

Abstract

Navigating complex documents with heterogeneous content on a modern touch-
enabled smartphone is difficult. Small screen size, limited and imprecise control
opportunities and the potential of user distraction all contribute to the challenge
of the task. This report describes a number of design considerations that the
authors believe can be implemented to help alleviate these problems, including
thumb-driven interaction and forgiving navigation. The report also describes a
prototype that exemplifies the design ideas introduced.

II

Acknowledgements

Göteborg 2012-05-14

The authors would like to extend their sincere gratitude to group supervisor
Kuchi V.S. Prasad for his contributions to the project. It was during group
meetings that the ideas of forgiving navigation and thumb-driven design were
first born. His help in discovering and exploring these ideas had a tremendously
positive impact on the project.

We would also like to acknowledge the authors of the open source software that
is used in the prototype:

• We use a UI control to flip between book pages that is based on the the
Android Viewflow control by Patrik Åkerfeld, which is licensed under the
Apache License, Version 2.0.

• We use the jsoup library developed by Jonathan Hedley to parse HTML.
The jsoup library is licensed under the MIT license.

• We use the epublib library developed by Paul Siegman to unzip and inter-
act with epub files. The epublib library is licensed under the GNU Lesser
General Public License.

We are grateful that you made your work available to the public with no charge.
This let us focus less on implementing things that were already out there, and
more on designing the interesting stuff.

III

Contents

Definitions VII

1 Introduction 1

1.1 Background . 2

1.2 Purpose . 3

1.2.1 Abandoned thesis aims . 4

1.3 Method . 4

1.3.1 Interface design methodology 5

2 Design 6

2.1 The smartphone problem . 6

2.1.1 Touch interface . 6

2.1.2 Small screen . 7

2.2 Solving the problem by design . 8

2.2.1 Thumb-driven interface 8

2.2.2 Forgiving navigation . 8

2.2.3 Content-specific views . 9

2.2.4 Advanced navigation . 9

3 Implementation details 11

3.1 Format considerations . 11

3.1.1 Format requirements and design space 11

3.1.2 Results of format pre-study 12

IV

3.2 HTML Renderer . 13

3.2.1 Webview issues with pagination 13

3.2.2 Webview issues with dedicated views 13

3.2.3 Implementing a partial HTML-renderer 13

4 Result 15

4.1 The prototype . 15

4.1.1 Start screen . 15

4.1.2 My collection . 16

4.1.3 Settings . 17

4.1.4 Open/Import (file-browser) 19

4.1.5 Read screen . 21

4.1.6 Reading overlay . 22

4.1.7 Dedicated views . 23

4.2 Un-implemented designs . 25

4.2.1 Text select dialogue . 25

4.2.2 Dedicated table view . 26

4.3 Forgiving navigation examples . 28

5 Discussion 30

5.1 Vendor guidelines vs usability . 30

5.2 The state of the prototype . 31

6 Conclusions and Future Work 32

6.1 Future research opportunities . 32

6.2 Future of the application . 33

Bibliography 35

Appendices 35

A Statement of user requirements and acceptance criteria 36

V

Definitions

3Book The Android prototype application based on the research and results
from this report.

Action bar Action bar is an user interface element in android 3.0 and greater,
showing the current activity’s associated menu options and actions.

Action overflow The action overflow is a button placed to the far right on the
action bar. Pressing it allows access to important actions relevant to the
current activity.

Activity A single, focused task that the user can do. Usually provides a new
view of the application, with unique controls and content.

Android Open source linux based operating system platform, developed by
Google. Generally used on mobile devices such as smartphones and tablets.

Control A generic term for an interactive interface element that is used to
control or interact with the software (e.g. buttons, sliders, text fields).

EPUB Short for “electronic publication”. An open e-book standard main-
tained by the IDPF.

GUI Graphic User Interface.

Hard-key A hardware button, for example, menu or back key on a smartphone.

HTML Short for “Hyper Text Markup Language”. The main markup language
for web pages.

IDPF The International Digital Publishing Forum. Maintains the EPUB-
format specification.

Re-flow The act of re-formatting a length of text to fit a different display size.

Status bar Status bar is an android user interface element showing notifica-
tions, signal strength, time etc.

Toast notification A notification overlay showing small white text in a black
rectangle which fades out accordingly, intended not to steal too much focus
from the application.

Use case A list of steps, typically defining interactions between a role and a
system, to achieve a goal.

VI

W3C World Wide Web Consortium. The main international standards orga-
nization for the World Wide Web.

VII

1. Introduction

As smartphones continue to grow in power and screen size, the variety and scope
of tasks that users wish to accomplish grows as well. Mobile e-book reading,
once the domain of large-screen dedicated reader devices, is becoming feasible
on smartphones as modern devices often feature screen sizes in excess of 3.5”
(Phone-size.com, 2012). Still, the available screen real-estate is rather limited
and navigation through complex documents can feel frustrating and restrictive.

If workspace area is the Achilles’ heel of the smartphone e-reader, then mobility
is one of its greatest advantages. While carrying only as much as one or two
physical books might require a backpack, e-books enables one to carry an entire
library in a pocket. This mobility, coupled with other benefits such as search
and annotations, makes the option to read on your phone very desirable in many
scenarios.

Currently, a number of dedicated e-book reading devices are available in the
market. Such devices often provide a strong reading experience, but they are
rarely inexpensive and often cumbersome. It is likely cheaper and more con-
venient to download an application for those that already own and carry a
smartphone.

Simple text-only fiction is not overly challenging to present in a user-friendly
manner even on a very small screen. Documents of greater complexity and user
interaction such as textbooks are another matter; they often contain figures,
tables and reference schemes. Reading such a text for its intended purpose can
entail going back and forth through the document, re-reading sections, cross
referencing facts and consulting tables, diagrams and indices.

Existing e-reader applications for Android often focus on bigger devices such
as tablets, or fail to provide strong support for complex texts. This project
explores design ideas that can be used to provide rich interaction with complex
books on small screens, while remaining easy-to-use and accessible.

1

1.1 Background

1971 The first e-book was created by Michael Hart on the 4th of July as the
initiation of Project Gutenberg, the first digital “library”.

