
Chalmers University of Technology 

University of Gothenburg 

Department of Computer Science and Engineering 

Göteborg, Sweden,   December 2012 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis of ISO26262 standard application in 
development of steer-by-wire systems 
Master of Science Thesis in the Program Computer Science: Algorithms, Languages 
and Logic 
 
 
 

ALIAKSANDR MARCHANKA 
  



 

 
 
 
 
 
 
 
 
 
The Author grants to Chalmers University of Technology the non-exclusive right to publish the 
Work electronically and in a non-commercial purpose make it accessible on the Internet.   
The Author warrants that he/she is the author to the Work, and warrants that the Work does 
not contain text, pictures or other material that violates copyright law.   
 
The Author shall, when transferring the rights of the Work to a third party (for example a 
publisher or a company), acknowledge the third party about this agreement. If the Author has 
signed a copyright agreement with a third party regarding the Work, the Author warrants 
hereby that he/she has obtained any necessary permission from this third party to let 
Chalmers University of Technology store the Work electronically and make it accessible on the 
Internet.  
 
 
 
 
 
 
 
 
 
 
 

Analysis of ISO26262 standard application in development of steer-by-wire systems 
 
 
ALIAKSANDR MARCHANKA 
 
 
© ALIAKSANDR MARCHANKA, December 2012.  
 
 
Examiner: MARINAPAPATRIANTAFILOU 
 
Chalmers University of Technology  
Department of Computer Science and Engineering  
SE-412 96 Göteborg  
Sweden  
Telephone + 46 (0)31-772 1000  
 
 
 
 
 
Department of Computer Science and Engineering  
Göteborg, Sweden. December 2012.



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems i 
 

Abstract 
 
Software for automotive industry has to be as reliable as it is reasonably possible avoid human and 
property hazard, caused by its failure. That is why industry is constantly producing software development 
standards, which capture the best practices, recommendations and state-of-the art development 
technologies. Hence companies are constantly challenged by the need to align their current development 
processes with the upcoming standards like ISO 26262 standard. This work aims to perform the 
comparative analysis of the processes applied in regard to the software development, as implemented in 
a specific project. Besides the analysis, as a result of this work, a tool to support Fault Tree Analysis has 
been developed. Fault Tree Analysis is recommended by the ISO26262 standard and a tool that 
implements it can significantly decrease the amount of effort required to produce safe and reliable 
software according to ISO26262. 
 
 
Keywords: ISO 26262, Fault tree analysis, Safety-critical software, Gap analysis. 
  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems ii 
 

Acknowledgment 
 

This Master's thesis report has been written as the final part of the Master's program Computer 
Science: Algorithms, Languages and Logic at Chalmers University of Technology, Sweden. The 
subject was chosen in collaboration with CPAC Systems AB company at Göteborg, where the thesis 
also has been performed.  
 
I would like to thank my supervisors Marco Monzani and Lars Appelkvist at CPAC Systems AB for 
their guidance and support during this research work. I am grateful for their valuable supervision, 
motivating ideas and never-ending optimism.  
 
I would also like to thank my examiner Marina Papatriantafilou from Department of Computer 
Science and Engineering at Chalmers University of Technology for her valuable advices and support 
during the work.   
 
Furthermore, I would like to thank those people who helped and supported us time to time during 
the work whose names are not mentioned here.  
 
I would like to thank you all! 
  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems iii 
 

Table of Contents 
 

ABSTRACT ............................................................................................................................................................... I 

ACKNOWLEDGMENT .............................................................................................................................................. II 

TABLE OF CONTENTS ............................................................................................................................................. III 

LIST OF FIGURES ....................................................................................................................................................IV 

LIST OF TABLES......................................................................................................................................................IV 

ABBREVIATED TERMS ............................................................................................................................................V 

1 INTRODUCTION ............................................................................................................................................. 1 

1.1 BACKGROUND .................................................................................................................................................. 1 
1.2 PROBLEM STATEMENT ........................................................................................................................................ 1 
1.3 DESCRIPTION OF THE WORK ................................................................................................................................ 2 
1.4 LIMITATIONS .................................................................................................................................................... 2 

2 THEORETICAL BACKGROUND ......................................................................................................................... 3 

2.1 AGILE DEVELOPMENT ......................................................................................................................................... 3 
2.2 ISO 26262 STANDARD ...................................................................................................................................... 3 
2.3 ECLIPSE MODELING FRAMEWORK ......................................................................................................................... 5 
2.4 FAULT TREE ANALYSIS ......................................................................................................................................... 5 

3 PURPOSE OF THE WORK ................................................................................................................................ 8 

4 RESEARCH APPROACH ................................................................................................................................... 9 

5 GAP ANALYSIS BETWEEN ISO 26262 STANDARD AND RFP PROJECT PROCESSES .......................................... 10 

5.1 INITIATION OF SOFTWARE PRODUCT DEVELOPMENT ............................................................................................... 10 
5.2 SPECIFICATION OF SOFTWARE SAFETY REQUIREMENTS ............................................................................................ 12 
5.3 SOFTWARE ARCHITECTURAL DESIGN .................................................................................................................... 14 
5.4 SOFTWARE UNIT DESIGN AND IMPLEMENTATION ................................................................................................... 19 
5.5 SOFTWARE UNIT TESTING .................................................................................................................................. 21 
5.6 SOFTWARE INTEGRATION AND TESTING................................................................................................................ 23 
5.7 VERIFICATION OF SOFTWARE SAFETY REQUIREMENTS.............................................................................................. 24 

6 DEVELOPMENT OF A TOOL FOR FAULT TREE ANALYSIS ............................................................................... 25 

6.1 REQUIREMENT ANALYSIS .................................................................................................................................. 25 
6.2 ECLIPSE METAMODEL ....................................................................................................................................... 25 

6.2.1 Primary and Intermediate Events .......................................................................................................... 26 
6.2.2 Gates ...................................................................................................................................................... 27 
6.2.3 Transfer Nodes ....................................................................................................................................... 30 

6.3 VALIDATION ................................................................................................................................................... 30 
6.4 PROBABILITY COMPUTATION ............................................................................................................................. 31 
6.5 STEPWISE PROBABILITY EVALUATION ................................................................................................................... 33 

7 CONCLUSION ............................................................................................................................................... 35 

8 FUTURE IMPROVEMENTS ............................................................................................................................ 36 

9 REFERENCES ................................................................................................................................................ 37 

10 APPENDIXES ................................................................................................................................................ 38 

  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems iv 
 

List of figures 
 
Figure 1: Overview of ISO 26262 .................................................................................................................. 4 
Figure 2:A typical fault tree .......................................................................................................................... 6 
Figure 3:V-model software development process .................................................................................... 10 
Figure 4:Specification of software safety requirements ........................................................................... 12 
Figure 5: RFP System level components .................................................................................................... 16 
Figure 6: Safety monitor diagram .............................................................................................................. 17 
Figure 7: Source code reviews and testing procedure .............................................................................. 19 
Figure 8: Unit testing use case diagram ..................................................................................................... 21 
Figure 9: Test methods ............................................................................................................................... 23 
Figure 10: Quantitative analysis support ................................................................................................... 25 
Figure 11: Events diagram .......................................................................................................................... 26 
Figure 12: Adding child node to a gate ...................................................................................................... 27 
Figure 13: Gates diagram ............................................................................................................................ 27 
Figure 14: Dependence nodes diagram ..................................................................................................... 28 
Figure 15: And gate constraint definition .................................................................................................. 29 
Figure 16: Or gate constraint definition..................................................................................................... 29 
Figure 17: Transfer nodes diagram ............................................................................................................ 30 
Figure 18: Validation screenshot................................................................................................................ 31 
Figure 19: Intersection of two events ........................................................................................................ 32 
Figure 20:Union of two events ................................................................................................................... 32 
Figure 21: Exclusive union of two events .................................................................................................. 32 
Figure 22: Stepwise probability evaluation step 1 .................................................................................... 33 
Figure 23: Stepwise probability evaluation step 2 .................................................................................... 33 
Figure 24: Stepwise probability evaluation step 3 .................................................................................... 34 
 

List of tables 
 
Table 1: Fault tree nodes .............................................................................................................................. 7 
Table 2: Gimpel support of MISRAC rules checking .................................................................................. 10 
Table 3: Topics to be covered by modeling and coding guidelines ........................................................... 11 
Table 4: Notations for software architectural design ............................................................................... 14 
Table 5: Principles for software architectural design ................................................................................ 15 
Table 6: Mechanisms for error detection at the software architectural level ......................................... 15 
Table 7: Mechanisms for error handling at the software architectural level........................................... 17 
Table 8: Methods for the verification of the software architectural design ............................................ 18 
Table 9: Methods for the verification of software unit design and implementation .............................. 20 
Table 10: Methods for software unit testing ............................................................................................. 22 
Table 11: Methods for deriving test cases for software unit testing ........................................................ 22 
Table 12: Structural coverage metrics at the software unit level ............................................................. 22 
Table 13: Structural coverage metrics at the software architectural level .............................................. 23 
Table 14: Test environments for conducting the software safety requirements verification ................. 24 
 

  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems v 
 

Abbreviated terms 
 

ASIL Automotive Safety Integrity Level 

CAN Controller Area Network 

CPU Central Processing Unit 

ECU Electronic Control Unit 

EEPROM Electrically Erasable Programmable Read-Only Memory 

EMF Eclipse Modeling Framework 

FTA Fault Tree Analysis 

JTAG Joint Test Action Group 

MC/DC Modified Condition/Decision Coverage 

MS Microsoft 

OSE Operating System Embedded by ENEA AB 

QMS Quality Management System 

RAM Random Access Memory 

RFP Referenced Project 

ROM Read-Only Memory 

SAD Software Architecture Design 

SIL Safety Integrity Level 

TEA Truck Electrical Architecture 

UML Unified Modeling Language 

V3P Volvo 3P, member of Volvo Group 

VAP Volvo AUTOSAR Platform 

WCET Worst Case Execution Time 

XP Extreme Programming 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 1 
 

1 Introduction 
 

1.1  Background 
 
In order to produce safety-critical software, software development companies use special tools and 
development techniques suggested by appropriate standards. One of such standards is ISO 266262 
which concerns mainly functional safety. The standard comprises of a set of rules and recommendations 
on how to achieve the required level of confidence of software quality. 
 
