising the isolation
techniques and their performance for the different use cases presented in this thesis.

5.1 Source Throttling
In the two-stage proposed source throttling approach the user of the network can
statically configure the throttling threshold, B, epoch, T, as well as the number of
extra flits that should be allowed, E. This provides the user with a high degree of
control over what how aggressive the throttling should be, by allowing a quota of
B+E

T
of flits to be injected in the network.

The throttling is destination-aware, only throttling requests to a destination that
has already reached the threshold. This approach avoids problems of throttling of
requests to neighbouring destinations, which in turn reduces the risk of performance
degradation due to erroneous throttling of the wrong requests.
While source throttling does not provide any explicit isolation of flows, the technique
does offer a way of reducing the effectiveness of denial-of-service attacks in the
network through reducing the congestion. The limitation of the number of requests
that are allowed to enter the network during a given epoch can help with keeping
the attack rate in the network at a low level. As presented by Fang, et. al., the
deterministic XY routing algorithm, which is used in our implementation, then
performs better than more complex adaptive routing algorithms [20]. Therefore,
utilising the source throttling, a robust system can be achieved.
However, as seen in our evaluation, finding an amount of throttling that also did not
affect the average latency of the aggressor nodes was difficult. From the aggressor’s
point of view, we tested two ways to perform this attack.

1. Injecting a large number of packets from one or a few sources
2. Injecting a slightly lower amount of packets from several sources

In the first case, our implementation of source throttling can be helpful, as the
throttling is static and allows only a quota of the available timeslots in each epoch
to be used for injection. The effectiveness of this approach can be seen in the

61



5. Discussion and Conclusion

results with fewer aggressor nodes in the denial-of-service simulations. With only
one aggressor a good protection against the attack was achieved, as the victim
latency increase due to the congestion became less and less noticeable as the budget
decreased.
The second case with several aggressor nodes allows the adversary to work around
the throttling. Even if only half of the timeslots are allowed to be used, we still
see a significant impact on the latency of the victim node. Even if the aggressors
were throttled more than this, adding more aggressor nodes would still increase the
network congestion. Allowing less than half of the avaialble timeslots to be used also
substantially impacts the performance of the aggressor nodes in the cases where it
is not being used for malicious intents.
These insights indicate that the technique can be used to protect against denial-of-
service attacks, but that the aggressor can work around the protection by utilising
more aggressors.
For timing side-channel attacks, the source throttling proved to not be useful, as the
attacker can easily find ways around the injection limitations. To understand this
result, we can observe that the goal of the timing side-channel attack is to observe
latency differences in the response time latency which become apparent when the
victim transmits.
From the simulation results we can see that when a source is throttled beneath the
threshold, the latency difference is less noticeable. However, since there is still some
contention among resources when the victim transmits, we observe a small variance
in the latency in these cases. This means that even though we mask out most of
the difference, a good detector could still notice this difference.
Another important observation is that the aggressor can work around the throttling
by reducing its injection rate such that the number of injected flits per cycle is below
the quota of B+E

T
. If the number of injected flits is still large enough to notice the

latency differences, the effects of source throttling can effectively be ignored by the
aggressor by adjusting the injection rate.
Implementing source throttling comes at a cost. First, a source throttling controller
monitoring the resource port of each of the routers must be added. This controller
in turn needs to keep a table of destination counters, which keep track of the number
of flits sent to each of the possible destinations. For a N ×M mesh network, there
are N ·M − 1 possible destinations, causing the resources needed for keeping track
of flits to scale exponentially with the number of nodes. Counting the number of
flits without having to keep large tables might improve the resource efficiency of the
design.
A way to reduce the number of tables for each source throttling controller could be
to throttle in directions instead of destinations. This would mean that the number
of tables would be the same as the number of possible directions, a maximum of
four in the case of a quadratic mesh topology.
This approach would however need to be evaluated using different routing algo-
rithms, since the choice of algorithm could influence which ports are used. For
example, using dimension ordered XY routing, the east port of node (0,0) of a
N×N, N > 1 mesh network would be used more than the south port under uniform
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random traffic.
Another potential improvement involves the parameters of the source throttling im-
plementation. In our implementation, the configuration of the throttling parameters
is static, which means that the optimal parameters for the specific use case have to
be found empirically. A possible improvement is to introduce an adaptive throttling
budget by analysing the network usage over time, detecting and throttling unusual
or disallowed traffic patterns. A similar approach is presented in [8].

