
Masknet:
An Instance Segmentation Algorithm
Leveraging Object Detection and Semantic Segmentation to
tackle Instance Segmentation

Master’s thesis in Systems, Control and Mechatronics

JULIANO PINTO

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis EX043/2017

Masknet:
An Instance Segmentation Algorithm

Leveraging Object Detection and Semantic Segmentation to tackle
Instance Segmentation

JULIANO PINTO

Department of Signals and Systems
Chalmers University of Technology

Gothenburg, Sweden 2017

Masknet: An Instance Segmentation Algorithm
Leveraging Object Detection and Semantic Segmentation to tackle Instance Seg-
mentation
JULIANO PINTO

© JULIANO PINTO, 2017.

Examiner: Fredrik Kahl, Signals and Systems Department
Supervisor: Måns Larsson, Signals and Systems Department

Master’s Thesis EX043/2017
Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Inputs and corresponding instance segmentation outputs from the Masknet
system.

Typeset in LATEX
Printed by [Name of printing company]
Gothenburg, Sweden 2017

iv

Masknet: An Instance Segmentation Algorithm
Leveraging Object Detection and Semantic Segmentation to tackle Instance Seg-
mentation
JULIANO PINTO
Department of Signals and Systems
Chalmers University of Technology

Abstract

This thesis formulates, develops, and evaluates Masknet, a system that performs
instance segmentation on images from the Pascal VOC 2012 dataset. Two main
versions of the system are developed. The first one, simpler, uses an object detector
CNN (convolutional neural network) to propose bounding boxes and classify objects
in the scene. These bounding boxes are then fed into a mask proposal CNN, inspired
by recent advances in mask generation, in order to generate binary masks for each
instance.
The second version of the algorithm expands the mask proposal CNN to also use
initial guesses for the binary masks, computed by a heuristic that uses the object
detector CNN and also a semantic segmenter CNN. For this version, several different
architectures are proposed and tested, and the best scoring one is finally deployed
in the system. The best implementation of each of the versions is then preinitialized
in a preliminary training step that uses data from the MS COCO dataset, trained
on the Pascal VOC 2012 dataset and finally compared by computing the average
precision achieved at each class of the dataset and the MAPr (mean average precision
throughout all classes) for the algorithm. The best scoring version achieves a MAPr

of 57.7% with an IoU threshold of 0.5.

Keywords: image analysis, instance segmentation, convolutional neural networks,
object detection, semantic segmentation.

v

Acknowledgements

I want to thank my examiner, Fredrik Kahl, for his expert oversight of this thesis
and the knowledge and encouragement he provided. I am also very grateful to my
supervisor, Måns Larsson, for his unending patience, availability and motivation,
and for the invaluable guidance given to me.
Additionally, many thanks to Olof Enqvist, for the great classes and for connecting
me with Fredrik; and thanks to Pedro Diniz, for his diligent and skillful help with
producing the images for this document.
Furthermore, I wish to express my sincere gratitude to all the people that provided
me so much emotional support throughout this thesis. Thank you Lina, my life
partner, for your unceasing encouragement, love and advice. You made my days
better and my heart warmer. And thank you Mother, Father, Grandmothers Marley
and Gilda, Brother and all of my family, for the lifelong support, inspiration and
sincere belief that I could always achieve my greatest dreams, even if that includes
moving to the other side of the world to follow my passion. I love you all.

Juliano Pinto, Gothenburg, June 2017

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 What is instance segmentation, and why is it relevant? 1
1.2 Roadmap for the thesis . 2
1.3 Related work . 3
1.4 Brief explanation of main idea . 4
1.5 Datasets used . 5

1.5.1 Pascal VOC . 5
1.5.2 MS COCO 2016 . 6

2 Theory review 9
2.1 Convolutional Neural Networks . 9

2.1.1 VGG-16 . 11
2.2 Object detection . 11
2.3 Semantic segmentation . 13
2.4 Instance segmentation . 13

3 Methodology 15
3.1 Conceptual explanation . 15
3.2 Implementation . 20
3.3 Training protocol . 23
3.4 Evaluation of different merging strategies 25
3.5 Pretraining on MS COCO . 26

4 Results 29
4.1 Training results . 29
4.2 Performance evaluation . 30

4.2.1 The MAPr metric . 30
4.2.2 Instance segmentation results 32

5 Discussion 37
5.1 Visual assessment of the mask proposal subsystem’s performance . . . 37
5.2 Error modes . 41

5.2.1 Masknet with partial masks 41

ix

Contents

5.2.2 Masknet without partial masks 43
5.3 Further work . 45

6 Conclusion 47

x

List of Figures

1.1 Input and expected output from an instance segmenter output. 2
1.2 Sample images taken from the the Pascal VOC 2012 dataset. 6
1.3 Sample images taken from the the MS COCO 2016 dataset. 7

2.1 The difference between regular and convolutional layers. 10
2.2 Example output from an object detector algorithm. 12
2.3 Example input and output from an algorithm performing the task of

semantic segmentation. Pixels overlaid with the color green belong
to the “person” class, and with the color red belong to the “airplane”
class. 13

2.4 Difference between semantic segmentation and instance segmentation. 14

3.1 Functioning of the naive approach to instance segmentation. 16
3.2 Poor instance generation due to inaccurate output from the object

detector. On the left, the segmentation map for the class “person” is
shown in orange, and only the bounding box for the instance being
considered is shown (in red). 16

3.3 Poor instance generation due to inaccurate output from the semantic
segmenter. The segmentation map for the class ‘person’ is shown in
green, and only the bounding box for the instance being considered
is shown (also in green). 17

3.4 Poor instance generation due to overlapping objects. The segmenta-
tion map for the class ‘person’ is shown in yellow, the bounding box
for the instance being considered is shown in red, and the bounding
boxes for other instances are shown in yellow. 17

3.5 The functioning of the heuristic to create partial masks. 18
3.6 Visual depiction of the Masknet system. If the version without partial

masks is being used, the semantic segmentation and the heuristic are
not computed, since the “Mask proposal” subsystem does not need
the partial mask as input. 19

3.7 DeepMask architecture. “VGG-16” is the altered version of the VGG-
16 CNN, as mentioned in the text. The vertical text between each
layer demonstrates the size of the data in that step, and the “Output”
subimage is a heatmap illustrating the mask scores (yellow means high
probability of being part of the mask, while blue means low). 20

xi

List of Figures

3.8 Merging strategy 1. The partial mask is bilinearly resampled to the
same spatial size as the feature maps, and then concatenated to the
end of it as a new feature. 22

3.9 Merging strategy 2. After the concatenation, the new feature maps
are convolved with a filter bank that transforms it back to the size
expected by the rest of the network (followed by a ReLU layer, not
shown in the picture). 22

3.10 Merging strategy 3. Instead of resampling the partial mask, it is di-
rectly connected to each neuron in the fully connected layer, together
with a subset of the feature maps from VGG-16. 23

3.11 Evaluation results for the three merging strategies. Each color speci-
fies a different strategy, and the dashed and solid lines denote if the
value is computed in the training set or the validation set, respectively. 26

3.12 Procedure for generating training examples for the preliminary eval-
uation of the merging strategies, using ground truth data from MS
COCO. 27

4.1 Training results for both versions of Masknet and their preinitialized
versions. The dashed lines depict the error on the training set and the
solid lines on the validation set. The versions that used preinitialized
weights are shown with a (P) in their legends. 29

4.2 Precision-recall curves for the two different versions of Masknet, for
six different classes. 34

4.3 Masknet’s output for images in the validation set. 35

5.1 Images in which the Masknet system correctly reconstructed miss-
ing instance parts that have strong visual similarity to the provided
partial mask. 38

5.2 Images in which the Masknet system correctly reconstructed missing
instance parts that do not posses any strong visual similarity to the
provided partial mask. 38

5.3 Images in which the Masknet system correctly removed extraneous
instance parts from the provided partial mask. 38

5.4 Images in which the Masknet system was unable to recover from a
strong mislocalization. 39

5.5 Image in which the Masknet system was able to correctly select the
desired instance, even though extraneous parts that possess a strong
visual similarity are also present in the image. 39

5.6 Images in which the Masknet system was able to reconstruct the
desired instance to some extent, even though the provided partial
mask is completely empty. 40

5.7 Images in which the Masknet system was unable to correctly segment
the desired instance, even though good bounding boxes and a good
partial mask were obtained. 40

5.8 Absolute improvement in average precision (compared to original ver-
sion) for each one of the classes, for all re-evaluations of the Masknet
version using partial masks. 42

xii

List of Figures

5.9 Precision-recall curves for a subset of the Pascal VOC 2012 classes,
for each re-evaluation performed. 43

5.10 Absolute improvement in average precision (compared to original ver-
sion) for each one of the classes, for all re-evaluations of the Masknet
version that does not use partial masks. 44

5.11 Precision-recall curves for a subset of the Pascal VOC 2012 classes,
for each re-evaluation performed. 45

xiii

List of Figures

xiv

List of Tables

3.1 Number of images and objects present in different versions of the
Pascal VOC dataset. 23

3.2 Hyperparameters found for each one of the merging strategies. 25

4.1 Hyperparameters used in the training. 30
4.2 AP values for the first 10 Pascal VOC classes, calculated with IoU

threshold = 0.5. 32
4.3 AP values for the last 10 Pascal VOC classes, calculated with IoU

threshold = 0.5. 32
4.4 MAPr scores for Masknet and different algorithms. MNC was the

winner of the MS COCO 2015 detection competition, and FCIS of
the 2016 competition. 33

xv

List of Tables

xvi

1
Introduction

This thesis formulates, develops and evaluates two versions of an algorithm, bap-
tized as Masknet, which performs instance segmentation on images from the Pas-
cal VOC 2012 dataset. The first version uses a straightforward approach of pre-
dicting instances directly from object region proposals from an object detector
CNN. The second version expands this idea by also using initial guesses for the
masks of the instances to be generated, with the help of a semantic segmenter
CNN. Both versions are developed and evaluated, and the results reported and
discussed. All of the code developed for this thesis is made available at https:
//github.com/JulianoLagana/masknet.