Safety-critical software must meet tight reliability constraints. From the functional point of view this 
means that software development company must perform various type of code analysis giving statistical 
guaranties that a particular function will behave as intended. Runtime self-diagnostic techniques need 
to be used to tolerate hardware faults.  Rigorous notations need to be used to specify the intended 
behavior of software units. 
 
Due to the requirements implied by safety-critical software domain, software development process is 
built on the basis of different standards. These standards cover various aspects of systems development, 
having functional safety among the others. Standards on their own are continuously developed: new 
technologies, research results are introduced. For companies within safety-critical domain this means 
that they need to constantly adopt new development standards. This brings up a challenging question: 
how to adopt new standards while still maintaining the compliance with previously adopted standard? 
 
Half of the current work is dedicated to gap analysis between a number of adopted standards and the 
incoming one. The structure of the analysis is largely independent of the underlying standards and can 
be reused to perform similar type of research. Throughout the whole report the problem is analyzed 
from two perspectives: from the perspective of particular project and general development 
methodology adopted in the company. 
 
One way to avoid recurring low level errors is to automate some aspects of software development 
process. The second part of this work is dedicated to the development of fault tree analysis tool. The 
experience of the development of this tool can be used as a  pattern on how to detect parts in a 
standard, that are suitable for automation. 

1.2  Problem statement 
 
CPAC Systems AB, Göteborg, Sweden, is analyzing the possibility to develop a steer-by-wire system for 
the industrial vehicle industry. As of today, this would imply compliance with the ISO15998 safety 
standard. The ISO26262 is the incoming standard adopted by vehicle industry in general, and a version 
dedicated to the earth moving machines is on its way. 
 
In fact, ISO26262 is seen as “state of the art” when it comes to safety in all vehicle applications. 
ISO26262 is derived from the widespread IEC61508, the ground to all safety standards practically 
applied within all industrial segments (including avionics).  
 
CPAC has to provide evidence of capability when it comes to managing with the standard - a thing which 
can easily become an unbearable burden in terms of resource and time investments, because of the 
heavy requirements the standard poses on the development processes. The purpose of the job is 
identification of a reasonably effective procedure to achieve the compliance, without compromising the 
safety, in relation to steer-by-wire applications. 
 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 2 
 

Work has been done at CPAC to get closer to this target, and this is a pre-requisite behind the thesis 
work, which has in itself very broad reach. The focus is anyway on the general procedures, system 
analysis and, as far as possible, principles for software design and development. 

1.3  Description of the work 
 
This work mainly consists of two parts. The former is a comparative analysis between processes, 
currently implemented by CPAC within a specific project, and ISO 26262 standard. The company 
constantly adopts relevant standards and ISO 15998, Automotive SPICE, Agile and Autosar currently 
among them. Purpose of the work is to analyze the differences between the processes as of today and 
what is required to fulfill ISO26262. Development standards address the whole process of system 
development however this thesis addresses only the software development area. The reference project 
that was considered is herein after named with the acronym RFP. It is important to underline that the 
processes as implemented in the RFP do not necessarily represent the state of the art within CPAC or 
Volvo. In fact, the electronics and software developed within the RFP are not safety critical. The RFP was 
chosen in consequence of the availability and competence of the resources dedicated to it, which made 
the execution of this thesis work possible. 
 
The latter part of the work is dedicated to fault tree analysis (FTA). Fault tree analysis is a deductive 
failure analysis technique, used to determine the probability of a particular functional failure. This type 
of analysis is well-adopted in the industry and CPAC applies it to produce safety-critical systems. ISO 
26262 references fault tree analysis and insists on its application. Considering this high demand for the 
technique, a tool to support fault tree analysis has been developed as part of this thesis work. 
 
FTA analysis tools is built as a plugin to the Eclipse platform, which is widespread across the industry. 
The tool is capable of building fault trees, enforcing their structural properties. The system architect can 
take advantage of a graphical editor with an easy to use interface and rich validation capabilities. The 
tool performs fault tree analysis on the fly, updating relevant properties as parts of the fault tree 
become valid. Results of the work are saved as projects and the tool allows to build component libraries 
for later reuse. 
 
An added value of the fault tree analysis tools is that its source code is under control of the company 
which makes it possible to enrich the tool with functionality, specific to a single one project. This is not 
possible with commercial tools as their source code is not disclosed meaning that they have limited 
flexibility. In general, when a new piece of theory is introduced, there is a time before an appropriate 
tool support emerges. This time can be reduced when using in-house made tools. 

1.4  Limitations 
 
The main limitation of the tool being developed is its responsiveness. To remain usable interactive tools 
need to perform all their calculations in a reasonable amount of time. Careful design is required to 
divide functional features of the software into two groups: performance intensive and those that can be 
executed in linear time. Section 6.3 Validation describes the solution in details. 
 
Processes that require linear time to complete are run constantly as soon as the user makes any change. 
On the other hand more performance intensive operations are run on demand. 
  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 3 
 

2 Theoretical Background 

2.1  Agile development 
 
The Agile software development methodology is actually a group of software development methods, 
based on iterative methodologies. Agile Manifesto [12] declared the following priorities: 
 

 Individuals and interactions over processes and tools, 

 Working software over comprehensive documentation, 

 Customer collaboration over contract negotiation, 

 Responding to change over following a plan. 
 
The following 12 principles are the basis of the Agile Manifesto [12]: 
 

1. Achieve customer satisfaction by rapid delivery of useful software 
2. Welcome changing requirements, even late in development 
3. Working software is delivered frequently 
4. Working software is the principal measure of progress 
5. Sustainable development, able to maintain a constant pace 
6. Close, daily co-operation between business people and developers 
7. Face-to-face conversation is the best form of communication 
8. Projects are built around motivated individuals, who should be trusted 
9. Continuous attention to technical excellence and good design 
10. Simplicity - the art of maximizing  the amount of work not done - is essential 
11. Self-organizing teams 
12. Regular adaptation to changing circumstances 

 
One difference between agile methodology and traditional methods like waterfall model is that in agile 
testing is done during the development phase: engineers are encouraged to write test before they 
actually write the software. In traditional methods, testing is done after the development phase.  
 
Agile methods are often thought to be opposite to the disciplined methods (e.g. waterfall or 
cleanroom). However, agile methodology can be used in development safety-critical software as well, 
since it mostly addresses planning and is not anyhow preventing rigorous or formal methods to be used 
at the same time.  

2.2  ISO 26262 standard 
 
ISO 26262 is the adaptation of IEC 61508 standard to comply with demands specific to the application 
domain of electrical and electronic systems in road vehicles. 
 
Safety is one of the key features of the future automobile development. New functionalities in areas 
such as driver assistance, propulsion, in vehicle dynamics control and safety systems touch the domain 
of system safety engineering. Development of these functionalities will increase the demand for safe 
system development processes and the need to provide evidence that all reasonable system safety 
objectives are satisfied. 
 
With the trend of increasing technological complexity, software content and mechatronic 
implementation, there are increasing risks from systematic failures and random hardware failures. ISO 
26262 includes guidance to avoid these risks by providing appropriate requirements and processes. 
 
In order to achieve system safety a number of safety measures need to be applied. They are 
implemented on a variety of technologies and applied at the various levels of the development process. 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 4 
 

Although ISO 26262 is targeted at functional safety, it provides a framework within which safety-related 
systems based on other technologies can be considered. 
 
The following figure shows the overall structure of the ISO 26262 standard, which is based on a V-model 
as a reference process model for the different phases of product development.  
 

 
Figure 1: Overview of ISO 26262 

 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 5 
 

 
The V-Model demonstrates the relationships between each phase of the development life cycle and its 
associated phase of testing. The horizontal and vertical axes represents time or project completeness 
(left-to-right) and level of abstraction, respectively. 
 
One of the core ideas of ISO 26262 standard is automotive safety integrity level (ASIL). It is one of four 
levels, used to specify the item's necessary requirements of ISO 26262 and safety measures to apply for 
avoiding an unreasonable residual risk. Levels range from A to D with D representing the most stringent 
and A the least stringent level.  

2.3  Eclipse modeling framework 
 
Eclipse is a software development environment that consists of the integrated development 
environment and a set of extensions, called plug-ins. In general, Eclipse has plug-ins that support 
development of programs in Java, C++ and other languages. However the platform itself is not bound in 
any way to these capabilities. It is possible to write a general purpose application with rich graphical 
user interface, based on Eclipse platform. 
 
Here Eclipse modeling framework (EMF) comes in. EMF implies model driven approach to plug-in 
development. It is capable of generating code for EMF models, called "ecore". EMF-based modeling is 
the foundation for data sharing among tools and applications in Eclipse. One can see EMF models as an 
extension of entity-relationship modeling. More specifically, relations are classified as parent-child 
relations, references; multiplicity constraints can be introduced.  
 
Eclipse provides a standard way to implement wide adopted range of features, common to applications 
with rich graphical interface. XML serialization, validation, model-view separation are among them.  

2.4  Fault tree analysis 
 
Fault tree analysis can be described as an analytical technique, where an undesired state of the system 
is specified (usually a state that is critical from a safety perspective) and the system is analyzed in the 
context of its environment and operation to find all the ways in which the undesired event can occur. 
The fault tree itself is a graphical model of the various parallel and sequential combinations of faults that 
will result in the occurrence of the predefined undesired event. The faults can be events that are 
associated with component hardware failures, human errors, or any other events which can lead to the 
undesired event. A fault tree thus depicts the logical interrelations of basic events that lead to the 
undesired event - which is the top event of the fault tree. 
 
A fault tree is not intended to be a model of all possible system failures or all possible causes for system 
failure. It is rather built starting from its top event, which is some particular system failure mode that is 
of particular concern. The tree thus contains only those faults that contribute to this top event. 
Moreover, the collection of these faults is not exhaustive: only the most credible faults, as they are 
defined by system engineer, are considered. 
 
One point that should be mentioned is that a fault tree is not in itself a quantitative model. This type of 
analysis is just one possible option. Cut set analysis is for instance another option. In general ISO 26262 
standard does not imply use of any particular type of analysis, based on fault trees. It is up to system 
engineer to decided which is more appropriate in a given case.  
 
