A

147

\

N

R

b

)
=5

\

3
ol
Y

W CANANCE > W

Robustness Testing of AUTOSAR Software
Components

Master of Science Thesis
Computer Systems and Networks Programme

VICTOR JANSSON
JERRY LINDAHL
Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, 2013

The Author grants to Chalmers University of Technology and University of
Gothenburg the nonexclusive right to publish the Work electronically and in
a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants
that the Work does not contain text, pictures, or other material that violates
copyright law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about
this agreement. If the Author has signed a copyright agreement with a third
party regarding the Work, the Author warrants hereby that he/she has ob-
tained any necessary permission from this third party to let Chalmers Uni-
versity of Technology and University of Gothenburg store the Work electron-
ically and make it accessible on the Internet.

Robustness Testing of AUTOSAR Software Components

VICTOR JANSSON
JERRY LINDAHL

©VICTOR JANSSON, June 2013
©JERRY LINDAHL, June 2013

Examiner: JOHAN KARLSSON

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone +46 (0)31-772 10 00

Cover:
A photo taken by Lothar Schaack from the VW factory test track in 1973

Bundesarchiv, B 145 Bild-F038805-0031 CC-BY-SA
License: Creative Commons Attribution-Share Alike 3.0

Department of Computer Science and Engineering
Gothenburg, Sweden June 2013

Abstract

The increasing complexity of software in modern automotives is currently
leading to a greater interest in robustness testing of software components.
Furthermore, the introduction of industry standards within functional safety,
such as ISO 26262, raises the need for methods suitable for software testing
within the latest frameworks. In this master’s thesis an automatic tool for
robustness testing of AUTOSAR software components (SW-C) is presented.
By using the interface specification delivered with every SW-C the tool exe-
cutes a robustness testing campaign based on the data types of each port of
the interface. As an interface specification is attached to every SW-C, both
white-box and black-box components can be tested. A wrapper surounding
the SW-C under test injects input selected from a library consisting of care-
fully selected values. The tool demonstrate that data-type based robustness
testing is a highly suitable method for future software development in the

AUTOSAR standard.

Keywords: ISO 26262, AUTOSAR, robustness testing, fault injection,
software components

i

Acknowledgements

We would like to express great appreciation to our supervisor Prof. Johan
Karlsson at Chalmers University of Technology. We are particularly grateful
for the assistance given by Johan Haraldsson and Mafijul Islam who contin-
uously helped the project move forward by giving both encouragement and
technical assistance. It was a joy working at Volvo Group Trucks Technology
and with the staff at the department of Electrical and Embedded Systems of
Advance Research and Technology who provided all we needed and also al-
lowed great freedom during the project. A special acknowledgement is given
to Vinnova who provided financial support and made the project possible.

il

CONTENTS CONTENTS

Contents
(1__Introductionl 1
1.1 Research Question and Scope| 2
(.2 Related Workl oo 2
(.3 Stakeholdersfo 3
(1.4 Project Procedurel. 3
(1.5 Report Outlinel 4
2 Taxonomy of Dependable Computing| 5
[3 Related Technologies| 7
3.1 AUTOSARI 7
B.1.1 The AUTOSAR Abstraction| 7
B.1.2 The AUTOSAR ECU Abstractionl. 7
[3.1.3 Software Component| 8
[3.1.4 Software Component Communication| 8
B.1.5 Run-time Environment] 9
3.1.6 Virtual Functional Bus| 9
[3.1.7 Optimizations during RT'E Generation| 9
(3.2 Fault Injection| oo 10
[3.2.1 T'he General Fault Injection Environment|. 11
13.2.2 Fault/Error Modell 12
3.3 Selection of Test Values 13
[3.3.1 Behavioral Specification| 13
[3.3.2 Input Categorization and Fault Masking| 13
[3.3.3 Data-Type Based Test Values 14
[3.4 Evaluation of Functional Satety| 14
[3.4.1 Functional Safety| 15
3.42 ISO 26262 15
[3.4.3 Benchmarking and BeSate] 15
[4 Implementation| 16
[4.1 Hardware Setup| 16
[4.2 Developement Software[. 16
4.3 AUTOSAR Systems Used During Development| 16
4.4 Tool Architecturel 17
45 User Process. 17
(4.6 The Wrapper| 19
[4.7 The Test Algorithm|. 19
[4.8 Mapping of Monitor Values 20

v

CONTENTS CONTENTS
[b_FEvaluationl 21
B Measurementso 21
[b.1.1 Campaign Time Duration| 21

[b.1.2 Memory Footprint| 21

p.1.3 Timing Constraints| 22

[>.2 Experimental Experiences| 22
(5.3 Using the Tool for Fuzzing| 23
6__Discussionl 24
[7__Conclusionl 26
8 Future Workl 27
[Referencesl 28

1 INTRODUCTION

1 Introduction

An important trend in the modern automotive industry is the rapidly in-
creasing amount of software in new cars, trucks, and buses. Common expec-
tations are that this trend will continue for future decades [I], and as more
and more features are introduced through software the system complexity in-
creases. Furthermore, as digital systems are given responsibility over essential
and safety related functions, the requirements for their reliability grow. This
shift towards increased reliance on digital systems and software has encour-
aged the development of the industry-wide ISO 26262 standard [2] which
aim to maintain the functional safety of road vehicles. ISO 26262 concerns
the design, development, and production process of electric/electrical (E/E)
systems and provides requirements on the complete life-cycle of E/E systems
within road vehicles.

AUTOSAR [3] is an evolving standard for software development in the
automotive industry and is motivated by the increased complexity of auto-
motive E/E systems. It is designed as a new approach to software develop-
ment within vehicles and aims to deal with several issues which the industry
faces, including compliance to ISO 26262. The automotive industry consid-
ers AUTOSAR to be an important step towards a modular approach to
software development [3]. Modularity facilitates code reuse and integration
of third-party components which is likely to reduce the development cost
when introducing new features.

ISO 26262 require robustness testing of the software units of a system and
the industry see a need for tools performing robustness testing of AUTOSAR
components. Robustness of systems and software is an established area of
research in academia. In 1996 a DARPA funded project called Ballista [4]
was started at the Carnegie Mellon University. The project aimed primarily
on robustness testing of operating system interfaces by looking at the data
types of the parameters to each interface. This testing method proved to
be successful at finding defects even in supposedly well tested and robust
interfaces. Koopman et al. [4] conclude the choice of basing test values on
parameter data types was especially successful.

AUTOSAR components have clearly defined interfaces and communica-
tion is provided by a virtual bus. This enables middleware to monitor and
modify communication between software components, which allows imple-
mentation of robustness testing. A successful robustness testing suite will
be useful to developers for improving robustness and functional safety of
software, or for evaluation and comparison of component robustness when
deciding upon the component suitability.

In this thesis we present a tool which can perform robustness testing of

1.1 Research Question and Scope 1 INTRODUCTION

AUTOSAR SW-Cs using a technique inspired by the Ballista project. We call
this technique data-type based robustness testing as test values are based on
the data type specification of the interfaces to SW-Cs.

