

FURTHER PROGRAM DEVELOPMENT FOR

COST MINIMIZING GLOBAL ENERGY

MODEL GET

Master of Science

MAGNUS ANDERSSON

Department of

Divisi

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg

Report No.

URTHER PROGRAM DEVELOPMENT FOR

COST MINIMIZING GLOBAL ENERGY

MODEL GET

Master of Science

MAGNUS ANDERSSON

Department of Energy and Environment

Division of Physical Resource Theory

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden, 20

Report No. 2013:9

URTHER PROGRAM DEVELOPMENT FOR

COST MINIMIZING GLOBAL ENERGY

MODEL GET-RC

Master of Science Thesis

MAGNUS ANDERSSON

Energy and Environment

Physical Resource Theory

CHALMERS UNIVERSITY OF TECHNOLOGY

, Sweden, 2013

2013:9

URTHER PROGRAM DEVELOPMENT FOR

COST MINIMIZING GLOBAL ENERGY

RC

Thesis in the Industrial Ecology

MAGNUS ANDERSSON

Energy and Environment

Physical Resource Theory

CHALMERS UNIVERSITY OF TECHNOLOGY

3

URTHER PROGRAM DEVELOPMENT FOR

COST MINIMIZING GLOBAL ENERGY

Industrial Ecology

MAGNUS ANDERSSON

Energy and Environment

CHALMERS UNIVERSITY OF TECHNOLOGY

URTHER PROGRAM DEVELOPMENT FOR

COST MINIMIZING GLOBAL ENERGY

Industrial Ecology Progra

CHALMERS UNIVERSITY OF TECHNOLOGY

URTHER PROGRAM DEVELOPMENT FOR

COST MINIMIZING GLOBAL ENERGY SYSTEM

Programm

URTHER PROGRAM DEVELOPMENT FOR THE

SYSTEM

me, MPECOMPECO

FURTHER PROGRAM DEVELOPMENT FOR

THE COST MINIMIZING GLOBAL ENERGY

FURTHER PROGRAM DEVELOPMENT FOR

THE COST MINIMIZING GLOBAL ENERGY

Sup

 Maria Grahn

CHALMERS

FURTHER PROGRAM DEVELOPMENT FOR

THE COST MINIMIZING GLOBAL ENERGY

SYSTEM MODEL GET

MAGNUS C.M.K. ANDERSSON

Supervisor:

Maria Grahn

Department of

CHALMERS UNIVERSITY OF TECHNOLOGY

REPORT NO.

HALMERS

OF TECHNOLOGY

FURTHER PROGRAM DEVELOPMENT FOR

THE COST MINIMIZING GLOBAL ENERGY

SYSTEM MODEL GET

MAGNUS C.M.K. ANDERSSON

ervisor:

Maria Grahn

Department of

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden

REPORT NO. 2013:9

HALMERS UNIVERSITY

ECHNOLOGY

FURTHER PROGRAM DEVELOPMENT FOR

THE COST MINIMIZING GLOBAL ENERGY

SYSTEM MODEL GET

MAGNUS C.M.K. ANDERSSON

Department of Energy and Environment

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden

2013:9

NIVERSITY

ECHNOLOGY

FURTHER PROGRAM DEVELOPMENT FOR

THE COST MINIMIZING GLOBAL ENERGY

SYSTEM MODEL GET

MAGNUS C.M.K. ANDERSSON

Energy and Environment

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2013

NIVERSITY

FURTHER PROGRAM DEVELOPMENT FOR

THE COST MINIMIZING GLOBAL ENERGY

SYSTEM MODEL GET-RC

MAGNUS C.M.K. ANDERSSON

 Examiner:

 Sten Karlsson

Energy and Environment

CHALMERS UNIVERSITY OF TECHNOLOGY

FURTHER PROGRAM DEVELOPMENT FOR

THE COST MINIMIZING GLOBAL ENERGY

Examiner:

Sten Karlsson

FURTHER PROGRAM DEVELOPMENT FOR

THE COST MINIMIZING GLOBAL ENERGY

Further Program Development for the Cost Minimizing

Global Energy System Model GET-RC

MAGNUS C.M.K. ANDERSSON

© MAGNUS C.M.K. ANDERSSON, 2013.

Technical report no 2013:9

Department of Energy and Environment

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

The figure on the front cover is an overview of the new implementation of the GET-RC

model (see page 37 chapter 5.7 for more information).

Chalmers Reproservice

Göteborg, Sweden 2013

Further Program Development for the Cost Minimizing Global

Energy System Model GET-RC

MAGNUS C.M.K. ANDERSSON

Department of Energy and Environment

Chalmers University of Technology

SUMMARY

The linear programming Global Energy Transition (GET) model covers the global energy

system and is designed to meet exogenously given energy demand levels, subject to a CO2

constraint, at the lowest system cost. The model can be used to better understand the role of

different energy technologies in a future carbon constrained world and how the technologies

fit into the larger global energy system, where different energy sectors compete for the same

limited primary energy sources.

In this thesis a new optimization environment was put together for the cost minimizing global

energy system model GET-RC. This new optimization environment was written in the

functional programming language of SCHEME implementing the GAMBIT compiler. As a

result of the reimplementation a mathematical interpretation or linear combination that

mapped the GET-model was made.

The new model consists of only 7 variables but still can account for all functionality of the

original model of about 45 variables. The model was then implemented into the new

framework by a method based on six so called Simple models where the limited time frame of

the project allowed for the first 3 models to be implemented in the new environment.

The solving time for the reimplemented simple model 3 was proven to be twice as fast as the

original version of simple model 3.

The report is written in English.

Keywords: get-rc, cost, minimization, model, green, red, variables.

Magnus Andersson

Acknowledgements
First I would first like to thank my supervisor Maria Grahn for helping me so
much with this project, for her support, her interest in the small details of my
work and her endless patience. I would also like to thank my friend Mikael
More for invaluable help and advices regarding the C programming language
and Scheme, especially in understanding functional programming compared to
object based programming. Finally I would like to thank my examiner Sten
Karlsson for his advices regarding how the report should be organised and his

patience.

— page 2 —

CONTENTS Magnus Andersson

Contents

1 Background and Introduction 7
1.1 Renewable Alternative Energy Systems 8
1.2 Intermittent energy . 9
1.3 Synthetic Gas Synthesization . 9
1.4 The GET-model . 11

2 Purpose 13

3 Overview – Differences in programming languages 14
3.1 The Compiler, Assembler . 14
3.2 The C Programming language . 15
3.3 Object-oriented Languages . 15
3.4 Functional programming Languages 16
3.5 GAMS . 16
3.6 GAMBIT and a comparison with GAMS 17

4 Method 18
4.1 The New GAMBIT-GUROBI Environment 18

5 Results 22
5.1 Simple-model 1 . 22
5.2 Simple-model 1 Functionalisation 24
5.3 Simple-model 2 . 25
5.4 Simple Model 2 Functionalisation 29

5.4.1 Variables . 29
5.4.2 Sets . 30
5.4.3 Example . 30

5.5 Simple Model 3 . 32
5.6 Solving Times for the New and the Old Implementation 37
5.7 The Smallest Linear Combination of the GET-model 37

5.7.1 The Constraints of Simple 6 43
5.7.2 Calculating the Values of the Green Variables 44
5.7.3 A new view of the GET-model 44

5.8 Pre-requisites for Carbon Dioxide based Synthetic Fuels 45

6 Discussion 47

7 Conclusions 48
7.1 Conclusions in Short: . 48

8 Further Work 49

9 Appendix A - The Reimplementation in Mathematical Terms 53
9.1 Introduction - What is an Optimization Environment 53
9.2 The New Environment - Why the new implementation was faster 54

9.2.1 Unit Vectors vs. Sets - The GET-Model Room 54
9.2.2 Systems vs. Variables . 55

9.3 Identification of Red and Green Variables 56
9.4 Unit vectors and Systems of GET-RC 56

— page 3 —

LIST OF FIGURES Magnus Andersson

10 Appendix B and C 60

List of Figures

1 A schematic picture of Synthetic Gas Synthesization 11
2 The GET-model with all its variables as it is implemented in the

GAMS environment. The arrows in the figure represent the con-
straints and the red and green texts are the variables. Some more
important static components are also showed in blue in the figure.
The letters added in parentheses and separated by comma repre-
sents sets. The grey arrows are the final terms of the objective
function. For description of sets variables and more see Appendix
C. 21

3 The simple-model 1 implementation in GAMS. See List of Acronyms
for explanation to the acronyms. 22

4 The simple-model 1 implementation in GAMBIT. See List of
Acronyms for explanation to the acronyms. 23

5 What the variable en conv is suppose to contain if all constraints
are correctly defined. See List of Acronyms for explanation to the
acronyms. 24

6 The simple model 2 implementation in GAMS. See List of Acronyms
for explanation to the acronyms. 25

7 The simple model 1 implementation in GAMS. See List of Acronyms
for explanation to the acronyms. 26

8 What the variables en conv and imp prim from are suppose to
contain if all constraints are correctly defined. See List of Acronyms
for explanation to the acronyms. 28

9 The difference between the variables imp prim from(e in, R exp,
R imp, t) and imp prim from(e in, R imp, R exp, t). See List
of Acronyms for explanation to the acronyms. 31

10 The simple-model 3 implementation in GAMS. See List of Acronyms
for explanation to the acronyms. 32

11 The simple-model 3 implementation in GAMBIT. The variables,
parameters and sets are described in Appendix C. 34

12 What the variables en conv, imp prim from and cap invest are
suppose to contain if all constraints are correctly defined. See
List of Acronyms for explanation to the acronyms. 36

13 The GET-model as it is implemented in GAMBIT. The arrows
in the figure represent the constraints and the red texts are the
variables. Some more important constants are also showed in
blue in the figure. The letters added in parentheses and separated
by comma represents sets. All variables are part of the objec-
tive function. For description of constants see Appendix C. For
description of sets and variables see Appendix A 39

14 The contents of the variables en conv and imp prim from in the
simplified GET-RC 6.1 model. See List of Acronyms for expla-
nation to the acronyms. 40

— page 4 —

LIST OF FIGURES Magnus Andersson

15 The contents of the variables cap invest and eng invest in the sim-
plified GET-RC 6.1 model. See List of Acronyms for explanation
to the acronyms. 41

16 The contents of the variable trsp energy in the simplified GET-RC
6.1 model. See List of Acronyms for explanation to the acronyms. 42

17 The contents of the variables imp sec from and infra invest in the
simplified GET-RC 6.1 model. See List of Acronyms for expla-
nation to the acronyms. 43

18 The composition of the five unit vectors that are used to build
the GET-RC model. See List of Acronyms or Appendix C for
explanation to the acronyms. 57

19 An overview of what unit vectors each system is dependent on.
For a detailed description of the more explicit entries of each
system see figure 14, 15, 16 and 17 in the results section of the
main report. 58

— page 5 —

LIST OF FIGURES Magnus Andersson

List of Acronyms

P Passenger Transport
F Freight Transport
0 Conventional Technology

AFR Africa
Bio Biomass

BTL Bio-To-Liquid or bio-fuels
ccs combustion with Carbon Capture and Storage
cg combustion with co generation of heat

cg-ccs A combined cg and ccs plant
CPA Centrally Planned Asia — mainly China
CSP Concentrated Solar Power

CTL-GTL Coal-To-Liquid and Gas-To-Liquid
Elec Electricity
EUR Europe
FCV Fuel Cell Vehicle
FSU Former Soviet Union
HEV Hybrid Electric Vehicle
ICEV Internal Combustion Engine Vehicle
LAM Latin America
MEA Middle East
NAM North America
NG Natural Gas

PAO OECD countries in the Pacific Ocean
PAS Pacific Asia

PHEV Plug-in Hybrid Electric Vehicle
SAS South Asia — mainly India

— page 6 —

1 BACKGROUND AND INTRODUCTION Magnus Andersson

1 Background and Introduction

The well and foundation of the industrial revolution was the use of energy coming
from other source than physical labour of humans or animals, that is the use of
fossil fuels (Ponting 2007). Some believe that this is the point in history where
the human-race became too strong for nature to handle, the time when nature
started to degrade due to our use.

Unfortunately this is not true. Degrading of the ecosystems is something
humans have been doing possibly even back in the time of hunting and gath-
ering (Ponting 2007). It is true however that the destructiveness precoded at
unprecedented levels during the industrialisation (Grübler 1998).

It would not have been possible to reach where the world is today without
the fossil fuels but as soon as the fossil fuels started to be used the human-raise
had a mission. The resources of our planet are limited so the fossil fuels must run
out one day as they are renewed at a much slower pace than they are consumed.
Some resources are not renewed on Earth at all such as uranium. The mission is
to find a solution as to what should be done when the fossil fuels are depleted.
Today 80% of our energy use comes from fossil sources (IEA 2012). There are
still however a lot of fossil fuels left.

Unfortunately another threat than the depletion of the fossil fuels are much
more pressing. The human raise has been aware of this effect for hundreds of
years due to astronomical studies but it was thought that it would not be a prob-
lem on Earth. Carbon dioxide is a gas that is transparent to the visible range
of light but much less transparent to the longer wavelengths of heat radiation.

With carbon dioxide in the atmosphere of Earth this means that the energy
radiating from the sun reaches the surface of Earth unobstructed by the atmo-
sphere but that the resulting heat not as easily can leave. This is refereed to as
the greenhouse effect. Gases which has this filtering effect on light is refereed
to as greenhouse gases (de Pater 2001).

Earth has had greenhouse gases in the atmosphere for a long time, the most
important are carbon dioxide, methane and water, which is the reason for why
our surface temperature is as high as it is despite the long distance to the sun.
An increase of the carbon dioxide content of Earth’s atmosphere however will
sooner or later result in an increase of Earth’s surface temperature (de Pater
2001).

Another example where the greenhouse effect is perhaps more obvious is the
example of our neighbour planets Mercury and Venus. Mercury has no atmo-
sphere which gives it a very unstable surface temperature shifting between 90
and 700 kelvin degrees over a day. But no atmosphere also means no greenhouse
effect. Venus on the other hand has an atmosphere consisting of 96% carbon
dioxide. Although Venus is approximately twice as far away from the sun as
mercury its surface temperature is still higher, about 730 Kelvin degrees.

It was initially thought that our carbon dioxide emissions would not result
in an increase of the carbon dioxide content of the atmosphere. This mainly due
to the large fluxes of carbon dioxide in and out of the oceans. But the oceans
did not capture the carbon dioxide as quickly as expected so the concentration
in the atmosphere increased.

In 1988 the World Meteorological Organisation (WMO) and the United Na-
tions Environmental Programme (UNEP) established a scientific advisory body
called the Intergovernmental Panel of Climate Change (IPCC). In 1990 IPCC

— page 7 —

1 BACKGROUND AND INTRODUCTION Magnus Andersson

presented their first report showing that the mean temperature of Earth has
increased by 0.5 Celsius degrees in the last century and that it will rise further
with 0.3 Celsius degrees per decade in the 21th century (Wayne 2009). Their
fourth report presented in 2007 showed that this climate change with a 90%
certainty was human caused (IPCC 2007).

1.1 Renewable Alternative Energy Systems

The end-use sectors in an Energy system can roughly be divided into two very
distinct categories, stationary energy use and mobile energy use. The main
difference is that energy carriers used in mobile applications need an on board
storage system (e.g., a fuel tank or a battery). Energy carriers used in the
stationary energy sector (e.g. electricity and heat) are however possible to use
without energy storage facilities.

Both the stationary and the mobile energy sectors are today dependent on
fossil fuels.

At a first glance the stationary energy sector seams the easiest to change,
when fossil fuels need to be substituted, as many alternatives already exists.
Some of them invented even before the development of the electricity net. Wind,
hydro and in some regions even solar energy. These forms of energy harvest
have been developed over many years and are now in large scale use. A problem
concerning wind and solar power are the availability discussed in more detail in
the next section.

Another alternative energy source is bio-energy. The problem with bio-
energy is the limited scale of the production. The two main limitations to the
scale are the overall limited amount of land and the need to use land for other
purposes than bioenery, such as produce food and feed for animals as well as
produce timber, paper and textile fibres.

A great concern regarding the population growth is the limited food supply,
even without an increase in bio-energy use it will be a challenge to grow food
for 9 or 10 billion people (Godfray 2010).

This poses a problem for the idea of using bio-energy. Many different assess-
ments of this has been made with different focuses and different results. In this
report a global maximum of 200 EJ for the bio-energy is assumed based on a
previous assessment (Grahn M 2009), (Berndes et al, 2003). In that is included
100 EJ of primary harvesting and 100 EJ of residues.

When it comes to the mobile energy sector the challenge is twofold. Not
only is a primary energy source needed, it is also important to find good energy
carrier. The carries used today such as gasoline and diesel are mainly based on
what can easily be extracted from raw oil. But ones raw oil is not used those
conventional fuels are not necessarily the most efficient choice in, for example,
an overall perspective of energy efficiency in production and use combined.

Research on mobile energy carries is therefore focused on both what energy
source that should be used for the production and what fuel that should be
produced. Here ones again the importance of the availability of the energy
source is of interest which will be discussed in the next section.

— page 8 —

1 BACKGROUND AND INTRODUCTION Magnus Andersson

1.2 Intermittent energy

Intermittent energy refers to an energy source that is not always continuously
available due to some uncontrollable external factors. Most commonly it refers
to energy sources effected by weather such as wind and solar power. As a rule
of thumb it has been argued that as long as the usage of these sources are below
30 % the electricity demand it is not a problem (Grahn, 2012).

If however the use is to be greater than that some sort of storage of the
energy is needed as a buffer for the times when the source is not available. One
implementation discussed is for example to use wind power to pump water back
up into the water magazines of hydro power plants.

When it comes to the mobile energy use however things look a little different.
As described in the previous section mobile energy use is a lot about finding a
good energy storage system. Therefore the use of intermittent sources in the
production is not really a problem.

Fuels for transport produced with the help of intermittent energy sources
can possibly make the production more costly but it does not have to. To
get enough fuel the plants must be made large enough to produce the required
amount of fuel when the energy is available. Thus leftover energy from the
stationary energy system can also be used in the fuel production.

To summarize, it is challenging to find a suitable energy source, to replace
fossil fuels, for electricity production as electricity can only be used instantly
when it is produced and many renewable sources are intermittent. Few ways of
storing energy is developed today to use with the intermittent sources and the
renewable sources that are not intermittent are rather limitedly available (eg
hydro power).

But for the transport sector and other mobile energy use sectors it should in
principal be possible to make use of intermittent energy without this 30% limi-
tation. This is because production of fuel when, it comes down to it, is storing
of energy. The limitation then is now instead how easily the fuel production
can be scaled up and down depending on the availability of the source. That
question is not so easy to answer.

The use of the produced fuel however can then be set to the mean production
over a year, thus evening out the uncertainty in the energy availability given
that an adequate amount of fuel first is buffered.

Different alternatives are currently being discussed and tried out regarding
the use of intermittent energy in fuel production. Some of the alternatives are
described in more detail in the next chapter an in chapter 5.8.

1.3 Synthetic Gas Synthesization

In view of what has been mentioned above it is interesting to look closer on
long term sustainable energy storage systems for the transport sectors energy
carriers. For a definition of long term sustainable see (Holmberg, J. 1995).

The limited availability of oil and ethical problems of bio-energy can both
be seen as symptoms from the same problem, the limited organic productivity.
If wood is combusted for the sake of producing heat less than one percent of
the energy from the previous incommode sunshine during the trees growth is
preserved.

— page 9 —

1 BACKGROUND AND INTRODUCTION Magnus Andersson

Compared to that a conventional solar panel can have an energy efficiency
of about 10%. A solution to this fundamental problem of the plants would be
to find a way to do what the plants do but more efficiently.

Replicate the photosynthesises has this far proven to be rather difficult but
that is not what is needed here. Instead of producing sugar a process that
can produce a flammable energy carrier is what is needed. One such is the
Fischer-Tropsch process that has been used since the 50s to produce diesel in
south Africa (see sasol). This process is however based on coal which makes it
unsustainable.

The coal is used to produce a gas mix called synthetic-gas or syngas for
short. It contains one part carbon monoxide and two parts hydrogen gas. The
interesting part of the Fischer-Tropsch process is that it contains the key of how
to produce diesel, gasoline, plain-fuel and more from syngas and it is already in
large scale use.

What is needed is a long-term sustainable process on producing syngas. Shell
recently finished a plant that uses natural gas in the Fischer-Tropsch process.
This is better than coal because the carbon dioxide emissions in the production
process are much smaller but it is still not long-term sustainable.

In the long run if carbon is to be a part of our transport fuel the syngas must
be made from carbon dioxide from the air and water. This involves making
hydrogen by splitting the bindings of water and making carbon monoxide by
capturing carbon dioxide from the air and reform it to carbon monoxide.

These are both rather expensive processes that will need some development
but in a first stage carbon dioxide can be captured from industrial emissions.
This will be discussed more in the chapter of further work in this report.

Some studies has been conducted before regarding the possibility of turning
CO2 into CO for car fuels (Miller 2007). The process discussed here builds on
these previous findings. Figure 1 shows a very schematic picture of the process.
The idea is in short to reform carbon dioxide and water separately to carbon
monoxide and hydrogen and then to mix them to syngas.

In figure 1 it can be seen that the process of reforming carbon dioxide to
carbon monoxide requires hydrogen. Equal amounts of water is produced as a
result of this when part of the oxygen leaves the carbon dioxide (Miller 2007).
This can then be circled back to the hydrogen reactor.

The Hydrogen reactor produces hydrogen from water with heat in a sulphur-
iodine cycle (Vitart 2006). Both reactors uses heat as their primary energy
source. This is good from a thermodynamic perspective compared to more con-
ventional hydrogen production by hydrolysis as the losses of producing electricity
can be avoided.

The temperature needed for the processes are 800◦C for the carbon monoxide
process and 850◦C for the hydrogen. Various energy sources has been discussed
but the two foremost are a VHT nuclear reactor or a solar CSP power plant
(Vitart 2006), (Huang 2005).

— page 10 —

1 BACKGROUND AND INTRODUCTION Magnus Andersson

Figure 1: A schematic picture of Synthetic Gas Synthesization

A process producing methanol from industrial CO2 is in use on Iceland
(Carbon Recycling International 2012). The greatest uncertainty in the over all
process discussed here is what it would cost to use CO2 captured from the air.
Most likely the production of synthetic fuels from carbon dioxide and water will
be more expensive than producing fuels from fossil sources or from biomass.

Both fossil and bioenergy sources do however face long-term challenges since
they both cause environmental problems and are limited sources. Limited
sources will become more expensive when demand is higher than the production.

Instead of fossil fuels and biofuels it is possible to use hydrogen or electricity
as energy carriers in the transportation sector. They do however also face long-
term challenges since both batteries and fuel cells need improvements in e.g.,
capacity, life time and dependency on scarce metals. Electricity and hydrogen
will also be difficult to use in the aviation and shipping sector.

One advantage for carbon-based synthetic fuels is that they can be used
in current infrastructure and current vehicle fleet. It would be interesting to
analyze under what circumstances synthetic fuels from carbon dioxide and water
could be a cost-effective fuel choice in the transportation sector in a future
carbon constrained world, see more in Section 5.8, Pre-requisites for Carbon
Dioxide based Synthetic Fuels.

1.4 The GET-model

To get a good overview of the energy system, and an idea of how the fossil
fuels can be replaced at lowest cost, the GET-model was written. GET stands
for Global Energy Transition and is a linear global energy optimisation model
developed at the department of Energy and Environment, Physical Resource
Theory (PRT), at Chalmers see e.g., Azar et al (2003), Grahn et al, (2009) and
Hedenus et al (2010).

It has been developed over the years and therefore exists in many different
versions. The version used in this study is GET-RC 6.1. This version is region-
alized and has a refined transportation sector, focussing on fuels and vehicle
technologies for cars (Grahn et al, 2009).

— page 11 —

1 BACKGROUND AND INTRODUCTION Magnus Andersson

The model is used to generate global long-term scenarios of the energy system
under different conditions. It is also a tool for general analysis of the energy
system. It’s greatest strength is that the resources of different types can float
between the different energy end-use sectors (in this study called services) of
the energy system. Providing electricity is one example of a service and Heat,
for first and foremost the process industry, is another.

The model then does not just say what resource that is most cost-effective for
electricity and what’s for heat. It takes all services into account at the same time.
This means that the model also calculates for what service a specific resource
should be used in each sector to reduce the CO2 emissions as inexpensive as
possible.

— page 12 —

2 PURPOSE Magnus Andersson

2 Purpose

This thesis describes some further development of the GET-model. The degrees
of freedom needed by the model has grown very quickly with increased com-
plexity partly due to the optimization environment used called GAMS but also
because the model was constructed over a long time by many different people.
Most quantities in the model are stored in atleast two variables in the GAMS
implementation. One variable for each quantity would have been enough but
some quantities are declared even in more than five places. This also called for
many extra constraints.

This is no problem in it self as our computers of today are rather fast and
the model is still relatively small. GAMS and the optimizer used called CPLEX
however also have rather costly licenses. As the complexity of the model would
increase if new fuel alternatives were included it was decided to first investigate
whether rewriting the model could make it more efficient.

In the reimplementation of the model a different programming language was
used. The alternative language implemented in this project is the functional
programming language Scheme and the GAMBIT compiler. The optimizer used
is GUROBI.

This report describes both the simplification of the GET models algorithms
and their reimplementation in the new language. Pre-requisites for introducing
carbon dioxide based synthetic fuels was identified. Finally at the end of the
report some further work is proposed.

Short Summary of Purpose Here the purpose of the thesis is summarized
in three points:

• Find the smallest linear combination (a mathematical interpretation) that
captures the GET-RC 6.1 model by simplifying the GET-models algo-
rithms.

• Try out this simplified GET-model in a functional programming language.

• Identify pre-requisites needed to introduce synthetic fuels made from car-
bon dioxide and water in the model.

— page 13 —

3 OVERVIEW - DIFFERENCES IN PROGRAMMING LANGUAGES Magnus Andersson

3 Overview – Differences in programming lan-

guages

All versions of the GET-model developed by Physical Resource Theory (PRT)
are written in an optimisation environment called GAMS. GAMS in short makes
the computers more accessible for users by providing functionalities that can
come in handy when you write optimization models.

A problem with such environments or programming languages however is
that the capabilities of the computer are limited to what is provided within
the environment. Sometimes it might be easier to solve a problem with other
methods than the ones included in the environment. Performance and clarity
are also easily lost on the way.

In GAMS a slight loss of clarity can be explained in that the user never really
need to make a mathematical interpretation of the model. The tools GAMS
provide makes it easier to explain the problem for the computer and then it
is more up to the machine to interpret the model. The user can therefore
not always see what the computer do as it tries to solve the problem in the
background.

This of course made my rewriting of the model into a new language a little
more complicated then was thought at first. In a way I did not only need to re-
write the model it self but also re-write parts of the optimization environment.
This is described in more detail later.

When rewriting the GET-model there are many different programming lan-
guages that can be used. To understand what the difference is between GAMS
and the Scheme a little background in some central elements of programming is
needed. Below therefore follows a brief introduction.

3.1 The Compiler, Assembler

In the early days of computing, programming consisted of flipping switches to
load a program into a Computers memory. These sequences of ones and zeros
were called machine code and told the computer what to do. Soon however it
become apparent that this way of instructing the computer was rather inefficient.

Today however our methods for producing this machine code is a lot more
efficient. A programming language can be made with which instructions for a
computer can be written in a more efficient and concentrated form. The problem
however is that the computer can not by it self understand and follow these new
instructions.

The instructions needs to be translated to machine code for the computer to
be able to read and follow them. The translation is done by a program or set
of programs called a Compiler. This means that the final program will be just
as complicated as if it was written in machine code from the beginning.

The difference is that the computer does not do as many mistakes as a human
do when printing a long row of ones and zeros. Many things have to be repeated
many times over so the difficult thing is not to figure out what to write but to
get it right over and over again. This is a task very well suited for a computer.
In this way the computer to some degree programs it self.

One early programming languages that is compiled to machine code is As-
sembler. It is possible to write assembler code by hand but it is not so common

— page 14 —

3 OVERVIEW - DIFFERENCES IN PROGRAMMING LANGUAGES Magnus Andersson

today. This is because it is still a very primitive language but it is better than
writing the machine code by hand. For more about Assembler see (Salomon, D.
1993).

3.2 The C Programming language

As Assembler code were still a rather simple programming language, new lan-
guages particularly for making mathematical calculations and subroutines were
made. These languages are often refereed to as low-level languages but the def-
initions here vary. What is to be called a low-level language or not depends on
the perspective of how near machine code you must be to be on a low-level.

The meaning of what a compiler is changes a little with the introduction of
these languages. The new Compilers for these low level languages often do not
make machine code but produce Assembler code instead. A compiler can now
therefore be a program that translates between two programming languages and
not only to machine code.

Among these low level languages the C programming language is the one that
is generally considered to produce the fastest programs. C has other advantages
and some disadvantages such as some difficulties when allocating memory. It
is however a very useful language for writing simple background programs that
needs to be fast or programs that needs to be called on repeatedly. C is there
fore often used in programming operating systems. For more about the C pro-
gramming language see (Kernighan 1988).

3.3 Object-oriented Languages

As a final step to get where the programming languages are today the Compiler
process needs to be repeated one last time. Compilers today mostly writes
ether C code or assembler code. But the new languages are rather different
from the ones before. Earlier the new languages were invented to increase the
effectiveness of writing the old languages and to effectively map only what a
computer can do was the priority.

The new so called object-oriented languages instead provide certain objects
that programmers can find useful. These objects has made programming a lot
easier than before as many things can be reused. But these objects are more
made for what a programmer need than what a computer can do. It is therefore
not always so easy to successfully implement these objects in the underlying C
or assembler code. The objects are made to fit the programmer, more than the
computer.

There are many object orientated languages. A few examples here are C+,
C++ and C#. These three languages are all related to C but are larger and
have many new functions that makes the programming more efficient.

Even though the objects make the programming more efficient they also
introduce a loss in transparency and clarity. The implementation of certain
functions or objects was something the programmer had to figure out before
but it is now built into the language it self. The objects implementation can
not be changed or even seen by any individual programmer unless the objects
source code is available. This can introduce losses in efficiency of different
magnitude depending on how well a object suits a certain use. This can be

— page 15 —

3 OVERVIEW - DIFFERENCES IN PROGRAMMING LANGUAGES Magnus Andersson

hard to judge considering the limited transparency. For more about Object-
orientated languages see: (Nino 2008).

3.4 Functional programming Languages

Due to the limited transparency of the object based languages it is difficult
to invent new languages and write new compilers to make the computer once
again program it self on top of a object based language. This next step in the
development of the programming languages therefore once again seeks to find
more efficient ways of writing C or assembler code.

The difference here compared to the object based languages is that the fo-
cus now once again is back on the computer and what it is capable of. The
new language like C to assembler seeks to find a more efficient way to instruct
computer.

A functional programming language can be seen as a language to make the
computer program it self. Instead of just repeating the compiler stage once more
the functional languages are built to include this in the language it self. The
programmer invents his or hers own language as needs arise and the components
invented can be reused. To make sure that the programs are using the computers
resources efficiently the languages have a mathematical nature. The programs
are functions and these functions can efficiently be used by other functions.

This stacking of functions applied to other functions makes the code more
manageable and transparent. The programs become shorter because many
things does not need to be repeated. If the code becomes inefficient the language
can be redefined so the computer can do more by it self. For more about the
Functional Programming Language Scheme see: (More 2008).

3.5 GAMS

The GAMS optimisation environment can be seen as a object-oriented program-
ming language. GAMS is then the compiler that provides the objects. Like many
other compilers GAMS is written in the C language. GAMS also provide many
useful objects. One such object is called a variable.

This variable is not an ordinary mathematical variable representing one nu-
merical value or a dimension in space. It is in fact a table or system of many
mathematical variables. The size or number of dimensions of this variable object
is defined by another object called a set. A set can be for example the regions
included in the model or the primary energy sources that are allowed.

These objects can then be combined to form the variable of all coal used in all
regions for example. The variables in the GET model are sometimes depending
on five different sets which makes the variable five-dimensional. By using these
and other GAMS objects and input data the GET-models dynamics is defined
for the computer.

GAMS then in the background creates a mathematical interpretation of the
model by reading the objects. This mathematical implementation which basi-
cally is a matrix is then sent to a so called optimizer. The optimizer is then the
program that does the actual optimization.

The optimizer is a separate program outside of GAMS and the looks of the
matrix sent to it is defined from what the optimizer is expecting. So GAMS
also translates the GET-model matrix to the right form before sending it to

— page 16 —

3 OVERVIEW - DIFFERENCES IN PROGRAMMING LANGUAGES Magnus Andersson

the optimizer. GAMS can handle many different optimizers but the one often
used at Physical Resource Theory is called CPLEX. CPLEX then returns the
solution to GAMS which interprets it and present the solution to the user. For
more information on the GAMS optimisation environment, see e.g., Rosenthal
(2012).

3.6 GAMBIT and a comparison with GAMS

GAMBIT is a compiler for the functional programming language Scheme. Just
as GAMS GAMBIT is written in C but it is not an object-orientated optimiza-
tion environment. GAMBIT only provides the basic functions of a computer
but with many mathematical functions available. For example GAMBIT can
from the start handle complex numbers that can be as large as you like as long
as they can fit into the computers ram memory. With basic functions of a
computer I refer to things such as allocating memory and to perform five basic
binary Operations.

Apart from this GAMBIT also provide different kinds of lists and loops. In
GAMS these elementary components are already combined into variables, sets
and other things useful for optimization. In GAMBIT these things must be
constructed manually.

On the up side though the language is not restricted to the objects available
in GAMS but many more objects can be created. Objects can be created in
other ways than in GAMS to suit the GET-models needs. The connection to
the underlying machine is not broken but open and the functions created will be
more transparent, not working in the background as before. The construction
of this new optimization environment is explained in the next section. For more
about the syntax of GAMBIT and Scheme see (Kelsey 1998), (More 2008).

— page 17 —

4 METHOD Magnus Andersson

4 Method

4.1 The New GAMBIT-GUROBI Environment

As explained earlier the first step in rewriting the GET-model for the GAMBIT
compiler was to reconstruct the optimization environment. It however proved
easier to introduce new functions as they were needed instead of reimplement
the whole GAMS environment from the start. When an object was needed all
specifications was also known.

The first thing to be reimplemented was the translation method of GAMS
which translates the model to the interface of the optimizer. A so called Foreign
Function Interface (FFI) was written for this purpose.

Instead of CPLEX a new optimizer called GUROBI was used. It has the
same basic functions as CPLEX but with the difference that it is free of charge
for academic use. GUROBI has many interfaces for gathering instructions but
in this environment the C interface was used as it is the fastest and because it
is very easy to produce C code in scheme. The FFI simply produce C coded
instructions of the model in the way GUROBI is expecting. The FFI is published
under a MIT open source license and can be found at (Andersson 2012).

The GET-model it self was implemented in smaller sections, one at a time.
These sections are called simple model 1 through 6 and the sectioning was
made by Maria Grahn in a previous project(Grahn et al, 2013). This method
section is therefore separated into one section for each simple model that was
implemented.

In between each new simple model sections are one so called functionalisation
section where it is explained what new objects or rather functions that was
introduced, as scheme is not object-oriented but functional. Due to the limited
time frame of the project three out of these six simple models was reimplemented
into the new optimization environment. This was judged enough to see if the
model got any faster.

Below follows a table providing an overview of the differences between GAMS
and the new GAMBIT environment.

Table 1: An overview of the different components of the old and new optimization
environment.

Description GAMS Version GAMBIT Version
Programming Language: .gms-code Scheme
Compiler Name: GAMS GAMBIT
Optimizer Translation: GAMS (Black box) The GAMBIT-GUROBI FFI
Optimizer used here: CPLEX GUROBI

The simplification of the GET-model was made during the reimplementation
and is mainly based on unit analysis. The GET-model is built up around starting
values, conversion coefficients and expected demands. These values together
form the static part of the model.

Between these values are the variables which together with the constraints
defines the dynamics of the model. The model then measures the total cost of
the specific paths taken through the dynamics of the constraints and variables.

— page 18 —

4 METHOD Magnus Andersson

That total cost is what is minimized.

— page 19 —

4 METHOD Magnus Andersson

What is meant by simplifying with unit analysis here can be a little unclear
and it is hard to explain. The GAMS implementation has many so called green
variables. These green variables are of great use when making a presentation of
the model’s results, and comparing them with real world data, but of no use for
the computer.

In the underlying calculations the green variables mainly cause confusion as
GAMS needs to sort out what is relevant and not. That kind of philosophi-
cal judgement is something the programmers do much better than computers.
Therefore when simplifying the GET-model as many as possible of these philo-
sophical green variables has been removed out of the optimization. Instead they
can be calculated afterwords when asked for. An overview of the GET-model
as it is implemented in GAMS is shown in Figure 2.

This report does not seek to give a full picture of the GET-model in GAMS
but figure 2 is meant to at least give a feeling for the original implementation.
The figure can however be compared to figure 13 in the results section.

When the simplification of the GET-model was made other names were
used for the variables and the data was sorted in a different way. In this report
however these other names and frameworks has been translated as good as
possible to the names of the original implementation of the GET-model to make
it easier to compare the implementations.

— page 20 —

4 METHOD Magnus Andersson

F
ig
u
re

2:
T
h
e
G
E
T
-m

od
el

w
it
h
a
ll
it
s
va
ri
a
bl
es

a
s
it

is
im

p
le
m
en

te
d
in

th
e
G
A
M
S
en

vi
ro
n
m
en

t.
T
h
e
a
rr
o
w
s
in

th
e
fi
gu
re

re
p
re
se
n
t
th
e

co
n
st
ra
in
ts

a
n
d
th
e
re
d
a
n
d
gr
ee
n
te
xt
s
a
re

th
e
va
ri
a
bl
es
.
S
o
m
e
m
o
re

im
po
rt
a
n
t
st
a
ti
c
co
m
po
n
en

ts
a
re

a
ls
o
sh
o
w
ed

in
bl
u
e
in

th
e
fi
gu
re
.

T
h
e
le
tt
er
s
a
d
d
ed

in
pa
re
n
th
es
es

a
n
d
se
pa
ra
te
d
by

co
m
m
a
re
p
re
se
n
ts

se
ts
.
T
h
e
gr
ey

a
rr
o
w
s
a
re

th
e
fi
n
a
l
te
rm

s
o
f
th
e
o
bj
ec
ti
ve

fu
n
ct
io
n
.

F
o
r
d
es
cr
ip
ti
o
n
o
f
se
ts

va
ri
a
bl
es

a
n
d
m
o
re

se
e
A
p
pe
n
d
ix

C
.

— page 21 —

5 RESULTS Magnus Andersson

5 Results

To make it easier to see the results each new Simple-Model section below begins
with a flowchart providing an overview of that specific simple model imple-
mented in GAMS. Later in the same section follows another flowchart of the
same simple model but now implemented in GAMBIT.

All new implementation are mathematically equivalent to the original mod-
els, that is all information that was provided by the original model can be
composed from the output of the new calculations. The constraints are also
equivalent but expressed slightly different.

As explained earlier this report does not seek to give a complete description of
the GAMS implementation of the GET-model but explains only what is needed
to understand the new implementation which is described in full.

5.1 Simple-model 1

The main purpose of simple model 1 is to find the optimal use of the primary
energy sources. An overview of how this is implemented in GAMS is showed in
figure 3 below.

Figure 3: The simple-model 1 implementation in GAMS. See List of Acronyms
for explanation to the acronyms.

supply pot is the available primary energy sources given as a constraint to
the model, supply 1 is the amount of primary energy resources that the model
chooses to use, cost fuel is the cost of the primary energy resources chosen
in supply 1, en conv keeps track on what the resources in supply 1 are used
for and energy prod is the amount of heat and electricity that is produced.
heat dem reg and elec dem reg are constraints on the model making sure the
energy prod is big enough.

The set of energy source alternatives is called e in, e out is the set of sec-
ondary energies demanded, R is the region set and t is the set of time steps in
the model. Table 2 describes the contents of these four sets in simple model
1. The sets are the same for the GAMS and GAMBIT implementation but the
sorting within the sets are sometimes different, when so the GAMBIT sorting
is what’s shown.

— page 22 —

5 RESULTS Magnus Andersson

Table 2: The contents of the sets in simple model 1. See List of Acronyms for
explanation to the acronyms.

e in e out R t
Coal Heat NAM 1990
Oil Elec EUR 2000
NG - - 2010
Bio - - -

By applying the previous described unit analysis (see Method) to the model
above it is found that the variables supply 1, cost fuel and energy prod are all
subsets of en conv. This is clear because all these variables contain information
about the primary energy source resources and their use but en conv has the
greatest detail. In the sought smallest linear combination of the GET-model
these variables are therefore removed. An overview of the new GAMBIT imple-
mentation of simple model 1 is shown in figure 4.

Figure 4: The simple-model 1 implementation in GAMBIT. See List of
Acronyms for explanation to the acronyms.

In this new implementation all constraints are applied to en conv directly.
This grately reduces the complexity of the model and the number of constraints
too as no borders needs to be set for the three variables that was removed.
In the new model the first set declared in a variable defines the content of it.
en conv thus contains e in material which is primary energy source resources.

The model now have two constraints, one that make sure en conv uses less
resources than what’s available (Formula 1) and one that makes sure en conv
satisfy the demand on electricity and heat (Formula 2). effic is a table of con-
stants representing each process’ conversion efficiency, i.e. the share of the
energy content in the primary energy source that remain in the energy carrier
after energy losses in the conversion. These constants convert the e in content
of en conv to the corresponding amount of e out for the comparison.

∑

e out

en conv(e in, e out, R, t) ≤ supply pot(e in,R, t) (1)

∑

e in

en conv(e in, e out, R, t) ∗ effic(e in, e out, t) ≥ dem reg(e out, R, t) (2)

— page 23 —

5 RESULTS Magnus Andersson

The cost to be minimized in the model is simply the cost of the primary
energy resources allocated in en conv (See Formula 3). price is a table of con-
stants converting the e in content of en conv to the price of extracting those
resources. t step is the length of the time steps in the model that is 10 years.

min(t step ∗
∑

e in,
e out,
R,t

(en conv(e in, e out, R, t) ∗ price(e in,R))) (3)

To get an overview of en conv when the GAMBIT implementation was made
an excel table of en conv was made (see figure 5). This table describes what
the variable is suppose to contain if all constraints are set right. This was then
verified towards the original model in GAMS. First when both the final cost
and the content of en conv matched between the two programming languages,
the work moved on to the next simple model.

Figure 5: What the variable en conv is suppose to contain if all constraints are
correctly defined. See List of Acronyms for explanation to the acronyms.

The content of the tables of constants and the reference values of the con-
straints can be found in Appendix B.

5.2 Simple-model 1 Functionalisation

As mentioned earlier these functionalisation sections mainly describes the work
of building the new optimization environment. It become apparent what was
missing when the environment was used and so the environment was developed
during the implementation. After the introduction of simple model 1 the need
of a better loop function was apparent.

The environment and the model needed structure for better oversight. Still
this structure also needed to be built in such a way that it did not cause problems
for the computer when calculating. What was introduced now in the GAMBIT
environment to get this structure has no good comparison in GAMS. When
GAMS however addresses the problem sets and variables are what is used so
these names will be used here to explain the new structuring of the model.