1974 The Internet is born with the introduction of TCP/IP and the first
recorded use of the word “Internet” (Cerf et al., 1974).

1991 The Sony Data Discman, an early predecessor to modern e-readers, be-
came available for purchase (Lawinski, 2010).

1993 A combined phone-pager-fax-pda gadget from IBM, called the Simon
PDA, is released in stores. The device is even equipped with a touch-
screen. (Telecommunications).

1994 The first library website went live.

1995 Amazon.com launched as the first online bookstore. Only the store was
digital, not the books.

1997 Many newspapers were publishing content online.

1999 The Open Ebook format was created by the IDPF.

2000 Project Gutenberg reached 1000 e-books and Amazon opened its digital
book store with the same number of books.

2002 The Blackberry was introduced to the market as a phone that could also
be used for email and web browsing (Reed, 2010).

2006 Google Books was launched with the goal of providing digitized and
searchable books from partner libraries.

2007 The Open Publication Structure, also known as EPUB, supersedes the
Open eBook format.

2007 Amazon’s Kindle, one of the best known e-readers, becomes available on
Amazon.com (Lawinski, 2010).

2007 The iPhone is announced (Apple) and redefines the concept of what a
smartphone is.

2010 The iPad is released (Lawinski, 2010) along with iBooks and the iBook-
store.

List 1: Unless otherwise noted, facts are gathered from Lebert (2008).

It was recognized early in the development of computers that text was a nice
input format for bridging the gap between humans and computers. Conse-
quently, keyboards and the ASCII character encoding standard were early cre-
ations in the history of computers. At the time, most computers were used as
advanced programmable calculators for time-consuming numerical calculations,

2

but it would not be long until their aptitude for text processing was realized.
The first e-book was created in 1971 when Michael Hart typed the text of the
“The United States Declaration of Independence” into a mainframe at his uni-
versity, storing it in a simple text file. Two years later what was arguably the
first PC was released. The groundbreaking Xerox Alto was designed specifically
for document processing and printing (Thacker et al., 1979).

The first e-books were mainly technical manuals and short documents for a lim-
ited audience. Reading on a computer screen at the time might not have been
the most pleasant experience and the size of the computers made reading on
them far less flexible than reading traditional books. The ease of distribution in-
troduced by the wide adoption of the Internet made e-books more attractive but
could not make up for the downsides. An effort to change the clumsiness of e-
reading was made in 1991 with the Sony Data Discman but it was not enough to
sway the masses. In 1998 NuvoMedia’s Rocket eBook, a fairly capable e-reader
even by the standards of today made another attempt but the market was not
ready (Lawinski, 2010). E-reading only became somewhat widely adopted in
2007 with the release of the Amazon Kindle, but was not an overnight success.
While the the Kindle was a capable device, it was unable to overcome percep-
tions of e-reading as something for “techies” or “nerds”, which deterred some
from investing in the product.

Since the release of the iPad in 2010, carrying a tablet is both socially accepted
and even a status symbol. Tablets have quickly become a natural way for
accessing web content, writing notes and checking e-mail. With the introduction
of services such as iBooks and iBooks Author there are reasons to believe that
the normal way of creating and consuming books could change considerably.

1.2 Purpose

The goal of this bachelor’s project is to explore smartphone interaction design
ideas for e-reading, and to develop a prototype that exemplifies these ideas.
This prototype is named 3Book, and is intended to continue evolving after the
completion of the project.

The long-term vision for the 3Book application is to provide a reader that
meets many of the requirements of a college student reading environment while
limiting the need to carry physical copies of books. This thesis aims to explain
the research and reasoning behind the design principles used in the application.

The vision for the application has been stable throughout the project while the
focus of the project and this thesis has been more fluid. Some time was spent
researching alternate goals, which is discussed in subsection 1.2.1.

3

1.2.1 Abandoned thesis aims

The idea of supporting advanced mathematical formulae written in a structured
language was brought up in early discussions with the project supervisor. Sup-
porting formulae fit nicely into our idea of making a reader that is useful in
an academic setting. The fact that the chosen format (see the format discus-
sion in subsection 3.1.2) supports MathML made the idea even more attractive.
However, it was found that creating a rendering engine for mathematics was
too big of an undertaking, especially as pre-rendered images were found to be
an acceptable as well as the prevalent solution for displaying math in books.
Considering that MathML is a W3C recommendation it might be a worthwhile
effort to implement support for the language at a later time.

Displaying musical notation was also investigated as a possible focus of the
thesis. The idea was considered interesting and challenging as sheet music
often run into space limitations even in print, to say nothing of the difficulty
of displaying it on a small screen in a usable manner. The aim was to limit
the need of bringing physical music sheets to practice sessions and study. The
concept was found both unique and very engaging, but the scope would require
a project of its own. As music is only tangentially related to the overall aim of
the project, this idea was discarded.

In the end, while there were many interesting smartphone interaction design
angles, it was considered most prudent to first work on an application prototype
that could form a base for later undertakings.

1.3 Method

The e-reader application was partially developed under a SCRUM-like agile
regimen. At the outset of development, a list of programming tasks was drawn
up, estimated and prioritized. This resulted in a document which specified
the programming effort required to implement the e-reader application. High-
priority tasks were each assigned to a theme, and subsequently the themes were
slotted into one of the available three three-week iterations that were planned.

The original plan was later found lacking in many respects as new information
and knowledge was discovered. As time went by the actual work being done
started to diverge sharply from the plan. A much better sense of what was re-
quired in terms of programming had been achieved midway through the project,
and a new list was then drawn up. This plan was made on the basis of far more
domain knowledge and was followed throughout the rest of the project.

Since there was only three project members, a rigid division of labor was never
formulated, though each member focused on tasks appropriate to their specific
knowledge and experience. The limited workforce and 15 week time span of the
project severely restricted what was considered feasible to achieve in terms of a
complete product.

4

1.3.1 Interface design methodology

The interaction design concepts presented in this thesis were developed through
iterative prototyping. First the real-life situations where the application would
be used was considered and the solutions used in existing applications analyzed.
The analytic process can be summed up as asking four questions:

• How did other applications approach the problem?

• What are the issues with their solutions?

• How could their solutions be improved?

• What features are missing from their solutions?

