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Abstract

We present a new take on the unresolved challenge of automating indoor environ-
ment reconstruction from LiDAR point clouds. Utilizing point clouds as a basis
for creation of BIM models yields highly accurate results and simplifies the task
substantially as compared to gathering and using manual measuring methods. It is
however still a time-consuming and labor intensive process for a human to draw the
model using the point cloud as a mere blueprint. We therefore attempt to automate
a key part of the process end to end, namely the reconstruction of polygonal room
spaces. With the goal of reaching human accuracy, if not above, we attempt to au-
tomate the steps from point cloud to a 2D room-level polygonal model of a building
floor.
To this end research was conducted to combine some promising methods from differ-
ent studies that have previously been done in the field into a modular data pipeline.
The prototype uses multiple high-performing algorithms to denoise the point cloud,
accurately identify planar room dividing components and finally define the room
spaces as simple polygons.
Our work shows that end-to-end automation of room space classification is indeed
possible, although lack of objective measure of room divisions poses a yet unresolved
challenge. For the purpose of full BIM model reconstruction, reliable room classifica-
tion is a necessity. Our work shows a promising way of combining available methods
into an automatic and robust indoor environment space reconstruction process with
a high level of accuracy.

Keywords: BIM, point, cloud, automatic, facility, spaces, reconstruction, polygon.
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Nomenclature

Below is the nomenclature of indices, sets, parameters, and variables that have been
used throughout this thesis.

Indices

i, j, k Integer indices

Sets

D Set of point cloud points
P Set of plane inlier points
W Set of wall patch inlier points
ΠW Set of planes and patch inliers
S Set of line segments
P Set of polygons

Geometry

π Plane
r0 (π) Point on plane (center)
n̂ (π) Plane normal
l Line
r0 (l) Point on line (intercept)
T (l) Line tangent (normalized direction vector)
n̂ (l) Line normal (orthogonal to tangent)
s Line segment
a Line segment start point

ix



b Line segment end point

Graphs

G Line segment graph
C Cell complex graph

Parameters

ξ Voxel down sampling voxel size
ϵ Inlier distance threshold
γ Point cloud sample nearest neighbor radius
εfilter DBSCAN maximum neighbor distance for filtering
εpatch DBSCAN maximum neighbor distance for wall patches
εdiffusion DBSCAN maximum neighbor distance for room clustering
MinPts DBSCAN minimum cluster points
η Line segment padding
h∠ Mean shift direction bandwidth
h|| Mean shift position bandwidth
t Diffusion time steps
σ Diffusion weight scaling factor
mmax Number of eigenvectors used for diffusion embedding

Variables

Aij Diffusion graph adjacency matrix
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1
Introduction

In this chapter, a problem formulation, motivation and contributions of this work
are presented.

1.1 Motivation

Reconstruction of point clouds is a highly active area that has gained much progress
in recent years. Creating accurate object models from point data is a complex
problem that is being met in many areas at once, as automation of information
processing and use of computer vision rapidly spreads in the industrial world. Active
areas of research that use point cloud reconstruction involve autonomous vehicles,
robotics, urban reconstruction and Building Information Modeling (BIM). Each area
poses its own challenges, depending on what sort of objects that are to be classified,
what level of accuracy is needed, whether the objects are static or moving, and so
on. In this thesis, focus lies on reconstruction of indoor environments with focus on
room layout.

The International Organization for Standardization (ISO) describe BIM as “use of
a shared digital representation of physical characteristics of a built object [. . . ] to
facilitate design, construction and operation processes to form a reliable basis for
decisions“ [1]. A full BIM model is a refined building model that contains a high
level of details, such as important objects and materials. Currently, BIM is mainly
used in the construction process for new buildings. When analyzing existing facilities
and developing digital models of them, a common issue is that the existing plans
and blueprints are of insufficient quality, and may only exist in formats such as pdf
files or paper, which are difficult to make use of.

Using point clouds as a basis when creating Building Information Models of existing
facilities is far more efficient than using manual measurements of the facility spaces.
The point clouds can be seen as a sample of the real spaces, that in ideal conditions
contains all the information needed to extract the shapes and coordinates of the
rooms. Sifting through the points to separate furniture and other objects from floor,
roof and walls is often an uncomplicated task for a human. The process of manually
creating the exact polygonal building models is however time consuming and labor
intensive to the point that the task becomes expensive and unscalable due to the
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Chapter 1. Introduction

sheer workload of labeling, editing and drawing [2]. The process is furthermore
subject to human error. Automating this process would be key to facilitating the
creation of highly detailed and accurate BIM models.

The problem of reconstructing 3D point clouds into polygon models is still unre-
solved at a large and generalized scale [3, 4, 5]. Using the information contained in
the point clouds and processing it with computational methods such as clustering
and shape detection algorithms has shown potential for the prospect of automat-
ing the process of creating polygonized building models in its entirety [6]. From
basic use cases such as defining wall boundaries and calculating floor areas, point
cloud information can also be used for identification of important building compo-
nents such as pillars and doors or windows [7]. Even finer details such as air ducts,
heating equipment and other functional objects may be detected from point clouds,
although this depends on factors such as level of noise and what methods are used
when processing the point clouds.

1.2 Problem formulation
The project is a master’s thesis at Chalmers University of Technology in Gothen-
burg. It is carried out at Zynka BIM AB (Zynka) [8] a real estate and construction
intelligence company based in Sweden. The goal of this project is to create an au-
tomatic method for reconstructing floor plans and room layouts from raw 3D point
clouds. Concretely, the output of the prototype built in this project will be poly-
gonized rooms in 2D. The room division is the sub-problem that has not yet been
solved in large scale for whole buildings. Related problems such as detection of
staircases and other objects in the point cloud has already been solved by others
[9, 10, 7]. Therefore, an algorithm that successfully outputs the polygonized rooms
could for example be combined with one that detects finer architectural details for
a complete BIM output.

1.3 Our contribution
• We present a model that fully automates room-level reconstruction of Light

Detection And Ranging (LiDAR) point clouds representing indoor environ-
ments.

• Our model is built as a modular pipeline, which combines some of the best
point cloud reconstruction methods for high performance and adaptability to
a variation of different indoor layouts.

• The model is not limited to Manhattan geometry and is robust to noise and
high levels of clutter in the point clouds.

• Our Algorithm detects planar surfaces in the point cloud which are classified
as candidate walls if their area is large enough.

2



Chapter 1. Introduction

• The candidate walls are projected onto the floor plane as a set of lines, which
are refined through clustering.

• Rooms are classified in a cell complex that is built from the lines.

1.4 Prior work

A large portion of the research within the field of environment reconstruction is
focused on outdoor environments, such as the outside of buildings and cities [4].
Musialski et al. propose in their survey on urban reconstruction that full au-
tomation of environment reconstruction is a challenging task due to a simultaneous
context-dependency and freedom of context. They compare it to the ’chicken or egg’
dilemma, as the full model needs to be derived from well-defined object primitives,
while the object models need to be estimated from the raw data. They further-
more point out that the existing fully automatic algorithms rely on assumptions
that are not met in practice, and that human input is generally still needed. Since
a significant amount of human effort is often necessary to clean up the results of an
automatic algorithm, the automation may in the end not save that much time.

The reconstruction processes of indoor and outdoor environments are similar in
many ways, but the indoor environment is typically more challenging due to higher
degrees of missing data and clutter, lack of coverage of all views or angles, as well
as the prevalence of glass walls, windows and mirrors which cause false points and
inconsistencies in the scene capture [6]. Research has been done in both areas, with
focus on how methods of outdoor environment reconstruction could be adapted to
work for indoor environments, and how existing indoor environment reconstruction
methods could be improved.