In the current state of the environment a lot of code needed to be repeated
many times over to get through all values of en conv. A new loop and a so

— page 24 —

5 RESULTS Magnus Andersson

called list builder was therefore implemented into the GAMBIT environment.
The new loop required only a start and ending value to run. It also provided
its current value as a separate reference value for easy implementation in the
construction of the model. It is these loops that forms the sets and with them
the model could loop over the sets of a variable in what ever order preferred
without missing any entries.

The new list builder could access the reference values provided by the loop
and thereby know where in the model it was currently working. In this way
this so called list builder could pick the right constants out of the constant
tables (price and effic) and find the right reference values in dem reg to build
the constraints.

Afterwords when I compared the new environment with GAMS I found
that these functions discussed here were very similar to the functions of sets in
GAMS. The new loops are the sets and what they contain and the list-builder
is similar to the background process of GAMS that reads the sets and build
the model around them. Both these new functions were used repeatedly when
making the next model simple-model 2.

During the implementation these new sets of GAMBIT were called fun-
damental variables because in some ways they are different from the sets of
GAMS. The differences however between the sets and later also variables in the
new environment and in GAMS will be described further in the simple-model 2
functionalisation section as it is not until then they are fully implemented.

5.3 Simple-model 2

The new thing introduced in simple-model 2 is transfer of primary energy re-
sources between the regions. In simple one en conv could be seen as both what
was used and how much resources that was extracted domestically. This is not
true for simple-model 2 as en conv primarily describes what is used for domestic
production and resources now can be extracted in one region and then trans-
ferred to another. Below follows the GAMS implementation of this in figure
6.

Figure 6: The simple model 2 implementation in GAMS. See List of Acronyms
for explanation to the acronyms.

— page 25 —

5 RESULTS Magnus Andersson

One new variables in this model is import prim from that contains all data
of the resource transfer with where the goods come from, where it is going, what
the goods are and when it was transferred. If the unit of import prim from is
changed to GUSD and the variable is summarized to only R and t it becomes
tot trspcost prim which therefore is a subset variable.

imp prim and exp prim are also subset variables to import prim from. imp prim
summarize the amount of goods that is imported to the regions and exp prim
how much that is exported from each region. These two variables are not enough
to calculate tot trspcost prim as they neither contain where exported goods are
going or where imported goods are coming from but together with supply 1 they
form the new variable for the amount of available resources in a region called
supply tot which thereby also is a subset variable.

en conv is then built upon supply tot or rather, as no resources are extracted
anywhere unless they are used, sypply tot are based on en conv and constrained
by supply 1, imp prim and exp prim. Finally the variable c emission is intro-
duced but it is not part of any constraint on the model and therefore unnecessary
for the optimization at this time. Also c emission is a subset variable of sup-
ply tot as all fuel there are to be combusted. Finally the sets have not changed
but are identical to the sets of simple-model 1.

Just as before all subset variables are removed in the GAMBIT model. The
only new variable that is not a subset variable is import prim from. This is
therefore the only new variable that needs to be introduced. Figure 7 below
summarizes simple-model 2 in GAMBIT.

Figure 7: The simple model 1 implementation in GAMS. See List of Acronyms
for explanation to the acronyms.

No new constraints needed to be added to this model but the first constraint
was slightly rewritten. supply pot is now not just a limit for the domestic use
but for the domestic use and export. Further more as primary energy sources can
be imported this also needs to be taken into account as the domestic supply pot
not always carry the whole burden. The new first constraint is shown in formula
4. The constraint in formula 5 is the same as in formula 2.

— page 26 —

5 RESULTS Magnus Andersson

∑

e out

en conv(e in, e out, R, t)−
∑

R exp

imp prim from(e in,R exp,R imp, t)

+
∑

R imp

imp prim from(e in,R imp,R exp, t) ≤ supply pot(e in,R, t)

(4)

∑

e in

en conv(e in, e out, R, t) ∗ effic(e in, e out, t) ≥ dem reg(e out, R, t) (5)

It should be pointed out that the different order of the sets of imp prim from
in the two different sums of formula 4 is not accidental but deliberate and the
reasons for this are described in more detail in the next chapter.

The objective function has changed in that the cost of transferring goods
now needs to be taken into account. The price of extracting can also different
in different regions. All this is handled in a new term in the objective function
based on the new variable imp prim from. Formula 6 shows the new objective
function in its entirety. The terms A, B and C just used to make the objective
function clearer in this paper.

min(t step ∗
∑

e in,
e out,
R,t

(en conv(e in, e out, R, t) ∗ price(e in, e out, t)

+(impC + impCL+ priceDiff) ∗ imp prim from(e in,R exp,R imp, t)))

where :

impC = imp cost(R exp,R imp)

impCL = imp cost lin(e in)) ∗ distance(R exp,R imp)

priceDiff = price(e in,R exp)− price(e in,R imp)

(6)

imp cost, imp cost lin and distance are constant tables. imp cost contains
a fix cost and imp cost lin contains a linear cost dependent on the distance
between the regions. distance contains a table with very approximative distances
between the regions.

Finally for the simple-model 2 the Excel table used during the implementa-
tion was updated to cover the new variable imp prim from (see figure 8). This
table as described before shows the supposed content of the variables in the
model and acts as a reference for whether the constants were set right. The
table of en conv is unchanged.

— page 27 —

5 RESULTS Magnus Andersson

Figure 8: What the variables en conv and imp prim from are suppose to contain
if all constraints are correctly defined. See List of Acronyms for explanation to
the acronyms.

— page 28 —

5 RESULTS Magnus Andersson

5.4 Simple Model 2 Functionalisation

After the implementation of simple-model 2 there were mainly three things that
needed to be changed in the optimization environment. The smallest of these
was that the structuring system previously described as sets was expanded to
include the input data.

The list builder, see simple-model 1 functionalisation, could now browse the
input data tables and request data with the use of sets. The data tables got
individual search engines which made it easier to find errors in the search engines
as that could be tested individually. It also reduced the amount of code as the
search engines only needed to be written once.

5.4.1 Variables

A new function called EPF-set! was introduced. This is where variables are
introduced in the GAMBIT environment. In figure 8 above it can be seen that
en conv has 48 degrees of freedom or dimensions. The EPF of EPF-set! stands
for Element Position Function. EPF-set! finds the index of a certain dimension
of a variable provided the set configuration of this particular dimension. This
information is then used to set a constraint.

As there are now more than one variable EPF-set! also require the index of
the variable that the constraint is to be applied to. en conv has index 1 as it
was introduced first and imp prim from has index 2. It is this variable index
that becomes the variables in the new environment.

The variable indexes are needed because all sets were already looped throw
once in en conv. As the sets or at least most of the sets now need to be looped
through twice to capture the model an index is needed to separate time step
1990 of en conv from time step 1990 of imp prim from.

It was mentioned earlier that the use of both imp prim from(e in, R exp,
R imp, t) and imp prim from(e in, R imp, R exp, t) in the constraints was not
accidental. As variables are now part of the environment a distinction could be
made between two different types of variables. In the GAMS version of GET-RC
they are referred to as red and green variables.

When these different variables are declared in GAMS no difference are made
between them, both are declared in the computers memory and sent onwards
to the optimizer. In the GAMBIT environment green variables are treated
separately. imp prim from(e in, R imp, R exp, t) is actually a third variable in
simple-model 2 but it does not allocate any new memory, nor is it needed in the
calculations.

— page 29 —

5 RESULTS Magnus Andersson

The variables in the GAMBIT environment are a little different from the
variables of GAMS. en conv need 48 degrees of freedom or dimensions but these
are not stored in the variable itself. The variable only contains directions as to
where the dimensions can be found. Many variables can therefore be declared on
the same dimensions. The third variable of simple-model 2 has another sorting
of the contents of the second variable imp prim from. This new sorting is better
suited for calculating on exports instead of imports as before.

In simple-model 2 this resorting of imp prim from does not make much of
a difference as there are only two regions but simple-model 3, which has ten
regions, the difference is significant. Furthermore if the third variable had been
declared with its own memory allocated simple-model 3 would have had about
twice as many dimensions to account for.

5.4.2 Sets

Something more should be said about the new sets as well. The biggest difference
worth to be noticed is that the new sets can be subjected to some limitations and
constraints. In GAMS for example the sets R imp and R exp are used to make
sure a region does not import from it self. But in the GAMBIT environment
there is only one set called R which is then subjected to the necessary constraints
to fit the variable.

What this brings along is that the size of the sets can be changed easily as
the new model can adapt to this automatically through the constraints on the
sets. This makes it easier to search for errors as the model can be scaled down
to only a few regions and time steps when needed. To do this in GAMS all
sets related to each other needed to be modified and all data tables must be
edited to fit the smaller sets. In the new environment only one index needs to
be changed, that is the index that defines the size of a set.

5.4.3 Example

Below in figure 9 is a Excel table of the first time-step of the second and third
variable of simple-model 2. For clarity of the difference a third region has been
added called PAO that is not present in simple-model 2. Look especially on how
the variable indexes in the bottom row of the two tables are different.

— page 30 —

5 RESULTS Magnus Andersson

Figure 9: The difference between the variables imp prim from(e in, R exp,
R imp, t) and imp prim from(e in, R imp, R exp, t). See List of Acronyms
for explanation to the acronyms.

— page 31 —

5 RESULTS Magnus Andersson

5.5 Simple Model 3

Simple-model 3 was the last model to be implemented in this study. However
an overview of the final version of GET-RC with all variables and sets needed
is provided in section 5.7.

The introduction of simple-model 3 lead to three major changes. Firstly
plants was introduced which put a price on the process needed to transform
primary energy sources to secondary for example coal power plants. The plants
however still only produce heat or electricity. Figure 10 shows simple-model 3
as it is implemented in GAMS.

Figure 10: The simple-model 3 implementation in GAMS. See List of Acronyms
for explanation to the acronyms.

A couple of new variables are introduced in the GAMS implementation.
agg emis is a summation of c emission and neither are part of the cost min-
imization, since emission constraints are not yet included in simple-model 3.
cap invest contains the capacity (TW) of plants that is to be built. Capacity
(TW) is a subset variable built from cap invest, the constant tables init cap and
life plant and is constrained by en conv to contain a capacity of adequate size.
cost cap is a subset summation of capacity of the unit GUSD.

The double arrow in figure 10 refers to a process that builds the capacity
and cap invest variables one time-step at a time. These two variables are inter-
connected because every new investment is effected by the current capital and
demand. Likewise the current capital is dependent on the investment in the last
time step.

Therefore it is hard to say which variable here that is a foundation for the
other as there is a time-step dependency involved and thus the arrow is a double
arrow is used to describe this interaction.

— page 32 —

5 RESULTS Magnus Andersson

Secondly the energy conversion plants could be of different types introducing
a new set called type. This set monitors whether the power plant has carbon
dioxide capture, co-generation of heat or both carbon capture and co generation.
The plants can also be traditional power plant with neither of the two. Simple-
model 3 include the traditional power plants only but the set type was judged
easiest to introduce anyway to find the right values in the input data and more.

Thirdly the old sets e in, R and t were expanded. A table of the five sets
and what they contain is shown in table 3 below.

Table 3: The contents of the sets in simple-model 3. See List of Acronyms for
explanation to the acronyms.

e in e out type R t
Coal Heat 0 NAM 1990
Oil Elec - EUR 2000
NG - - PAO 2010
Bio - - FSU 2020
Nuclear - - AFR 2030
Wind - - PAS 2040
Hydro - - LAM 2050
Solar - - MEA 2060
- - - CPA 2070
- - - SAS 2080
- - - - 2090
- - - - 2100
- - - - 2110
- - - - 2120
- - - - 2130
- - - - 2140

— page 33 —

5 RESULTS Magnus Andersson

Just as before all the subset variables and variables outside the constraints
are removed in the new implementation. cap invest is therefore the only new
variable in the Gambit implementation of simple-model 3 and any new con-
straints apply to this new variable. Figure 11 shows an overview of the new
implementation of the model.

Figure 11: The simple-model 3 implementation in GAMBIT. The variables,
parameters and sets are described in Appendix C.

The constraints are the same as in simple-model 2 (see formula 7 and 8) but
one new constraint is added to make sure the cap invest variable is large enough
to cover the need of plants (see formula 9).

∑

e out

en conv(e in, e out, R, t) +
∑

R exp

imp prim from(e in,R exp,R imp, t)−

∑

R imp

imp prim from(e in,R imp,R exp, t) ≤ supply pot(e in,R, t)

(7)

∑

e in

en conv(e in, e out, R, t) ∗ effic(e in, e out, t) ≥ dem reg(e out, R, t) (8)

en conv(e in, e out, R, t) ∗ effic(e in, e out, t)

−cLf ∗MPY ∗ dept−t erl
∗ cap invest(e in, e out, R, t)

≤ cLf ∗MPY ∗ dept−1
∗ init cap(e in, e out, type,R)

where :

cLf = lf(e in, e out, type,R)

MPY = Msec per year = 3.6

dep = e10∗lg(1−(1/life plant(e in,e out,type))

1 ≤ t erl ≤ t

(9)

— page 34 —

5 RESULTS Magnus Andersson

In this formula 9 t erl might need some more explanation. t erl is apart of
the set t but is looped over once for each time step t. The loop then goes from
1 to the current value of t. In the equations t refers to the index of the time
step where 1990 is index 1 as it is the first. All this is needed to capture the
old mechanism of the interaction between capacity and cap invest in the GAMS
implementation described previously.

The term lf in formula 9 is a constant table containing the so called load
factors of the plants. A power plant’s load factor is the fraction of it’s maximum
capacity over a year that can be utilized. This is due to many factors such as
repairs and limitations on technologies them selves.

The term MPY is a constant containing an approximate value of the number
of seconds on a year. The unit is Millions of Seconds per Year.

MPY = 60 ∗ 60 ∗ 24 ∗ 365 ≈ 3.6Millionsofsecondsperyear (10)

The objective function (see formula 11) is similar to the earlier version, but
two things has changed. Firstly a coefficient called OM cost is added to the
first term of the objective function. It is the cost of using the plants and it is
dependent on the amount of primary energy resources that is converted. It was
therefore easiest to let the first term of the objective function handle this cost
too as en conv is there.

Secondly a new third term, cap invest, is added to the objective function
handling the cost of building new plants

min(t step ∗
∑

e in,
e out,
R,t

(en conv(e in, e out, R, t) ∗ (D + E)

+(A+B + C) ∗ imp prim from(e in,R exp,R imp, t)

+cost inv mod(e in, e out, type) ∗ cap invest(e in, e out, R, t)))

where :

A = imp cost(R exp,R imp)

B = imp cost lin(e in)) ∗ distance(R exp,R imp)

C = price(e in,R exp)− price(e in,R imp)

D = price(e in, e out, t)

E = OM cost(e in, e out, type, t)

(11)

cost inv mod is a constant table containing the cost of increasing the capac-
ity of that particular kind of plant with one TW.

Below in figure 12 is the Excel version of the simple-model 3 variable layout
used during the implementation. It shows as before what the variables are
suppose to contain when the constraints are set right. Due to the expansion
of the original sets in this model the table now does not show the complete
variables but only a fraction of the first time step.

— page 35 —

5 RESULTS Magnus Andersson

Figure 12: What the variables en conv, imp prim from and cap invest are sup-
pose to contain if all constraints are correctly defined. See List of Acronyms for
explanation to the acronyms.

— page 36 —

5 RESULTS Magnus Andersson

5.6 Solving Times for the New and the Old Implementa-

tion

As simple model one, two and three are now all simplified and reimplemented
into the new optimization environment it is time to see if this had any effect
on the solving times of the model. Table 4 and 5 below show the solving-time
of the original simple model 3 in the previous GAMS-CPLEX environment and
the new simple model 3 in the new GAMBIT-GUROBI environment with two
different solver methods. The numbers below are in CPU-time.

Table 4: Solving Time of Simple Model 3 in CPLEX with the GAMS implemen-
tation

Cores 1 2 4
Simplex 0.27 0.37 0.35
Dual Simplex 0.35 0.35 0.34

Table 5: Solving Time of Simple Model 3 in GUROBI with the GAMBIT im-
plementation

Cores 1 2 4
Simplex 0.35 0.35 0.35
Dual Simplex 0.18 0.17 0.18

Below are some things worth noticing in the tables that will be discussed in
more detail in the discussion.

From Table 4 it can be seen that when using one or two cores the solving
times are similar between the Simplex and Dual Simplex method for CPLEX.
But when 1 core is being used only, the GAMS-CPLEX environment solve simple
model 3 faster with the Simplex method, even faster than with the Dual Simplex
method and two cores.

From Table 5 it can be seen that regardless of how many cores that are being
used GAMBIT-GUROBI can solve simple model 3 faster when using the Dual
Simplex method, compared to the Simplex method.

Finally by comparing the two tables to each other it can be seen that the
solving times of simple 3 in dual simplex can be halved by using the GAMBIT-
GUROBI environment instead of GAMS-CPLEX.

Both CPLEX and GUROBI supports a third method called Barrier but it
was very hard to extract reliable figures on those solving times. The barrier
solving-time was approximately 0.4 seconds or 1.6 seconds for both models de-
pending on if the CPU-time or the total elapsed time is measured.

5.7 The Smallest Linear Combination of the GET-model

Although reimplementing the whole model into scheme fell out of the time frame
of this project it would give a more complete picture to show how the entire
GET-RC 6.1 look like in this smallest linear combination. This new perspective
of the GET-RC 6.1 model is found by analogically applying the same methods
as explained earlier in the reimplementation of simple model 1 to 3.

— page 37 —

5 RESULTS Magnus Andersson

Simple model 6 is identical to GET-RC 6.1, therefore the documentation on
the simple models are used in this analysis too (Grahn et al, 2013). Between
simple model 3 and 6 the model is enlarged in two steps. New in these simple
model versions 4 and 5, are features as import and export of energy carriers,
co-generation of electricity and heat, the option of carbon capture and storage,
the carbon cycle module, the emission constraints, the discount factor, as well
as the entire infrastructure and transport module. As before the green variables
need to be identified and removed to simplify the calculations

The variable layout for simple model 5 and 6 are identical therefore only the
constraints of simple model 5 are necessary to get the variable layout above.
The new constraints introduced in simple model 6 only restricts the freedom of
the variables that were already declared in simple model 5. These constraints
should therefore be applied in another manner which is explained in more detail
in the next section.

For a more complete and more mathematical explanation on how the green
variables are identified and how the smallest linear combination of the GET-
model is found, see Appendix A.

Figure 13 shows a flowchart of the final simplified or more dense GET-RC
model. Below are also pictures of the final model’s variable layout. These are
Figures 14, 15, 16 and 17.

— page 38 —

5 RESULTS Magnus Andersson

F
ig
u
re

13
:
T
h
e
G
E
T
-m

od
el

a
s
it
is

im
p
le
m
en

te
d
in

G
A
M
B
IT

.
T
h
e
a
rr
o
w
s
in

th
e
fi
gu
re

re
p
re
se
n
t
th
e
co
n
st
ra
in
ts

a
n
d
th
e
re
d
te
xt
s
a
re

th
e

va
ri
a
bl
es
.
S
o
m
e
m
o
re

im
po
rt
a
n
t
co
n
st
a
n
ts

a
re

a
ls
o
sh
o
w
ed

in
bl
u
e
in

th
e
fi
gu
re
.
T
h
e
le
tt
er
s
a
d
d
ed

in
pa
re
n
th
es
es

a
n
d
se
pa
ra
te
d
by

co
m
m
a

re
p
re
se
n
ts

se
ts
.
A
ll
va
ri
a
bl
es

a
re

pa
rt

o
f
th
e
o
bj
ec
ti
ve

fu
n
ct
io
n
.
F
o
r
d
es
cr
ip
ti
o
n
o
f
co
n
st
a
n
ts

se
e
A
p
pe
n
d
ix

C
.
F
o
r
d
es
cr
ip
ti
o
n
o
f
se
ts

a
n
d

va
ri
a
bl
es

se
e
A
p
pe
n
d
ix

A

— page 39 —

5 RESULTS Magnus Andersson

Figure 14: The contents of the variables en conv and imp prim from in the
simplified GET-RC 6.1 model. See List of Acronyms for explanation to the
acronyms.

— page 40 —

5 RESULTS Magnus Andersson

Figure 15: The contents of the variables cap invest and eng invest in the simpli-
fied GET-RC 6.1 model. See List of Acronyms for explanation to the acronyms.

— page 41 —

5 RESULTS Magnus Andersson

Figure 16: The contents of the variable trsp energy in the simplified GET-RC
6.1 model. See List of Acronyms for explanation to the acronyms.

— page 42 —

5 RESULTS Magnus Andersson

Figure 17: The contents of the variables imp sec from and infra invest in the
simplified GET-RC 6.1 model. See List of Acronyms for explanation to the
acronyms.

5.7.1 The Constraints of Simple 6

Simple model 6 add a number of constraints on the model that shapes the model
results to what actually was done in society the last couple of years. It has never
been said that the GET model can tell us about how the future will be it simply
tells us the least costly way to reduce the carbon dioxide emissions out of today’s
perspective under different technology and cost assumptions.

But as people do not always take the least costly way and as changes are not
always made so fast something needed to be done to the starting conditions and
constraints of the model to make it still valid today. These conditions made the
original implementation go from taking a fraction of a second to a few minutes.

In the new implementation it is easier to split the GET-model into different
sections based on fractions of the models sets. This is mainly due to the fact that
the model can be made to loop over a subset of the original sets. By changing
an index or so at the top of the program code the model can be made to start
the optimization at 2010 instead of 1990. An unexpected strength of the new

— page 43 —

5 RESULTS Magnus Andersson

model is therefore that some of new constraints introduced in simple 6 will turn
into boundary conditions instead of optimization constraints.

The rest of the constraints in simple 6 introduces a couple of upper and lower
bounds on the model variables. These constraints do not fall out as boundary
conditions still they should not be as devastating to the calculation time as
in the original implementation as they will have to be rewritten to act more
on the model core (the red variables) rather than the model crust (the green
variables). The new implementation of simple model 6 will most likely be slower
than the new simple model 5 but this time difference should be smaller than in
the original implementations of simple 5 and 6.

5.7.2 Calculating the Values of the Green Variables

As described earlier the green variables were removed in the reimplementation.
This mainly because they were expected to slow down the calculation process
without adding any new degrees of freedom that were needed.

It should be pointed out however that, as the new implementation is math-
ematically equivalent to the previous, a simple script can be made to calculate
the values of all the green variables from the values of the seven red variables.

That script should be fairly straight forward to make but for some directions
see the explanations of how the green variables were removed in the descriptions
of the reimplementations of simple 1 throughout 3. The report describing the
original implementation could also be of help (Grahn et al 2013).

5.7.3 A new view of the GET-model

Throughout this report an attempt has been made at describing the model in the
same terminology as it has been viewed in previous publication and reports by
physical resource theory. This has sometimes had the consequence that certain
points were hard to make and show to the reader. Approximations were needed
to display the reimplemented model in the old fashion.

In Appendix A therefore can be found an attempt at describing the new
implementation of the GET-model in a more strictly mathematical point of
view, following the process described in the sections Method and Results in this
report.

— page 44 —

5 RESULTS Magnus Andersson

5.8 Pre-requisites for Carbon Dioxide based Synthetic Fu-

els

In the original GET-RC model version it is found that water splitting into
hydrogen and oxygen using solar energy is a cost-effective solution in a future
carbon constrained world (Grahn 2009). This is the model’s way to be able to
use a large amount of intermittent energy, since wind and direct solar electricity
together are maximized to 30% of a region’s electricity demand.

It would be interesting to see if the model might shift from storing inter-
mittent energy in hydrogen to instead store the energy in carbon dioxide based
synthetic fuels, and if so under what circumstances and in what regions this
would be most used.

Since there is no commercial production of synthetic fuels from carbon diox-
ide and water today, it is not possible to know the exact data on for example
conversion efficiencies and investment costs of the different conversion facilities.
To analyze the role of these fuels it is necessary to make guesses and test how
the results depend on changing these guesses in a range of sensitivity analyzes.
For more about synthetic fuels from carbon dioxide and water see (Mohseni
2012) and (Graves et al 2011).

When developing the model in order to analyze the role of synthetic fuels
from carbon dioxide and water we need to make assumptions on:

• The cost of extracting carbon dioxide from different sources.

• The cost of producing fuels from carbon dioxide and water which may
include

– pre-treatment of the carbon dioxide (remove unwanted molecules,
e.g., sulphure) and if needed convert carbon dioxide to carbon monox-
ide

– produce hydrogen from water (electrolysis and other)

– a facility for mixing carbon dioxide and hydrogen or carbon monoxide
and hydrogen, to produce synthetic fuels

– eventual investments for co-generation of fuels and heat that can be
sold for district heating.

• For all investments done we need data on

– the capital cost of each investment,

– the energy use for the process (conversion efficiency),

– the life time of the investment,

– a capacity factor, i.e., how many hours per year a facility may run
on full capacity and

– the operation and maintenance costs.

— page 45 —

5 RESULTS Magnus Andersson

Firstly it should be relatively easy to find data on the cost of extracting
carbon dioxide out of exhaust gases or pure carbon dioxide streams (from for
example ethanol or biogas production facilities) but much harder to find reli-
able date on the cost of extracting carbon dioxide from the atmosphere. Both
alternatives are interesting but out of the long term perspective only the later.
To start the development however exhaust gases are interesting too in order to
reduce the emissions during the phasing out of fossil fuels.

Splitting of carbon dioxide into carbon monoxide and oxygen is not a very
well developed technology. Some more theoretical studies was found during
this project but there is currently a large uncertainty regarding what cost that
should be implemented in the model (Miller 2007; Stoots et al 2009). More
research in order to develop the technology is needed.

The technology for producing hydrogen from water via electrolysis is well
known, but more advanced technologies that have the potential of producing
hydrogen a lower cost is still under development and therefore uncertain to
estimate.

The investment cost of the facility that can convert the hydrogen and car-
bon monoxide mix (or the hydrogen and carbon dioxide mix) to synthetic fuels
(e.g. methane, methanol, DME, gasoline or diesel) is uncertain but in (Mohseni
2012) estimated to approximately 1800 EUR/kW, including the electrolyzer, the
sabatier tehnology for methane synthesis from hydrogen and carbon dioxide, gas
storage and district heater connection.

One option to get this new production technology into the model might
be to separate current gasification technology (that in the model leads to the
production of synthetic fuels BTL, CTL or GTL) into two processes, one facil-
ity producing the syngas and one facility where the syngas is synthesized into
the fuel. The stand alone FT process could then be fed by either the syngas
produced from carbon dioxide or the syngas of the gasification processes.

— page 46 —

6 DISCUSSION Magnus Andersson

6 Discussion

As is showed above the GAMS and GAMBIT systems are fairly similar in speed
in the Simplex case. The reason for why CPLEX in the GAMS system has
different speeds for the number of cores is hard to say. It is probably due to the
time needed to set up the problem rather then the solving time.

In the Dual Simplex case however the new GUROBI-GAMBIT system with
the smallest linear combination is about twice as fast. This makes sense as the
new version of the model should be more adapted to the computer and thereby
decrease the workload of solving the problem.

This more computer orientated implementation does not necessary mean
that it is more difficult to work with the new environment than GAMS. Setting
up the environment and making the optimizer available to the user is difficult
but to use the new environment to further develop the GET-model is not as
difficult.

It may require a more mathematical approach as scheme is a functional
programming language but the whole point of functional programming is to
make it easier for the user to command the computer do all the hard work. As
that is already done all that is needed to further develop the model is to add
variables missing from simple 3 to simple 5. This work should be of a more
mechanical nature as the last variables can be added in a very similar way as
the variables previously implemented in the model.

The use of the smallest linear combination drastically reduced the number
of variables and is likely to have even greater effect as simple 4 throughout 6 are
implemented. This is mainly because the largest variable of the mathematical
interpretation of the GET-RC model is trsp energy. It is more than twice as big
as any other variable in the model. This means that very many green variables
were declared to handle this function in the GAMS environment.

There are therefore good reasons for believing that the time-gap between
the environments will increase slightly when more of the model is implemented,
leading to that the new system might become more then twice as fast. As asked
for the new environment is also built only on open-source apart from GUROBI
which however is free for academic use.

Some more details should be given on why Barrier in the end was excluded
from the results section. It would have been possible to extract some numbers
of the Barrier time as well but much less reliable then those of Simplex and Dual
Simplex as mentioned in the results. However the GET-model in its entreaty too
is a small model. Even with Simple 6 it is possible that the Barrier optimization
method would spend most time on setting up the calculations and not counting.

As dual simplex is a simpler solving method it uses more time to calculate
and less on setting up the problem. Dual simplex should therefore say more of
the environment setting up the problem rather then the optimizer. As this is
supposed to be an evaluation of GAMS rather than CPLEX barrier was excluded
as that data is both less reliable due to the problems of extracting data and less
relevant.

— page 47 —

7 CONCLUSIONS Magnus Andersson

7 Conclusions

As the new GUROBI-GAMBIT system written in Scheme was proven to be
twice as fast as the original for simple model 3 it should be safe to conclude that
a complete GET-RC 6.1 reimplementation atleast should not be slower than
the original GAMS implementation. If any the new implementation should be
faster even when the final constraints of simple 6 are implemented.

The fact that GAMBIT is open-source and GUROBI free for academic use
should also be to the new systems advantage. The new GUROBI-GAMBIT
environment is simply twice as fast and for free.

A mathematical interpretation of the GET-model has been found which can
be implemented in the new environment. It is built up by 7 variables instead of
the about 45 variables of the original GAMS implementation. Due to this less
constraints were needed too.

Pre-requisites needed to implement fuels from carbon dioxide and water
has been found. More research to get good data is needed as a commercial
technology for making carbon monoxide from carbon dioxide was not found.
The ones in existence were more on the experimental stage still.

However, model runs to get interesting insights can be made from testing
a range of cost assumptions and shed some light of under what circumstances
synthetic fuels from carbon dioxide and water can be a cost-effective solution
for the transportation sector.

7.1 Conclusions in Short:

• The new version of the model is twice as fast as the original and for free.

• The model are most likely faster than the original when the remaining 5
variables of the mathematical interpretation are implemented too.

• A mathematical interpretation of the complete GET-RC 6.1 model has
been found.

• Pre-requisites needed for implementing carbon dioxide based fuels has
been identified.

— page 48 —

8 FURTHER WORK Magnus Andersson

8 Further Work

What can be done in the future is to complete the reimplementation of the
model into the new GAMBIT-GUROBI optimization environment. If it would
be necessary to use the solution method Barrier to solve Simple 6 a little faster
the new Environment already supports this solution method. Some work can
also be devoted to develop the new environment with perhaps a graphical user
interface.

An earlier implementation in the environment of the sparse matrix format
would be good too. As the first two simple models had 48 respectively 72
degrees of freedom it was not judged necessary to implement a system for virtual
matrixes. Instead in the constraint matrix of simple model 2 for example 72
zeros are declared for every constraint and then 2 or 4 of these were changed to
something else than zero in each row.

Simple model 6 has 48480 degrees of freedom so declaring 48480 zeros for
each constraint in the constraint matrix is not an option. The environment is
however built in many small sections interacting with each other at the beginning
and end of a task but otherwise working independently. It should therefore be
relatively easy to make changes to the construction of the constraint matrix
so that one main vector of many sub vectors is declared once in the beginning
instead of one giant matrix mainly containing zeros.

The main vector should contain 48480 sub vectors. The constraints are then
added to these sub vectors as a set of sub sub vectors with two elements each.
The system here is that the sub vectors defines the columns of the virtual matrix
while the sub sub vectors defines the row number as one of there entries. The
other entry in a sub sub vector should contain the desired value at that location
in the constraint matrix.

This virtual vector can be searched through much faster to find the entries
that are to be forwarded to the optimizer.

— page 49 —

8 FURTHER WORK Magnus Andersson

• Andersson M. (2012) On this page you can find the GUROBI FFI de-
veloped in this project. It is item 6 under the Math heading. http:

//dynamo.iro.umontreal.ca/wiki/index.php/Dumping_Grounds

• Azar C., Lindgren K. and Andersson B. A. (2003) Global energy scenar-
ios meeting stringent CO2 constraints – cost-effective fuel choices in the
transportation sector Energy Policy 31(10): 961–976.

• Berndes G., Hoogwijk M. and van den Broek R. (2003) The contribution of
biomass in the future global energy supply: a review of 17 studies. Biomass
& Bioenergy 25(1): 1-28.

• Börjesson P. (2007) Produktionsförutsättningar för biobränslen inom sven-
skt jordbruk [Production conditions of bioenergy in Swedish agriculture]
and Förädling och avsättning av jordbruksbaserade biobränslen [Conver-
sion and utilisation of biomass from Swedish agriculture]. Two reports
(Lund reports No 61 and 62) included as Appendix to Bioenergi fr̊an
jordbruket – en växande resurs [Appendix to Bioenergy from Swedish
agriculture – a growing resource], Statens offentliga utredningar 2007:36.
Jordbrukets roll som bioenergiproducent Jo 2005:05. Available at http:
//www.regeringen.se/content/1/c6/08/19/74/5c250bb0.pdf.

• Carbon Recycling International (2012) http://www.carbonrecycling.

is/

• Godfray H.C.J. (2010) Food Security: The Challenge of Feeding 9 Billion
People. SCIENCE, vol. 327, ss. 812-817.

• Grahn M. (2009) Cost-effective fuel and technology choices in the trans-
portation sector in a future carbon constrained world - results from the
Global Energy Transition (GET) model. Thesis for the degree of Doctor
of Philosophy in Energy and Environment. Physical Resource Theory,
Chalmers, Sweden.

• Grahn M., Azar C., Williander M.I., Anderson J.E., Mueller S.A., Walling-
ton T.J. (2009) Fuel and Vehicle Technology Choices for Passenger Ve-
hicles in Achieving Stringent CO2 Targets: Connections between Trans-
portation and Other Energy Sectors Environmental Science and Technol-
ogy (ES&T) 43(9) 3365-3371.

• Grahn M., Klampfl E., Whalen M.J., Wallington T.J., Lindgren K. (2013)
Model description of the linearly programmed long-term energy systems
cost-minimizing model GET-RC 6.1. Report. Physical Resource Theory,
Chalmers, Sweden.

• Graves C., Ebbesen S.D., Mogensen M., Lackner K.S. (2011) Sustainable
hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear
energy. Renewable and Sustainable Energy Reviews 15: 1–23

• Grübler A. (1998) Technology and Global Change. Cambridge: Cambridge
University Press.

— page 50 —

8 FURTHER WORK Magnus Andersson

• Hedenus et al (2010) Cost-effective energy carriers for transport - the role
of the energy supply system in a carbon-constrained world. International
Journal of Hydrogen Energy 35 (10) pp. 4638-4651.

• Holmberg J. (1995) Socio-Ecological Principles and Indicators for Sustain-
ability. PhD Thesis, Physical Resources Theory, Chalmers University of
Technology, Sweden.

• Huang C., T-Raissi A. (2005) Analysis of sulfur-iodine thermochemical
cycle for solar hydrogen production. Part I: decomposition of sulfuric acid
Solar Energy, vol. 78, ss. 632-646.

• IEA (2012) International Energy Agency Statistics. Global primary energy
supply. Available at http://www.iea.org/stats/pdf_graphs/29TPES.

pdf

• IPCC, Solomon S. D., Qin M., Manning Z., Chen M., Marquis K.B.,
Averyt M., Tignor and Miller H.L. (eds.) (2007) Summary for policymak-
ers. In: Climate Change 2007: The Physical Science Basis. Contribution
of Working Group I to the Fourth Assessment Report of the Intergov-
ernmental Panel on Climate Change Cambridge University Press, Cam-
bridge, United Kingdom and New York, NY, USA. Available at http:

//www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf

• Kelsey R., Clinger W. & Rees J. (1998) Revised5 Report on the Algorithmic
Language Scheme

• Kernighan B. W., Ritchie D. M. (1988) The C Programming Language
Second Edition Courier Stoughton in Stoughton, Massachusetts

• Miller J.E. (2007) Initial Case for Splitting Carbon Dioxide to Carbon
Monoxide and Oxygen Springfield: U.S. Department of Commerce, Na-
tional Technical Information Service.

• Mohseni F. (2012). Power to gas – bridging renewable electricity to the
transport sector. Licentiate Thesis in Chemical Engineering and Technol-
ogy, KTH, Stockholm.

• More M. (2008) A Tour of Scheme in Gambit Granted for free unlimited
distribution presuming these original notices are maintained. Distributed
in PDF, HTML and Microsoft Word formats.

• Nino J., Hosch F. A. An Introduction to Programming and Object-Oriented
Design Using Java Third Edition John Wiley & Sons, inc.

• Nordling C., Sterman J. Physics Handbook for Science and Engineering

• de Pater I., Lissauer J.J. (2001) Planetary Sciences. Cambridge: Cam-
bridge University Press.

• Ponting C. (2007) A New Green History of the World Vintage Books
London

— page 51 —

8 FURTHER WORK Magnus Andersson

• Rosenthal R.E. (2012) GAMS - A User’s guide. Tutorial. GAMS Devel-
opment Corporation, Washington, DC, USA. December 2012. Available
at: http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf

• Salomon D. (1993) Assemblers and Loaders Available at: http://www.

davidsalomon.name/assem.advertis/asl.pdf

• Sasol, for synfuel production history see: http://www.sasol.com/sasol_
internet/frontend/navigation.jsp?navid=21300010&rootid=2 or main
page at http://www.sasol.com/

• Stoots C.M., O’Brien J.E, Condie K.G., Hartvigsen J.J (2010) High-
temperature electrolysis for large-scale hydrogen production from nuclear
energy - Experimental investigations. SCIENCE, vol. 327, ss. 812-817.

• Vitart X., Le Duiguo, A., Carles, P. (2006) Hydrogen production using the
sulfur-iodine cycle coupled to a VHTR: An Overview Energy Conversion
and Management, vol. 47, ss. 2740-2747.

• Wayne V. (2009) Landmarks for Sustainability. Sheffield: Greenleaf Pub-
lishing Ltd.

— page 52 —

9 APPENDIX A - THE REIMPLEMENTATION IN MATHEMATICAL TERMS Magnus Andersson

9 Appendix A - The Reimplementation in Math-

ematical Terms

9.1 Introduction - What is an Optimization Environment

As explained earlier, when the GET-Model was reimplemented another structure
and terminology was used to sort and calculate the data then what has been
used in the description of the original GAMS implementation of the GET-model
(see Grahn et al 2013; Grahn 2009). For better understanding the original
terminology was used in the main parts of this report.

This however came with a price, although the reader might recognize things
easier, the original terminology is not wide enough to capture some of the new
concepts introduced in the reimplementation and can therefore be misleading
when describing the new implementation. Below therefore follows an explana-
tion of the new structure of the GET-model with the use of a slightly more
algebraic orientated terminology.

But first, to be able to rewrite the GET-model to a functional program-
ming language, or any programming language other than the GAMS language,
a mathematical interpretation of the model was needed. More precisely the
GAMS code of the GET-model does not contain the explicit structure of how
the computer should execute the model.

Instead the original programming code is a set of instructions to GAMS
defining what the model should describe. It is then up to the optimization
environment, GAMS, to construct an executable program code out of these
instructions.

Understanding human philosophy and translate this into a mathematical
model and back again is not a computers strong suit. Therefore, to make this
collaboration between man and machine work, the instructions about the GET-
models functionality given to GAMS must be made in a certain way. Most of
the philosophy and all the considerations must be left for the programmer to
handle when the instructions to GAMS are made.

The computer can then however handle more low level programming func-
tions such as repeating certain code over again or syntax needed for the model.
GAMS can for example rewrite the GET-model to fit with many different op-
timizers. This turns GAMS into something of a compiler, described earlier in
section 3.1, as GAMS handle the more low level programming for the user.
GAMS however does a little than a mare compiler as it also presents the results
for the user in a graphical interface and handle the relation with the optimizer
or solver. Thus GAMS is not just a compiler but an optimization environment.

Because of this big work done by GAMS the first thing that was needed to
rewritable the GET-model to a new language was a mathematical mapping or
interpretation of the GET-model which a computer could execute without the
help of an optimization environment.

Finding this mathematical interpretation of the GET-RC 6.1 is what has pre-
viously been described as ”simplifying the GET-model’s algorithms” or ”finding
the smallest linear combination”. It is also this process that has lead forth to
this new terminology for describing the GET-model which is introduced in this
appendix. It is the mapping described here that has been the foundation for
the final simplified model described in the results section 5.7.

— page 53 —

9 APPENDIX A - THE REIMPLEMENTATION IN MATHEMATICAL TERMS Magnus Andersson

The two biggest differences between the original terminology for describing
the GET-model and the terminology of this appendix are explained in two sep-
arate sections below called ”Unit Vectors vs. Sets” (9.2.1) and ”Systems vs.
Variables” (9.2.2). After that the process of identifying red and green variables
are shown in section 9.3 and finally the new implementation is described with
the new terminology in section 9.4.

9.2 The New Environment - Why the new implementation

was faster

The new terminology or structure of the GET-model described in this appendix
is also used in the new programming code. The new model code are showed
in full in appendix B including simple model one, two and three. A difference
is that the new model code contain both the functionality of an optimization
environment, previously handled by GAMS, and the more explicit GET-model
code.

In this way the mapping of the GET-model was also used to construct what
can be called the new optimization environment. To make the model mapping
and the new optimization environment fit together however certain changes were
made compared to GAMS which is the reason for why section 9.3 and 9.4 in this
appendix are needed. It was found that some of the work previously done by
the optimization environment, GAMS, was more a good job for the user rather
then something to leave to the environment.

This is the main reason for way the new implementation of the GET-model is
running faster on a computer than the original GAMS implementation. The new
optimization environment is written specially for the GET-model. It requires a
little more of the user but in return gives more freedom for the composition of
the model. This is described in more detail in the upcoming sections.

9.2.1 Unit Vectors vs. Sets - The GET-Model Room

By studying the model description of GET-RC 6.1 (Grahn 2009) it was found
that the GET-model could be described as a linear combination of five (here
in this Appendix called) unit vectors. In GAMS such unit vectors are called
sets or rather a set is a collection of some or all entries available along one unit
vector axis.

For example the GET-model have a set T containing all the time steps of
the model but also a smaller set t containing a subset of all the time steps in the
model. In the new environment only one unit vector is declared for time which
is common for the whole model. How this effects the variables are described in
the next section.

The term unit vectors refers to the point of view where the solution to the
problem is a GET-model. In short to get an overview of what degrease of
freedom that the GET-model needs, a room was defined within which all the
variables of the simple models and GET-RC 6.1 could fit. The models can then
be plotted as dots in this room. The room is five dimensional and spanned by
the unit vectors.

This five dimensional point of view is a simplification that can only describe
different GET-models and there variables, not explicit solutions to any of these

— page 54 —

9 APPENDIX A - THE REIMPLEMENTATION IN MATHEMATICAL TERMS Magnus Andersson

models. In section 9.3 it will however be shown how this GET-model room can
be used to identify red and green variables.