A fault tree comprises entities called gates which serve the purpose to permit or inhibit the passage of 
fault logic through the tree. The gates show the relationships of causal events needed for the 
occurrence of another event. This  event is the "output" of the gate, and is therefore placed in the tree 
on a higher level than its causal events; the causal events are the "inputs" to the gate. The gate symbol 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 6 
 

denotes the type of relationship of the input events required for the output event. Thus, gates are 
somewhat analogous to switches in an electrical circuit or two valves in a piping layout. Next picture 
shows a typical fault tree. 
 

 
Figure 2:A typical fault tree 

 
 
 
 
 
A typical fault tree is composed of a number of symbols which are summarized in the following table. 
 

Primary event symbols 

 

Basic event - A basic initiating fault requiring no further development. 

 

Conditioning event - Specific conditions or restrictions that apply to any 
logic gate (used primary with Priority And and Inhibit gates). 

 

Undeveloped event- An event which is not further developed either 
because it is of insufficient consequence or because information is 
unavailable. 

 

External event - An event which is normally expected to occur. 

Intermediate event symbols 

 

Intermediate event - A fault event that occurs because of one or more 
antecedent causes acting through logic gates. 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 7 
 

Gate symbols 

 

And - Output fault occurs if all of the input faults occur. 

 

Or - Output fault occurs if at least one of the input faults occurs. 

 

Exclusive Or - Output fault occurs if exactly one of the input faults occurs. 

 

Priority And - Output fault occurs if all of the input faults occur in a specific 
sequence (the sequence is represented by a Conditioning event drawn to 
the right of the gate). 

 

Inhibit - Output fault occurs if the (single) input fault occurs in the 
presence of an enabling condition (the enabling condition is represented 
by a Conditioning event drawn to the right of the gate) 

Transfer symbols 

 

Transfer In - Indicates that the tree is developed further at the occurrence 
of the corresponding Transfer Out (e.g. on another page). 

 

Transfer Out - Indicates that this portion of the tree must be attached at 
the corresponding Transfer In. 

Table 1: Fault tree nodes 
  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 8 
 

3 Purpose of the work 
 
One of the challenges with software development for automotive industry is that it has to be qualified 
as safety critical to reduce the risk of possible hazard, resulting from its failure. The exact meaning of 
“safety critical” is determined by the legal context – when it comes to automotive applications, as 
described before, the ISO26262 represents this context. The safety standards are reviewed, ISO26262 
adapted to different vehicle segments, and harmonization is required. This is an ongoing process and 
companies like CPAC Systems AB have to keep their development processes up to date. Currently 
CPAC’s software development processes are based on the agile methodology. By default, the ISO 26262 
standard implies waterfall processes. One of the challenges for the company is implementing the 
standard and still safeguard the advantages of agile methods – the flexibility before all. This work is 
intended to be the basis for the documentation, required to go through certification process, and is 
therefore quite relevant to the company. 
 
After the process analysis described above, a tool to support fault tree analysis is developed. This type 
of failure analysis is used by CPAC and is actually widespread across different industry segments. The 
purpose of a dedicated tool is reducing the amount of time required by system engineers to perform the 
analysis itself. The FTA tool enforces constraints implied by fault tree analysis and performs quantitative 
computations. This increases the reliability of the analysis and therefore of the product.  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 9 
 

4 Research Approach 
 
The gap analysis has been executed by carrying out two types of activity: 
 

 Documents review. A number of internal documents have been reviewed including project 
plans, system and software architecture designs, reports etc. 

 Employee interviews. In order to perform the in-depth analysis and understand how the 
processes are followed up, the employees were interviewed. 

 
The company documents contain precise description of the procedures, best practices and 
recommendations that the development methodology consists of. Also the ISO 26262 standard is a set 
of requirements and recommendations. To perform the gap analysis one needs to map ISO 26262 
requirements onto the development process as they are implemented as of today. Original documents 
are extensively referenced to add value to this research: CPAC should be able to use this report during 
certification procedure. The working process at CPAC is described in a range of internal documents. The 
idea of gap analysis was to map ISO standard recommendations onto the company's processes. 
 
On the other hand, the importance of the interviews must be underlined, as they and give a way to 
collect the required data and to assign correct priorities to different pieces of information. Interview is a 
widely used method for collecting qualitative research data because “it is perceived as ‘talking’ and 

talking is natural” Dale Griffee [14]. The conclusions, drawn after the gap analysis were verified by 
interviews. 
 
According to Mack et all [13] there are three main methods of qualitative research. These are: 
 

 Participant observation—where the researcher also occupies a role or part in the setting, in 
addition to observing.  

 In depth interviews— face to face conversation, to explore the issues or topics in detail. Any 
preset questions are not used, yet the discussions shaped by a defined set of topics.  

 Focus group— a method of group interview, group interaction is explicitly included and used to 
generate data. 

 
In this work the two last methods were used. The first method - participant observation - was not used 
because of its time consuming nature. 
  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 10 
 

5 Gap Analysis between ISO 26262 standard and RFP project processes 
 

5.1 Initiation of software product development  
 
The software development process at CPAC is built around agile processes and iterative model, yet it 
maps directly onto the V-model, which is referred to by ISO 26262 standard. More specifically, the work 
is divided into increments called “sprints”. Each sprint loops through a number of development and 
related testing activities. 
 

 
Figure 3:V-model software development process  

 
CPAC applies a number of languages and software tools during software development. Most of what 
follows is applicable to the RFP project only, one of a number carried out at CPAC at the time this work 
was done. The main implementation language is C. The language being used conforms to ISO/IEC 
14882:1998 standard, which unambiguously defines it's syntax and semantics. For the actual 
development a subset of original C language is used. This subset is based on MISRA C coding guidelines 
and defined in the a CPAC internal document. Compliance with MISRA C 2004 standard is checked using 
PC-Lint tool which generates rule violation reports. According to the document, provided by Gimpel 
Software http://gimpel.com/html/misra2.pdf, the tool is capable of checking of the large majority of the 
MISRA rules, as summarized in the following table: 
 

 Checked Partially 
Checked 

Not Statically 
Checkable 

Not Yet 
Checked 

Totals 

Required Rules 115 1 5 1 122 

Advisory Rules 17 1 2 0 20 

Totals 132 2 7 1 142 
Table 2: Gimpel support of MISRAC rules checking 

 
Most of the rules can be checked automatically and the tool is capable of analyzing code against them. 
However, some rules can be checked only by a developer review. For the detailed description of which 
rules are covered see the referenced document. 
 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 11 
 

The software development process adopted in the RFP does not enforce low complexity, as well as 
defensive implementation techniques are not used. C++ on its own does not enforce strong typing, 
however CPAC uses PCLint tool as part of the process to both ensure the conformance to MISRA 
standard and to check the code against strong typing requirements (i.e. an implicit conversion of 
numbers, casting a type into another supporting narrower value range than the former). Microsoft Visio 
notation is adopted within the RFP project, but UML could be adopted in the future. In addition to 
MISRA coding guidelines, a CPAC internal document also defines source code style and naming 
conventions. For the RFP, CPAC did not apply ASIL decomposition, since ISO26262 was not applicable: all 
components classified as either safety-related or not safety-related. Guidelines, described above, are 
applied to all safety-related components. 
 
Herein after we are going to use the following notation to describe the extent to which support of a 
particular technique or restriction is required for the compliance with the prescriptions posed by a 
certain ASIL level: 
 

 ++ highly recommended, meaning that if it is omitted then a strong evidence must be 

provided that this is not going to affect safety 

 +  recommended, it can be omitted if it implies an unreasonable amount of resources or 

 alternative evidence can be provided 

 o not required  

The following table shows coverage of ISO 26262 recommendations with respect to appropriate 

specification section. 

Topics 
ASIL 

Status 
A B C D 

1a Enforcement of low complexity ++ ++ ++ ++ not enforced 

1b Use of language subsets ++ ++ ++ ++ MISRA C used 

1c Enforcement of strong typing ++ ++ ++ ++ with PCLint 

1d Use of defensive implementation techniques o + ++ ++ not applied 

1e Use of established design principles + + + ++ not defined 

1f Use of unambiguous graphical representation + ++ ++ ++ MS Visio 

1g Use of style guides + ++ ++ ++ coding conventions 

1h Use of naming conventions ++ ++ ++ ++ coding conventions 

Table 3: Topics to be covered by modeling and coding guidelines 

 

  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 12 
 

5.2 Specification of software safety requirements 
 
According to ISO 26262 at this step the emphasis is put on safety requirements specification, verification 
plan and hardware-software interface, as described on the diagram. 
 

 
Figure 4:Specification of software safety requirements  

 
Safety strategy, fail-state, graceful degradation and fault detection techniques are implemented in RFP 
and described in appropriate project documents. This description comprises technical safety concept. 
  
According to requirements, RFP module conforms to Truck Electrical Architecture (TEA2+). RFP module 
uses CAN network to communicate to other vehicle electrical systems. Angle and torque sensors provide 
data that is analyzed by RFP software to determine required torque output. 
 
The hardware-software interface is specified RFP project documentation, to which the following general 
requirements apply: 
 

 code generated by means of Simulink/Matlab (models) must be executed in a floating point 

environment; 

 a code safeguarding function resides in a fixed point environment; 

 Low level control of the electric motor is placed in a separate electronic control unit (ECU). 

 
Instead of four safety and integrity levels (SIL), RFP project highlights safety-related components only, 
hence has a single SIL. This is an important point: processes and procedures of ISO 26262, that are 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 13 
 

intended to ensure functional safety of embedded systems, changes significantly depending on the ASIL. 
Treating all safety-related components as if they belonged to the highest ASIL D may result in 
development process that requires an unmotivated amount of effort and resources. The assigned ASIL 
level is derived from three aspects: controllability, probability of exposure and severity. For instance the 
part developed during RFP project has fail-safe state and in case of failure, driver is left with just power 
steering. This means that the controllability of the vehicle is affected insignificantly. As a consequence of 
that we will have level C1 assigned to the component and the component will at max get ASIL B level. 
The procedure is described in ISO 26262 part 7 section 7.4.4. ASIL decomposition as part of specification 
of software safety requirements is implied by section 6.4.3 of ISO 26262 part 6.  