1.1 What is instance segmentation, and why is it
relevant?

A lot of progress has been made towards making machines that can better interpret
and react to their environments. Televisions with gesture recognition [1], mobile
phones that recognize the face of the user during use [2], personal robot assistants
[3], and self-driving cars [4], are all examples of recent advancements the artificial in-
telligence field has witnessed. Following this trend, one of the major breakthroughs
yet to come is making these machines able to visually interpret their surroundings
with a quality comparable to human beings. Given the depth of this problem, the
research community is first tackling smaller sub-problems that can yield insight into
how to solve the original one. Sub-problems such as, for instance, image classifi-
cation, and more recently, object detection and semantic segmentation, detailed in
sections 2.2 and 2.3, respectively.
As progress in these problems evolved, a new task was popularized by [5]. This new
task, later baptized “instance segmentation”, is a much harder and more realistic
problem than the former ones. The expected output for this task using a sample
image from the dataset used in this thesis is shown in figure 1.1.
In this task, the algorithm is expected to output the precise locations, spatial extent
and classes of all objects in the scene that are members of a set of predefined classes.
Furthermore, and in contrast to semantic segmentation, the algorithm must be able
to distinguish different instances of the same class in the scene. Hence, the name
instance segmentation. For instance, if an image has three dogs in it, it’s not

1

https://github.com/JulianoLagana/masknet
https://github.com/JulianoLagana/masknet

1. Introduction

Figure 1.1: Input and expected output from an instance segmenter output.

enough to simply denote which pixels belong to the “dog” class. It’s necessary to
also indicate which group of pixels belong to which dog in the image, making it
inevitable to somehow deal with partial occlusions, and therefore to have a more
complete understanding of the objects in the scene. Further details are provided in
section 2.4.
Having an algorithm that can perfectly solve instance segmentation, or at least solve
it as well as humans can, would greatly advance the way machines interact with their
environment, allowing them to reason and adapt much better to different situations.
A personal robot assistance could understand if it is in the kitchen or the office, if
there is a person working in the room, if a person is asleep or if he/she fell on the
ground. A self-driving car could better understand its environment. Knowing where
possible pedestrians are and if the person in front is riding a bicycle or a motorcycle
will help the car to make more informed decisions. Almost any machine that needs
to interact with humans and has enough computing power could enhance its decision
making by having such an algorithm to visually parse its surroundings.
This thesis is a contribution to the challenge of solving this image analysis task. It
uses easily obtainable pretrained CNNs to solve the sub-problems of object detec-
tion and semantic segmentation, and with them, attempt to provide the instance
segmentation of a scene.

1.2 Roadmap for the thesis

This thesis is separated into six chapters. The current and first one, where the
problem being solved is stated, also contains an overview of related work, a brief
overview of the main idea and finally an explanation of the datasets used and their
contents.
After that, a chapter devoted to filling any knowledge gaps that might impair the
reader’s understanding of the ideas in this thesis is presented. In this chapter, the
foundations of what is a convolutional neural network, and explanations of what are
the problems of object detection, semantic segmentation and instance segmentation
are given.

2

1. Introduction

That chapter is followed by the Methodology chapter, which starts by providing a
conceptual explanation of the main ideas of this thesis. This is then followed by a
concrete explanation of their implementations, and a presentation of the training
protocol used for optimizing the networks. Further, this chapter also compares the
different architectures proposed for one of the versions of Masknet, and ends with a
section explaining how a new step in the training protocol, which greatly improved
results, was performed.
Subsequently, there is the Results chapter. This chapter is mainly focused on pro-
viding the results found for the algorithms developed. Both the results for the opti-
mization of the mask proposal subsystem and the instance segmentation evaluation
of the system as a whole are presented.
Finally, a Discussion chapter is introduced, where a visual assessment of the mask
proposal subsystem’s performance is presented, together with an analysis of the
impact that each subsystem has to the final instance segmentation quality of the
algorithm. This chapter ends with a section devoted to suggesting directions for
further work that could improve the ideas presented here.
The thesis ends with a brief Conclusion chapter, which summarizes the main ideas
and results obtained throughout the development of this project.

1.3 Related work

Ever since the “Simultaneous Detection and Segmentation” paper [5] that popu-
larized the problem of instance segmentation was published, this task has been
undertaken by a variety of different approaches. Most of the successful approaches
use custom convolutional neural networks in some way, together with new systems
and ideas, like recurrent neural networks [6], or conditional random fields [7].
An early, notable contribution proposed for this task was the Hypercolumns [8]
paper. The authors acknowledged that using output only from the last layers in
a CNN typically fails to provide fine spatial information that could allow precise
localization. In order to amend that, they create a new type of pixel descriptor,
named the hypercolumn at that pixel, which comprises of the vector of activations
of all the CNN units above that pixel. By leveraging this pixel descriptor, they
managed to improve the state-of-the-art MAPr by nearly 21%.
Since then, the MS COCO detection competition (despite the name, the task is to
perform instance segmentation) has been a powerful driving force for the problem
at hand, and each year the competitors invent new ideas and push the state-of-
the-art further. The winner of the 2015 iteration of this competition, “Instance-
aware Semantic Segmentation via Multi-task Network Cascades” [9], in short MNC,
proposed the idea of separating the task of instance segmentation into sub-problems,
and designing one CNN for each step. The system is then jointly trained using a
loss function that takes into account all steps of the process. The current thesis
draws some inspiration from this success, namely that of trying to solve a problem
by designing a specific network for each sub-problem.

3

1. Introduction

In 2016, the proposal that won the MS COCO competition was the “Fully-convolutional
Instance-aware Semantic Segmentation” [10], where the authors presented the first
fully convolutional solution to the task (i.e. a single CNN capable of performing
this task, from image input to image output). The authors argue that CNNs are
translationally invariant by design, and hence develop a new, translationally variant
layer to allow them to leverage spatial information. This new layer is an assembly
layer, which joins feature maps that learned to predict position-sensitive inside/out-
side score maps into a single feature map, later used for the mask proposal for each
instance.
Since then several new ideas have been presented [11, 12, 13, 14, 15], and one of the
most recent and relevant ones is Mask R-CNN [16]. Coincidentally, this network also
uses the idea proposed in this thesis of using an object detector to propose candidate
regions with a high change of having an instance inside them, and then feeding these
into a subsystem for mask prediction. However, the authors developed a way to
extend a state-of-the-art object detector, Faster R-CNN [17], to perform both tasks
in the same network, with a class-sensitive mask prediction step. Nevertheless, the
idea of using initial guesses for the masks, based on object detection and semantic
segmentation outputs, is still unique to this thesis. The best MAPr score achieved
(metric between 0 and 1 that evaluates the instance segmentation quality, 1 denoting
perfection) across all variations of the proposed algorithm was 0.577 (a comparison
between other state of the art algorithms is shown in table 4.4.

1.4 Brief explanation of main idea

This thesis develops and evaluates two main versions of an instance segmentation
algorithm. In the first one, the input image is processed by a semantic segmenter
CNN, and by an object detector CNN, to provide the semantic maps and bounding
boxes for the later stages of the network.
These outputs are fed into a heuristic that aims to provide initial guesses for the
masks of each region enclosed by the bounding boxes, such that pixels in the mask
have a strong likelihood of belonging to the instance that needs to be segmented,
but at the cost of consistently leaving parts of the desired instance unmasked. These
masks are simply binary images in which pixels with the value 1 denote positions
that belong to the instance, whereas pixels with the value 0 do not.
Together with the original patches of the image enclosed by each bounding box, the
initial guesses for the masks, henceforth referred to as “partial masks”, are then fed
into another CNN, the mask proposal subsystem, which finally outputs the instances
found in the scene. The idea is that these partial masks can possibly help the system
to decide which instance to segment, if more than one is present in the region.
The second version, somewhat simpler, does not compute partial masks for each
bounding box region. Instead, it uses only the input image and the bounding boxes
obtained from the object detector CNN. The region enclosed by each bounding box
is directly fed to the mask proposal subsystem, which then outputs the instances

4

1. Introduction

found in the scene. In this thesis, both of these versions are developed, and later
evaluated using the standard metrics for the instance segmentation problem.

1.5 Datasets used

Two datasets were used in this project, the Pascal VOC 2012 dataset and the MS
COCO 2016 dataset. This section provides a brief overview of these two datasets,
explaining their contents and provided ground truth data.

1.5.1 Pascal VOC

The Pascal Visual Object Classes challenge [18], first introduced in 2005, features in
its latest release (the 2012 version) 2913 colored images of variable size, comprised
of 6929 objects. A sample subset of the images present in the dataset is shown in
figure 1.2. Ground truth data, generated by humans, is available for twenty different
classes of objects, ranging from everyday objects you would find inside your house,
like bottles, dining tables, television monitors, sofas; to objects usually found in very
different contexts, such as sheep, motorbikes, boats and airplanes.
The ground truth data available for each image is comprised of:

1. Semantic segmentation of the scene.
2. Object segmentation of the scene (an image in which the value of each pixel

denotes the object to which it belongs to).
3. An annotation for each object present in the scene, specifying its class, bounding-

box, and other types of information not relevant to this thesis.
With such ground truth data, it’s possible to know exactly which objects are in a
given scene, where they are located, and their exact spatial extent. All of this infor-
mation is used throughout this thesis to train and evaluate the developed systems.
Furthermore, the data is divided into training, validation and test sets. However, no
ground truth data is available for the images in the test set, so that the competition
is guaranteed to be fair (i.e. so as to make it impossible to train on images from
the test set). The competitors submit the results to an evaluation server that ranks
them automatically according to the metrics of the challenge.
Because of this, if one wants to evaluate an algorithm using a metric which the
Pascal VOC evaluation server does not compute, then one is restricted to use only
data from the training and validation set. This is indeed the case for this thesis,
since the metric that evaluates the quality of instance segmentation, MAPr, is not
computed by the Pascal VOC evaluation server.

5

1. Introduction

Figure 1.2: Sample images taken from the the Pascal VOC 2012 dataset.

1.5.2 MS COCO 2016

The Microsoft Common Objects in Context dataset [19], in short MS COCO, is a
much larger and more varied dataset than the Pascal VOC 2012. Its latest version,
2016, contains more than 200 thousand images, in a variety of different settings,
locations and spatial sizes. Ground truth data generated by humans is available for
all of the images in the training and validation dataset, for the 80 different classes
specified in the competition. A sample subset of the images from the validation set
is shown in figure 1.3
The ground truth data available for each image is provided in a per-object basis,
and each object has an annotated data structure which provides the following infor-
mation:

1. Which image that object belongs to in the dataset.
2. The object’s class.
3. A segmentation mask for that particular object, encoded into a custom RLE

(run length encoding) scheme provided by the competition.
4. The bounding box for the object.
5. Several other types of information irrelevant to the present study.

Similarly to the Pascal VOC dataset, an evaluation server is also available for com-

6

1. Introduction

petitors to upload their results and be automatically ranked using ground truth for
the test data (not made publicly available). This evaluation server does provide a
calculation of the MAPr metric, but this was not used in this thesis since no instance
segmentation evaluation was done using this dataset.

Figure 1.3: Sample images taken from the the MS COCO 2016 dataset.