The difference between as-designed and as-built and as-is BIMs and the importance
of being able to update a model so that it corresponds well with the real world
object is discussed in several research papers [3, 2]. As-designed BIMs are models
created to be a blueprint for building facilities, while an as-built BIM is a model
that corresponds to how the building project turned out in reality. As a facility
ages it may be subject to renovation, reconstruction and removal or addition of
various components. An as-is BIM is an updated model which corresponds to how
the facility is in real time. Huber et al. [3] point out the usefulness of having
BIMs that are up to date with changes that have been made in facilities during its
lifespan, and explore available methods that could be used to automate the whole
point cloud to BIM transformation process. Their algorithm however operates on
single room-level, and would need to be scaled up significantly to work for whole
floors or buildings.

There has been progress in reconstruction of indoor environments with many differ-
ent methods, all with different advantages and disadvantages. Most of the proposed
solutions use a shape detection algorithm to fit a geometrical object such as a plane
[10, 9, 11] representing a wall or a box which is fitted to a wall, full room or an
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Chapter 1. Introduction

entire building in the point cloud, in combination with other techniques to refine
the model. An example of a method which was developed with focus on outdoor
urban environment is described by Li et al. [12]. They use a box fitting algorithm
to capture the general shapes of houses and buildings, that adhere to Manhattan
geometry, meaning that all plane angles are either parallel or perpendicular to one
another. They achieve high accuracy in their models by optimizing the distance
between the points to the faces of the boxes used through use of a Markov Random
Field formulation.

Sanchez et al. [9] employ Principal Component Analysis (PCA), model-fitting and
RANSAC to automate planar 3D modeling of building interiors from point cloud
data produced by range scanners. They identify a variety of complex objects, includ-
ing staircases and interconnected walls. Their results on room-level however contain
many small gaps in the walls. To create a reliable BIM model with polygonized
rooms, complete room boundaries are required, and not just a large subset of the
planes which make up the wall.

A recent contribution to the field of indoor environment reconstruction is presented
by Yang et al. [13]. Their model reconstructs the rooms as 2D polygons, and allows
for curved walls. They employ a line tracing algorithm on a horizontal slice of the
point cloud. The horizontal slice is taken from above door level, where there is
typically far less clutter and obstructions than on the heights closer to the floor.
This method is in accordance with the concept of offset space proposed by Jung et
al. [14]. The line tracing algorithm successfully traces the walls and finds rooms
with a high accuracy. Creating a full 3d model with their method might however be
problematic whenever high furniture is present, that reaches into the offset space.

Mura et al. [15] proposed a method for reconstruction of indoor environments, with-
out the constraint to Manhattan geometry, which builds on cell complex generation
from an arrangement of 2D lines that represents the wall planes, found using a re-
gion growing process and projected down to 2D. Adapting the method to make it
work at a larger scale and for more complex rooms was deemed to be a promising
staring point for this project. The algorithm however relies on the assumption that
each room in the point cloud contains at least one scan point, i.e. the position of
a stationary scanner. The points in the cloud are then labeled with what position
they were scanned from. However, mobile scanners are becoming more and more
common, and the point clouds produced by these do not contain scan points. They
do contain a movement trajectory through the building which is the path taken when
the area was scanned. No specific position is however associated with any certain
part of the point cloud. An algorithm that functions without such additional data
apart from the point cloud would therefore be useful.

While Mura et al. do not to employ RANSAC to identify planes in the point cloud,
they suggest that doing so may further increase the robustness of their model. Sim-
ilar to this project, they focus on outlining the rooms and more coarse architecture,
and do not include detection of finer objects such as staircases, air ducts and furni-
ture.
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Chapter 1. Introduction

A couple of other studies employ RANSAC to identify planar primitives, both for
outdoor and indoor environments [11, 10, 9]. Nan et al. [11] use the efficient
RANSAC approach proposed by Schnabel et al. [10] to identify planar primitives
from the point cloud and piece these together to get a polygonal model of an object,
such as a piece of furniture or the exterior of a whole building. They refine the
planar segments that are found by RANSAC to get rid of unwanted noisy elements
by iteratively merging pairs of planes, and then crop the planes by the edges of the
bounding box for the whole point cloud. Through pairwise intersection of the planes
the shapes of the object to be classified are estimated. The planar intersections which
do not correspond to any underlying object are pruned based on the relatively small
amount of points in those areas. We believe that a similar approach of detecting
planes, adding bounds to them and using their intersections can be done in the
interior of a building to identify walls and rooms. A combination of this approach
and the one proposed by Mura et al. can be an interesting starting point.
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2
Background

This chapter presents a relevant background and theoretical knowledge to under-
stand the developed method for reconstruction of indoor environments from 3D
point clouds.

2.1 Point Clouds
Point clouds are sets of points in space. In this thesis, all input point clouds are
created with LiDAR and Simultaneous Mapping And Localization (SLAM) in indoor
environments. All point clouds mentioned in this report can therefore be assumed to
be sets of 3D points. Lidar scanning is performed by targeting objects with a laser
and measuring the time it takes for the beam of light to return to the receiver. This
yields highly accurate depth/distance measurements. SLAM is a modern framework
typically combined with LiDAR to accurately estimate the positions of a moving
scanner and the geometries captured by it [6]. An example of a point clouds worked
with in this project can be seen in Figure 2.1.

The point clouds at Zynka are scanned with cameras in addition to LiDAR, which
yields colored point clouds. Each point is thus associated with RGB values in
addition to the position coordinates. For this thesis, the color values are however
not used for anything but the imagery of the report, since the company wished for
a computational solution that did not rely on the color values. A reason for this is
that not all rooms in the buildings that they scan can be photographed, so for some
point clouds not all areas are colored.

2.1.1 Downsampling
Lidar point clouds are often very dense, making the files large and the processing
slow. An issue with large point clouds is that it may be impossible to load them
in the memory of a computer with regular capacity without dividing them in some
way. This could be solved by loading batches of a point cloud at a time, but since
there is often a higher resolution of points than needed, down sampling of point
clouds is often an easier way and a typical preprocessing step.

Random down sampling is the simplest way of reducing the data and can be done
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Chapter 2. Background

Figure 2.1: One of the point clouds from the dataset at Zynka, seen
from a top-down perspective. A large amount of clutter and objects
found by the LiDAR through the windows, outside the building, can
be seen.

when reading the point cloud to the memory. It is done by selecting a random subset
of the points in the cloud, and ignoring the rest.

Voxel downsampling is another method, that lets the density of the point cloud
become uniform, as opposed to random downsampling. Voxel downsampling is done
by making a grid across the whole cloud, and replacing all the points in each box of
the grid with a single point computed as the mean of all ponts in the box.

2.1.2 Outlier removal

Outliers are points that do not conform to an underlying shape in the point cloud.
These can be caused by noise or mirroring effects of windows, glass walls and mirrors,
to name a few. To simplify processing and shape detection, removing as many
outliers as possible is often advantageous.

A straightforward method for removing outliers is radius outlier removal where the
number of neighbors of each point within a sphere of a given radius is calculated
[16]. If this number is below another threshold, the point is considered an outlier
and is removed.

Another approach is called statistical outlier removal [16]. An average distance to
the n nearest neighbors is calculated and a threshold is used to remove each point
that is too far away from its neighbors.
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Chapter 2. Background

2.2 Robust Shape Detection
RANdom SAmple Consensus (RANSAC) [17] is a general iterative algorithm first
proposed by Fischler and Bolles in 1981. It is used to find the parameters for
mathematical models in a data set DDD which contains outliers to the model that do
not affect the model itself. As such it can also be used to detect and prune the
outliers. The algorithm works by taking random samples of data-points to identify
whether they conform to a given mathematical model. The number of sampled
points is the minimum amount required to solve the equation for the mathematical
model. If the model describes a line for instance, two points are needed. The
random sample is used to hypothesize the model. All data-points in the set are then
evaluated against the hypothesized model, and RANSAC selects the best model in
terms of the evaluation. In Algorithm 6 the steps for RANSAC are described in
pseudo-code, much like the description by Derpanis [18].