Sketches of various solutions were then made, to provide a better understanding
of how the solutions would look in a real application. Figure 1.1 shows an early
concept sketch for the navigation scroll detailed later in this report. Unimple-
mented ideas like content preview and bookmarks are visible in the sketch.

Figure 1.1: Sketch of book navigation interface.

The sketches were then discussed and improved further. Once they had reached
a decent level of quality they were translated into computer graphics using an
image editing program. These concepts were then given an elementary imple-
mentation in code to test their functionality on a real device. Concepts that did
not function as intended or were shown to be bad design decisions were either
further refined and developed or else discarded.

5

2. Design

This chapter details the design considerations that is the main focus of this
project. It begins by specifying some issues with designing for reading on all
small-screen touch devices and finishes by presenting some possible solutions to
many of said issues.

2.1 The smartphone problem

The modern touch-enabled smartphone is a very young design. While lap-
top computers and PDAs have a history spanning a few decades, the modern
touch-enabled smartphone was not seen until 2007 when the Apple iPhone was
introduced to the market. This large, high-resolution touch-screen phone was
the first in a class of devices that would soon become ubiquitous; companies such
as HTC, Sony Ericsson, Nokia, Samsung and MicroSoft soon released devices
with similar form-factors and interfaces.

Processing power has long been a concern for those developing applications
for mobile devices, but in recent years the performance gap between mobile
and desktop computers has shrunk. Modern smartphones can have processor
speeds in excess of 1Ghz, and multiple core processors are becoming the norm
in higher-end phones (Wikipedia, 2012). This means that processing power
is no longer a major differentiator between mobile and desktop applications.
Instead, the main challenge is now to handle the challenges and possibilities of
the smartphone user interface. These challenges are primarily related to the
small screen and the touch interface.

2.1.1 Touch interface

Touch interfaces are often cited as the most “natural” and easy to learn human-
computer interface. Holzinger (2003) concurs, but cautions that they are not
optimal for complex tasks. Despite this natural quality, designers of touch
interfaces face a number of major constraints.

Simply translating a rich desktop UI to a smartphone is infeasible, despite the
advent of handsets that have resolutions comparable to that of a modest laptop

6

screen. The relative imprecision of touch controls coupled with the limited
physical size of the screen makes this impossible, as there is a lower limit to how
small buttons can be while still remaining usable.

Park and Han (2010) found that error rates and task completion times were
significantly higher for users interacting with 4mm touch keys as compared to 7
or 10 mm keys. Previous research by Parhi et al. (2006) also found that a size
of at least 7.7mm was required, recommending 9.2mm or larger for all-purpose
thumb use. This implies that increases in resolution will not fundamentally
change the interface design considerations, as screen size then becomes the main
constraint.

The issue of button size is important, as most users prefer to use their phone
with only one hand(Karlson et al., 2006). The thumb is the only interaction
option when the device is used in one hand. Thumb interaction makes clicks
less precise and the top corners of the screen difficult to reach (Karlson et al.,
2006; Park and Han, 2010). This creates tension with design conventions that
mandates placing significant controls at the top of the screen, for instance the
Android Design Guidelines.

Making controls too small or out of the way for thumb use limits the audience of
the application, as well as the situations in which it can be used. Such designs
force users to either have two hands available or else a stationary flat surface to
place the device on. This can prove problematic for those who are unwilling or
unable to devote both of their hands to the application.

2.1.2 Small screen

Smartphone screens are enormous both in terms of size and resolution when
compared to older bar-style mobile phones, but pale in comparison to modern
desktop monitors. While this enables designers to create interfaces for a much
wider range of applications than before, the smallness of the screen is still a
major constraint in the design of the interface.

Smartphone screen sizes generally range between 3 to 5 inches, with resolutions
between low-end 240x320 and extremely detailed 1280x800. The original Apple
iPhone is a useful mid-range benchmark both in terms of size and resolution.
Its screen measures 3.5” across and provides a (since increased) resolution of
320x480 (Phone-size.com, 2012).

At such sizes it can be a challenge to fit both content and controls onto the same
screen. This creates interesting problem loops when the low precision of touch
interfaces are taken into account. One such problem is the balance between
menu item size and number of items shown at the same time. Large items
ease understanding of and interaction with the menu, but increases the risk of
not being able to fit all items on the same page. The user must then navigate
between several screens in order to review all menu items, which is cumbersome.
However, it could be equally cumbersome to use a menu where the items have
been made small enough to fit on one page, as high precision clicks are then
required.

7

This multi-page problem is also present for non-menu content. Even modest
texts cannot fit on a single smartphone screen at acceptable font sizes. The
designer must thus provide some means of navigating between different parts of
the content, which is often implemented by letting the user “scroll” a viewport
over the content. Scrolling is an intuitive method, but several studies (e.g.
Sanchez and Goolsbee (2010) and Piolat et al. (1997)) indicate that scrolling is
detrimental to the understanding and future recall of the text.

It is even harder to fit both content and controls if the application deals with
more than one type of content (e.g. text and images), as different types of media
require different modes of interaction. Modern e-books are usually text-focused
but can contain images, tables, video and audio in addition to the main theme.
It is difficult to fit the various controls needed into an application that should
be able to handle all such media on a small screen.

2.2 Solving the problem by design

The solution to the smartphone problem is good interface design. This section
presents our solutions to the problems outlined in the previous section.

2.2.1 Thumb-driven interface

As noted in subsection 2.1.1, users often prefer to interact with their devices
using a single hand and its thumb. Ensuring that all of the functionality is
usable with a single thumb, provides benefits beyond catering to the preferences
of the users. It opens up new usage scenarios for situations when the other hand
is otherwise occupied, and creates a level playing field for those with medical
conditions that preclude the use of two hands.

Ensuring thumb-only access can be seen as a mobile variant of the “Keyboard
Only” pattern suggested by Tidwell (2005). It is important to note that de-
signing for the thumb does not imply that multi-touch gestures are prohibited;
rather, it means that there should always be a thumb-only alternative available.
One such example is providing zoom in/out buttons for image views, while still
retaining the standard pinch-to-zoom gesture in the view.