1.1 Research Question and Scope

The focus of this master’s thesis is to examine the possibilities of the data-
type based approach to software robustness testing within the AUTOSAR
framework. We do this by presenting a robustness testing tool for AUTOSAR
software components. In the tool the test cases are automatically generated
by analyzing of the interfaces specified in the AUTOSAR software compo-
nents’ XML interface specification.

1.2 Related Work

The first research covering fault injection can be traced back [5l [6] to Mills
[7 work at IBM in 1972. For two decades fault injection was mainly used
as a way to emulate hardware faults. In 1996 Koopman et al. [4] started
the Ballista project at Carnegie Mellon University. Software faults were in-
tentionally injected into operating systems APIs for robustness testing. The
Ballista projected was considered successful as it found several vulnerabilities
in commercial software. Koopman also introduced the CRASH scale in [§]
which is a common way for grading the severity of robustness vulnerabilities.
Yu et al. [5] published in 2003 a paper summarizing the state of the art of
fault injection as by then. The definitions given in that paper are still highly
useful. Shahrokni and Feldt [9] recently published a systematic overview of
research on software robustness and conclude the need for research on real
world systems. Cotroneo et al. describes in [10] a method of assessing the ac-
curacy when performing software fault injection on black boxes compared to
white boxes. The accuracy of the injection of a specific software fault is lower
when working with compiled binary code compared to when the source code
is available. Fuzzing [11] is another approach to robustness testing where ran-
dom input is directed into applications. A drawback of this approach is the
large amount of excessive tests [12]. Lu et al. [I3] introduces a framework to
design robust software for multi-layered software in the automotive domain
such as AUTOSAR. Piper et al. discuss how an AUTOSAR dependability
assessment may be performed of AUTOSAR components by instrumenting
either source code, header files or object files [14]. In [12] a methodology to
evaluate the quality of commercial off-the-shelf (COTS) is presented by Voas.
The use of system-level fault injection is promoted for such an evaluation.

1.3 Stakeholders 1 INTRODUCTION

The work presented in this report builds upon the conclusions and imple-
mentations from the master’s thesis by Haraldsson and Thorvaldsson [15].
They evaluated software fault injection to be a viable technique for AU-
TOSAR based systems. The authors to this report recognize a need for easy
and practical robustness testing of such systems in a real world setting.

1.3 Stakeholders

The Department of Electrical and Embedded Systems of Advanced Tech-
nology and Research at Volvo Group Trucks Technology is currently taking
part in a research project called BeSafe which aims "to identify benchmark
targets in automotive electronics, define benchmark measures and a method-
ology for performing and using such benchmarks” [16]. BeSafe is funded by
Vinnova (Swedish Governmental Agency for Innovation Systems) and the
consortium consists of six partners: Volvo AB, Volvo Cars Corporation, Sca-
nia AB, QRTECH, Chalmers University of Technology and SP Technical
Research Institute of Sweden. This thesis aims to assist the goal of BeSafe
by investigating data-type based fault injection techniques for AUTOSAR
software components.

1.4 Project Procedure

Peffer et al. [I7] presents a methodology with six activities suitable for con-
duction of design science research in information systems. This methodology
is constructed as a tool for research where the creation of an artifact is in
focus. The six activities, shown in figure [1, and often referred to as steps,
include problem identification and motivation, definition of the objectives
of a solution, design and development, demonstration, evaluation, and com-
munication. This master’s thesis is initiated by the stakeholders who have
identified and motivated the project. The authors of this thesis have together
with the stakeholders agreed upon the definition of the objective. The design
and development is an important and essential part of our project process
as we implement a proof of concept software, i.e., the previously referred
to artifact. The ordinary procedure at Chalmers University of Technology
deals with academic demonstrations, but meetings with the supervisors are
also part of the demonstration step. Evaluation is done on a regular basis
by supervisors, the authors of this thesis, stakeholders and ultimately the
examiner. The printed thesis together with the oral presentations represents
the last activity, namely communication. Peffer et al. [I7] explains further
that depending on the nature of the project, the first step isn’t necessarily

1.5 Report Outline 1 INTRODUCTION

Process Iteration

Problem Definition of the Desian and
Identification || Objectives of a |- g = Demonstration - Evaluation = Communication
A - Development
and Motivation Solution

Thesis Entry Paint

FIGURE 1: The methodology presented by Peffer et al. in [17].

the first activity. In this case the entry point for this thesis is the second step,
namely the definition of the objectives of the solution.

1.5 Report Outline

An introduction to the field of dependable computing is given in chapter
2 by a brief description of the common taxonomy. Chapter 3 explains im-
portant techniques and concepts related to the work of this thesis. Chapter
4 introduces the tool that has been developed to perform data-type based
robustness testing of SW-Cs in AUTOSAR. An evaluation of the tool is fur-
ther given in chapter 5. This is followed by a discussion in chapter 6 and the
conclusions are highlighted in chapter 7. Finally some proposals for future
work are given in chapter 8.

2 TAXONOMY OF DEPENDABLE COMPUTING

2 Taxonomy of Dependable Computing

This chapter will introduce common terminology used in the field of depend-
ability and is relevant for the understanding of this report. It is pointed
out by Shahrokni et al. [9] that critical systems deals to great extent with
the quality attribute dependability. Avizienis et al. [18] defines dependability
as the “ability of a system to avoid service failures that are more frequent
and more severe than is acceptable”. The dependability of a system can be
described using the following attributes:

e availability: readiness for correct service.
e reliability: continuity of correct service.

e safety: absence of catastrophic consequences on the users(s)
and the environment.

e integrity: absence of improper system alterations.

e maintainability: ability to undergo modifications and repairs.

Dependability is by Avizienis et al. [I§] given a specializing secondary
attribute referred to as robustness. The definition of robustness generally
conformed to is stated in IEEE Std 610.12 [I9] as “the degree to which a
system or component can function correctly in the presence of invalid inputs
or stressful environmental conditions”. Thus robustness can be seen as an ex-
tension to the dependability attribute of software in presence of invalid input
[9]. Fault injection can be used as a validation technique of the robustness of
software. Faults are intentionally injected into a system under test and the
following behavior is observed [5]. Fault tolerant mechanism for known faults
can thereby be tested effectively and systematically.

The root of a service failure is always a fault followed by an error. This
cause-effect chain is sometimes titled the pathology of failure [I8] and is
shown in figure 2] A fault can be introduced to a system in many ways e.g.,
by broken wires or solder, corruption of memory, or originate from a faulty
system design. Additionally, several faults and errors may be the source of
just one service failure. Note that a fault or error does not necessary imply a
service failure. A reason for this may be that the faulty value is never read,
or it is overwritten by a correct value before it’s used. A fault is dormant if
it is not currently the cause of an error. An active fault is on the contrary a
fault which is causing an error.

2 TAXONOMY OF DEPENDABLE COMPUTING

4»[Fault H Error H FailureJ—f-'

FIGURE 2: The failure pathology

Faults can be categorized into physical faults, development faults and
interaction faults. Physical faults are further classified into permanent, tran-
sient, or intermittent faults. A permanent fault is caused by an irreversible
damage, and is therefore present permanently. Transient faults are caused by
environmental disturbances, e.g., electromagnetic interference. Intermittent
faults come from unstable hardware which alternates between correct behav-
ior and incorrect behavior. Development faults are in all cases the result of
incorrect design [5]. It is a common experience to software developers that
‘bugs’ may lie dormant for long periods of time and manifest as errors for
the first time during execution in exceptional situations, such as heavy load.
This cause these faults to potentially be overseen during the development
phase. Interaction faults are fault introduced during operation of a system.
A system may implement functionality such as fault tolerance to avoid a fault
to set the system to an erroneous or a system failure state.