Algorithm 1: RANSAC
1 Make a random selection of the minimum number of data points needed to

solve the equation for the model parameters.
2 Solve the equation for the model parameters.
3 Determine how many points out of all data points in the set that fit into the

model, within a predefined tolerance ϵ.
4 If the model is better (i.e. has more inliers) than the previous best model,

save the model as the best model.
5 Repeat steps 1 through 5 N times.
6 Re-estimate the best model parameters using all of its inliers and return it.

2.3 Clustering Algorithms
Clustering algorithms divide sets of data points into clusters based on one or several
defining features of the data. They are highly useful for processing of point clouds,
to find distinct objects and shapes. The defining features when clustering point
clouds are typically spatial proximity, density, or color.

2.3.1 DBSCAN
One useful clustering algorithm is DBSCAN which detects clusters of arbitrary
shape in spatial data, such as point clouds. It is density based, meaning that it
favours dense regions when forming clusters. Data points will likely belong to the
same cluster not only if they are spatially close enough, but also if they have enough
neighbors in-between such that they are both part of a dense group of points [19].

The ϵ-neighborhood of a point is defined by the following:

N(ϵ, p) = {q | q ∈ D ∧ dist (p, q) ≤ ϵ} . (2.1)
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Here, N(ϵ, p) is the neighborhood of the point p with distance threshold ϵ. q is
any point in the set D of points. A point can be directly density-reachable if the
following condition is met

DDR (ϵ, p) = (p ∈ N(ϵ, q)) ∧ |N(ϵ, q)| ≥MinPts, (2.2)

this means that a point p is in the neighborhood of q, and that the neighborhood
has a number MinPts of points or more. The clusters are found by sampling points
and finding other points that are density reachable from this point. Clusters with
less than MinPts points are considered to be noise.

2.3.2 Mean Shift
Mean shift is an iterative clustering algorithm that shifts the data points towards
the mode (point of maximum density) of the data and assigns them to the corre-
sponding clusters [20]. To shift the points towards the mode we need a probability
density distribution over the dataset, this can be constructed using a kernel that is
a weighting function that is applied on the data and summed to give a probability
density distribution.

The two most common kernels used for mean shift is the flat kernel (Eq 2.3) and
the Gaussian kernel (Eq 2.4).

k(xxx,yyy) =

1 for λ ≥ |xxx− yyy|
0 otherwie

, (2.3)

k(xxx,yyy) = 1
(2π)d/2 e

1
2 |xxx−yyy|, (2.4)

where d is the number of dimensions of xxx

The density function for the whole dataset is then defined

f(xxx) = 1
nhd

n∑
i=1

k
(
xxx

h
,
xixixi

h

)
, (2.5)

where h is what is called the bandwidth that is used to adjust the “smoothness” of
the density function, a higher bandwidth means fewer clusters but also potentially
less clusters that occurs from noise in the data.

Using the density function; one can shift data points towards the peaks of this
probability distribution. When all of the data points have converged on top of one
of the peaks, clusters can be found by finding all overlapping data points using some
small threshold radius.

10
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2.4 Diffusion mapping
Diffusion maps are used for dimensionality reduction, or feature extraction. As
opposed to PCA which is a linear dimension reduction technique, diffusion maps are
non-linear and take into account multiple scales of the data to discover an accurate
representation of the underlying data manifold from which the data was generated.

One can think of diffusion maps as modeling the spread of heat through some
medium or taking a random walk through the data where nearby points are more
likely to be visited. This can also be described using a Markov chain.

The most fundamental concept when using diffusion maps is the concept of con-
nectivity. The connectivity of two data points is described using a probability- or
kernel function. One of the most commonly used kernels is the Gaussian kernel

k(x, y) = e− dist2 (x,y)
σ , (2.6)

where the ’dist’ function represents a distance metric between data points x and y.

To create a diffusion map, we first need to construct what is called the diffusion
matrix, which is constructed from the kernel function by taking each pair of data
points and applying the kernel to them;

Li,j = k(xi, xj) i, j ∈ [1..n], (2.7)
where n is the total number of data points in the set.

When handling spatial graphs, such as potential rooms of a building, an extension
to this diffusion matrix is to use an adjacency matrix Ai,j. The adjacency matrix
represents a graph where a Ai,j = 1 means that there is an edge (i.e. an adjacency
relationship) between nodes i and j. The diffusion matrix is then defined

Li,j =


k(xi, xj) for Ai,j = 1 ∧ i ̸= j

1 for i = j

0 otherwise
. (2.8)

This is used to set non-adjacent nodes to zero (not connected) and self-loops to one
(fully connected).

Now we introduce a normalization step on L with the α parameter. This step is
used to control the effect of the data point density on the infinitesimal transition of
the diffusion

L(α) = D−αLD−α. (2.9)

11
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The D matrix is a diagonal matrix that holds the sum of each row from L

Di,i =
n∑

j=1
Li,j. (2.10)

We can now construct the Markov chain transition matrix

M = D(α)−1
L(α), (2.11)

where the new diagonal matrix is similarly defined

D(α)
i,i =

n∑
j=1

L
(α)
i,j . (2.12)

This transition matrix can now be used to run the diffusion process by just taking
larger and larger powers of M . The number of steps taken is denoted by t, which
can be regarded as a time parameter.

The last step is to create an embedding from the transition matrix, where each data
point gets embedded into Euclidean space. The embedding is created using the
eigenvalues λ and eigenvectors ψ of the transition matrix M t.

The embedding is defined as:

Ψi,k = λkψi,k i ∈ [1..n] k ∈ [1..m] where m = min(n,mmax). (2.13)

mmax is the maximum number of eigenvalues that are used, which acts as an up-
per bound on the number of dimensions in the diffusion space. The number of
eigenvalues otherwise runs a risk of being very large.
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3
Methods

This chapter gives a detailed overview of the proposed pipeline for automatic recon-
struction of indoor spaces from 3D point clouds. Our method takes a 3D point cloud
of a LiDAR scanned indoor environment as an input. The points belonging to the
roof and floor are removed based on their normals, and irrelevant clusters of points
are further removed using DBSCAN. Candidate walls are identified using RANSAC
to find planar primitives. Bounded wall patches are then detected in the inliers of
the planar primitives. These are projected onto the floor plane as 2D line segments,
which are weighted based on the number of inliers. A cell graph is built from the
weighted line segments, with the weights attributed to the edges. A diffusion map is
used to identify how the cells are connected to form rooms, which are finally saved
as polygons. The outline of the whole algorithm is shown in Algorithm 2 and a
visual overview is seen in Figure 3.1. The following sections describe in more detail
what is done in the different steps of the pipeline.