7

1. Introduction

8

2
Theory review

This chapter is dedicated to filling any knowledge gaps that might impair the reader’s
understanding of the ideas presented in the thesis. It first presents a brief overview
of what Convolutional Neural Networks are, and how they differ from regular neural
networks. After that, there is an explanation of what are the problems of object
detection and semantic segmentation, and finally, an introduction to the problem of
instance segmentation, subject of this thesis.

2.1 Convolutional Neural Networks

Artificial neural networks have been around for decades now, and excel at a multi-
tude of previously unreachable tasks in machine learning. However, if one tries to
use them in tasks related to images, one quickly realizes that they do not scale well
for these types of problems. When the inputs are images, even more so if colored
images, the amount of connections and hence learnable parameters increases drasti-
cally. For instance, if one is trying to learn a task to which the input is a 800 × 600
colored image, and the first layer has, say 1000 neurons, the amount of learnable
parameters, only for this first layer, is more than 1.4 billion.
Because of this, if one aims to work with an image as input, it becomes necessary to
either reduce the dimensionality of the data or reduce the amount of connections at
each layer. Convolutional neural networks, in short, CNNs, are neural networks that
restrict its neurons to connect to only a subset of the image’s pixels at each time.
This is accomplished by, instead of using fully connected layers, using convolutional
layers, in which the image is convolved with a series of learnable filters.
For convolutional layers, all neurons are forced to use the same weights, and connect
only to a small patch of the image (e.g. a 5x5 pixel area). Furthermore, they
are organized in a spatial grid throughout the image, so that each one connects
to a slightly shifted location from where the last one was, as illustrated in figure
2.1. Because of this arrangement, the output of this grid of neurons will be the
convolution of the chosen weights with the input image. Hence, these chosen weights
can be seen as a filter which is convolved with the image, generating the output.
At each convolutional layer there are usually several learnable filters of the same
spatial size, and convolving the image with them produces several output images,
where each one is denoted a “feature map”. These several feature maps are then

9

2. Theory review

(a) Fully connected layers, used in reg-
ular neural networks.

(b) Convolutional layers, used in con-
volutional neural networks.

Figure 2.1: The difference between regular and convolutional layers.

stacked in a 3D data object with dimensions W × H × N , where W and H denote
the spatial dimensions of the data, and N is the number of filters used in the layer.
This 3D data object can then be convolved again with a new set of filters, generating
new outputs.
To quickly specify a convolutional layer size, the notation W × H × D × N is used,
where W and H specify the spatial size of the filter to be used (i.e. the spatial extent
in pixels of the area to which each neuron used in the convolution will connect to),
D specifies in how many feature maps the neurons will connect to, and N denotes
the number of learnable filters that that particular convolutional layer possesses.
Besides convolutional layers, convolutional neural networks also commonly use two
other types of layers: ReLU layers and max-pooling layers. ReLU layers (Rectified
linear unit layers), operate on a pixel-wise manner in their inputs, calculating the
output for each pixel as

ReLU(x) =

x, x ≥ 0
0, x < 0

, (2.1)

where x is the value of the input pixel. Max-pooling layers operate independently in
each feature map of the input, reducing its spatial size by only keeping the maximum
value found in a small region of the image, and discarding all others.
In practice, it’s common to alternate convolutional layers with ReLU and max-
pooling layers, to guarantee that the convolutions being done are non-linear, and to
progressively reduce the size of the data, hence reducing even further the computa-
tional requirements for the network.
As the image gets convolved with these learnable filters, and the output is convolved
with even more learnable filters, the network has the potential to discover which
filters are able to extract the features from the image which are meaningful for the
task at hand.
Therefore, one way to interpret this cascade of convolutional layers is as a feature

10

2. Theory review

extractor, which after some layers produces a much smaller data object than the
input image, but hopefully with still the same meaningful characteristics for the
task at hand. Following this cascade of convolutional layers, it’s common to add
one (or more) fully connected layers, and a softmax layer, which will then try to
regress the nonlinear function that maps the extracted features to the desired output.
These networks are then trained with the same backpropagation algorithm used for
regular neural networks. The main difference is that now most of the weights are
shared between neurons, so backpropagation is much more efficient. Furthermore,
it’s usually not possible to fit all training examples in memory, so stochastic gradient
descent is regularly chosen for optimizing the weights. The interested reader is
invited to read [20] for a thorough explanation of the adaptations needed.

2.1.1 VGG-16

One of the most iconic examples of a convolutional neural network is the VGG-16
network. First introduced in [21], this network was one of the deepest (highest
number of layers) at the time. It achieved an error rate of 7.3% in the ILSVRC
(ImageNet Large-scale Visual Recognition Challenge) 2014 competition, where the
contestants are asked to predict the class of an image among a set of 200 pre-defined
classes. It’s success showed the research community that by increasing the depth
of the networks, they could learn how to hierarchically represent visual data, and
hence achieve previously unattainable results.
It uses 13 convolutional layers, alternating convolutions with max-poolings and
ReLU layers. The convolutional layers are then followed by three fully connected
layers, with 4096, 4096 and 1000 neurons, and lastly a softmax layer to predict the
classes.
Given the successful results obtained by this network and the computational effort
put into training it with the ImageNet dataset (this network was trained on 4 Nvidia
Titan Black GPUs for up to three weeks), this CNN is usually used by other networks
as a starting point for a feature extractor. The same strategy is performed in
this thesis. Instead of trying to engineer a good network architecture, and then
spending time and computing power to train it thoroughly, this thesis uses the
VGG-16 network as the feature extractor for the images, and only fine-tunes its
weights to the task at hand.

2.2 Object detection

Among the key open problems in image analysis, is the problem of object detec-
tion. This problem is the task of, based on an input image, predict the locations
and approximate spatial extent of objects of a set of predefined classes, while also
assigning the correct class to each of them. The location and spatial extent of each
object is to be encoded as the coordinates of the tightest rectangle that encloses the
entire object, usually denoted as a “bounding box”. A sample output of an algorithm

11

2. Theory review

solving this problem is shown in figure 2.2.

Figure 2.2: Example output from an object detector algorithm.

Although many different approaches were undertaken to try to solve this problem,
the most successful one at the moment uses a special type of convolutional neural
networks: region based CNNs. These networks work by first utilizing a separate
method, usually class agnostic and only leveraging low level pixel information, to
quickly propose a large amount (thousands) of region proposals (i.e. candidates for
the predicted bounding boxes). These proposals are then warped into the expected
input size of a feature extractor CNN — VGG-16 for instance — which outputs a
feature vector for each region.
This vector is then fed to a set of linear support vector machines [22] (or more
recently, a series of fully connected layers), in order to compute its classification
among the predefined classes. This last step also computes a confidence score,
which aims to rank the proposals so that only a subset of them can be returned.
Further, the feature vector is also fed to a regressor that aims to improve the original
proposal’s bounding box quality.
Because of the jump in performance from other approaches, these region based CNNs
are now the standard approach for object detection. Recent approaches have made
them significantly faster [23, 17], making them even more useful to the research
community. This project uses the region based CNN called Fast R-CNN. First
introduced in 2015, this network is still capable of achieving competitive results on
datasets like the one used for this project. The main difference of Fast R-CNN
from other region based CNNs is that this version shares the computations of the
convolutional layers between the different proposals, by computing one single feature
map for the entire image and inferring the individual feature maps for each region
from it. Further details can be found in the original paper [23].

12

2. Theory review

2.3 Semantic segmentation

Another very important problem in image analysis is the problem of semantic seg-
mentation. This problem refers to the task of assigning one of a pre-defined set of
classes to each pixel location in an input image. In contrast with object detection,
the notion of a single object is not needed anymore, but now the spatial extent of
each class of objects must be predicted on a pixel level. A sample output from an
algorithm performing this task is shown in figure 2.3.

Figure 2.3: Example input and output from an algorithm performing the task of
semantic segmentation. Pixels overlaid with the color green belong to the “person”
class, and with the color red belong to the “airplane” class.

The major breakthrough for advances in this area was the paper entitled Fully
Convolutional Networks for Semantic Segmentation [24]. This paper showed how to
reinterpret the layers in a standard CNN and perform minor modifications to it to
allow for variable size inputs, and images as outputs, instead of simple classifications
as was done until then. Naturally, this new type of CNNs, namely, FCNs (fully
convolutional neural networks) proved to be the best approach to spatially dense
prediction tasks, such as semantic segmentation.
The aforementioned paper proposes three different FCN architectures to tackle the
problem of semantic segmentation. The best performing one, FCN-8s, is the one
used for this project. The main difference between the proposed architectures is
how they combine semantic information from the last layers of the network with
appearance information from the first layers. FCN-8s uses a skip architecture that
connects the feature maps before the third and fourth pooling layers to the final layer,
by upsampling them to the final layer’s spatial size and summing both predictions.
Further details can be found in the original paper [24].

2.4 Instance segmentation

The problem of instance segmentation can be understood as simultaneously solving
object detection and semantic segmentation. Here, it’s necessary to locate every

13

2. Theory review

single object from a pre-defined set of classes, to predict its correct class, and also
to provide a binary mask for each of them that specifies which pixels belong to
that particular object and which do not. The difference between the output from a
semantic segmenter and an instance segmenter is illustrated in figure 2.4.

Figure 2.4: Difference between semantic segmentation and instance segmentation.

Algorithms that undertake this task need to be much more powerful than for previ-
ous image analysis tasks such as object detection and semantic segmentation. Now
it becomes necessary to have a much more complete understanding of the objects in
the scene and be able to, at least partially, reason about occlusion.
One of the main competition for this type of problem is the MS COCO detection 2016
competition, that provides more than 200k images and their instance-aware labels for
training and evaluating performance. However, it’s also common to evaluate instance
segmentation algorithms using data from the Pascal VOC competition. Although
its creators never established an official competition for this specific problem, it’s
possible to use the provided ground truth data to perform instance segmentation
evaluation on this dataset.
As discussed in section 1.3, this is a very active field in the community right now,
far from being solved, and with very different approaches being undertaken. At
the moment there doesn’t seem to be any single approach that stands out from the
others, besides the fact that all the best scoring methods use a combination of CNNs
or CNN-inspired architectures to accomplish this task.

14

3
Methodology

This chapter explains the methodology used for the project. It starts with a concep-
tual explanation of the main ideas of this thesis, later explaining the implementation
details of them. After that, it discusses the training protocol used to optimize the
networks discussed in the project and compares the different architectures proposed
for the Masknet version with partial masks. Finally, it concludes with an account
of how the pretraining on MS COCO data was performed for the best performing
architectures of Masknet.