Designers concerned about cluttering their interfaces with “unnecessary” con-
trols could provide a menu option that hides the thumb-helping interface ele-
ments. This allows the users to make choices about which interface is best for
them, instead of prescribing a solution that might not be a good fit for everyone.

2.2.2 Forgiving navigation

Forgiving navigation is a design concept that was introduced to deal with low-
precision touch controls and the cramped nature of the small screen. It is all too
easy for the user to make mistakes even with generous control sizes. Designers

8

should pay attention to aspects of the interface that demand high precision from
the user as well as interactions that exact a high price when a mistake is made.

The user is not at fault for making click mistakes or misunderstanding the pur-
pose of the interface. Smartphones are a fairly new class of devices with a novel
interaction model. Over 850000 devices are activated each day in the Android
ecosystem alone (Rubin, 2012), which means that a lot of users are experienc-
ing touch interaction for the first time. Smartphones are also frequently used
“on-the-go” or in situations when the user cannot fully concentrate on their
interaction with the device. Such circumstances makes users more error prone,
meaning they could benefit from forgiving designs.

2.2.3 Content-specific views

The lack of screen real estate makes it difficult to place content and controls
on the same screen. A single modern e-book can contain several different types
of content such as text, images, tables, and video. The user interacts with
these diverse kinds of contents in different ways, and needs unique controls for
each. This is difficult to provide using only touch input, as the small screen size
restricts how many interface elements can be placed.

By shifting each type of content to its own specific view both screen and gesture
space is freed up. This allows rich interaction tailored to the specific content
that is shown. Video and audio content can use on-screen swipes to fast-forward
or rewind, while images and tables can be panned with the same action. Plac-
ing thumb-friendly interface elements is easier, as screen space is freed up by
removing controls for other types of content.

2.2.4 Advanced navigation

Textbooks are increasingly often available as e-books, and while the e-readers
of today are fairly good at displaying novels, textbooks require a device with
different capabilities. Reading a textbook is much more of a dynamic exercise
than a linear progression. Often different sections of the book is read in parallel
or cross-referenced. Footnotes and references introduces the need to jump to
a certain point in the text and then quickly return. Certain parts of the book
might be desirable to quickly jump to at any point in reading. These examples
highlight the need for excellent and multi-faceted navigation options.

Textbooks are often long and well-structured, with several hierarchical levels
of structure. This structure should be made easily accessible to the reader in
such a way as to allow the reader to get a clear overview of the anatomy of the
book. Such an overview permits quickly moving about in the text and supports
a dynamic way of reading. Efforts should be made to minimize the amount of
loading required to switch between different parts of the book with the goal of
removing any time penalties.

A crucial part of the navigation design consists of the proper use of the back-

9

button. After having looked up a reference or cross-referenced a different chap-
ter, an easy method of return should be provided to the user. Keeping a history
of navigations in memory, a simple touch of the back hardware key should
bring the reader to the original position in the text. Only major navigation
actions, such as jumping directly to a chapter or following a hyperlink, should
be remembered. This allows a user to jump to a position in the vicinity of
the target section, explore the surrounding content using the standard flip-page
forward/backward gestures, and when satisfied return to the original position.

In a scholarly context, one book is seldom used on its own. A textbook about
physics might be used in conjunction with a reference book. In such a case, easy
and quick switching between the different books is of vital importance. Each
book should have its own navigation history and switching between several open
books should be quick and effortless.

10

3. Implementation details

A large portion of the time invested in this project has been put towards creating
a prototype application as a “proof of concept” of our interaction design ideas.
This chapter describes implementation details that were critical to the creation
of the prototype.

3.1 Format considerations

One of the main arguments for mobile e-book readers is the convenience inherent
in being able to carry an entire library in one’s pocket. This vision of “one
reader, infinite books” is severely compromised by the myriad of e-book formats
that are in use1. This fragmentation is caused by publishers and e-book vendors
who often only make their texts available in a small range of formats or even
a single format, which means that the avid e-book user must keep a stable of
several reading devices and applications. A strong e-book reader application
should provide support for as many formats as possible in order to provide
greater user convenience.

Supporting multiple formats in order to present a unified reading experience is
a goal of the final product, but not necessarily of the prototype. For this reason
the code behind the prototype is focused on handling the single format, but
designed for future format extensions. This approach means that all formats
that provide a minimum degree of functionality, mainly related to structure,
can be implemented.

3.1.1 Format requirements and design space

In choosing a file format one must consider more than simple ease of implemen-
tation. The choice of file format strongly constrains the design space available as
different file formats provide different feature sets. This means that the choice
of format used in the application must be based on the requirements derived
from the design concepts.

Making a strict definition of a page size or shape was considered detrimental

1No less than 17 e-book formats are listed on Wikipedia at the time of writing.

11

to the reading experience, due to the varied screen sizes of Android devices.
Therefore it was decided that the chosen format had to be structured without
the notion of pages, so that its contents could be “re-flown” for each screen.

Presenting the information in such a manner, appropriate to each specific de-
vice, requires that the format provides a facility for separating styling from
content. The presentation is further enhanced when the format exposes seman-
tic information, as it is then easy to differentiate between distinct elements such
as headings, images and body text.

Another major requirement was access to the structure of the text. This would
support quick navigation between different parts of the document. Ideally, the
format should describe several levels of structure so that chapters, sections,
sections etc. are all accessible in an easy manner. There was also a desire
to transcend the limitations of the physical book by using the full capabilities
of the smartphone. Alongside text and images, an author should be able to
include audio and video content. This could be especially useful for educational
textbooks.

Finally, the ideal format should be an open industry standard, utilizing tech-
nologies that are simple and well-studied. Formats based on technologies that
the project members had experience with were also preferred, given the narrow
time constraints of the project.

3.1.2 Results of format pre-study

A survey was done of the popular e-book formats where the features of the
formats were assessed in relation to the requirements discussed above. EPUB
was consequently chosen as the format supported by the prototype, as it met
all of the requirements. It is an open standard maintained by the International
Digital Publishing Forum (IDPF) and based on standard web technologies such
as HTML and CSS. This means a clear division between content and styling is
present in the format. The latest version of EPUB (EPUB 3) also makes use of
new HTML5 and CSS3 features to support the embedding of video and audio,
among other advanced features.