To capture a solutions to the complete GET-RC 6.1 model a room of ap-
proximately 48480 dimensions are needed as that is the approximate number of
degrees of freedom in the final model. However only the first quadrant of such
a 48480 dimensional room is needed as all degrees of freedom in the model are
defined as equal to or larger than zero.

9.2.2 Systems vs. Variables

The five dimensional GET-model room described in the previous section can
now be used to group the 48480 degrees of freedom of the GET-RC 6.1 model
into smaller more manageable packages. In the original GAMS implementation
as explained earlier these packages are refereed to as variables causing some
confusion when one is to describe the new structure of the model.

Therefore the individual values or enteritises within the variables of GAMS
are here in this appendix called elements. Out of the computers point of view
these individual elements are the variables of the model but to not cause con-
fusion here they will be referred to as elements anyway.

In the new environment, and in the programming code showed in appendix
B, packages of elements are referred to as systems instead of variables. These
systems have many similarities to variables but are not completely equivalent.

In GAMS variables are defined as dependent on sets. The systems of the
new environment are defined as dependent on unit vectors instead of sets. In
section 9.3 figure 19 shows all systems of the new implementation and which
unit vectors that defines them.

For a system to be explicitly defined an interval on each unit vector axes of
the variable needs to be defined. These intervals are declared separately for each
variable and can easily be redefined or changed to a list of indexes where the
values along the unit vector axes even can appear in a random order if needed.

This saves some time as constraints defining certain unnecessary entries to
zero are not needed as these elements can be omitted from the systems. During
the declaration of a system sorting and if statements can also be used.

— page 55 —

9 APPENDIX A - THE REIMPLEMENTATION IN MATHEMATICAL TERMS Magnus Andersson

9.3 Identification of Red and Green Variables

Although the GET-RC 6.1 model could be defined as a point in the five dimen-
sional unit vector space, it is not unambiguously defined until every variable in
the model is defined within this space. When identifying red vs green variables
the method is to see if any of the two variable’s elements are in the same point
in the unit vector room. If the elements are in the same point they can either
both be red variables or one of them is derived from the other.

Thus another variable or to be more precise system is defined in the new
environment if there are two variables with the same unit vector properties that
can not be derived from each other. In the original GAMS implementation
many elements needed in the model were defined in more than one variable.
Therefore constraints, often containing equal signs, were needed to make sure
these different variables were in balance. These extra variables was refereed to
in the main parts of this report as green variables.

In the scheme code double declaring elements in two different variables re-
quires precisely twice as much work as declaring them once. As the constraints
balancing for example extracted coal and used coal would remove one of these
variables and thereby render the extra work completely needless, all elements
were only declared once. This is the reason for why every simple model reimple-
mentation step in the result section of this report begin by removing the green
variables.

When viewing the GET-model from the GAMS code it is not always clear
what variables that are green but it becomes clearer when the background work
of GAMS is viewed at the same time as the model code is written.

9.4 Unit vectors and Systems of GET-RC

What names that are most descriptive of GET-RC unit vectors changes a little
with the current perspective the programmer has of the model. Below are two
examples on how to describe the unit vectors, one more general and one for
a specific system of elements. These two examples are followed by figure 18
showing all the values along the unit vector axes.

Example 1 : Out of a more applied perspective of the GET-model the unit
vectors can be described as follows:

1. The primary energy resources (Source). Containing coal, oil, ...

2. The combustion types (Type). Containing conventional combustion (0),
carbon capture and storage (ccs), ...

3. Energy conversion or society services (Service). Electricity plant, BTL
plant, Personal Car transports, ...

4. The regions of the model (Region). North America, Europe, ...

5. The time steps of the model (Time Step). 1990, 2000, ...

— page 56 —

9 APPENDIX A - THE REIMPLEMENTATION IN MATHEMATICAL TERMS Magnus Andersson

Example 2 : Out of a more philosophical point of view, describing what
the unit vectors are governing for a specific system of elements, the same unit
vectors need to be described a bit differently. These descriptions are dependent
on what system the unit vectors are currently being used for. For system 1,
described more later but comparable to the variable en conv, the unit vectors
can be described as follows:

1. The amount of primary energy resources the model plan to use.

2. How primary energy resources are to be combustion.

3. What the primary energy resources will be used for.

4. In what region the production will be.

5. At what time step the production will take place.

Figure 18: The composition of the five unit vectors that are used to build the
GET-RC model. See List of Acronyms or Appendix C for explanation to the
acronyms.

— page 57 —

9 APPENDIX A - THE REIMPLEMENTATION IN MATHEMATICAL TERMS Magnus Andersson

When it comes to the systems of GET-RC, as described before in the result
section of the main report, the new optimization environment written during
this project contains a function for declaring real ”green variables” or green
systems. Instead of double declaring, the new environment can tie one element
to many systems if needed. The number of systems in the new implementation
can therefore be viewed a little differently depending on whether the green
systems are counted as well or not.

Figure 19 shows all the Systems of the GET-RC model. In the first row
describing system 1 it is shown that unit vector 2, Type, in this system builds
on unit vector 1, Source. This means that all the available entries of the first unit
vector must be looped through once to capture all possible ways of performing
the first value of Type. This shows that the number of elements needed for each
system grows very fast.

To see precisely what values each unit vector are aloud to take, in a given
system, see figure 14, 15, 16 and 17 in the results section of the main report.
As explained in section 9.2.2 not all available values for the a unit vector has to
be allowed.

Figure 19: An overview of what unit vectors each system is dependent on. For
a detailed description of the more explicit entries of each system see figure 14,
15, 16 and 17 in the results section of the main report.

— page 58 —

9 APPENDIX A - THE REIMPLEMENTATION IN MATHEMATICAL TERMS Magnus Andersson

In the objective function all the systems of variables are added together mul-
tiplied with appropriate scalars. There are 9 Systems in total but the computer
only need to declare 7 of these as the two selling systems are green systems.
The systems that are declared are therefore numbered separately in figure 19
with the letters A to G. The tasks of the systems can be described as follows:

System A (compare to en conv): System 1 is keeping track of how much
Coal and the other sources that is being used for the different services. As no
resources are allocated unless they are used this also represent how much the
plant in the different zones are used.

System B and 3 (compare System B to imp prim from): System B
keeps track of how much resources that the regions buy from each other. System
3 is a resorting of the elements of system B, sorted after how much each region is
selling to another. The amount of locally extracted resources is the used (system
1) minus what was bought (System 2) plus what was sold (System 3).

System C (compare to cap invest): System C makes sure that enough
capital is invested in to fulfill the Service demand. In this demand the needs of
System 7 is also included. This is the system for the source based services.

System D and 6 (compare System D to imp sec from): System D keeps
track on the fuel market or the buying and selling (trading) of service products.
Currently only Bio-To-Liquid (BTL), Coal-To-Liquid or Gas-To-Liquid (CTL-
GTL), and hydrogen gas (H2) can be traded. System 6 is just another sorting
of System D (for more info see System B and 3).

System E (compare to infra invest): The infrastructure of GET-RC re-
quires a separate system because it is a kind of capital related to the use of
liquid fuels but it is not compatible with the capital of transport engines. This
is the smallest system of the new mathematical interpretation.

System F (compare to trsp energy): System 7 keeps track of the service
based services. Some services are not dependent on source materials directly but
dependent on other services in between. This services are added to the model
here. System C then takes these needs into account too when calculating the
need of capital investments.

System G (compare to eng invest): This system keeps track on the capital
of transport engines. In a more philosophical perspective however it also keeps
track on all capital needed for service to service conversions. So capital for
energy conversions such as hydrogen to electricity is also watched over by this
system.

— page 59 —

10 APPENDIX B AND C Magnus Andersson

10 Appendix B and C

Appendix B contains the model code of Simple 1, 2 and 3 and the final input
data file with is common for all three implemented models. After this follows
Appendix C which contains the set and variable descriptions of the original
GET-RC Model implementation in GAMS.

— page 60 —

P
a

g
e

 1
 o

f
4

8

A
p

p
e

n
d

ix
 B

M
a

s
te

r
th

e
s

is
 a

t
P

h
y

si
c

a
l

R
e

s
o

u
r

c
e

 T
h

e
o

r
y

E
N

M
X

6
0

F
u

r
th

e
r

 p
r

o
g

r
a

m
 d

e
v

e
lo

p
m

e
n

t
fo

r
 t

h
e

 c
o

st
 m

in
im

iz
in

g

g
lo

b
a

l
e

n
e

r
g

y
 s

y
st

e
m

 m
o

d
e

l
G

E
T

-R
C

P
a

g
e

 2
 o

f
4

8

 T
h

e
 m

o
d

e
l

c
o

d
e

 o
f

S
im

p
le

 M
o

d
e

l
1

 ;
I
m
p
o
r
t
i
n
g

G
r
u
b
i

F
F
I

m
m

(
l
o
a
d

"
g
u
r
o
b
i
f
f
i
.
o
1
7
"
)

(
i
n
c
l
u
d
e

"
v
e
r
k
t
y
g
.
s
c
m
"
)

 ;
D
e
c
l
a
r
i
n
g

m
a
t
r
i
x
e
s

o
f

c
o
n
s
t
a
n
t
s

(
d
e
f
i
n
e

t
-
s
t
e
p

1
0
)

;
N
A
M

E
U
R

(
d
e
f
i
n
e

p
r
i
c
e

'
#
(
#
f
6
4
(
1
.
0

1
.
0
)

;
C
o
a
l

#
f
6
4
(
3
.
0

3
.
0
)

;
O
i
l

#
f
6
4
(
2
.
0

2
.
0
)

;
N
G

#
f
6
4
(
4
.
0

4
.
0
)
)
)

;
B
i
o

;
1
9
9
0

2
0
0
0

2
0
1
0

(
d
e
f
i
n
e

s
u
p
p
l
y
-
p
o
t

'
#
(
#
f
6
4
(
5
0
0
.
0

5
0
0
.
0

5
0
0
.
0
)

;
C
o
a
l
.
N
A
M

#
f
6
4
(
5
0
0
.
0

5
0
0
.
0

5
0
0
.
0
)

;
C
o
a
l
.
E
U
R

#
f
6
4
(
3
0
0
.
0

3
0
0
.
0

3
0
0
.
0
)

;
O
i
l
.
N
A
M

#
f
6
4
(
3
0
0
.
0

3
0
0
.
0

3
0
0
.
0
)

;
O
i
l
.
E
U
R

#
f
6
4
(
2
0
0
.
0

2
0
0
.
0

2
0
0
.
0
)

;
N
G
.
N
A
M

#
f
6
4
(
2
0
0
.
0

2
0
0
.
0

2
0
0
.
0
)

;
N
G
.
E
U
R

#
f
6
4
(
2
0
.
0

2
0
.
0

2
0
.
0
)

;
B
i
o
.
N
A
M

#
f
6
4
(
2
0
.
0

2
0
.
0

2
0
.
0
)
)
)

;
B
i
o
.

;
1
9
9
0

2
0
0
0

2
0
1
0

(
d
e
f
i
n
e

d
e
m
a
n
d

'
#
(
#
f
6
4
(
1
0
0
.
0

1
0
0
.
0

1
0
0
.
0
)

;
N
A
M
.
e
l
e
c

#
f
6
4
(
2
0
0
.
0

2
0
0
.
0

2
0
0
.
0
)

;
N
a
m
.
H
e
a
t

#
f
6
4
(
1
0
0
.
0

1
0
0
.
0

1
0
0
.
0
)

;
E
U
R
O
.
e
l
e
c

#
f
6
4
(
2
0
0
.
0

2
0
0
.
0

2
0
0
.
0
)
)
)

;
E
U
R
O
.
h
e
a
t

P
a

g
e

 3
 o

f
4

8

;
1
9
9
0

2
0
0
0

2
0
1
0

(
d
e
f
i
n
e

e
f
f
i
c

'
#
(
#
f
6
4
(
0
.
5

0
.
5

0
.
5
)

;
C
o
a
l
.
e
l
e
c

#
f
6
4
(
0
.
9

0
.
9

0
.
9
)

;
C
o
a
l
.
h
e
a
t

#
f
6
4
(
0
.
5

0
.
5

0
.
5
)

;
O
i
l
.
e
l
e
c

#
f
6
4
(
0
.
9

0
.
9

0
.
9
)

;
O
i
l
.
h
e
a
t

#
f
6
4
(
0
.
6

0
.
6

0
.
6
)

;
N
G
.
e
l
e
c

#
f
6
4
(
0
.
9

0
.
9

0
.
9
)

;
N
G
.
h
e
a
t

#
f
6
4
(
0
.
5

0
.
5

0
.
5
)

;
B
i
o
.
e
l
e
c

#
f
6
4
(
0
.
9

0
.
9

0
.
9
)
)
)

;
B
i
o
.
h
e
a
t

 (
d
e
f
i
n
e

n
S
t
e
p

3
)

(
d
e
f
i
n
e

n
Z
o
n
e

2
)

(
d
e
f
i
n
e

n
S
e
r
v
i
c
e

2
)

(
d
e
f
i
n
e

n
S
o
u
r
c
e

4
)

(
d
e
f
i
n
e

n
V
a
r

(
*

n
S
t
e
p

n
Z
o
n
e

n
S
e
r
v
i
c
e

n
S
o
u
r
c
e
)
)

 ;
D
e
f
i
n
i
n
g

a
n
d

B
u
i
l
d
i
n
g

t
h
e

e
x
p
r
e
s
i
o
n
e

t
o

m
i
n
i
m
i
c
e

o
b
j

(
d
e
f
i
n
e

o
b
j

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

(
c
o
n
s
!

(
*

t
-
s
t
e
p

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

p
r
i
c
e

(
-

c
S
o
u
r
c
e

1
)
)

(
-

c
Z
o
n
e

1
)
)
)
)

)
)
)
)
)
)
)

 ;
B
u
i
l
d
i
n
g

C
o
n
s
t
r
a
i
n
t

M
a
t
r
i
x

;
D
e
c
l
a
r
i
n
g

C
o
n
s
t
a
n
t
s

(
d
e
f
i
n
e

s
e
r
v
i
c
e
P
e
r
i
o
d

4
)

(
d
e
f
i
n
e

z
o
n
P
e
r
i
o
d

8
)

(
d
e
f
i
n
e

t
S
t
e
p
P
e
r
i
o
d

1
6
)

;
B
u
i
l
d
i
n
g

r
o
w

o
f

z
e
r
o
s

(
d
e
f
i
n
e

Z
e
r
o
s
L
i
s
t

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
o
l
l

1

n
V
a
r

(
c
o
n
s
!

0
.
)

)
)
)
)

P
a

g
e

 4
 o

f
4

8

;
A
d
d
i
n
g

u
p

r
o
w
s

t
o

f
o
r
m

C
o
n
s
t
r
a
i
n
t

M
a
t
r
i
x

(
d
e
f
i
n
e

C
o
n
s
t
r

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

;
U
s
e

L
e
s
s

t
h
e
n

S
u
p
p
l
y

;
C
o
a
l

(
f
o
r
-
i
n
t
e
r
v
a
l

r
o
w

1

6

(
l
e
t

(
(
c
R
o
w

(
f
6
4
v
e
c
t
o
r
-
c
o
p
y

Z
e
r
o
s
L
i
s
t
)
)
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
-

(
-

(
*

8

r
o
w
)

1
)

7
)

1
.
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
-

(
-

(
*

8

r
o
w
)

1
)

3
)

1
.
)

(
c
o
n
s
!

c
R
o
w
)

)
)

;
O
i
l

(
f
o
r
-
i
n
t
e
r
v
a
l

r
o
w

1

6

(
l
e
t

(
(
c
R
o
w

(
f
6
4
v
e
c
t
o
r
-
c
o
p
y

Z
e
r
o
s
L
i
s
t
)
)
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
-

(
-

(
*

8

r
o
w
)

1
)

6
)

1
.
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
-

(
-

(
*

8

r
o
w
)

1
)

2
)

1
.
)

(
c
o
n
s
!

c
R
o
w
)

)
)

;
N
G

(
f
o
r
-
i
n
t
e
r
v
a
l

r
o
w

1

6

(
l
e
t

(
(
c
R
o
w

(
f
6
4
v
e
c
t
o
r
-
c
o
p
y

Z
e
r
o
s
L
i
s
t
)
)
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
-

(
-

(
*

8

r
o
w
)

1
)

5
)

1
.
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
-

(
-

(
*

8

r
o
w
)

1
)

1
)

1
.
)

(
c
o
n
s
!

c
R
o
w
)

)
)

;
B
i
o

(
f
o
r
-
i
n
t
e
r
v
a
l

r
o
w

1

6

(
l
e
t

(
(
c
R
o
w

(
f
6
4
v
e
c
t
o
r
-
c
o
p
y

Z
e
r
o
s
L
i
s
t
)
)
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
-

(
-

(
*

8

r
o
w
)

1
)

4
)

1
.
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
-

(
-

(
*

8

r
o
w
)

1
)

0
)

1
.
)

(
c
o
n
s
!

c
R
o
w
)

)
)

;
P
r
o
d
u
c
e

m
o
r
e

t
h
e
n

D
e
m
a
n
d
e
d

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
l
e
t

(
(
c
R
o
w

(
f
6
4
v
e
c
t
o
r
-
c
o
p
y

Z
e
r
o
s
L
i
s
t
)
)

;
C
a
l
c
u
l
a
t
e

E
l
e
m
e
n
t
P
o
s
i
t
i
o
n
C
o
n
s
t
a
n
t

(
E
P
C

(
+

(
*

s
e
r
v
i
c
e
P
e
r
i
o
d

(
-

c
S
e
r
v
i
c
e

1
)
)

(
*

z
o
n
P
e
r
i
o
d

(
-

c
Z
o
n
e

1
)
)

(
*

t
S
t
e
p
P
e
r
i
o
d

(
-

c
S
t
e
p

1
)
)
)
)
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
+

0

E
P
C
)

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

e
f
f
i
c

(
+

0

(
1
-

c
S
e
r
v
i
c
e
)
)
)

(
1
-

c
S
t
e
p
)
)
)

;
C
o
a
l

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
+

1

E
P
C
)

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

e
f
f
i
c

(
+

2

(
1
-

c
S
e
r
v
i
c
e
)
)
)

(
1
-

c
S
t
e
p
)
)
)

;
O
i
l

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
+

2

E
P
C
)

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

e
f
f
i
c

(
+

4

(
1
-

c
S
e
r
v
i
c
e
)
)
)

(
1
-

c
S
t
e
p
)
)
)

;
N
G

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

(
+

3

E
P
C
)

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

e
f
f
i
c

(
+

6

(
1
-

c
S
e
r
v
i
c
e
)
)
)

(
1
-

c
S
t
e
p
)
)
)

;
B
i
o

(
c
o
n
s
!

c
R
o
w
)

)
)
)
)
)
)
)

P
a

g
e

 5
 o

f
4

8

;
D
e
f
i
n
i
n
g

n
C
o
n
s
t
r

(
d
e
f
i
n
e

n
C
o
n
s
t
r

(
v
e
c
t
o
r
-
l
e
n
g
t
h

C
o
n
s
t
r
)
)

;
D
e
f
i
n
i
n
g

p
r
o
c
e
d
u
r
e

f
o
r

b
u
i
l
d
i
n
g

C
o
n
s
t
r
a
i
n
t

V
e
c
t
o
r
s

t
o

G
u
r
o
b
i

(
d
e
f
i
n
e

(
c
o
n
s
t
r
-
>
v
b
e
g
&
v
l
e
n
&
v
i
n
d
&
v
v
a
l

c
o
n
s
t
r
)

(
l
e
t

(
(
n
-
c
o
n
s
t
r

(
v
e
c
t
o
r
-
l
e
n
g
t
h

c
o
n
s
t
r
)
)
(
n
-
v
a
r

(
f
6
4
v
e
c
t
o
r
-
l
e
n
g
t
h

(
v
e
c
t
o
r
-
r
e
f

c
o
n
s
t
r

0
)
)
)
)

;
D
e
c
l
a
r
i
n
g

C
o
n
s
t
r
a
i
n
t

V
e
c
t
o
r
s

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
5

(
c
o
n
s
!

(
l
i
s
t
-
>
s
3
2
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
4

(
c
o
n
s
!

(
l
i
s
t
-
>
s
3
2
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
3

(
c
o
n
s
!

(
l
i
s
t
-
>
s
3
2
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
l
e
t

(
(
i

0
)
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
o
l
l

1

n
-
v
a
r

;
D
e
f
i
n
i
n
g

s
u
b
l
i
s
t
s

(
l
e
t

(
(
c
l
i
s
t

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
6

(
c
o
n
s
!
6

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
7

(
c
o
n
s
!
6

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
8

;
L
o
o
p
i
n
g

t
h
r
o
u
g
h

c
o
l
u
m

(
f
o
r
-
i
n
t
e
r
v
a
l

r
o
w

1

n
-
c
o
n
s
t
r

(
l
e
t

(
(
c
-
e
n
t
r
y

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

c
o
n
s
t
r

(
1
-

r
o
w
)
)

(
1
-

c
o
l
l
)
)
)
)

(
i
f

(
n
o
t

(
z
e
r
o
?

c
-
e
n
t
r
y
)
)

(
b
e
g
i
n

(
c
o
n
s
!
7

(
1
-

r
o
w
)
)

(
c
o
n
s
!
8

c
-
e
n
t
r
y
)
)
)

)
)
)
)
)
)
)
)
)

;
B
u
i
l
d
i
n
g

C
o
n
s
t
r
a
i
n
t

V
e
c
t
o
r
s

(
c
o
n
s
!
2

(
l
e
n
g
t
h

(
g
e
t
-
l
i
s
t
5
)
)
)

;
v
b
e
g

(
c
o
n
s
!
3

(
l
e
n
g
t
h

(
l
i
s
t
-
r
e
f

c
l
i
s
t

0
)
)
)

;
v
l
e
n

(
f
o
r
-
e
a
c
h

c
o
n
s
!
4

(
l
i
s
t
-
r
e
f

c
l
i
s
t

1
)
)

;
v
i
n
d

(
f
o
r
-
e
a
c
h

c
o
n
s
!
5

(
l
i
s
t
-
r
e
f

c
l
i
s
t

0
)
)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

;
v
v
a
l

 ;
B
u
i
l
d
i
n
g

C
o
n
s
t
r
a
i
n
t

V
e
c
t
o
r
s

t
o

G
u
r
o
b
i

(
d
e
f
i
n
e

v
b
e
g
&
v
l
e
n
&
v
i
n
d
&
v
v
a
l

(
c
o
n
s
t
r
-
>
v
b
e
g
&
v
l
e
n
&
v
i
n
d
&
v
v
a
l

C
o
n
s
t
r
)
)

 ;
B
u
i
l
d
i
n
g

s
t
r
i
n
g

o
f

m
o
r
e

a
n
d

l
e
s
s

(
d
e
f
i
n
e

m
o
r
e
O
r
L
e
s
s

(
s
t
r
i
n
g
-
a
p
p
e
n
d

(
m
a
k
e
-
s
t
r
i
n
g

2
4

g
r
b
-
l
e
s
s
-
e
q
u
a
l
)

;
U
s
e

L
e
s
s

t
h
e
n

S
u
p
p
l
y

(
m
a
k
e
-
s
t
r
i
n
g

1
2

g
r
b
-
g
r
e
a
t
e
r
-
e
q
u
a
l
)
)
)

;
P
r
o
d
u
c
e

m
o
r
e

t
h
e
n

D
e
m
a
n
d
e
d

P
a

g
e

 6
 o

f
4

8

 ;
B
u
i
l
d
i
n
g

R
i
g
h
t

H
a
n
d

S
i
d
e

o
f

C
o
n
s
t
r
a
i
n
t
s

(
d
e
f
i
n
e

z
o
n
P
e
r
i
o
d

2
)

(
d
e
f
i
n
e

s
e
r
v
i
c
e
P
e
r
i
o
d

2
)

(
d
e
f
i
n
e

r
h
s

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

;
U
s
e

L
e
s
s

t
h
e
n

S
u
p
p
l
y

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
c
o
n
s
!

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

s
u
p
p
l
y
-
p
o
t

(
+

(
*

(
-

c
S
o
u
r
c
e

1
)

z
o
n
P
e
r
i
o
d
)

(
-

c
Z
o
n
e

1
)
)
)

(
-

c
S
t
e
p

1
)
)
)

)
)
)

;
P
r
o
d
u
c
e

m
o
r
e

t
h
e
n

D
e
m
a
n
d
e
d

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
c
o
n
s
!

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

d
e
m
a
n
d

(
+

(
-

c
S
e
r
v
i
c
e

1
)

(
*

(
-

c
Z
o
n
e

1
)

s
e
r
v
i
c
e
P
e
r
i
o
d
)

)
)

(
-

c
S
t
e
p

1
)
)
)

)
)
)
)
)
)

;
B
u
i
l
d
i
n
g

V
a
r
i
a
b
l
e

T
y
p
e

V
e
c
t
o
r

(
v
t
y
p
e
)

(
d
e
f
i
n
e

v
t
y
p
e

(
m
a
k
e
-
s
t
r
i
n
g

n
V
a
r

g
r
b
-
c
o
n
t
i
n
u
o
u
s
)
)

 ;
C
a
l
l
i
n
g

o
n

G
u
r
o
b
i

(
d
e
f
i
n
e

m
o
d
e
l

(
l
e
t
-
a
r
g
s

v
b
e
g
&
v
l
e
n
&
v
i
n
d
&
v
v
a
l

(
v
b
e
g

v
l
e
n

v
i
n
d

v
v
a
l
)

(
g
r
b
-
l
o
a
d
-
m
o
d
e
l

g
r
b
-
e
n
v

"
e
x
a
m
p
l
e
"

n
V
a
r

n
C
o
n
s
t
r

1

0
.

o
b
j

m
o
r
e
O
r
L
e
s
s

r
h
s

v
b
e
g

v
l
e
n

v
i
n
d

v
v
a
l

#
f

#
f

#
f

#
f

v
t
y
p
e

#
f

'
(
)

;

=

i
n
g
a

v
a
r
n
a
m
e
s

#
f

'
(
)

;

=

i
n
g
a

c
o
n
s
t
r
n
a
m
e
s

)
)
)

 ;
T
e
l
l

G
u
r
o
b
i

t
o

o
p
t
i
m
i
c
e

(
g
r
b
-
o
p
t
i
m
i
z
e

g
r
b
-
e
n
v

m
o
d
e
l
)

 ;
R
e
t
r
e
a
v
e

r
e
s
u
l
t
s

f
r
o
m

G
u
r
o
b
i

;
R
e
t
r
e
a
v

t
h
e

m
i
n
i
m
u
m

c
o
s
t

f
o
u
n
d

P
a

g
e

 7
 o

f
4

8

(
d
e
f
i
n
e

O
p
t
i
m
u
m

(
g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r
*

g
r
b
-
e
n
v

m
o
d
e
l

"
O
b
j
V
a
l
"
)
)

;
R
e
t
r
e
a
v

t
h
e

m
i
n
i
m
u
m

p
o
i
n
t

(
d
e
f
i
n
e

P
o
i
n
t

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

n
V
a
r

(
c
o
n
s
!

(
g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r
-
e
l
e
m
e
n
t
*

g
r
b
-
e
n
v

m
o
d
e
l

"
X
"

(
1
-

c
V
a
r
)
)
)

)
)
)
)

 ;
P
r
o
c
e
s
s

r
e
s
u
l
t
s

(
d
e
f
i
n
e

T
i
m
e
-
R
e
s
u
l
t
-
M
a
t
r
i
x

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
S
t
e
p
P
e
r
i
o
d

(
c
o
n
s
!
2

(
f
6
4
v
e
c
t
o
r
-
r
e
f

P
o
i
n
t

(
+

(
1
-

c
V
a
r
)

(
*

t
S
t
e
p
P
e
r
i
o
d

(
1
-

c
S
t
e
p
)
)
)
)
)

)
)
)
)
)
)
)
)

 (
d
e
f
i
n
e

V
a
r
-
T
i
m
e
-
M
a
t
r
i
x

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
S
t
e
p
P
e
r
i
o
d

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
c
o
n
s
!
2

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

T
i
m
e
-
R
e
s
u
l
t
-
M
a
t
r
i
x

(
1
-

c
S
t
e
p
)
)

(
1
-

c
V
a
r
)
)
)

)
)
)
)
)
)
)
)

 ;
P
r
i
n
t

o
u
t

O
p
t
i
m
u
m

V
a
r
-
T
i
m
e
-
M
a
t
r
i
x

P
a

g
e

 8
 o

f
4

8

 T
h

e
 m

o
d

e
l

c
o

d
e

 o
f

S
im

p
le

 M
o

d
e

l
2

 ;
I
m
p
o
r
t
i
n
g

G
r
u
b
i

F
F
I

m
m

(
l
o
a
d

"
g
u
r
o
b
i
f
f
i
.
o
1
8
"
)

(
i
n
c
l
u
d
e

"
v
e
r
k
t
y
g
.
s
c
m
"
)

(
i
n
c
l
u
d
e

"
D
a
t
a

S
i
m
p
l
e
F
i
v
e
.
s
c
m
"
)

 ;
D
e
c
l
a
r
i
n
g

C
o
n
s
t
a
n
t
s

(
d
e
f
i
n
e

s
t
a
r
t
S
t
e
p

1
)

(
d
e
f
i
n
e

n
S
t
e
p

3
)

(
d
e
f
i
n
e

n
Z
o
n
e

2
)

(
d
e
f
i
n
e

n
T
r
a
n
c
f
e
r
Z
o
n
e

(
1
-

n
Z
o
n
e
)
)

(
d
e
f
i
n
e

n
S
e
r
v
i
c
e

2
)

(
d
e
f
i
n
e

n
S
o
u
r
c
e

4
)

(
d
e
f
i
n
e

n
V
a
r

(
*

n
S
t
e
p

n
Z
o
n
e

n
S
e
r
v
i
c
e

n
S
o
u
r
c
e
)
)

(
d
e
f
i
n
e

b
u
s
i
n
e
s
s
N
V
a
r

(
*

n
S
t
e
p

n
Z
o
n
e

n
T
r
a
n
c
f
e
r
Z
o
n
e

n
S
o
u
r
c
e
)
)

(
d
e
f
i
n
e

t
o
t
N
V
a
r

(
+

n
V
a
r

b
u
s
i
n
e
s
s
N
V
a
r
)
)

 ;
D
e
f
i
n
i
n
g

a
n
d

B
u
i
l
d
i
n
g

t
h
e

e
x
p
r
e
s
i
o
n
e

t
o

m
i
n
i
m
i
c
e

o
b
j

(
d
e
f
i
n
e

o
b
j

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

;
P
r
i
m
e
r
y

m
o
d
e
l

(
S
y
s
t
e
m

1
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

(
c
o
n
s
!

(
*

t
-
s
t
e
p

(
p
r
i
c
e
-
g
e
t

c
Z
o
n
e

c
S
o
u
r
c
e
)
)
)

)
)
)
)

;
B
u
y
i
n
g

(
S
y
s
t
e
m

2
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
r
a
n
c
f
e
r
Z
o
n
e

1

n
Z
o
n
e

(
i
f

(
n
o
t

(
z
e
r
o
?

(
-

c
T
r
a
n
c
f
e
r
Z
o
n
e

c
Z
o
n
e
)
)
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

;
F
i
x

t
r
a
n
s
p
o
r
t

c
o
s
t

+

l
i
n

t
r
a
n
s
p
o
r
t

c
o
s
t

+

e
x
t
r
a
c
t
i
o
n

c
o
s
t

i
n

e
x
p
o
r
t

r
e
g
i
o
n

c
T
r
a
n
c
f
e
r
Z
o
n
e

-

e
x
t
r
a

e
x
t
r
a
c
t
i
o
n

c
o
s
t

f
r
o
m

u
s
e
v
a
r
i
a
b
l
e
s

a
b
o
v
e

(
l
e
t
*

(
(
f
i
x
C
o
s
t

(
i
m
p
-
c
o
s
t
-
g
e
t

c
S
o
u
r
c
e
)
)

(
l
i
n
C
o
s
t

(
i
m
p
-
c
o
s
t
-
l
i
n
-
g
e
t

c
S
o
u
r
c
e
)
)

(
d
i
s
t

(
d
i
s
t
a
n
c
e
-
g
e
t

c
Z
o
n
e

c
T
r
a
n
c
f
e
r
Z
o
n
e
)
)

(
a
b
o
v
e
e
x
t
r
a
c
t
C
o
s
t

(
p
r
i
c
e
-
g
e
t

c
Z
o
n
e

c
S
o
u
r
c
e
)
)

P
a

g
e

 9
 o

f
4

8

(
c
C
o
s
t

(
+

f
i
x
C
o
s
t

(
*

l
i
n
C
o
s
t

d
i
s
t
)

(
p
r
i
c
e
-
g
e
t

c
T
r
a
n
c
f
e
r
Z
o
n
e

c
S
o
u
r
c
e
)

(
-

a
b
o
v
e
e
x
t
r
a
c
t
C
o
s
t
)
)
)

)

(
c
o
n
s
!

(
*

t
-
s
t
e
p

c
C
o
s
t
)
)

)
)
)
)
)
)
)
)
)

 ;
B
u
i
l
d
i
n
g

C
o
n
s
t
r
a
i
n
t
s

;
D
e
c
l
a
r
i
n
g

C
o
n
s
t
a
n
t
s

(
d
e
f
i
n
e

s
e
r
v
i
c
e
P
e
r
i
o
d

n
S
o
u
r
c
e
)

;
4

(
d
e
f
i
n
e

z
o
n
P
e
r
i
o
d

(
*

n
S
o
u
r
c
e

n
S
e
r
v
i
c
e
)
)

;
8

(
d
e
f
i
n
e

z
o
n
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
*

n
S
o
u
r
c
e

n
T
r
a
n
c
f
e
r
Z
o
n
e
)
)

;
4

(
d
e
f
i
n
e

t
r
a
n
c
f
e
r
Z
o
n
e
P
e
r
i
o
d

n
S
o
u
r
c
e
)

;
4

(
d
e
f
i
n
e

t
S
t
e
p
P
e
r
i
o
d

(
*

z
o
n
P
e
r
i
o
d

n
Z
o
n
e
)
)

;
1
6

(
d
e
f
i
n
e

t
S
t
e
p
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
*

n
Z
o
n
e

z
o
n
P
e
r
i
o
d
B
u
s
i
n
e
s
s
)
)

;
1
6

;
B
u
i
l
d
i
n
g

r
o
w

o
f

z
e
r
o
s

(
d
e
f
i
n
e

Z
e
r
o
s
L
i
s
t

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
o
l
l

1

t
o
t
N
V
a
r

(
c
o
n
s
!

0
.
)

)
)
)
)

;
(
E
P
F
-
s
e
t
!

c
S
y
s
t
e
m

c
V
a
l
u
e

(
d
e
f
i
n
e
-
m
a
c
r
o

(
E
P
F
-
s
e
t
!

v
a
r
-
S
y
s
t
e
m

.

c
o
d
e
)

`
(
b
e
g
i
n

(
i
f

(
=

,
v
a
r
-
S
y
s
t
e
m

1
)

(
l
e
t

(
(
E
P
C

(
+

(
*

t
S
t
e
p
P
e
r
i
o
d

(
1
-

c
S
t
e
p
)
)

(
*

z
o
n
P
e
r
i
o
d

(
1
-

c
Z
o
n
e
)
)

(
*

s
e
r
v
i
c
e
P
e
r
i
o
d

(
1
-

c
S
e
r
v
i
c
e
)
)

(
1
-

c
S
o
u
r
c
e
)
)
)
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

E
P
C

,
@
c
o
d
e
)

)
)

(
i
f

(
=

,
v
a
r
-
S
y
s
t
e
m

2
)

(
l
e
t

(
(
E
P
C

(
+

n
V
a
r

(
*

t
S
t
e
p
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
1
-

c
S
t
e
p
)
)

(
*

z
o
n
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
1
-

c
Z
o
n
e
)
)

(
*

t
r
a
n
c
f
e
r
Z
o
n
e
P
e
r
i
o
d

(
1
-

c
T
r
a
n
c
f
e
r
Z
o
n
e
)
)

(
1
-

c
S
o
u
r
c
e
)
)
)
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

E
P
C

,
@
c
o
d
e
)

)
)

(
i
f

(
=

,
v
a
r
-
S
y
s
t
e
m

3
)

(
l
e
t

(
(
E
P
C

(
+

n
V
a
r

(
*

t
S
t
e
p
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
1
-

c
S
t
e
p
)
)

(
*

z
o
n
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
1
-

c
T
r
a
n
c
f
e
r
Z
o
n
e
)
)

(
*

t
r
a
n
c
f
e
r
Z
o
n
e
P
e
r
i
o
d

(
1
-

c
O
u
r
T
r
a
n
c
f
e
r
Z
o
n
e
I
n
d
e
x
)
)

(
1
-

c
S
o
u
r
c
e
)
)
)

)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

E
P
C

,
@
c
o
d
e
)

)
)
)
)

P
a

g
e

 1
0

 o
f

4
8

;
A
d
d
i
n
g

u
p

r
o
w
s

t
o

f
o
r
m

C
o
n
s
t
r
a
i
n
t

M
a
t
r
i
x

(
d
e
f
i
n
e

C
o
n
s
t
r

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

;
S
e
r
v
i
c
e
s

-

B
u
y

+

S
e
l
l

l
e
s
s

t
h
e
n

S
u
p
p
l
y
-
p
o
t

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
l
e
t

(
(
c
R
o
w

(
f
6
4
v
e
c
t
o
r
-
c
o
p
y

Z
e
r
o
s
L
i
s
t
)
)
)

;
S
e
r
v
i
c
e
s

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
E
P
F
-
s
e
t
!

1

1
.
)

)

;
B
u
y

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
r
a
n
c
f
e
r
Z
o
n
e

1

n
T
r
a
n
c
f
e
r
Z
o
n
e

(
E
P
F
-
s
e
t
!

2

(
-

1
.
)
)

)

;
S
e
l
l

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
r
a
n
c
f
e
r
Z
o
n
e

1

n
Z
o
n
e

(
i
f

(
n
o
t

(
z
e
r
o
?

(
-

c
T
r
a
n
c
f
e
r
Z
o
n
e

c
Z
o
n
e
)
)
)

;
c
Z
o
n
e

<

c
T
r
a
n
c
f
e
r
Z
o
n
e

(
b
e
g
i
n

(
i
f

(
<

c
Z
o
n
e

c
T
r
a
n
c
f
e
r
Z
o
n
e
)

(
l
e
t

(
(
c
O
u
r
T
r
a
n
c
f
e
r
Z
o
n
e
I
n
d
e
x

c
Z
o
n
e
)
)

(
E
P
F
-
s
e
t
!

3

1
.
)

)
)

;
c
Z
o
n
e

>

c
T
r
a
n
c
f
e
r
Z
o
n
e

(
i
f

(
>

c
Z
o
n
e

c
T
r
a
n
c
f
e
r
Z
o
n
e
)

(
l
e
t

(
(
c
O
u
r
T
r
a
n
c
f
e
r
Z
o
n
e
I
n
d
e
x

(
1
-

c
Z
o
n
e
)
)
)

(
E
P
F
-
s
e
t
!

3

1
.
)

)
)

)
)
)

(
c
o
n
s
!

c
R
o
w
)

)

)
)
)

;
P
r
o
d
u
c
e

m
o
r
e

t
h
e
n

D
e
m
a
n
d
e
d

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
l
e
t

(
(
c
R
o
w

(
f
6
4
v
e
c
t
o
r
-
c
o
p
y

Z
e
r
o
s
L
i
s
t
)
)
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

(
E
P
F
-
s
e
t
!

1

(
e
f
f
i
c
-
g
e
t

c
S
t
e
p

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e
)
)

)

(
c
o
n
s
!

c
R
o
w
)

)
)
)
)

)
)
)

;
D
e
f
i
n
i
n
g

n
C
o
n
s
t
r

(
d
e
f
i
n
e

n
C
o
n
s
t
r

(
v
e
c
t
o
r
-
l
e
n
g
t
h

C
o
n
s
t
r
)
)

(
d
e
f
i
n
e

n
C
o
n
s
t
r
L
e
s
s
T
h
e
n
S
u
p
p
l
y

(
*

n
S
o
u
r
c
e

n
S
t
e
p

n
Z
o
n
e
)
)

(
d
e
f
i
n
e

n
C
o
n
s
t
r
D
e
m
a
n
d
e
d

(
*

n
S
e
r
v
i
c
e

n
Z
o
n
e

n
S
t
e
p
)
)

P
a

g
e

 1
1

 o
f

4
8

;
B
u
i
l
d
i
n
g

s
t
r
i
n
g

o
f

m
o
r
e

a
n
d

l
e
s
s

(
d
e
f
i
n
e

m
o
r
e
O
r
L
e
s
s

(
s
t
r
i
n
g
-
a
p
p
e
n
d

(
m
a
k
e
-
s
t
r
i
n
g

n
C
o
n
s
t
r
L
e
s
s
T
h
e
n
S
u
p
p
l
y

g
r
b
-
l
e
s
s
-
e
q
u
a
l
)

;
U
s
e

L
e
s
s

t
h
e
n

S
u
p
p
l
y

(
m
a
k
e
-
s
t
r
i
n
g

n
C
o
n
s
t
r
D
e
m
a
n
d
e
d

g
r
b
-
g
r
e
a
t
e
r
-
e
q
u
a
l
)

)
)

;
P
r
o
d
u
c
e

m
o
r
e

t
h
e
n

D
e
m
a
n
d
e
d

;
B
u
i
l
d
i
n
g

R
i
g
h
t

H
a
n
d

S
i
d
e

o
f

C
o
n
s
t
r
a
i
n
t
s

(
d
e
f
i
n
e

r
h
s

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

;
U
s
e

L
e
s
s

t
h
e
n

S
u
p
p
l
y

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
c
o
n
s
!

(
s
u
p
p
l
y
-
p
o
t
-
g
e
t

c
S
t
e
p

c
Z
o
n
e

c
S
o
u
r
c
e
)
)

)
)
)

;
P
r
o
d
u
c
e

m
o
r
e

t
h
e
n

D
e
m
a
n
d
e
d

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
c
o
n
s
!

(
d
e
m
a
n
d
-
g
e
t

c
S
t
e
p

c
Z
o
n
e

c
S
e
r
v
i
c
e
)
)

)
)
)

)
)
)

;
B
u
i
l
d
i
n
g

V
a
r
i
a
b
l
e

T
y
p
e

V
e
c
t
o
r

(
v
t
y
p
e
)

(
d
e
f
i
n
e

v
t
y
p
e

(
m
a
k
e
-
s
t
r
i
n
g

t
o
t
N
V
a
r

g
r
b
-
c
o
n
t
i
n
u
o
u
s
)
)

P
a

g
e

 1
2

 o
f

4
8

 ;
D
e
f
i
n
i
n
g

p
r
o
c
e
d
u
r
e

f
o
r

b
u
i
l
d
i
n
g

C
o
n
s
t
r
a
i
n
t

V
e
c
t
o
r
s

t
o

G
u
r
o
b
i

(
S
p
a
r
c
e

M
a
t
r
i
x

F
o
r
m
a
t
)

(
d
e
f
i
n
e

(
c
o
n
s
t
r
-
>
v
b
e
g
&
v
l
e
n
&
v
i
n
d
&
v
v
a
l

c
o
n
s
t
r
)

(
l
e
t

(
(
n
-
c
o
n
s
t
r

(
v
e
c
t
o
r
-
l
e
n
g
t
h

c
o
n
s
t
r
)
)
(
n
-
v
a
r

(
f
6
4
v
e
c
t
o
r
-
l
e
n
g
t
h

(
v
e
c
t
o
r
-
r
e
f

c
o
n
s
t
r

0
)
)
)
)

;
D
e
c
l
a
r
i
n
g

C
o
n
s
t
r
a
i
n
t

V
e
c
t
o
r
s

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
5

(
c
o
n
s
!