  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 14 
 

5.3  Software architectural design 
 
RFP application development process includes three software architecture design documents (SAD). All 
of them are informal in their nature. To achieve confidence that these documents introduce a feasible 
design, review procedure is used. All the documents contribute to Traceability matrix which captures 
cross references  and through the documents are consistent with one another in terminology. The 
project uses Autosar notation and additionally CPAC considers possibility to use other semi-formal 
notations. 
 

Methods 

ASIL 

Status A B C D 

1a Informal notations ++ ++ + + Software architecture design (SAD) 

1b Semi-formal notations + ++ ++ ++ Autosar, CPAC is looking forward to use UML 

1c Formal notations + + + + None of those are used so far 

Table 4: Notations for software architectural design  

 
One strong part of CPAC development process is the automatic traceability of requirements, code 
changes and defects. The traceability is supported by ReqParser tool and Trac system, integrated with 
Subversion version control system. Bi-directional traceability between safety requirements (which are 
treated just as a specific type of requirements) contributes to verifiability of the software architecture 
design (7.4.2a in ISO 26262 part 6). 
 
Restricting software components size is a good way to control the internal complexity of a component 
development. That is why component size is assessed during software design review. Components 
should adhere to a defined hierarchical structure. Also, implying restricted interfaces size leads to an 
increase in software reliability. 
 
ISO 26262 standard requires that software components have hierarchical structures.  
 
CPAC engineers are aware of the importance of restricting coupling between software components and 
developing software components with high cohesion. In order to estimate the extent to which the 
components are independent, SourceMonitor tool is used. This tool is a static code analyzer which is 
capable of collecting the dependencies information. Its reports are used to improve code quality.   
 
RFP software is run under OSE operating system which is included in the VAP platform. However RFP 
dispatch loop uses interrupts of higher priority than the OS does, because of functional reasons. Apart 
from the dispatch loop, other interrupts are used within the project, but their use is restricted and they 
have lower priorities. The dispatch loop is used to. In order to comply with the ISO 26262, detailed 
information about interrupt usage need to be collected and described in project documentation. 
 
Real-time scheduling analysis is required. Currently, in the RFP, the only evidence that all tasks meet 
their deadlines is the testing criteria, according to which processor utilization is required to stay below 
95%. The RFP system consists of 3 ECUs, however, the core software runs on a single core of one of 
these chips. This means that single processor real time scheduling analysis methods are applicable to 
the case. 
 
 
 
 
 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 15 
 

Methods 

ASIL 

Status A B C D 

1a Hierarchical structure of software components ++ ++ ++ ++ Need to be introduced 

1b Restricted size of software components ++ ++ ++ ++ Taken into consideration 

1c Restricted size of interfaces + + + + No restrictions are implied 

1d High cohesion within each software component + ++ ++ ++ Taken into consideration 

1e Restricted coupling between software components + ++ ++ ++ Analyzed with SourceMonitor 

1f Appropriate scheduling properties ++ ++ ++ ++ Needs improvement 

1g Restricted use of interrupts + + + ++ Procedure needs improvement 

Table 5: Principles for software architectural design 
 
According to sections 7.4.6 - 7.4.9 of ISO 26262 part 6CPAC needs to introduce software component 
classification, according to the time it has been developed: 
 

a) newly developed, 

b) reused with modifications, 

c) reused without modifications.  

Each software component must be categorized and verification techniques applied to it accordingly. 
Analysis of dependent failures is performed and it is used in the RFP to provide evidence of sufficient 
independence of software components as required in ISO 26262 part 6 section 7.4.12. 
 
Range checking analysis is not currently a part of software architecture design phase. No static analysis 
is performed. As part of software unit design and implementation, as well as  software unit testing 
phases, ranges are analyzed in test cases and manual tests. Developers use the following tools: 
CANalyzer, P-CAN explorer and in-house tools along with scripts that perform the range testing. 
 
 

Methods 

ASIL 

Status A B C D 

1a Range checks of input and output data ++ ++ ++ ++ Not applied 

1b Plausibility check + + + ++ Not applied 

1c Detection of data errors + + + + ECC mechanism 

1d External monitoring facility o + + ++ Watchdog of the ECU 

1e Control flow monitoring o + ++ ++ Not applied 

1f Diverse software design o o + ++ Not applied 

Table 6: Mechanisms for error detection at the software architectural level 
 
 
 
 
 
 
 
 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 16 
 

Following diagram depicts the structure of RFP system level components. 
 

 
Figure 5: RFP System level components 

 
System consists of three electronic control units (ECU): NC, MP and DSP. NC ECU has two cores that run 
the software that controls torque force, produced by this unit and safety monitor. Safety monitor is 
responsible for detecting a hazardous condition and switching the motor off in case if such condition has 
been detected. This conforms with safety degradation concept: whenever RFP unit is about to produce 
torque force, which is considered hazardous, the force is not actually produced, unit still remains 
operational and the controllability of vehicle is not affected, since the driver is left with just hydraulic 
power steering. Two cores read data from CAN simultaneously. 
 
Safety monitor facility is used to support graceful degradation of the unit as well as to support fail-safe 
state. The actual logic of the monitor is derived from Simulink models, provided by V3P. These models 
are compiled by TargetLink into C code first and then compiled by WindRiver compiler into object code. 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 17 
 

 
Figure 6: Safety monitor diagram 

 
ECU is equipped with watchdog facility that provides static recovery mechanism. Described software 
safety mechanisms provide evidence towards conformance with section 7.4.13 of ISO 26262 part 6 and 
are summarized in the following table. 
 

Methods 

ASIL 

Status A B C D 

1a Static recovery mechanism + + + + Watchdog mechanism 

1b Graceful degradation + + ++ ++ Safety monitor mechanism 

1c Independent parallel redundancy o o + ++ Not applied 

1d Correcting codes for data + + + + ECC mechanism 

Table 7: Mechanisms for error handling at the software architectural level 
 
As part of the software architecture design phase, the following embedded software metrics are 
estimated: 
 

a) execution time, 

b) storage space (both RAM and ROM), 

c) communication resources (CAN bus capabilities). 

According to section 7.4.18 of ISO 26262 part 6 software design should be verified. CPAC engineers carry 
out informal reviews of the software design as well as formal reviews. However, verifications 
procedures need to be improved. Control flow and data flow analysis are the first candidates for 
improvement. ASIL D level also suggests that prototypes should be used and simulation of the dynamic 
parts of the design performed.  
 
 
 
 
 
 
 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 18 
 

 

Methods 

ASIL 

Status A B C D 

1a Walk-through of the design ++ + o o Informal review 

1b Inspection of the design + ++ ++ ++ Formal review 

1c Simulation of dynamic parts of the design + + + ++ Not performed 

1d Prototype generation o o + ++ Not performed 

1e Formal verification o o + + Not applied 

1f Control flow analysis + + ++ ++ Not performed 

1g Data flow analysis + + ++ ++ Not performed 

Table 8: Methods for the verification of the software architectural design 

  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 19 
 

5.4  Software unit design and implementation 
 
The software unit internal structure and functionality is described using natural language and semi-
formal notations. AUTOSAR semi-formal notation is a standard adopted by CPAC. The following diagram 
shows software unit development process, as currently applied by the company. 
 

 
Figure 7: Source code reviews and testing procedure 

 
The Main branch is the repository of the latest integrated version of the software code. According to the 
process, new source code and code changes are never directly committed to the Main branch. Instead, a 
separate branch is created in each particular case. Whenever a developer is ready with his/her changes, 
automatic tests are run. If tests are completed successfully then the code is suitable for review. The 
review is performed by a developer other than who has developed the code, as it is suggested by several 
methodologies such as XP (Extreme Programming), besides ISO 26262. Developer and review roles are 
described and documented. 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 20 
 

 
The software review process is also defined and documented. According to it, the code is checked 
against its design specification and coding guidelines. Code coverage is estimated using Trace32 tool 
(statement coverage). Lauterbach Trace32 is a device connected to the CPU by means of JTAG plug. 
Trace32 among other features is capable of performing code coverage analysis. PowerTrace module is 
responsible for this analysis. However, the process does not directly enforce compliance with hardware-
software interface.  
 
CPAC uses Trac system to establish the relation between a single code change and the requirement 
according to which this change has been made. This implies traceability of changes, required by  8.4.5 of 
ISO 26262 part 6. 
 
The following table lists the methods for static code validation, as defined by ISO standard and shows 
which ones are applied at CPAC. 
 

Methods 

ASIL 

Status A B C D 

1a Walk-through ++ + o o 
Supported by the review process 

1b Inspection + ++ ++ ++ 
Supported by the review process 

1b Semi-formal verification + + ++ ++ 
Not applied 

1c Formal verification o o + + 
Not applied 

1d Control flow analysis + + ++ ++ 
Not applied 

1e Data flow analysis + + ++ ++ 
Not applied 

1f Static code analysis + ++ ++ ++ 
Trace32 and PCLint are used 

1g Semantic code analysis + + + + 
Not applied 

Table 9: Methods for the verification of software unit design and implementation 

  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 21 
 

5.5  Software unit testing 
 
Software development process defines overall software test strategy, according to which tests are 
classified into 6 categories. CPAC uses a custom tool called ReqParser to bind actual tests and their 
description in project documents to the requirements the tests are executed against. The result, 
produced by ReqParser, is stored in Traceability Matrix document. 
 
The established link exists for tests whenever the test is done against a specific requirement. Another 
type of tests - unit tests are applied to verify interfaces consistence. Loose coupling, enforced by design, 
allows to introduce unit tests and achieve close to 100% code coverage. At the same time this results in 
interface testing of software components, since stubs are used to isolate the component under testing 
(see the diagram). Currently CPAC does not apply any fault injection testing technique. 
 
Interface testing is not focused on what the components are during but rather on how they 
communicate. The emphasis is put on component relationship, including: 
 

 what components can expect from one another in terms of services, 

 how these services will be asked for, 

 how they will be given, 

 how to handle non-standard conditions, i.e. errors. 

Unit testing on its own addresses those issues by isolating a component from the other components. 
Separate tests capture the contract the component has to obey to and high code coverage ratio means 
that all exceptional conditions are addressed as well as normal control flow. 
 