Considering that a system is built upon smaller components a failure in
one component can be considered a fault to another component or to the
global system. The output of one misbehaving component may propagate a
fault through a chain of components. This process is known as fault propa-
gation.

3 RELATED TECHNOLOGIES

3 Related Technologies

This chapter provides an overview of technical concepts used in this thesis
and aims to facilitate the reader’s understanding of the thesis.

3.1 AUTOSAR

AUTOSAR is a collective initiative by several large actors in the automo-
tive industry and aim to be a shared software architecture framework within
the industry. The reason behind the effort is the increased complexity of
E/E systems as the functional scope of such systems is growing larger and
larger. A mutually agreed upon architecture framework allows manufactur-
ers to compete on functionality rather than architecture. The benefits of a
shared platform include the possibility for a wide use of COTS. The man-
ufacturers, but also independent specialist software companies, can develop
general software suitable for the automotive market at large. The following
subsections introduce the main concepts of AUTOSAR and how it improves
flexibility, scalability and quality of E/E systems.

3.1.1 The AUTOSAR Abstraction

An AUTOSAR system is deployed onto one or several electronic control units
(ECUs) and each ECU encloses one or several software components (SW-C).
A shared physical bus enables communication between the ECUs by using the
hardware interface provided by the basic software (BSW) component. The
BSW consequently uses a communication protocol such as CAN, Flexray or
LIN. The run-time environment (RTE) layer implements the virtual func-
tional bus (VFB) which provides a uniform environment for SW-Cs commu-
nication. The VFB makes the system highly flexible as it allows SW-Cs to
be transferred to other ECUs or be updated without the need of additional
code changes. A schematic of an AUTOSAR system is shown in figure [4

3.1.2 The AUTOSAR ECU Abstraction

AUTOSAR specifies a layered abstraction of the ECU as shown in figure
The top level encloses applications which are providing the end-user with
functionality. Isolation of the application level allows applications to be de-
veloped independently of the surrounding environment. The applications use
an interface to the RTE for communication between applications. The RTE
also connect the applications to the operating system and hardware. In AU-
TOSAR the applications are implemented by one or more SW-Cs. [3]

3.1 AUTOSAR 3 RELATED TECHNOLOGIES

| Runtime Environment (RTE) |

AUTOSAR Infrastructure

| Hardware |

F1GURE 3: The layered architecture of AUTOSAR

3.1.3 Software Component

The SW-Cs are implementations of application functionality, however AU-
TOSAR does not specify the size of the SW-Cs. Depending on the situation
SW-Cs can be implementations of a limited function or a large set of several
functions. SW-Cs are always atomic and cannot be distributed over more
than one ECU. It is important to note that AUTOSAR does not specify how
to implement a SW-C but merely delivers the framework for successful inte-
gration of SW-Cs over the system of ECUs. Delivery of a SW-C always comes
with a formal specification of the infrastructural dependencies required by the
SW-C via XML files. The specification is used when building the complete
AUTOSAR system.

3.1.4 Software Component Communication

Each SW-C includes a well-defined interface for inter-component communi-
cation. The interface consists of ports that are either providing (PPort) or
requiring (RPort) data. The SW-Cs need to implement either a Client-Server
or a Sender-Receiver communication pattern for each port. Both communi-
cation patterns are well known techniques for data communication. In the
Client-Server pattern the initiating actor is always the client which requests a
service from a server. The client may be blocked until the service is delivered
by the server (synchronous), or it may continue its execution independently
of the server (asynchronous). The Sender-Receiver pattern facilitates multi-
casting, i.e., asynchronous messaging from one sender to multiple receivers.
The receivers may or may not act on incoming messages.

3.1 AUTOSAR 3 RELATED TECHNOLOGIES

3.1.5 Run-time Environment

The run-time environment (RTE) provides an interface for the SW-Cs to
the operating system, hardware and other SW-Cs. The RTE is customized
automatically by an RTE generation tool for each ECU to support the SW-
Cs dedicated to that ECU. An AUTOSAR standardized XML file specify
each SW-C and is used during the RTE generation. The RTE is customized
according to which ports are used and which SW-Cs the actual SW-C need to
communicate with. The implementation of the RTE is dependent on which
AUTOSAR vendor tool is used. Furthermore a vendor tool will generate the
RTE differently based on which options are used. Such an option include
optimizations of the generated code which is explained further in section

B.1.7

3.1.6 Virtual Functional Bus

The aggregation of several RTEs on different ECUs implements a distributed
communication bus, the VFB. The VFB enables software components to com-
municate independently of the underlying hardware and the organization of
ECUs. In the perspective of one SW-C it does not matter on which ECU it is
executed, the VFB will provide the means necessary for communication with
the required components. An additional benefit of the VFB is the possibil-
ity for relocation of SW-Cs to other ECUs. Relocation of SW-Cs enhances
the modularity of AUTOSAR and is useful for resource balancing between
ECUs.

3.1.7 Optimizations during RTE Generation

When several SW-Cs running on the same ECU communicate internally their
ports are normally realized as function calls. This can be optimized by the
RTE generator. Instead of read and writes on ports realized as more ex-
pensive function calls, the RTE generator may replace function calls with
less expensive macros. These macros make use of global variables which are
more efficient but also less flexible for fault injection. Furthermore the macro
optimization is vendor specific which makes automatic generation of fault
injection more complex. To make a wrapping based approach more workable
this optimization of the RTE can be disabled. One additional strong reason
for disabling optimization is that the generation relies on source code for
the SW-Cs being available. This may not be the case when testing COTS.
Optimizations are therefore discouraged.

The disabling of optimizations will cause overhead as more code will be
generated, possibly taking up more space than available on the ECU. An-

3.2 Fault Injection 3 RELATED TECHNOLOGIES

ECUI ECU Il ECU m
(o) (50 -
3
RTE (RTE] VFB RTE
(BasicSW]| [(_BasicSW]
l I l
Physical Bus

FIGURE 4: An overview of the AUTOSAR architecture as described in the
AUTOSAR specification [3].

other cause of concern is that AUTOSAR software is often constrained by
some form of real-time scheduling requirement. It is possible that disabling
optimization can cause this scheduling to be delayed; therefore this effect
must be considered for every new system tested.

3.2 Fault Injection

Fault injection is an effective technique for dependability testing and valida-
tion of E/E systems and components [5]. In a fault injection experiment a
fault is intentionally inserted into the system under test and the consequent
behavior observed. A serie of experiments is usually called a campaign. A
campaign can be run on a simulation of a system, referred to simulation
based fault injection, or on an actual deployed system, referred to execution
based fault injection.

It is useful to differentiate between hardware fault injection and software
fault injection. Hardware faults can be implemented by hardware-level mod-
ifications or by software emulating hardware faults. The injection of software
faults implies testing the resilience for software design faults.