(
l
i
s
t
-
>
s
3
2
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
4

(
c
o
n
s
!

(
l
i
s
t
-
>
s
3
2
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
3

(
c
o
n
s
!

(
l
i
s
t
-
>
s
3
2
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
l
e
t

(
(
i

0
)
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
o
l
l

1

n
-
v
a
r

;
D
e
f
i
n
i
n
g

s
u
b
l
i
s
t
s

(
l
e
t

(
(
c
l
i
s
t

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
6

(
c
o
n
s
!
6

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
7

(
c
o
n
s
!
6

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
8

;
L
o
o
p
i
n
g

t
h
r
o
u
g
h

c
o
l
u
m

(
f
o
r
-
i
n
t
e
r
v
a
l

r
o
w

1

n
-
c
o
n
s
t
r

(
l
e
t

(
(
c
-
e
n
t
r
y

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

c
o
n
s
t
r

(
1
-

r
o
w
)
)

(
1
-

c
o
l
l
)
)
)
)

(
i
f

(
n
o
t

(
z
e
r
o
?

c
-
e
n
t
r
y
)
)

(
b
e
g
i
n

(
c
o
n
s
!
7

(
1
-

r
o
w
)
)

(
c
o
n
s
!
8

c
-
e
n
t
r
y
)
)
)

)
)
)
)
)
)
)
)
)

;
B
u
i
l
d
i
n
g

C
o
n
s
t
r
a
i
n
t

V
e
c
t
o
r
s

(
c
o
n
s
!
2

(
l
e
n
g
t
h

(
g
e
t
-
l
i
s
t
5
)
)
)

;
v
b
e
g

(
c
o
n
s
!
3

(
l
e
n
g
t
h

(
l
i
s
t
-
r
e
f

c
l
i
s
t

0
)
)
)

;
v
l
e
n

(
f
o
r
-
e
a
c
h

c
o
n
s
!
4

(
l
i
s
t
-
r
e
f

c
l
i
s
t

1
)
)

;
v
i
n
d

(
f
o
r
-
e
a
c
h

c
o
n
s
!
5

(
l
i
s
t
-
r
e
f

c
l
i
s
t

0
)
)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

;
v
v
a
l

 ;
B
u
i
l
d
i
n
g

C
o
n
s
t
r
a
i
n
t

V
e
c
t
o
r
s

t
o

G
u
r
o
b
i

(
d
e
f
i
n
e

v
b
e
g
&
v
l
e
n
&
v
i
n
d
&
v
v
a
l

(
c
o
n
s
t
r
-
>
v
b
e
g
&
v
l
e
n
&
v
i
n
d
&
v
v
a
l

C
o
n
s
t
r
)
)

 ;
C
a
l
l
i
n
g

o
n

G
u
r
o
b
i

(
d
e
f
i
n
e

m
o
d
e
l

(
l
e
t
-
a
r
g
s

v
b
e
g
&
v
l
e
n
&
v
i
n
d
&
v
v
a
l

(
v
b
e
g

v
l
e
n

v
i
n
d

v
v
a
l
)

(
g
r
b
-
l
o
a
d
-
m
o
d
e
l

g
r
b
-
e
n
v

"
e
x
a
m
p
l
e
"

t
o
t
N
V
a
r

n
C
o
n
s
t
r

1

0
.

o
b
j

m
o
r
e
O
r
L
e
s
s

r
h
s

v
b
e
g

v
l
e
n

v
i
n
d

v
v
a
l

#
f

#
f

#
f

#
f

v
t
y
p
e

#
f

'
(
)

;

=

i
n
g
a

v
a
r
n
a
m
e
s

#
f

'
(
)

;

=

i
n
g
a

c
o
n
s
t
r
n
a
m
e
s

)
)
)

P
a

g
e

 1
3

 o
f

4
8

 ;
T
e
l
l

G
u
r
o
b
i

t
o

o
p
t
i
m
i
c
e

(
g
r
b
-
o
p
t
i
m
i
z
e

g
r
b
-
e
n
v

m
o
d
e
l
)

 ;
R
e
t
r
e
a
v
e

r
e
s
u
l
t
s

f
r
o
m

G
u
r
o
b
i

;
R
e
t
r
e
a
v

t
h
e

m
i
n
i
m
u
m

c
o
s
t

f
o
u
n
d

(
d
e
f
i
n
e

O
p
t
i
m
u
m

(
g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r
*

g
r
b
-
e
n
v

m
o
d
e
l

"
O
b
j
V
a
l
"
)
)

;
R
e
t
r
e
a
v

t
h
e

m
i
n
i
m
u
m

p
o
i
n
t

(
d
e
f
i
n
e

P
o
i
n
t

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
o
t
N
V
a
r

(
c
o
n
s
!

(
g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r
-
e
l
e
m
e
n
t
*

g
r
b
-
e
n
v

m
o
d
e
l

"
X
"

(
1
-

c
V
a
r
)
)
)

)
)
)
)

 ;
P
r
o
c
e
s
s

r
e
s
u
l
t
s

(
d
e
f
i
n
e

T
i
m
e
-
R
e
s
u
l
t
-
M
a
t
r
i
x

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
S
t
e
p
P
e
r
i
o
d

(
c
o
n
s
!
2

(
f
6
4
v
e
c
t
o
r
-
r
e
f

P
o
i
n
t

(
+

(
1
-

c
V
a
r
)

(
*

t
S
t
e
p
P
e
r
i
o
d

(
1
-

c
S
t
e
p
)
)
)
)
)

)
)
)
)
)
)
)
)

(
d
e
f
i
n
e

V
a
r
-
T
i
m
e
-
M
a
t
r
i
x

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
S
t
e
p
P
e
r
i
o
d

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
c
o
n
s
!
2

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

T
i
m
e
-
R
e
s
u
l
t
-
M
a
t
r
i
x

(
1
-

c
S
t
e
p
)
)

(
1
-

c
V
a
r
)
)
)

)
)
)
)
)
)
)
)

 ;
P
r
i
n
t

o
u
t

O
p
t
i
m
u
m

V
a
r
-
T
i
m
e
-
M
a
t
r
i
x

P
o
i
n
t

P
a

g
e

 1
4

 o
f

4
8

 T
h

e
 m

o
d

e
l

c
o

d
e

 o
f

S
im

p
le

 M
o

d
e

l
3

 ;
I
m
p
o
r
t
i
n
g

G
r
u
b
i

F
F
I

m
m

(
l
o
a
d

"
g
u
r
o
b
i
f
f
i
.
o
1
9
"
)

(
i
n
c
l
u
d
e

"
v
e
r
k
t
y
g
.
s
c
m
"
)

(
i
n
c
l
u
d
e

"
D
a
t
a

S
i
m
p
l
e
F
i
v
e
.
s
c
m
"
)

;
D
e
f
i
n
i
n
g

M
o
d
e
l

D
i
m
e
n
t
i
o
n
e
s

(
d
e
f
i
n
e

s
t
a
r
t
S
t
e
p

1
)

(
d
e
f
i
n
e

n
S
t
e
p

1
6
)

(
d
e
f
i
n
e

n
Z
o
n
e

1
0
)

(
d
e
f
i
n
e

n
T
r
a
n
c
f
e
r
Z
o
n
e

(
1
-

n
Z
o
n
e
)
)

(
d
e
f
i
n
e

n
S
e
r
v
i
c
e

2
)

(
d
e
f
i
n
e

n
S
e
r
v
i
c
e
P
e
r
i
o
d

2
)

(
d
e
f
i
n
e

n
S
o
u
r
c
e

9
)

(
d
e
f
i
n
e

n
S
o
u
r
c
e
T
r
a
d
e

5
)

(
d
e
f
i
n
e

n
T
y
p
e

1
)

(
d
e
f
i
n
e

n
T
y
p
e
P
e
r
i
o
d

4
)

(
d
e
f
i
n
e

n
V
a
r

(
*

n
S
t
e
p

n
Z
o
n
e

1
4
)
)

(
d
e
f
i
n
e

b
u
s
i
n
e
s
s
N
V
a
r

(
*

n
S
t
e
p

n
Z
o
n
e

n
T
r
a
n
c
f
e
r
Z
o
n
e

n
S
o
u
r
c
e
T
r
a
d
e
)
)

(
d
e
f
i
n
e

c
o
n
v
N
V
a
r

(
*

n
S
t
e
p

n
Z
o
n
e

1
4
)
)

(
d
e
f
i
n
e

t
o
t
N
V
a
r

(
+

n
V
a
r

b
u
s
i
n
e
s
s
N
V
a
r

c
o
n
v
N
V
a
r
)
)

;
1
1
6
8
0

;
(
d
e
f
i
n
e

t
o
t
N
V
a
r

(
+

n
V
a
r

b
u
s
i
n
e
s
s
N
V
a
r
)
)

;
1
1
6
8
0

P
a

g
e

 1
5

 o
f

4
8

 ;
D
e
f
i
n
i
n
g

a
n
d

B
u
i
l
d
i
n
g

t
h
e

e
x
p
r
e
s
i
o
n
e

t
o

m
i
n
i
m
i
c
e

o
b
j

(
d
e
f
i
n
e

o
b
j

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

;
C
o
n
s
u
m
p
t
i
o
n

C
o
s
t
s

(
P
a
r
t

o
f

S
y
s
t
e
m

1
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
y
p
e

1

n
T
y
p
e

(
i
f

(
<

0

(
e
f
f
i
c
-
g
e
t

c
S
t
e
p

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

(
l
e
t

(
(
c
O
p
M
a
n
f
r

(
O
M
-
c
o
s
t
-
f
r
-
g
e
t

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

(
c
I
n
v
C
o
s
t

(
c
o
s
t
-
i
n
v
-
m
o
d
-
g
e
t

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

(
c
E
x
t
r
P
r
i
c
e

(
p
r
i
c
e
-
g
e
t

c
Z
o
n
e

c
S
o
u
r
c
e
)
)

(
c
C
o
n
v
E
f
f
i
c

(
e
f
f
i
c
-
g
e
t

c
S
t
e
p

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)
)

;
(
c
o
n
s
!

(
/

(
*

c
O
p
M
a
n
f
r

c
I
n
v
C
o
s
t
)

(
*

M
s
e
c
-
p
e
r
-
y
e
a
r

0
.
7
)
)
)

)
)
)
)
)
)
)

(
c
o
n
s
!

(
*

t
-
s
t
e
p

(
+

c
E
x
t
r
P
r
i
c
e

(
/

(
*

c
O
p
M
a
n
f
r

c
I
n
v
C
o
s
t

c
C
o
n
v
E
f
f
i
c
)

(
*

M
s
e
c
-
p
e
r
-
y
e
a
r

0
.
7
)
)
)
)
)

)
)
)
)
)
)
)

;
R
e
s
o
u
r
c
e

T
r
a
n
s
f
e
r

(
P
a
r
t

o
f

S
y
s
t
e
m

2

a
n
d

i
m
p
i
c
i
t
l
y

a
l
s
o

S
y
s
t
e
m

3
)

;
T
o

t
h
e

c
o
e
f
i
c
i
e
n
t
e
s

b
e
l
o
w

a

v
a
l
u
e

c
a
l
l
e
d

a
b
o
v
e
e
x
t
r
a
c
t
C
o
s
t

i
s

r
e
m
o
v
e
d
.

T
h
i
s

i
s

b
e
c
a
u
s
e

t
h
e

e
x
t
r
a
c
t
i
o
n
e

c
o
s
t

o
f

;
t
h
e

b
o
u
g
h
t

a
m
o
u
n
t

o
f

a

r
e
c
o
u
r
c
e

i
s

p
a
y
e
d

f
o
r

w
i
t
h

t
h
e

w
r
o
n
g

p
r
i
c
e

a
b
o
v
e
.

H
e
r
e

a
s

t
r
a
n
s
f
e
r

b
e
t
w
e
e
n

z
o
n
s

a
r
e

;
p
o
s
i
b
l
e

t
h
i
s

p
a
y
m
e
n
t

i
s

r
e
m
o
v
e
d

a
n
d

r
e
p
l
a
s
e
d

w
i
t
h

t
h
e

p
r
i
s
e

f
r
o
m

t
h
e

r
i
g
h
t

e
x
t
r
a
c
t
i
o
n

n
o
n
e

;
(
s
e
e
:

(
p
r
i
c
e
-
g
e
t

c
T
r
a
n
c
f
e
r
Z
o
n
e

c
S
o
u
r
c
e
)
)
.

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
r
a
n
c
f
e
r
Z
o
n
e

1

n
Z
o
n
e

(
i
f

(
n
o
t

(
z
e
r
o
?

(
-

c
T
r
a
n
c
f
e
r
Z
o
n
e

c
Z
o
n
e
)
)
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e
T
r
a
d
e

(
l
e
t
*

(
(
f
i
x
C
o
s
t

(
i
m
p
-
c
o
s
t
-
g
e
t

c
S
o
u
r
c
e
)
)

(
l
i
n
C
o
s
t

(
i
m
p
-
c
o
s
t
-
l
i
n
-
g
e
t

c
S
o
u
r
c
e
)
)

(
d
i
s
t

(
d
i
s
t
a
n
c
e
-
g
e
t

c
Z
o
n
e

c
T
r
a
n
c
f
e
r
Z
o
n
e
)
)

(
a
b
o
v
e
e
x
t
r
a
c
t
C
o
s
t

(
p
r
i
c
e
-
g
e
t

c
Z
o
n
e

c
S
o
u
r
c
e
)
)

;
A
d
d
i
n
g

r
i
g
h
t

p
r
i
c
e

R
e
m
o
v
i
n
g

w
r
o
n
g

p
r
i
c
e

f
r
o
m

S
y
s
t
e
m

1

(
c
C
o
s
t

(
+

f
i
x
C
o
s
t

(
*

l
i
n
C
o
s
t

d
i
s
t
)

(
p
r
i
c
e
-
g
e
t

c
T
r
a
n
c
f
e
r
Z
o
n
e

c
S
o
u
r
c
e
)

(
-

a
b
o
v
e
e
x
t
r
a
c
t
C
o
s
t
)
)
)

)

(
c
o
n
s
!

(
*

t
-
s
t
e
p

c
C
o
s
t
)
)

)
)
)
)
)
)

P
a

g
e

 1
6

 o
f

4
8

 ;
I
n
v
e
s
t
m
e
n
t

C
o
s
t
s

(
P
a
r
t

o
f

S
y
s
t
e
m

4
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
y
p
e

1

n
T
y
p
e

(
i
f

(
<

0

(
e
f
f
i
c
-
g
e
t

c
S
t
e
p

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

(
l
e
t

(
(
c
I
n
v
C
o
s
t

(
c
o
s
t
-
i
n
v
-
m
o
d
-
g
e
t

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)
)

(
c
o
n
s
!

(
*

t
-
s
t
e
p

c
I
n
v
C
o
s
t
)
)
)

)
)
)
)
)
)

)
)
)

 ;
B
u
i
l
d
i
n
g

C
o
n
s
t
r
a
i
n
t
s

;
D
e
c
l
a
r
i
n
g

C
o
n
s
t
a
n
t
s

;
C
o
a
l

O
i
l

N
G

B
i
o

N
u
c
l
e
a
r

W
i
n
d

H
y
d
r
o

S
o
l
a
r

S
o
l
a
r
-
c
s
p

(
d
e
f
i
n
e

t
y
p
e
P
e
r
i
o
d

'
#
(
#
s
3
2
(

1

1

1

1

1

1

1

1

1
)

;
E
l
e
c

#
s
3
2
(

1

1

1

1

0

0

0

1

0

)

)
)

;
H
e
a
t

;
E
l
e
c

;
H
e
a
t

(
d
e
f
i
n
e

s
e
r
v
i
c
e
R
a
n
g
e

'
#
s
3
2
(

0

9
)
)

;
E
l
e
c

;
H
e
a
t

(
d
e
f
i
n
e

s
e
r
v
i
c
e
P
e
r
i
o
d

'
#
s
3
2
(

9

5
)
)

(
d
e
f
i
n
e

z
o
n
P
e
r
i
o
d

(
+

(
s
3
2
v
e
c
t
o
r
-
r
e
f

s
e
r
v
i
c
e
P
e
r
i
o
d

0
)

(
s
3
2
v
e
c
t
o
r
-
r
e
f

s
e
r
v
i
c
e
P
e
r
i
o
d

1
)
)
)

;
1
4

(
d
e
f
i
n
e

z
o
n
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
*

n
S
o
u
r
c
e
T
r
a
d
e

n
T
r
a
n
c
f
e
r
Z
o
n
e
)
)

;
4
5

(
d
e
f
i
n
e

t
r
a
n
c
f
e
r
Z
o
n
e
P
e
r
i
o
d

n
S
o
u
r
c
e
T
r
a
d
e
)

;
5

(
d
e
f
i
n
e

t
S
t
e
p
P
e
r
i
o
d

(
*

z
o
n
P
e
r
i
o
d

n
Z
o
n
e
)
)

;
1
4
0

(
d
e
f
i
n
e

t
S
t
e
p
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
*

n
Z
o
n
e

z
o
n
P
e
r
i
o
d
B
u
s
i
n
e
s
s
)
)

;
4
5
0

;
B
u
i
l
d
i
n
g

r
o
w

o
f

z
e
r
o
s

(
d
e
f
i
n
e

Z
e
r
o
s
L
i
s
t

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
o
l
l

1

t
o
t
N
V
a
r

(
c
o
n
s
!

0
.
)

)
)
)
)

P
a

g
e

 1
7

 o
f

4
8

 ;
S
e
y
s
t
e
m

d
e
c
l
a
r
a
t
i
o
n

;
(
E
P
F
-
s
e
t
!

c
S
y
s
t
e
m

c
V
a
l
u
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
E
P
F
-
s
e
t
!

v
a
r
-
S
y
s
t
e
m

.

c
o
d
e
)

;
S
y
s
t
e
m

1

`
(
i
f

(
=

,
v
a
r
-
S
y
s
t
e
m

1
)

(
l
e
t
*

(
(
c
S
e
r
v
i
c
e
R
a
n
g
e

(
s
3
2
v
e
c
t
o
r
-
r
e
f

s
e
r
v
i
c
e
R
a
n
g
e

(
1
-

c
S
e
r
v
i
c
e
)
)
)

(
E
P
C

(
+

(
*

t
S
t
e
p
P
e
r
i
o
d

(
1
-

c
S
t
e
p
)
)

(
*

z
o
n
P
e
r
i
o
d

(
1
-

c
Z
o
n
e
)
)

c
S
e
r
v
i
c
e
R
a
n
g
e

(
1
-

c
S
o
u
r
c
e
)

(
1
-

c
T
y
p
e
)
)
)

(
E
P
C
2

(
+

(
*

t
S
t
e
p
P
e
r
i
o
d

(
1
-

c
S
t
e
p
)
)

(
*

z
o
n
P
e
r
i
o
d

(
1
-

c
Z
o
n
e
)
)

c
S
e
r
v
i
c
e
R
a
n
g
e

(
1
-

5
)

(
1
-

c
T
y
p
e
)
)
)
)

(
i
f

(
a
n
d

(
=

c
S
e
r
v
i
c
e

2
)

(
=

c
S
o
u
r
c
e

8
)
)

;
T
r
u
e

;
F
a
l
s
e

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

E
P
C
2

,
@
c
o
d
e
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

E
P
C

,
@
c
o
d
e
)
)
)

;
S
y
s
t
e
m

2

(
i
f

(
=

,
v
a
r
-
S
y
s
t
e
m

2
)

(
l
e
t

(
(
E
P
C

(
+

n
V
a
r

(
*

t
S
t
e
p
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
1
-

c
S
t
e
p
)
)

(
*

z
o
n
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
1
-

c
Z
o
n
e
)
)

(
*

t
r
a
n
c
f
e
r
Z
o
n
e
P
e
r
i
o
d

(
1
-

c
T
r
a
n
c
f
e
r
Z
o
n
e
)
)

(
1
-

c
S
o
u
r
c
e
)
)
)
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

E
P
C

,
@
c
o
d
e
)

)

;
S
y
s
t
e
m

3

(
i
f

(
=

,
v
a
r
-
S
y
s
t
e
m

3
)

(
l
e
t

(
(
E
P
C

(
+

n
V
a
r

(
*

t
S
t
e
p
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
1
-

c
S
t
e
p
)
)

(
*

z
o
n
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
1
-

c
T
r
a
n
c
f
e
r
Z
o
n
e
)
)

(
*

t
r
a
n
c
f
e
r
Z
o
n
e
P
e
r
i
o
d

(
1
-

c
O
u
r
T
r
a
n
c
f
e
r
Z
o
n
e
I
n
d
e
x
)
)

(
1
-

c
S
o
u
r
c
e
)
)
)
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

E
P
C

,
@
c
o
d
e
)

)

;
S
y
s
t
e
m

4

(
i
f

(
=

,
v
a
r
-
S
y
s
t
e
m

4
)

(
l
e
t
*

(
(
c
S
e
r
v
i
c
e
R
a
n
g
e

(
s
3
2
v
e
c
t
o
r
-
r
e
f

s
e
r
v
i
c
e
R
a
n
g
e

(
1
-

c
S
e
r
v
i
c
e
)
)
)

(
E
P
C

(
+

n
V
a
r

b
u
s
i
n
e
s
s
N
V
a
r

(
*

t
S
t
e
p
P
e
r
i
o
d

(
1
-

c
S
t
e
p
2
)
)

(
*

z
o
n
P
e
r
i
o
d

(
1
-

c
Z
o
n
e
)
)

c
S
e
r
v
i
c
e
R
a
n
g
e

(
1
-

c
S
o
u
r
c
e
)

(
1
-

c
T
y
p
e
)
)
)

(
E
P
C
2

(
+

n
V
a
r

b
u
s
i
n
e
s
s
N
V
a
r

(
*

t
S
t
e
p
P
e
r
i
o
d

(
1
-

c
S
t
e
p
2
)
)

(
*

z
o
n
P
e
r
i
o
d

(
1
-

c
Z
o
n
e
)
)

c
S
e
r
v
i
c
e
R
a
n
g
e

(
1
-

5
)

(
1
-

c
T
y
p
e
)
)
)
)

(
i
f

(
a
n
d

(
=

c
S
e
r
v
i
c
e

2
)

(
=

c
S
o
u
r
c
e

8
)
)

;
T
r
u
e

;
F
a
l
s
e

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

E
P
C
2

,
@
c
o
d
e
)

(
f
6
4
v
e
c
t
o
r
-
s
e
t
!

c
R
o
w

E
P
C

,
@
c
o
d
e
)
)

)
)
)
)
)
)

P
a

g
e

 1
8

 o
f

4
8

 ;
A
d
d
i
n
g

u
p

r
o
w
s

t
o

f
o
r
m

C
o
n
s
t
r
a
i
n
t

M
a
t
r
i
x

(
d
e
f
i
n
e

C
o
n
s
t
r
T
o
t

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
3

(
c
o
n
s
!
3

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
c
o
n
s
!
3

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

;
S
e
r
v
i
c
e
s

-

B
u
y

+

S
e
l
l

l
e
s
s

t
h
e
n

S
u
p
p
l
y
-
p
o
t

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

;
F
o
s
s
i
l

(
i
f

(
<

c
S
o
u
r
c
e

4
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p
2

1

n
S
t
e
p

(
l
e
t

(
(
c
R
o
w

(
f
6
4
v
e
c
t
o
r
-
c
o
p
y

Z
e
r
o
s
L
i
s
t
)
)
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

c
S
t
e
p
2

;
S
e
r
v
i
c
e
s

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
y
p
e

1

n
T
y
p
e

(
i
f

(
<

0

(
e
f
f
i
c
-
g
e
t

c
S
t
e
p

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

(
E
P
F
-
s
e
t
!

1

(
*

1
.

t
-
s
t
e
p
)
)

)
)
)

;
B
u
y

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
r
a
n
c
f
e
r
Z
o
n
e

1

n
T
r
a
n
c
f
e
r
Z
o
n
e

(
E
P
F
-
s
e
t
!

2

(
*

(
-

1
.
)

t
-
s
t
e
p
)
)

)

;
S
e
l
l

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
r
a
n
c
f
e
r
Z
o
n
e

1

n
Z
o
n
e

(
i
f

(
n
o
t

(
z
e
r
o
?

(
-

c
T
r
a
n
c
f
e
r
Z
o
n
e

c
Z
o
n
e
)
)
)

;
c
Z
o
n
e

<

c
T
r
a
n
c
f
e
r
Z
o
n
e

(
i
f

(
<

c
Z
o
n
e

c
T
r
a
n
c
f
e
r
Z
o
n
e
)

(
l
e
t

(
(
c
O
u
r
T
r
a
n
c
f
e
r
Z
o
n
e
I
n
d
e
x

c
Z
o
n
e
)
)

(
E
P
F
-
s
e
t
!

3

(
*

1
.

t
-
s
t
e
p
)
)

)

;
c
Z
o
n
e

>

c
T
r
a
n
c
f
e
r
Z
o
n
e

(
i
f

(
>

c
Z
o
n
e

c
T
r
a
n
c
f
e
r
Z
o
n
e
)

(
l
e
t

(
(
c
O
u
r
T
r
a
n
c
f
e
r
Z
o
n
e
I
n
d
e
x

(
1
-

c
Z
o
n
e
)
)
)

(
E
P
F
-
s
e
t
!

3

(
*

1
.

t
-
s
t
e
p
)
)

)
)

)
)
)
)

(
c
o
n
s
!

c
R
o
w
)

(
c
o
n
s
!
2

(
s
u
p
p
l
y
-
p
o
t
-
g
e
t

c
Z
o
n
e

c
S
o
u
r
c
e
)
)

)
)
)
)

P
a

g
e

 1
9

 o
f

4
8

;
R
e
n
e
w
a
b
l
e

(
i
f

(
>

c
S
o
u
r
c
e

3
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
l
e
t

(
(
c
R
o
w

(
f
6
4
v
e
c
t
o
r
-
c
o
p
y

Z
e
r
o
s
L
i
s
t
)
)
)

;
S
e
r
v
i
c
e
s

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
y
p
e

1

n
T
y
p
e

(
i
f

(
<

0

(
e
f
f
i
c
-
g
e
t

c
S
t
e
p

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

(
E
P
F
-
s
e
t
!

1

1
.
)

)
)
)

(
i
f

(
<

c
S
o
u
r
c
e

6
)

(
b
e
g
i
n

;
B
u
y

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
r
a
n
c
f
e
r
Z
o
n
e

1

n
T
r
a
n
c
f
e
r
Z
o
n
e

(
E
P
F
-
s
e
t
!

2

(
-

1
.
)
)

)

;
S
e
l
l

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
r
a
n
c
f
e
r
Z
o
n
e

1

n
Z
o
n
e

(
i
f

(
n
o
t

(
z
e
r
o
?

(
-

c
T
r
a
n
c
f
e
r
Z
o
n
e

c
Z
o
n
e
)
)
)

;
c
Z
o
n
e

<

c
T
r
a
n
c
f
e
r
Z
o
n
e

(
i
f

(
<

c
Z
o
n
e

c
T
r
a
n
c
f
e
r
Z
o
n
e
)

(
l
e
t

(
(
c
O
u
r
T
r
a
n
c
f
e
r
Z
o
n
e
I
n
d
e
x

c
Z
o
n
e
)
)

(
E
P
F
-
s
e
t
!

3

1
.
)

)

;
c
Z
o
n
e

>

c
T
r
a
n
c
f
e
r
Z
o
n
e

(
i
f

(
>

c
Z
o
n
e

c
T
r
a
n
c
f
e
r
Z
o
n
e
)

(
l
e
t

(
(
c
O
u
r
T
r
a
n
c
f
e
r
Z
o
n
e
I
n
d
e
x

(
1
-

c
Z
o
n
e
)
)
)

(
E
P
F
-
s
e
t
!

3

1
.
)

)
)

)
)
)
)
)

(
c
o
n
s
!

c
R
o
w
)

(
c
o
n
s
!
2

(
s
u
p
p
l
y
-
p
o
t
-
g
e
t

c
Z
o
n
e

c
S
o
u
r
c
e
)
)

)
)
)
)
)

;
P
r
o
d
u
c
e

m
o
r
e

t
h
e
n

D
e
m
a
n
d
e
d

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
l
e
t

(
(
c
R
o
w

(
f
6
4
v
e
c
t
o
r
-
c
o
p
y

Z
e
r
o
s
L
i
s
t
)
)
)

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
y
p
e

1

n
T
y
p
e

P
a

g
e

 2
0

 o
f

4
8

(
i
f

(
<

0

(
e
f
f
i
c
-
g
e
t

c
S
t
e
p

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

(
E
P
F
-
s
e
t
!

1

(
e
f
f
i
c
-
g
e
t

c
S
t
e
p

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

)
)
)

(
c
o
n
s
!

c
R
o
w
)

)

(
c
o
n
s
!
2

(
d
e
m
a
n
d
-
g
e
t

c
S
t
e
p

c
Z
o
n
e

c
S
e
r
v
i
c
e
)
)

)
)
)

;
C
o
n
v
e
r
t
i
o
n

c
a
p
a
c
i
t
y

g
r
a
t
e
r

t
h
e
n

U
s
e

f
o
r

e
a
c
h

t
y
p
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
f
o
r
-
i
n
t
e
r
v
a
l

c
Z
o
n
e

1

n
Z
o
n
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
e
r
v
i
c
e

1

n
S
e
r
v
i
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
o
u
r
c
e

1

n
S
o
u
r
c
e

(
f
o
r
-
i
n
t
e
r
v
a
l

c
T
y
p
e

1

n
T
y
p
e

(
i
f

(
<

0

(
e
f
f
i
c
-
g
e
t

c
S
t
e
p

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

(
l
e
t
*

(
(
c
R
o
w

(
f
6
4
v
e
c
t
o
r
-
c
o
p
y

Z
e
r
o
s
L
i
s
t
)
)

(
c
C
o
n
v
E
f
f
i
c

(
e
f
f
i
c
-
g
e
t

c
S
t
e
p

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

;
T
h
i
s

i
s

w
r
o
n
g

b
u
t

j
u
s
t

a
s

w
r
o
n
g

a
s

i
n

(
c
L
f

(
l
f
-
g
e
t

c
Z
o
n
e

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

G
A
M
S
.

E
f
f
i
c
i
e
n
c
y

i
s

i
n
s
t
a
n
t
l
y

(
c
I
n
i
t
C
a
p

(
i
n
i
t
-
C
a
p
-
g
e
t

c
Z
o
n
e

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

u
p
d
a
t
e
d

f
o
r

a
l
l

p
o
w
e
r
p
l
a
n
t
s

w
i
t
h
o
u
t

(
c
P
l
a
n
t
L
i
f
e
L
e
n
g
t
h

(
l
i
f
e
-
p
l
a
n
t
-
g
e
t

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)
)

c
o
s
t
t

i
n

e
v
e
r
y

i
t
e
r
a
t
i
o
n
.

(
d
e
p
r
e
c
i
a
t
i
o
n

(
e
x
p

(
*

1
0

(
l
o
g

(
-

1

(
/

1

c
P
l
a
n
t
L
i
f
e
L
e
n
g
t
h
)
)
)
)
)
)

)

(
E
P
F
-
s
e
t
!

1

c
C
o
n
v
E
f
f
i
c
)

;
A
d
d
i
n
g

u
p
p

p
r
e
v
e
u
s

y
e
a
r
s

c
a
p
a
c
i
t
y

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p
2

1

c
S
t
e
p

(
E
P
F
-
s
e
t
!

4

(
*

(
-

c
L
f
)

M
s
e
c
-
p
e
r
-
y
e
a
r

t
-
s
t
e
p

(
e
x
p
t

d
e
p
r
e
c
i
a
t
i
o
n

(
-

c
S
t
e
p

c
S
t
e
p
2
)
)
)
)

)

(
c
o
n
s
!

c
R
o
w
)

(
c
o
n
s
!
2

(
*

c
L
f

M
s
e
c
-
p
e
r
-
y
e
a
r

c
I
n
i
t
C
a
p

(
e
x
p
t

d
e
p
r
e
c
i
a
t
i
o
n

(
1
-

c
S
t
e
p
)
)
)
)

)
)
)
)
)
)
)

)
)
)
)
)
)
)
)

;
S
e
p
a
r
a
t
i
n
g

c
o
n
s
t
r
a
i
n
t

M
a
t
r
i
x

(
d
e
f
i
n
e

C
o
n
s
t
r

(
l
i
s
t
-
r
e
f

C
o
n
s
t
r
T
o
t

0
)
)

(
d
e
f
i
n
e

r
h
s

(
l
i
s
t
-
r
e
f

C
o
n
s
t
r
T
o
t

1
)
)

;
D
e
f
i
n
i
n
g

n
C
o
n
s
t
r

(
d
e
f
i
n
e

n
C
o
n
s
t
r

(
v
e
c
t
o
r
-
l
e
n
g
t
h

C
o
n
s
t
r
)
)

P
a

g
e

 2
1

 o
f

4
8

;
B
u
i
l
d
i
n
g

s
t
r
i
n
g

o
f

m
o
r
e

a
n
d

l
e
s
s

;
D
e
f
i
n
i
n
g

C
o
n
s
t
a
n
t
s

(
d
e
f
i
n
e

n
C
o
n
s
t
r
L
e
s
s
T
h
e
n
S
u
p
p
l
y

(
l
e
t

(
(
n
F
o
s
s
i
l
S

3
)

(
n
R
e
n
e
w
S

6
)
)

;
F
o
s
s
i
l

;
R
e
n
e
w
a
b
l
e

(
+

(
*

n
F
o
s
s
i
l
S

n
S
t
e
p

n
Z
o
n
e
)

(
*

n
R
e
n
e
w
S

n
S
t
e
p

n
Z
o
n
e
)
)

)
)

(
d
e
f
i
n
e

n
C
o
n
s
t
r
D
e
m
a
n
d
e
d

(
*

n
S
e
r
v
i
c
e

n
S
t
e
p

n
Z
o
n
e
)
)

(
d
e
f
i
n
e

n
C
o
n
s
t
r
C
o
n
v

(
-

n
C
o
n
s
t
r

n
C
o
n
s
t
r
D
e
m
a
n
d
e
d

n
C
o
n
s
t
r
L
e
s
s
T
h
e
n
S
u
p
p
l
y
)
)

;
B
u
i
l
d
i
n
g

s
t
r
i
n
g

(
d
e
f
i
n
e

m
o
r
e
O
r
L
e
s
s

(
s
t
r
i
n
g
-
a
p
p
e
n
d

(
m
a
k
e
-
s
t
r
i
n
g

n
C
o
n
s
t
r
L
e
s
s
T
h
e
n
S
u
p
p
l
y

g
r
b
-
l
e
s
s
-
e
q
u
a
l
)

;
U
s
e

L
e
s
s

t
h
e
n

S
u
p
p
l
y

(
m
a
k
e
-
s
t
r
i
n
g

n
C
o
n
s
t
r
D
e
m
a
n
d
e
d

g
r
b
-
g
r
e
a
t
e
r
-
e
q
u
a
l
)

;
P
r
o
d
u
c
e

m
o
r
e

t
h
e
n

D
e
m
a
n
d
e
d

(
m
a
k
e
-
s
t
r
i
n
g

n
C
o
n
s
t
r
C
o
n
v

g
r
b
-
l
e
s
s
-
e
q
u
a
l
)

;
C
o
n
v
e
r
t
i
o
n

c
a
p
a
c
i
t
y

g
r
a
t
e
r

t
h
e
n

U
s
e

o
f

e
a
c
h

t
y
p
e

)
)

;
B
u
i
l
d
i
n
g

V
a
r
i
a
b
l
e

T
y
p
e

V
e
c
t
o
r

(
v
t
y
p
e
)

(
d
e
f
i
n
e

v
t
y
p
e

(
m
a
k
e
-
s
t
r
i
n
g

t
o
t
N
V
a
r

g
r
b
-
c
o
n
t
i
n
u
o
u
s
)
)

(
l
o
a
d

"
t
o
S
p
a
r
c
e
M
a
t
r
i
x
.
o
2
"
)

 ;
B
u
i
l
d
i
n
g

C
o
n
s
t
r
a
i
n
t

V
e
c
t
o
r
s

t
o

G
u
r
o
b
i

(
d
e
f
i
n
e

v
b
e
g
&
v
l
e
n
&
v
i
n
d
&
v
v
a
l

(
c
o
n
s
t
r
-
>
v
b
e
g
&
v
l
e
n
&
v
i
n
d
&
v
v
a
l

C
o
n
s
t
r
)
)

;
S
e
t
i
n
g

n
u
m
b
e
r

o
f

t
h
r
e
d
s

a
n
d

c
a
l
c
u
l
a
t
i
o
n

m
e
t
h
o
d

(
g
r
b
-
s
e
t
-
n
u
m
b
e
r
-
o
f
-
t
h
r
e
d
s

g
r
b
-
e
n
v

4
)

(
g
r
b
-
s
e
t
-
m
e
t
h
o
d

g
r
b
-
e
n
v

2
)

;
n
T
h
r
e
a
d
s

c
M
e
t
h
o
d

P
a

g
e

 2
2

 o
f

4
8

 ;
C
a
l
l
i
n
g

o
n

G
u
r
o
b
i

(
d
e
f
i
n
e

m
o
d
e
l

(
l
e
t
-
a
r
g
s

v
b
e
g
&
v
l
e
n
&
v
i
n
d
&
v
v
a
l

(
v
b
e
g

v
l
e
n

v
i
n
d

v
v
a
l
)

(
g
r
b
-
l
o
a
d
-
m
o
d
e
l

g
r
b
-
e
n
v

"
e
x
a
m
p
l
e
"

t
o
t
N
V
a
r

n
C
o
n
s
t
r

1

0
.

o
b
j

m
o
r
e
O
r
L
e
s
s

r
h
s

v
b
e
g

v
l
e
n

v
i
n
d

v
v
a
l

#
f

#
f

#
f

#
f

v
t
y
p
e

#
f

'
(
)

;

=

i
n
g
a

v
a
r
n
a
m
e
s

#
f

'
(
)

;

=

i
n
g
a

c
o
n
s
t
r
n
a
m
e
s

)
)
)

;
T
e
l
l

G
u
r
o
b
i

t
o

o
p
t
i
m
i
c
e

(
g
r
b
-
o
p
t
i
m
i
z
e

g
r
b
-
e
n
v

m
o
d
e
l
)

 ;
R
e
t
r
e
a
v
e

r
e
s
u
l
t
s

f
r
o
m

G
u
r
o
b
i

;
R
e
t
r
e
a
v

t
h
e

m
i
n
i
m
u
m

c
o
s
t

f
o
u
n
d

(
d
e
f
i
n
e

O
p
t
i
m
u
m

(
g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r
*

g
r
b
-
e
n
v

m
o
d
e
l

"
O
b
j
V
a
l
"
)
)

;
R
e
t
r
e
a
v

t
h
e

m
i
n
i
m
u
m

p
o
i
n
t

(
d
e
f
i
n
e

P
o
i
n
t

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
o
t
N
V
a
r

(
c
o
n
s
!

(
g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r
-
e
l
e
m
e
n
t
*

g
r
b
-
e
n
v

m
o
d
e
l

"
X
"

(
1
-

c
V
a
r
)
)
)

)
)
)
)

P
a

g
e

 2
3

 o
f

4
8

 ;
P
r
o
c
e
s
s

r
e
s
u
l
t
s

;
S
y
s
t
e
m

1

(
d
e
f
i
n
e

T
i
m
e
-
R
e
s
u
l
t
-
M
a
t
r
i
x

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
S
t
e
p
P
e
r
i
o
d

(
c
o
n
s
!
2

(
f
6
4
v
e
c
t
o
r
-
r
e
f

P
o
i
n
t

(
+

(
1
-

c
V
a
r
)

(
*

t
S
t
e
p
P
e
r
i
o
d

(
1
-

c
S
t
e
p
)
)
)
)
)

)
)
)
)
)
)
)
)

(
d
e
f
i
n
e

S
y
s
t
e
m
1

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
S
t
e
p
P
e
r
i
o
d

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
c
o
n
s
!
2

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

T
i
m
e
-
R
e
s
u
l
t
-
M
a
t
r
i
x

(
1
-

c
S
t
e
p
)
)

(
1
-

c
V
a
r
)
)
)

)
)
)
)
)
)
)
)

;
S
y
s
t
e
m

2

(
d
e
f
i
n
e

T
i
m
e
-
R
e
s
u
l
t
-
M
a
t
r
i
x
2

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
S
t
e
p
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
c
o
n
s
!
2

(
f
6
4
v
e
c
t
o
r
-
r
e
f

P
o
i
n
t

(
+

(
1
-

c
V
a
r
)

(
*

t
S
t
e
p
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
1
-

c
S
t
e
p
)
)

(
*

t
S
t
e
p
P
e
r
i
o
d

n
S
t
e
p
)
)
)
)

)
)
)
)
)
)
)
)

(
d
e
f
i
n
e

S
y
s
t
e
m
2

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
S
t
e
p
P
e
r
i
o
d
B
u
s
i
n
e
s
s

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
c
o
n
s
!
2

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

T
i
m
e
-
R
e
s
u
l
t
-
M
a
t
r
i
x
2

(
1
-

c
S
t
e
p
)
)

(
1
-

c
V
a
r
)
)
)

)
)
)
)
)
)
)
)

;
S
y
s
t
e
m

4

(
d
e
f
i
n
e

T
i
m
e
-
R
e
s
u
l
t
-
M
a
t
r
i
x
4

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
S
t
e
p
P
e
r
i
o
d

(
c
o
n
s
!
2

(
f
6
4
v
e
c
t
o
r
-
r
e
f

P
o
i
n
t

(
+

(
1
-

c
V
a
r
)

(
*

t
S
t
e
p
P
e
r
i
o
d

(
1
-

c
S
t
e
p
)
)

(
*

t
S
t
e
p
P
e
r
i
o
d

n
S
t
e
p
)

(
*

t
S
t
e
p
P
e
r
i
o
d
B
u
s
i
n
e
s
s

n
S
t
e
p
)
)
)
)

)
)
)
)
)
)
)
)

(
d
e
f
i
n
e

S
y
s
t
e
m
4

(
l
i
s
t
-
>
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
f
o
r
-
i
n
t
e
r
v
a
l

c
V
a
r

1

t
S
t
e
p
P
e
r
i
o
d

(
c
o
n
s
!