3.1 Conceptual explanation

Perhaps one of the most intuitive ways of looking at the problem of instance seg-
mentation is to interpret it as trying to simultaneously solve the problems of object
detection and semantic segmentation. Aided by this perspective, it’s tempting to
try using the key insights found when solving these problems to develop a solution
to the new problem at hand.
As one can quickly realize when first confronted with the task of instance segmenta-
tion, the semantic segmentation maps produced by a semantic segmenter bear some
resemblance to the desired output for the instance segmentation problem. Figure
2.4 illustrates this clearly. In the semantic segmentation map, the class-wise pixel
level segmentation has already been done, the only thing missing is the separation
of each one of the instances.
Looking at figure 2.2, it seems reasonable to use the output from an object detector
to obtain an initial estimate of the spatial extent of each instance in the scene. A
straightforward way of doing so is to, for each given class, crop the segmentation
map for that class using the bounding boxes that were predicted to be from that
class, thus generating as many instances as the number of found bounding boxes.
Figure 3.1 illustrates this approach. As can be seen in the figure, this method is
able to generate instance-wise segmentation results.
However, this approach suffers from some systematic problems. These are illustrated
in figures 3.2 through 3.4. On the left part of the figures the segmentation map
overlaid with the original image is shown, together with the predicted bounding
boxes, while on the right the generated instance is shown. As can be seen, the quality
of the output will always depend on the quality of both the predicted bounding

15

3. Methodology

Figure 3.1: Functioning of the naive approach to instance segmentation.

boxes and the segmentation maps used. If just one of them is inaccurate, the
output might suffer considerably. Additionally, even if both the segmentation maps
and the bounding boxes are perfectly accurate, this method might still yield wrong
predictions if any bounding boxes from the same class overlap, since this means that
more than one instance might be present in the overlapping bounding box region,
and the system will be unable to unfailingly disambiguate which parts belong to
which instance in this overlapping region.

Figure 3.2: Poor instance generation due to inaccurate output from the object
detector. On the left, the segmentation map for the class “person” is shown in
orange, and only the bounding box for the instance being considered is shown (in
red).

Given these type of errors, one possible approach could be to completely ignore the
semantic segmentation maps and try predicting the binary mask for each instance
directly from the visual region enclosed by each one of the found bounding boxes,
thus making the system immune to errors from an imprecise semantic segmenta-
tion. Mask R-CNN [16], a recent and successful work in the field suggests that this
approach is indeed worthwhile.
However, it’s common that the extraneous instance parts are somewhat visually

16

3. Methodology

Figure 3.3: Poor instance generation due to inaccurate output from the semantic
segmenter. The segmentation map for the class ‘person’ is shown in green, and only
the bounding box for the instance being considered is shown (also in green).

Figure 3.4: Poor instance generation due to overlapping objects. The segmentation
map for the class ‘person’ is shown in yellow, the bounding box for the instance being
considered is shown in red, and the bounding boxes for other instances are shown
in yellow.

distinct and/or spatially disconnected from the majority of the instance to be seg-
mented. Therefore, I hypothesized that it could be possible and advantageous to
guide the creation of this binary mask by using an initial approximation of the pixels
that are likely to belong to the instance that is to be segmented in that region. The
system would take into account the parts of the instance that are already segmented
to ponder whether or not a new region should be included in the binary mask.
One possible heuristic to form these type of initial partial masks is to start with the
semantic segmentation map for the predicted class, cropped to the bounding box
being considered, and then remove the regions that overlap with any other bounding
boxes of the same class. If the bounding boxes and the semantic segmentation are
precise enough, this results in a partial mask comprised of pixels that are very
likely to belong to the instance, while removing most of the extraneous instances
parts (clearly, at the cost of also removing perfectly fine parts of the instance to be
segmented). Figure 3.5 illustrates the functioning of this heuristic.
A relevant point must be considered. In the case that two bounding boxes share the
same class, and one is completely enclosed by the other, the partial mask generated
for the smaller one will be empty. In these extreme cases, the system is still required

17

3. Methodology

to achieve its goal. I further hypothesized that, because of the way the system is
trained (detailed in section 3.3), it will still have an incentive to try to segment
instances when no partial mask is provided. To some extent, this is indeed correct.
Refer to section 5.1 for a more detailed description of the system’s behavior in these
cases.

Figure 3.5: The functioning of the heuristic to create partial masks.

These two approaches (directly predicting instances from the detected object re-
gions, or using partial masks to aid the instance generation) were implemented and
evaluated. Figure 3.6 illustrates the entire system for both versions, referred to as
Masknet. Its input is an RGB image with variable spatial dimensions, and its
output is a list with all the generated instances. Each instance is comprised of a
predicted class for it and a binary mask, which is a single-channel image with the
same spatial size as the input, but with binary pixel values (0 denoting a pixel
position which does not belong to the instance, and 1 denoting one that does).

18

3.
M
ethodology

Figure 3.6: Visual depiction of the Masknet system. If the version without partial masks is being used, the semantic segmentation
and the heuristic are not computed, since the “Mask proposal” subsystem does not need the partial mask as input.

19

3. Methodology

3.2 Implementation

The concrete implementation of Masknet is comprised of three subsystems: an ob-
ject detector, a semantic segmenter (only used by the version with partial masks)
and the final mask proposal subsystem. Since one of the main focuses of this thesis
is to implement and evaluate the performance and limitations of the mask proposal
subsystem, the driving forces when deciding the architecture for the other parts of
the project were primarily the amount of required computing power and develop-
ment time. For the following networks, pretrained versions of them are available to
download for the development framework used, MatConvNet, which substantially
reduced the time needed to deploy them in the project.
The convolutional neural network Fast R-CNN [23] was chosen for predicting the
bounding boxes for each object in the scene, whereas FCN-8s [24] was chosen for
the semantic segmentation task. These networks achieve close to state-of-the-art
performance in their respective tasks for both datasets used, while also remaining
within the boundaries of available resources for this project.
For the mask proposal system, a new architecture was designed, inspired by the
success and design choices from DeepMask [25]. The part of their architecture for
predicting instance masks is illustrated in figure 3.7.
The approach is to first bilinearly resample the input RGB image to a spatial size of
224x224, then the network extracts features from the input using the CNN VGG-16
with all the fully connected layers as well as the last max-pooling layer removed,
and exchanged by a convolution with a filter bank of size 1x1x512, followed by a
ReLU layer. This results in 512 feature maps of spatial size 14x14.

Figure 3.7: DeepMask architecture. “VGG-16” is the altered version of the VGG-
16 CNN, as mentioned in the text. The vertical text between each layer demonstrates
the size of the data in that step, and the “Output” subimage is a heatmap illustrating
the mask scores (yellow means high probability of being part of the mask, while blue
means low).

The extracted features maps are then passed through a fully connected stage that
outputs a vector with 562 dimensions. To reduce the number of learnable parameters
in the network, instead of using a single fully connected layer to perform this step,

20

3. Methodology

the authors of DeepMask decompose this into two stages. First the feature maps
are connected to 512 neurons, and then each one of these neurons is connected to
all entries of the output vector.
This vector is in turn reshaped into a 56x56 single channel image, bilinearly resam-
pled to the original input size and optionally thresholded to yield a binary mask.
This is exactly how the mask proposal subsystem for the Masknet version without
partial masks was implemented. However, for the other version of Masknet, it’s
desired to use the information from the partial masks to guide the creation of the
final mask. For this, three different merging strategies were proposed and evaluated.
Each one of these is explained below, together with the necessary modifications to
the overall structure in each case.

1. The partial mask is bilinearly resampled to a spatial size of 14×14 and con-
catenated to the feature maps as a new feature. The first fully connected layer
is then adjusted to connect the 513 feature maps to each of the subsequent
512 neurons.

2. Same as the above, but after concatenating, and before the first fully connected
layer, a filter bank of size 1×1×513×512 (i.e. 512 filters of spatial size 1x1 and
513 channels) convolves the new feature maps, followed by a ReLU layer. As a
result, there’s no need to change the rest of the network (since the convolution
results in a data object of size 1×1×512, the same size expected by the original
DeepMask architecture).

3. Fully connect the entire feature map and the partial mask in its original spatial
size to the the output vector, in a single (potentially very big) fully connected
layer.
To ensure that the fully connected layer’s size stays within reasonable bounds,
a filter bank of size 14×14×512×N — where N is a positive integer in the
range 100 to 512 — is added right after the feature extractor, in order to
select a smaller linear combination of the 512 VGG features. In this way,
the parameter N generates a family of closely related merging strategies with
a different compromise between the number of features used (which is likely
to correlate with performance) and required computing power. This is then
followed by a ReLU layer.

The different merging strategies are illustrated in figures 3.8 through 3.10. The
parts of the diagram after the fully connected layer are the same as in the original
DeepMask architecture, and therefore are not shown. Section 3.4 explains how one
of these merging strategies was chosen for the final architecture.

21

3. Methodology

Figure 3.8: Merging strategy 1. The partial mask is bilinearly resampled to the
same spatial size as the feature maps, and then concatenated to the end of it as a
new feature.

Figure 3.9: Merging strategy 2. After the concatenation, the new feature maps
are convolved with a filter bank that transforms it back to the size expected by the
rest of the network (followed by a ReLU layer, not shown in the picture).

22

3. Methodology

Figure 3.10: Merging strategy 3. Instead of resampling the partial mask, it is
directly connected to each neuron in the fully connected layer, together with a
subset of the feature maps from VGG-16.

3.3 Training protocol

This section describes the specific design decisions made for training the Masknet
system. First of all, it’s important to note that the only part of the system being
trained is the mask proposal subsystem. For the semantic segmenter and the object
detector, the pretrained versions of FCN-8s and Fast R-CNN are used, respectively.
Since the pretrained networks are being used, it’s important to use the same dataset
in which they were pretrained on, in order for them to achieve their best performance.
In this case, it’s the Pascal VOC dataset. This dataset has several different versions,
one for each competition held by the authors. Statistics summarizing three relevant
versions of this dataset are presented in table 3.1.

Table 3.1: Number of images and objects present in different versions of the Pascal
VOC dataset.