Additionally, the use of fault injection can be categorized as invasive
or noninvasive. A noninvasive fault injection technique does not alter the
system implementation in any way. The fault is directly transferred to the
system, like in the case of pin-level injection or fault injection by ion radia-
tion. However, it is at times impossible for practical reasons to not alter the
implementation in any way when performing fault injection. Figure [5| shows
the six attributes of a fault injection technique as grouped by [5].

10

3.2 Fault Injection 3 RELATED TECHNOLOGIES

A fault injection technique is

Hardware Or | software Implemented
Implemented —
Execution Based Or Simulation Based
S
Invasive Or Noninvasive
S

FIGURE 5: The categories of fault injection

3.2.1 The General Fault Injection Environment

With the maturity of fault injection techniques the common components of
the fault injection environment have crystallized. The components as pre-
sented by Hsueh et al. [20] are enumerated below:

e fault injector: injects fault into the target

e fault library: a repository of faults

e workload generator: generates work for the target

e workload library: stores sample workload for the target

e controller: controls the experiment

e monitor: supervise and tracks the fault injection campaign
e data collector: performs data collection

e data analyzer: analyze and process the collected data

During construction of a fault injection tool all above components should
be considered, as pointed out by Yu and Johnson [5]. The location of the com-
ponents in our tool presented in this report is shown in figure [} Depending
on specific requirements components may be implemented on a separate ma-
chine or on the actual module under test (MuT). A component implemented
directly on a MuT will naturally have a larger memory footprint on the MuT
than if the component is implemented on a separate machine. However, code
executing directly on the MuT may have greater abilities to alter inputs.

11

3.2 Fault Injection 3 RELATED TECHNOLOGIES

PC 4 PC Software

Data I | Data
[Controller] [Collector Analyzer]

)

Start Experiment

ECU 4 Software
Fault Injector Monitor Component
(MuT)
Fault
Library

FI1GURE 6: The architecture of our tool with respect to the components of
the general fault injection environment.

\-

3.2.2 Fault/Error Model

For any fault injection experiment it is of importance to choose an effective
fault /error model. As described in section |2/ there is a distinct differentiation
between faults and errors, where a fault is the cause of an error. When dis-
cussing fault /error models this distinction is often quite loose. We will hereby
refer to this concept as solely a fault model, even if the nature of the fault is
an error.

A fault model can be seen as a pool from where faults are extracted. It
is very hard to prove that the model correctly represent the real fault space.
According to Yu and Johnson [5] it is common practice to assume that a fault
model is sufficient and representative to the greatest extent possible with the
experiment data, the historic data, or the results published in literature.

The effectiveness of a fault model can be measured by e.g., implementa-
tion costs (time or memory) and the details of the results. Three prominent
classes of fault models in the field of robustness testing are bit-flip, fuzzing,
and data-type based models [2I]. In the bit-flip model the impact of a fault
is simulated from changing one or several bits of a parameter. The bit-flip
model closely relates to hardware errors where a stored or transmitted bit for
an often unknown reason is changed, resulting in an incorrect value. Fuzzing
implies the injection of random values as faulty input parameters. In the data
type fault model faults are chosen dependent on the data type specification
of the parameter. The data type fault model doesn’t include randomness but
comes with a predefined list of interesting fault values for each data type.

12

3.3 Selection of Test Values 3 RELATED TECHNOLOGIES

Port(valid arg1, invalid arg2) — Non-robust behavior

Port(invalid arg1, invalid arg2) — Raobust behavior

FIGURE 7: An example of fault masking for a function with robust
handling of invalid inputs only of the first argument

3.3 Selection of Test Values

Testing all possible combinations of input is in any non-simple system a much
too time consuming task to be feasible. The goal of down-scaling a campaign
is to keep the coverage of faults high while using a smaller set of inputs. Thus,
a practical and scalable test campaign needs to limit the number of input
values. This implies the need for a sophisticated selection of test values.

3.3.1 Behavioral Specification

According to Kropp et al. [22] four components are needed for an automatic
generation of software tests. There must exist a MuT which is accompanied
with a behavioral specification. A test generation mechanism is required and
also a mechanism for comparing the behavioral specification with the results
of the execution in the MuT. When testing COTS the complete behavior
specification may be hard to obtain [22], as it is often unavailable. Fortu-
nately, robustness testing can successfully be performed with a simple and
generic behavioral specification [22]. Such a specification could simply state
that a component should not crash or hang during operation.

3.3.2 Input Categorization and Fault Masking

Input can be categorized into two groups, namely valid input and invalid
input. During a test campaign it is important to systematically generate
input from both groups. It may be suggested that there is only a need for
testing of invalid inputs. This could however result in lower coverage than
expected. As a module can have several input ports, a fault on one port can
be masked by a fault on another port. Kropp [22] demonstrates this behavior
by a module taking two arguments, where the first argument is invalid. If
the module returns an error, which would be customary for a robust node,
the second argument might not be concerned. In the case that the module
would show non-robust behavior with invalid input on the second argument
that test case would be masked by the fault on the first input. An example
of this situation is shown in figure [7]

13

3.4 Evaluation of Functional Safety 3 RELATED TECHNOLOGIES

TABLE 1: A data type test value table

Data Type | Test Values
Integer 0, 1, —1, MaxInt, MinInt
Float 0, 1.0, —1.0, +MaxDBL, £MinDBL, 7, e

3.3.3 Data-Type Based Test Values

In data-type based robustness testing proper test values need to be selected
for each type. The implementation of data types may differ between systems
depending on, for example, choice of programming language or compiler.
Therefore, knowledge about the specific implementation and use of a data
type is needed for each system under test. Drawn from this knowledge input
can be categorized as valid or invalid values. Common areas of interest are
values around the boundaries of a data type. One example is the value be-
tween positive and negative values, namely zero. Kropp et al. [22] note that
boundary values are identified from experience and give the following three
criteria when choosing data values:

e implement at least one valid value
e implement at least one of each type of invalid value

e implement boundary values

Following the above criteria the first step is to choose valid input. In the
case of an integer valid values include most values such as 2, 42, 64 and 1024.
Selection of invalid input requires knowledge about how integers are used in
the specific environment. If such knowledge is not known we can’t choose any
specific invalid values. Most values are selected from boundary values. This
include 0, 1, —1, minimum and maximum integer values. A table with some
of the normally interesting values [23] for testing of an integer or float port
is shown in table [Il

3.4 Evaluation of Functional Safety

Safety is of great concern in the automotive industry and so is the need to
display proof that substantial safety measures has been taken for a certain
product. Functional safety and benchmarking are essential concepts for the
development of safer vehicles. ISO 26262 defines functional safety to ”absence
of unreasonable risk due to hazards caused by malfunctioning behavior of
E/E systems”.

14

3.4 Evaluation of Functional Safety 3 RELATED TECHNOLOGIES

3.4.1 Functional Safety

The functional safety of a system is said to be valid according to a functional
safety standard. The functional safety of a system can only be claimed after
an independent reassurance that the requirements of the actual standard
have been met. If such an evaluation is passed the systems is said to be
certified to a certain safety level within the standard.