(
l
i
s
t
-
>
f
6
4
v
e
c
t
o
r

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

(
f
o
r
-
i
n
t
e
r
v
a
l

c
S
t
e
p

1

n
S
t
e
p

(
c
o
n
s
!
2

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

T
i
m
e
-
R
e
s
u
l
t
-
M
a
t
r
i
x
4

(
1
-

c
S
t
e
p
)
)

(
1
-

c
V
a
r
)
)
)

)
)
)
)
)
)
)
)

P
a

g
e

 2
4

 o
f

4
8

 ;
O
u
t

O
p
t
i
m
u
m

;
S
y
s
t
e
m
1

P
a

g
e

 2
5

 o
f

4
8

 T
h

e
 I

n
p

u
t

D
a

ta
 o

f
th

e
 S

im
p

le
 M

o
d

e
ls

 (
c

a
ll

e
d

 "
D

a
ta

 S
im

p
le

F
iv

e
.s

c
m

")

 ;
D
e
c
l
a
r
i
n
g

C
o
n
s
t
a
n
t
s

;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
P
R
I
M
A
R
Y

M
O
D
E
L
L

(
U
S
E
)

S
y
s
t
e
m

1

;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

 (
d
e
f
i
n
e

t
-
s
t
e
p

1
0
)

(
d
e
f
i
n
e

M
s
e
c
-
p
e
r
-
y
e
a
r

3
1
.
6
)

 ;
(
t
-
s
t
e
p
)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
N
A
M

E
U
R

P
A
O

F
S
U

A
F
R

P
A
S

L
A
M

M
E
A

C
P
A

S
A
S

(
d
e
f
i
n
e

p
r
i
c
e

'
#
(
#
f
6
4
(
1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0
)

;
C
o
a
l

#
f
6
4
(
3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0
)

;
O
i
l

#
f
6
4
(
2
.
5

2
.
5

2
.
5

2
.
5

2
.
5

2
.
5

2
.
5

2
.
5

2
.
5

2
.
5
)

;
N
G

#
f
6
4
(
3
.
0

4
.
0

2
.
0

4
.
0

2
.
0

2
.
0

2
.
0

2
.
0

2
.
0

2
.
0
)

;
B
i
o

#
f
6
4
(
1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0
)

;
N
u
c
l
e
a
r

#
f
6
4
(
0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.
)

;
W
i
n
d

#
f
6
4
(
0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.
)

;
H
y
d
r
o

#
f
6
4
(
0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.
)

;
S
o
l
a
r

#
f
6
4
(
0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.

0
.
)
)
)

;
S
o
l
a
r
_
c
s
p

 ;

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

;
1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

;
N
A
M

E
U
R

P
A
O

F
S
U

A
F
R

P
A
S

L
A
M

M
E
A

C
P
A

S
A
S

;
(
d
e
f
i
n
e

p
r
i
c
e

'
#
(
#
f
6
4
(
1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0

1
.
0
)

;
C
o
a
l

;

#
f
6
4
(
1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0
)

;
O
i
l

;

#
f
6
4
(
1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0
)

;
N
G

;

#
f
6
4
(
1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0
)

;
B
i
o

;

#
f
6
4
(
1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0
)

;
N
u
c
l
e
a
r

;

#
f
6
4
(
1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0
)

;
W
i
n
d

;

#
f
6
4
(
1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0
)

;
H
y
d
r
o

;

#
f
6
4
(
1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0
)

;
S
o
l
a
r

;

#
f
6
4
(
1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0

1
0
0
0
0
0
.
0
)
)
)

;
S
o
l
a
r
_
c
s
p

 ;
(
p
r
i
c
e
-
g
e
t

c
Z
o
n
e

c
S
o
u
r
c
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
p
r
i
c
e
-
g
e
t

v
a
r
-
Z
o
n
e

v
a
r
-
S
o
u
r
c
e
)

`
(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

p
r
i
c
e

(
1
-

,
v
a
r
-
S
o
u
r
c
e
)
)

(
1
-

,
v
a
r
-
Z
o
n
e
)
)

)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
N
A
M

E
U
R

P
A
O

F
S
U

A
F
R

P
A
S

L
A
M

M
E
A

C
P
A

S
A
S

(
d
e
f
i
n
e

s
u
p
p
l
y
-
p
o
t

'
#
(
#
f
6
4
(
3
7
2
6
2
.

1
7
6
4
0
.

1
9
0
7
4
.

1
2
1
7
4
7
.

6
4
5
7
.

3
8
0
.

1
9
8
3
.

6
3
3
.

5
4
6
4
9
.

3
7
5
6
.
)

;
C
o
a
l

#
f
6
4
(
1
5
5
0
.

8
6
4
.

6
5
.

1
1
1
5
.

8
3
0
.

9
6
.

1
1
4
4
.

5
3
6
2
.

5
6
4
.

2
5
4
.
)

;
O
i
l

#
f
6
4
(
1
9
5
9
.

1
4
2
0
.

1
5
5
.

2
3
4
8
.

7
0
6
.

1
6
5
.

6
6
5
.

2
5
7
8
.

3
1
5
.

4
3
4
.
)

;
N
G

#
f
6
4
(
1
8
.

2
0
.

2
.

1
3
.

4
4
.

6
.
5

6
5
.

0
.
2
5

2
0
.

1
7
.
)

;
B
i
o

#
f
6
4
(
1
0
0
0
0
.

1
0
0
0
0
.

1
0
0
0
0
.

1
0
0
0
0
.

1
0
0
0
0
.

1
0
0
0
0
.

1
0
0
0
0
.

1
0
0
0
0
.

1
0
0
0
0
.

1
0
0
0
0
.
)

;
N
u
c
l
e
a
r

#
f
6
4
(
1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.
)

;
W
i
n
d

#
f
6
4
(
2
.
5
7

2
.
7

0
.
5

2
.
0
4

1
.
8
8

0
.
5
0

2
.
5
3

0
.
0
5

3
.
2
8

1
.
3
0
)

;
H
y
d
r
o

#
f
6
4
(
1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.
)

;
S
o
l
a
r

P
a

g
e

 2
6

 o
f

4
8

#
f
6
4
(
1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.

1
0
0
0
.
)

)
)

;
S
o
l
a
r
-
C
S
P

 ;
(
s
u
p
p
l
y
-
p
o
t
-
g
e
t

c
Z
o
n
e

c
S
o
u
r
c
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
s
u
p
p
l
y
-
p
o
t
-
g
e
t

v
a
r
-
Z
o
n
e

v
a
r
-
S
o
u
r
c
e
)

`
(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

s
u
p
p
l
y
-
p
o
t

(
1
-

,
v
a
r
-
S
o
u
r
c
e
)
)

(
1
-

,
v
a
r
-
Z
o
n
e
)
)

)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
1
9
9
0

2
0
0
0

2
0
1
0

2
0
2
0

2
0
3
0

2
0
4
0

2
0
5
0

2
0
6
0

2
0
7
0

2
0
8
0

2
0
9
0

2
1
0
0

2
1
1
0

2
1
2
0

2
1
3
0

2
1
4
0

(
d
e
f
i
n
e

d
e
m
a
n
d

'
#
(
#
f
6
4
(
1
2
.
6
7

1
6
.
3
2

1
6
.
9
3

1
7
.
2
9

1
7
.
4
8

1
7
.
1
5

1
6
.
8
4

1
5
.
6
1

1
4
.
4
1

1
3
.
5
3

1
2
.
6
6

1
1
.
7
8

1
1
.
1
9

1
0
.
6
3

1
0
.
1
0

1
0
.
1
0
)

;
N
A
M
.
e
l
e
c

#
f
6
4
(
2
9
.
6
1

3
3
.
2
9

3
1
.
6
9

2
8
.
7
0

2
3
.
8
1

2
0
.
1
1

1
6
.
4
2

1
3
.
3
8

1
0
.
3
5

8
.
8
6

7
.
3
6

5
.
8
6

5
.
7
5

5
.
6
3

5
.
5
2

5
.
5
2
)

;
N
A
M
.
H
e
a
t

#
f
6
4
(
8
.
9
5

1
0
.
6
1

1
2
.
3
8

1
3
.
6
3

1
5
.
0
2

1
6
.
0
3

1
7
.
0
3

1
7
.
0
6

1
7
.
0
9

1
6
.
6
3

1
6
.
1
8

1
5
.
7
2

1
5
.
7
2

1
5
.
7
2

1
5
.
7
2

1
5
.
7
2
)

;
E
U
R
.
e
l
e
c

#
f
6
4
(
3
0
.
4
8

2
9
.
4
9

2
8
.
6
8

2
6
.
4
8

2
4
.
4
1

2
2
.
0
6

1
9
.
7
1

1
7
.
1
7

1
4
.
6
2

1
3
.
4
4

1
2
.
2
6

1
1
.
0
9

1
0
.
8
7

1
0
.
6
5

1
0
.
4
4

1
0
.
4
4
)

;
E
U
R
.
h
e
a
t

#
f
6
4
(
3
.
7
5

5
.
2
0

5
.
1
9

5
.
2
8

5
.
5
8

5
.
4
0

5
.
2
3

4
.
9
7

4
.
7
1

4
.
6
5

4
.
5
8

4
.
5
2

4
.
5
2

4
.
5
2

4
.
5
2

4
.
5
2
)

;
P
A
O
.
e
l
e
c

#
f
6
4
(
9
.
1
7

1
2
.
0
4

1
0
.
8
2

9
.
1
6

7
.
3
4

5
.
9
5

4
.
5
5

3
.
9
4

3
.
3
2

3
.
1
0

2
.
8
8

2
.
6
6

2
.
6
6

2
.
6
6

2
.
6
6

2
.
6
6
)

;
P
A
O
.
h
e
a
t

#
f
6
4
(
4
.
8
3

3
.
5
4

4
.
9
4

5
.
0
0

5
.
2
2

5
.
5
2

5
.
8
4

6
.
2
1

6
.
5
8

6
.
9
9

7
.
4
0

7
.
8
1

7
.
8
1

7
.
8
1

7
.
8
1

7
.
8
1
)

;
F
S
U
.
e
l
e
c

#
f
6
4
(
2
8
.
2
3

1
8
.
0
7

2
7
.
3
4

2
8
.
3
6

2
7
.
6
1

2
6
.
1
5

2
4
.
6
9

2
2
.
2
0

1
9
.
7
1

1
7
.
5
5

1
5
.
3
9

1
3
.
2
4

1
2
.
9
7

1
2
.
7
1

1
2
.
4
6

1
2
.
4
6
)

;
F
S
U
.
h
e
a
t

#
f
6
4
(
0
.
9
5

1
.
2
9

1
.
5
8

2
.
0
2

2
.
4
4

3
.
6
7

4
.
8
9

6
.
6
2

8
.
3
4

1
3
.
0
7

1
7
.
8
1

2
2
.
5
5

2
4
.
8
1

2
7
.
2
9

3
0
.
0
1

3
0
.
0
1
)

;
A
F
R
.
e
l
e
c

#
f
6
4
(
3
.
1
5

1
2
.
3
9

1
5
.
8
3

1
9
.
1
3

2
2
.
8
2

2
5
.
8
1

2
8
.
8
0

3
2
.
1
9

3
5
.
5
9

4
0
.
7
8

4
5
.
9
7

5
1
.
1
6

5
3
.
7
2

5
6
.
4
1

5
9
.
2
3

5
9
.
2
3
)

;
A
F
R
.
h
e
a
t

#
f
6
4
(
0
.
8
4

1
.
5
4

2
.
6
5

4
.
1
2

5
.
4
8

7
.
0
7

8
.
6
7

9
.
9
2

1
1
.
1
8

1
1
.
9
7

1
2
.
7
8

1
3
.
5
8

1
3
.
5
8

1
3
.
5
8

1
3
.
5
8

1
3
.
5
8
)

;
P
A
S
.
e
l
e
c

#
f
6
4
(
4
.
2
1

9
.
8
9

1
5
.
1
3

1
6
.
0
9

1
6
.
8
3

1
6
.
5
6

1
6
.
2
9

1
4
.
8
0

1
3
.
3
1

1
2
.
7
7

1
2
.
2
3

1
1
.
6
9

1
1
.
6
9

1
1
.
6
9

1
1
.
6
9

1
1
.
6
9
)

;
P
A
S
.
h
e
a
t

#
f
6
4
(
1
.
6
0

2
.
4
3

3
.
3
7

3
.
9
8

4
.
6
6

5
.
3
2

5
.
9
8

7
.
4
1

8
.
8
2

9
.
7
1

1
0
.
5
9

1
1
.
4
9

1
1
.
4
9

1
1
.
4
9

1
1
.
4
9

1
1
.
4
9
)

;
L
A
M
.
e
l
e
c

#
f
6
4
(
6
.
3
2

7
.
9
6

1
5
.
2
8

1
7
.
3
2

1
8
.
1
5

1
8
.
3
5

1
8
.
5
5

1
7
.
1
4

1
5
.
7
3

1
5
.
1
9

1
4
.
6
4

1
4
.
1
0

1
4
.
1
0

1
4
.
1
0

1
4
.
1
0

1
4
.
1
0
)

;
L
A
M
.
h
e
a
t

#
f
6
4
(
0
.
7
1

1
.
3
8

1
.
8
5

2
.
5
5

3
.
4
3

4
.
7
8

6
.
1
1

8
.
4
3

1
0
.
7
3

1
4
.
7
2

1
8
.
7
1

2
2
.
7
0

2
3
.
8
4

2
5
.
0
3

2
6
.
2
8

2
6
.
2
8
)

;
M
E
A
.
e
l
e
c

#
f
6
4
(
4
.
4
8

7
.
1
3

8
.
3
7

1
0
.
8
3

1
4
.
0
6

1
7
.
7
4

2
1
.
4
2

2
4
.
8
2

2
8
.
2
3

3
0
.
8
8

3
3
.
5
2

3
6
.
1
7

3
6
.
8
9

3
7
.
6
3

3
8
.
3
8

3
8
.
3
8
)

;
M
E
A
.
h
e
a
t

#
f
6
4
(
2
.
8
7

5
.
2
6

6
.
9
5

9
.
1
0

1
1
.
7
3

1
4
.
5
3

1
7
.
3
4

2
0
.
2
6

2
3
.
1
9

2
5
.
1
3

2
7
.
0
7

2
9
.
0
3

3
0
.
4
8

3
2
.
0
0

3
3
.
6
0

3
3
.
6
0
)

;
C
P
A
.
e
l
e
c

#
f
6
4
(
1
6
.
9
4

2
5
.
4
3

4
5
.
0
9

5
0
.
6
6

5
5
.
0
4

5
4
.
1
9

5
3
.
3
3

4
9
.
4
0

4
5
.
4
6

4
3
.
3
2

4
1
.
1
8

3
9
.
0
5

3
8
.
2
6

3
7
.
5
0

3
6
.
7
5

3
6
.
7
5
)

;
C
P
A
.
h
e
a
t

#
f
6
4
(
1
.
2
3

2
.
2
4

2
.
7
5

3
.
5
3

4
.
7
0

6
.
3
4

7
.
9
9

1
1
.
0
9

1
4
.
2
2

1
9
.
2
1

2
4
.
2
1

2
9
.
2
3

3
2
.
1
5

3
5
.
3
6

3
8
.
9
0

3
8
.
9
0
)

;
S
A
S
.
e
l
e
c

#
f
6
4
(
6
.
3
1

1
4
.
8
4

2
0
.
9
7

2
4
.
7
5

2
7
.
7
5

3
2
.
0
7

3
6
.
3
9

4
2
.
4
3

4
8
.
4
7

5
2
.
5
8

5
6
.
6
9

6
0
.
8
1

6
3
.
8
5

6
7
.
0
4

7
0
.
3
9

7
0
.
3
9
)

)
)

;
S
A
S
.
h
e
a
t

 ;
(
d
e
m
a
n
d
-
g
e
t

c
S
t
e
p

c
Z
o
n
e

c
S
e
r
v
i
c
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
d
e
m
a
n
d
-
g
e
t

v
a
r
-
S
t
e
p

v
a
r
-
Z
o
n
e

v
a
r
-
S
e
r
v
i
c
e
)

`
(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

d
e
m
a
n
d

(
+

(
-

,
v
a
r
-
S
e
r
v
i
c
e

1
)

(
*

(
-

,
v
a
r
-
Z
o
n
e

1
)

n
S
e
r
v
i
c
e
P
e
r
i
o
d
)

)
)

(
-

,
v
a
r
-
S
t
e
p

1
)
)

)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
E
l
e
c

H
e
a
t

(
d
e
f
i
n
e

e
f
f
i
c
-
0

'
#
(
#
f
6
4
(
0
.
5

0
.
9
)

;
c
o
a
l
-
0

#
f
6
4
(
0
.
4

0
.
)

;
c
o
a
l
-
c
g

#
f
6
4
(
0
.
3
5

0
.
8
)

;
c
o
a
l
-
c
c
s

#
f
6
4
(
0
.
3

0
.
)

;
c
o
a
l
-
c
g
-
c
c
s

#
f
6
4
(
0
.
5

0
.
9
)

;
o
i
l
-
0

#
f
6
4
(
0
.
4
5

0
.
)

;
o
i
l
-
c
g

#
f
6
4
(
0
.
4
0

0
.
8
)

;
o
i
l
-
c
c
s

#
f
6
4
(
0
.
3
5

0
.
)

;
o
i
l
-
c
g
-
c
c
s

#
f
6
4
(
0
.
5
5

0
.
9
)

;
N
G
-
0

#
f
6
4
(
0
.
5
0

0
.
)

;
N
G
-
c
g

#
f
6
4
(
0
.
4
5

0
.
8
)

;
N
G
-
c
c
s

#
f
6
4
(
0
.
4
0

0
.
)

;
N
G
-
c
g
-
c
c
s

#
f
6
4
(
0
.
5

0
.
9
)

;
b
i
o
-
0

#
f
6
4
(
0
.
3
5

0
.
)

;
b
i
o
-
c
g

#
f
6
4
(
0
.
3
0

0
.
8
)

;
b
i
o
-
c
c
s

#
f
6
4
(
0
.
2
5

0
.
)

;
b
i
o
-
c
g
-
c
c
s

#
f
6
4
(
0
.
3
3

0
.
)

;
n
u
c
l
e
a
r
-
0

#
f
6
4
(
0
.

0
.
)

;
n
u
c
l
e
a
r
-
c
g

#
f
6
4
(
0
.

0
.
)

;
n
u
c
l
e
a
r
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
n
u
c
l
e
a
r
-
c
g
-
c
c
s

#
f
6
4
(
1
.

0
.
)

;
w
i
n
d
-
0

P
a

g
e

 2
7

 o
f

4
8

#
f
6
4
(
0
.

0
.
)

;
w
i
n
d
-
c
g

#
f
6
4
(
0
.

0
.
)

;
w
i
n
d
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
w
i
n
d
-
c
g
-
c
c
s

#
f
6
4
(
1
.

0
.
)

;
h
y
d
r
o
-
0

#
f
6
4
(
0
.

0
.
)

;
h
y
d
r
o
-
c
g

#
f
6
4
(
0
.

0
.
)

;
h
y
d
r
o
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
h
y
d
r
o
-
c
g
-
c
c
s

#
f
6
4
(
1
.

1
.
)

;
s
o
l
a
r
-
0

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
g

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
g
-
c
c
s

#
f
6
4
(
1
.

0
.
)

;
s
o
l
a
r
-
c
s
p
-
0

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
s
p
-
c
g

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
s
p
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
s
p
-
c
g
-
c
c
s

#
f
6
4
(
0
.
5
5

0
.
9
)

;
h
2
-
0

#
f
6
4
(
0
.
5
0

0
.
)

;
h
2
-
c
g

#
f
6
4
(
0
.

0
.
)

;
h
2
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
h
2
-
c
g
-
c
c
s

#
f
6
4
(
0
.

0
.
9
5
)

;
e
l
e
c
-
0

#
f
6
4
(
0
.

0
.
)

;
e
l
e
c
-
c
g

#
f
6
4
(
0
.

0
.
)

;
e
l
e
c
-
c
c
s

#
f
6
4
(
0
.

0
.
)
)
)

;
e
l
e
c
-
c
g
-
c
c
s

 ;
(
e
f
f
i
c
-
0
-
g
e
t

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
e
f
f
i
c
-
0
-
g
e
t

v
a
r
-
S
e
r
v
i
c
e

v
a
r
-
S
o
u
r
c
e

v
a
r
-
T
y
p
e
)

`
(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

e
f
f
i
c
-
0

(
+

(
*

(
1
-

,
v
a
r
-
S
o
u
r
c
e
)

n
T
y
p
e
P
e
r
i
o
d
)

(
1
-

,
v
a
r
-
T
y
p
e
)
)
)

(
1
-

,
v
a
r
-
S
e
r
v
i
c
e
)
)

)

 ;
(
e
f
f
i
c
-
g
e
t

c
S
t
e
p

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
e
f
f
i
c
-
g
e
t

v
a
r
-
S
t
e
p

v
a
r
-
S
e
r
v
i
c
e

v
a
r
-
S
o
u
r
c
e

v
a
r
-
T
y
p
e
)

`
(
l
e
t

(
(
e
f
f

(
e
f
f
i
c
-
0
-
g
e
t

,
v
a
r
-
S
e
r
v
i
c
e

,
v
a
r
-
S
o
u
r
c
e

,
v
a
r
-
T
y
p
e
)
)
)

(
i
f

(
=

0
.

e
f
f
)

0
.

(
i
f

(
<

0
.

e
f
f
)

(
l
e
t
*

(
(
t
-
t
e
c
h
-
e
f
f
i
c

3
0
)

(
e
f
f
i
c
-
c
a
l
c

(
+

(
*

(
/

0
.
1

t
-
t
e
c
h
-
e
f
f
i
c
)

(
*

(
1
-

,
v
a
r
-
S
t
e
p
)

t
-
s
t
e
p
)
)

(
-

e
f
f

0
.
1
)
)
)
)

(
m
i
n

e
f
f

e
f
f
i
c
-
c
a
l
c
)
)

(
e
r
r
o
r

"
e
f
f

m
i
n
d
r
e

e
n

n
o
l
l
"

e
f
f
)
)
)
)
)

;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
R
E
S
O
U
R
C
E

T
R
A
N
S
F
E
R

(
B
U
Y
I
N
G
)

S
y
s
t
e
m

2

(
a
n
d

S
y
s
t
e
m

3

f
o
r

s
e
l
l
i
n
g

i
m
p
l
i
c
i
t
l
y
)

;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
C
o
s
t

(
d
e
f
i
n
e

i
m
p
-
c
o
s
t

'
#
(
#
f
6
4
(
1
.
0
)

;
C
o
a
l

#
f
6
4
(
0
.
5
)

;
O
i
l

#
f
6
4
(
1
.
5
)

;
N
G

#
f
6
4
(
2
.
0
)

;
B
i
o

#
f
6
4
(
0
.
5
)
)
)

;
N
u
c
l
e
a
r

 ;
(
i
m
p
-
c
o
s
t
-
g
e
t

c
S
o
u
r
c
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
i
m
p
-
c
o
s
t
-
g
e
t

v
a
r
-
S
o
u
r
c
e
)

`
(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

i
m
p
-
c
o
s
t

(
1
-

,
v
a
r
-
S
o
u
r
c
e
)
)

0
)

)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
C
o
s
t

(
d
e
f
i
n
e

i
m
p
-
c
o
s
t
-
l
i
n

'
#
(
#
f
6
4
(
0
.
0
0
0
0
1
)

;
C
o
a
l

P
a

g
e

 2
8

 o
f

4
8

#
f
6
4
(
0
.
0
0
0
0
1
)

;
O
i
l

#
f
6
4
(
0
.
0
0
0
0
2
)

;
N
G

#
f
6
4
(
0
.
0
0
0
0
1
)

;
B
i
o

#
f
6
4
(
0
.
0
0
0
0
1
)
)
)

;
N
u
c
l
e
a
r

 ;
(
i
m
p
-
c
o
s
t
-
l
i
n
-
g
e
t

c
S
o
u
r
c
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
i
m
p
-
c
o
s
t
-
l
i
n
-
g
e
t

v
a
r
-
S
o
u
r
c
e
)

`
(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

i
m
p
-
c
o
s
t
-
l
i
n

(
1
-

,
v
a
r
-
S
o
u
r
c
e
)
)

0
)

)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
N
A
M

E
U
R

P
A
O

F
S
U

A
F
R

P
A
S

L
A
M

M
E
A

C
P
A

S
A
S

(
d
e
f
i
n
e

d
i
s
t
a
n
c
e

'
#
(
#
f
6
4
(
0
.

6
8
0
0
.

9
6
0
0
.

7
9
0
0
.

1
0
4
0
0
.

1
3
3
0
0
.

8
1
0
0
.

1
0
0
0
0
.

1
0
1
0
0
.

1
2
8
0
0
.
)

;
N
A
M

#
f
6
4
(
6
8
0
0
.

0
.

9
7
0
0
.

2
5
0
0
.

4
2
0
0
.

9
4
0
0
.

8
7
1
3
.

3
2
0
0
.

8
2
0
0
.

7
0
0
0
.
)

;
E
U
R

#
f
6
4
(
9
6
0
0
.

9
7
0
0
.

0
.

7
5
0
0
.

1
2
2
0
0
.

4
6
0
0
.

1
7
7
0
0
.

9
6
0
0
.

2
1
0
0
.

6
7
0
0
.
)

;
P
A
O

#
f
6
4
(
7
9
0
0
.

2
5
0
0
.

7
5
0
0
.

0
.

5
2
0
0
.

7
1
0
0
.

1
1
2
0
0
.

2
9
0
0
.

5
8
0
0
.

5
0
0
0
.
)

;
F
S
U

#
f
6
4
(
1
0
4
0
0
.

4
2
0
0
.

1
2
2
0
0
.

5
2
0
0
.

0
.

9
2
0
0
.

7
6
0
0
.

2
6
0
0
.

1
0
1
0
0
.

6
2
0
0
.
)

;
A
F
R

#
f
6
4
(
1
3
3
0
0
.

9
4
0
0
.

4
6
0
0
.

7
1
0
0
.

9
2
0
0
.

0
.

1
6
6
0
0
.

7
3
0
0
.

3
3
0
0
.

3
0
0
0
.
)

;
P
A
S

#
f
6
4
(
8
1
0
0
.

8
7
1
3
.

1
7
7
0
0
.

1
1
2
0
0
.

7
6
0
0
.

1
6
6
0
0
.

0
.

9
9
0
0
.

1
6
9
0
0
.

1
3
8
0
0
.
)

;
L
A
M

#
f
6
4
(
1
0
0
0
0
.

3
2
0
0
.

9
6
0
0
.

2
9
0
0
.

2
6
0
0
.

7
3
0
0
.

9
9
0
0
.

0
.

7
6
0
0
.

4
4
0
0
.
)

;
M
E
A

#
f
6
4
(
1
0
1
0
0
.

8
2
0
0
.

2
1
0
0
.

5
8
0
0
.

1
0
1
0
0
.

3
3
0
0
.

1
6
9
0
0
.

7
6
0
0
.

0
.

4
8
0
0
.
)

;
C
P
A

#
f
6
4
(
1
2
8
0
0
.

7
0
0
0
.

6
7
0
0
.

5
0
0
0
.

6
2
0
0
.

3
0
0
0
.

1
3
8
0
0
.

4
4
0
0
.

4
8
0
0
.

0
.
)
)
)

;
S
A
S

 ;
(
d
i
s
t
a
n
c
e
-
g
e
t

c
Z
o
n
e

c
T
r
a
n
c
f
e
r
Z
o
n
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
d
i
s
t
a
n
c
e
-
g
e
t

v
a
r
-
Z
o
n
e

v
a
r
-
T
r
a
n
c
f
e
r
Z
o
n
e
)

`
(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

d
i
s
t
a
n
c
e

(
1
-

,
v
a
r
-
Z
o
n
e
)
)

(
1
-

,
v
a
r
-
T
r
a
n
c
f
e
r
Z
o
n
e
)
)

)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
C
O
N
V
E
R
S
I
O
N

(
P
L
A
N
T
S
)

S
y
s
t
e
m

4

;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

 ;
(
l
i
f
e
-
p
l
a
n
t
-
g
e
t

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
l
i
f
e
-
p
l
a
n
t
-
g
e
t

v
a
r
-
S
e
r
v
i
c
e

v
a
r
-
S
o
u
r
c
e

v
a
r
-
T
y
p
e
)

`
(
i
f

(
=

,
v
a
r
-
S
o
u
r
c
e

7
)

(
i
f

(
a
n
d

(
=

,
v
a
r
-
S
e
r
v
i
c
e

1
)

(
=

,
v
a
r
-
T
y
p
e

1
)
)

4
0
.

2
5
.
)

(
i
f

(
=

,
v
a
r
-
S
o
u
r
c
e

9
)

(
i
f

(
a
n
d

(
=

,
v
a
r
-
S
e
r
v
i
c
e

1
)

(
=

,
v
a
r
-
T
y
p
e

1
)
)

3
0
.

2
5
.

)

2
5
.

)
)
)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

 ;
(
O
M
-
c
o
s
t
-
f
r
-
g
e
t

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
O
M
-
c
o
s
t
-
f
r
-
g
e
t

v
a
r
-
S
e
r
v
i
c
e

v
a
r
-
S
o
u
r
c
e

v
a
r
-
T
y
p
e
)

`
(
i
f

(
a
n
d

(
=

,
v
a
r
-
S
o
u
r
c
e

9
)

(
=

,
v
a
r
-
S
e
r
v
i
c
e

1
)
)

0
.
0
1
4

0
.
0
4
)
)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
E
l
e
c

H
e
a
t

(
d
e
f
i
n
e

c
o
s
t
-
i
n
v
-
b
a
s
e

'
#
(
#
f
6
4
(
1
1
0
0
.

3
0
0
.
)

;
c
o
a
l
-
0

#
f
6
4
(
1
2
0
0
.

0
.
)

;
c
o
a
l
-
c
g

#
f
6
4
(
1
5
0
0
.

5
0
0
.
)

;
c
o
a
l
-
c
c
s

#
f
6
4
(
1
6
0
0
.

0
.
)

;
c
o
a
l
-
c
g
-
c
c
s

#
f
6
4
(
6
0
0
.

1
0
0
.
)

;
o
i
l
-
0

P
a

g
e

 2
9

 o
f

4
8

#
f
6
4
(
7
0
0
.

0
.
)

;
o
i
l
-
c
g

#
f
6
4
(
1
0
0
0
.

3
0
0
.
)

;
o
i
l
-
c
c
s

#
f
6
4
(
1
1
0
0
.

0
.
)

;
o
i
l
-
c
g
-
c
c
s

#
f
6
4
(
5
0
0
.

1
0
0
.
)

;
N
G
-
0

#
f
6
4
(
6
0
0
.

0
.
)

;
N
G
-
c
g

#
f
6
4
(
9
0
0
.

3
0
0
.
)

;
N
G
-
c
c
s

#
f
6
4
(
1
0
0
0
.

0
.
)

;
N
G
-
c
g
-
c
c
s

#
f
6
4
(
1
2
0
0
.

3
0
0
.
)

;
b
i
o
-
0

#
f
6
4
(
1
3
0
0
.

0
.
)

;
b
i
o
-
c
g

#
f
6
4
(
1
7
0
0
.

5
0
0
.
)

;
b
i
o
-
c
c
s

#
f
6
4
(
1
8
0
0
.

0
.
)

;
b
i
o
-
c
g
-
c
c
s

#
f
6
4
(
2
0
0
0
.

0
.
)

;
n
u
c
l
e
a
r
-
0

#
f
6
4
(
0
.

0
.
)

;
n
u
c
l
e
a
r
-
c
g

#
f
6
4
(
0
.

0
.
)

;
n
u
c
l
e
a
r
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
n
u
c
l
e
a
r
-
c
g
-
c
c
s

#
f
6
4
(
6
0
0
.

0
.
)

;
w
i
n
d
-
0

#
f
6
4
(
0
.

0
.
)

;
w
i
n
d
-
c
g

#
f
6
4
(
0
.

0
.
)

;
w
i
n
d
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
w
i
n
d
-
c
g
-
c
c
s

#
f
6
4
(
1
0
0
0
.

0
.
)

;
h
y
d
r
o
-
0

#
f
6
4
(
0
.

0
.
)

;
h
y
d
r
o
-
c
g

#
f
6
4
(
0
.

0
.
)

;
h
y
d
r
o
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
h
y
d
r
o
-
c
g
-
c
c
s

#
f
6
4
(
1
2
0
0
.

4
0
0
.
)

;
s
o
l
a
r
-
0

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
g

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
g
-
c
c
s

#
f
6
4
(
3
2
0
0
.

0
.
)

;
s
o
l
a
r
-
c
s
p
-
0

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
s
p
-
c
g

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
s
p
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
s
p
-
c
g
-
c
c
s

#
f
6
4
(
5
0
0
.

1
0
0
.
)

;
h
2
-
0

#
f
6
4
(
6
0
0
.

0
.
)

;
h
2
-
c
g

#
f
6
4
(
0
.

0
.
)

;
h
2
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
h
2
-
c
g
-
c
c
s

#
f
6
4
(
0
.

1
0
0
.
)

;
e
l
e
c
-
0

#
f
6
4
(
0
.

0
.
)

;
e
l
e
c
-
c
g

#
f
6
4
(
0
.

0
.
)

;
e
l
e
c
-
c
c
s

#
f
6
4
(
0
.

0
.
)
)
)

;
e
l
e
c
-
c
g
-
c
c
s

 ;
(
c
o
s
t
-
i
n
v
-
g
e
t

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
c
o
s
t
-
i
n
v
-
g
e
t

v
a
r
-
S
e
r
v
i
c
e

v
a
r
-
S
o
u
r
c
e

v
a
r
-
T
y
p
e
)

`
(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

c
o
s
t
-
i
n
v
-
b
a
s
e

(
+

(
*

(
1
-

,
v
a
r
-
S
o
u
r
c
e
)

n
T
y
p
e
P
e
r
i
o
d
)

(
1
-

,
v
a
r
-
T
y
p
e
)
)
)

(
1
-

,
v
a
r
-
S
e
r
v
i
c
e
)
)

)

;
(
c
o
s
t
-
i
n
v
-
m
o
d
-
g
e
t

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
c
o
s
t
-
i
n
v
-
m
o
d
-
g
e
t

v
a
r
-
S
e
r
v
i
c
e

v
a
r
-
S
o
u
r
c
e

v
a
r
-
T
y
p
e
)

`
(
l
e
t

(
(
d
r
_
i
n
v
e
s
t

5
)

(
d
r

5
)

(
l
i
f
e
L
e
n
g
t
h
P
l
a
n
t

(
l
i
f
e
-
p
l
a
n
t
-
g
e
t

,
v
a
r
-
S
e
r
v
i
c
e

,
v
a
r
-
S
o
u
r
c
e

,
v
a
r
-
T
y
p
e
)
)
)

(
*

(
c
o
s
t
-
i
n
v
-
g
e
t

,
v
a
r
-
S
e
r
v
i
c
e

,
v
a
r
-
S
o
u
r
c
e

,
v
a
r
-
T
y
p
e
)

(
/

(
+

d
r
_
i
n
v
e
s
t

(
/

1

l
i
f
e
L
e
n
g
t
h
P
l
a
n
t
)
)

(
+

d
r

(
/

1

l
i
f
e
L
e
n
g
t
h
P
l
a
n
t
)
)
)
)
)

)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
E
l
e
c

H
e
a
t

(
d
e
f
i
n
e

l
f
-
g
l
o
b
a
l

'
#
(
#
f
6
4
(
0
.
7

0
.
7
)

;
c
o
a
l
-
0

#
f
6
4
(
0
.
7

0
.
)

;
c
o
a
l
-
c
g

#
f
6
4
(
0
.
7

0
.
7
)

;
c
o
a
l
-
c
c
s

#
f
6
4
(
0
.
7

0
.
)

;
c
o
a
l
-
c
g
-
c
c
s

#
f
6
4
(
0
.
7

0
.
7
)

;
o
i
l
-
0

#
f
6
4
(
0
.
7

0
.
)

;
o
i
l
-
c
g

#
f
6
4
(
0
.
7

0
.
7
)

;
o
i
l
-
c
c
s

P
a

g
e

 3
0

 o
f

4
8

#
f
6
4
(
0
.
7

0
.
)

;
o
i
l
-
c
g
-
c
c
s

#
f
6
4
(
0
.
7

0
.
7
)

;
N
G
-
0

#
f
6
4
(
0
.
7

0
.
)

;
N
G
-
c
g

#
f
6
4
(
0
.
7

0
.
7
)

;
N
G
-
c
c
s

#
f
6
4
(
0
.
7

0
.
)

;
N
G
-
c
g
-
c
c
s

#
f
6
4
(
0
.
7

0
.
7
)

;
b
i
o
-
0

#
f
6
4
(
0
.
7

0
.
)

;
b
i
o
-
c
g

#
f
6
4
(
0
.
7

0
.
7
)

;
b
i
o
-
c
c
s

#
f
6
4
(
0
.
7

0
.
)

;
b
i
o
-
c
g
-
c
c
s

#
f
6
4
(
0
.
7

0
.
)

;
n
u
c
l
e
a
r
-
0

#
f
6
4
(
0
.

0
.
)

;
n
u
c
l
e
a
r
-
c
g

#
f
6
4
(
0
.

0
.
)

;
n
u
c
l
e
a
r
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
n
u
c
l
e
a
r
-
c
g
-
c
c
s

#
f
6
4
(
0
.
2
5

0
.
)

;
w
i
n
d
-
0

#
f
6
4
(
0
.

0
.
)

;
w
i
n
d
-
c
g

#
f
6
4
(
0
.

0
.
)

;
w
i
n
d
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
w
i
n
d
-
c
g
-
c
c
s

#
f
6
4
(
0
.
7

0
.
)

;
h
y
d
r
o
-
0

#
f
6
4
(
0
.

0
.
)

;
h
y
d
r
o
-
c
g

#
f
6
4
(
0
.

0
.
)

;
h
y
d
r
o
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
h
y
d
r
o
-
c
g
-
c
c
s

#
f
6
4
(
0
.
2
5

0
.
2
5
)

;
s
o
l
a
r
-
0

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
g

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
g
-
c
c
s

#
f
6
4
(
0
.
6

0
.
)

;
s
o
l
a
r
-
c
s
p
-
0

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
s
p
-
c
g

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
s
p
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
s
o
l
a
r
-
c
s
p
-
c
g
-
c
c
s

#
f
6
4
(
0
.
7

0
.
7
)

;
h
2
-
0

#
f
6
4
(
0
.
7

0
.
)

;
h
2
-
c
g

#
f
6
4
(
0
.

0
.
)

;
h
2
-
c
c
s

#
f
6
4
(
0
.

0
.
)

;
h
2
-
c
g
-
c
c
s

#
f
6
4
(
0
.

1
.
)

;
e
l
e
c
-
0

#
f
6
4
(
0
.

0
.
)

;
e
l
e
c
-
c
g

#
f
6
4
(
0
.

0
.
)

;
e
l
e
c
-
c
c
s

#
f
6
4
(
0
.

0
.
)
)
)

;
e
l
e
c
-
c
g
-
c
c
s

;
(
l
f
-
g
l
o
b
a
l
-
g
e
t

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
l
f
-
g
l
o
b
a
l
-
g
e
t

v
a
r
-
S
e
r
v
i
c
e

v
a
r
-
S
o
u
r
c
e

v
a
r
-
T
y
p
e
)

`
(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

l
f
-
g
l
o
b
a
l

(
+

(
*

(
1
-

,
v
a
r
-
S
o
u
r
c
e
)

n
T
y
p
e
P
e
r
i
o
d
)

(
1
-

,
v
a
r
-
T
y
p
e
)
)
)

(
1
-

,
v
a
r
-
S
e
r
v
i
c
e
)
)

)

;
N
A
M

E
U
R

P
A
O

F
S
U

A
F
R

P
A
S

L
A
M

M
E
A

C
P
A

S
A
S

(
d
e
f
i
n
e

l
f
-
g
l
o
b
a
l
-
Z
o
n
e
-
S
o
l
a
r
-
0

'
#
(
#
f
6
4
(
0
.
2
7

0
.
2
5

0
.
2
5

0
.
2
5

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8
)

;
E
l
e
c

#
f
6
4
(
0
.
2
7

0
.
2
5

0
.
2
5

0
.
2
5

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8

0
.
2
8
)

)
)

;
H
e
a
t

;
(
l
f
-
g
e
t

c
Z
o
n
e

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
l
f
-
g
e
t

v
a
r
-
Z
o
n
e

v
a
r
-
S
e
r
v
i
c
e

v
a
r
-
S
o
u
r
c
e

v
a
r
-
T
y
p
e
)

`
(
i
f

(
=

,
v
a
r
-
S
o
u
r
c
e

8
)

(
i
f

(
=

,
v
a
r
-
T
y
p
e

1
)

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

l
f
-
g
l
o
b
a
l
-
Z
o
n
e
-
S
o
l
a
r
-
0

(
1
-

,
v
a
r
-
S
e
r
v
i
c
e
)
)

(
1
-

,
v
a
r
-
Z
o
n
e
)
)

(
l
f
-
g
l
o
b
a
l
-
g
e
t

,
v
a
r
-
S
e
r
v
i
c
e

,
v
a
r
-
S
o
u
r
c
e

,
v
a
r
-
T
y
p
e
)

)

(
l
f
-
g
l
o
b
a
l
-
g
e
t

,
v
a
r
-
S
e
r
v
i
c
e

,
v
a
r
-
S
o
u
r
c
e

,
v
a
r
-
T
y
p
e
)

)
)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
N
A
M

E
U
R

P
A
O

F
S
U

A
F
R

P
A
S

L
A
M

M
E
A

C
P
A

S
A
S

(
d
e
f
i
n
e

i
n
i
t
-
C
a
p

'
#
(
#
f
6
4
(
0
.
3
9
0
0
0

0
.
2
4
0
0
0

0
.
0
6
0
0
0

0
.
0
8
0
0
0

0
.
0
2
8
5
0

0
.
0
3
0
0
0

0
.
0
0
5
0
0

0
.
0
0
4
0
0

0
.
2
3
5
0
0

0
.
0
5
0
0
0
)

;
c
o
a
l
.
e
l
e
c
.
0

P
a

g
e

 3
1

 o
f

4
8

#
f
6
4
(
0
.
0
8
2
5
9

0
.
3
4
3
3
6

0
.
0
0
5
8
4

0
.
3
7
9
0
3

0
.
1
5
6
8
3

0
.
3
1
0
4
0

0
.
2
7
9
8
4

0
.
0
4
3
4
4

0
.
2
6
9
8
9

0
.
3
0
0
0
0
)

;
c
o
a
l
.
h
e
a
t
.
0

#
f
6
4
(
0
.
0
4
0
0
0

0
.
0
5
7
0
0

0
.
0
4
0
0
0

0
.
0
4
0
0
0

0
.
0
0
3
0
0

0
.
0
3
0
0
0

0
.
0
3
0
0
0

0
.
0
4
4
0
0

0
.
0
0
8
0
0

0
.
0
0
6
0
0
)

;
o
i
l
.
e
l
e
c
.
0

#
f
6
4
(
0
.
7
2
3
7
0

0
.
7
7
9
3
9

0
.
1
6
2
8
6

0
.
3
5
5
2
3

0
.
2
4
3
5
0

0
.
0
4
7
7
2

0
.
0
0
7
8
4

0
.
2
7
3
2
6

0
.
1
5
0
5
8

0
.
2
0
0
0
0
)