5.2 Fixed Virtual Channel Allocation

The fixed Virtual Channel Allocation technique isolates flows by only allowing a
predetermined set of virtual channels for each of the source nodes. This technique
has proved useful when handling denial-of-service attacks.
Furthermore, the technique allows the separate switch allocator timeslots technique
to function in a predictable way, as the VC of each of the flows can be decided.
However, the technique also comes with a few drawbacks, that are mainly related
to the static nature of the configuration and the implementation overhead.
The technique replaces the virtual channel allocator, negatively impacting the per-
formance of the system. The additional steps in the modified virtual channel allo-
cation leads to a latency increase of 3.72% and saturation throughput decrease of
0.47%. This latency increase is present even when no isolation is configured, but
the technique is still active.
This is however deemed as an acceptable amount of overhead since the aim of the
technique is not to increase performance, but rather to provide isolation of flows.
Having the technique enabled but not isolating any virtual channels is also not a
realistic use case for the technique, since the point is to separate traffic flows.
When used to handle denial-of-service attacks, the latency decreases when allocating
VCs to the victim are significant. By allocating one of the available VCs, correspond-
ing to one fourth of the total VC count, we were able to decrease the latency by as
much as 63.9% when six attackers were present. This number rises to 82.3% when
allocating half of the available VCs to the victim node. As more VCs are allocated
to the victim node, the closer the latency gets to the baseline case of no network
congestion.
In the case with fewer attackers, the results were also promising. With one and
two aggressor nodes, allocating as little as one VC to the victim node allowed us to
completely mask out the effect of the attack, resulting in a victim latency that was
equal to the baseline case.
This means that fixed VC allocation provides effective protection against DoS at-
tacks, but also affects other parts of the network. Therefore, a compromise between
the importance of decreasing the victim flow latency and affecting other parts of the
network must be considered.
Opting for an aggressive reallocation of resources can be reasonable if you are certain
that the other nodes are malicious. If you instead aim to isolate trusted nodes from
all nodes that for example run third-party software, leaving only a small amount of
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resources for the third-party nodes might have performance implications, depending
on the use case. Therefore, simply striving to reduce the latency of the victim
node might not always be the best tactic, as the whole system must be taken into
consideration.
For future work, the arbitration and reservation of VCs could be moved back to
the VA module, so that the traditional structure of the router is kept intact. As
the general idea is still the same, allocating free VCs to an incoming request, this
change should be feasible.
Another potential future improvement relates to the static configuration of the allo-
cated virtual channels, which cannot be changed during runtime. This means that if
a DoS attack occurs during runtime and the NoC has not been configured to allocate
the correct VCs beforehand, nothing can be done about it while the system is still
running. A potential future improvement could be to enable adaptive allocation of
VCs to high priority flows so that attacks or unforeseen congestion problems that
occur during runtime can be handled automatically by the network.
To enable this, a baseline performance could be determined either by measuring
it during warm-up or continually during runtime and detecting when the latency
deviates from this baseline. This could then be used to allocate more resources
to high-priority nodes if the latency increases above a threshold compared to the
baseline. To this end, the Fixed Virtual Channel Allocation technique could perhaps
be combined with the QNoC service classes presented by Bolotin, et al. [11]. Nodes
that send high-priority requests could be allocated more virtual channels if there is
a decrease in performance for a crucial part of the network, affecting the latency of
the high-priority packets.
This type of improvement would make the system more adaptive and resilient re-
garding unforeseen problems as well as being easier to configure, as the traffic does
not have to be analysed before configuring the system. The challenge lies in imple-
menting the changes without further increasing the performance penalties that are
present with this technique.