The forgiving navigation concept presented in subsection 2.2.2 carries close ties
to ease of use and accessibility and EPUB 3 supports many accessibility features
through the integration of the Digital Accessible Information SYstem (DAISY).
Finally, EPUB is currently the most widely accepted industry standard among
XML-based formats (as opposed to e.g. PDF). Today, EPUB-books are offered
by Project Gutenberg, Google Books, iBookstore, Barnes & Noble and Sony to
name a few, and is supported by most notable e-reading devices.

12

3.2 HTML Renderer

As mentioned in the prior section, EPUB consists primarily of of HTML. At
first it was believed that this would save a lot of implementation time due
to the availability of a pre-implemented WebKit-based2 HTML viewer called
WebView. Instead, halfway through the project it was found that some features
would not be feasible to implement using WebView.

3.2.1 Webview issues with pagination

The design of the application calls for presenting text in paginated form rather
than allowing users to scroll the text. Pagination requires less interaction with
the application to read a given length of text. This allows readers to focus on
reading rather than interacting with the application.

In order to divide content into pages the application has to take the size and
resolution of the reading area into account, filling it with words until full. Doing
this in a WebView requires sending a large amount of data between a source-
controlling Java side and the browser-interacting JavaScript side. JavaScript is
about three times slower than Java in an Android environment (Pala, 2012).
This performance loss might have been bearable, but the busy interconnect
between the two systems was empirically found to be a massive bottleneck that
brought the responsiveness of the application down to unacceptable levels.

3.2.2 Webview issues with dedicated views

One of the main features of our application is dedicated and optimized views
for different types of content (see subsection 2.2.3), such as images and tables.
Implementing such views using WebView would require a large amount of Java
to JavaScript communication, which was already found to be unbearably slow.

3.2.3 Implementing a partial HTML-renderer

Since WebView did not meet the requirements of the application, another solu-
tion had to be found. As no existing component was sufficient, a decision was
made to implement a new rendering engine that would solve these issues. This
new engine was to provide full access to every aspect of the contents of the book.

A complete HTML parse library called jsoup was used to provide programmatic
access to the HTML tree structure. This tree was then converted to a linear list
form using a standard tree traversal algorithm.

The linearized HTML is rendered to a canvas on a page by page basis. Rendering
text to a canvas requires rather low-level programming but in return provides

2WebKit is the rendering engine used in the Chrome and Safari web browsers.

13

full control over what’s rendered in terms of color, typeface, font-size, font-
spacing, line-height and font-style. This control makes it possible to provide
the users with detailed options to change how the text is styled and presented.

Rendered pages are stored in a slot buffer that keeps a render of the current
page and two pages before and after the current one. This reduces perceived
render times unless the user is paging very quickly. The renderer renders a
regular page on a modern smartphone in about 50 milliseconds.

It should be noted that the renderer cannot render every tag in the HTML
specification. It has support for the tags most commonly used in EPUB files,
and is intended to evolve and grow as needed.

14

4. Result

This chapter presents the prototype that was developed to determine whether
the proposed designs were feasible to implement. It also presents some designs
that could not be implemented due to time constraints.

4.1 The prototype

This section contains screenshots and descriptions of the most important compo-
nents and screens of the prototype. The underlying interaction design principles
are described in the second part of the design chapter, and exemplified at the
end of this chapter.

4.1.1 Start screen

The start screen is designed with a “less is more” approach, presenting the user
with a minimalistic screen on application start as seen in Figure 4.1.

Only four menu options - “My collection”, “Favourites”, “Open/Import” and
“Settings” - are available on the start screen. This makes it easy for the user
to see which actions are available. The buttons, divided by a grid, cover the
remaining area of the screen. This makes them very easy to target, minimizing
the risk of unintended navigation.

The action bar on this screen only contains a search action which searches
through the collection. The search query can be a specific book title, a tag or
an author.

Below the start screen action bar is a horizontally scrolling list view of the users
recently opened books, arranged in chronological order. This provides quick and
easy access to the most recent books, without forcing the user to dig through
menus or browse their devices’ sd-card.

15

Figure 4.1: Start screen.

4.1.2 My collection

The “My Collection” activity presents the contents of the collection in three
different view fragments (see Figure 4.2). A fragment is a reusable component
or behavioural specification of an Activity. The views are Books, Authors and
Tags. The book tab shows all books, the authors tab filters books on a per-
author basis, and the tags tab filters books based on user-provided tags.

The user navigates between the tabs either by a horizontal swipe gesture or by
touching the corresponding tab. The application remembers which fragment
was last visited and displays it when the activity is relaunched.

This screen uses a split action bar. The main action bar provides quick access
to search and settings, while the bottom bar allows the user to filter and reorder
content depending on the current fragment.

Each fragment contains a list view of books, authors or tags. The items in the
book fragment can be easily distinguished due to the different book cover art on
each row. A small progress bar is shown on top of the cover art, giving the user
visual feedback on where they stopped when the book was last read. To allow
cutting through menu hierarchies, an action icon is placed to the left on each
row. This action icon allows users to invoke special rarely used actions such as

16

“delete” and “details”.

Figure 4.2: Book collection screen.

4.1.3 Settings

This screen presents basic user-adjustable settings, divided into sections to pro-
vide a better overview. As shown in Figure 4.3 the appearance of the application
adapts according to the operating system version in order to achieve consistency
and familiarity.

Settings influencing how the text should be rendered (such as margins and font-
size) are provided with a visual feedback element. The visual feedback element
is positioned so that thumb occlusion is minimized (see Figure 4.4). The most
important of these settings are also accessible from the reader screen, saving
users a few navigational steps.

The action bar on this screen provides no other actions then the up-action.

17

(a) Android 3.2 Gingerbread. (b) Android 4.0 Ice Cream Sandwich.

Figure 4.3: Settings screen on various platform versions.

18

(a) Small font size. (b) Large font size.

Figure 4.4: Visual feedback for font size setting.

4.1.4 Open/Import (file-browser)

The file-browser activity (see Figure 4.5) is launched when a user touches the
Open/Import button on the start screen. This screen contains a listview pop-
ulated with the contents of the devices’ storage. Icons are used to distinguish
directories from files and various file-types. Files that can be read by the ap-
plication are represented by a special icon. The list is populated first with
directories and then with files, with both sections sorted alphabetically. This
makes it easier for users to quickly identify their files and e-books.