3.4.2 1ISO 26262

ISO 26262 is a recently introduced functional safety standard for E/E sys-
tems in road vehicles. The standard introduces requirements for evaluation of
the functional safety of an E/E system. ISO 26262 embody the full life-cycle
of the system, including management, development, production, operation,
service, and decommission of the system [2]. Product development at the
software level is considered in Part 6 of ISO 26262. It includes requirements
for initiation, specification, architectural design, unit design and implemen-
tation, unit testing, integration, and verification.

3.4.3 Benchmarking and BeSafe

Benchmarking of safety related properties for E/E systems in the automo-
tive industry is essential for the development of safer vehicles. Benchmarking
provides means of comparison between systems and components, facilitat-
ing proper selection of systems or components. BeSafe (see section is a
project initiated by several actors within the industry aiming to provide the
foundations for benchmarking of functional safety. Consequently benchmark-
ing is a way to tell if systems are fulfilling the requirements of standards such
as [SO 26262.

15

4 IMPLEMENTATION

4 Implementation

We examined the viability of data-based robustness testing in the AUTOSAR
environment by extending an existing tool provided by Volvo GTT called
DFEAT. DFEAT had the capability to extract and wrap the interface of a
SW-C. The wrapping code allows DFEAT to trigger fault injection experi-
ments on the SW-Cs from a PC and monitor its progress. We extended the
functionality of DFEAT to include automatic data-type based robustness
testing of AUTOSAR SW-Cs. DFEAT was also extended with an analyz-
ing module that can analyze the progress of data-type based campaigns and
report failures to the user.

4.1 Hardware Setup

The tool is executing on a PC connected to a physical ECU by two CAN-
busses using a USB to CAN adapter. The ECU is using a Freescale MPC5517
CPU and is further connected to the PC via a debugger module (D.M.) via
the JTAG interface of the ECU. The debugger module enables easy down-
loading of software onto the ECU and the use of additional debugger features,
such as adding break points and monitoring variable values. The two CAN-
buses isolate inter-ECU communication from communication between the PC
and the fault injector residing on the ECU under test. Figure |8 shows the
schematic of the setup.

4.2 Developement Software

The PC runs Microsoft Windows XP as operating system and the devel-
opment environment for the tool is Microsoft Visual Studio 2010. The tool
which generates AUTOSAR code in the C programming language was de-
veloped using C#. Additionally, the debugging features and downloading
of software onto the ECU is enabled by TRACE32 PowerView R2010. The
CAN-bus for the fault injector is monitored in the PC using CANoe 7.6. The
full AUTOSAR system is generated using Vector DaVinci Developer 3.0.19.

4.3 AUTOSAR Systems Used During Development

During the development and testing of the tool we used two different AUTOSAR
systems. The first system implements two SW-Cs providing the function of
a simple calculator and an adder. The calculator sends the two terms to
be added on the in-ports of the adder. The adder calculates the sum and

16

4.4 Tool Architecture 4 IMPLEMENTATION

Ust pc |USB o]

CAN 1

DM. |—TAG ECU CAN 2

FI1GURE 8: The schematic of the hardware setup

returns the sum on its out-port which is connected to the in-port of the cal-
culator. The second AUTOSAR system was a more complex brake-by-wire
system provided by Volvo GTT. The system consists of one ECU located at
each wheel and one at the brake pedal. Each ECU executes several SW-Cs
providing the required functionality such as braking the wheels, brake light
indicator, wheel speed etc.

4.4 Tool Architecture

The basic components of a system fault injection tool are introduced in sec-
tion The schematics of the tool is shown in figure [f] Depending on the
location of the components attributes such as intrusiveness, timing and con-
trollability are affected. The tool is divided into two separate domains, the
PC and the ECU. A PC program is configured for generation of wrappers for
SW-Cs and additional code allowing for data-type based robustness testing.
The compiled program from the generated code is flashed onto and executed
on an ECU. The fault injector is located in code that is wrapped to the SW-
Cs and consequently located on the ECU. Included in the wrapper is also
functionality for monitoring, the wrapper continuously sends information on
the proceedings of the experiment from the ECU to the supervising PC. The
fault injector is using a fault library also residing on the ECU. On the PC
the monitoring data is collected, allowing for analysis of the data. Located
on the PC is also the controller which can start and stop an experiment.

4.5 User Process

The tool requires two steps by the user to perform robustness testing of
AUTOSAR SW-Cs. The first step allow the user to select which SW-C ports
to be tested and select a pre-written generic xml file describing the data-type
selection. Data-type selection is explained in more detail in section |3.3.3

17

4.5 User Process 4 IMPLEMENTATION

Settings

= B!akePedaI ECUComp_Type Selection Overview

[=]- Software Components: Monitors: /25
Act_Adder
El Act_Caleulator Triggers 0/25
- RTEAPI:
El Rte_White_Act_Calculator_ PP _term_a_a Faults 025

) Parameters:(Sint32 data)
: Int32 data
Manitars:

- Triggers:
Faults
£l Balista:

H : Run a ballista campaign
- Retum Parameter: Std_RetumType
Triggers
- Faults:
Rte_Write_Act_Calculator_PP_term_b_b
- Runnables

Act_ServerAdder
 BrakeLightControl_Type
- Swe_Brake PedallnputHandler
- Swc_BrakeTorgCal
- Swe_GlbBrakeCtd
- Swc_Vehicle

Generate

Farse Code

Load Xml I

F1GURE 9: The configurator view showing the selection of performing a
ballista test campaign on the port named
Rte_Write_Act_Calculator_PP_term_a_a.

The second step concern execution and analysis of the test. The selection of
ports and data-type selection file is done using the part of the tool named
the configuration. Depending on the selections by the user the configurator
generates the code necessary for the execution of the test. The code includes
wrappers for the SW-Cs and RTE header files substituting function calls with
wrapped function calls. The wrapper is explained in more detail in section
The configurator also generates a XML file describing the selection made
by the user and information needed in the analysis step after the test is done.
The code generated by the configurator is manually compiled together with
the rest of the AUTOSAR system and flashed onto the target ECU. Figure
9 presents the configurator window.

The test is controlled by a second part of the tool named the campaign
runner. The campaign runner can start and stop the execution of the test.
It also monitors the test by storing values sent back from the SW-Cs under
test in a database. Before the analyzing step the XML file generated by the
configurator is needed for mapping of the data stored in the database with
the corresponding test value data. The mapping function is explained further
in section [4.8] Figure [I0] shows the result after a successful robustness test.