Training set Validation set
Images Objects Images Objects

Pascal VOC 2007 209 633 213 582
Pascal VOC 2011 1112 2501 1111 2533
Pascal VOC 2012 1464 3507 1449 3442

Since FCN-8s was pretrained in Pascal VOC 2011, and Fast R-CNN in Pascal VOC
2007, there is no single version of the Pascal VOC datasets that would be best
for performing the training for the mask proposal subsystem. Choosing the Pascal
VOC 2007 dataset would likely yield the best performance for both the semantic
segmenter and the object detector (since the object detector was trained precisely

23

3. Methodology

in this version of the dataset, and the later versions of Pascal are supersets of the
older ones). However, as can be seen in table 3.1, this would also provide far less
examples for the training.
With this is mind, a visual assessment of the performance of these pretrained sys-
tems on the Pascal VOC 2012 (latest) validation dataset was carried out. This
showed that these systems still achieve an acceptable performance on this dataset
version. Based on this visual assessment, I chose the Pascal VOC 2012 dataset for
the training. Although the pretrained networks might suffer in performance, for the
purposes of generating the training examples for the mask proposal subsystem, a
much larger number of examples is preferred over slightly more accurate ones (spe-
cially since ideally the mask proposal subsystem should be reasonably unaffected by
inaccurate inputs). A better approach, unfortunately left as a proposal for further
work due to limited time constraints, would be to retrain the FCN-8s and Fast R-
CNN networks with the training data from Pascal VOC 2012 or, even better, with
the data from MS COCO 2016. This approach is further detailed in section 5.3.
Each image in the Pascal VOC dataset is processed by the object detector, the
semantic segmenter and the heuristic to generate partial masks. This generates as
many training examples as the number of detected objects in the scene. Each of
the generated training examples is comprised of an input image, the partial mask,
and the ground truth for that example. The final output from the mask proposal
subsystem is compared to the ground truth by using the pixel-wise logistic log loss
function, shown in equations 3.1 and 3.2:

L(x, c) =
∑B

j=1
∑N

i=1 M(xj
i , cj

i)
B

(3.1)

M(xj
i , cj

i) = log(1 + e−cj
i xj

i) , (3.2)

where x is the W × H × B matrix with all the predictions in the current batch, W
and H denote the spatial size of the predictions, B is the number of images in the
current batch), c is the W × H × B matrix with all the labels for the images in the
current batch, xj

i is the i-th pixel of the prediction for the j-th image, cj
i is the i-th

pixel of the label for the j-th image (which is 1 if the pixel should be in the mask,
and -1 otherwise), and N is the number of pixels in the image (namely, W × H).
The value computed from this loss function is then backpropagated through the
mask proposal subsystem network for parameter learning. For this learning task,
gradient descent with momentum and weight decay was chosen as the optimization
algorithm.
For a more humanly understandable assessment of the performance, the output mask
quality is also evaluated using the metric of IoU (Intersection over Union). The
output mask is binarized, and the IoU with ground truth is computed by dividing
the intersection (number of pixel locations with the value 1 in both the binary mask
and the ground truth) by the union (number of pixel locations with the value 1 in
at least one of the binary mask and the ground truth) of them. The intersection
and union values are aggregated for all images in the batch before the division.

24

3. Methodology

3.4 Evaluation of different merging strategies

In order to decide which of the merging strategies defined in section 3.2 should be
used, a preliminary evaluation of the mask proposal subsystem was carried out for
each one of them.
The training protocol specified in section 3.3 was followed and each one of the three
merging strategies was trained and evaluated using the data from Pascal VOC 2012.
The network weights were initialized randomly, using Xavier initialization [26]. The
hyperparameters for each strategy were chosen according to the following steps:

1. Choose a batch size so that each batch fits in the available memory.
2. Run the optimization on Pascal VOC data with no momentum, no weight

decay, and different values of learning rate (10 logarithmically spaced values
between 10−7 to 10−4 — no strategy converges with a learning rate higher than
10−4).

3. Choose the learning rate that yielded the second best training error after 10
epochs of training (the best performing one might have convergence problems
in the long run).

4. Run the optimization using the chosen learning rate for each one of the fol-
lowing hyperparameter values
(a) Momentum = 0, Weight decay = 0
(b) Momentum = 0.9, Weight decay= 0
(c) Momentum = 0, Weight decay = 5 × 10−5

(d) Momentum = 0.9, Weight decay = 5 × 10−5

5. Choose the combination of hyperparameter values from step 4 that yields the
lowest validation error.

Since this was only a preliminary evaluation, no effort was spent in searching the
hyperparameter space further. Using the aforementioned steps, the optimal hyper-
parameters found for each merging strategy are summarized in table 3.2.

Table 3.2: Hyperparameters found for each one of the merging strategies.

Merging strategy Learning Rate Momentum Weight Decay
1 2.1544 × 10−6 0.9 5 × 10−5

2 4.6416 × 10−6 0.9 5 × 10−5

3 4.6416 × 10−5 0 0

The training and validation errors for the optimization using these values are shown
in figure 3.11. For merging strategy 3, several values of N were tested (the size of
the filter bank that convolves the VGG features into a smaller subset), and the best
performing one within the hardware resources available, N = 300, is the one shown
in the plots.

25

3. Methodology

2 4 6 8 10 12 14 16 18 20

epochs

1

1.5

2

2.5

3

3.5

L
o
s
s

104

Merging strategy 1

Merging strategy 2

Merging strategy 3

(a) Loss value.

2 4 6 8 10 12 14 16 18 20

epochs

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Io
U

Merging strategy 1

Merging strategy 2

Merging strategy 3

(b) IoU value.

Figure 3.11: Evaluation results for the three merging strategies. Each color speci-
fies a different strategy, and the dashed and solid lines denote if the value is computed
in the training set or the validation set, respectively.

As the figure demonstrates, all merging strategies achieve a reasonable IoU in the val-
idation set, but merging strategy 3 outperforms the other two considerably. There-
fore, this was the merging strategy chosen for the final implementation of the system
and for the comparison with the version that does not use partial masks.

3.5 Pretraining on MS COCO

In order to improve results even further, both the version that does not use partial
masks and the version that best uses them (i.e. merging strategy 3) were retrained
on Pascal VOC. However, this time the hyperparameters were optimized by trial-
and-error (starting at the values found earlier) and the networks weights were not
initialized randomly. Instead, these two versions were first trained on MS COCO
data for 30 epochs, and the network weights at the best performing epoch were
used to initialize the training on Pascal VOC 2012. This section describes how this
pretraining on MS COCO was performed.
As explained in section 3.2, the versions of Fast R-CNN and FCN-8s used in this
project were trained with data from the Pascal VOC dataset (Pascal VOC 2007 for
fast R-CNN and Pascal VOC 2011 for FCN-8s). Retraining both of these networks
in the MS COCO 2016 dataset would require a considerable amount of time and
computing power. Instead, ground truth data from this dataset is used to simulate
a perfect object detector and a perfect semantic segmenter. To do so, each image in
the dataset is processed before being fed to the system. The procedure is illustrated
in figure 3.12.
For each object present in the ground truth annotation for the image, a training
example comprised of input image, partial mask and ground truth is generated with
the following steps. First the original image is cropped to the bounding box of the
current object, generating the input image. Then, using the ground truth segmenta-
tion map and the ground truth bounding boxes, the partial mask is generated using
the heuristic discussed in section 3.1. Finally, the binary mask for the current object,

26

3. Methodology

Figure 3.12: Procedure for generating training examples for the preliminary eval-
uation of the merging strategies, using ground truth data from MS COCO.

obtained from the ground truth object segmentation, is saved as the ground truth
for this training example. This procedure generates as many training examples as
there are ground truth object annotations in each image.
The motivation behind this pretraining is that MS COCO has a much bigger and
more varied collection of images (around 300k images in MS COCO, compared to
3k in Pascal VOC 2012). Hence, using the weights from a network trained in MS
COCO (even if ground truth data was used, instead of real data from an object
detector and a semantic segmenter) should provide a much better starting point
than random initialization when training with Pascal VOC data.
Because of the way the chosen heuristic was designed, and the fact that we are
using ground truth data to generate the partial masks, objects that have bounding
boxes that do not overlap with other bounding boxes of the same class would have
a perfect partial mask (i.e. identical to the ground truth mask for that object). To
avoid such artificial examples, the only objects kept are those with bounding boxes
that overlap any other bounding box of the same class by more than 10%.
70% of all the kept examples are used for training, while 30% are held separate as
the validation set. During training, each of the examples in the training set are fed
into the system, and the output mask is evaluated by comparing it to the ground

27

3. Methodology

truth using the same logistic log loss function described in section 3.3. The value
from this loss function is then back-propagated through the network for parameter
learning. Additionally, just as described in section 3.3, the output mask quality is
also evaluated using the metric of IoU, and the epochs with the best scoring IoU in
the validation set are the ones chosen for further analysis, described in section 4.1.

28

4
Results

This chapter presents the results of training the two versions of Masknet, the one
with partial masks (using merging strategy 3), and the one without. Furthermore,
it also presents a subset of the precision-recall curves for both versions, the average
precision for each class, and the MAPr metric value for them, together with a brief
interpretation of these results, ending with example outputs from the system.

4.1 Training results

After the preinitalization on MS COCO, the training protocol from section 3.3 was
followed. The objective function value and the IoU, computed in both the training
and validation set, are shown in figure 4.1 for the relevant versions of Masknet,
given a training length of 30 epochs. The hyperparameters used for this training
are specified in table 4.1.

2 4 6 8 10 12 14 16 18 20

No. of epochs

1

1.5

2

2.5

3

3.5

4

L
o
s
s

104

Merging strategy 3

No partial masks

Merging strategy 3 (P)

No partial masks (P)

(a) Loss value.

2 4 6 8 10 12 14 16 18 20

No. of epochs

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Io
U

Merging strategy 3

No partial masks

Merging strategy 3 (P)

No partial masks (P)

(b) IoU value.

Figure 4.1: Training results for both versions of Masknet and their preinitialized
versions. The dashed lines depict the error on the training set and the solid lines
on the validation set. The versions that used preinitialized weights are shown with
a (P) in their legends.

As can be seen in the figure, preinitializing the networks improved the optimization
substantially, for both the version that uses partial masks and the one that does not.
Further, the corresponding best IoU for both preinitialized versions is only slightly
different (0.5%), so no conclusions can be drawn as to which version will perform

29

4. Results

Table 4.1: Hyperparameters used in the training.

Architecture Learning Rate Momentum Weight Decay
Merging strategy 3 2 × 10−6 0.9 0
No partial masks 1 × 10−6 0.9 5 × 10−5

Merging strategy 3 (P) 1 × 10−6 0.9 0
No partial masks (P) 1 × 10−6 0.9 5 × 10−5

better. Subsection 4.2.2 assesses the performance of the entire system (not just the
mask proposal), and there more substantial differences can be found.

4.2 Performance evaluation

The final training and validation errors for the optimization of the mask proposal
subsystem can only quantify how well this particular subsystem is performing its
task. To evaluate the performance of the system as a whole, a specific metric for
the problem of instance segmentation is used, called the Mean Average Precision
(abbreviated as MAPr).