The contents of the sd-card is displayed at startup, as this is the default user-
accessible root directory. Touching one of the list view items invokes different
actions depending on file-type:

Directory The contents of the directory are displayed, taking the user deeper
into the file tree.

Unsupported File Nothing happens. This list item is disabled and no vi-
sual touch feedback is provided in order to demonstrate that this is an
unsupported file.

19

Supported File The book represented by the file is opened if the file is already
present in the collection of the user. Otherwise, a dialogue is displayed.
The user can choose between opening the book immediately, importing
the book into the collection, or aborting the action. If import is chosen
the book is subsequently opened.

If a row in the displayed list represents a directory or a supported file, a checkbox
is aligned to the right of the row. A contextual action bar that allows users to
import multiple files is displayed when at least one checkbox is checked. The
checked subdirectories are recursively scanned for e-books when the action is
invoked. All import actions are cancelable, and they display a progress bar
which allows users to determine progress.

The bottom of the screen contains a bar displaying the current file path. The
main action bar on this screen has a parent directory action, which allows users
to change the directory displayed to the parent of the current directory. The
“back” button functionality is overridden in this activity. Here it invokes the
parent directory action, unless the current directory is the root directory.

Figure 4.5: File browser screen.

20

4.1.5 Read screen

The read activity is the most important screen of the application, as this is
where the users read their e-books. Users are presented with a full-screen rep-
resentation of a book page when the activity is launched. The first page of the
book is displayed if it’s the first time the book is read, otherwise the last seen
page is displayed.

The page is actually a rendered bitmap of the current content in the e-book file
(See Implementation details). As Figure 4.6 shows, no action bar is displayed
and the Android system notification bar is hidden. The bar is hidden to provide
less distraction from the reading experience and to give more room for content,
which according to Tidwell (2005) helps create a sense of flow.

Figure 4.6: Read screen.

To navigate within this screen and invoke different actions, some basic gestures
are used. These gestures all practise our ”forgiving navigation” concept:

Single tap in center of the screen Displays the “read overlay” view, the
system notification bar and the action bar. The center of the screen is
defined as the vertical box that is in the center-most 33% of the horizon-
tal space available.

21

Swipe left/right Changes the page. The sensitivity of the gesture depends
on how fast you are swiping; slow swipes require you to swipe over at
least 50% of the width of the screen, in order prevent unintentional page
changes. Left and right sides of the screen are defined by the vertical box
that is in the right- or left-most 33% of the horizontal space available.
The vertical accuracy of the swipe is unimportant as single-finger vertical
gestures have intentionally been left unused.

Tap on left/right side of the screen Changes the page. Users are required
to touch and release in the same area to prevent unintentional page changes.

It is also possible to use the hardware volume keys to change pages; volume up
switches to the next page while volume down switches to the previous page.

4.1.6 Reading overlay

The read overlay has a black background with 30% transparency to help users
feel that they are still on the same page in the book. This view also features
a chapter scroller on the bottom of the screen. This navigational scroll view
allows users to easily scroll into different hierarchical sections of the book.

Figure 4.7(a) shows the scroll view in its collapsed state. Dragging the handlebar
creates new instances of the scroll view underneath the top level scroller. These
new scrollers are are populated with items based on the structural children of
the selected item in the bottom-most scrollview. For example, dragging the
handlebar of a chapter will produce a scroller with the sections making up
that chapter. Further dragging of a section displays subsections (if available),
and so on. The first page of the chapter, section or page is shown when the
corresponding box is clicked.

Figure 4.7(b) shows the controls that allow the user to navigate between chap-
ters, parts within the selected chapter and pages within the selected part on the
same screen.

The multi-level structure is designed to make it easy to drill down to a specific
part of the document. It enables the user to quickly go back and forth between
different sections of the book once the relative distance between the sections of
interest is known, as a single fling can scroll between 10 and 60 chapters in a
very short time. If the user over- or undershoots the target it’s easy to correct
the mistake with smaller swipes.

22

(a) Collapsed navigation scroll view. (b) Expanded navigation scroll view.

Figure 4.7: Overlay view.

The action bar contains the bookmark and search functions when the overlay is
open. Choosing which actions to expose here is an important decision, as this
action bar likely is the one that will see the most use. These two actions were
chosen over other important functionality such as text-resizing and day/night-
mode, based on the expectation that users would more often like to use search
and bookmarking. Users can still access such functionality through the action
overflow icon.

4.1.7 Dedicated views

Dedicated views for non-text content is an important feature of the application.
Due to time constraints, only the image view was implemented. While fairly
simple, it is still a good demonstration of the concept.

Placing the image in its own view rather than as a part of the text view al-
lows users to see the entire image at their magnification of choice. This makes
complex diagrams or large illustrations usable for mobile users.

The design of this image view also exemplifies part of the forgiving naviga-
tion concept. It provides a thumb-friendly alternative to the common multi-

23

touch gesture “pinch-to-zoom”. A sliding zoom control is displayed when a user
touches the images, and fades away after use. Multi-touch is still available, but
the redundant controls give the users greater flexibility without being overly
distracting. This design is fully inclusive of those who only use one thumb.

Images that fit entirely inside the reading area do not need a special view and
are simply shown as-is. Larger images are provided with a wrapper around a
cropped thumbnail of the image. This wrapper, as shown in Figure 4.8 has a
distinct trigger button. This helps differentiate between the two cases, and also
aids user discovery of the full-screen functionality.

Figure 4.8: Image object with clickable wrapper.

24

Figure 4.9: Image view with thumb-friendly zoom control visible.

4.2 Un-implemented designs

This section covers some design concepts which were left unimplemented due to
time constrains.

4.2.1 Text select dialogue

One unimplemented design is the interactive text select dialogue shown in
4.10(a). Users can select text by performing a long-press on any text element in
the read activity. The pressed word changes background color to indicate its se-
lected state and two draggable “handlebars” are displayed to the left and right
of the selected word. These bars can be dragged to change what is selected.
Once the user taps the range of text the text select dialogue is displayed.