18

4.6 The Wrapper 4 IMPLEMENTATION

Double click a session nrin the list to analyze the data, Ballista <ML

Session | Time | Campaign | Count [=]
0 20130618 102525 SwIFl simple campaign 23 =
1 2013-04-1810:23:21 SWIFI simple campaign 21

2 20130617 14:0554 SwIFl simple campaign 21

3 20130617 135255 SWIFI simple campaian 61

4 20130817 134554 SWIFl simple canpaign 61

5 20130617 101216 SwIFl simple campaign 81

& 20130617 100927 SWIFI simple campaian 81

7 20130417 160305 SWIFI simple canpaign 61

g 20130617 08:41:24 SwIFl simple campaign 53 &
Oulcome [Should handie: YZN] | Exp [Time [um of samples [Monitar 1d [oritor Value | Event Type [Target Timestama [RealValue [<]
CORRECTLY_HANDLED[v] Balivta 203 E 1052 2 5 1 2 5913 H

CORRECTLY HANDLED[¥] Balista 2030418102523 3 % 2 2 221283 4

CORRECTLY_HANDLED[¥] Balista 010HIE 0529 4 % 3 2 27EE50 16

CORRECTLY HANDLED[v] Balista 20130418 102529 5 5 4 2 2022 2

CORRECTLY HANDLED[¥] Balista 2030418102523 6 % 5 2 307405 71

CORRECTLY_HANDLED[¥] Balista 13041E 10529 7 % 5 2 44273 i

CORRECTLY_HANDLED [¥] Ballista 20130418710:2529 8 Pl 7 2 498170 2147483647

CORRECTLY_HANDLED[¥] Balista 013041810529 9 % 8 2 553861 2147453648

CORRECTLY HANDLED[v] Balista 20130418 102530 10 = g 2 503928 A

CORRECTLY HANDLED[¥] Balista 0130418102530 11 % 0 2 608362 1

CORRECTLY_HANDLED[¥] Balista IZOHEIIEI0 12 % 1 2 864341 H

CORRECTLY HANDLED[v] Balista 20130418 102530 13 % 2 2 k] 4 =1
Evperiments: |3 Black-bo resuls White-bos results Black-box Handing coverage 000%

Iriections: 0 Camectly handiec: [0 Camectly handied [0 Black-box Delection caverage: 0.00%

Sigrificant 3 Only detected: 0 Only detected 0

Non sigrificant [0 False detection: [0 False detection [0 White-bes: Handing coverage: 000%

Inconect input. |0 No detection: 0 No detection 0 “White-box Detection coverage: 0.00 2% Bom

F1GURE 10: The view of the campaign runner after a successful test
campaign

4.6 The Wrapper

Wrappers have appeared in fault injection tools before [24] 25| [26] as wrappers
are an effective way of collecting and modifying data on the edge, i.e., input
and output ports, of a software component or software layer. The AUTOSAR
specification enforces a precise naming scheme for RTE function calls, which
are also the standard mean of communication between SW-Cs. As the RTE
header files are accessible these functions can be replaced using C program-
ming language macros. The modified code includes a wrapper which can in-
tercept and modify both function parameters and the function’s return value.
It is noticeable that this technique doesn’t require access to the source code of
the SW-Cs. The SW-Cs are always delivered with an XML-file which speci-
fies its ports and the ports are accessed through to function calls in the RTE.
As the naming scheme is set by the AUTOSAR specification, the macros
can, by using the xml file, easily be automatically generated to replace RTE
function calls with wrapped versions. The wrapper code is attached only to
ports selected by the user during the configuration to allow a small degree of
intrusiveness.

4.7 The Test Algorithm

The algorithm we implemented in the tool creates a deterministic campaign
depending on the number of arguments and the types of the arguments. The
tool will only inject one faulty value on one port each round. The algorithm
of the tool is given in the following pseudo code.

19

4.8 Mapping of Monitor Values 4 IMPLEMENTATION

TABLE 2: Sequence of test values injected on three ports of the same type

Seq. No. | Port 1 | Port 2 | Port 3

~| o ot | wo| b
> | | QW
= Q| | |
Q| B | | | =] >

//init:
for each port

set valid input on port
execute test

//main:
for each port
for each test value of port type
set test value on port
execute test
set valid input on port

Table [2| shows an example using three ports of the same type. The type
has three different test values which are defined as A, B, and C. A is a
considered a valid input, and B and C are invalid inputs.

4.8 Mapping of Monitor Values

During the execution of a test campaign the values injected into the MuT are
also sent to the PC. This enables monitoring and evaluation of the campaign.
The CAN bus has package size limitations and a problem may occur if a test
value is larger than the package size. This problem is avoided by not sending
the real injected value back to the PC, but simply the sequence number of
the test. The campaign runner can map the sequence number to the actual
test values. This mapping can be done because the test algorithm and the
test values for each types are known from the XML files created by the code
generator

20

5 EVALUATION

5 Evaluation

Evaluation of our tool was carried out using a small experimental system.
The system was provided by the researchers at Volvo GTT. This chapter
present our results from evaluating the tool.

5.1 Measurements

The subsections below provide measurements of intrusiveness and perfor-
mance of the tool.

5.1.1 Campaign Time Duration

A robustness testing tool for commercial off-the-shelf (COTS) should be fast.
Speed is important because a main attraction for companies opting for COTS
is to save development time. The time to set up and run a full test campaign
with the tool varies with each system and a simple campaign on a small
system can take as little as a few minutes. Large campaigns could possible
take several days. The actual execution time of a test campaign depends on
several parameters, the number of test values for each data type, the number
of ports to be tested, how frequent the ports are called, and in what order.
In a simple system with a single SW-C reading two ports, A and B, every
T'ms, the campaign duration time is T ms multiplied with the number of test
values of the type of port A added with Tms multiplied with the number
of tests values of the type of port B. Given that no timing constraints (see
section are violated during the execution of a campaign the campaign
duration can be estimated with the following formula:

Campaign time duration = Z P,xT,

=1

Where n is the number of ports, P, is number of tests for port n, and 7}, the
execution frequency of port n.

5.1.2 Memory Footprint

The memory footprint of adding the testing controller to the system is rela-
tively small (~9KB). Every port included in the test campaign uses approx-
imately 1KB. For the smallest ECUs this could potentially be a problem,
but running the test on a ECU with more memory of the same architecture
would avoid memory issues and still expose robustness weaknesses.

21

5.2 Experimental Experiences 5 EVALUATION

Function A [I | l]

Function B

Time

FIGURE 11: An execution diagram showing how the additional overhead
(dark color) extend function A’s completion time past its own period. In
this example the period of function A is equal to its maximum allowed
completion time.

5.1.3 Timing Constraints

When testing real-time systems extra care must be taken to ensure that
the test code does not force the system to violate its timing constraints
[27]. AUTOSAR SW-Cs consists of functions that are called periodically by
the RTE. It is often essential for functions to complete before the start of
the next cycle. Additionally, the functions may have a specific individual
time constraint for their completion. Functions may be interrupted by other
functions, which will prolong the completion of the previous function. It
is up to the designer of the AUTOSAR system and its scheduler to make
sure no constraints are violated. Because ports are realized as functions the
testing code is wrapped around every function under test and will extended
execution time of the function. Figure[11|shows an example where the timing
constraints are violated by the additional code.

The wrapper code is constructed to minimize intrusiveness when it comes
to execution time. The testing code for injection of a value consists of 235
machine instructions and affects one port at a time. Ports that are not cur-
rently under test return after 12 machine instructions as they do not need to
retrieve a new value. For comparison reading a value without the wrapper is
approximately 300 machine instructions long. It may be noted that the code
for reading a value may be optimized by the RTE generator as described in
section [3.1.7] and therefore faster than 300 machine instructions. Regardless,
the additional code is still considered to only marginally affect the execution
time of a function.