4.2.1 The MAPr metric

First introduced in [5], this metric is an attempt to quantify how well a system is
performing the task of instance segmentation based on its precision-recall curves for
each class. First, the precision-recall curves are obtained for the algorithm being
evaluated. Then, the area under each curve is computed, each one being denoted
as the average precision for that specific class. Finally, the MAPr metric is defined
as the average of average precisions over all predefined classes for the problem —
hence the name Mean Average Precision (the superscript r in its abbreviation is
used to differentiate this metric from a similar one defined for the problem of object
detection, denoted MAPb).
To generate the precision-recall curves for an algorithm, first it’s necessary to match
the generated instances with the ground truth annotated objects present in each
one of the images. A generated instance matches with a ground truth object if both
share the same class and if their IoU is greater than a predefined threshold. If an
instance matches several ground truth objects, only the highest scoring IoU match
is kept.
Higher thresholds render stricter MAPr metrics, as different applications may re-
quire. To clearly specify which IoU threshold is being used, it’s common to use the
notation MAPr@X, where X is the threshold value used when computing the metric.
Once a generated instance is matched with a ground truth object, that object is re-
moved from consideration and cannot be matched to any other generated instances,
thus penalizing repeated instances (which will have no matches, and therefore be

30

4. Results

counted as false positives, as explained below).
After the matches are found for all images, precision and recall are calculated. Preci-
sion is a measure of how many instances, among the predicted, are correct; whereas
recall measures how many instances, among all ground truth ones, where correctly
found. These are computed as

P = tp

tp + fp
(4.1)

R = tp

tp + fn
, (4.2)

where P is the precision, R is the recall, tp is the number of true positives (instances
with a matching ground truth object), fp is the number of false positives (instances
with no matching ground truth object) and fn is the number of false negatives
(ground truth objects with no matching instances). tp, fp and fn are aggregated
for all images.
Finally, for a precision-recall curve to be assembled, it’s necessary for the instance
segmentation algorithm to rank the instances generated with a confidence level be-
tween 0 and 1. Then, precision and recall are calculated as described above, but
using only instances with a confidence level higher than a threshold. By gradually
changing this threshold from 0 to 1, a series of precision-recall pairs are generated,
and can then be plotted in a precision-recall plane for that class.
To rank the generated instances as needed, the confidence level assigned to each
instance was the confidence level assigned to its bounding box by the object detector.
Although this was the only ranking strategy used, other strategies, perhaps aided
by the mask proposal subsystem, might lead to a better performance, as discussed
in section 5.3.
Once the precision-recall points are generated, the average precision for a given class
can be approximated as

AP =
N∑

n=1
[R(n) − R(n − 1)] · max

ñ≥n
P (ñ) (4.3)

where AP is the average precision, P (n) and R(n) are respectively the precision and
recall of the point with the n’th lowest recall, and N is the number of precision-recall
points generated. If there are several points with the same recall value, all but the
one with the highest precision are discarded. The average precision approximated
this way is denoted interpolated average precision [27].
One way to get some intuition about what this equation is doing, is to note that,
if the precision-recall curve is monotonically decreasing, this approximates the area
under it using rectangles of height P (ñ) and width [R(n)−R(n−1)]. If the curve is
not monotonically decreasing, then the max operator approximates that curve with
one that is and has the smallest possible integral in that interval.

31

4. Results

4.2.2 Instance segmentation results

Using only data from Pascal’s validation set (there is no public ground truth for the
test set), the precision-recall curves for Masknet were computed as described in the
previous section, using an IoU threshold of 0.5 (commonly used for the Pascal VOC
datasets), and a subset of them are shown in figure 4.2. The average precisions for
each class were computed as described in section 4.2.1, and are shown in tables 4.2
and 4.3.

Table 4.2: AP values for the first 10 Pascal VOC classes, calculated with IoU
threshold = 0.5.

Version A
er
op

la
ne

B
ic
yc
le

B
ir
d

B
oa
t

B
ot
tl
e

B
us

C
ar

C
at

C
ha

ir

C
ow

With partial masks 0.70 0.06 0.72 0.41 0.33 0.76 0.56 0.85 0.16 0.67
No partial masks 0.74 0.04 0.70 0.48 0.35 0.78 0.61 0.82 0.17 0.66

Table 4.3: AP values for the last 10 Pascal VOC classes, calculated with IoU
threshold = 0.5.

Version D
in
in
g
T
ab

le

D
og

H
or
se

M
ot
or
bi
ke

P
er
so
n

P
ot
te
d
P
la
nt

Sh
ee
p

So
fa

T
ra
in

T
.V

.
M
on

it
or

With partial masks 0.30 0.84 0.57 0.70 0.56 0.35 0.59 0.44 0.75 0.70
No partial masks 0.36 0.85 0.62 0.74 0.60 0.42 0.59 0.51 0.82 0.69

These results show that both systems are able to perform the task of instance seg-
mentation to a reasonable standard, but performance varies considerably between
different classes. For instance, both versions have very high average precisions for
the dog and cat classes, which have their precision-recall curves illustrated in figure
4.2a and 4.2b. However, both also have a lot of difficulty with the bicycle and chair
classes, which have their precision-recall curves illustrated in figure 4.2c and 4.2d.
To some degree, a bad performance in these two classes was already expected, since
they are indeed among the most difficult ones in the dataset.
Bicycles have a very strict ground truth mask, where only the pixels that exactly
belong to the instance are accepted. For example, all the pixels in a bicycle wheel
are accepted as correct, and also the spikes, but not the space between the spikes
(in some cases, correctly separating these might be difficult even for a human).
Chairs very often appear partially occluded in the images, making it also harder for
algorithms to correctly identify and segment instances.

32

4. Results

For some of the classes, like the sheep class for instance (precision-recall curve shown
in figure 4.2e), there is not much difference between the two different versions of
Masknet. On the other hand, there are classes where the version with partial masks
is the best (e.g. cat class), and there are some in which the opposite is true (e.g.
boat class, which has its precision-recall curve shown in figure 4.2f). To obtain a
wider view about the performance of each version, their mean average precisions
were computed across all classes (i.e. their MAPr metric), and the results are
shown in table 4.4. For a more conclusive assessment of performance, the MAPr of
the different versions was computed using two different IoU thresholds, 0.5 and 0.7,
and the results for other state of the art instance segmentation algorithms are also
shown.
Although unexpected, since the version with partial masks requires much more com-
puting power, the version without partial masks actually achieves the best perfor-
mance in both IoU threshold levels. Section 5.1 investigates possible explanations
for this. Using the version without partial masks, Masknet obtains competitive
results. Furthermore, some of the improvements discussed in section 5.3 are rea-
sonably straightforward (such as training the object detector on Pascal VOC 2012,
instead of 2007) and have the potential to improve the results considerably. Using
the best version, the output for some of the images from the validation set is shown
in figure 4.3.

Table 4.4: MAPr scores for Masknet and different algorithms. MNC was the winner
of the MS COCO 2015 detection competition, and FCIS of the 2016 competition.

Method MAPr@0.5 (%) MAPr@0.7 (%)
O2P [28] 25.2 -
MultiInstanceObjectSeg [29] 46.3 27.0
SDS (AlexNet) [5] 49.7 25.3
Masknet (with partial masks) 55.1 34.2
Masknet (no partial masks) 57.7 35.2
Hypercolumn [8] 60.0 40.4
CFM [30] 60.7 39.6
MNC [9] 63.5 41.5
BAIS [14] 65.7 48.3
FCIS [10] 65.7 52.1

33

4. Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

With partial masks

No partial masks

(a) Dog class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

With partial masks

No partial masks

(b) Cat class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

With partial masks

No partial masks

(c) Bicycle class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

With partial masks

No partial masks

(d) Chair class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

With partial masks

No partial masks

(e) Sheep class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

With partial masks

No partial masks

(f) Boat class.

Figure 4.2: Precision-recall curves for the two different versions of Masknet, for
six different classes.

34

4. Results

Figure 4.3: Masknet’s output for images in the validation set.
35

4. Results

36

5
Discussion

This chapter provides a more in-depth evaluation of the algorithm, presenting a
visual assessment of its outputs, which illustrates some success and failure cases.
After that, a section devoted to evaluating the impact of each of the Masknet’s
subsystems to the final instance segmentation quality is presented. Finally, this
chapter ends by providing a section with proposals for further work that have the
potential to improve the Masknet system.

5.1 Visual assessment of the mask proposal sub-
system’s performance

To try to gain some insight into why the Masknet version with partial masks does
not outperform the other version, the input and output from the mask proposal
subsystem for this version of Masknet were visually analyzed, and displayed here. All
the images in this subsection are taken from the validation set, since, as mentioned
before, there is no public ground truth available for Pascal VOC’s test set.
First, as expected, the system is indeed capable of reconstructing the missing parts
that are visually similar to the instance being considered, as one can see in figure
5.1. In each example, the image on the left is the patch that was input to the mask
proposal subsystem, the center image is the partial mask for that example, and the
image on the right is the output. The front of the train, the legs of the man walking,
and the tail of the sheep, although not present in the corresponding partial masks,
were correctly reconstructed in the output.
Furthermore, the system is also able to reconstruct missing parts that do not possess
a strong visual similarity to the rest of the partial mask, as can be seen in figure
5.2. Both the bus windshield and the television frame are not visually similar to the
majority of the provided partial mask.
Additionally, the system can also remove extraneous pixels that are present in the
partial mask, but are not part of the instance being considered, as shown in figure 5.3.
A substantial amount of the image around the body of the woman, and between her
legs, was classified as belonging to the instance, according to the partial mask, but
the system correctly rejected these extraneous pixels in its output (at the worthwhile
cost of removing some correct pixels as well).

37

5. Discussion

Figure 5.1: Images in which the Masknet system correctly reconstructed missing
instance parts that have strong visual similarity to the provided partial mask.

Figure 5.2: Images in which the Masknet system correctly reconstructed missing
instance parts that do not posses any strong visual similarity to the provided partial
mask.

Figure 5.3: Images in which the Masknet system correctly removed extraneous
instance parts from the provided partial mask.

However, the system is not able to recover from strong mislocalizations (i.e. very
imprecise predicted bounding boxes), as shown in figure 5.4. In the cases illustrated,
just one bounding box was predicted for both instances. Hence, both the image and
the partial mask inputs contain the two instances, and the mask proposal subsystem

38

5. Discussion

is not able to correctly segment just one of them.

Figure 5.4: Images in which the Masknet system was unable to recover from a
strong mislocalization.

If instead the bounding boxes have a reasonably good quality, the system is indeed
capable of separating individual instances, as shown in figure 5.5. Even though the
body of another dog is also present in the input image, good bounding boxes were
predicted for each object in the scene, resulting in a partial mask that does not
contain the extraneous dog, and a mask proposal output that correctly identified
just the instance being considered.