This dialogue mimics the design of the convenient “contact card dialogue”
known in Android 4.0 but provides different functionality. Different tabs can
be selected for various features as in the contact card dialogue. The figure
illustrates real-time search results from Google since the “G” tab is selected.
Wikipedia results and word definitions are similarly displayed while the “share”
tab provides sharing options. A tab label is also provided since the icon metaphors

25

are not completely self-explanatory and could have multiple meanings.

The dialogue provides shortcuts to actions that would otherwise require the user
to launch several other applications. The dialogue thereby helps the users to
maintain focus on reading since they stay within the application. For example,
if a user touches a Google result from the list, the browser immediately displays
that result and a simple back press takes the user back to the reading application.

(a) 3Book text interaction dialogue. (b) Android 4.0 contact card.

Figure 4.10: Interactive features with a selected text compared with legacy
contact card. From left to right: Google search, wikipedia search, in-book
search and sharing options.

4.2.2 Dedicated table view

Figure 4.11 illustrates another unimplemented design. Like the dedicated image
view, this view is optimized for one type of content: tabular data.

Tables are shown in the reading view as a thumbnail surrounded by a wrapper
with a distinct “view” button, similar to how large images are presented. Touch-
ing the button launches the table view, which displays the data in a zoomed
out state, as shown in 4.11(b).

Zooming the data can be done with a pinch-to-zoom gesture or by using the

26

zoom controls, which are located in the bottom of the screen to maintain con-
sistency with the rest of the application. Each individual row and column are
resizable via the “handlebars” that are set in the space between two such el-
ements. Double-tapping any header item or row number adjusts the cell size
to fit the content entirely. A swiping gesture over the cells will pan the data
viewport while header items and row numbers remain locked in position.

Rows and columns can be long-pressed to bring up a menu which offers the user
the option of moving or hiding the row or column. A “hidden” row or column
still takes up a few pixels of real estate which the user can zoom in and long
press to display a menu option to restore the column to its previous size.

Tapping a column header causes the application to attempt to sort the table in
ascending order based on the content of that column. A second tap reverses the
sort order while the third tap brings the table back to its unsorted state.

This specialized table view provides more interactivity compared to a standard
HTML table. The resizing, moving and hiding options let the user configure
the table to focus on the parts of the table which interest them. These options,
together with the zoom feature, also help reduce the need for horizontal scrolling,
which has been found to greatly increase user seek time and reduce usability
(Kim and Albers, 2003).

(a) Zoomed in table. (b) Zoomed out table.

Figure 4.11: Tabel data in dedicated view.

27

4.3 Forgiving navigation examples

One of the chief principles developed during the project has been the notion of
forgiving navigation discussed in subsection 2.2.2. Being an extension of Tid-
well’s (2005) “safe exploration”, forgiving navigation can and has been applied
in all parts of the application.

One example of how forgiving navigation has been considered in 3Book is how
progressing through the book is done. On the read screen, users are limited to
progressing by pagefulls of content through touching the edge of the screen or
swiping across it. Scrolling, such as when reading a web page, is disabled since
this interaction promotes frequent or continuous scrolling while reading. Instead
the application itself determines how much content fits on the screen presents
this, requiring the least amount of cognitive effort from the reader. This makes
for a transient page-flipping experience which helps the reader to focus on the
content.

Disabling vertical scrolling also hold the merit that vertical movements during
swiping can be ignored. This means a swipe doesn’t have to be perfectly horizon-
tal to work and making page-flipping less error prone. In contrast, the popular
book-reading application Moonreader+ supports both paging and scrolling of
content, but an inexact page-flip swipe can be interpreted as a page scroll action,
with unexpected results.

Another forgiving navigation method is the chapter scroller described in the
section “Reading overlay”. The user is free to browse through the different
chapters without any change to the current reading position. If the correct
chapter or section is found a jump to the new position is achieved through
clicking it’s box in the scroller.

The boxes representing a position within the book are all very large (each side is
longer than 15 mm), which makes misclicks unlikely (Park and Han, 2010; Parhi
et al., 2006). Misclicks that still occur are easily corrected, as very few items
are shown at a time. The user can simply bring up the scroller with another
tap and re-select the correct item, which is likely adjacent.

In order to expand a chapter into a list of sections the chapter’s box has to be at
the center of the scroller. Positioning the box correctly can be finicky when done
manually, so the center-most button is automatically positioned in the middle
of the scroller once the user stops touching the screen. The user can then either
click the box to display the chapter, or drag the handlebar upwards in order to
explore the sections of the chapter. The same goes for the expanded scroller,
where clicking takes the user to the section and dragging exposes sub-sections
or pages.

The greatest downside of the design of the chapter scroller is the rather low
information density, which makes it more difficult to get a wide overview of the
breadth of content at a certain level. This is a problem for users that are not
acquainted with the overall structure of the book. For this reason, a traditional
“top-down” table of contents is available on a separate screen, which presents a
wide, rather than a deep, view of the contents.

28

In contrast, Aldiko (a popular e-book reader), uses a “seekbar” component to
navigate within a book (See Figure 4.12). This works rather well for short
books, but a large number of pages requires extreme precision on the part of
the user, as only a few pixels of movement could result in jumping an entire
chapter.

Figure 4.12: Aldiko book reader application showing overlay.

29

5. Discussion

The final designs and principles are discussed at length in chapter 4 and sec-
tion 2.2 but many times in choosing between solutions, several good points has
been made both for and against the final choice. This chapter discusses some of
the design choices made, the current state of the prototype and highlight some
examples of how design principles has been worked with in the interface.

5.1 Vendor guidelines vs usability

One major discussion during the course of the project has been whether to
adhere to the Android design guidelines or design the application based entirely
on our own research and ideas. Android is an operating system used on many
different devices and as such it is difficult to create a standard that fits every
single device perfectly. Several guidelines prescribe design-patterns that seem
to favor two-hand manipulation. For large android devices (e.g. tablets) this
is a good approach but we consider it important that smartphones are adapted
for comfortable one-handed use.