Project
2D

Point
Cloud 

Input

Line
Refinement Diffusion Room

Polygons 

Output

3D

Filtering Wall Patches 

2D

Polygons

Figure 3.1: A visual overview of the major steps of the algorithm.
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Algorithm 2: Pipeline subroutine overview
// Down sample and standardize point density

1 D ← voxel_downsample(D, ξ)
// Filter noise, obstructions and other non-wall objects

2 D ← filter_outliers(D, εfilter)
// Find plane primitives and wall patches (Section 3.1)

3 ΠW ← ransac_plane_patches(D, ϵ, γ, εpatch, nsearch, ntries)
// Create line segments from the wall patches (Section 3.1.2)

4 S ← plane_patches_to_segments(ΠW)
// Cluster line segments by direction (Section 3.1.3)

5 S ← direction_mean_shift(S, h∠)
// Cluster line segments by relative position (Section 3.1.3)

6 S ← position_mean_shift(S, h∥)
// Extend lines by adding a padding (Section 3.1.3)

7 S ← pad_lines(S, η)
// Create a graph from the line segments (Section 3.2.1)

8 G← segments_to_graph(S)
// Create polygons from the line segments (Section 3.2.2)

9 P ← segments_to_polygons(S)
// Calculate weights of the segment graph (Section 3.2.1)

10 G← weight_calculation(G, nbins/length)
// Create a cell graph (Section 3.2.2)

11 C ← cell_construction(G,P )
// Calculate diffusion embedding (Section 3.2.2)

12 Ψ← diffusion(C, t, σ,mmax)
// Cluster diffusion embedding into rooms (Section 3.2.2)

13 P ← diffusion_embedding_to_rooms(C,Ψ, εdiffusion)
// Remove small polygons

14 P ← filter_polygons(P )

3.1 Wall Detection and 2D Projection

In the first phase of the data pipeline, the general layout of the point cloud envi-
ronment is defined. Planar primitives are detected using RANSAC. Inlier clusters
to the planes are classified as wall patches if the height and area requirements are
met. The wall patches are then projected onto the floor plane as 2-dimensional line
segments.

14
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3.1.1 Robust Wall Patch Detection
The RANSAC algorithm is often used to detect shapes in point clouds and is used
in this work to detect planar primitives (henceforth referred to as “planes” for sim-
plicity). The equation of a plane is solved using a sample of three points, and is
then scored by counting the set of inliers to it, i.e. the points p from the point cloud
D within a predefined threshold distance ϵ to the plane.

The points are partitioned using a k-d tree to efficiently find the nearest neighbors.
This idea is first proposed by Schnabel et al. [10]. A point in the point cloud is
sampled randomly, and RANSAC is run on the nearest neighbors of it. RANSAC
will identify the plane with the highest amount of inliers, being the set of points in
the neighborhood defined by the k-d tree, with distance less than ϵ. The number
of RANSAC iterations run to identify the plane with most inliers is the parameter
niter. The normal of the plane is then used to deem if it can represent a wall. If the
vertical component of the normal is close to zero, the plane is a possible wall. The
algorithmic explanation for this step if found in Algorithm 3.
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Algorithm 3: ΠW ← ransac_plane_patches(D, ϵ, γ, εpatch, nsearch, ntries)
1 O ← D
2 ΠW ← ∅
3 while |O| > nsearch ∧ ktries < ntries do
4 pR ∈R O ▷ Select random point from point cloud
5 N (O, pR, γ)← {p | p ∈ O ∧ |pR − p| < γ} ▷ Calculate nearest neighbors
6 π ← ransac(N (O, pR, γ), ϵ, niter) ▷ Find plane from nn-cloud
7 if n̂(π) · k̂ > 0.5 then ▷ Check if plane is vertical using normal of the

plane and the basis vector for the z-axis k̂
8 ktries ← ktries + 1
9 continue

10 end
11 P ← {p | p ∈ O ∧ |(p− ro(π)) · (n̂(π))| < ϵ} ▷ Calculate plane inliers for

the whole cloud
12 kpatches ← 0
13 foreach W ∈ dbscan(P , εpatch,MinPts = 1) do
14 W2D ← {(p · v1(π), p · v2(π)) | p ∈ W} ▷ Project the inlier points onto

the plane giving 2D points
15 A← area(convex_hull(W2D)) ▷ Get area of convex hull of the 2D

points in the wall patch
16 if A > Amin then
17 ΠW ←WWW ∪ {(π,W2D)} ▷ Plane and point cluster to set of wall

patches
18 O ← O \W ▷ Remove wall patch from outlier set
19 kpatches ← kpatches + 1
20 end
21 end
22 if kpatches = 0 then
23 ktries ← ktries + 1
24 end
25 end

3.1.2 Wall Patch Segmentation and Refinement
The inliers to the vertical plane in the whole cloud is then calculated. Then they
are clustered using DBSCAN to find bounded patches of inliers on the plane found
by RANSAC. We calculate the area of the inlier clusters by projecting the points
onto the plane and computing the convex hull of each cluster. Both the projected
points and convex hull are in 2D. If the area is larger than Amin, the 2D point cluster
is saved as a wall patch and removed from the search space. See Figure 3.2 for an
illustration of the wall patches.

The search for wall patches ends when there are too few points left in the search
space (less than nsearch), or when no wall patch has been found for a set number of
steps (ntries).
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Figure 3.2: Illustrating 2D projection of selected point clusters, each
cluster is assigned a random color. Clusters with area below Amin
are marked with red and accepted wall patches are marked with
green. The selected green patches is labeled with its size (width,
height) in meters.
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The wall patches are then projected onto the floor plane, yielding lines in 2D. Bounds
of the lines are calculated using the wall patch points to give line segments S, see
Algorithm 4 for the complete calculations or Figure 3.3 for a visualization of this
step.

Algorithm 4: S ← plane_patches_to_segments(ΠW)
1 S ← ∅ ▷ Create empty line segment set
2 foreach (π,W2D) ∈ ΠW do
3 T (l)← k̂ × n̂(π) ▷ Take cross product between basis vector for z-axis k̂

and the normal for the plane to get the tangent vector for the line that
intersects floor and wall plane

4 AAA←
[
k̂ n̂(π) T (l)

]
▷ Create a matrix with the three direction vectors

5 ddd←

 0
πd

0

 ▷ Vector with d parameter from the general form of π

6 AAAl = ddd⇒ l← dddAAA−1 ▷ Solve the system for the intersection line
7 α← min{px | p ∈ W2D} ▷ Find the minimum bound of the line using its

patch
8 β ← max{px | p ∈ W2D}▷ Find the maximum bound of the line its patch
9 a← r0xy(π) + αTxy(l) ▷ Calculate the start point of the segment using

plane center and direction
10 b← r0xy(π) + βTxy(l) ▷ Calculate the end point of the segment
11 S ← S ∪ {(a, b)} ▷ Add the segment to the set of segments
12 end

From now on we work with data in 2D only. Hence when discussing points in the
point cloud we assume their 2D projections onto the floor plane.

3.1.3 Clustering line segments
The line segments are refined using mean shift. The mean shift refinement is done
in two separate steps, first based on the direction of the lines, and then based on
their position and distance to one another. See Figure 3.4 for an illustration that
explains and compares the methods.

In the first refinement which is based on the direction of the lines, lines with similar
direction are found and combined into clusters. All lines in each cluster are then
rotated so that the direction becomes equal to the mean of the directions within
the cluster. See Algorithm 5 for the calculations in this step, and Figure 3.4b for a
visual explanation. The direction-based clustering ensures that lines with a similar
direction become aligned to have the same direction. This removes inaccuracies in
the line directions that may be caused by occlusions in the point cloud. When the
lines are aligned, all lines within each clusters have the same direction.

The second refinement is performed based on the relative distance of parallel lines.
Lines that are within the same direction based cluster, i.e. parallel, and close to
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Figure 3.3: Illustrating the detected wall patch points in blue, its
RANSAC wall plane in blue, the floor plane in gray, the intersection
line between the RANSAC plane and floor plane in green and the
minimum and maximum bounds (α and β) in red.

19



Chapter 3. Methods

each other are merged. An average line position of the lines that are being merged
is calculated and weighted by the number of inliers to the lines. All of the lines in
the cluster are then translated to this position and overlapping lines are merged.