;
o
i
l
.
h
e
a
t
.
0

#
f
6
4
(
1
.
2
8
6
1
5

0
.
7
5
8
0
3

0
.
2
0
1
8
2

0
.
3
5
4
4
8

0
.
1
0
5
3
3

0
.
1
4
5
8
2

0
.
3
0
9
2
8

0
.
2
2
6
7
9

0
.
1
8
3
5
6

0
.
1
4
1
9
7
)

;
o
i
l
.
p
e
t
r
o
.
0

#
f
6
4
(
0
.
0
8
0
0
0

0
.
0
4
7
0
0

0
.
0
5
0
0
0

0
.
1
8
0
0
0

0
.
0
0
0
8
0

0
.
0
0
8
0
0

0
.
0
2
0
0
0

0
.
0
4
0
0
0

0
.
0
0
0
7
0

0
.
0
0
5
0
0
)

;
N
G
.
e
l
e
c
.
0

#
f
6
4
(
0
.
2
3
3
5
4

0
.
1
1
1
3
3

0
.
0
9
8
3
5

0
.
6
3
4
6
2

0
.
4
6
6
8
8

0
.
0
0
9
7
0

0
.
1
3
4
6
4

0
.
0
1
4
1
5

0
.
3
3
8
1
0

0
.
4
0
0
0
0
)

;
N
G
.
h
e
a
t
.
0

#
f
6
4
(
0
.
0
1
5
5
0

0
.
0
0
5
3
0

0
.
0
2
1
0
0

0
.
0
0
3
8
4

0
.
0
0
0
0
0

0
.
0
0
0
9
6

0
.
0
0
2
4
0

0
.
0
0
0
4
3

0
.
0
0
0
9
8

0
.
0
0
0
9
6
)

;
b
i
o
.
e
l
e
c
.
0

#
f
6
4
(
0
.
1
3
5
2
1

0
.
1
2
2
1
5

0
.
0
2
3
9
1

0
.
0
3
5
1
1

0
.
3
7
9
6
0

0
.
1
6
5
4
9

0
.
1
4
6
4
2

0
.
0
0
3
5
8

0
.
3
8
7
0
0

0
.
3
4
0
0
0
)

;
b
i
o
.
h
e
a
t
.
0

#
f
6
4
(
0
.
1
3
2
1
2

0
.
1
5
4
8
9

0
.
0
3
8
8
6

0
.
0
4
0
9
8

0
.
0
0
1
8
3

0
.
0
1
6
5
0

0
.
0
0
2
6
6

0
.
0
0
0
0
0

0
.
0
0
0
0
0

0
.
0
0
1
0
7
)

;
n
u
c
l
e
a
r
.
e
l
e
c
.
0

#
f
6
4
(
0
.
1
2
5
1
0

0
.
1
0
5
0
5

0
.
0
2
7
7
7

0
.
0
5
5
5
4

0
.
0
0
9
3
2

0
.
0
0
7
8
5

0
.
0
8
6
3
3

0
.
0
0
4
8
3

0
.
0
3
5
7
5

0
.
0
2
1
1
3
)

)
)

;
h
y
d
r
o
.
e
l
e
c
.
0

 ;
(
i
n
i
t
-
C
a
p
-
g
e
t

c
Z
o
n
e

c
S
e
r
v
i
c
e

c
S
o
u
r
c
e

c
T
y
p
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
i
n
i
t
-
C
a
p
-
g
e
t

v
a
r
-
c
Z
o
n
e

v
a
r
-
c
S
e
r
v
i
c
e

v
a
r
-
c
S
o
u
r
c
e

v
a
r
-
c
T
y
p
e
)

`
(
c
o
n
d

(
(
>

,
v
a
r
-
c
T
y
p
e

1
)

0
.
)

;
R
e
m
o
v
e

a
l
l

t
y
p
e
s

o
t
h
e
r

t
h
e
n

.
0

(
(
a
n
d

(
=

,
v
a
r
-
c
S
e
r
v
i
c
e

7
)

(
=

,
v
a
r
-
c
S
o
u
r
c
e

2
)
)

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

i
n
i
t
-
C
a
p

4
)

(
1
-

,
v
a
r
-
c
Z
o
n
e
)
)
)

;
d
e
l
i
v
e
r

p
e
t
r
o
l
i
u
m

r
o
w

(
(
>

,
v
a
r
-
c
S
e
r
v
i
c
e

2
)

0
.
)

;
d
e
l
i
v
e
r

0

i
f

S
e
r
v
i
c
e

i
s

n
o
t

e
l
e
c

o
r

h
e
a
t

(
(
a
n
d

(
>

,
v
a
r
-
c
S
o
u
r
c
e

5
)

(
n
o
t

(
=

,
v
a
r
-
c
S
o
u
r
c
e

7
)
)
)

0
.
)

;
I
f

s
o
u
r
c
e

n
o
t

i
n

l
i
s
t

d
e
l
i
v
e
r

0

(
(
a
n
d

(
o
r

(
=

,
v
a
r
-
c
S
o
u
r
c
e

5
)

(
=

,
v
a
r
-
c
S
o
u
r
c
e

7
)
)

(
n
o
t

(
=

,
v
a
r
-
c
S
e
r
v
i
c
e

1
)
)
)

0
.
)

;
i
f

h
e
a
t

f
r
o
m

n
u
c
l
e
a
r

o
r

h
y
d
r
o

d
e
l
i
v
e
r

0

(
e
l
s
e

(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

i
n
i
t
-
C
a
p

(
c
o
n
d

(
(
=

,
v
a
r
-
c
S
o
u
r
c
e

1
)

(
+

0

(
1
-

,
v
a
r
-
c
S
e
r
v
i
c
e
)
)
)

(
(
=

,
v
a
r
-
c
S
o
u
r
c
e

2
)

(
+

2

(
1
-

,
v
a
r
-
c
S
e
r
v
i
c
e
)
)
)

(
(
=

,
v
a
r
-
c
S
o
u
r
c
e

3
)

(
+

5

(
1
-

,
v
a
r
-
c
S
e
r
v
i
c
e
)
)
)

(
(
=

,
v
a
r
-
c
S
o
u
r
c
e

4
)

(
+

7

(
1
-

,
v
a
r
-
c
S
e
r
v
i
c
e
)
)
)

(
(
=

,
v
a
r
-
c
S
o
u
r
c
e

5
)

(
+

9

(
1
-

,
v
a
r
-
c
S
e
r
v
i
c
e
)
)
)

(
(
=

,
v
a
r
-
c
S
o
u
r
c
e

7
)

(
+

1
0

(
1
-

,
v
a
r
-
c
S
e
r
v
i
c
e
)
)
)
)
)

(
1
-

,
v
a
r
-
c
Z
o
n
e
)
)
)
)
)

 ;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
E
M
I
S
S
I
O
N

C
O
N
S
T
A
N
T
S

;
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

;
C
o
s
t

(
d
e
f
i
n
e

e
m
i
s
-
f
a
c
t

'
#
(
#
f
6
4
(
2
4
.
7
)

;
C
o
a
l

#
f
6
4
(
2
0
.
5
)

;
O
i
l

#
f
6
4
(
1
5
.
4
)

;
N
G

#
f
6
4
(
3
2
.
0
)

;
B
i
o

#
f
6
4
(

0
.
0
)

;
N
u
c
l
e
a
r

#
f
6
4
(
1
9
.
1
)
)
)

;
M
e
o
h

 ;
(
e
m
i
s
-
f
a
c
t
-
g
e
t

c
S
o
u
r
c
e
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
e
m
i
s
-
f
a
c
t
-
g
e
t

v
a
r
-
S
o
u
r
c
e
)

`
(
f
6
4
v
e
c
t
o
r
-
r
e
f

(
v
e
c
t
o
r
-
r
e
f

e
m
i
s
-
f
a
c
t

(
1
-

,
v
a
r
-
S
o
u
r
c
e
)
)

0
)

)

P
a

g
e

 3
2

 o
f

4
8

 T
w

o
 D

e
p

e
n

d
e

n
c

y
 L

ib
r

a
r

ie
s

A

s
e

xp
la

in
e

d
 i

n
 t

h
e

 r
e

p
o

rt
 s

ch
e

m
e

 i
s

a
 l

a
n

g
u

a
g

e
 t

h
a

t
b

u
il

d
s

o
n

 t
h

e
 p

ro
g

ra
m

m
e

r
b

e
in

g
 f

re
e

 t
o

 m
a

k
e

 c
h

a
n

g
e

s
to

 t
h

e
 l

a
n

g
u

a
g

e
 w

h
e

n
 n

e
e

d
e

d
.

S
o

m
e

 n
e

w
 t

h
in

g
s

w
e

re

in
tr

o
d

u
ce

d
 t

o
 t

h
e

 s
ch

e
m

e
 c

o
d

e
 d

u
ri

n
g

 t
h

is
 p

ro
je

ct
.

F
ir

st
ly

 a
n

 F
F

I
u

se
d

 t
o

 c
o

m
m

u
n

ic
a

te
 w

it
h

 t
h

e
 G

U
R

O
B

I
o

p
ti

m
iz

e
r

fr
o

m
 G

A
M

B
IT

.
T

h
e

 c
o

d
e

 o
f

th
is

 A
P

I
is

 i
n

cl
u

d
e

d
 h

e
re

 a
n

d
 i

t
is

 a
ls

o
 p

u
b

li
sh

e
d

 o
n

 t
h

e
 s

it
e

 G
A

M
B

IT

D
u

m
p

in
g

 G
ro

u
n

d
s

 (
h

tt
p

:/
/g

a
m

b
it

sc
h

e
m

e
.o

rg
/w

ik
i/

in
d

e
x.

p
h

p
/D

u
m

p
in

g
_

G
ro

u
n

d
s)

.

S
e

co
n

d
ly

 s
o

m
e

 m
a

cr
o

s
w

e
re

 w
ri

tt
e

n
 t

o
 s

a
fe

ly
 h

a
n

d
le

 m
u

ta
ti

o
n

 i
n

 t
h

e
 c

o
d

e
.

T
h

is
 i

s
p

e
rh

a
p

s
th

e
 l

e
a

st
 i

n
te

re
st

in
g

 a
n

d
 l

e
a

st
 r

e
a

d
a

b
le

 s
e

ct
io

n
 o

f
th

e
 c

o
d

e
.

It
 i

s
in

cl
u

d
e

d

o
n

ly
 f

o
r

tr
a

n
sp

a
re

n
cy

 a
n

d
 b

y
 p

ri
n

ci
p

le
.

T
h

e
 f

il
e

 i
s

ca
ll

e
d

 "
v
e
r
k
t
y
g
.
s
c
m
"
.

P
a

g
e

 3
3

 o
f

4
8

 G
U

R
O

B
I

 F
F

I
 ;

T
o

c
o
m
p
i
l
e

o
n

W
i
n
d
o
w
s

M
S
V
C

3
2
b
i
t
:

;

K
o
m
a
n
d
o
t

i

g
a
m
b
i
t

f
ö
r

a
t
t

k
o
m
p
i
l
e
r
a

d
e
n
h
ä
r

f
i
l
e
n
:

(
c
o
m
p
i
l
e
-
f
i
l
e

"
g
u
r
o
b
i
f
f
i
.
s
c
m
"

c
c
-
o
p
t
i
o
n
s
:

"
/
E
R
R
O
R
R
E
P
O
R
T
:
P
R
O
M
P
T

-
I

c
:
\
\
g
u
r
o
b
i
4
5
1
\
\
w
i
n
3
2
\
\
i
n
c
l
u
d
e
"

l
d
-
o
p
t
i
o
n
s
-
p
r
e
l
u
d
e
:

"
\
\
g
u
r
o
b
i
4
5
1
\
\
w
i
n
3
2
\
\
l
i
b
\
\
g
u
r
o
b
i
4
5
.
l
i
b

\
\
g
u
r
o
b
i
4
5
1
\
\
w
i
n
3
2
\
\
l
i
b
\
\
g
u
r
o
b
i
_
c
+
+
m
t
d
2
0
1
0
.
l
i
b
"
)

;

(
l
o
a
d

"
g
u
r
o
b
i
f
f
i
.
o
X
"
)

 (
d
e
c
l
a
r
e

(
n
o
t

i
n
t
e
r
r
u
p
t
s
-
e
n
a
b
l
e
d
)
)

 (
c
-
d
e
c
l
a
r
e

#
<
<
c
-
d
e
c
l
a
r
e
-
e
n
d

 /
/

#
p
r
a
g
m
a

c
o
m
m
e
n
t
(
l
i
b
,
"
g
u
r
o
b
i
4
5
.
l
i
b
"
)

/
/

#
p
r
a
g
m
a

c
o
m
m
e
n
t
(
l
i
b
,
"
g
u
r
o
b
i
_
c
+
+
m
t
d
2
0
1
0
.
l
i
b
"
)

#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

/
/

#
i
n
c
l
u
d
e

<
f
l
o
a
t
.
h
>

#
i
n
c
l
u
d
e

"
g
u
r
o
b
i
_
c
.
h
"

 /
/

p
r
i
n
t
f
(
"
F
l
o
a
t
i
n
g

p
o
i
n
t

v
a
l
u
e
s

a
r
e

%
i

b
y
t
e
s

o
n

t
h
i
s

p
u
t
e
r
.
\
n
"
,
s
i
z
e
o
f
(
d
o
u
b
l
e
)
)
;

 c
-
d
e
c
l
a
r
e
-
e
n
d

)

 (
d
e
f
i
n
e

t
e
s
t
a
-
c
2

(
c
-
l
a
m
b
d
a

(
)

v
o
i
d

#
<
<
K
O
D
E
N

p
r
i
n
t
f
(
"
C

f
u
n
k
a
d
e
!
\
n
"
)
;

K
O
D
E
N

)
)

P
a

g
e

 3
4

 o
f

4
8

 (
c
-
d
e
c
l
a
r
e

#
<
<
c
-
d
e
c
l
a
r
e
-
e
n
d

 _
_
_
S
C
M
O
B
J

r
e
l
e
a
s
e
_
g
r
b
_
e
n
v
_
s
t
a
r
(
v
o
i
d
*

p
)

{

G
R
B
f
r
e
e
e
n
v
(
(
G
R
B
e
n
v
*
)

p
)
;

/
/

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
"
g
u
r
o
b
i
f
f
i
:

r
e
l
e
a
s
e
_
g
r
b
_
e
n
v
_
s
t
a
r
:

%
i

g
a
r
b
a
g
e

c
o
l
l
e
c
t
e
d
.
\
n
"
,
(
i
n
t
)

p
)
;

r
e
t
u
r
n

_
_
_
F
I
X
(
_
_
_
N
O
_
E
R
R
)
;

}

 _
_
_
S
C
M
O
B
J

r
e
l
e
a
s
e
_
g
r
b
_
m
o
d
e
l
_
s
t
a
r
(
v
o
i
d
*

p
)

{

G
R
B
f
r
e
e
m
o
d
e
l
(
(
G
R
B
m
o
d
e
l
*
)

p
)
;

/
/

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
"
g
u
r
o
b
i
f
f
i
:

r
e
l
e
a
s
e
_
g
r
b
_
m
o
d
e
l
_
s
t
a
r
:

%
i

g
a
r
b
a
g
e

c
o
l
l
e
c
t
e
d
.
\
n
"
,
(
i
n
t
)

p
)
;

r
e
t
u
r
n

_
_
_
F
I
X
(
_
_
_
N
O
_
E
R
R
)
;

}

 c
-
d
e
c
l
a
r
e
-
e
n
d

)

 ;

(
c
-
d
e
f
i
n
e
-
t
y
p
e

g
r
b
-
e
n
v

"
G
R
B
e
n
v
"
)

(
c
-
d
e
f
i
n
e
-
t
y
p
e

g
r
b
-
e
n
v
*

(
n
o
n
n
u
l
l
-
p
o
i
n
t
e
r

"
G
R
B
e
n
v
"

g
r
b
-
e
n
v
*

"
r
e
l
e
a
s
e
_
g
r
b
_
e
n
v
_
s
t
a
r
"

)
)

(
c
-
d
e
f
i
n
e
-
t
y
p
e

g
r
b
-
m
o
d
e
l
*

(
n
o
n
n
u
l
l
-
p
o
i
n
t
e
r

"
G
R
B
m
o
d
e
l
"

g
r
b
-
m
o
d
e
l
*

"
r
e
l
e
a
s
e
_
g
r
b
_
m
o
d
e
l
_
s
t
a
r
"
)
)

 ;

I
m
p
o
r
t

c
o
n
s
t
a
n
t
s
:

(
d
e
f
i
n
e

g
r
b
-
l
e
s
s
-
e
q
u
a
l

(
(
c
-
l
a
m
b
d
a

(
)

c
h
a
r

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
L
E
S
S
_
E
Q
U
A
L
;
"

)
)
)

(
d
e
f
i
n
e

g
r
b
-
g
r
e
a
t
e
r
-
e
q
u
a
l

(
(
c
-
l
a
m
b
d
a

(
)

c
h
a
r

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
G
R
E
A
T
E
R
_
E
Q
U
A
L
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
e
q
u
a
l

(
(
c
-
l
a
m
b
d
a

(
)

c
h
a
r

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
E
Q
U
A
L
;
"
)
)
)

 (
d
e
f
i
n
e

g
r
b
-
c
o
n
t
i
n
u
o
u
s

(
(
c
-
l
a
m
b
d
a

(
)

c
h
a
r

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
C
O
N
T
I
N
U
O
U
S
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
b
i
n
a
r
y

(
(
c
-
l
a
m
b
d
a

(
)

c
h
a
r

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
B
I
N
A
R
Y
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
i
n
t
e
g
e
r

(
(
c
-
l
a
m
b
d
a

(
)

c
h
a
r

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
I
N
T
E
G
E
R
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
s
e
m
i
c
o
n
t

(
(
c
-
l
a
m
b
d
a

(
)

c
h
a
r

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
S
E
M
I
C
O
N
T
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
s
e
m
i
i
n
t

(
(
c
-
l
a
m
b
d
a

(
)

c
h
a
r

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
S
E
M
I
I
N
T
;
"
)
)
)

 (
d
e
f
i
n
e

g
r
b
-
l
o
a
d
e
d

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
L
O
A
D
E
D
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
o
p
t
i
m
a
l

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
O
P
T
I
M
A
L
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
i
n
f
e
a
s
i
b
l
e

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
I
N
F
E
A
S
I
B
L
E
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
i
n
f
-
o
r
-
u
n
b
d

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
I
N
F
_
O
R
_
U
N
B
D
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
u
n
b
o
u
n
d
e
d

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
U
N
B
O
U
N
D
E
D
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
c
u
t
o
f
f

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
C
U
T
O
F
F
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
i
t
e
r
a
t
i
o
n
-
l
i
m
i
t

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
I
T
E
R
A
T
I
O
N
_
L
I
M
I
T
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
n
o
d
e
-
l
i
m
i
t

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
N
O
D
E
_
L
I
M
I
T
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
t
i
m
e
-
l
i
m
i
t

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
T
I
M
E
_
L
I
M
I
T
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
s
o
l
u
t
i
o
n
-
l
i
m
i
t

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
S
O
L
U
T
I
O
N
_
L
I
M
I
T
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
i
n
t
e
r
r
u
p
t
e
d

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
I
N
T
E
R
R
U
P
T
E
D
;
"
)
)
)

(
d
e
f
i
n
e

g
r
b
-
n
u
m
e
r
i
c

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
N
U
M
E
R
I
C
;
"
)
)
)

P
a

g
e

 3
5

 o
f

4
8

 (
d
e
f
i
n
e

g
r
b
-
s
u
b
o
p
t
i
m
a
l

(
(
c
-
l
a
m
b
d
a

(
)

i
n
t

"
_
_
_
r
e
s
u
l
t

=

G
R
B
_
S
U
B
O
P
T
I
M
A
L
;
"
)
)
)

 (
d
e
f
i
n
e

g
r
b
-
o
p
t
i
m
i
z
e
-
s
t
a
t
u
s
-
c
o
d
e
s

(
l
i
s
t
-
>
t
a
b
l
e

`
(
(
,
g
r
b
-
l
o
a
d
e
d

.

l
o
a
d
e
d
)

(
,
g
r
b
-
o
p
t
i
m
a
l

.

o
p
t
i
m
a
l
)

(
,
g
r
b
-
i
n
f
e
a
s
i
b
l
e

.

i
n
f
e
a
s
i
b
l
e
)

(
,
g
r
b
-
i
n
f
-
o
r
-
u
n
b
d

.

i
n
f
-
o
r
-
u
n
b
d
)

(
,
g
r
b
-
u
n
b
o
u
n
d
e
d

.

u
n
b
o
u
n
d
e
d
)

(
,
g
r
b
-
c
u
t
o
f
f

.

c
u
t
o
f
f
)

(
,
g
r
b
-
i
t
e
r
a
t
i
o
n
-
l
i
m
i
t

.

i
t
e
r
a
t
i
o
n
-
l
i
m
i
t
)

(
,
g
r
b
-
n
o
d
e
-
l
i
m
i
t

.

n
o
d
e
-
l
i
m
i
t
)

(
,
g
r
b
-
t
i
m
e
-
l
i
m
i
t

.

t
i
m
e
-
l
i
m
i
t
)

(
,
g
r
b
-
s
o
l
u
t
i
o
n
-
l
i
m
i
t

.

s
o
l
u
t
i
o
n
-
l
i
m
i
t
)

(
,
g
r
b
-
i
n
t
e
r
r
u
p
t
e
d

.

i
n
t
e
r
r
u
p
t
e
d
)

(
,
g
r
b
-
n
u
m
e
r
i
c

.

n
u
m
e
r
i
c
)

(
,
g
r
b
-
s
u
b
o
p
t
i
m
a
l

.

s
u
b
o
p
t
i
m
a
l
)
)

t
e
s
t
:

e
q
?
)
)

 (
d
e
f
i
n
e

(
i
m
p
o
r
t
-
g
r
b
-
o
p
t
i
m
i
z
e
-
s
t
a
t
u
s
-
c
o
d
e
s

v
)

(
t
a
b
l
e
-
r
e
f

g
r
b
-
o
p
t
i
m
i
z
e
-
s
t
a
t
u
s
-
c
o
d
e
s

v
)
)

 (
d
e
f
i
n
e

g
r
b
-
l
o
a
d
-
e
n
v

(
c
-
l
a
m
b
d
a

(
c
h
a
r
-
s
t
r
i
n
g
)

g
r
b
-
e
n
v
*

#
<
<
c
-
d
e
c
l
a
r
e
-
e
n
d

G
R
B
e
n
v
*

e
n
v
P
;

c
o
n
s
t

c
h
a
r
*

l
o
g
f
i
l
e
n
a
m
e

=

_
_
_
a
r
g
1
;

i
n
t

r

=

G
R
B
l
o
a
d
e
n
v
(
&
e
n
v
P
,
l
o
g
f
i
l
e
n
a
m
e
)
;

i
f

(
r

=
=

0
)

_
_
_
r
e
s
u
l
t
_
v
o
i
d
s
t
a
r

=

e
n
v
P
;

e
l
s
e

_
_
_
r
e
s
u
l
t
_
v
o
i
d
s
t
a
r

=

0
;

c
-
d
e
c
l
a
r
e
-
e
n
d

)
)

 (
d
e
f
i
n
e

g
r
b
-
e
n
v

(
g
r
b
-
l
o
a
d
-
e
n
v

#
f
)
)

 (
d
e
f
i
n
e

f
6
4
v
e
c
t
o
r
r
e
f

(
c
-
l
a
m
b
d
a

(
s
c
h
e
m
e
-
o
b
j
e
c
t

i
n
t
)

d
o
u
b
l
e

"
d
o
u
b
l
e
*

d

=

&
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
1
,
0
)
;

_
_
_
r
e
s
u
l
t

=

d
[
_
_
_
a
r
g
2
]
;
"
)
)

;

o
b
s
o
l
e
t
e
:

(
d
e
f
i
n
e

f
6
4
v
e
c
t
o
r
r
e
f
+
1
/
2

(
c
-
l
a
m
b
d
a

(
s
c
h
e
m
e
-
o
b
j
e
c
t
)

d
o
u
b
l
e

"
d
o
u
b
l
e
*

d

=

&
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
1
,
1
)
;

_
_
_
r
e
s
u
l
t

=

*
d
;
"
)
)

;

o
b
s
o
l
e
t
e
:

(
d
e
f
i
n
e

f
6
4
v
e
c
t
o
r
r
e
f
+
1
/
3

(
c
-
l
a
m
b
d
a

(
s
c
h
e
m
e
-
o
b
j
e
c
t
)

d
o
u
b
l
e

"
d
o
u
b
l
e

d

=

_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
1
,
1
)
;

_
_
_
r
e
s
u
l
t

=

d
;
"
)
)

 ;

(
d
e
f
i
n
e

m
o
d
e
l

(
g
r
b
-
l
o
a
d
-
m
o
d
e
l

g
r
b
-
e
n
v

"
e
x
a
m
p
l
e
"

3

2

-
1

0
.

'
#
f
6
4
(
1
.

1
.

2
.
)

(
l
i
s
t
-
>
s
t
r
i
n
g

(
l
i
s
t

g
r
b
-
l
e
s
s
-
e
q
u
a
l

g
r
b
-
g
r
e
a
t
e
r
-
e
q
u
a
l
)
)

;

'
#
f
6
4
(
4
.

1
.
)

'
#
s
3
2
(
0

2

4
)

'
#
s
3
2
(
2

2

1
)

'
#
s
3
2
(
0

1

0

1

0
)

'
#
f
6
4
(
1
.

1
.

2
.

1
.

3
.
)

;

#
f

#
f

#
f

#
f

(
l
i
s
t
-
>
s
t
r
i
n
g

(
l
i
s
t

g
r
b
-
b
i
n
a
r
y

g
r
b
-
b
i
n
a
r
y

g
r
b
-
b
i
n
a
r
y
)
)

'
(
)

'
(
)
)
)

P
a

g
e

 3
6

 o
f

4
8

 (
d
e
f
i
n
e

g
r
b
-
l
o
a
d
-
m
o
d
e
l

(
c
-
l
a
m
b
d
a

(
g
r
b
-
e
n
v
*

n
o
n
n
u
l
l
-
c
h
a
r
-
s
t
r
i
n
g

i
n
t

i
n
t

i
n
t

d
o
u
b
l
e

s
c
h
e
m
e
-
o
b
j
e
c
t

n
o
n
n
u
l
l
-
c
h
a
r
-
s
t
r
i
n
g

s
c
h
e
m
e
-
o
b
j
e
c
t

s
c
h
e
m
e
-
o
b
j
e
c
t

s
c
h
e
m
e
-
o
b
j
e
c
t

s
c
h
e
m
e
-
o
b
j
e
c
t

s
c
h
e
m
e
-
o
b
j
e
c
t

b
o
o
l

s
c
h
e
m
e
-
o
b
j
e
c
t

;

=

l
b
-
e
n
a
b
l
e
r

l
b
-
c
o
n
t
e
n
t

b
o
o
l

s
c
h
e
m
e
-
o
b
j
e
c
t

;

=

u
b
-
e
n
a
b
l
e
r

u
b
-
c
o
n
t
e
n
t

n
o
n
n
u
l
l
-
c
h
a
r
-
s
t
r
i
n
g

;

=

v
t
y
p
e

b
o
o
l

n
o
n
n
u
l
l
-
c
h
a
r
-
s
t
r
i
n
g
-
l
i
s
t

;

=

v
a
r
n
a
m
e
s
-
e
n
a
b
l
e
r

v
a
r
n
a
m
e
s
-
c
o
n
t
e
n
t

b
o
o
l

n
o
n
n
u
l
l
-
c
h
a
r
-
s
t
r
i
n
g
-
l
i
s
t

;

=

c
o
n
s
t
r
n
a
m
e
s
-
e
n
a
b
l
e
r

c
o
n
s
t
r
n
a
m
e
s
-
c
o
n
t
e
n
t

)

g
r
b
-
m
o
d
e
l
*

#
<
<
c
-
d
e
c
l
a
r
e
-
e
n
d

/
/

p
r
i
n
t
f
(
"
I
n
t
o

G
R
B
l
o
a
d
m
o
d
e
l
.

s
c
h
e
m
e
-
o
b
j
e
c
t

a
r
g
s

a
r
e
:

%
p

%
p

%
p

%
p

%
p

%
p

%
b

%
p

%
b

%
p
\
n
"
,
_
_
_
a
r
g
7
,
_
_
_
a
r
g
9
,
_
_
_
a
r
g
1
0
,
_
_
_
a
r
g
1
1
,
_
_
_
a
r
g
1
2
,
_
_
_
a
r
g
1
3
,
_
_
_
a
r
g
1
4
,
_
_
_
a
r
g
1
5
,
_
_
_
a
r
g
1
6
,
_
_
_
a
r
g
1
7
)
;

{

G
R
B
e
n
v
*

e
n
v

=

_
_
_
a
r
g
1
;

G
R
B
m
o
d
e
l

*
m
o
d
e
l
P
;

c
h
a
r
*

P
n
a
m
e

=

_
_
_
a
r
g
2
;

d
o
u
b
l
e
*

o
b
j

=

&
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
7
,
0
)
;

c
h
a
r
*

s
e
n
s
e

=

_
_
_
a
r
g
8
;

d
o
u
b
l
e
*

r
h
s

=

&
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
9
,
0
)
;

i
n
t

n
u
m
v
a
r
s

=

_
_
_
a
r
g
3
;

i
n
t

n
u
m
c
o
n
s
r
s

=

_
_
_
a
r
g
4
;

i
n
t

o
b
j
s
e
n
s
e

=

_
_
_
a
r
g
5
;

i
n
t

o
b
j
c
o
n

=

_
_
_
a
r
g
6
;

i
n
t
*

v
b
e
g

=

_
_
_
C
A
S
T
(
i
n
t
*
,
&
_
_
_
F
E
T
C
H
_
S
3
2
(
_
_
_
B
O
D
Y
(
_
_
_
a
r
g
1
0
)
,
_
_
_
I
N
T
(
0
)
)
)
;

i
n
t
*

v
l
e
n

=

_
_
_
C
A
S
T
(
i
n
t
*
,
&
_
_
_
F
E
T
C
H
_
S
3
2
(
_
_
_
B
O
D
Y
(
_
_
_
a
r
g
1
1
)
,
_
_
_
I
N
T
(
0
)
)
)
;

i
n
t
*

v
i
n
d

=

_
_
_
C
A
S
T
(
i
n
t
*
,
&
_
_
_
F
E
T
C
H
_
S
3
2
(
_
_
_
B
O
D
Y
(
_
_
_
a
r
g
1
2
)
,
_
_
_
I
N
T
(
0
)
)
)
;

 d
o
u
b
l
e
*

v
v
a
l

=

&
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
1
3
,
0
)
;

/
/

_
_
_
C
A
S
T
(
d
o
u
b
l
e
*
,
_
_
_
F
E
T
C
H
_
U
8
(
_
_
_
B
O
D
Y
(
_
_
_
a
r
g
1
3
)
,
_
_
_
I
N
T
(
0
)
)
)
;

/
/

l
b

s
ä
t
t
s

s
å
h
ä
r
:

I
f
a
l
l

a
r
g
u
m
e
n
t

1
4

ä
r

#
f
,

s
å

a
n
v
ä
n
d
s

I
N
G
E
N

l
b
.

I
f
a
l
l

a
r
g
u
m
e
n
t

i
n
t
e

ä
r

1
4

(
s
å

t
.
e
x
.

#
t
)
,

/
/

s
å

f
ö
r
v
ä
n
t
a
s

a
r
g
u
m
e
n
t

1
5

v
a
r
a

e
n

l
i
s
t
a

a
v

s
t
r
ä
n
g
a
r

(
d
v
s

'
(
"
a
"

"
b
"

"
c
"
)

e
t
c
.

)
,

o
c
h

t
a
s

i

a
n
v
ä
n
d
n
i
n
g
.

d
o
u
b
l
e
*

l
b

=

_
_
_
a
r
g
1
4

?

&
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
1
5
,
0
)

:

N
U
L
L
;

/
/

_
_
_
C
A
S
T
(
d
o
u
b
l
e
*
,
_
_
_
F
E
T
C
H
_
U
8
(
_
_
_
B
O
D
Y
(
_
_
_
a
r
g
1
5
)
,
_
_
_
I
N
T
(
0
)
)
)

:

N
U
L
L
;

d
o
u
b
l
e
*

u
b

=

_
_
_
a
r
g
1
6

?

&
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
1
7
,
0
)

:

N
U
L
L
;

/
/

_
_
_
C
A
S
T
(
d
o
u
b
l
e
*
,
_
_
_
F
E
T
C
H
_
U
8
(
_
_
_
B
O
D
Y
(
_
_
_
a
r
g
1
7
)
,
_
_
_
I
N
T
(
0
)
)
)

:

N
U
L
L
;

c
h
a
r
*

v
t
y
p
e

=

_
_
_
a
r
g
1
8
;

c
h
a
r
*
*

v
a
r
n
a
m
e
s

=

_
_
_
a
r
g
1
9

?

_
_
_
a
r
g
2
0

:

N
U
L
L
;

c
h
a
r
*
*

c
o
n
s
t
r
n
a
m
e
s

=

_
_
_
a
r
g
2
1

?

_
_
_
a
r
g
2
2

:

N
U
L
L
;

{

/
/

p
r
i
n
t
f
(
"
V
a
r
n
a
m
e
s
:

F
i
r
s
t

i
s

%
s

s
e
c
o
n
d

i
s

%
s
.
\
n
"
,
v
a
r
n
a
m
e
s
[
0
]
,
v
a
r
n
a
m
e
s
[
1
]
)
;

/
/

d
o
u
b
l
e

t
e
s
t
v
a
l

=

1
.
2
3
;

i
f
(
_
_
_
a
r
g
1
&
&
_
_
_
a
r
g
3
)

{
t
e
s
t
v
a
l

+
=

0
.
2
;
}

/
/

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

p
o
i
n
t
e
r
s

a
r
e
:

%
p

%
p

%
p

%
p

%
p

%
p

%
p

%
p
\
n
"
,
o
b
j
,
r
h
s
,
v
b
e
g
,
v
l
e
n
,
v
i
n
d
,
v
v
a
l
,
l
b
,
u
b
)
;

 /
/

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

i
s

i
n
v
o
k
e
d

w
i
t
h

a
r
g
u
m
e
n
t
s
:

%
p

%
p

%
s

%
i

%
i

%
I

%
i

%
p

%
s

%
p

%
p

%
p

%
p

%
p

%
p

%
p

%
s

%
p

%
p
\
n
"
,

/
/

e
n
v
,
&
m
o
d
e
l
P
,
P
n
a
m
e
,
n
u
m
v
a
r
s
,
n
u
m
c
o
n
s
r
s
,
o
b
j
s
e
n
s
e
,
o
b
j
c
o
n
,
o
b
j
,
s
e
n
s
e
,
r
h
s
,
v
b
e
g
,
v
l
e
n
,
v
i
n
d
,
v
v
a
l
,
l
b
,
u
b
,
v
t
y
p
e
,
v
a
r
n
a
m
e
s
,
c
o
n
s
t
r
n
a
m
e
s
)
;

P
a

g
e

 3
7

 o
f

4
8

 /
/

p
r
i
n
t
f
(
"
t
e
s
t
v
a
l

%
e
\
n
"
,
t
e
s
t
v
a
l
)
;

t
e
s
t
v
a
l

-
=

0
.
0
1
;

p
r
i
n
t
f
(
"
t
e
s
t
v
a
l

%
f
\
n
"
,
t
e
s
t
v
a
l
)
;

/
/

p
r
i
n
t
f
(
"
o
b
j

e
l
s

a
r
e
:

%
i

%
i

%
i

%
i

%
i

%
i

%
i

%
i
\
n
"
,
o
b
j
[
0
]
,
o
b
j
[
1
]
,
r
h
s
[
0
]
,
r
h
s
[
1
]
,
v
b
e
g
[
0
]
,
v
b
e
g
[
1
]
,
v
v
a
l
[
0
]
,
v
v
a
l
[
1
]
)
;

/
/

p
r
i
n
t
f
(
"
p
i
c
k
e
d

d
i
r
e
c
t
l
y

o
b
j

e
l
s

a
r
e
:

%
i

%
i

%
i

%
i

%
i

%
i
\
n
"
,
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
7
,
0
)
,
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
7
,
1
)
,

/
/

_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
9
,
0
)
,
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
9
,
1
)
,

/
/

_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
1
3
,
0
)
,
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
1
3
,
1
)
)
;

/
/

p
r
i
n
t
f
(
"
v
b
e
g

v
l
e
n

v
i
n
d

h
a
s
:

%
i

%
i

%
i

%
i

%
i

%
i

%
i

%
i

%
i
\
n
"
,
v
b
e
g
[
0
]
,
v
b
e
g
[
1
]
,
v
b
e
g
[
2
]
,
v
l
e
n
[
0
]
,
v
l
e
n
[
1
]
,
v
l
e
n
[
2
]
,
v
i
n
d
[
0
]
,
v
i
n
d
[
1
]
,
v
i
n
d
[
2
]
)
;

{

i
n
t

r

=

G
R
B
l
o
a
d
m
o
d
e
l
(
e
n
v
,

/
/

e
n
v

&
m
o
d
e
l
P
,

/
/

m
o
d
e
I
P

P
n
a
m
e
,

/
/

P
n
a
m
e

n
u
m
v
a
r
s
,
n
u
m
c
o
n
s
r
s
,
o
b
j
s
e
n
s
e
,
o
b
j
c
o
n
,

/
/

n
u
m
v
a
r
s

n
u
m
c
o
n
s
r
s

o
b
j
s
e
n
s
e

o
b
j
c
o
n

o
b
j
,

/
/

o
b
j

s
e
n
s
e
,

/
/

s
e
n
s
e

r
h
s
,

/
/

r
h
s

v
b
e
g
,

v
l
e
n
,

v
i
n
d
,

/
/

v
b
e
g

v
l
e
n

v
i
n
d

v
v
a
l
,

l
b
,

u
b
,

/
/

v
v
a
l

l
b

u
b

v
t
y
p
e
,

v
a
r
n
a
m
e
s
,

c
o
n
s
t
r
n
a
m
e
s
)
;

/
/

v
t
y
p
e

v
a
r
n
a
m
e
s

c
o
n
s
t
n
a
m
e
s

/
/

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

r
e
t
u
r
n
e
d
!

r
:

%
i
\
n
"
,
r
)
;

i
f

(
r

=
=

0
)

_
_
_
r
e
s
u
l
t
_
v
o
i
d
s
t
a
r

=

m
o
d
e
l
P
;

e
l
s
e

{

_
_
_
r
e
s
u
l
t
_
v
o
i
d
s
t
a
r

=

0
;

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

e
r
r
o
r
:

%
s
\
n
"
,
G
R
B
g
e
t
e
r
r
o
r
m
s
g
(
_
_
_
a
r
g
1
)
)
;

}

}
}
}

c
-
d
e
c
l
a
r
e
-
e
n
d

)
)

 (
d
e
f
i
n
e

g
r
b
-
o
p
t
i
m
i
z
e

(
c
-
l
a
m
b
d
a

(
g
r
b
-
e
n
v
*

g
r
b
-
m
o
d
e
l
*
)

b
o
o
l

#
<
<
c
-
d
e
c
l
a
r
e
-
e
n
d

G
R
B
e
n
v
*

e
n
v

=

_
_
_
a
r
g
1
;

G
R
B
m
o
d
e
l
*

m
o
d
e
l

=

_
_
_
a
r
g
2
;

i
n
t

r

=

G
R
B
o
p
t
i
m
i
z
e
(
m
o
d
e
l
)
;

_
_
_
r
e
s
u
l
t

=

r

=
=

0
;

i
f

(
r

!
=

0
)

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

e
r
r
o
r
:

%
s
\
n
"
,
G
R
B
g
e
t
e
r
r
o
r
m
s
g
(
e
n
v
)
)
;

c
-
d
e
c
l
a
r
e
-
e
n
d

)
)

P
a

g
e

 3
8

 o
f

4
8

 (
d
e
f
i
n
e

g
r
b
-
g
e
t
-
i
n
t
-
a
t
t
r

(
c
-
l
a
m
b
d
a

(
g
r
b
-
e
n
v
*

g
r
b
-
m
o
d
e
l
*

n
o
n
n
u
l
l
-
c
h
a
r
-
s
t
r
i
n
g

s
c
h
e
m
e
-
o
b
j
e
c
t
)

b
o
o
l

#
<
<
c
-
d
e
c
l
a
r
e
-
e
n
d

G
R
B
e
n
v
*

e
n
v

=

_
_
_
a
r
g
1
;

G
R
B
m
o
d
e
l
*

m
o
d
e
l

=

_
_
_
a
r
g
2
;

c
h
a
r
*

n
a
m
e

=

_
_
_
a
r
g
3
;

i
n
t
*

i

=

_
_
_
C
A
S
T
(
i
n
t
*
,
&
_
_
_
F
E
T
C
H
_
S
3
2
(
_
_
_
B
O
D
Y
(
_
_
_
a
r
g
4
)
,
_
_
_
I
N
T
(
0
)
)
)
;

i
n
t

r

=

G
R
B
g
e
t
i
n
t
a
t
t
r
(
m
o
d
e
l
,
n
a
m
e
,
i
)
;

i
f

(
r

!
=

0
)

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

e
r
r
o
r
:

%
s
\
n
"
,
G
R
B
g
e
t
e
r
r
o
r
m
s
g
(
e
n
v
)
)
;

_
_
_
r
e
s
u
l
t

=

r

=
=

0
;

c
-
d
e
c
l
a
r
e
-
e
n
d

)
)

 (
d
e
f
i
n
e

g
r
b
-
g
e
t
-
i
n
t
-
a
t
t
r
*

(
l
e
t

(
(
r
-
c
o
n
t
a
i
n
e
r

(
m
a
k
e
-
s
3
2
v
e
c
t
o
r

1
)
)
)

(
l
a
m
b
d
a

(
e
n
v

m
o
d
e
l

p
a
r
a
m
-
n
a
m
e
)

(
a
n
d

(
g
r
b
-
g
e
t
-
i
n
t
-
a
t
t
r

e
n
v

m
o
d
e
l

p
a
r
a
m
-
n
a
m
e

r
-
c
o
n
t
a
i
n
e
r
)

(
s
3
2
v
e
c
t
o
r
-
r
e
f

r
-
c
o
n
t
a
i
n
e
r

0
)
)
)
)
)

 (
d
e
f
i
n
e

(
g
r
b
-
m
o
d
e
l
-
s
t
a
t
u
s

e
n
v

m
o
d
e
l
)

(
i
m
p
o
r
t
-
g
r
b
-
o
p
t
i
m
i
z
e
-
s
t
a
t
u
s
-
c
o
d
e
s

(
g
r
b
-
g
e
t
-
i
n
t
-
a
t
t
r
*

e
n
v

m
o
d
e
l

"
S
t
a
t
u
s
"
)
)
)