5.2 Experimental Experiences

Testing of the tool has been carried out on a physical implementation of the
brake-by-wire system described in section [4.3| Experiments show that lack
of redundant mechanism leaves the system vulnerable for numerous faults.
By running a campaign on a single wheel, it could be shown that it was

22

5.3 Using the Tool for Fuzzing 5 EVALUATION

easy to make the single wheel break. A single wheel breaking would force the
vehicle to rotate and potentially end up on the roadside or crash into another
vehicle. While the brake-by-wire system is more complex than the calculator
and adder (see section it is still logically trivial. No logical fallacy was
discovered in the system. Intentionally vulnerable code was introduced for
demonstration of the possible exposure of logical mistakes. The code did not
have proper boundary values, and a large value would leave the system in a
hanged state. The tool did successfully discover this weakness and we believe
that as systems becomes more complex, the likelihood of vulnerabilities such
as the one artificially introduced is increased.

5.3 Using the Tool for Fuzzing

An important aspect to any fault injection tool is the choice of fault model.
Common fault models used by fault injectors are explained in section [3.2.2]
An alternative to the data-type based model is fuzzing. Fuzzing rely on a
random generation of test values. The fault space of the data-type based
fault model can be seen as a subset of the fault space of the fuzz fault model,
as the randomly generated values may result in the same values as in the
data-type based fault model. The relationship between the two fault models
encouraged an exploration of changing the fault model used by the tool.
By randomly generating the values in the type value file the tool could be
transformed into a fuzzer for AUTOSAR SW-Cs. The approach of generating
fuzz data before the execution of the test have the advantage that it is easier
to trace back a faulty behavior to a specific faulty value. The discovery led to
the addition of a module to the tool for the generation of a fuzz-style value
selection file.

23

6 DISCUSSION

6 Discussion

Presented in this thesis is a tool for robustness testing of SW-Cs in AUTOSAR.
The tool uses a method of data type based fault injection on the interfaces of
the SW-Cs under test. To perform the injection a wrapper is used to substi-
tute the current values on the ports of the interface to values from a library.
A complete campaign includes the injection of all test values for each data
type on all corresponding ports.

A significant advantage of using a testing method based on the data
type specification is that no further assumptions on design are taken. A
more common alternative approach is to construct a test derived from the
functional specification of a component. By using the data type based method
we avoid relying on design that may be incorrect in the first place. We believe
that extra care should always be taken when there is risk of introduction of
human error, such as in the design phase.

Using a tool like the one presented in this thesis can be used to ex-
pose vulnerabilities within a system and thereby facilitate the development
process towards more robust systems. Components in AUTOSAR are often
constructed of smaller sub-components. By using the tool it is possible to
inject faults directly into the sub-components even when they are part of a
larger component. This can potentially be used to increase the understanding
of how errors propagate inside a component.

By using the tool it is apparent that a system often consists of many single
points of failure. During the evaluation of the tool we had the opportunity
to test it on a more complex physical brake-by-wire prototype. We saw that
we could easily make a single wheel break, imposing great risk on the driver.
Discovering these vulnerabilities may help the designer to understand where
to better locate countermeasures. One such countermeasure may be the in-
troduction of voters. Voters have been used extensively in the space industry
and are a common area of research. As vehicles are getting more and more
complex there may be a need of using voters also in the automotive industry.

During the evaluation of the tool simple data types were tested. As the
AUTOSAR standard expands, more types may be introduced. Pointers and
strings are possible data types which are traditionally known to introduce
'bugs’ in PC software. With the introduction of more complex data types
we see an even larger potential for data type based testing. AUTOSAR is a
standard followed by several vendors resulting in many different implemen-
tations. However, the standard is not complete and every implementation
will have its specific features. The differences between implementations can
at times be subtle and it may be hard for a designer to know all peculiari-
ties of a specific implementation. This is especially true as data types gets

24

6 DISCUSSION

more complex. In this environment we see a potential for the data-type based
method of robustness testing explored in this report. As the tool can be run
successfully without prior knowledge on the design of the component under
test, the implementation specifics are not needed to be considered by the
user of the tool.

Because of the independence to the functional specification there is small
need of configuration before running a test. This allows the data-type based
method to be easy to automate. Configuring a test on a previously untested
SW-C only takes a few clicks when using a tool like the one we present in
this report. Automation is of great importance as it leaves few openings for
mistakes by the user. Furthermore, development time and costs are important
factors when opting for third-party components, and it is valuable that the
testing of such components does not take significant time.

The tool wraps SW-C interfaces and every call to a port of the interface is
manipulated by the wrapper. However, this is not the only way to implement
fault injection on AUTOSAR systems. In [28] Lanigan et al. provides their
experiences with a technique provided by AUTOSAR called hooks in com-
bination with the software development tool CANoe. They conclude hooks
to be a feasible technique but also promote a in-depth study of the most ap-
propriate method for fault-injection in AUTOSAR. We believe such a study
to be highly valuable.

25

7 CONCLUSION

7 Conclusion

Robustness testing of AUTOSAR systems and its components is required for
compliance with the evolving standards within functional safety such as ISO
26262. In this thesis we provide a tool which can perform robustness test-
ing based on the interfaces delivered with AUTOSAR software components
(SW-Cs). The tool examines the SW-C interfaces and constructs a testing
campaign based on the data types of the ports delivered by each interface.
The data-type based method is shown to be suitable for AUTOSAR SW-Cs,
and the testing of components can be made highly automatic. An advantage
of using a data-type based method is that testing can be performed without
consideration to logical design, only the data types of the ports are consid-
ered. The injection of faults is made possible using a wrapper which surrounds
the SW-Cs under test. This allows testing of components delivered as both
white-boxes and black-boxes. The compatibility to black-boxes is an impor-
tant step towards a higher use of proprietary and third-party components, a
strong need recognized by the industry. In the construction of a robust sys-
tem all components should be robust, thus robustness tested. Furthermore,
components are often delivered in a group of sub-components. By using the
wrapping technique it is possible to target single components inside a chain
of components. This allows interesting test cases as the outcome from faults
inside a chain of components can be monitored. Data-type based robustness
testing is a highly promising technique in the AUTOSAR environment and
further research towards use on actual products is encouraged.

26

8 FUTURE WORK

8 Future Work

The AUTOSAR environment consists of several types of components and
robustness testing of a complete system may be performed on all the compo-
nents. An example of a type of component of particular interest is the BSW
as it is used as a layer between hardware to SW-Cs. The wrapper technique
used in the tool presented in this thesis is suitable for SW-Cs but may not
be suitable for other types of components. An architectural analysis of the
different components is needed to find out what technique can be used.

An important aspect of data-type based testing is the test value selection.
A thorough analysis of the data types of AUTOSAR and suitable test val-
ues would greatly enhance the effectiveness of a data-type based robustness
testing tool.

The aim of a robustness testing suite is to detect weaknesses in the system
under test. A case study of performing data-type based testing on actual
products is recommended. Such a study is useful for evaluation of using the
data-type based method in the industry.

Propagation of errors is also an inviting area of future work. Knowing the
path of errors in a system may for instance be used to help in the decision
to where to locate error detection mechanisms [29]. The tool as implemented
today is restricted to testing one ECU at a time. This is strictly an imple-
mentation limitation. With little work the tool could be extended to test
several ECUs at the same time. Such a tool could be used to study sev-
eral ECUs during one campaign and gather insights on how ECU robustness
issues affect other ECUs in the same system.