A padding η is finally added to the lines to compensate for missing data. The
padding ensures that lines which correspond to real walls intersect where they
should, so that polygonizaton of the line segments is possible. See Algorithm 6
for the calculations of this step, and Figure 3.4c for an illustration of it.

Algorithm 5: S ← direction_mean_shift(S, h∠)
1 ∆k ← bk − ak where (ak, bk) ∈ S ▷ Calculate vector between start/end
2 θk ← arctan2(∆ky,∆kx) ▷ Calculate angle of segment vector
3 foreach I ∈ mean_shift(θ, h∠) do ▷ For each set of cluster indices
4 θmean ←

∑
i∈I θi/|I| ▷ Calculate the mean angle in cluster

5 for i ∈ I do ▷ Set the mean angle for each angle in cluster
6 θi ← θmean
7 end
8 end
9 (ak, bk)← rotate_segment(ak, bk, θk) ▷ Rotate segment using shifted angle

Algorithm 6: S ← position_mean_shift(S, h∥)
1 foreach S∥ ∈ group_parallel_segments(S) do
2 ∆k ← bk − ak where (ak, bk) ∈ S
3 vk ← (−∆ky,∆kx) ▷ Calculate perpendicular vector
4 lk ← |vk| ▷ Calculate length of segment
5 n̂← v0/l ▷ Normalize perpendicular vector
6 αk = ak · n̂k ▷ Calculate the position of the line relative to normal
7 wk = lk/

∑n
i=1 li ▷ Calculate weights based on length of segments

8 αmid = ∑n
i=1 wiαi/n ▷ Do weighted sum to get new line position

9 δk = αmid − αk ▷ Calculate the shift for each segment
10 ak ← ak + n̂δk ▷ Shift the segment to the midpoint
11 bk ← bk + n̂δk

12 end
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(a) Input lines to the clustering steps (b) After direction-based mean shift

(c) After position-based mean shift

Figure 3.4: Example of line segments before mean shift (a), after
being shifted by direction (b) and after being shifted and merged
by position (c). The colors corresponds to clusters created by the
mean shift algorithm.

3.2 Room detection
A cell complex is built by creating polygons from the intersecting line segments.
A cell complex is a set of non-intersecting polygons defined by a set of intersecting
lines. Each cell in our complex represents a room or a partial room. The cell complex
is used as a basis for a diffusion mapping. Cells are merged through diffusion and
clustering to form the final room spaces. This section describes these steps in more
detail.
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3.2.1 Weighted graph construction
From the line segments a graph G is built with the line intersection points as nodes
and the lines between them as edges (see Figure 3.5a to 3.5c). The nodes of the
graph contain the coordinates of their location as attributes (x- and y-coordinates
on the floor plane). Based on the number of inliers, a weight is assigned to each
edge. The weights are calculated using a partitioning of edge sub-segments. If a
sub-segment has inliers above a certain threshold, it is considered to be covered.
The weight assigned to each edge is calculated as wij = ncov

ntot
, with ncov being the

amount of covered sub-segments and ntot being the total amount of sub-segments in
the edge, which is 16 times the edge length, in meters. Concretely, a high weighted
edge is likely to correspond to a real wall, since a large part of it is covered by points.

3.2.2 Cell complex graph diffusion
The weighted graph described in the previous subsection is then remade into a cell
complex. Still represented as a graph, each node now corresponds to a cell, which
is a polygon bounded by the surrounding line segments. Each cell represents a
space; i.e. a possible room or a part of a room (see Figure 3.5c to 3.5d). The edges
represent candidate walls and keep the coverage weights calculated in the last step.
A diffusion map is created based on these weights, much as the one in the work by
Mura et al [15].

An affinity matrix L is created using the coverage weights. Rather than measuring
the similarity between cells, it represents how much of the edge between them is
covered, creating an artificial distance in the diffusion space. The matrix entries
are calculated as follows, with i, j ∈ 1, . . . , n where n is the number of cells, with
ci and cj being cells at indices i and j, and wij being the coverage weight of the
corresponding edge. See Algorithm 7 for the complete calculations.

Algorithm 7: Ψ← diffusion(C, t, σ,mmax)

1 k(x, y) = e− w2(x,y)
σ ▷ Gaussian kernel with weight between cells as distance

function
2 for i ∈ [1..n] do ▷ Iterate i for n number of cells
3 for j ∈ [1..n] do ▷ Iterate j for n number of cells
4 Li,j = k(Ci, Cj) ▷ Initialize the L matrix using kernel and cell graph
5 end
6 Li,i = 1 ▷ Set diagonal elements to one
7 Dii = ∑n

k=1 Lik ▷ Initialize diagonal matrix
8 end
9 M = D−1L ▷ Create Markov chain transition matrix

10 λ, ψ ← eig (M t) ▷ Calculate eigenvalues and vectors at timestep t
11 m← min{n,mmax} ▷ Limit the number of eigenvalues to maximum mmax
12 for i ∈ [1..n], k ∈ [1..m] do
13 Ψi,k = λkψi,k ▷ Calculate the diffusion embedding
14 end
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The L matrix is then used to create a Markov transition matrix M, representing
the chance or degree to which a diffusing element would spread through the space
defined by the cell matrix. Candidate rooms are formed based on which cells have a
high level of adjacency in the diffusion space, where adjacent cells with low weighted
edges are likely to be fused.

(a) Input line segments (b) Finding line intersections

(c) Constructing segment graph (d) Constructing cell complex graph

Figure 3.5: Example line segments showing the process to create
both the segment graph and the cell complex. Starting with line
the line segments in (a), intersection points are found (b) shown in
red, the intersection points are used to construct a segment graph
used to calculate a weighted graph (c), the final step creates a cell
complex (d) where the cells becomes the nodes.
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3.2.3 Cell Merging via Clustering
The cells are then clustered using the embedding Ψi,j from the diffusion map. Cells
that are in the same room will be closer in the diffusion embedding space, which
means that it is possible to extract the rooms using a clustering algorithm such as
DBSCAN. The cells that are in the same cluster are then merged to create a single
polygon for the whole room.

3.3 Pre- and post-processing
A random sample of the point cloud was taken since the whole cloud would be too
large to handle in a computer with regular memory capacity. The point cloud is
then center shifted, i.e. a global translation is applied to the cloud so that the center
of mass of the point cloud is at the origin of the coordinate system. Downsampling
of the point cloud is done through a voxel down sampling step, to standardize the
point density and yield a manageable amount of points without losing too much
accuracy. Two statistical outlier removal steps are also run, to get rid of most of
the noise efficiently. Only the walls of the buildings were deemed necessary for
space classification. Therefore, both roof and floor points are identified by their
approximate normals and removed as outliers. This classification and removal step
is done between the statistical outlier removal steps.

The point cloud is further filtered by clustering. Clusters are created with DBSCAN,
using the spatial point density, and bounding boxes are then created for each cluster.
Any cluster that is shorter than a height threshold based on the height of the walls
is then removed. The separate clusters that remain are then merged together again
into one point cloud. Illustrations comparing the point cloud before and after the
filtering steps are seen in Figure 3.6.

(a) Point cloud before filtering (b) Point cloud after filtering

Figure 3.6: One of the point clouds from the dataset at Zynka,
with roof and floor points removed, is shown before and after the
filtering steps. Lots of clutter and objects both inside and outside
the building can be seen, which is removed through the filtering.

The final step is to convert the room polygons into WGS84 coordinates and into
GeoJSON format that can be visualized on a map. This is done using a library
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called PyPROJ that specializes in converting between different coordinate systems.

The point clouds are given in a local coordinate system based around a project
origin, which is the same geographical point for all buildings in a project. The point
clouds are offset from the local Oreg, which is a translation that has to be reversed
for the final output to have accurate real-world coordinates. This offset is read from
the point cloud file and applied at the end of the pipeline.