 
Figure 8: Unit testing use case diagram 

 
Each release worse case execution time (WCET) analysis is performed along with other resource usage 
analysis types. This is documented. More specifically, the following resource usage types are analyzed: 
 

 Average CPU load 

 EEPROM memory usage 

 FLASH memory usage both internal and external 

 RAM memory usage 

Back-to-back comparison test between model and code is done for the model obtained from Volvo 3P. 
The following table gives a summary of methods for unit testing. 
 
 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 22 
 

Methods 
ASIL 

Status 
A B C D 

1a Requirements-based test ++ ++ ++ ++ 
Main test type, tracked with ReqParser 

1b Interface test ++ ++ ++ ++ 
Implicitly carried out by unit testing 

1c Fault injection test + + + ++ 
Not applied 

1d Resource usage test + + + ++ 
Performed at each release 

1e Back-to-back comparison test between 
model and code, if applicable 

+ + ++ ++ Obtained from Volvo 3P 

Table 10: Methods for software unit testing 
 
The developer is responsible for deriving test cases for his/her software component. Results of 
requirement analysis are available to the developer. The process of requirement analysis is defined and 
documented. To achieve compliance with ISO 26262, generation and analysis of equivalence classes and 
analysis of boundary values has to be introduced. The first approach allows to select a single normal 
element out of a class of input values and test the component against it. An evidence must be given that 
all other elements in the class imply the same behavior of the component under test. Along with 
boundary values analysis this will provide a reasonably small test set that covers a wide range of cases. 
 
The standard also introduces error guessing testing technique which is optional. To support this 
technique, additional process need to be introduced to support gathering and processing of information 
about the errors, encountered previously.  
 

Methods 
ASIL 

Status 
A B C D 

1a Analysis of requirements ++ ++ ++ ++ section 5.2 of RFP-0033-SW DP 

1b Generation and analysis of 
equivalence classes 

+ ++ ++ ++ Not implemented 

1c Analysis of boundary values + ++ ++ ++ Not implemented 

1d Error guessing + + + + Not implemented 

Table 11: Methods for deriving test cases for software unit testing 
 
Code coverage analysis is currently a part of software development process at the company. CPAC uses 
Trace32 tool to determine the statement coverage of code. According to CPAC method all the code is 
analyzed for coverage which is more that ISO 26262 requires: according to ISO 26262 part 6 section 
9.4.5 only safety-related (ASIL A to D) code needs to be covered. For the RFP it has been decided that for 
safety-related code 95% coverage is required (regardless actual ASIL of the software component). Third-
party source code and generated code is not analyzed for coverage which complies with ISO 26262 part 
8. Techniques other that statement coverage need to be adopted by CPAC to comply with the standard 
that concerns components with high ASIL. 
 

Methods 

ASIL 

Status A B C D 

1a Statement coverage ++ ++ + + 95% of safety-related code is covered  

1b Branch coverage + ++ ++ ++ Not implemented 

1c MC/DC (Modified Condition/Decision 
Coverage) 

+ + + ++ Not implemented 

Table 12: Structural coverage metrics at the software unit level  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 23 
 

5.6  Software integration and testing 
 
Integration testing is performed according to a documented plan. Section 2.3 introduces two test 
methods: black-box testing and white-box testing. White-box testing is performed by software 
developer by executing unit tests and tracking code coverage. Black-box testing is performed by test 
engineers and is targeted to detect missing functions, interface errors, incorrect behavior of software 
component in the system and to measure the performance. 
 

 
Figure 9: Test methods 

 
To perform black-box testing, an engineer has a number of tools at disposal: 
 

 Vector CANalyzer or P-CAN explorer (Trac and record data on CAN). 

 Vector LINalyzer (Trac and record data on LIN). 

 National instruments DAQ. 

 National instruments NI-CAN module. 

 National instruments NI-LIN module. 

 National Instruments LabView 8.5 (including CPACLabView platform) 

Test engineers use the same methods for software integration testing and the same methods for 
deriving test cases as those, described in Software unit testing section of this document. 
The following table describes code coverage methods, implied by ISO 26262 and used at CPAC. 
 

Methods 
ASIL 

Status 
A B C D 

1a Function coverage + + ++ ++ Fully covered by functional tests 

1b Call coverage + + ++ ++ At least 95% coverage for safety-related components 

Table 13: Structural coverage metrics at the software architectural level 

  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 24 
 

5.7  Verification of software safety requirements 
 
Verification process is planned  and this plan documented.  The process is documented and summarized 
in Traceability Matrix by ReqParser. Information about different types of tests is kept in Trac system. 
Test classification consists of the following classes of tests: 
 

 Unit Test  

A Unit Test should be used to test design requirements and could also be used to test a 
functional requirement. A Unit Test should be implemented and executed together with the 
new feature. Specific important functions should always be unit tested. The decision on when to 
create a unit test should be discussed with another developer.  

 Ticket Integration Test  

Used during development and should have been done before a Ticket is sent for review.  

 Integration Test  

The Integration test is used when a Software Components has been created or updated.  

 Software Test  

The Software Test is used when a new feature or Software Product has been created or 
updated.  

 System Integration Test  

The System Integration Test is used before one or more new or updated Software Products are 
delivered as a system.  

 Analysis Test  

The Analyze Test is used when a part of the software is impossible, extremely hard and when 
another part is responsible for the testing. 

 
CPAC performs hardware-in-the-loop tests using test rig. Vehicles or mules testing is carried out by 
Volvo. 
 

Methods 
ASIL 

Status 
A B C D 

1a Hardware-in-the-loop + + ++ ++ Performed in CPAC's lab 

1b Electronic control unit network 
environments 

++ ++ ++ ++ Not applied 

1c Vehicles ++ ++ ++ ++ Tested at V3P 

Table 14: Test environments for conducting the software safety requirements verification 
  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 25 
 

6 Development of a tool for Fault Tree Analysis 
 

6.1  Requirement analysis 
 
Fault tree analysis is basically a type of quantitative analysis  of fault trees. In turn fault trees are graphs 
build according to certain rules. A tool to support fault tree analysis (FTA) should be capable of building 
fault trees using graphical user interface and provide means of validating fault trees against structural 
and quantitative constraints. 
 
The result of fault tree analysis is a built fault tree with probability values, assigned to its nodes.  This 
data needs to be persisted. XML seems to be an optimal format for that, since it provides opportunity to 
import the model into third party applications after being processed by for instance by a model 
transformation. 
 
During the analysis some failure events arise multiple times. For instance if some type of resistors is 
used multiple times in the product, then event of a resistor failure will arise several times during the 
analysis. Tool should support building libraries of components with their failure rates. This would 
significantly reduce the effort required from a systems engineer to perform fault tree analysis. 
 
In general fault tree editor is designed to support all standard functions a user would expect from a 
contemporary editor: copy-paste operation that clones parts of trees, error messages, validation.  

6.2  Eclipse metamodel 
 
As a base for the tool eclipse modeling framework (EMF) has been chosen. One reason for that is its 
support for rapid development of graphical editors. According to eclipse architecture, a EMF metamodel 
has been developed. This metamodel defines both abstract categories of elements and FTA elements 
themselves. 
 
In order to support probability computation every node of a fault tree is either an independent one or 
depends on the values of other nodes (usually they are its child nodes). The following diagram shows 
interfaces that support this feature. 
 

 
Figure 10: Quantitative analysis support 

 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 26 
 

Fault tree nodes could be divided into the following groups: 

 Primary and Intermediate Events (describe faults that can occur in the system) 

 Gates (used to connect events) 

 Transfer nodes (used to structure diagrams) 

Quantitative analysis is described in later sections. 

6.2.1 Primary and Intermediate Events 

 
Events are described by abstract entity Event and comprise of PrimaryEvent and Intermediate. Primary 
events are those events that are actually leaf nodes of fault tree. Intermediate events are higher level 
events that are triggered by other analysis nodes: gates, transfer-in nodes, other events. Every 
intermediate event has exactly one child node, otherwise validation of the tree will fail with a 
corresponding message. 
 
In turn PrimaryEvent stands for independent events Undeveloped, External and Basic, as well as for 
dependent event BasicComponent. The difference is that the latter entity while defines a leaf of fault 
tree is not an actual source of probability estimate. Instead it refers to a library component. Others are 
indeed sources of probability estimates. Nodes semantics correspond to the one, determined by fault 
tree analysis. 
 

 
Figure 11: Events diagram 

 
 
 

 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 27 
 

6.2.2 Gates 

 
There are five gates: Inhibit, And, Or, Xor, PriorityAnd. In addition, every gate can have a single Condition 
attached. In general gates establish a decomposition of a higher level event into several low level 
events. This is true for all gates except for Inhibit gate which defines a condition, and whenever this 
condition fires, lower level event causes higher level event. Hence condition node is mandatory for 
inhibit gates, as opposed to all the other gates. Condition itself is not considered to be a node of fault 
tree. This differs from what is said in classical fault tree definitions. 
 
 All gates can have only events as child nodes, which is general restriction of fault trees that supports 
correct event decomposition during analysis process. Apart from that, inhibit nodes have exactly one 
child and other gates must have at least two child event nodes. As you can see on the following 
screenshot invalid options are not available or grayed out (in the example we cannot add a gate into a 
gate). 

 
Figure 12: Adding child node to a gate 

 
Figure 13: Gates diagram 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 28 
 

 
And, Or and Xor nodes do not take into account the order of their child nodes, however PriorityAnd 
does. Moreover by default all child nodes are considered to be independent of one another. This default 
behavior can be adjusted by adding dependencies. Dependency nodes do not belong to fault tree and 
serve as placeholders for dependencies. 

 
Figure 14: Dependence nodes diagram 

 
And along with PriorityAnd gates can have conditional dependence constraints that specify a list of 

nodes with probabilities. Each single dependence node defines conditional probability )|(

1

1






n

i

in EEP , 

where nE  references current event, and other events are those, being defined before nE  in the list of 

dependencies. Events, omitted in the list of dependencies, are considered to be independent: 

)()|(

1

1

n

n

i

in EPEEP 





 . Single node is not enough since it does not define a valid constraint. Also 

whenever a node is referenced in constraint, its unavailability value will not be used in computation any 
more, according to semantics of and gate constraint. 
 