The tool presented in this master’s thesis is in large parts automated.
However, some manual steps are still needed. A fully automatic suite may
prove to be highly useful for the industry. An attempt for a fully vendor
independent tool is regarded to also be valuable. An analysis of different
implementations of AUTOSAR is proposed as a step towards a vendor inde-
pendent robustness testing tool for AUTOSAR systems.

27

REFERENCES REFERENCES

References

1]

[10]

[11]

[12]

A. Biagosch, S. Knupfer, P. Radtke, U. Naher, and A. E. Zielke, “Au-
tomotive electronics—managing innovations on the road,” McKinsey
Brochure, 2005.

ISO, Road vehicles - Functional Safety - 26262-6. 15O, 2011.
AUTOSAR, AUTOSAR Technical Overview v2.2.2. 2012.

P. Koopman, K. DeVale, and J. DeVale, “Interface robustness testing:
Experiences and lessons learned from the ballista project,” Dependability
Benchmarking for Computer Systems, p. 201, 2008.

Y. Yu and B. W. Johnson, “A perspective on the state of research on
fault injection techniques,” tech. rep., Research Report, 2001.

J. M. Voas and G. McGraw, Software fault injection: inoculating pro-
grams against errors. John Wiley & Sons, Inc., 1997.

H. Mills, On the Statistical Validation of Computer Programs. IBM,
1972.

P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz, “Com-
paring operating systems using robustness benchmarks,” in Reliable
Distributed Systems, 1997. Proceedings., The Sizteenth Symposium on,
pp. 72-79, IEEE, 1997.

A. Shahrokni and R. Feldt, “A systematic review of software robust-
ness,” Information and Software Technology, 2012.

D. Cotroneo, A. Lanzaro, R. Natella, and R. Barbosa, “Experimental
analysis of binary-level software fault injection in complex software,”
in Dependable Computing Conference (EDCC), 2012 Ninth European,
pp. 162-172, IEEE, 2012.

B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reli-
ability of unix utilities,” Communications of the ACM, vol. 33, no. 12,
pp- 3244, 1990.

J. M. Voas, “Certifying off-the-shelf software components,” Computer,
vol. 31, no. 6, pp. 53-59, 1998.

28

REFERENCES REFERENCES

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

22]

23]

C. Lu, J.-C. Fabre, and M.-O. Killijian, “Robustness of modular multi-
layered software in the automotive domain: a wrapping-based ap-
proach,” in Emerging Technologies & Factory Automation, 2009. ETFA
2009. IEEE Conference on, pp. 1-8, IEEE, 2009.

T. Piper, S. Winter, P. Manns, and N. Suri, “Instrumenting autosar for
dependability assessment: A guidance framework,” in Dependable Sys-
tems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International
Conference on, pp. 1-12, IEEE, 2012.

J. Haraldsson and S. Thorvaldsson, Software implemented fault injection
for AUTOSAR based systems. Chalmers University of Technology, 2012.

“Besafe - benchmarking of functional safety,” 2011. Available online at
http://www.chalmers.se/safer/EN/projects/pre-crash-safety/
associated-projects/besafe-benchmarking Retrieved 2013-06-08.

K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A
design science research methodology for information systems research,”

Journal of management information systems, vol. 24, no. 3, pp. 45-77,
2007.

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” Dependable and
Secure Computing, IEEE Transactions on, vol. 1, no. 1, pp. 11-33, 2004.

IEEE, IEEFE Standard Glossary of Software Engineering Technology Ter-
minology. IEEE Std 610.12-1900. IEEE Computer Society, 1990.

M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques
and tools,” Computer, vol. 30, no. 4, pp. 75-82, 1997.

A. Johansson, N. Suri, and B. Murphy, “On the selection of error model
(s) for os robustness evaluation,” in Dependable Systems and Networks,
2007. DSN’07. 37th Annual IEEE/IFIP International Conference on,
pp. 502-511, IEEE, 2007.

N. P. Kropp, P. J. Koopman, and D. P. Siewiorek, “Automated ro-
bustness testing of off-the-shelf software components,” in Fault- Tolerant
Computing, 1998. Digest of Papers. Twenty-Eighth Annual Interna-
tional Symposium on, pp. 230-239, IEEE, 1998.

D. Adams, The Hitchhiker’s Guide to the Galaxy. San Val, 1995.

29

http://www.chalmers.se/safer/EN/projects/pre-crash-safety/associated-projects/besafe-benchmarking
http://www.chalmers.se/safer/EN/projects/pre-crash-safety/associated-projects/besafe-benchmarking

REFERENCES REFERENCES

[24]

[26]

[27]

[29]

A. Baldini, A. Benso, S. Chiusano, and P. Prinetto, “Bond: An interposi-
tion agents based fault injector for windows nt,” in Defect and Fault Tol-
erance 1 VLSI Systems, 2000. Proceedings. IEEE International Sym-
posium on, pp. 387-395, IEEE, 2000.

S. Han, K. G. Shin, and H. A. Rosenberg, “Doctor: An integrated soft-
ware fault injection environment for distributed real-time systems,” in
Computer Performance and Dependability Symposium, 1995. Proceed-
ings., International, pp. 204-213, IEEE, 1995.

J. Arlat, J.-C. Fabre, M. Rodriguez, and F. Salles, “Mafalda: a series of
prototype tools for the assessment of real time cots microkernel-based
systems,” in Fault injection techniques and tools for embedded systems
reliability evaluation, pp. 141-156, Springer, 2004.

R. Hexel, “Fits: a fault injection architecture for time-triggered sys-
tems,” in Proceedings of the 26th Australasian computer science
conference-Volume 16, pp. 333-338, Australian Computer Society, Inc.,
2003.

P. E. Lanigan, P. Narasimhan, and T. E. Fuhrman, “Experiences with a
canoe-based fault injection framework for autosar,” in Dependable Sys-
tems and Networks (DSN), 2010 IEEE/IFIP International Conference
on, pp. 569-574, IEEE, 2010.

M. Hiller, A. Jhumkas, and N. Suri, “Dependable computing systems,”
pp. 407-428, 2005.

30

	Abstract
	Acknowledgements
	Introduction
	Research Question and Scope
	Related Work
	Stakeholders
	Project Procedure
	Report Outline

	Taxonomy of Dependable Computing
	Related Technologies
	AUTOSAR
	The AUTOSAR Abstraction
	The AUTOSAR ECU Abstraction
	Software Component
	Software Component Communication
	Run-time Environment
	Virtual Functional Bus
	Optimizations during RTE Generation

	Fault Injection
	The General Fault Injection Environment
	Fault/Error Model

	Selection of Test Values
	Behavioral Specification
	Input Categorization and Fault Masking
	Data-Type Based Test Values

	Evaluation of Functional Safety
	Functional Safety
	ISO 26262
	Benchmarking and BeSafe

	Implementation
	Hardware Setup
	Developement Software
	AUTOSAR Systems Used During Development
	Tool Architecture
	User Process
	The Wrapper
	The Test Algorithm
	Mapping of Monitor Values

	Evaluation
	Measurements
	Campaign Time Duration
	Memory Footprint
	Timing Constraints

	Experimental Experiences
	Using the Tool for Fuzzing

	Discussion
	Conclusion
	Future Work
	References