5.3 Separate Switch Allocator Timeslots
The separate switch allocator timeslots technique enables configuration of a schedule
which effectively removes the threats of timing side-channel attacks when combined
with fixed VC allocation. Using the two techniques, the network can be configured
to only let through traffic from certain VCs and directions at the different timeslots.
These timeslots can be configured in a way such that a high priority node encounters
a minimal amount of congestion, while also masking whether it is using its timeslots
from potential adversaries. Thus, flits from different sources do not encounter each
other in either the VA or SA stages, providing isolation between them.
The advantages of this technique are most noticeable during the timing side-channel
attack scenario, since this isolates flows during the switch allocation process, pre-
venting adversaries from deducing information based on this information. When
combined with fixed VC allocation, latency differences could be completely masked
out while also only incurring a small amount of additional average packet latency
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to the aggressor.
The fact that only a minimal amount of average packet latency for the aggressor
is incurred means that the techniques could potentially be used for nodes running
third-party code that is not trusted. This can then be used as a precaution to
protect against timing side-channel attacks while not penalising the nodes too much
if they are not actually malicious. Note however that this still requires a properly
set up schedule, which can be a complex task.
The technique also proved useful in the context of a denial-of-service attack, given a
properly configured allocation schedule. By building an isolated tunnel between the
victim and destination nodes, even allocating half of the available timeslots proved
to significantly decrease the latency experience by the victim.
The performance of this techniques relies upon the schedule that the user configures,
meaning that the performance penalty for a poorly configured schedule can be large.
The user must also make sure to not accidentally exclude any possible flows from
the schedule, which might cause blocking in the network.
This problem was noticed when fully randomised tables were tested. A certain degree
of planning is therefore needed in all cases. This might pose a security problem, if
an adversary finds a way to deduce the structure of the schedule by analysing the
traffic of the network. This could perhaps be remedied by mixing randomisation
with planned scheduling.
Given the high degree of configuration that is available, certain paths in the network
can be configured to feature isolation, while others do not. This means that if there
are known routes for high-priority traffic between two nodes in a part of the network,
the timeslot allocation can be set up such that the isolation is only present in this
part of the network. The rest of the network can then operate like normal, without
any negative effect on the network except for the increased area needed due to the
tables.
Furthermore, the decision to allow unused timeslots to be reused or not also affects
performance. Depending on the number of timeslots that go unused, the perfor-
mance difference between allowing and not allowing these timeslots to be reused
can be significant. As could be seen, allowing for unused timeslots to be reused
by any source node potentially allows aggressors to perform a timing side-channel
attack.
With this in mind, the option for any source to reuse unused timeslots should only
be used when performance is more important than protection against these types of
attacks. In the special case with the unused timeslots along the victim-destination
path being reserved for the victim node, no latency difference could be noticed by
the aggressor node, removing the possibility of a timing side-channel attack.
The drawback of allowing only a specific source node to reuse timeslots along a path
is that the when this source is not transmitting the network is essentially not allowing
these timeslots to be reused. Manual scheduling is also required for configuring this
behaviour, further increasing the configuration complexity of this technique.
There will always be a trade-off between security and performance when using these
techniques. For instance, a timeslot that is allowed to be reused can allow for timing
side-channel attacks, but also reduces the performance penalty by allowing traffic
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that would otherwise be blocked to progress through the network. We believe that
the choice of how much security and performance should matter differs from case
to case, and that the system designer must carefully consider the alternatives and
their effects when deciding what configuration to choose.
The main drawback of the proposed technique is the difficulty of configuring the
input and output port tables such that they do not impose any unnecessary perfor-
mance decrease in the network. The option to only reserve some of the timeslots for
both input and output ports, as well as allowing unused timeslots to be reused, de-
creases the effects of this problem. However, the user must still ensure that enough
timeslots for all parts of the network are available to avoid blocking and performance
decreases.
An improvement that would ease the task of producing a working schedule would be
to have a schedule evaluator that scans the schedule for potential blocking problems
and locations where a performance decrease due to congestion is likely to occur.
This evaluator could also check to see that isolation between two defined sources
is provided. Such an evaluator would not have to be part of the system and could
instead be built independently and used before loading the schedule onto the system.
A further possible future improvement could be to utilise the fact that when times-
lots are reserved, switch allocation is not required. By preemptively granting the
scheduled input port access to the crossbar, the switch allocation stage can be com-
pletely bypassed. Then, if VC allocation can also be skipped, or performed a cycle
earlier, an entire pipeline stage could be removed. This would reduce the pipeline
to two stages, Switch Traversal and Link Traversal.
The problem with this approach would be the reusability functionality. If we grant
the potential incoming request access to the crossbar before we know if it is there,
a look-ahead signal would need to be sent from the upstream router, indicating
whether a request is going to occupy its granted timeslot or not. Furthermore, if
several sources can potentially use the reusable timeslot, switch allocation would
still need to be performed among those potential requests.
In any case, the possibility of further reducing the depth of the pipeline for reserved
timeslots is an interesting topic which can be further investigated in future work.