The following screenshot shows the constraints attached to And gate. 
 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 29 
 

 
Figure 15: And gate constraint definition 

 
Or and Xor gates have other type of constraint, called intersectional dependence. Intersectional 
dependence is specified by a list of node groups with a probability, assigned to each group. Each single 

dependence node defines intersection probability )(

1


n

i

iEP



 where iE events are unique up to a 

permutation. Each group is unique and if a group is missing (combination of events, unordered), 
probability of the events intersection is considered to be 0. Single event cannot form a group. 
 

 
Figure 16: Or gate constraint definition 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 30 
 

Both type of dependencies can reference only events, that are direct child nodes of the corresponding 
gate. 
 
As one can notice gates play a secondary role in fault trees and cannot be referenced directly. For 
instance, to a sub-tree can start only with event, but not a gate. 

6.2.3 Transfer Nodes 

 
There are two complementary transfer nodes: TransferIn and TransferOut, however only TransferIn is a 
full-fledged fault tree node while TransferOut is just a placeholder for a sub-tree. They serve two 
purposes: 
 

 increase readability of fault trees by extracting semantically distinguishable sub-trees, 

 allow reuse of sub-trees, which is not possible by other means.  

S 
Figure 17: Transfer nodes diagram 

 
A model contains exactly one fault tree and any number of sub-trees. 

6.3  Validation 
 
Some of fault tree constraints are enforced statically: the editor simply does not allow a user to insert 
inappropriate node or enter invalid probability value (for instance, negative one). However some of the 
constraints need to be validated. These constraints are: 
 

 Probability computation constraints: for instance an Or gate can have two valid nodes with 

probabilities 0.6 which mean that there are two independent events with probability 0.6 and in 

turn probability of the composite event is larger than 1.0. This is not possible and means that a 

system engineer has made a mistake providing data, external to the model, which does not 

describe a real-world situation. 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 31 
 

 Gate constraints: intersectional and conditional dependencies must reference proper gate 

nodes and uniqueness constraints must be met. 

 Required fields: some fields are required in a valid model. They are names for named nodes 

and probability values. 

 Structural constraints: while model is under development, some nodes may be missing, 

however for a model to be valid and analyzable, every required child and reference node must 

be provided. 

Validation is performed manually by user triggering corresponding command. It is possible to perform 
validation for the whole tree at once, as well as for its parts, keeping number of messages manageable. 
 

 
Figure 18: Validation screenshot 

6.4  Probability computation 
 
As has been mentioned before, there are two types of node: those who provide probability values, and 
those who compute their value from the values of child nodes (IndependentEvent and DependentEvent 
accordingly). There are five dependent nodes, for which probability computation is not trivial. 
 
Assume that G  is current gate, E is parent of the gate, iE  are gate's child events and C  is a condition. 

For all type of gates condition is considered to be independent of the gate event and resulting 
probability is )()()( CPGPEP   if condition is provided and )()( GPEP   otherwise. )(GP is computed 

according to the gate semantics by the following rules: 
 

1. Inhibit gate: )()( 1EPGP   and condition is required.  

2. And gate: In case of independent events corresponding value is computed by multiplying 

probabilities of all the events  


n

i
iEPGP

1
)()( . However in case if some of the events are not 

disjoint the value is computed a bit differently. Let us first consider two events case. And gate 

corresponds to set intersection in terms of set algebra. This case is shown in the following 

diagram: 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 32 
 

 
Figure 19: Intersection of two events 

 
We can compute the probability of intersection in two different ways: 

)|()()|()()( 212121 EEPEPEEPEPGP  . In the general case we have 








n

i

i

j

kk ji
EEPGP

1

1

1

)|()(  , 

given that nniki ..1}..1:|{  (is a permutation of set n..1 ). 

3. PriorityAnd gate: this type of gates distinguish a single permutation. It is evaluated in the same 

way as And gate but takes this distinction into account: 
!

)|(

)(
1

1

1

n

EEP

GP

n

i

i

j

kk ji








. 

4. Or gate: in case of Or gate we again consider the case with independent events. By the 

semantics of Or we can conclude that in this case probability of the composite event will be the 

sum of probabilities of child events: 




n

i

iEPGP

1

)()( . Now let's again consider the case with two 

dependent events. Or gate corresponds to a union operation in terms of set algebra. This case is 

shown in the following diagram: 

 
Figure 20:Union of two events 

 

Since union of the events means that we are satisfied if either of events occur, we can simply 
add up probabilities, but we need to take into account that the intersection part will be counted 
twice. Finally we have )()()()( 2121 EEPEPEPGP  . In the general case where there could 

be different intersections we have  
  



n

i SEES SE

k
i

n k

EPGP

1 1||:},..,{

1

1

)()1()(  . 

5. Xor gate: is computed much alike Or, except for the fact that the intersection part is removed 

not once, but the number of times events intersect:  
  



n

i SEES SE

k
i

n k

EPiGP

1 1||:},..,{

1

1

)()()(  . 

 
Figure 21: Exclusive union of two events 

 
This set of rules provides a way to automatically perform the fault tree analysis given probabilities, 
determined during system decomposition. 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 33 
 

6.5  Stepwise probability evaluation 
 
Fault tree analysis can be performed only on a valid tree, however the difference between tree and sub-
tree is rather artificial: it is introduced to provide way to break the model into logical components. For a 
user this means that parts of the tree can be analyzed as soon as they become valid. 
 
After every single change a user makes, the change is propagated through the whole tree to its root. 
This feature increases usability of the application and allows the engineer to spot inconsistencies in the 
model on the earlier stages of development. 
 
The following screenshot shows a valid fault tree with analysis done. 
 

 
Figure 22: Stepwise probability evaluation step 1 

 
A change is made and the tree becomes invalid, however for the valid parts analysis holds. 
 

 
Figure 23: Stepwise probability evaluation step 2 

 
 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 34 
 

Tree is valid again. 
 

 
Figure 24: Stepwise probability evaluation step 3 

 
  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 35 
 

7 Conclusion 
 
This research had two goals. First was to compare ISO 26262 standard to the processes implemented in 
a specific project the company has been running. The second one was to develop a tool support for fault 
tree analysis. 
 
Based on the interviews with engineers at the company and on the analysis of both ISO 26262 standard 
and internal CPAC documentation, the corresponding analysis has been performed. The analysis 
resulted in a number of detailed suggestions, both optional and mandatory, that will allow to achieve 
the compliance with the standard. Moreover, the suggestions do not come in conflict with the “agile” 
software development processes that CPAC is interested into. The recommendations were developed 
with the interests of the company in mind. Moreover the analysis showed that some of the 
methodologies CPAC uses are ahead of what is required by the standard. Testing coverage requirements 
can be thought as an example. 
 
Developing safety-critical software is an area with high demands and one way to meet all the constraints 
is to introduce tools that enforce some of them. Much like with MISRA C standard there are a number of 
tools that check compliance with its rules, a tool for fault tree analysis has been developed. This tool 
comes in two flavors:  it enforces constraints, declared in fault tree analysis and computes probability 
values, actually performing the quantitative analysis. The tool is developed as a plugin to Eclipse 
platform and possesses a rich graphical user interface. 
 
  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 36 
 

8 Future improvements 
 
Set of recommendations on how to adjust currently adopted processes to the demands of oncoming ISO 
26262 standard has been developed as part of this work. However mainly the focus has been on the 
software development part. Considering that CPAC Systems AB produces whole systems, that comprise 
of both software and hardware parts, the company will be in demand of further analysis. This analysis 
might focus on the other parts of the standard. Besides current ISO 26262 standard is targeted on road 
vehicles which means that this work needs to be revised whenever a standard, specific to industrial 
vehicles, will emerge. 
 
There are a number of commercial tools that support fault tree analysis and other types of analysis like 
failure mode and effect analysis and others. However there are several disadvantages of using these 
tools: 
 

 Certification. ISO 26262 standard as well as other similar standards require that whenever any 
tool is used, evidence of its correct functioning must be provided. Both successful usage results 
and actual code reviews and tests count as valid evidence, but for a third party software only 
the forma is actually available. 

 Extensibility. Tool is built as a plugin to Eclipse platform. This platform is highly extensible on its 
own and enforces model-driven development. Resulting tool has inherited extensibility property 
and can be enriched with other types of analysis like failure mode and effect analysis or cut-set 
analysis. The most important thing here is that all analysis methods work with the fault tree. 
Which means that the most important value of the tool is that is provides fault tree model 
application interface and user interface for building valid fault trees. 

 Customizability. It is possible to adjust the tool to the needs of a specific project. This is clearly 
impossible with the use of third party tools. 

 Cost. Development of safety-critical embedded software is rather specific area and software 
tools for it are usually quite expensive. Also in the case if company decides to buy a third party 
tool, current project will allow to make a comparison of the two solutions and better indicate 
the value of the commercial tool specifically for CPAC. 

 
Considering these points obviously there is a room for the tool improvement. Additionally thorough 
testing is required to guarantee the required level of quality confidence. 
  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 37 
 

9 References 
 
[1] ISO 26262 (2010), "Road vehicles — Functional safety — Part 1: Vocabulary", Geneva 20, 
Switzerland. 
 

[2] ISO 26262 (2010), "Road vehicles — Functional safety — Part 2: Management of functional 
safety", Geneva 20, Switzerland.  
 

[3] ISO 26262 (2010), "Road vehicles — Functional safety — Part 3: Concept phase", Geneva 20, 
Switzerland. 
 

[4] ISO 26262 (2010), "Road vehicles — Functional safety — Part 4: Product development at the 
system level",Geneva 20, Switzerland. 
 

[5] ISO 26262 (2010), "Road vehicles — Functional safety — Part 5: Product development at the 
hardware level",Geneva 20, Switzerland. 
 

[6] ISO 26262 (2010), "Road vehicles — Functional safety — Part 6: Product development: 
software level",Geneva 20, Switzerland. 
 

[7] ISO 26262 (2010), "Road vehicles — Functional safety — Part 7: Production and operation",Geneva 
20, Switzerland. 
 

[8] ISO 26262 (2010), "Road vehicles — Functional safety — Part 8: Supporting processes ",Geneva 20, 
Switzerland. 
 

[9] ISO 26262 (2010), "Road vehicles — Functional safety — Part 9: ASIL-oriented and safety-oriented 
analyses",Geneva 20, Switzerland. 
 