3.4 Implementation Details and Input Data
The source code was written as a modular data pipeline in Python. Libraries used
include Open3D for the point cloud handling, NetworkX for the graphs, and Shapely
for the polygons.

The point clouds used were given in the e57 format, which was converted to PLY for
use with the Open3D library. Ten point clouds were initially supplied by Zynka for
the project, of which 3 had corresponding manually created polygon models. Each
point cloud consisted of around 100 million points and represented a single floor of
a building, with an area ranging from 500 to 2000 square meters. Random samples
of 10 million points were taken from the clouds to fit in the memory of the computer
we used (see Table 3.1) and improve runtime performance significantly.

All of the parameter values used for the implementation are shown in Table 3.2. A
thorough search for optimal parameter values has not been performed due to time
constraints. The parameters of inlier distance ϵ and the DBSCAN parameters were
set to values that were deemed reasonable based on the thickness of walls inside of
buildings. The parameters set for voxel downsampling depended to a large degree of
the runtime performance. The parameters for mean shift and diffusion were decided
on through experimentation to maximize performance and robustness.

Table 3.1: The specifications of the computer used for running the
algorithm.

Spec Value
CPU Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz 4 Cores
RAM 16GiB - 4x4GiB DIMM DDR3 Synchronous 1333 MHz
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Table 3.2: All of the parameter values used when generating the
results.

Parameter Value Description
ξ 0.08 Voxel down sampling voxel size
ϵ 0.05 Inlier distance threshold
γ 4.0 Point cloud sample nearest neighbor radius
εfilter 0.12 DBSCAN maximum neighbor distance for filtering
εpatch 0.15 DBSCAN maximum neighbor distance for wall patches
εdiffusion 0.01 DBSCAN maximum neighbor distance for room clustering
MinPts 5 DBSCAN minimum cluster points
η 2.0 Line segment padding
h∠ 0.2 Mean shift direction bandwidth
h|| 0.2 Mean shift position bandwidth
t 13 Diffusion time steps
σ 0.1 Diffusion weight scaling factor
mmax 80 Number of eigenvectors used for diffusion embedding
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4
Evaluation and Results

This section presents the results and evaluation of the generated models.

4.1 Evaluating against human labeled polygons
Our dataset includes human labeled 2D polygonal models that have been created
using the same input point clouds as the automatically generated models. A plot
comparing two such models is shown in Figure 4.2.

Set-theoretic operations are applied to the two models to evaluate the quality of the
generated polygons compared to the human labeled polygons. The first operation
is set-difference, where we can see added and missing area between the two models.
A visualization of the set-difference can be seen in Figure 4.3.

The second evaluation metric is Intersection over Union (IoU) where the area of the
intersection between the polygon sets is calculated and divided by the area of the
union between them. An example intersection and union are shown in Figure 4.4.

4.1.1 Large building
Figure 4.1 shows a relatively large building that the prototype is evaluated on. It
was chosen due to the large size and high level of complexity, noise and occlusions.
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Figure 4.1: The larger building point cloud, showing a lot of clutter,
reflections and obstructions.
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In Figure 4.2 is a comparison of our generated polygons to the and the human
labeled polygons. We can see that most rooms are captured by our algorithm but
some extra rooms are created. We get around 20 extra walls on average for this
building (see Table 4.1).

(a) Pgenerated (b) Phuman

Figure 4.2: Comparing the generated room polygons Pgenerated (a)
with the human labeled Phuman (b) polygons.

The set theoretic difference between the generated and human labeled polygons is
visualized in Figure 4.3. The additional area created by our algorithm is seen in
4.7a. In Figure 4.7b the missing area from our algorithm’s output compared to the
human labels is shown. Table 4.1 shows that around 76m2 of additional area is
generated and 46m2 is missing on average, which means that our algorithm tends
to create more additional area rather than missing area for this particular building.

The Intersection Over Union metric is commonly used to measure the extent of
overlap between two different shapes. It is calculated by taking the area of intersec-
tion between the two sets of polygons and dividing by the area of the union. The
maximum score is 1.0 and this means that the shapes are identical. See Figure 4.4
for a visualization of the intersection and union between the generated and human
labeled polygons. The Root Mean Squared distance from each polygon to the points
in the point cloud was also measured, which shows the approximate average error
in terms of distance to the points.
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(a) Padded = Pgenerated \ Phuman (b) Pmissing = Phuman \ Pgenerated

Figure 4.3: Comparison between the additional area Padded (a) and
the area that is missing Pmissing (b) relative to the human labeled
rooms. In the additional area plot one can see rooms and dividing
walls that were created but should not exist. One missing room
that was not found by the algorithm can be seen in the missing
area plot.

(a) Pintersection = Pgenerated ∩ Phuman (b) Punion = Pgenerated ∪ Phuman

Figure 4.4: The intersection (a) and the union (b) of the generated
and human polygons.
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Table 4.1: The evaluation metrics over 6 runs of our algorithm on
the large building. The arrows indicate whether a higher or lower
value is favourable.

Name Mean STD
Missing Area↓ 46.19 m2 ±15.574
Additional Area↓ 76.027 m2 ±22.02
Additional Rooms↓ 20.333 ±4.46
Intersection Area↓ 1414.158 m2 ±15.399
Union Area↓ 1605.785 m2 ±22.268
Intersection Over Union↑ 0.881 ±0.015
RMS distance to points↓ 0.051 m ±0.002
Number of Runs 6

4.1.2 Small building

Figure 4.5 shows a small building that is also used for evaluating the performance
of the prototype.

We evaluate this building using the same methods as with the previous building.
See Figure 4.6 for the polygon comparison, Figure 4.7 for the added and missing
area, Figure 4.8 for the intersection and union and finally Table 4.2 for the numerical
results.

(a) Pgenerated (b) Phuman

Figure 4.6: Comparing the generated room polygons Pgenerated (a)
with the human labeled Phuman (b) polygons.
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Figure 4.5: The smaller building point cloud, also with a lot of
clutter, reflections, obstructions and even other buildings outside
the windows.
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(a) Padded = Pgenerated \ Phuman (b) Pmissing = Phuman \ Pgenerated

Figure 4.7: Comparison between the additional area Padded (a) and
the area that is missing Pmissing (b) relative to the human labeled
rooms. In the additional area plot one can see rooms and dividing
walls that were created but should not exist. A few additional
rooms that does not exist in the human labeled model were found
by the algorithm and can be seen in the additional area plot.

(a) Pintersection = Pgenerated ∩ Phuman (b) Punion = Pgenerated ∪ Phuman

Figure 4.8: The intersection (a) and the union (b) of the generated
and human polygons.
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Table 4.2: The evaluation metrics over 6 runs of our algorithm on
the smaller building. The arrows indicate whether a higher or lower
value is favourable.

Name Mean STD
Missing Area↓ 37.957 m2 ±7.498
Additional Area↓ 55.818 m2 ±4.119
Additional Rooms↓ 17.667 ±2.134
Intersection Area↓ 457.969 m2 ±8.202
Union Area↓ 579.005 m2 ±5.484
Intersection Over Union↑ 0.791 ±0.016
RMS distance to points↓ 0.049 m ±0.001
Run time↓ 558.866 s ±64.352
Number of Runs 6
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4.2 Evaluation using synthetic point clouds

A problem with comparing the generated polygons with the human labeled ones
is that no real ground truth exists. A solution to this is using the human labeled
polygons as ground truth by generating a synthetic point cloud from them, that
can then be reconstructed with our method to polygons and compared to the true
polygons.