 (
d
e
f
i
n
e

g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r

(
c
-
l
a
m
b
d
a

(
g
r
b
-
e
n
v
*

g
r
b
-
m
o
d
e
l
*

n
o
n
n
u
l
l
-
c
h
a
r
-
s
t
r
i
n
g

s
c
h
e
m
e
-
o
b
j
e
c
t
)

b
o
o
l

#
<
<
c
-
d
e
c
l
a
r
e
-
e
n
d

G
R
B
e
n
v
*

e
n
v

=

_
_
_
a
r
g
1
;

G
R
B
m
o
d
e
l
*

m
o
d
e
l

=

_
_
_
a
r
g
2
;

c
h
a
r
*

n
a
m
e

=

_
_
_
a
r
g
3
;

d
o
u
b
l
e
*

d

=

&
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
4
,
0
)
;

i
n
t

r

=

G
R
B
g
e
t
d
b
l
a
t
t
r
(
m
o
d
e
l
,
n
a
m
e
,
d
)
;

i
f

(
r

!
=

0
)

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

e
r
r
o
r
:

%
s
\
n
"
,
G
R
B
g
e
t
e
r
r
o
r
m
s
g
(
e
n
v
)
)
;

_
_
_
r
e
s
u
l
t

=

r

=
=

0
;

c
-
d
e
c
l
a
r
e
-
e
n
d

)
)

 (
d
e
f
i
n
e

g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r
*

(
l
e
t

(
(
r
-
c
o
n
t
a
i
n
e
r

(
m
a
k
e
-
f
6
4
v
e
c
t
o
r

1
)
)
)

(
l
a
m
b
d
a

(
e
n
v

m
o
d
e
l

p
a
r
a
m
-
n
a
m
e
)

(
a
n
d

(
g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r

e
n
v

m
o
d
e
l

p
a
r
a
m
-
n
a
m
e

r
-
c
o
n
t
a
i
n
e
r
)

(
f
6
4
v
e
c
t
o
r
-
r
e
f

r
-
c
o
n
t
a
i
n
e
r

0
)
)
)
)
)

P
a

g
e

 3
9

 o
f

4
8

 (
d
e
f
i
n
e

g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r
-
e
l
e
m
e
n
t

(
c
-
l
a
m
b
d
a

(
g
r
b
-
e
n
v
*

g
r
b
-
m
o
d
e
l
*

n
o
n
n
u
l
l
-
c
h
a
r
-
s
t
r
i
n
g

i
n
t

s
c
h
e
m
e
-
o
b
j
e
c
t
)

b
o
o
l

#
<
<
c
-
d
e
c
l
a
r
e
-

e
n
d

G
R
B
e
n
v
*

e
n
v

=

_
_
_
a
r
g
1
;

G
R
B
m
o
d
e
l
*

m
o
d
e
l

=

_
_
_
a
r
g
2
;

c
h
a
r
*

n
a
m
e

=

_
_
_
a
r
g
3
;

i
n
t

i
n
d
e
x

=

_
_
_
a
r
g
4
;

d
o
u
b
l
e
*

d

=

&
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
5
,
0
)
;

i
n
t

r

=

G
R
B
g
e
t
d
b
l
a
t
t
r
e
l
e
m
e
n
t
(
m
o
d
e
l
,
n
a
m
e
,
i
n
d
e
x
,
d
)
;

i
f

(
r

!
=

0
)

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

e
r
r
o
r
:

%
s
\
n
"
,
G
R
B
g
e
t
e
r
r
o
r
m
s
g
(
e
n
v
)
)
;

_
_
_
r
e
s
u
l
t

=

r

=
=

0
;

c
-
d
e
c
l
a
r
e
-
e
n
d

)
)

 (
d
e
f
i
n
e

g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r
-
e
l
e
m
e
n
t
*

(
l
e
t

(
(
r
-
c
o
n
t
a
i
n
e
r

(
m
a
k
e
-
f
6
4
v
e
c
t
o
r

1
)
)
)

(
l
a
m
b
d
a

(
e
n
v

m
o
d
e
l

p
a
r
a
m
-
n
a
m
e

i
n
d
e
x
)

(
a
n
d

(
g
r
b
-
g
e
t
-
d
b
l
-
a
t
t
r
-
e
l
e
m
e
n
t

e
n
v

m
o
d
e
l

p
a
r
a
m
-
n
a
m
e

i
n
d
e
x

r
-
c
o
n
t
a
i
n
e
r
)

(
f
6
4
v
e
c
t
o
r
-
r
e
f

r
-
c
o
n
t
a
i
n
e
r

0
)
)
)
)
)

 (
d
e
f
i
n
e

g
r
b
-
g
e
t
-
s
t
r
-
a
t
t
r
-
e
l
e
m
e
n
t

(
c
-
l
a
m
b
d
a

(
g
r
b
-
e
n
v
*

g
r
b
-
m
o
d
e
l
*

n
o
n
n
u
l
l
-
c
h
a
r
-
s
t
r
i
n
g

i
n
t
)

n
o
n
n
u
l
l
-
c
h
a
r
-
s
t
r
i
n
g

#
<
<
c
-
d
e
c
l
a
r
e
-

e
n
d

G
R
B
e
n
v
*

e
n
v

=

_
_
_
a
r
g
1
;

G
R
B
m
o
d
e
l
*

m
o
d
e
l

=

_
_
_
a
r
g
2
;

c
h
a
r
*

n
a
m
e

=

_
_
_
a
r
g
3
;

i
n
t

i
n
d
e
x

=

_
_
_
a
r
g
4
;

c
h
a
r
*

s

=

N
U
L
L
;

i
n
t

r

=

G
R
B
g
e
t
s
t
r
a
t
t
r
e
l
e
m
e
n
t
(
m
o
d
e
l
,
n
a
m
e
,
i
n
d
e
x
,
&
s
)
;

i
f

(
r

!
=

0
)

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

e
r
r
o
r
:

%
s
\
n
"
,
G
R
B
g
e
t
e
r
r
o
r
m
s
g
(
e
n
v
)
)
;

_
_
_
r
e
s
u
l
t

=

r

=
=

0

?

s

:

N
U
L
L
;

c
-
d
e
c
l
a
r
e
-
e
n
d

)
)

 (
d
e
f
i
n
e

g
r
b
-
g
e
t
-
d
b
l
-
p
a
r
a
m
-
i
n
f
o

(
c
-
l
a
m
b
d
a

(
g
r
b
-
e
n
v
*

n
o
n
n
u
l
l
-
c
h
a
r
-
s
t
r
i
n
g

s
c
h
e
m
e
-
o
b
j
e
c
t
)

b
o
o
l

#
<
<
c
-
d
e
c
l
a
r
e
-
e
n
d

G
R
B
e
n
v
*

e
n
v

=

_
_
_
a
r
g
1
;

c
h
a
r
*

s

=

_
_
_
a
r
g
2
;

d
o
u
b
l
e
*

r
v
a
l
u
e
s

=

&
_
_
_
F
6
4
V
E
C
T
O
R
R
E
F
(
_
_
_
a
r
g
3
,
0
)
;

i
n
t

r

=

G
R
B
g
e
t
d
b
l
p
a
r
a
m
i
n
f
o
(
e
n
v
,
s
,
&
r
v
a
l
u
e
s
[
0
]
,
&
r
v
a
l
u
e
s
[
1
]
,
&
r
v
a
l
u
e
s
[
2
]
,
&
r
v
a
l
u
e
s
[
3
]
)
;

_
_
_
r
e
s
u
l
t

=

r

=
=

0
;

i
f

(
r

!
=

0
)

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

e
r
r
o
r
:

%
s
\
n
"
,
G
R
B
g
e
t
e
r
r
o
r
m
s
g
(
_
_
_
a
r
g
1
)
)
;

c
-
d
e
c
l
a
r
e
-
e
n
d

)
)

P
a

g
e

 4
0

 o
f

4
8

 (
d
e
f
i
n
e

(
g
r
b
-
g
e
t
-
d
b
l
-
p
a
r
a
m
-
i
n
f
o
*

e
n
v

p
a
r
a
m
-
n
a
m
e
)

(
l
e
t

(
(
v

(
m
a
k
e
-
f
6
4
v
e
c
t
o
r

4
)
)
)

(
a
n
d

(
g
r
b
-
g
e
t
-
d
b
l
-
p
a
r
a
m
-
i
n
f
o

g
r
b
-
e
n
v

p
a
r
a
m
-
n
a
m
e

v
)

v
)
)
)

 (
d
e
f
i
n
e

g
r
b
-
s
e
t
-
m
e
t
h
o
d

(
c
-
l
a
m
b
d
a

(
g
r
b
-
e
n
v
*

i
n
t
)

b
o
o
l

#
<
<
c
-
d
e
c
l
a
r
e
-
e
n
d

G
R
B
e
n
v
*

e
n
v

=

_
_
_
a
r
g
1
;

i
n
t

i

=

_
_
_
a
r
g
2
;

i
n
t

r

=

G
R
B
s
e
t
i
n
t
p
a
r
a
m
(
e
n
v
,

"
M
e
t
h
o
d
"
,

i
)
;

_
_
_
r
e
s
u
l
t

=

r

=
=

0
;

i
f

(
r

!
=

0
)

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

e
r
r
o
r
:

%
s
\
n
"
,

G
R
B
g
e
t
e
r
r
o
r
m
s
g
(
_
_
_
a
r
g
1
)
)
;

c
-
d
e
c
l
a
r
e
-
e
n
d

)
)

 (
d
e
f
i
n
e

g
r
b
-
s
e
t
-
n
u
m
b
e
r
-
o
f
-
t
h
r
e
d
s

(
c
-
l
a
m
b
d
a

(
g
r
b
-
e
n
v
*

i
n
t
)

b
o
o
l

#
<
<
c
-
d
e
c
l
a
r
e
-
e
n
d

G
R
B
e
n
v
*

e
n
v

=

_
_
_
a
r
g
1
;

i
n
t

i

=

_
_
_
a
r
g
2
;

i
n
t

r

=

G
R
B
s
e
t
i
n
t
p
a
r
a
m
(
e
n
v
,

"
T
h
r
e
a
d
s
"
,

i
)
;

_
_
_
r
e
s
u
l
t

=

r

=
=

0
;

i
f

(
r

!
=

0
)

p
r
i
n
t
f
(
"
G
R
B
l
o
a
d
m
o
d
e
l

e
r
r
o
r
:

%
s
\
n
"
,

G
R
B
g
e
t
e
r
r
o
r
m
s
g
(
_
_
_
a
r
g
1
)
)
;

c
-
d
e
c
l
a
r
e
-
e
n
d

)
)

P
a

g
e

 4
1

 o
f

4
8

 M
a

c
r

o
s,

 "
v

e
r

k
ty

g
.s

c
m

"
 (
d
e
f
i
n
e
-
m
a
c
r
o

(
f
o
r
-
i
n
t
e
r
v
a
l

v
a
r
-
n
a
m
e

s
t
a
r
t
-
v
a
l
u
e

e
n
d
-
v
a
l
u
e

.

c
o
d
e
)

`
(
l
e
t

l
o
o
p

(
(
,
v
a
r
-
n
a
m
e

,
s
t
a
r
t
-
v
a
l
u
e
)
)

,
@
c
o
d
e

(
i
f

(
<

,
v
a
r
-
n
a
m
e

,
e
n
d
-
v
a
l
u
e
)

(
l
o
o
p

(
+

,
v
a
r
-
n
a
m
e

1
)
)
)
)
)

 (
d
e
f
i
n
e
-
m
a
c
r
o

(
*
*

u

v
)

`
(
i
f

(
=

,
v

0
)

1

(
l
e
t

(
(
c
P
o
w

,
1
)
)

(
f
o
r
-
i
n
t
e
r
v
a
l

n
P
o
w

1

,
v

(
s
e
t
!

c
P
o
w

(
*

c
P
o
w

,
u
)
)
)

c
P
o
w

)
)
)

 ;

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

(
c
o
n
s
!

1
)

(
c
o
n
s
!

2
)
)

=
>

'
(
1

2
)

;

c
o
d
e

h
a
s

a
c
c
e
s
s

t
o

p
r
o
c
e
d
u
r
e
s

c
o
n
s
!

,

t
a
i
l
!

a
n
d

g
e
t
-
l
i
s
t

.

;

(
M
a
k
i
n
g

t
h
i
s

f
u
l
l
y

a
s

a

m
a
c
r
o
,

i
n

o
r
d
e
r

t
o

e
n
s
u
r
e

t
h
a
t

t
h
e

c
o
d
e

a
l
w
a
y
s

w
i
l
l

g
e
t

m
a
x

s
p
e
e
d
.
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

.

c
o
d
e
)

;

#
!
k
e
y

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

#
!
r
e
s
t

c
o
d
e
)

-

b
i
g
l
o
o

c
a
n
'
t

d
o

t
h
i
s
.

(
l
e
t
*

(
(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
a
n
d

(
n
o
t

(
n
u
l
l
?

c
o
d
e
)
)

(
e
q
?

'
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
:

(
c
a
r

c
o
d
e
)
)
)
)

(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

(
a
n
d

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
a
d
r

c
o
d
e
)
)
)

(
c
o
d
e

(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
d
d
r

c
o
d
e
)

c
o
d
e
)
)
)

`
(
l
e
t
*

(
(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k

(
l
a
m
b
d
a

(
c
o
n
s
!

t
a
i
l
!

g
e
t
-
l
i
s
t
)

,
@
c
o
d
e
)
)

(
l
i
s
t

'
(
)
)

(
l
a
s
t
-
e
l
e
m
e
n
t

#
f
)

(
c
o
n
s
!

(
l
a
m
b
d
a

(
v
)

(
l
e
t

(
(
c

(
c
o
n
s

v

'
(
)
)
)
)

(
i
f

l
a
s
t
-
e
l
e
m
e
n
t

(
s
e
t
-
c
d
r
!

l
a
s
t
-
e
l
e
m
e
n
t

c
)

(
s
e
t
!

l
i
s
t

c
)
)

(
s
e
t
!

l
a
s
t
-
e
l
e
m
e
n
t

c
)
)
)
)

(
t
a
i
l
!

(
l
a
m
b
d
a

(
t
a
i
l
)

(
i
f

l
a
s
t
-
e
l
e
m
e
n
t

(
s
e
t
-
c
d
r
!

l
a
s
t
-
e
l
e
m
e
n
t

t
a
i
l
)

(
s
e
t
!

l
i
s
t

t
a
i
l
)
)

(
s
e
t
!

l
a
s
t
-
e
l
e
m
e
n
t

'
t
e
r
m
i
n
a
t
e
d
)
)
)

(
g
e
t
-
l
i
s
t

(
l
a
m
b
d
a

(
)

l
i
s
t
)
)
)

(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k

c
o
n
s
!

t
a
i
l
!

g
e
t
-
l
i
s
t
)

,
@
(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

'
(
)

'
(
l
i
s
t
)
)
)
)
)

P
a

g
e

 4
2

 o
f

4
8

 ;

S
a
m
e

a
s

w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

b
u
t

c
o
n
s
!

i
s

n
a
m
e
d

c
o
n
s
!
2

a
n
d

g
e
t
-
l
i
s
t

i
s

n
a
m
e
d

g
e
t
-
l
i
s
t
2

.

(
d
e
f
i
n
e
-
m
a
c
r
o

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
2

.

c
o
d
e
)

;

#
!
k
e
y

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

#
!
r
e
s
t

c
o
d
e
)

-

b
i
g
l
o
o

c
a
n
'
t

d
o

t
h
i
s
.

(
l
e
t
*

(
(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
a
n
d

(
n
o
t

(
n
u
l
l
?

c
o
d
e
)
)

(
e
q
?

'
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
:

(
c
a
r

c
o
d
e
)
)
)
)

(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

(
a
n
d

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
a
d
r

c
o
d
e
)
)
)

(
c
o
d
e

(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
d
d
r

c
o
d
e
)

c
o
d
e
)
)
)

`
(
l
e
t
*

(
(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
2

(
l
a
m
b
d
a

(
c
o
n
s
!
2

g
e
t
-
l
i
s
t
2
)

,
@
c
o
d
e
)
)

;

A
l
l

t
h
e

u
s
e

o
f

2

f
r
o
m

h
e
r
e

a
n
d

d
o
w
n

i
s

r
e
a
l
l
y

n
o
t

n
e
e
d
e
d
,

m
a
i
n
t
a
i
n
e
d

f
o
r

;

e
x
t
r
a

c
o
d
e

c
l
a
r
i
t
y

o
n
l
y
.

(
l
i
s
t
2

'
(
)
)

(
l
a
s
t
-
e
l
e
m
e
n
t
2

#
f
)

(
c
o
n
s
!
2

(
l
a
m
b
d
a

(
v
)

(
l
e
t

(
(
c

(
c
o
n
s

v

'
(
)
)
)
)

(
i
f

l
a
s
t
-
e
l
e
m
e
n
t
2

(
s
e
t
-
c
d
r
!

l
a
s
t
-
e
l
e
m
e
n
t
2

c
)

(
s
e
t
!

l
i
s
t
2

c
)
)

(
s
e
t
!

l
a
s
t
-
e
l
e
m
e
n
t
2

c
)
)
)
)

(
g
e
t
-
l
i
s
t
2

(
l
a
m
b
d
a

(
)

l
i
s
t
2
)
)
)

(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
2

c
o
n
s
!
2

g
e
t
-
l
i
s
t
2
)

,
@
(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

'
(
)

'
(
l
i
s
t
2
)
)
)
)
)

 ;

S
a
m
e

a
s

w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

b
u
t

c
o
n
s
!

i
s

n
a
m
e
d

c
o
n
s
!
3

a
n
d

g
e
t
-
l
i
s
t

i
s

n
a
m
e
d

g
e
t
-
l
i
s
t
3

.

(
d
e
f
i
n
e
-
m
a
c
r
o

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
3

.

c
o
d
e
)

;

#
!
k
e
y

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

#
!
r
e
s
t

c
o
d
e
)

-

b
i
g
l
o
o

c
a
n
'
t

d
o

t
h
i
s
.

(
l
e
t
*

(
(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
a
n
d

(
n
o
t

(
n
u
l
l
?

c
o
d
e
)
)

(
e
q
?

'
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
:

(
c
a
r

c
o
d
e
)
)
)
)

(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

(
a
n
d

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
a
d
r

c
o
d
e
)
)
)

(
c
o
d
e

(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
d
d
r

c
o
d
e
)

c
o
d
e
)
)
)

`
(
l
e
t
*

(
(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
3

(
l
a
m
b
d
a

(
c
o
n
s
!
3

g
e
t
-
l
i
s
t
3
)

,
@
c
o
d
e
)
)

;

A
l
l

t
h
e

u
s
e

o
f

3

f
r
o
m

h
e
r
e

a
n
d

d
o
w
n

i
s

r
e
a
l
l
y

n
o
t

n
e
e
d
e
d
,

m
a
i
n
t
a
i
n
e
d

f
o
r

;

e
x
t
r
a

c
o
d
e

c
l
a
r
i
t
y

o
n
l
y
.

(
l
i
s
t
3

'
(
)
)

(
l
a
s
t
-
e
l
e
m
e
n
t
3

#
f
)

(
c
o
n
s
!
3

(
l
a
m
b
d
a

(
v
)

(
l
e
t

(
(
c

(
c
o
n
s

v

'
(
)
)
)
)

(
i
f

l
a
s
t
-
e
l
e
m
e
n
t
3

(
s
e
t
-
c
d
r
!

l
a
s
t
-
e
l
e
m
e
n
t
3

c
)

(
s
e
t
!

l
i
s
t
3

c
)
)

(
s
e
t
!

l
a
s
t
-
e
l
e
m
e
n
t
3

c
)
)
)
)

(
g
e
t
-
l
i
s
t
3

(
l
a
m
b
d
a

(
)

l
i
s
t
3
)
)
)

(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
3

c
o
n
s
!
3

g
e
t
-
l
i
s
t
3
)

,
@
(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

'
(
)

'
(
l
i
s
t
3
)
)
)
)
)

P
a

g
e

 4
3

 o
f

4
8

 ;

S
a
m
e

a
s

w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

b
u
t

c
o
n
s
!

i
s

n
a
m
e
d

c
o
n
s
!
4

a
n
d

g
e
t
-
l
i
s
t

i
s

n
a
m
e
d

g
e
t
-
l
i
s
t
4

.

(
d
e
f
i
n
e
-
m
a
c
r
o

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
4

.

c
o
d
e
)

;

#
!
k
e
y

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

#
!
r
e
s
t

c
o
d
e
)

-

b
i
g
l
o
o

c
a
n
'
t

d
o

t
h
i
s
.

(
l
e
t
*

(
(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
a
n
d

(
n
o
t

(
n
u
l
l
?

c
o
d
e
)
)

(
e
q
?

'
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
:

(
c
a
r

c
o
d
e
)
)
)
)

(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

(
a
n
d

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
a
d
r

c
o
d
e
)
)
)

(
c
o
d
e

(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
d
d
r

c
o
d
e
)

c
o
d
e
)
)
)

`
(
l
e
t
*

(
(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
4

(
l
a
m
b
d
a

(
c
o
n
s
!
4

g
e
t
-
l
i
s
t
4
)

,
@
c
o
d
e
)
)

;

A
l
l

t
h
e

u
s
e

o
f

4

f
r
o
m

h
e
r
e

a
n
d

d
o
w
n

i
s

r
e
a
l
l
y

n
o
t

n
e
e
d
e
d
,

m
a
i
n
t
a
i
n
e
d

f
o
r

;

e
x
t
r
a

c
o
d
e

c
l
a
r
i
t
y

o
n
l
y
.

(
l
i
s
t
4

'
(
)
)

(
l
a
s
t
-
e
l
e
m
e
n
t
4

#
f
)

(
c
o
n
s
!
4

(
l
a
m
b
d
a

(
v
)

(
l
e
t

(
(
c

(
c
o
n
s

v

'
(
)
)
)
)

(
i
f

l
a
s
t
-
e
l
e
m
e
n
t
4

(
s
e
t
-
c
d
r
!

l
a
s
t
-
e
l
e
m
e
n
t
4

c
)

(
s
e
t
!

l
i
s
t
4

c
)
)

(
s
e
t
!

l
a
s
t
-
e
l
e
m
e
n
t
4

c
)
)
)
)

(
g
e
t
-
l
i
s
t
4

(
l
a
m
b
d
a

(
)

l
i
s
t
4
)
)
)

(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
4

c
o
n
s
!
4

g
e
t
-
l
i
s
t
4
)

,
@
(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

'
(
)

'
(
l
i
s
t
4
)
)
)
)
)

 ;

S
a
m
e

a
s

w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

b
u
t

c
o
n
s
!

i
s

n
a
m
e
d

c
o
n
s
!
5

a
n
d

g
e
t
-
l
i
s
t

i
s

n
a
m
e
d

g
e
t
-
l
i
s
t
5

.

(
d
e
f
i
n
e
-
m
a
c
r
o

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
5

.

c
o
d
e
)

;

#
!
k
e
y

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

#
!
r
e
s
t

c
o
d
e
)

-

b
i
g
l
o
o

c
a
n
'
t

d
o

t
h
i
s
.

(
l
e
t
*

(
(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
a
n
d

(
n
o
t

(
n
u
l
l
?

c
o
d
e
)
)

(
e
q
?

'
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
:

(
c
a
r

c
o
d
e
)
)
)
)

(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

(
a
n
d

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
a
d
r

c
o
d
e
)
)
)

(
c
o
d
e

(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
d
d
r

c
o
d
e
)

c
o
d
e
)
)
)

`
(
l
e
t
*

(
(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
5

(
l
a
m
b
d
a

(
c
o
n
s
!
5

g
e
t
-
l
i
s
t
5
)

,
@
c
o
d
e
)
)

;

A
l
l

t
h
e

u
s
e

o
f

5

f
r
o
m

h
e
r
e

a
n
d

d
o
w
n

i
s

r
e
a
l
l
y

n
o
t

n
e
e
d
e
d
,

m
a
i
n
t
a
i
n
e
d

f
o
r

;

e
x
t
r
a

c
o
d
e

c
l
a
r
i
t
y

o
n
l
y
.

(
l
i
s
t
5

'
(
)
)

(
l
a
s
t
-
e
l
e
m
e
n
t
5

#
f
)

(
c
o
n
s
!
5

(
l
a
m
b
d
a

(
v
)

(
l
e
t

(
(
c

(
c
o
n
s

v

'
(
)
)
)
)

(
i
f

l
a
s
t
-
e
l
e
m
e
n
t
5

(
s
e
t
-
c
d
r
!

l
a
s
t
-
e
l
e
m
e
n
t
5

c
)

(
s
e
t
!

l
i
s
t
5

c
)
)

(
s
e
t
!

l
a
s
t
-
e
l
e
m
e
n
t
5

c
)
)
)
)

(
g
e
t
-
l
i
s
t
5

(
l
a
m
b
d
a

(
)

l
i
s
t
5
)
)
)

(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
5

c
o
n
s
!
5

g
e
t
-
l
i
s
t
5
)

,
@
(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

'
(
)

'
(
l
i
s
t
5
)
)
)
)
)

P
a

g
e

 4
4

 o
f

4
8

 ;

S
a
m
e

a
s

w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

b
u
t

c
o
n
s
!

i
s

n
a
m
e
d

c
o
n
s
!
6

a
n
d

g
e
t
-
l
i
s
t

i
s

n
a
m
e
d

g
e
t
-
l
i
s
t
6

.

(
d
e
f
i
n
e
-
m
a
c
r
o

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
6

.

c
o
d
e
)

;

#
!
k
e
y

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

#
!
r
e
s
t

c
o
d
e
)

-

b
i
g
l
o
o

c
a
n
'
t

d
o

t
h
i
s
.

(
l
e
t
*

(
(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
a
n
d

(
n
o
t

(
n
u
l
l
?

c
o
d
e
)
)

(
e
q
?

'
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
:

(
c
a
r

c
o
d
e
)
)
)
)

(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

(
a
n
d

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
a
d
r

c
o
d
e
)
)
)

(
c
o
d
e

(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
d
d
r

c
o
d
e
)

c
o
d
e
)
)
)

`
(
l
e
t
*

(
(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
6

(
l
a
m
b
d
a

(
c
o
n
s
!
6

g
e
t
-
l
i
s
t
6
)

,
@
c
o
d
e
)
)

;

A
l
l

t
h
e

u
s
e

o
f

6

f
r
o
m

h
e
r
e

a
n
d

d
o
w
n

i
s

r
e
a
l
l
y

n
o
t

n
e
e
d
e
d
,

m
a
i
n
t
a
i
n
e
d

f
o
r

;

e
x
t
r
a

c
o
d
e

c
l
a
r
i
t
y

o
n
l
y
.

(
l
i
s
t
6

'
(
)
)

(
l
a
s
t
-
e
l
e
m
e
n
t
6

#
f
)

(
c
o
n
s
!
6

(
l
a
m
b
d
a

(
v
)

(
l
e
t

(
(
c

(
c
o
n
s

v

'
(
)
)
)
)

(
i
f

l
a
s
t
-
e
l
e
m
e
n
t
6

(
s
e
t
-
c
d
r
!

l
a
s
t
-
e
l
e
m
e
n
t
6

c
)

(
s
e
t
!

l
i
s
t
6

c
)
)

(
s
e
t
!

l
a
s
t
-
e
l
e
m
e
n
t
6

c
)
)
)
)

(
g
e
t
-
l
i
s
t
6

(
l
a
m
b
d
a

(
)

l
i
s
t
6
)
)
)

(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
6

c
o
n
s
!
6

g
e
t
-
l
i
s
t
6
)

,
@
(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

'
(
)

'
(
l
i
s
t
6
)
)
)
)
)

 ;

S
a
m
e

a
s

w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

b
u
t

c
o
n
s
!

i
s

n
a
m
e
d

c
o
n
s
!
7

a
n
d

g
e
t
-
l
i
s
t

i
s

n
a
m
e
d

g
e
t
-
l
i
s
t
7

.

(
d
e
f
i
n
e
-
m
a
c
r
o

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
7

.

c
o
d
e
)

;

#
!
k
e
y

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

#
!
r
e
s
t

c
o
d
e
)

-

b
i
g
l
o
o

c
a
n
'
t

d
o

t
h
i
s
.

(
l
e
t
*

(
(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
a
n
d

(
n
o
t

(
n
u
l
l
?

c
o
d
e
)
)

(
e
q
?

'
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
:

(
c
a
r

c
o
d
e
)
)
)
)

(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

(
a
n
d

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
a
d
r

c
o
d
e
)
)
)

(
c
o
d
e

(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
d
d
r

c
o
d
e
)

c
o
d
e
)
)
)

`
(
l
e
t
*

(
(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
7

(
l
a
m
b
d
a

(
c
o
n
s
!
7

g
e
t
-
l
i
s
t
7
)

,
@
c
o
d
e
)
)

;

A
l
l

t
h
e

u
s
e

o
f

7

f
r
o
m

h
e
r
e

a
n
d

d
o
w
n

i
s

r
e
a
l
l
y

n
o
t

n
e
e
d
e
d
,

m
a
i
n
t
a
i
n
e
d

f
o
r

;

e
x
t
r
a

c
o
d
e

c
l
a
r
i
t
y

o
n
l
y
.

(
l
i
s
t
7

'
(
)
)

(
l
a
s
t
-
e
l
e
m
e
n
t
7

#
f
)

(
c
o
n
s
!
7

(
l
a
m
b
d
a

(
v
)

(
l
e
t

(
(
c

(
c
o
n
s

v

'
(
)
)
)
)

(
i
f

l
a
s
t
-
e
l
e
m
e
n
t
7

(
s
e
t
-
c
d
r
!

l
a
s
t
-
e
l
e
m
e
n
t
7

c
)

(
s
e
t
!

l
i
s
t
7

c
)
)

(
s
e
t
!

l
a
s
t
-
e
l
e
m
e
n
t
7

c
)
)
)
)

(
g
e
t
-
l
i
s
t
7

(
l
a
m
b
d
a

(
)

l
i
s
t
7
)
)
)

(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
7

c
o
n
s
!
7

g
e
t
-
l
i
s
t
7
)

,
@
(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

'
(
)

'
(
l
i
s
t
7
)
)
)
)
)

P
a

g
e

 4
5

 o
f

4
8

 ;

S
a
m
e

a
s

w
i
t
h
-
l
i
s
t
-
m
a
k
e
r

b
u
t

c
o
n
s
!

i
s

n
a
m
e
d

c
o
n
s
!
8

a
n
d

g
e
t
-
l
i
s
t

i
s

n
a
m
e
d

g
e
t
-
l
i
s
t
8

.

(
d
e
f
i
n
e
-
m
a
c
r
o

(
w
i
t
h
-
l
i
s
t
-
m
a
k
e
r
8

.

c
o
d
e
)

;

#
!
k
e
y

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

#
!
r
e
s
t

c
o
d
e
)

-

b
i
g
l
o
o

c
a
n
'
t

d
o

t
h
i
s
.

(
l
e
t
*

(
(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
a
n
d

(
n
o
t

(
n
u
l
l
?

c
o
d
e
)
)

(
e
q
?

'
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
:

(
c
a
r

c
o
d
e
)
)
)
)

(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

(
a
n
d

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
a
d
r

c
o
d
e
)
)
)

(
c
o
d
e

(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
d
d
r

c
o
d
e
)

c
o
d
e
)
)
)

`
(
l
e
t
*

(
(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
8

(
l
a
m
b
d
a

(
c
o
n
s
!
8

g
e
t
-
l
i
s
t
8
)

,
@
c
o
d
e
)
)

;

A
l
l

t
h
e

u
s
e

o
f

8

f
r
o
m

h
e
r
e

a
n
d

d
o
w
n

i
s

r
e
a
l
l
y

n
o
t

n
e
e
d
e
d
,

m
a
i
n
t
a
i
n
e
d

f
o
r

;

e
x
t
r
a

c
o
d
e

c
l
a
r
i
t
y

o
n
l
y
.

(
l
i
s
t
8

'
(
)
)

(
l
a
s
t
-
e
l
e
m
e
n
t
8

#
f
)

(
c
o
n
s
!
8

(
l
a
m
b
d
a

(
v
)

(
l
e
t

(
(
c

(
c
o
n
s

v

'
(
)
)
)
)

(
i
f

l
a
s
t
-
e
l
e
m
e
n
t
8

(
s
e
t
-
c
d
r
!

l
a
s
t
-
e
l
e
m
e
n
t
8

c
)

(
s
e
t
!

l
i
s
t
8

c
)
)

(
s
e
t
!

l
a
s
t
-
e
l
e
m
e
n
t
8

c
)
)
)
)

(
g
e
t
-
l
i
s
t
8

(
l
a
m
b
d
a

(
)

l
i
s
t
8
)
)
)

(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k
8

c
o
n
s
!
8

g
e
t
-
l
i
s
t
8
)

,
@
(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

'
(
)

'
(
l
i
s
t
8
)
)
)
)
)

 ;

(
w
i
t
h
-
r
e
v
e
r
s
e
-
l
i
s
t
-
m
a
k
e
r

(
c
o
n
s
!

1
)

(
c
o
n
s
!

2
)
)

=
>

'
(
2

1
)

;

(
M
a
k
i
n
g

t
h
i
s

f
u
l
l
y

a
s

a

m
a
c
r
o
,

i
n

o
r
d
e
r

t
o

e
n
s
u
r
e

t
h
a
t

t
h
e

c
o
d
e

a
l
w
a
y
s

w
i
l
l

g
e
t

m
a
x

s
p
e
e
d
.
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
w
i
t
h
-
r
e
v
e
r
s
e
-
l
i
s
t
-
m
a
k
e
r

.

c
o
d
e
)

;

#
!
k
e
y

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

#
!
r
e
s
t

c
o
d
e
)

-

b
i
g
l
o
o

c
a
n
'
t

d
o

t
h
i
s
.

(
l
e
t
*

(
(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
a
n
d

(
n
o
t

(
n
u
l
l
?

c
o
d
e
)
)

(
e
q
?

'
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
:

(
c
a
r

c
o
d
e
)
)
)
)

(
r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

(
a
n
d

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
a
d
r

c
o
d
e
)
)
)

(
c
o
d
e

(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?
-
s
e
t
?

(
c
d
d
r

c
o
d
e
)

c
o
d
e
)
)
)

`
(
l
e
t
*

(
(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k

(
l
a
m
b
d
a

(
c
o
n
s
!

g
e
t
-
l
i
s
t
)

,
@
c
o
d
e
)
)

(
l
i
s
t

'
(
)
)

(
c
o
n
s
!

(
l
a
m
b
d
a

(
v
)

(
s
e
t
!

l
i
s
t

(
c
o
n
s

v

l
i
s
t
)
)
)
)

(
g
e
t
-
l
i
s
t

(
l
a
m
b
d
a

(
)

l
i
s
t
)
)
)

(
l
i
s
t
-
m
a
k
e
r
-
t
h
u
n
k

c
o
n
s
!

g
e
t
-
l
i
s
t
)

,
@
(
i
f

r
e
t
u
r
n
-
t
h
u
n
k
-
r
v
?

'
(
)

'
(
l
i
s
t
)
)
)
)
)

 (
d
e
f
i
n
e
-
m
a
c
r
o

(
1
+

v
)

`
(
+

,
v

1
)
)

(
d
e
f
i
n
e
-
m
a
c
r
o

(
1
-

v
)

`
(
-

,
v

1
)
)

P
a

g
e

 4
6

 o
f

4
8

 (
d
e
f
i
n
e
-
m
a
c
r
o

(
l
e
t
-
a
r
g
s

l
i
s
t

a
r
g
s

.

c
o
d
e
)

;

(
p
r
i
n
t

"
l
e
t
-
a
r
g
s

i
n
v
o
k
e
d
:

a
r
g
s
=
"
)

(
w
r
i
t
e

a
r
g
s
)

(
p
r
i
n
t

"

l
i
s
t
=
"
)

(
p
p

l
i
s
t
)

(
p
r
i
n
t

"

c
o
d
e
=
"
)

(
p
p

c
o
d
e
)

(
l
e
t

(
(
r

;

A
n
y

o
f

#
!
k
e
y

#
!
r
e
s
t

i
n

a
r
g
s
?

(
i
f

(
l
e
t

l
o
o
p

(
(
r
e
s
t

a
r
g
s
)
)

(
c
o
n
d

(
(
o
r

(
n
u
l
l
?

r
e
s
t
)

(
s
y
m
b
o
l
?

r
e
s
t
)
)

#
t
)

;

T
O
D
O
:

=
A
L
W
A
Y
S

T
A
K
E

T
H
E

P
A
T
H

V
I
A

(
a
p
p
l
y
)
.

S
E
T

T
O

#
f

W
H
E
N

B
I
G
L
O
O

S
I
G
S
E
G
V

B
U
G

I
S

F
I
X
E
D
.

(
(
e
q
?

(
c
a
r

r
e
s
t
)

#
!
k
e
y
)

;

(
m
e
m
q

(
c
a
r

r
e
s
t
)

'
(
#
!
k
e
y

#
!
o
p
t
i
o
n
a
l

#
!
r
e
s
t
)
)

#
t
)

(
e
l
s
e

(
l
o
o
p

(
c
d
r

r
e
s
t
)
)
)
)
)

;

Y
e
s
.

U
s
e

(
a
p
p
l
y
)

t
o

d
e
l
i
v
e
r
.

`
(
a
p
p
l
y

(
l
a
m
b
d
a

,
a
r
g
s

,
@
c
o
d
e
)

,
l
i
s
t
)

;

N
o
.

L
o
a
d

l
i
s
t

i
n
t
o

l
o
c
a
l

n
a
m
e
s
p
a
c
e
,

t
o

d
e
l
i
v
e
r

`
(
l
e
t
*

,
@
(
l
e
t

(
(
o
r
i
g
-
l
i
s
t
-
i
n
-
v
a
r

'
*
*
l
e
t
-
a
r
g
s
-
t
e
m
p
-
o
r
i
g
)
)

;

(
g
e
n
s
y
m
)
)
)

(
l
e
t

l
o
o
p

(
(
r
e
s
u
l
t

`
(
(
,
o
r
i
g
-
l
i
s
t
-
i
n
-
v
a
r

,
l
i
s
t
)
)
)

(
r
e
s
t
-
a
r
g
s

a
r
g
s
)

(
l
i
s
t
-
i
n
-
v
a
r

o
r
i
g
-
l
i
s
t
-
i
n
-
v
a
r
)

(
e
x
p
e
c
t
e
d
-
l
e
n
g
t
h

1
)

(
i
n
-
o
p
t
i
o
n
a
l
s

#
f
)

(
h
a
s
-
o
p
t
i
o
n
a
l
s

#
f
)
)

(
i
f

(
n
u
l
l
?

r
e
s
t
-
a
r
g
s
)

(
l
e
t

(
(
r

(
r
e
v
e
r
s
e

r
e
s
u
l
t
)
)
)

(
i
f

l
i
s
t
-
i
n
-
v
a
r

;

l
i
s
t
-
i
n
-
v
a
r

i
s

#
f

f
o
r

a
r
g
s

w
i
t
h

#
!
r
e
s
t

/

.

.

`
(
,
r

(
i
f

,
(
i
f

h
a
s
-
o
p
t
i
o
n
a
l
s

;

I
f

h
a
s
-
o
p
t
i
o
n
a
l
s
,

t
h
e
n

l
i
s
t
-
i
n
-
v
a
r

m
a
y

e
i
t
h
e
r

b
e

'
(
)

(
b
e
c
a
u
s
e

a
l
l

e
l
e
m
e
n
t
s

;

o
f

t
h
e

i
n
p
u
t

l
i
s
t

h
a
v
e

b
e
e
n

p
r
o
c
e
s
s
e
d

a
n
d

n
o
w

w
e
'
r
e

a
t

'
(
)
)
,

o
r

#
f
,

b
e
c
a
u
s
e

;

m
o
r
e

t
h
a
n

a
l
l

e
l
e
m
e
n
t
s

o
f

t
h
e

i
n
p
u
t

l
i
s
t

h
a
v
e

b
e
e
n

p
r
o
c
e
s
s
e
d
,

p
e
r

b
e
l
o
w
.

`
(
a
n
d

,
l
i
s
t
-
i
n
-
v
a
r

(
n
o
t

(
n
u
l
l
?

,
l
i
s
t
-
i
n
-
v
a
r
)
)
)

`
(
n
o
t

(
n
u
l
l
?

,
l
i
s
t
-
i
n
-
v
a
r
)
)
)

(
e
r
r
o
r

;

T
o

f
i
t

w
i
t
h

B
i
g
l
o
o
'
s

(
e
r
r
o
r
)

c
a
l
l
i
n
g

c
o
n
v
e
n
t
i
o
n

(
p
r
o
c

m
s
g

o
b
j
)
:

"
I
n
v
a
l
i
d

l
e
n
g
t
h
"

#
f

(
v
e
c
t
o
r

,
@
(
i
f

h
a
s
-
o
p
t
i
o
n
a
l
s

'
(
)

;

I
f

h
a
s

o
p
t
i
o
n
a
l
s

t
h
e
n

s
k
i
p

r
e
p
o
r
t
i
n
g

e
x
p
e
c
t
e
d

l
e
n
g
t
h
.

;

A
l
t
e
r
n
a
t
i
v
e
l
y
,

w
e

c
o
u
l
d

r
e
p
o
r
t

t
h
e

i
n
t
e
r
v
a
l

o
f

e
x
p
e
c
t
e
d

l
e
n
g
t
h
.

`
(
,
e
x
p
e
c
t
e
d
-
l
e
n
g
t
h
)
)

,
o
r
i
g
-
l
i
s
t
-
i
n
-
v
a
r

,
l
i
s
t
-
i
n
-
v
a
r

;

F
o
r

r
e
a
l
l
y

t
o
u
g
h

d
e
b
u
g
g
i
n
g

t
h
e

f
o
l
l
o
w
i
n
g

c
o
u
l
d

b
e

a
p
p
l
i
e
d
:

'
,
a
r
g
s

'
,
l
i
s
t

'
,
c
o
d
e

)
)
)

(
l
e
t

(
)

,
@
c
o
d
e
)
)

P
a

g
e

 4
7

 o
f

4
8

`
(
,
r

,
@
c
o
d
e
)
)
)

(
i
f

(
s
y
m
b
o
l
?

r
e
s
t
-
a
r
g
s
)

;

h
a
n
d
l
e

(
a
r
g
0

a
r
g

a
r
g
2

.

T
H
I
S
)

(
l
o
o
p

(
c
o
n
s

`
(
,
r
e
s
t
-
a
r
g
s

,
l
i
s
t
-
i
n
-
v
a
r
)

r
e
s
u
l
t
)

'
(
)

#
f

#
f

#
f

h
a
s
-
o
p
t
i
o
n
a
l
s
)

(
l
e
t

(
(
c
-
a
r
g

(
c
a
r

r
e
s
t
-
a
r
g
s
)
)

(
r
e
s
t
-
a
r
g
s

(
c
d
r

r
e
s
t
-
a
r
g
s
)
)

(
l
i
s
t
-
t
o
-
v
a
r

'
*
*
l
e
t
-
a
r
g
s
-
t
e
m
p
)
)

;

(
g
e
n
s
y
m
)
)
)

(
c
a
s
e

c
-
a
r
g

(
(
#
!
o
p
t
i
o
n
a
l
)

(
l
o
o
p

r
e
s
u
l
t

r
e
s
t
-
a
r
g
s

l
i
s
t
-
i
n
-
v
a
r

e
x
p
e
c
t
e
d
-
l
e
n
g
t
h

#
t

#
t
)
)

(
(
#
!
r
e
s
t
)

(
i
f

(
n
o
t

(
a
n
d

(
l
i
s
t
?

r
e
s
t
-
a
r
g
s
)

(
e
q
?