[10] ISO 26262 (2010), "Road vehicles — Functional safety — Part 10: Guideline on ISO 26262 ",Geneva 
20, Switzerland. 
 

[11]MISRA (Ed. 2, 2008), "MISRA-C:2004- Guidelines for the Use of the C Language in Critical Systems ", 
Warwickshire, UK. 
 

[12] Agile Manifesto, http://www.agilemanifesto.org , last accessed: 2010-03-21. 
 

[13] Mack N., Woodsong C., Macqueen  K., Guest G., Namey E. (2005), Qualitative Research Methods: A 
Data Collector’s Field Guide (Family Health International, Research Triangle Park, North Carolina, USA. 
 

[14]Dale T. Griffee, Research Tips: Interview Data Collection, Journal of Developmental Education, 
Volume 28, Number 3, spring 2005. 
 

[15]Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, Timothy J. Grose (2003), "Eclipse 
Modeling Framework: A Developer's Guide", Addison Wesley. 
 

[16] W. E. Vesely, F. F. Goldberg, N. H. Roberts, D. F Haasl (1981), "Fault Tree Handbook", U.S. Nuclear 
Regulatory Commission, Washington, D.C., USA. 
 

[17] MIL-HDBK-338B (1998), "Fault Tree Analysis: Electronic Reliability Design Handbook", U.S. 
Department of Defense 
 

 
 
 
  

http://www.agilemanifesto.org/
http://www.informit.com/safari/author_bio.asp@ISBN=0131425420
http://www.informit.com/safari/author_bio.asp@ISBN=0131425420
http://www.informit.com/safari/author_bio.asp@ISBN=0131425420
http://www.informit.com/safari/author_bio.asp@ISBN=0131425420
http://www.informit.com/safari/author_bio.asp@ISBN=0131425420


Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 38 
 

 

10 Appendixes 
 
According to the policies of the CPAC Systems AB company where this master thesis was performed, 
author is not allowed to attach internal documents as appendixes. 
 
The following code provides implementation of the probability computation logic. 
 

package com.cpac.faultanalysis.analysis; 
 
import java.util.BitSet; 
import java.util.Collections; 
import java.util.HashMap; 
import java.util.HashSet; 
import java.util.Map; 
import java.util.Set; 
 
/** 
 * This type provides computational support for calculation of probability of compound events. 
 * The following types of operations supported: And, Or, Xor, Priority And, which are broken 
 * into two groups: And operations and Or operations. <br/> 
 * <br/> 
 * Computation is performed by gradual accumulation of information. 
 * <pre> 
 * 1) {@link #event(Object, double)} calls are used to populate events and their probabilities. 
 *    At least one event is required. 
 * 2) <br/> 
 *    a) In case of And operations {@link #conditional(Object, double)} calls are used to 
 *       to introduce the conditional probability dependence between events. Sequence of 
 *       calls starts with a call to {@link #conditional(Object)} method to declare the 
 *       first event. 
 *    b) In case of Or operations intersections of events are introduced by a number of calls 
 *       to {@link #intersection(Object)} (at least two are required), followed by a call to 
 *       {@link #intersection(double)} to define the probability of the intersection. 
 * 3) Call to {@link #result()} method ends the computation. 
 * </pre> 
 * In case if a {@link ProbabilityException} is thrown state can't be reused. Subsequent calls 
 * to {@link #result()} method are allowed since the instance remains a place holder for  
 * computation result. Checked exceptions can be used to track down the inconsistencies in 
 * input data.<br/> 
 *  
 * @author Alexander Marchenko 
 * 
 * @param <E> is type of events 
 */ 
public final class ProbabilityComputation<E> { 
 /** 
  * The automaton which makes sure that probability calculator state is populated correctly. 
  * Note that in this case a state space is also the alphabet. 
  */ 
 private static final boolean[][] DFA = { {true, false, true, true, true, false},  
         {false, true, false, true, true, false}, 
         {false, true, false, false, false, false}, 
         {false, true, false, true, false, false},  
         {false, false, false, false, true, false}, 
         {false, false, false, false, false, false} }; 
 /** 
  * Operation type 
  */ 
 private OperationType type; 
 /** 
  * Calculator state 
  */ 
 private State state; 
 /** 
  * Number of events, added during computation 
  */ 
 private int size; 
 /** 
  * Map of events to probabilities 
  */ 
 private Map<E, EventDescriptor> events; 
 /** 
  * Set of subsets of events 
  */ 
 private Set<BitSet> subsets;  
 /** 
  * A subset that is currently being built 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 39 
 

  */ 
 private BitSet subset; 
 /** 
  * Result of the computation 
  */ 
 private double result;  
 /** 
  * Changes the state of calculator making sure that data is collected correctly. 
  *  
  * @param target is the new state 
  * @return whether the actual state has been changed 
  */ 
 private boolean proceed(State target) { 
  if (!DFA[state.ordinal()][target.ordinal()]) { 
   throw new IllegalStateException("Invalid transition from " + state + " to " + target); 
  } 
  if (state == target) { 
   return false; 
  } else { 
   state = target; 
   return true; 
  } 
 }  
 /** 
  * Convenience method ensures that object is not null 
  *  
  * @param o is a value 
  * @exception NullPointerException is case if o is null 
  */ 
 private void ensureNotNull(Object o) { 
  if (o == null) { 
   throw new NullPointerException(); 
  } 
 }  
 /** 
  * Convenience method ensures that probability is valid 
  *  
  * @param probability is a double 
  * @exception IllegalArgumentException in case if value is not within [0.0 .. 1.0] 
  */ 
 private void ensureProbabilityIsValid(double probability) { 
  if (!isValid(probability)) { 
   throw new IllegalArgumentException("Invalid probability value : " + probability); 
  } 
 }  
 /** 
  * Sets the state to error, preventing from exploiting the invalid state of computation 
  *  
  * @param e is an exception 
  * @return e 
  */ 
 private ProbabilityException error(ProbabilityException e) { 
  this.state = State.ERROR; 
  return e; 
 }  
 /** 
  * Creates probability computation object 
  *  
  * @param type is the operation 
  */ 
 public ProbabilityComputation (OperationType type) { 
  ensureNotNull(type); 
  this.type = type; 
  this.state = State.GATHERING_EVENTS; 
  this.size = 0; 
  this.events = new HashMap<E, EventDescriptor>(); 
  if (!type.isAnd()) { 
   this.subsets = new HashSet<BitSet>(); 
  } 
  this.subset = null; 
  this.result = type.isAnd() ? 1.0 : 0.0; 
 }  
 /** 
  * gives the type of probability computation 
  *  
  * @return operation type 
  */ 
 public OperationType type() { 
  return type; 
 }  
 /** 
  * adds a unique event and its probability 
  *  
  * @param event is not <code>null</code> and will be put into a hash table 
  * @param probability is in [0.0 .. 1.0] 
  * @throws ProbabilityException if there is already such event in the set  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 40 
 

  */ 
 public void event(E event, double probability) throws ProbabilityException { 
  ensureNotNull(event); 
  ensureProbabilityIsValid(probability); 
  proceed(State.GATHERING_EVENTS); 
  if (!type.isAnd()) { 
   this.result += probability; 
  } 
  // check that event is not a duplicate 
  if (events.put(event, new EventDescriptor(probability, events.size())) != null) { 
   throw error(new EventException(type, EventException.ErrorType.DUPLICATE_EVENT, event)); 
  } 
  size++; 
 } 
 /** 
  * Defines first independent event. 
  *  
  * @param event is not <code>null</code> and must be previously introduced by {@link #event(Object, double)} 
  * @throws ProbabilityException is thrown when the event is unknown or has been used twice in calls to this method 
  */ 
 public void conditional(E event) throws ProbabilityException { 
  ensureNotNull(event); 
  proceed(State.GATHERING_CONDITIONAL); 
  if (!type.isAnd()) { 
   throw new IllegalStateException("Operation must be either AND or PRIORITY_AND"); 
  } 
  // check that event is present and not used twice 
  EventDescriptor descriptor = events.remove(event);  
  if (descriptor == null) { 
   throw error(new EventException(type, EventException.ErrorType.UNKNOWN_OR_DUPLICATE_EVENT, 
event)); 
  } 
  this.result *= descriptor.probability; 
 } 
 /** 
  * Defines a conditional dependence of events in form P(E|A and B and .. and D), where events 
  * A through D has been introduced by former calls to {@link #conditional(Object, double)} method. 
  *  
  * @param event is not <code>null</code> and must be previously introduced by {@link #event(Object, double)} 
  * @param probability is in [0.0 .. 1.0] 
  * @throws ProbabilityException is thrown when the event is unknown or has been used twice in calls to this method 
  */ 
 public void conditional(E event, double probability) throws ProbabilityException { 
  ensureNotNull(event); 
  ensureProbabilityIsValid(probability); 
  proceed(State.GATHERING_DEPENDENCIES); 
  if (!type.isAnd()) { 
   throw new IllegalStateException("Operation must be either AND or PRIORITY_AND"); 
  } 
  // check that event is present and not used twice 
  if (events.remove(event) == null) { 
   throw error(new EventException(type, EventException.ErrorType.UNKNOWN_OR_DUPLICATE_EVENT, 
event)); 
  } 
  this.result *= probability; 
 }  
 /** 
  * Introduces first/subsequent event in a group of intersecting events. Group definition is finalized 
  * by a call to {@link #intersection(double)} method. 
  *  
  * @param event is not <code>null</code> and must be previously introduced by {@link #event(Object, double)} 
  * @throws ProbabilityException is thrown when the event is unknown or has been used twice in calls to this method 
  */ 
 public void intersection(E event) throws ProbabilityException { 
  ensureNotNull(event); 
  proceed(State.GATHERING_INTERSECTION); 
  if (type.isAnd()) { 
   throw new IllegalStateException("Operation must be either OR or XOR");  
  } 
  EventDescriptor descriptor = events.get(event); 
  // check that event is known 
  if (descriptor == null) { 
   throw error(new EventException(type, EventException.ErrorType.UNKNOWN_EVENT, event)); 
  } 
  // add the event to current subset, ensuring that it is unique 
  if (subset == null) { 
   subset = new BitSet(events.size()); 
  } else { 
   if (subset.get(descriptor.index)) { 
    throw error(new EventException(type, EventException.ErrorType.DUPLICATE_EVENT, event)); 
   } 
  } 
  subset.set(descriptor.index); 
 } 
 /** 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 41 
 