Figure 5.5: Image in which the Masknet system was able to correctly select the
desired instance, even though extraneous parts that possess a strong visual similarity
are also present in the image.

Also, even in the extreme cases that the designed heuristic generates completely
empty partial masks, the system is still able to reconstruct the instance to some
extent, as shown in figure 5.6.
Unfortunately, there are several examples in which this version of Masknet outputs
bad instance masks, even with good predicted bounding boxes and a good partial
mask, as shown in figure 5.7.
All of these examples demonstrate that this version of the system is indeed capable
of performing the task of instance segmentation to some extent, suggesting that

39

5. Discussion

Figure 5.6: Images in which the Masknet system was able to reconstruct the desired
instance to some extent, even though the provided partial mask is completely empty.

Figure 5.7: Images in which the Masknet system was unable to correctly segment
the desired instance, even though good bounding boxes and a good partial mask
were obtained.

using partial masks could indeed be beneficial. However, no particular pattern
in the output could be associated with the failure cases presented (besides strong
mislocalizations).
One possible explanation for the fact that this — much more computationally de-
manding — version of Masknet does not outperform its simpler version, is that the
architecture chosen for this version is not the optimal one, and there could be an-
other sequence of layers (for instance, not based on DeepMask), or another merging
strategy that performs instance segmentation much better, therefore justifying the
higher computational complexity of this version.
Although it’s not possible to rule out this theory, I conjecture that the architecture
and merging strategies proposed, although not necessarily optimal, should have
enough power to outperform at least the version that does not uses the extra infor-
mation contained in the partial masks. Further, this high capacity of the proposed
architecture is where I suspect the problem might come from: overfitting.
In the training results for Masknet, shown in figure 4.1, one can see that, when the
validation IoU attains its maximum value for each version, comparing the train-
ing values with the validation values shows that there is a considerable amount of
overfitting, since the training IoU is much higher than the validation IoU. This sug-
gests that the Pascal VOC 2012 dataset might actually be too small to train any
of the proposed versions to their full extent. Hence, expanding the dataset used for
training could improve the performance of both versions.

40

5. Discussion

Since the version that uses partial masks has a much higher capacity than the one
that does not (approximately 500M versus 150M learnable parameters, respectively),
the size of the dataset necessary to avoid overfitting in this version will also be much
greater. Hence, it could be possible that the simpler version outperforms the other
primarily because the dataset used is too small for both, but even more impactfully
smaller for the one using partial masks.
The primary way of testing this hypothesis is retraining and re-evaluating both of
the versions using a larger dataset, for instance MS COCO. Unfortunately, due to
limited time constraints, this investigation is left as a proposal for further work,
described in section 5.3.

5.2 Error modes

In order to evaluate the impact of each subsystem to the quality of the final output,
this section compares the average precision of the Masknet system for each class
with the average precision that would be obtained if one of the subsystems (object
detector, semantic segmenter, mask proposal) was able to produce perfect outputs.
This procedure is done for both versions of Masknet, the only difference being that
the version that does not use partial masks is not affected by the semantic segmenter
output, and hence this comparison is not required.

5.2.1 Masknet with partial masks

The Masknet version using partial masks was re-evaluated three times, each time
using ground truth data to exchange one of its subsystems with the best possible
output it could generate.
In the first re-evaluation, instead of using FCN-8s, the ground truth semantic seg-
mentation is used to generate the semantic maps. These are then fed into the partial
mask heuristic together with the predicted bounding boxes (the actual bounding
boxes from Fast R-CNN, not ground truth data) to generate the partial masks. In
this case, the system is retrained using this new, improved, input.
In the second one, both the semantic segmenter and the mask proposal subsystem
are removed, and ground truth data for the semantic and object segmentations is
used to generate perfect masks. This is achieved by choosing the ground truth
object with the matching class and highest IoU for each predicted bounding box.
This models the scenario where the system doesn’t have perfect localization, but it
can perfectly segment an object inside a bounding box.
Finally, the last re-evaluation is done by using ground truth data for the bounding
boxes, instead of predicting them with Fast R-CNN. Both the semantic segmenter
and the mask proposal subsystems are still in place. Figure 5.8 shows the absolute
improvement in average precision for each one of the classes, for all re-evaluations.
As before, the conclusion is class-dependant. For instance, for the bicycle class the

41

5. Discussion

a
e
ro

p
la

n
e

b
ic

y
c
le

b
ird

b
o
a
t

b
o
ttle

b
u
s

c
a
r

c
a
t

c
h
a
ir

c
o
w

d
in

in
g
ta

b
le

d
o
g

h
o
rs

e

m
o
to

rb
ik

e

p
e
rs

o
n

p
o
tte

d
p
la

n
t

s
h
e
e
p

s
o
fa

tra
in

tv
m

o
n
ito

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
b
s
o
lu

te
 i
m

p
ro

v
e
m

e
n
t

Perfect semantic segmentation

Perfect masks

Perfect localization

Figure 5.8: Absolute improvement in average precision (compared to original ver-
sion) for each one of the classes, for all re-evaluations of the Masknet version using
partial masks.

greatest improvement comes from using perfect masks, and secondly from using
perfect semantic segmentations. This is very sensible, since the main problem with
this class is segmenting it correctly. Figure 5.9a illustrates the precision-recall curve
for this class. The curve for perfect localization has only one point because when
perfect localization is used, the confidence levels for all bounding boxes are assigned
1, and thus the confidence levels for all instances are assigned 1, which generates
only one precision-recall point.
The figure shows that indeed perfect masks and perfect semantic segmentations
obtain a much better precision-recall curve, being able to almost perfectly segment
bicycles until around 0.7 recall, when at that point precision falls abruptly. The
figure also shows that improving localization has almost no impact on this class,
since, as already explained, the problem is to correctly segment its members.
The same behaviour occurs with the dining table class. Its precision-recall curve is
shown in figure 5.9b. For this and the sofa class, using perfect localization is ap-
parently not helpful, possibly because perfect localizations for these objects include
lots of extraneous instance parts, whereas incomplete localizations might cover only
the object in question, thus facilitating the mask proposal’s work.
With the bottle and T.V. monitor classes, which have their precision-recall curves
illustrated in figures 5.9c and 5.9d, using perfect semantic segmentations is actually
harmful to performance, resulting in an average precision that is lower than the
one for the default system that does not use ground truth data. The reason for
this is still unclear, but one possible explanation could be that the mask proposal
subsystem learns to rely too much on the semantic segmentation, and when that fails
(e.g. several bottles occluding each other) it is incapable of recovering from it. Using

42

5. Discussion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p

re
c
is

io
n

Default

Perfect semantic segmentation

Perfect masks

Perfect Localization

(a) Bicycle class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

Default

Perfect semantic segmentation

Perfect masks

Perfect Localization

(b) Dining table class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

Default

Perfect semantic segmentation

Perfect masks

Perfect Localization

(c) Bottle class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

Default

Perfect semantic segmentation

Perfect masks

Perfect Localization

(d) T.V. monitor class.

Figure 5.9: Precision-recall curves for a subset of the Pascal VOC 2012 classes, for
each re-evaluation performed.

perfect masks is beneficial but not substantially. Using perfect localization is the
re-evaluation with the most impact, yielding almost perfect instance segmentations
for these classes. This shows that if the bounding boxes are accurate enough, the
system excels at segmenting these particular classes.
For a wider perspective of the performance across all classes, the MAPr metric was
also computed for each re-evaluation. The metric values for the default system, the
perfect semantic segmentation, perfect localization, and perfect masks, are 0.5512,
0.5919, 0.7204 and 0.7443, respectively. This shows that there is still a lot of room
for improvement of the mask proposal subsystem, while at the same time showing
how substantial the improvement would be if a better object detector was used.

5.2.2 Masknet without partial masks

The Masknet version that does not use partial masks was also re-evaluated, each time
using ground truth data to exchange one of its subsystems with the best possible
output it could generate. However, since this version does not depend on the output
of the semantic segmenter, it’s only necessary to re-evaluate it twice.
In the first one, the entire mask proposal subsystem is removed, and ground truth
data for the semantic and object segmentations is used to generate perfect masks.

43

5. Discussion

This yields exactly the same re-evaluation as was done for the version that uses
partial masks, since their only difference is in the actual mask proposal subsys-
tem. The other re-evaluation is done by using ground truth data for the bounding
boxes, instead of predicting them with Fast R-CNN. Figure 5.8 shows the absolute
improvement in average precision for each one of the classes, for all re-evaluations.

a
e
ro

p
la

n
e

b
ic

y
c
le

b
ird

b
o
a
t

b
o
ttle

b
u
s

c
a
r

c
a
t

c
h
a
ir

c
o
w

d
in

in
g
ta

b
le

d
o
g

h
o
rs

e

m
o
to

rb
ik

e

p
e
rs

o
n

p
o
tte

d
p
la

n
t

s
h
e
e
p

s
o
fa

tra
in

tv
m

o
n
ito

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
b
s
o
lu

te
 i
m

p
ro

v
e
m

e
n
t

Perfect masks

Perfect localization

Figure 5.10: Absolute improvement in average precision (compared to original
version) for each one of the classes, for all re-evaluations of the Masknet version
that does not use partial masks.

Just like with the version that uses partial masks, the conclusion is class-dependant.
In this version, the bicycle class is again the one with the highest improvement
when using perfect masks, and the bottle class when using perfect localization, for
the reasons cited before. Their precision-recall curves are illustrated in figures 5.11a
and 5.11b.
This time, however, using perfect localization is actually harmful to performance for
the sofa class. The precision-recall curve for this class is shown in figure 5.11c. As
explained before, one possible explanation for this could be that perfect localizations
for members of this class will contain lots of extraneous instance parts, which would
in turn make the mask proposal’s work harder, specially if no partial masks are
provided.
Another interesting point is that perfect localizations almost didn’t improve the
average precision for the train class, which has its precision-recall curve shown in
figure 5.11d. This possibly happens because the train instances present in Pascal
VOC 2012 almost always occupy a large area in the scene, making them easy to
detect and to segment. Hence, improving localization should not have a big impact
in this class.
Just as before, the MAPr metric is computed for each re-evaluation, in order to
obtain a wider perspective of the performance across all classes. The metric values

44

5. Discussion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p

re
c
is

io
n

Default

Perfect masks

Perfect localization

(a) Bicycle class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

Default

Perfect masks

Perfect localization

(b) Bottle class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

Default

Perfect masks

Perfect localization

(c) Sofa class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
re

c
is

io
n

Default

Perfect masks

Perfect localization

(d) Train class.