1

(
l
e
n
g
t
h

r
e
s
t
-
a
r
g
s
)
)
)
)

(
e
r
r
o
r

"
I
n
v
a
l
i
d

#
!
r
e
s
t

-

n
o
t

o
n
l
y

o
n
e

m
o
r
e

l
i
s
t

e
l
e
m
e
n
t

a
f
t
e
r

i
t
"

a
r
g
s

l
i
s
t

c
o
d
e
)
)

(
l
o
o
p

(
c
o
n
s

`
(
,
(
c
a
r

r
e
s
t
-
a
r
g
s
)

(
o
r

,
l
i
s
t
-
i
n
-
v
a
r

'
(
)
)
)

r
e
s
u
l
t
)

'
(
)

#
f

#
f

#
f

h
a
s
-
o
p
t
i
o
n
a
l
s
)
)

(
e
l
s
e

(
l
o
o
p

(
i
f

i
n
-
o
p
t
i
o
n
a
l
s

(
c
o
n
s

`
(
,
l
i
s
t
-
t
o
-
v
a
r

(
i
f

*
*
l
e
t
-
a
r
g
s
-
l
i
s
t
-
h
a
s
-
m
o
r
e
?

(
c
d
r

;

*
*

I
n

G
a
m
b
i
t

t
h
i
s

o
n
e

c
a
n

b
e

r
e
p
l
a
c
e
d

w
i
t
h

#
#
c
d
r

,
l
i
s
t
-
i
n
-
v
a
r
)

#
f
)
)

(
c
o
n
s

`
(
,
(
i
f

(
p
a
i
r
?

c
-
a
r
g
)

(
c
a
r

c
-
a
r
g
)

c
-
a
r
g
)

(
i
f

*
*
l
e
t
-
a
r
g
s
-
l
i
s
t
-
h
a
s
-
m
o
r
e
?

(
c
a
r

,
l
i
s
t
-
i
n
-
v
a
r
)

,
(
i
f

(
p
a
i
r
?

c
-
a
r
g
)

(
b
e
g
i
n

(
i
f

(
n
o
t

(
e
q
?

2

(
l
e
n
g
t
h

c
-
a
r
g
)
)
)

(
e
r
r
o
r

"
I
n
v
a
l
i
d

#
!
o
p
t
i
o
n
a
l

a
r
g
u
m
e
n
t

d
e
f
a
u
l
t

v
a
l
u
e
"

c
-
a
r
g

a
r
g
s

l
i
s
t

c
o
d
e
)
)

(
c
a
d
r

c
-
a
r
g
)
)

#
f
)
)
)

(
c
o
n
s

`
(
*
*
l
e
t
-
a
r
g
s
-
l
i
s
t
-
h
a
s
-
m
o
r
e
?

(
p
a
i
r
?

,
l
i
s
t
-
i
n
-
v
a
r
)
)

r
e
s
u
l
t
)
)
)

P
a

g
e

 4
8

 o
f

4
8

(
b
e
g
i
n

(
i
f

(
n
o
t

(
s
y
m
b
o
l
?

c
-
a
r
g
)
)

(
e
r
r
o
r

"
I
n
v
a
l
i
d

a
r
g
u
m
e
n
t

s
y
m
b
o
l
"

c
-
a
r
g

a
r
g
s

l
i
s
t

c
o
d
e
)
)

(
c
o
n
s

`
(
,
l
i
s
t
-
t
o
-
v
a
r

(
c
d
r

;

*
*

I
n

G
a
m
b
i
t

t
h
i
s

o
n
e

c
a
n

b
e

r
e
p
l
a
c
e
d

w
i
t
h

#
#
c
d
r

,
l
i
s
t
-
i
n
-
v
a
r
)
)

(
c
o
n
s

`
(
,
c
-
a
r
g

(
c
a
r

,
l
i
s
t
-
i
n
-
v
a
r
)
)

;

N
o
r
m
a
l
l
y
:

r
e
s
u
l
t

;

E
x
t
r
a

t
y
p
e

c
h
e
c
k
i
n
g

(
v
a
l
u
a
b
l
e

i
n

b
i
g
l
o
o
?
)
:

;

(
c
o
n
s

`
(
*
*
l
e
t
-
a
r
g
s
-
v
o
i
d

(
i
f

(
n
o
t

(
p
a
i
r
?

,
l
i
s
t
-
i
n
-
v
a
r
)
)

;

(
e
r
r
o
r

"
B
a
d

l
i
s
t

p
a
s
s
e
d
"

#
f

;

,
o
r
i
g
-
l
i
s
t
-
i
n
-
v
a
r
)
)
)

;

r
e
s
u
l
t
)

)
)
)
)

r
e
s
t
-
a
r
g
s

l
i
s
t
-
t
o
-
v
a
r

(
+

e
x
p
e
c
t
e
d
-
l
e
n
g
t
h

1
)

i
n
-
o
p
t
i
o
n
a
l
s

h
a
s
-
o
p
t
i
o
n
a
l
s
)
)
)
)
)
)
)
)
)
)
)
)

;

(
p
r
i
n
t

"
(
l
e
t
-
a
r
g
s

"

)

(
w
r
i
t
e

l
i
s
t
)

(
p
r
i
n
t

"

"
)

(
w
r
i
t
e

a
r
g
s
)

(
p
r
i
n
t

"

"
)

(
w
r
i
t
e

c
o
d
e
)

(
p
r
i
n
t

"
)

r
e
t
u
r
n
s
:

"
)

(
p
p

r
)

r
)
)

E
N

D
 o

f
A

p
e

n
d

ix
 B

Appendix C

1

Model Description
of the linearly programmed long-term energy systems cost-minimizing model

GET-RC 6.1

that generates the fuel and technology mix that meets the energy demand,
subject to the constraints, at lowest global energy system cost.

Maria Grahn

Department of Energy and Environment, Physical Resource Theory, Chalmers University of Technology,
412 96 Göteborg, Sweden, Email: maria.grahn@chalmers.se

Erica Klampfl, Margaret J. Whalen, Timothy J. Wallington
Systems Analytics and Environmental Sciences Department, Ford Motor Company, Mail Drop RIC-2122,

Dearborn, MI 48121-2053, USA.

Kristian Lindgren
Department of Energy and Environment, Physical Resource Theory, Chalmers University of Technology,

412 96 Göteborg, Sweden

November 2012

Keywords: GET model, Linear Programming, Sustainable mobility, Carbon emissions, Energy scenarios

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

5

2. Sets
In this section the different sets (indices) are presented. For a compact description of the sets in

alphabetic order, see Appendix 2.

2.1 Time

The model’s main time period is 1990-2140 divided in 10 year steps. Results are presented for the

2010-2100 period. The set “t_h” include historical time steps used for the carbon cycle calculations and

for plotting a long-term figure of historical emissions combined with model results. In GAMS, it is

sometimes necessary to have more than one name for the same set, e.g. when emissions one year affect

emission concentration another year. Here the set “T_all_copy” includes all time step and is identical to

“T_all“. The timeset “t_2010_2140” is used when fixing a specific value for the result from year 2010

and beyond, e.g. the use of nuclear.

T_all 1800, 1810, 1820, 1830, 1840, 1850, 1860, 1870, 1880, 1890, 1900, 1910, 1920, 1930,

1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010, 2020, 2030, 2040, 2050, 2060, 2070,

2080, 2090, 2100, 2110, 2120, 2130, 2140

T_all_copy T_all 1800, 1810, 1820, 1830, 1840, 1850, 1860, 1870, 1880, 1890, 1900, 1910, 1920, 1930,

1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010, 2020, 2030, 2040, 2050, 2060, 2070,

2080, 2090, 2100, 2110, 2120, 2130, 2140

t_h T_all 1800, 1810, 1820, 1830, 1840, 1850, 1860, 1870, 1880, 1890, 1900, 1910, 1920, 1930,

1940, 1950, 1960, 1970, 1980

t T_all 1990, 2000, 2010, 2020, 2030, 2040, 2050, 2060, 2070, 2080, 2090, 2100, 2110, 2120,

2130, 2140

t_2010_2140 t 2010, 2020, 2030, 2040, 2050, 2060, 2070, 2080, 2090, 2100, 2110, 2120, 2130, 2140

init_year t 1990

2.2 Energy supply

Here are the sets for the model’s energy options both primary energy sources, which contains the

ingoing sources used in the energy conversion plants (e_in), and the secondary energy carriers, which

are the final energy products, i.e., energy carriers coming out from the energy conversion plants

(e_out), all listed in the set E.

The set of options that are allowed to enter the energy conversion module as incoming energy (e_in)

has the following acronyms. Primary energy options are: natural gas (NG), oil (OIL), coal (COAL),

nuclear (NUCLEAR), biomass (BIO), hydro power (HYDRO), wind power (WIND), concentrating

solar power (SOLAR_CSP), and finally other solar energy technologies, i.e. solar-PV, solar-heat and

solar-hydrogen (SOLAR). The energy carriers that can be converted a second time are: hydrogen (H2)

and electricity (ELEC), i.e. electricity can be converted to heat or hydrogen and hydrogen can be

converted to heat or electricity. In this model version, the technology CSP can be viewed as a new

energy technology generating inexpensive electricity with low CO2 emissions, and can therefore act as

a proxy for any future inexpensive electricity with low CO2 emissions, e.g., advanced fission, fusion,

wave energy, geothermal energy.

The set of energy carriers, converted from primary energy sources, (e_out) has the following acronyms:

all stationary use that not are electricity nor transportation fuels, e.g., industrial process heat, district

heating and feedstock (HEAT), electricity (ELEC), biomass-to-liquid, which is biomass based synthetic

fuels assuming cost assumptions from bio-based methanol via gasification (BTL), coal-to-liquid and

gas-to-liquid, both using cost assumptions from methanol production (CTL/GTL), hydrogen (H2),

natural gas (NG), petroleum based gasoline/diesel/kerosene (PETRO), synthetic fuels for aviation

(AIR_FUEL).

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

6

E bio, hydro, wind, solar, solar_CSP, NG, oil, coal, nuclear, BTL, CTL/GTL, H2, heat,

elec, petro, air_fuel

e_in E bio, hydro, wind, solar, solar_CSP, NG, oil, coal, nuclear, H2, elec

e_out E heat, elec, BTL, CTL/GTL, H2, NG, petro, air_fuel

The following are different subsets, of the energy sources and carriers, used in some equations.

Acronyms used here are co-generation of heat and electricity from the same conversion process (CG).

cg_e_in e_in bio, NG, oil, coal, H2

cg_e_out e_out elec, BTL, CTL/GTL, H2

primary e_in bio, hydro, wind, solar, solar_CSP, NG, oil, coal, nuclear

second_in e_in H2, elec

sec e_out BTL, CTL/GTL, H2

nontrade_sec e_out heat, elec, NG, petro, air_fuel

fuels primary bio, coal, oil, NG, nuclear

nonfuels primary hydro, wind, solar, solar_CSP

fossil fuels coal, oil, NG

2.3 Type of conversion plant

The energy conversion plants can be of different types. In this model, energy conversion plants can use

conventional technology (0) or co-generation plants where both electricity and heat are produced (cg) or

plants where the plants have included carbon capture and storage technologies (CCS). The subset c_capt

includes the two plant type options that can capture carbon, either with or without co-generation of

electricity and heat. The subset CG_type includes the two plant type options that produce co-generated

heat and electricity either with or without CCS.

type 0, cg, CCS, cg_CCS

c_capt type CCS, cg_CCS

CG_type type cg, cg_CCS

2.4 Fuels for transport

There are several fuel options that can be used in the transportation sector, i.e. biomass-based liquid fuels

(BTL), coal to liquid (CTL), gas to liquid (GTL), petroleum-based fuels such as gasoline, diesel and

kerosene (PETRO), electricity (ELEC), hydrogen (H2), natural gas (NG), and synthetic fuels for aviation

(AIR_FUEL). The different subsets are used in equations only valid for some specific fuels.

trsp_fuel e_out BTL, CTL/GTL, petro, elec, H2, NG, air_fuel

trsp_fuel_nonel trsp_fuel BTL, CTL/GTL, petro, H2, NG, air_fuel

synfuel_gas trsp_fuel_nonel BTL, CTL/GTL, H2, NG

road_fuel trsp_fuel BTL, CTL/GTL, petro, elec, H2, NG

road_fuel_liquid road_fuel BTL, CTL/GTL, petro

2.5 Vehicle technologies

There are five different vehicle technologies (e-type) available in the model, i.e., conventional internal

combustion engine vehicles (0), fuel cell vehicles (FC), hybrid electric vehicles (HEV), plug-in hybrid

electric vehicles (PHEV), and battery electric vehicles (BEV). The different subsets are declared to be

used in equations only valid for some specific vehicle technologies.

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

7

e_type 0, FC, HEV, PHEV, BEV

ic_fc e_type 0, FC

hybrids e_type HEV, PHEV

hev_phev_bev e_type HEV, PHEV, BEV

non_phev e_type 0, FC, HEV, BEV

2.6 Transport modes

The energy demand in the transportation sector is divided between nine different transport modes

(trsp_mode), i.e., light duty passenger vehicles (p_car), airplanes for passenger travel (p_air), buses

(p_bus), passenger rail (p_rail), freight road, i.e. trucks (f_road), freight aviation (f_air), freight coastal

shipping (f_sea), and freight international shipping (f_isea).

trsp_mode p_car, p_air, p_bus, p_rail, f_road, f_air, f_sea, f_isea, f_rail

vehicle trsp_mode p_car, f_road

ptrs_mode trsp_mode p_car, p_air, p_bus, p_rail

frgt_mode trsp_mode f_road, f_air, f_sea, f_isea, f_rail

ship_mode trsp_mode f_sea, f_isea

2.7 Regions

In GET-RC 6.1, the world is treated as 10 distinct regions: North America (NAM), Europe (EUR), the

Former Soviet Union (FSU), OECD countries in the Pacific Ocean (PAO), Latin America (LAM), the

Middle East (MEA), Africa (AFR), Centrally Planned Asia – mainly China (CPA), South Asia –

mainly India (SAS) and Pacific Asia (PAS). All regions can export and import and the costminimizing

determine the trade. In GAMS, it is sometimes necessary to have more than one name for the same set,

e.g. when energy carriers are traded between two regions. Here the set “R_exp” includes all regions that

can export which is identical to “R_imp” which is the regions that can import.

R NAM, EUR, PAO, FSU, AFR, PAS, LAM, MEA, CPA, SAS

R_exp R NAM, EUR, PAO, FSU, AFR, PAS, LAM, MEA, CPA, SAS

R_imp R NAM, EUR, PAO, FSU, AFR, PAS, LAM, MEA, CPA, SAS

3. Scalars and parameters
In this section we present the names of all used scalars and parameters (given data). The chosen data

values can be found in Appendix 1.

3.1 Scalars

In this Section the name of the scalars are presented. We define scalars as a parameter with one specific

value only. As soon as the parameter depends on one or more sets they are presented as a parameter, see

Section Parameters. In this report we always present scalars and parameters in blue text.

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

8

3.1.1 Basic scalars

The scalars presented here are the amount of million seconds per year (Msec_per year), which together

with a plant specific capacity factor, is used when converting from an energy conversion plant’s effect

expressed in kW into the amount of energy that comes out from the plant (GJ/yr). The discount rate (r)

counts for the valuation of future costs and is in the base case set to 5%. Also the interest rate applied to

investments (r_invest), is set to 5% in the base case runs.

Msec_per_year = 31.6 Number of seconds per year expressed in millions [Ms]

t_step = 10 Number of year within each time step [yr]

r = 0.05 Discount rate [-]

r_invest = 0.05 Interest rate applied to investments [-]

pre_ind_ccont = 280 Pre-industrial atmospheric CO2 concentration [ppm]

3.1.2 Maximum growth and depreciation

Constraints have been added to the model to avoid solutions that are obviously unrealistic, primarily

constraints on how fast changes can be made in the energy system. This includes constraints on the

maximum expansion rates of new technologies (in general set so that it takes 50 years to change the

entire energy system) as well as annual or total extraction limits on the different available energy

sources. The growth is limited by both relative and absolute values. Here are first the relative values,

where all limitations on growth from one timestep to another are maximized to 20% in base case runs.

The depreciation, limitations the minimum fraction remaining in a timestep (compared to previous

timestep) is set to 75% for a certain energy technology, 70% for a certain vehicle technology and

minimum 20% for the phase out of oil.

cap_g_lim = 0.2 maximum growth of capacity in energy conversion plants [-]

supply_g_lim = 0.2 maximum growth of primary energy extraction [-]

infra_g_lim = 0.2 maximum growth of infrastructure capacity [-]

eng_g_lim = 0.2 maximum growth of vehicle technologies [-]

en_conv_decr_lim = 0.75 minimum fraction of previous timestep’s energy technology [-]

mx_decay_frac = 0.7 minimum fraction of previous timestep’s vehicle technology [-]

mx_decay_frac_oil = 0.2 minimum fraction of previous timestep’s oil use [-]

The following scalars present the absolute values. Some scalars are first defined as a global static value

and then regionalized and made dynamic in calculations included in the model, see Section 3.2.4 Growth

and depreciation. The global values are presented here since they only consist of one value (scalars).

global_max_exp_p = 2 Global maximum expansion of conversion plants [TW/decade]

global_max_exp = 60 Global maximum expansion for energy sources except biomass [EJ/decade]

global_max_exp_b = 32 Global maximum expansion for biomass production [EJ/decade]

global_max_exp_i =1 Global maximum expansion for infrastructure investments [TW/decade]

global_init_i = 0.05 “kick-start” value when a new infrastructure is introduced [TW]

global_init_e = 0.1 “kick-start” value when a new engine is introduced [Gvehicles]

global_init_p = 0.3 “kick-start” value when a new conversion plant is introduced [TW]

global_init_s = 0.3 “kick-start” value when a new energy source is introduced [EJ]

global_en_conv_dis = 5 The final "tail" of a certain energy conversion [EJ]

global_mx_decay = 6 The final "tail" of a certain transportation energy [EJ]

global_mx_decay_oil =10 The final "tail" of oil use in primary energy values [EJ]

t_tech_plant =50 Inertia. How fast new conversion technologies may totally change [yr]

t_tech_eng =50 Inertia. How fast new engine technologies may totally change [yr]

t_tech_effic =30 Inertia. How fast energy efficiency may totally change [yr]

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

9

3.1.3 Energy conversion

Scalars used in energy conversion equations including intermittency limitations, co-generation and CCS.

fos_capt_effic = 0.9 carbon capture efficiency from fossil CCS [-]

bio_capt_effic = 0.9 carbon capture efficiency from bioenergy CCS [-]

c_capt_heat_fr = 0.3 max fraction of heat sector using CCS [-]

c_stor_maxgr = 100 global annual growth limit on carbon storage capacity [MtC/decade]

cogen_fr_e = 0.2 max fraction of electricity demand from co-generation [-]

cogen_fr_h = 0.2 max fraction of heat demand that can come from co-generation [-]

interm_fr = 0.3 max fraction of intermittent electricity (wind + solar-elec) [-]

3.1.4 Transport

Scalars used in the transportation module. We assume that maximum 20% of all trucks and 50% of all

buses can run on electricity as plugin-hybrids (PHEVs) or as pure battery electric vehicles (BEVs).

frac_phev_trucks = 0.2 share of trucks that can use PHEV [-]

frac_phev_buses = 0.5 share of buses that can use PHEV [-]

frac_bev_trucks = 0.2 share of trucks that can use BEV [-]

frac_bev_buses = 0.5 share of buses that can use BEV [-]

3.1.5 Cost

Scalars used when calculating costs. The reason for that the storage cost differ between carbon from

fossil fuels and carbon from bioenergy is that bioenergy conversion plants typically are smaller in size

compared to fossil fuel conversion plants. The cost for distributing the carbon from larger conversion

plants will benefit from the economics of scale.

cost_strg_fos = 0.037 carbon storage cost from fossils (equivalent to 10 USD/t CO2) [GUSD/MtC]

cost_strg_bio = 0.073 carbon storage cost from bioenergy (equivalent to 20 USD/t CO2)

 [GUSD/MtC]

c_bio_trspcost = 0.5 additional transportation cost applied to bioenergy CCS [GUSD/EJ]

3.2 Parameters

In this section all parameters (given data) used in the model are presented and in parenthesis it is shown

what sets the parameter values depend on. Chosen data for the base case runs, in the model, is presented

in Appendix 1.

3.2.1 Supply potential and energy demand

supply_pot (primary, R, t) Annual upper limit on supply potential (non-fossil sources) [EJ]

supply_pot_0 (primary, R) Aggregated upper limit on fossil supply potential. [EJ]

heat_dem_reg (R, t) Heat demand [EJ]

elec_dem_reg (R, t) Electricity demand [EJ]

ptrsp (R, ptrs_mode, t) Energy demand for passenger transport [EJ]

frgt (R, frgt_mode, t) Energy demand for freight transport [EJ]

trsp_dem (R, trsp_mode, t) Energy demand for each transportation mode [EJ]

The input data for energy demand for the transportation sector, parameter trsp_dem, is presented in two

tables in Appendix 1, where Table ptrsp_all include demand for passenger transport modes and Table

frgt_all include demand for the freight transport modes. The input data in earlier model versions assume

an overall energy efficieny of 0.7% per year. In this model version we assume that energy savings of

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

10

0.3% per year can be achieved through improved rolling and air resitance as well as eco-diving, which

is assumed to be equal for all types of road and sea based vehicle and ship technologies. The annual

improvement on drivetrains are, however, assumed to be technology dependent, i.e., higher for internal

combustion engines and fuel cell engines compared to electric vehicles. Therefore the input data in

parameter trsp_dem on p_car, p_bus, f_road, f_sea, f_isea first need to be adjusted by a factor of 1.004,

which in GAMS are made by the following code:

trsp_dem (R, "p_rail", t) = ptrsp_all(R, "p_rail", t);

trsp_dem (R, "p_air", t) = ptrsp_all(R, "p_air", t);

trsp_dem (R, "p_car", t) = ptrsp_all(R, "p_car", t)*1.004**(t_step*(ord(t)-1));

trsp_dem (R, "p_bus", t) = ptrsp_all(R, "p_bus", t)*1.004**(t_step*(ord(t)-1));

trsp_dem (R, "f_rail", t) = frgt_all(R, "f_rail", t);

trsp_dem (R, "f_air", t) = frgt_all(R, "f_air", t);

trsp_dem (R, "f_road", t) = frgt_all(R, "f_road", t)*1.004**(t_step*(ord(t)-1));

trsp_dem (R, "f_sea", t) = frgt_all(R, "f_sea", t)*1.004**(t_step*(ord(t)-1));

trsp_dem (R, "f_isea", t) = frgt_all(R, "f_isea", t)*1.004**(t_step*(ord(t)-1));

Note that “ORD” is a GAMS operator which generates integers from the position in the set, e.g.

ORD(1990)=1 and ORD(2000)=2.

The following expression changes all static values on supply potential (presented in Table

“supply_pot_0”) time dependent. That means all values presented in the table will be the upper limit for

each time step. This will of course lead to unrealisticly high annual upper limits on fossil sources but

equation (2) will correct for that.

supply_pot (primary, R, t) = supply_pot_0 (primary, R); [EJ]

3.2.2 Energy conversion plants, CCS and infrastructure

effic (e_in, type, e_out, t) Time dependent energy conversion efficiency [-]

effic_current (e_in, type, e_out) Near term energy conversion efficiency [-]

effic_0 (e_in, type, e_out) Ideal conversion efficiency assumed available in 2020-2050 [-]

heat_effic (cg_e_in, cg_type, cg_e_out) Heat efficiency when cogeneration of electricity and heat [-]

lf (e_in, type, e_out, R) Load factor (capacity factor) for energy conversion plants,

 i.e., the share of maximum capacity that is used per year [-]

lf_infra (synfuel_gas) Load factor infrastructure [-]

life_plant (e_in, e_out, type) Life time on energy conversion plants [yr]

life_infra (synfuel_gas) Life time for infrastructure [yr]

dec_elec (e_in) Electricity requirements when using CCS (fraction of en_conv) [-]

init_cap (e_in, e_out, type, R) Capacity in energy conversion plants for the initial year [TW]

Calculation of some of the parameters listed above

Energy conversion efficiency in near term “effic_current” is assumed to be 0.1 lower than the ideal energy

efficiency “effic_0”. It is of cource not possible to know exacly when in time the ideal efficiency can become

reality. However we make an assumption that it can be fulfilled sometimes between 2020 and 2050.

effic_current (e_in, type, e_out) = effic_0 (e_in, type, e_out) – 0.1

In this model version we use time dependent energy efficiency. The model chooses the lowest value on “effic” from

two linear functions, in the expression below, separated by comma. Values for effic will therefore be lower the first

timesteps and increase during time until the two curves cross each other. From the timestep where they cross the

values on effic will be stabilized at a so called mature level.

effic (e_in, type, e_out, t) =

min (effic_0 (e_in, type, e_out), (effic_0 (e_in, type, e_out) – effic_current (e_in, type, e_out))/

t_tech_effic (e_in, type, e_out)*((ord(t)-1)* t_step) + effic_current (e_in, type, e_out))

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

11

3.2.3 Transportation sector

num_veh (R, vehicle, t) Number of vehicles [Gvehicles]

life_eng (trsp_fuel, e_type, vehicle) Life time on vehicle engines [yr]

trsp_conv_st (trsp_fuel, e_type, trsp_mode) A factor that relates the energy efficiency to conventional

 ICEV. Valid for aviation and rail. [-]

trsp_conv (trsp_fuel, e_type, trsp_mode, t) Time dependent trsp-conv [-]

elec_frac_phev (vehicle) Fraction of time that a PHEV operates in battery mode.

 We assume that BTL/CTL/GTL and Petro PHEVs have

 the same electricity fraction. [-]

high_speed_train (R, t) Fraction of aviation sector substituted with high speed

 trains run on electricity [-]

3.2.4 Growth and depreciation

max_exp_p (e_in, e_out, type, R, t) Growth limit on energy conversion plants [TW/decade]

max_exp (R, t) Primary fuel supply growth limit [EJ/decade]

max_exp_bio (R, t) Bio energy growth limit [EJ/decade]

max_inv_infra (R, t) Infrastructure growth limit [TW/decade]

en_conv_dis (R, t) The final "tail" of a certain energy conversion [EJ]

mx_decay_abs (R, t) The final "tail" of a certain transportation energy [EJ]

mx_decay_abs_oil (R, t) The final "tail" of oil use in primary energy values [EJ]

init_infra (R) “kick-start” value when a new infrastructure is introduced [TW]

init_eng (R) “kick-start” value when a new engine is introduced [Gvehicles]

init_plant (R) “kick-start” value when a new conversion plant is introduced [TW]

init_supply (R) “kick-start” value when a new energy source is introduced [EJ]

Calculations of regionalized growth and depreciation parameters listed above

Calculation of regionalized parameters using the global scalars presented in Section Scalars. The scalars are

transferred into dynamic parameters, i.e., changed into time dependent values depending on the regional energy

demand in each time step. Note that the global maximum expansion values were presented in TW whereas the

regionalized values are presented in EJ.

max_exp (R, t) =

((elec_dem_reg (R, t) + heat_dem_reg (R, t) + trsp_mode (trsp_dem (R, trsp_mode, t))) /

(Msec_per_year*t_step))* global_max_exp;

max_exp_p (e_in, e_out, type, R, t) =

((elec_dem_reg (R, t)+ heat_dem_reg (R, t) + trsp_mode (trsp_dem (R, trsp_mode, t))) /

(Msec_per_year*t_step))* global_max_exp_p;

max_exp_bio (R, t) =

((elec_dem_reg (R, t)+heat_dem_reg (R, t) + trsp_mode (trsp_dem (R, trsp_mode, t))) /

(Msec_per_year*t_step))* global_max_exp_b;

max_inv_infra (R, t) =

 ((elec_dem_reg (R, t)+heat_dem_reg (R, t)+ trsp_mode (trsp_dem (R, trsp_mode, t))) /

 (Msec_per_year*t_step))* global_max_exp_i;

init_eng (R) =

((elec_dem_reg (R,"2000") + heat_dem_reg (R,"2000") + trsp_mode (trsp_dem (R, trsp_mode, “2000”))) /

(Msec_per_year*t_step))* global_init_e;

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

12

init_infra (R) =

((elec_dem_reg (R,"2000") + heat_dem_reg (R,"2000") + trsp_mode (trsp_dem (R, trsp_mode, ”2000”))) /

(Msec_per_year*t_step))* global_init_i;

init_plant (R) =

((elec_dem_reg (R,"2000") + heat_dem_reg (R,"2000") + trsp_mode (trsp_dem (R, trsp_mode, ”2000”))) /

(Msec_per_year*t_step))* global_init_p;

init_supply (R) =

((elec_dem_reg (R,"2000")+ heat_dem_reg (R,"2000")+ trsp_mode (trsp_dem (R, trsp_mode, ”2000”))) /

(Msec_per_year*t_step))* global_init_s;

As an alternative to the four latter calculations above, the values can instead be inserted as an input data table with

the values presented in Table 1.

Table 1. Regional values for the four parameters acting as “kick-start” values when a new tecnology is introduced

in model scenarios. These regional values can be used instead of the calculations where a regional value is

generated from a global value.

 init_eng (R) init_infra (R) init_plant (R) init_supply (R)

NAM 0.025 0.013 0.076 0.076

EUR 0.018 0.009 0.054 0.054

PAO 0.008 0.004 0.023 0.023

FSU 0.008 0.004 0.024 0.024

AFR 0.005 0.003 0.015 0.015

PAS 0.004 0.002 0.013 0.013

LAM 0.005 0.002 0.015 0.015

MEA 0.004 0.002 0.011 0.011

CPA 0.011 0.005 0.033 0.033

SAS 0.006 0.003 0.019 0.019

en_conv_dis (R, t) =

((elec_dem_reg (R, t) + heat_dem_reg (R, t) + trsp_mode (trsp_dem (R, trsp_mode, t))) /

(Msec_per_year*t_step))* global_en_conv_dis;

mx_decay_abs (R, t) =

((elec_dem_reg (R, t)+ heat_dem_reg (R, t)+ trsp_mode (trsp_dem (R, trsp_mode, t))) /

(Msec_per_year*t_step))* global_mx_decay;

mx_decay_abs_oil (R, t) =

((elec_dem_reg (R, t)+ heat_dem_reg (R, t)+ trsp_mode (trsp_dem (R, trsp_mode, t))) /

(Msec_per_year*t_step))* global_mx_decay_oil;

3.2.5 Emissions and carbon taxes

CO2 emissions are registered whenever fossil primary energy sources are used in the model. The

emissions differ between the fossil energy sources depending on the emission factor (emis_fact). An

emission factor is also given for biomass since carbon can be stored by using carbon capture and

storage technology also on biomass. Since it is possible to import and export fossil synthetic fuels the

emissions from the production of CTL/GTL is registered on the region before exporting the fuel and the

emissions from combusting the fuel is registered in the region using the fuel. A special emission factor

is therefore needed for the combustion of synthetic fuels (emis_fact_syn).

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

13

To convert the CO2 emissions into atmotsperic CO2 concentration a carbon cycle module is included.

Parameters used in the carbon cycle module are also presented here.

emis_fact (fuels) Carbon dioxide emission factors [MtC/EJ]

emis_fact_syn Carbon dioxide emission factor from the use of CTL/GTL [MtC/EJ]

c_tax (R, t) Carbon tax [GUSD/MtC]

hist_fos_emis (t_h) Historical fossil emissions [MtC]

fut_luc_emis (T_all) Prognos for future emissions from land use change [MtC]

fut_biota_sinks (T_all) Estimation of the contribution of natural CO2 sinks [MtC]

IRfunc (T_all, T_all_copy) Impulse Response function. Determines annual contribution to

 atmospheric carbon from each year’s CO2 emissions. [-]

The impulse response function, IRfunc, is a declining function representing the annual contribution to

atmospheric CO2 from each emission impulse. The contribution is highest directly after the emission

but will contribute to the atmospheric CO2 for many decades after it is emitted. The impulse response

function used in GET is taken from Maier-Reimer and Hasselmann (1987) and the function is named

G(t) in their paper. Note that if the values of IRfunc is included to model as a table with data (and not

calculated during the run) the set coeff as well as the parameters A (coeff) and tao (coeff) can be

excluded. More details on IRfunc can be found in Appendix 3. The calculated values can for the

paremeter IRfunc can be found in Appendix 1.

3.2.6 Prices and costs

Here we present parameter used when calculating costs in the model. Some costs are calculated in the

model from a starting base cost. The cost is thereafter made time dependent and modified by interest

rate and discount rate. A base cost for a theoretical standard vehicle run on petroleum based fuel (for

cars a gasoline TDI) is first defined (vehicle_cost). For more advanced vehicle technology and fuel

options we add an incremental cost relative to the conventional vehicle, see Appendix 1 for chosen

data. The investment costs are then modified with an interest rate and a discount rate (cost_inv_mod).

price (fuels, R) Basic fuel price without scarcity rent or carbon tax [GUSD/EJ]

OM_cost_fr (e_in, e_out) Operation & maintenance cost as fraction of capacity cost [-]

cost_inv_base (e_in, type, e_out) Investments cost for energy conversion plants [GUSD/TW]

cost_inv (e_in, e_out, type, t) Time is added to the plant investment cost [GUSD/TW]

cost_inv_mod (e_in, e_out, type, t) Plant investment cost adjusted if assuming different

 investment interest rate and discount rates [GUSD/TW]

vehicle_cost (vehicle) Basic cost for vehicle with gasoline IC engine [GUSD/Gvehicle]

cost_eng_base (road_fuel, e_type, vehicle) Additional cost above standard "petro-vehicle” [GUSD/Gvehicle]

cost_eng (road_fuel, e_type, vehicle, t) Time dependent vehicle investment cost [GUSD/Gvehicle]

cost_eng_mod (road_fuel, e_type, vehicle, t) Vehicle investment cost adjusted if assuming

 different investment interest rate and discount rates [GUSD/Gvehicle]

cost_infra (synfuel_gas) Investment cost for infrastructure [GUSD/TW]

cost_infra_mod (synfuel_gas) Investment cost for infrastructure adjusted if assuming

 different investments and discount rates [GUSD/TW]

imp_cost (fuels) Cost for transportation of primary energy sources when

 trading between regions, regardless the distance. [GUSD/EJ]

imp_cost2 (sec) Cost for transportation of secondary energy carriers when

 trading between regions, regardless the distance. [GUSD/EJ]

imp_cost_lin (fuels) Additional cost, dependent on distance, for transportation

 wen trading primary energy sources. [GUSD/EJ]

imp_cost_lin2 (sec) Additional cost, dependent on distance, for transportation

 when trading secondary energy carriers. [GUSD/EJ]

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

14

Calculation of some parameters listed above

Time is added as a fourth dimension to the investment cost of energy conversion plants and vehicles. Originally

we planned for introducing time dependent investment costs but in this model version we use identical investment

costs for each time step.

cost_inv (e_in, e_out, type, t) = cost_inv_base (e_in, type, e_out);

cost_eng (road_fuel, e_type, vehicle, t) = cost_eng_base (road_fuel, e_type, vehicle) + vehicle_cost (vehicle);

Calculation of modified costs, if the discount rate (r) and investment interest rate (r_invest) are assumed different.

In this model version we have set the r and r_invest to the same value, i.e. both set to 0.05. These three

calculations below are therefore currently not contributing to the result but useful when making different tests on

the effect of assuming that the discount rate and investment rates are not identical.

cost_inv_mod (e_in, e_out, type, t) =

cost_inv (e_in, e_out, type, t) * (r_invest + 1/life_plant (e_in, e_out, type))/(r+1/life_plant (e_in, e_out, type));

cost_eng_mod (road_fuel, e_type, vehicle, t) =

cost_eng (road_fuel, e_type, vehicle, t) * (r_invest + 1/life_eng (road_fuel, e_type, vehicle))/

(r+1/life_eng (road_fuel, e_type, vehicle));

cost_infra_mod (synfuel_gas) =

cost_infra (synfuel_gas) * (r_invest + 1/life_infra (synfuel_gas)) / (r + 1/life_infra (synfuel_gas));

3.2.7 Miscellaneous

distance (R_imp, R_exp) Table of rough distances between regions [km]

flow_matrix (e_in, type, e_out) Table presenting which energy conversions that are allowed [-]

population (R, t) Population [Gpeople]

The table flow_matrix is a matrix containing “0” or “1” depending on if an energy conversion, from a

primary energy source to an energy carrier, is allowed or not.

4. Variables
In this section the variables are presented with a short explanation including units. Variables written in

red indicate main variables, i.e. that the variables are not calculated from any other decision variables.

All variables are of type continuous. For a compact description of the variables in alphabetic order, see

Appendix 2.

4.1 Balancing energy flows

The energy flowes in the model are simplified in many ways, but captures the most important flows in a

real global energy system, see Figure 1.

4.1.1 Energy conversion

The entire energy flow, from primary energy extraction until final energy use, is splitted up in

different steps. The green variables are calculations of the red variables and can therefore

theoretically be excluded from the model, but useful when analyzing model results, since they can

be compared to real statistics and trends. From Figure 1 it can be seen that the following variables

can be seen as nodes in the total energy flow.

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

15

supply_1 (R, primary, t) The amount of primary energy extracted in each region [EJ/yr]

supply_tot (R, primary, t) The amount of primary energy used in a region after import/export [EJ/yr]

en_conv (R, e_in,e_out, type,t) The amount of energy converted from e_in to e_out

 expressed in primary energy terms. [EJ/yr]

supply_2 (R, second_in, t) The amount of energy that goes back into the energy conversion

 box to be converted a second time (H2 och ELEC). [EJ/yr]

energy_prod (R, e_out, t) The amount of energy carriers coming out of the conversion module

 in secondary energy (demand) terms, i.e. after energy losses. [EJ/yr]

energy_deliv (R, e_out, t) The amount of energy that meets the exogenously given energy demand

 (after import/export of H2, CTL/GTL and BTL). [EJ/yr]

cg_heat (R, t) The amount of heat produced using co-generation technologies [EJ/yr]

heat_decarb (R, t) Additional heat demand if the model chose to use CCS [EJ/yr]

elec_decarb (R, t) Additional electricity demand if the model chose to use CCS [EJ/yr]

tot_CSP (t) Total amount of energy from concentrating solar power (CSP) [EJ/yr]

4.1.2 Import and export

There are two steps along the entire energy flow where regions can trade with each other. The

primary energy sources “fuels” (bio, coal, oil, NG, and uranium for nuclear) can be traded before

the primary energy sources are converted to secondary energy carriers “sec” (BTL, CTL/GTL, H2)

between the variables supply_1 and supply_tot. The energy carriers can be traded between the

variables energy_prod and energy_deliv, see Figure 1. The following variables are used to balance

the energy flow that is imported and exported between regions.

imp_prim (R, fuels, t) The amount of primary energy sources imported to a region [EJ/yr]

imp_sec (R, sec, t) The amount of secondary energy sources imported to a region [EJ/yr]

exp_prim (R, fuels, t) The amount of primary energy sources exported from a region [EJ/yr]

exp_sec (R, sec, t) The amount of secondary energy sources exported from a region [EJ/yr]

imp_prim_from (R_imp, R_exp, fuels, t) Primary energy trading flows [EJ/yr]

imp_sec_from (R_imp, R_exp, sec, t) Secondary energy trading flows [EJ/yr]

4.1.3 Transportation

The main energy flow within the transportation sector is captured in variable trsp_energy. To keep

track of the amount of electricity that is used in the transportation the variable elec_trsp is

introduced. The amount of elec_trsp should then be added to the total electricity demand. Fuels for

buses as well as fuels for ships are calculated from mirroring the shares of fuels and technologies

used for trucks. Ships are, however, assumed to not be able to run on electricity, i.e., no HEVs and

PHEVs are allowed in the shipping sector. If HEVs and PHEVs are used for trucks there will be a

gap in the fuel use for ships. This gap is assumed to be filled with additional ship fuels by

extending the shares equally much in variable extra_ship_fuel.

trsp_energy (R, trsp_fuel, e_type, trsp_mode, t) The amount of energy used for transport [EJ/yr]

elec_trsp (R, t) The amount of electricity for the transportation sector [EJ/yr]

extra_ship_fuel (R, trsp_fuel, ic_fc, ship_mode, t) Additional ship fuel since ships cannot run on elec [EJ/yr]

4.2 Calculating investments
cap_invest (R, e_in, e_out, type, t) New investments in energy conversion technologies [TW]

eng_invest (R, trsp_fuel, e_type, vehicle, t) New investments in engines/vehicles [Gvehicles]

infra_invest (R, trsp_fuel, t) New investments in infrastructure [TW]

capacity (R, e_in, e_out, type, t) Aggregated capacity stock energy conversion techn [TW]

engines (R, trsp_fuel, e_type, vehicle, t) Aggregated capacity stock engines/vehicles [Gvehicles]

infra (R, synfuel_gas, t) Aggregated capacity infrastructure [TW]

Grahn et al. Model Description of GET-RC 6.1 15 Nov 2012.

16

4.3 Calculating emissions and CCS
agg_emis Total emissions [MtC]

c_emission_global (t) Annual global emissions [MtC]

c_emission (R, t) Annual emissions per region [MtC]

c_capt_fos (R, t) Annual amount of carbon captured from fossil fuels [MtC]

c_capt_bio (R, t) Annual amount of carbon captured from biomass [MtC]

c_capt_tot (R, t) Annual amount of carbon captured from fossil fuels and biomass [MtC]

c_capt_agg Total amount of captured carbon for all regions and time steps [MtC]

carb_ctrb (T_all, T_all_copy) Carbon contribution generated by the carbon cycle module [MtC]

atm_ccont (T_all) Atmospheric CO2 concentration generated by the carbon cycle module [ppm]

4.4 Calculating costs
cost_fuel (R, t) Cost for extracting primary energy sources [GUSD]

tot_trspcost_prim (R, t) Cost for trading primary energy sources [GUSD]

tot_trspcost_sec (R, t) Cost for trading secondary energy carriers [GUSD]

cost_cap (R, t) Cost for investing in energy conversion technologies [GUSD]

OM_cost (R, t) Operation and maintenance cost [GUSD]

cost_c_bio_trsp (R, t) Additional transportation cost if applying CCS on bioenergy [GUSD]

cost_c_strg (R, t) Cost for storing carbon [GUSD]

tax (R, t) Cost if applying carbon taxes to the model [GUSD]

annual_cost (R, t) Sum of all annual costs in the model [GUSD]

tot_cost Total cost for the entire energy system [GUSD]

5. Equations
In this section we describe the equations (constraints and the objective function). The equations drive the

model to fulfill all energy balances, keep track of the energy sources and emissions made as well as

calculating all costs. The major energy flows in GET-RC 6.1 are illustrated in Figure 1. Note that cost

and emission variables are not included in Figure 1.See Figure 20 for a more complete model illustration.