5.4 Comparison with Related Works
The combined system provides a similar but different approach to protection against
timing side-channel attacks as compared to the approach described by Wang and Suh
[5]. The source throttling mechanism is improved to combat some of the potential
drawbacks of a more general approach and the virtual channels are allocated on a
per-source basis instead of using classes, allowing for more flexibility in configuring
which flows should be allowed to use which VCs.
Furthermore, we implement the strategy of temporal network partitioning of switch
allocators in the separate switch allocator timeslots approach instead of allowing
lower-priority flits to always win arbitration. This static scheduling approach re-
quires more manual work in creating schedules, but in return allows the flows to
split the network usage instead of providing a static priority.
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To remedy the performance decreases that temporal network partitioning introduce,
the high degree of timeslot reusability possibilities allows the system designer to
decide what resources should be allowed to use unused timeslots. By allowing each
timeslot to be configured according to the specific needs, the possibility of allowing
timeslots belonging to lower security flows to be reused, while high-security flows are
not. This provides protection against timing side-channel attacks, while reducing
the performance penalty of this approach.

5.5 Conclusion
Three techniques aiming to provide isolation and handle two types of attacks in
a Network-on-Chip have been presented. The first technique, source throttling,
enables throttling of sources that inject packets into the network at a rate the exceeds
the pre-configured threshold. The throttling is carried out in two steps, flit counting
and budget check. Finding the correct configuration of throttling parameters to
protect against a denial-of-service attack proved difficult when multiple aggressors
were present. With a single aggressor, source throttling reduced the effectiveness of
the attack, providing a more stable system.
In the case of timing side-channel attacks, we showed that by lowering the injection
rate to be lower than the throttling quota, attackers could still perform attacks even
if they were throttled. This indicates that source throttling cannot be used as a
reliable method of preventing timing side-channel attacks in Networks-on-Chip.
The second technique, fixed virtual channel allocation, allows the user of the NoC
to configure which sources should have access to which of the available virtual chan-
nels. Although this technique alters the router pipeline by replacing and extending
the switch allocation stage, latency decreases of up to 84.5% were observed when
isolating a victim flow during a denial-of-service attack. Allocating as little as one
fourth of the available VCs to the victim node resulted in a 63.9% average packet
latency decrease as compared to running the system without isolated VCs.
The third technique, separate switch allocator timeslots, allows the user to pre-
configure a schedule which allocates specific allocator timeslots in the input and
output arbitration stages of the switch allocator. Using this technique combined with
fixed virtual channel allocation it is possible to completely remove the possibility of
noticing a victim transmission using a timing side-channel attack.
The cost of this protection is twofold. The schedule has to be manually configured,
and the fact that less timeslots are allocated to each flow increases the packet latency.
With this in mind, all effects of a timing side-channel attack were able to be masked
out at the cost of a 26% increase in aggressor latency, compared to the zero load
latency.
At the saturation point, a latency increase of 3.72% and a throughput decrease of
0.47% was recorded when using the proposed NoC without any isolation enabled,
compared to the standard NoC. This increase in latency is related to the changes
and extensions of the router pipeline to enable the isolation techniques.
In conclusion, the three techniques presented all take different approaches to pro-
viding isolation of flows. Source throttling is aimed towards handling congestion-
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related problems, while fixed virtual channel allocation and separation of allocator
timeslots are aimed towards providing complete separation of flows. This prevents
adversaries from deducting sensitive information based on the usage of the network.
The techniques can be used by themselves, or in combination with each other, and
are entirely configurable by the user.
The results indicate that source throttling can be bypassed by attackers in both
attack cases, and most importantly does not provide any protection from a timing
side-channel attack. Fixed virtual channel allocation provided the most efficient
protection against denial-of-service attacks, while a combination of this technique
and separate switch allocator timeslots effectively masked out attempts to perform
timing side-channel attacks.
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Appendix 1

A.1 Simulation Results Denial-of-Service Attack

Figure A.1: Denial-of-service attack simulation results with four aggressors and
one victim. The budget varies while E=2, T=32

Figure A.2: Denial-of-service attack simulation results with two aggressors and
one victim. The budget varies while E=2, T=32.
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A. Appendix 1

Table A.1: The aggressor latency with one aggressor and different throttling bud-
gets. For all simulations, E=2, T=32.

Budget Average aggressor latency Increase vs. no throttling
32 23596.86408 0%
24 22896.71975 -3%
16 33015.81823 40%
8 64226.05382 172%

A.2 Simulation Results Timing Side-Channel At-
tack

Figure A.3: Simulation results for different injection rates using fixed VC allocation
and separate allocator time slots, using the schedule described in section 4.3.3. The
network saturates at 0.168 flits/node/ns, leading to a large increase in latency when
that point is passed.
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