We create the point cloud by adding 3m high walls of random points for each edge of
the polygons. Gaussian noise is added to the walls in an attempt to reproduce scan-
ning inaccuracies. Random points are then added to the point cloud, corresponding
to 5% of the points. See Figure 4.9a.

Reformulating the problem into a clustering problem, where the walls of a single
room represents a cluster (see Figure 4.9b) gives the ability to evaluate the algorithm
in these terms and use well established statistical metrics. This evaluation will focus
on the performance of the RANSAC and wall patch step in the algorithm, since this
is the most critical part to capturing the walls for each room.

Four metrics were deemed suitable for this task. The recall and precision metrics
evaluate the labeling performance, and the completeness and homogeneity scores
evaluate the quality of the clusters. Recall is the most important score and can be
intuitively explained as the ability of the algorithm to find all of the walls that are
relevant for each room (the positive samples). See Figure 4.9d for a visualization of
the failure cases. The precision score represents the ability of the algorithm to not
create walls where there should not be any, i.e. not labeling clutter and doors as
walls. The completeness score measures the ability of the algorithm to assign the
ground truth room points to the same room cluster, while homogeneity measures
the algorithms ability to create room clusters that do not overlap with other rooms
in the ground truth, i.e. to what extent the room clusters are homogeneous. The
measured values for the four metrics are found in Table 4.3.

Table 4.3: Metrics used for evaluating the performance of the algo-
rithm relative to the ground truth.

Name Mean STD
Completeness Score 0.86 0.011
Homogeneity Score 0.793 0.017
Precision 0.847 0.023
Recall 0.76 0.025
Number of Runs 3
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(a) Synthetic input (b) Ground truth clusters

(c) Predicted clusters (d) False negatives

Figure 4.9: The synthetic input point cloud (a) where the green
points are walls and the gray points are 5% added noise, ground
truth clusters (b) where each color represents a different room (or
cluster), clusters generated by the algorithm (c) and the unlabeled
walls (false negatives) (d) compared to the ground truth.
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4.3 Runtime performance
The last metric used is the runtime of the algorithm, which is evaluated for the large
building to around 22 minutes(see Table 4.4). The table also shows the runtime
of all the different steps of the algorithm. The RANSAC step shows the highest
standard deviation, which is likely caused by the random sampling of points. The
rate at which the wall patches are found varies greatly because of the random plane
sampling, especially since the planes are searched for in decreasing order of size.

Table 4.4: The runtime metrics of all steps over 4 runs of our algo-
rithm on the large building. The steps that takes the longest is the
reading of the cloud into memory and the ransac step.

Name Mean (seconds) STD (seconds)
Load point cloud 374.972 30.608
Voxel down sampling 2.899 1.975
Statistical outlier filter 2.162 0.331
Remove floor and ceiling 0.541 0.039
DBSCAN filtering 23.55 11.398
RANSAC wall candidate detenction 842.464 42.52
Directional Mean Shift on lines 1.437 0.607
Positional Mean Shift on lines 11.842 1.998
Line padding 0.792 0.027
Segments to segment graph 4.312 0.053
Find segment inliers 33.006 0.663
Calculate coverage weights 3.321 0.131
Construct Cell Complex Graph 4.956 0.293
Remaining 15.239 0.858
Total 1363.777 43.865
Number of Runs 4
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5
Discussion

In this chapter the results of the project are discussed, and the additions to the field
of research are described. Future improvements to the prototype are proposed, and
the research methodology used for the project is commented on.

5.1 Comparison of Results and Expectations
This project is focused on reconstruction of the floor plan and dividing a building
into individual rooms in the form of a 2D polygon model. The results of the project
correspond well with the minimum viable product that was described prior to the
start of the project, although a lot of improvements still need to be made to attain
full use of the product. The corner points of rooms are however found to a high
extent, and polygons are created from them to form a model that looks very similar
to the ones created by hand by the employees at Zynka.

5.2 Discussion of Results
In the following subsections, the results and their implications are discussed.

5.2.1 Comparison with manual models
Pillars and other non-usable parts of the scanned indoor environments tend to be
excluded from room boundaries in the manual model creation process at Zynka.
Detecting these and excluding them from the output is necessary to gain full con-
formity between the models. The manually created spaces with the results of the
prototype sometimes contain overlapping polygons. This gives rise to some issues
when evaluating based on polygon comparison, as overlapping rooms in one model
does not make sense, and are not accepted by the library (Shapely) used to compare
the polygons.

5.2.2 Comparison with synthetic models
All of the scores from the clustering measurements in Table 4.3 go from 0 to 1 where
1 is the highest score. We can see that all of them are above 0.75, the precision is
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higher than the recall which is to be expected, since RANSAC is known for being
good at dealing with noise. Even though the recall is sufficiently high to let the
algorithm create room polygons, it would be desirable to get it at least above 90%
in the future to get an even more accurate model that captures all of the walls in a
building. The completeness is higher than the homogeneity, our hypothesis on this
result is that the algorithm sometimes creates extra rooms within a ground truth
room, lowering the homogeneity of the room compared to the ground truth.

5.3 Additions to Research in the Field

Our work adds to the research in the field of indoor environment reconstruction by
proposing a new combination of methods that yields a robust and accurate two-
dimensional model of a whole building floor at a time. The algorithm runs on whole
floors rather than single rooms, and can handle complex layouts with a number
of diagonal walls. The prototype scales well with large buildings, especially since
multiple walls in one plane can easily be found with RANSAC.

One key contribution of our work which we do not believe has been done before is
the division of RANSAC plane inliers into clusters. Rather than keeping the whole
planes and projecting them into 2D as infinite lines, which is done in the work by
Mura et al. [15], we project the lines bounded by the wall segment bounds in the
planes. Mura et al. use an arrangement of lines to create a cell complex of rooms,
but by using infinite lines, far more cells are created than there are rooms due to
all the extra intersections. This makes the processing of the cell complex slower
than it would need to be. A problem with using bounded lines is however that they
may fail to intersect due to partial loss of data, caused by occlusions for example.
Our approach poses a compromise of sorts. We use bounded lines, but extend them
by a padding to compensate for any eventual missing parts of the wall segments.
The extension of the lines still yield more line intersections and cells than without
extensions, but far fewer than when using unbounded lines. This makes processing
of large building floors possible, even when there are lots of unusual wall angles. The
prototype furthermore scales well with increasing size of buildings, since several walls
which are on the same planar primitive are found simultaneously with RANSAC.

5.4 Experimental Uncertainties

One might argue that diffusion of the rooms should not be necessary when using
bounded lines. However, with any extension of lines to cover gaps diffusion may still
be a necessary step. There is still a bit of experimental uncertainty here, whether
weighting and thresholding of the lines might be enough to prune away unnecessary
ones, or if it can be said for certain that using diffusion to prune wall candidates is
more useful or more robust. A comparison of the polygons before and after diffusion
are shown in Figure 5.1 where we can see a large improvement of the room polygons.

40



Chapter 5. Discussion

(a) P¬diffusion (b) Pdiffusion

Figure 5.1: Comparing the generated room polygons before diffu-
sion P¬diffusion (a) with the polygons after running diffusion Pdiffusion
(b). Rooms that were divided by the extended wall patches is
merged into single rooms, an example of this is the corridors in the
middle-left of the building.

There is a trade-off between potentially losing candidate walls that would have ex-
isted if the lines had been unbounded, and avoiding the explosive growth in number
of wall candidates that comes with using unbounded lines for buildings that have
diagonal walls. Any diagonal wall that is represented with an unbounded line will
intersect with a large number of horizontal and vertical wall representing lines. This
yields a high amount of cell polygons, and made the processing extremely slow as
compared to when bounding the lines. (10000’s of rooms instead of 100’s). Since a
large amount of the scanned buildings in our point cloud dataset contain at least a
few diagonal walls, we opted for using bounded lines to keep down the processing
time. This however means that the prototype is a bit more sensitive to obstructions,
as a largely occluded wall in the worst case is not detected at all. In the current
version of the prototype, about 2% of rooms in the manually built model are missing
in our output. We have several ideas on how this could be solved.