Figure 5.11: Precision-recall curves for a subset of the Pascal VOC 2012 classes,
for each re-evaluation performed.

for the default system, the perfect masks and the perfect localization, are 0.5772,
0.7443, and 0.7440. These results show that, in the case that the object detection
improves considerably, if the same dataset is used, both versions of Masknet will
still perform similarly, but the versions without partial masks will still outperform
the other. Furthermore, a comparison of the default performance with the one using
perfect masks shows again that there is a lot of room for improvement on the mask
proposal subsystem, just as with the version using partial masks.

5.3 Further work

This section is devoted to discussing some key improvements that could enhance the
Masknet system further.
First of all, the single most important thing for improving the Masknet system’s
performance would be to re-train the object detector, the semantic segmenter and
the mask proposal subsystems using a larger dataset, possibly the MS COCO 2016
dataset. As discussed in section 5.1, there is a great amount of overfitting happening
to both versions of Masknet, and the primary reason is likely to be the small size of
the Pascal VOC 2012 dataset. MS COCO has a much larger and more varied set of
examples (around 300k images, compared to approximately 3k images for Pascal),

45

5. Discussion

which could allow the systems to reach their maximum potential.
Secondly, although Fast R-CNN and FCN-8s achieve competitive results for images
in the Pascal VOC dataset, they are not state of the art in their respective areas.
It will be greatly advantageous to use better networks for these tasks, for instance
Faster R-CNN [23] and PSPNet [31], if the hardware requirements are met.
Thirdly, it’s likely that it would also be beneficial to try different architectures for
the mask proposal subsystem besides the ones tested. Trying new variations of the
DeepMask architecture, and also completely new designs, should prove to be very
helpful in deciding if the main obstacle to a performance increase is just the size of the
dataset being used. Furthermore, in such a scenario that several new architectures
are being tested, it should be very advantageous to try a different, more efficient,
procedure for optimizing the hyperparameters for each new network. For instance,
one possibility could be to use random search for the hyperparameters, which was
shown to be much better than grid search for most cases [32]. Additionally, this
could effectively be used to explore different architectures (by interpreting design
choices as new hyperparameters to be optimized).
Fourthly, as discussed in section 4.2, the confidence level assigned to each bounding
box by the object detector is used to rank the instances when computing the MAPr

scores. Since each generated instance also depends on the output from the semantic
segmenter, and the mask proposal subsystem, it seems logical that the confidence
level for each instance should not depend only on the confidence level for its bounding
box. It could be advantageous to combine information about the confidence of
each subsystem about a given instance to better rank them when computing the
metric. This way, for instance, the system might have a better ability to recover
from a mislocalization, because the mask proposal subsystem could contribute to
assigning an even lower confidence level to a badly predicted bounding box, making
it contribute less to the final overall MAPr score.
Finally, a very impactful problem for Masknet is badly predicted bounding boxes.
A recent advance in binary mask prediction, named Boundary-aware instance seg-
mentation [14], predicts binary masks from bounding boxes, but in such a way
that the resulting mask is not restrained to the spatial extent of the bounding box.
Implementing their ideas into a new Masknet architecture could make the system
much more resilient to mislocalizations, and therefore increase its performance even
further.

46

6
Conclusion

This thesis formulated, developed and evaluated two versions of an instance seg-
mentation algorithm, Masknet. The first version used the output from an object
detector CNN and a mask proposal subsystem to generate the instances, whereas
the second one, to which three different possible architectures were devised, used
also the output from a semantic segmenter to obtain initial guesses for the masks
of each instance. All of the code developed for this thesis is made available at
https://github.com/JulianoLagana/masknet.
The three different architectures devised for the Masknet version with partial masks
were trained on data from Pascal VOC 2012 and evaluated by comparing the best
IoU score on the validation set. The architecture that was best rated using this
valuation was the one using merging strategy 3 (i.e. fully connecting the entire VGG-
16 feature map and the heuristic partial mask to the neuron layer that computes
the output vector). The other strategies also performed well but obtained weaker
scores.
Then, by comparing the MAPr metric score of the Masknet versions with and with-
out partial masks, it was found that the best scoring one was the one without partial
masks, with a obtained score of 57.7% (compared to 55.1% for the other version).
A visual assessment of the version with partial masks was conducted and it was
found that for many examples the network did exactly what was expected, recon-
structing the missing parts from the partial masks (or removing incorrect ones).
However, it was also found that the system is unable to recover from strong mislo-
calizations (i.e. very badly predicted bounding boxes), and for some examples, even
in relatively favourable conditions, the system failed to generate a reasonable mask.
As discussed in section 5.1, this and the resulting plots for the loss and IoU in the
training/validation set led me to hypothesize that the reason for this is overfitting,
but the verification of this hypothesis is left as further work.
Finally, the impact of each subsystem to the quality of the final output was assessed
for each version of Masknet. This showed that there is still room for improvement
in the mask proposal subsystem, and enhancing its performance can lead to better
scores in particular classes, like the bicycle class for instance. Another important
finding is that both versions can greatly improve their MAP scores by using a better
object detector, like the one suggested in section 5.3. Lastly, for the version using
partial masks, improving the semantic segmenter might not yield such a large benefit,
and should perhaps be seen as a secondary step towards improvement.

47

https://github.com/JulianoLagana/masknet

6. Conclusion

48

Bibliography

[1] Dan Ionescu, Bogdan Ionescu, Cristian Gadea, and Shahidul Islam. An intelli-
gent gesture interface for controlling tv sets and set-top boxes. 2011 6th IEEE
International Symposium on Applied Computational Intelligence and Informat-
ics (SACI), 2011.

[2] Tolga Soyata, Rajani Muraleedharan, Colin Funai, Minseok Kwon, and Wendi
Heinzelman. Cloud-vision: Real-time face recognition using a mobile-cloudlet-
cloud acceleration architecture. 2012 IEEE Symposium on Computers and
Communications (ISCC), 2012.

[3] Alessandra Maria Sabelli, Takayuki Kanda, and Norihiro Hagita. A conversa-
tional robot in an elderly care center: An ethnographic study. In Proceedings of
the 6th International Conference on Human-robot Interaction, HRI ’11, pages
37–44, New York, NY, USA, 2011. ACM.

[4] M.a. Turk, D.g. Morgenthaler, K.d. Gremban, and M. Marra. Vits - a vision
system for autonomous land vehicle navigation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 10(3):342–361, 1988.

[5] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simul-
taneous detection and segmentation. Computer Vision – ECCV 2014 Lecture
Notes in Computer Science, page 297–312, 2014.

[6] Bernardino Romera-Paredes and Philip Hilaire Sean Torr. Recurrent instance
segmentation. Computer Vision – ECCV 2016 Lecture Notes in Computer
Science, page 312–329, 2016.

[7] Anurag Arnab and Philip Torr. Bottom-up instance segmentation using deep
higher-order crfs. Procedings of the British Machine Vision Conference 2016,
2016.

[8] Bharath Hariharan, Pablo Arbelaez, Ross Girshick, and Jitendra Malik. Object
instance segmentation and fine-grained localization using hypercolumns. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(4):627–639, Jan
2017.

[9] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation
via multi-task network cascades. CoRR, abs/1512.04412, 2015.

[10] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. Fully convolutional
instance-aware semantic segmentation. CoRR, abs/1611.07709, 2016.

I

Bibliography

[11] Alireza Fathi, Zbigniew Wojna, Vivek Rathod, Peng Wang, Hyun Oh Song,
Sergio Guadarrama, and Kevin P. Murphy. Semantic instance segmentation
via deep metric learning. CoRR, abs/1703.10277, 2017.

[12] Guanbin Li, Yuan Xie, Liang Lin, and Yizhou Yu. Instance-level salient object
segmentation. CoRR, abs/1704.03604, 2017.

[13] Anurag Arnab and Philip H. S. Torr. Pixelwise instance segmentation with a
dynamically instantiated network. CoRR, abs/1704.02386, 2017.

[14] Zeeshan Hayder, Xuming He, and Mathieu Salzmann. Shape-aware instance
segmentation. CoRR, abs/1612.03129, 2016.

[15] Mengye Ren and Richard S. Zemel. End-to-end instance segmentation and
counting with recurrent attention. CoRR, abs/1605.09410, 2016.

[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-
CNN. CoRR, abs/1703.06870, 2017.

[17] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 39(6):1137–1149, Jan 2017.

[18] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes challenge: A retrospective.
International Journal of Computer Vision, 111(1):98–136, January 2015.

[19] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.
Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR,
abs/1405.0312, 2014.

[20] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press,
2015.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

[22] Chris J.C. Burges. A tutorial on support vector machines for pattern recogni-
tion. volume 2, pages 121–167, January 1998.

[23] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.
[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-

works for semantic segmentation. CoRR, abs/1411.4038, 2014.
[25] Pedro O Pinheiro, Ronan Collobert, and Piotr Dollar. Learning to segment

object candidates. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28,
pages 1990–1998. Curran Associates, Inc., 2015.

[26] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Yee Whye Teh and Mike Titterington, editors,
Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine Learning Research, pages

II

Bibliography

249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.
[27] Christopher D. Manning, Prabhakar Raghavan, and Schütze Hinrich. Introduc-

tion to information retrieval. Cambridge University Press, 2009.
[28] João Carreira, Rui Caseiro, Jorge Batista, and Cristian Sminchisescu. Seman-

tic segmentation with second-order pooling. Computer Vision – ECCV 2012
Lecture Notes in Computer Science, page 430–443, 2012.

[29] Yi-Ting Chen, Xiaokai Liu, and Ming-Hsuan Yang. Multi-instance object seg-
mentation with occlusion handling. 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[30] Jifeng Dai, Kaiming He, and Jian Sun. Convolutional feature masking for joint
object and stuff segmentation. 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

[31] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid scene parsing network. CoRR, abs/1612.01105, 2016.

[32] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. J. Mach. Learn. Res., 13:281–305, February 2012.

III

	List of Figures
	List of Tables
	Introduction
	What is instance segmentation, and why is it relevant?
	Roadmap for the thesis
	Related work
	Brief explanation of main idea
	Datasets used
	Pascal VOC
	MS COCO 2016

	Theory review
	Convolutional Neural Networks
	VGG-16

	Object detection
	Semantic segmentation
	Instance segmentation

	Methodology
	Conceptual explanation
	Implementation
	Training protocol
	Evaluation of different merging strategies
	Pretraining on MS COCO

	Results
	Training results
	Performance evaluation
	The MAPr metric
	Instance segmentation results

	Discussion
	Visual assessment of the mask proposal subsystem's performance
	Error modes
	Masknet with partial masks
	Masknet without partial masks

	Further work

	Conclusion