  * Finalizes a group of intersecting events by defining their probability. 
  *  
  * @param probability is in [0.0 .. 1.0] 
  * @throws ProbabilityException is thrown if there were no events or the intersection has been defined before 
  */ 
 public void intersection(double probability) throws ProbabilityException { 
  ensureProbabilityIsValid(probability); 
  proceed(State.GATHERING_DEPENDENCIES); 
  if (type.isAnd()) { 
   throw new IllegalStateException("Operation must be either OR or XOR");  
  } 
  // keep track of subsets 
  if (subset == null) { 
   throw error(new EmptyEventSetException(type, true)); 
  } 
  // check that subset is unique (singleton subsets are already defined as events) 
  if (subset.cardinality() == 1 || !subsets.add(subset)) { 
   // gather the subset 
   Set<E> events = new HashSet<E>(this.size); 
   for (Map.Entry<E, EventDescriptor> entry : this.events.entrySet()) { 
    if (subset.get(entry.getValue().index)) { 
     events.add(entry.getKey()); 
    } 
   } 
   throw error(new NonUniqueEventSubSetException(type, events)); 
  } 
  // add the intersection probability 
  int count = subset.cardinality(); 
  double k = count % 2 == 0 ? -1.0 : 1.0; 
  if (type == OperationType.XOR) { 
   k *= (double) count; 
  } 
  result += k * probability; 
  subset = null; 
 } 
 /** 
  * Computes the result of operation application. 
  *  
  * @return resulting probability 
  * @throws ProbabilityException is thrown in case if there were no events defined or resulting value is not a probability 
  */ 
 public double result() throws ProbabilityException { 
  // perform the computation only once, after that result remains available 
  if (proceed(State.DONE)) { 
   // probability computation could be performed with at least one operand 
   if (size == 0) { 
    throw error(new EmptyEventSetException(type, false)); 
   } 
   // all events, not covered by conditions, are considered independent 
   if (type.isAnd()) { 
    for (EventDescriptor value : events.values()) { 
     result *= value.probability; 
    } 
    // consider permutations and divide by n! 
    if (type == OperationType.PRIORITY_AND) { 
     for (int i = 2; i <= size; i++) { 
      result /= (double) i; 
     } 
    } 
   } 
   // dispose temporary data 
   this.events = null; 
   this.subsets = null; 
   this.subset = null; 
  } 
  if (!isValid(result)) { 
   throw error(new InvalidProbabilityException(type, result)); 
  } 
  return result; 
 } 
 /** 
  * Displays operation type, state of computation and result 
  *  
  * @see java.lang.Object#toString() 
  */ 
 @Override 
 public String toString() { 
  return "operation type = " + type + ", state = " + state + ", result = " + result; 
 } 
 /** 
  * Checks that value belongs to [0.0 .. 1.0] hence is a valid probability value 
  *  
  * @param value is a double value 
  * @return whether it is a valid probability value 
  */ 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 42 
 

 public static final boolean isValid(double value) { 
  return 0.0 <= value && value <= 1.0; 
 } 
 /** 
  * Defines all possible operations 
  */ 
 public static enum OperationType { 
  /** 
   * Represents an intersection of events and is computed by P(A)P(B|A)P(C|A and B)... 
   */ 
  AND,  
  /** 
   * Represents a union of events and is computed by P(A)+P(B)+P(C)-P(A and B)-P(A and C)-P(B and C)+P(A and B and 
C) 
   */ 
  OR,  
  /** 
   * Represents a union of disjoint parts of events and is computed by P(A)+P(B)+P(C)-2P(A and B)-2P(A and C)-2P(B 
and C)+3P(A and B and C) 
   */ 
  XOR,  
  /** 
   * Represents an intersection of events when a specific permutation matters and is computed by P(A and B and C) 
/ 3! 
   */ 
  PRIORITY_AND; 
  /** 
   * Distinguishes between And and Or operations 
   *  
   * @return whether this is an And operation 
   */ 
  public boolean isAnd() { 
   return this == AND || this == PRIORITY_AND; 
  } 
 } 
 /** 
  * Introduces an exception, that can occur during probability computation. 
  */ 
 public static abstract class ProbabilityException extends Exception { 
  /** 
   * Serial version 
   */ 
  private static final long serialVersionUID = 9200443022773996544L; 
  /** 
   * Operation, during which an error occurred 
   */ 
  private OperationType operation; 
  /** 
   * Creates exception  
   *  
   * @param operation is a constant 
   * @param message is a description string 
   */ 
  public ProbabilityException (OperationType operation, String message) { 
   super(message); 
   this.operation = operation; 
  } 
  /** 
   * Operation, during which an error occurred 
   *  
   * @return constant 
   */ 
  public OperationType operation() { 
   return operation; 
  } 
 } 
 /** 
  * Event exceptions are thrown when sets of events, used for 
  * probability computation, do not describe a valid formula 
  */ 
 public static class EventException extends ProbabilityException { 
  /** 
   * Serial version  
   */ 
  private static final long serialVersionUID = -4405487449358891842L; 
  /** 
   * Type of error 
   */ 
  private ErrorType error; 
  /** 
   * Event that triggered the error 
   */ 
  private Object event; 
  /** 
   * Create the error 
   *  



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 43 
 

   * @param operation is a constant 
   * @param error is a constant 
   * @param event is an event 
   */ 
  public EventException(OperationType operation, ErrorType error, Object event) { 
   super(operation, error.message + event); 
   this.error = error; 
   this.event = event; 
  } 
  /** 
   * Get type of error 
   *  
   * @return is a error constant 
   */ 
  public ErrorType error() { 
   return error; 
  } 
  /** 
   * Get event that triggered the error 
   *  
   * @return is an event 
   */ 
  public Object event() { 
   return event; 
  } 
  /** 
   * Introduces a number of errors 
   */ 
  public enum ErrorType {  
    
   /** 
    * Event, used in constraint is not declared 
    */ 
   UNKNOWN_EVENT("Event, used in constraint is not declared : "),  
    
   /** 
    * Event is used twice while defining constraints 
    */ 
   DUPLICATE_EVENT("Event is used twice while defining constraints : "),  
    
   /** 
    * Event is either not declared or is used twice 
    */ 
   UNKNOWN_OR_DUPLICATE_EVENT("Event is either not declared or is used twice : "); 
    
   /** 
    * Error message 
    */ 
   public final String message; 
    
   /** 
    * creates a constant 
    *  
    * @param message is some string 
    */ 
   private ErrorType(String message) { 
    this.message = message; 
   } 
  }; 
 } 
 /** 
  * Sets and subsets of events can't be empty. Otherwise this exception is thrown. 
  */ 
 public static class EmptyEventSetException extends ProbabilityException { 
   
  /** 
   * Serial version  
   */ 
  private static final long serialVersionUID = 7719585903447029507L; 
   
  /** 
   * Distinguishes set from subset condition 
   */ 
  private boolean isSubSet; 
   
  /** 
   * Creates exception 
   *  
   * @param operation is constant 
   * @param isSubSet distinguishes set from subset condition 
   */ 
  public EmptyEventSetException(OperationType operation, boolean isSubSet) { 
   super(operation, isSubSet ? "Subset of events is empty" : "Set of events is empty"); 
   this.isSubSet = isSubSet; 
  } 
   



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 44 
 

  /** 
   * Distinguishes set from subset condition 
   *  
   * @return boolean value 
   */ 
  public boolean isSubSet() { 
   return isSubSet; 
  } 
   
 } 
 /** 
  * When a subset of events is used more then twice defining constraint, this exception is thrown. 
  */ 
 public static class NonUniqueEventSubSetException extends ProbabilityException { 
   
  /** 
   * Serial version  
   */ 
  private static final long serialVersionUID = 438736623616920733L; 
   
  /** 
   * Set of events encountered twice 
   */ 
  private Set<Object> events; 
   
  /** 
   * Create exception 
   *  
   * @param operation is a constant 
   * @param events is collection of events 
   */ 
  public NonUniqueEventSubSetException(OperationType operation, Set<? extends Object> events) { 
   super(operation, "Subset of event has been encountered twice"); 
   this.events = Collections.unmodifiableSet(events); 
  } 
  /** 
   * Set of events encountered twice 
   *  
   * @return unmodifiable set 
   */ 
  public Set<Object> events() { 
   return events; 
  } 
 } 
 /** 
  * During a probability computation an error could occur: resulting value is outside of [0.0 .. 1.0]. 
  * In this case this error is thrown. 
  */ 
 public static class InvalidProbabilityException extends ProbabilityException { 
  /** 
   * Serial version 
   */ 
  private static final long serialVersionUID = -1857640398893155872L;  
  /** 
   * Invalid probability value 
   */ 
  private double value; 
  /** 
   * Create exception 
   *  
   * @param operation is a constant 
   * @param value is a double value 
   */ 
  public InvalidProbabilityException(OperationType operation, double value) { 
   super(operation, "Computation resulted in an invalid probability : " + value); 
   this.value = value; 
  } 
  /** 
   * Invalid probability value 
   *  
   * @return a double 
   */ 
  public double value() { 
   return value; 
  } 
 } 
 /** 
  * Describes the internal states of computation 
  */ 
 private enum State { 
  GATHERING_EVENTS, GATHERING_DEPENDENCIES, GATHERING_CONDITIONAL, GATHERING_INTERSECTION, DONE, ERROR 
 } 
 /** 
  * A record that stored probability of event and its index number (upon insertion) 
  */ 
 private class EventDescriptor { 



Master's thesis: Analysis of ISO26262 standard application in development of steer-by-wire systems 45 
 

  /** 
   * Is a valid probability 
   */ 
  public final double probability; 
  /** 
   * Is index of event, >= 0 
   */ 
  public final int index; 
  /** 
   * create record 
   *  
   * @param probability is a valid probability 
   * @param index is index of event, >= 0 
   */ 
  public EventDescriptor(double probability, int index) { 
   assert 0.0 <= probability && probability <= 1.0; 
   assert 0 <= index; 
   this.probability = probability; 
   this.index = index; 
  } 
  @Override 
  public String toString() { 
   return "index = " + index + ", probability = " + probability; 
  } 
 } 
} 