5.5 Future research and improvements
A main issue is that more planar surfaces than only walls, such as doors, come
through to the final steps, and are weighted high enough to be counted as room
dividing in the diffusion step. Some rooms are therefore split into several smaller
rooms, which will have to be merged either manually or by more exact parameter
adjustments. In other words, a common case is that a room has been divided into
two parts or more, while the outer contours of the space remains true to the room
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as drawn in the plan.

Future development of this product will involve scaling it to create 3D models of
entire buildings, and not just the room models of one floor of a building at a time.
As the prototype currently takes a split point cloud of only one floor, segmenting
the building into floors and running the pipeline on each one will need to be added.
Detection of staircases could be implemented as well, as well as possible recognition
and labeling of larger, stationary furniture and utensils. Handling of thicker walls
and removing the wall polygons will also need to be implemented. Thick walls risk
being labeled as rooms, when they should really be removed from the model. To be
able to extend the model to 3D in the future, we however need to save the walls and
label them separately.

When using a mobile LiDAR scanner, a trajectory in form of a line is typically
recorded along with the resulting point cloud. This trajectory, though not matching
with any specific locations in the point cloud, can still be used to check what areas
of the building were traversed, and what parts may be inaccessible. This could pose
an option for dividing thick inner walls and other inaccessible areas from the rooms.
For example, all spaces which the trajectory does not pass through may be labeled
as wall or non-usable area.

An issue with the prototype is caused by large occlusions of walls in the point cloud,
leading to the wall segments appearing to be far smaller than they really are, or
missing completely. In these cases the line segments that correspond to the wall
patches may not intersect with other walls where they should, despite the padding
of the lines. No closed polygon can then be created to represent the room when
the lines do not intersect, and hence the affected room spaces are not represented
correctly, if at all, in the final model. Solving this may be a matter of patching
together lines with dead ends which are close to intersecting with another line.
Finding spots with possible wall occlusions and extending the line segments around
those areas is another option. An even better option may be to run an extra step
of RANSAC, with a broader scope. The planes found in this step may be pruned
and only accepted in cases where no better wall candidate already exists.

A related idea for more efficient processing of the point clouds is to run RANSAC
in the 2-dimensional plane, on the projected points. This should bring down the
processing time significantly, possibly without loss of quality since all points and
detected planes are projected to 2D directly after being labeled anyway. For opti-
mization of the fit of the wall patches to the point cloud, the wall patches should be
fitted to the points through for example linear least squares optimization. This fit-
ting could be done in 2D with the line segments and projected points, which should
make the step efficient. To create a full 3D model the walls however need to be
found in 3D space, and other options for making the plane detection more efficient
will need to be explored.
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5.5.1 Evaluation methods
A performance comparison of our method to those developed in other recent works
would be valuable. We contacted a few authors of projects that relate to ours
but were not able to receive any source code for comparisons. Time constraints is
the main reason that more authors were not contacted in the end. This kind of
evaluation could however be done in the future.

5.6 Research methodology
The research and implementation methodology used in the project roughly followed
the Double Diamond model [21]. Initially extensive research was done within the
field to explore the existing methods and algorithms for point cloud manipulation
such as outlier removal, plane detection, clustering and more. A suitable combina-
tion of approaches from the research was then chosen to begin the experimentation
phase. The methods were implemented and tested. The prototyping phase was then
commenced in which a prototype was built based on the results of the experimen-
tation approach. Finally, the end to end product will be implemented, which is a
work in progress. These steps corresponds to the discovery, definition, development
and delivery steps that are defined by the double diamond model.
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6
Conclusion

The goal of the project was to automate the steps of constructing 2D room-level
polygonal models of a building floor from 3D point clouds. The prototype built in
this work is a preliminary product, which is not yet fully reliable without human
input. It generally detects all the rooms, but with a few more or less room divisions
than in the corresponding manually built model. Solving this entirely is difficult
since decisions such as what comprises a room, and what kind of walls are required
to divide a space into two rooms is often quite subjective in nature. Because of this,
human verification may be a necessary step even with a highly accurate automated
product, especially if the model is to contain non-physical information such as room
divisions that have been agreed upon with no physical wall in place. More data
examples with manual annotations from different people are furthermore required
for better evaluation of the proposed method.
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A
Evaluation, all runs

A.1 Big building

Name Runs
Missing Area [52.082, 56.4904, 24.8444, 57.4959, 24.2445, 61.9854]
Additional Area [62.6424, 56.9524, 100.5526, 62.7004, 60.5703, 112.7447]
Additional Rooms [21, 15, 18, 16, 25, 27]
Intersection Area [1409.2163, 1405.6044, 1435.9195, 1401.6428, 1434.8023, 1397.7627]
Intersection Over Union [0.8847, 0.8857, 0.8798, 0.88, 0.9034, 0.8514]
RMS distance to points [0.0501, 0.0492, 0.054, 0.0492, 0.0494, 0.0514]
Run time (seconds) [1402.6899, 1192.0026, 1402.5027, 1178.6827, 1431.7211, 1314.2809]
Union Area [1592.8806, 1586.9675, 1632.0857, 1592.8091, 1588.2896, 1641.6778]
Number of Runs 6

A.2 Small building

Name Runs
Missing Area [27.4586, 29.3266, 47.2273, 36.4611, 43.6646, 43.6031]
Additional Area [54.2199, 55.4713, 60.1034, 54.4947, 61.5725, 49.044]
Additional Rooms [18, 18, 20, 20, 14, 16]
Intersection Area [469.596, 467.6841, 447.1707, 457.9721, 453.6574, 451.731]
Intersection Over Union [0.8107, 0.8073, 0.7674, 0.7954, 0.7724, 0.793]
RMS distance to points [0.0502, 0.0503, 0.0504, 0.0464, 0.0501, 0.049]
Run time (seconds) [422.9979, 570.8253, 615.2898, 612.2862, 558.5564, 573.2421]
Union Area [579.2194, 579.3493, 582.7312, 575.7534, 587.3002, 569.678]
Number of Runs 6
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Appendix A. Evaluation, all runs
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B
Synthetic evaluation, Zynka
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Appendix B. Synthetic evaluation, Zynka

(a) Synthetic input (b) Ground truth clusters

(c) Predicted clusters (d) False negatives

IV


	List of Acronyms
	Nomenclature
	Introduction
	Motivation
	Problem formulation
	Our contribution
	Prior work

	Background
	Point Clouds
	Downsampling
	Outlier removal

	Robust Shape Detection
	Clustering Algorithms
	DBSCAN
	Mean Shift

	Diffusion mapping

	Methods
	Wall Detection and 2D Projection
	Robust Wall Patch Detection
	Wall Patch Segmentation and Refinement
	Clustering line segments

	Room detection
	Weighted graph construction
	Cell complex graph diffusion
	Cell Merging via Clustering

	Pre- and post-processing
	Implementation Details and Input Data

	Evaluation and Results
	Evaluating against human labeled polygons
	Large building
	Small building

	Evaluation using synthetic point clouds
	Runtime performance

	Discussion
	Comparison of Results and Expectations
	Discussion of Results
	Comparison with manual models
	Comparison with synthetic models

	Additions to Research in the Field
	Experimental Uncertainties
	Future research and improvements
	Evaluation methods

	Research methodology

	Conclusion
	Bibliography
	Evaluation, all runs
	Big building
	Small building

	Synthetic evaluation, Zynka