The Android design guidelines provided by Google (2012) mandates that design-
ers place an action bar at the top of the screen. The action bar is supposed to
contain important and commonly used functionality, but Park and Han (2010)
found that the users in their study considered it inconvenient to reach for the
corners of the screen, regardless of button size. While larger buttons consider-
ably reduced the error rate for such reaching motions, user satisfaction remained
low. Our dedication to both thumb-friendly interfaces and the guidelines forced
us to make a choice about the action bar.

The greatest advantage of not following the design guidelines is that it frees us
to design a UI that fits perfectly with the intended devices and users. With
another design, buttons could be placed in a more ergonomic manner for thumb
navigation. Another benefit is that the interface can be designed in a more
recognizable way, differentiating 3Book from other competitors on the market.

In the end, it was decided to follow the design guidelines. Apart from being a
recommendation from the developers of Android, there are several reasons for
adhering to them. It makes the application feel “native” to the OS and users can
easily understand the interface due to having seen the most important controls

30

in other apps. It also reduces time of development since accepting the guidelines
is much faster then developing an alternative design. UI-elements such as the
action bar are already implemented in the OS or available through third parties
for legacy versions of Android, which further reduces development time. Finally,
The data of Park and Han (2010) suggests that while users don’t like reaching
for the corners, they can still do so with reasonable speed and accuracy as long
as the buttons are sufficiently large.

5.2 The state of the prototype

In the beginning of the project we tried to make a reasonable estimate of how
many features could be completed during the course of the project. This esti-
mate was largely guesswork since no project member had much experience with
the technologies involved. As the project progressed a better picture of what
each feature entailed in terms of programming was gained and the original esti-
mate was found much too generous. A prioritization was done of the features,
some of which were later implemented, some left as well-developed concepts
and some as rough sketches. We nevertheless feel that, while not a complete
application, the prototype to some extent displays all of the design principles
discussed in this report.

Currently, the prototype can be used for finding and importing a book in the
file system as well as reading a book with text and images straight from cover to
cover. Only basic features of the book collection is implemented and meta-data
presented about each book is limited to title and author. Continuing reading
where one left of is not yet implemented. Neither is bookmarks or annotations.
Simple preferences such as font or margin size, background/text color etc, can
be changed but the reader doesn’t change accordingly. The chapter-scroller
has been usable but needs to be updated to work with the new rendering en-
gine. Work has begun on many of these features and most are fairly close to
completion, but at the time of writing there is still need of more work.

Issues like these were expected from the beginning of the project. The limited
time meant a focus was put on creating a prototype that exemplifies our ideas
and designs rather than a fully usable application. So while the application is
far from complete, the goals of this project has been fulfilled.

31

6. Conclusions and Future
Work

The purpose of this project was “to explore smartphone interaction design ideas
for e-reading, and to develop a prototype that exemplifies these ideas”. While
not a complete application, we do think that 3Book has achieved this goal. It
is, however, difficult to draw any solid conclusions about interaction design due
to the exploratory nature of the project. User studies are needed to provide
objective usability measures of the proposed design ideas.

With this caution in mind, we feel that our experience from this project allows
us to make two tentative recommendations to smartphone application designers.

• Designers should take thumb-friendliness into account when they design
their applications. We believe that adding redundant thumb controls is
possible without bothering those who prefer to use two hands. This makes
the application more accessible for those everyone who is either unable or
unwilling to use two hands for interaction.

• Applications should be designed in a forgiving manner, recognizing that
users are not always able or willing to devote their full attention or capa-
bilities to the application. Interactions should provide a certain amount of
slack so that high precision is not be required. Mistakes should be simple
to avoid and easy to recover from.

6.1 Future research opportunities

The recommendations given above are given tentatively as they are not backed
by any user studies. We think that the impact of thumb-friendly redundant
controls could be an interesting area of study. Do redundant controls “cost”
too much in terms of increased clutter and visual load? Are users that prefer
two-handed interaction bothered by the presence of redundant controls? Are
there applications that demand such precision that thumb controls cannot be
used? These questions, and more, should be studied. It is encouraging that a
number of papers address the issue of thumb-only interaction, but we hope to
see more research done in this area.

32

Forgiving navigation is another interesting research subject that needs further
exploration. Are there applications that become far less usable when the gesture
space is simplified and restricted? Is a low error rate worth a potential increase
in task completion time due to larger controls spread out over a wider area?
Do power users feel less satisfied with applications that are less efficient, even if
overall use is easier?

We would also like to see a user study performed with a navigational aid similar
to our chapter scroller. How does such a hybrid menu perform in comparison
to traditional structures of navigations?

Many of these questions will surely be answered as smartphones continue to
grow in popularity and ubiquity. Smartphone interaction design is a fascinating
topic that should face no problems in attracting researchers.

6.2 Future of the application

Getting from the current state of the prototype to an alpha release (with working
preferences, meta-data, continue where left off and chapter-scroller) is estimated
to require about a month of work from all three project members. At that point,
the application would be a minimal but nicely designed e-book reader with the
most unique feature being the chapter-scroller.

The application needs to expand its feature set to become a viable alternative
that can compete with other e-readers in the market. The discrete views concept
needs to be expanded with efficient views for tables, videos, programming code
and aside content such as text boxes. Discrete views are especially important
as it is a feature that sets 3Book apart from its competitors, unlike bookmarks
or annotations that are more common (yet still planned for 3Book).

Other major future features include linux-like “workspaces” to facilitate view-
ing of multiple e-books simultaneously. Users should be able to switch between
e-books using a gesture or a button. This should prove useful when cross-
referencing between related books. Another planned feature if for users to be
able to use links within the book to navigate between different sections. Nav-
igational actions should be added to a history so that the device back button
can facilitate a quick return to the original place in the book.

33

Bibliography

Apple. Apple reinvents the phone with iphone. Press Release, jan 2007. URL
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-

Phone-with-iPhone.html.

Vinton Cerf, Yogen Dalal, and Carl Sunshine. Specification of Internet
Transmission Control Program. The Internet Engineering Task Force, dec
1974.

Google. Android developers, January 2012. URL
http://developer.android.com/index.html.

Andreas Holzinger. Finger instead of mouse: Touch screens as a means of
enhancing universal access. In Universal Access Theoretical Perspectives,
Practice, and Experience, volume 2615 of Lecture Notes in Computer
Science, pages 387–397. Springer Berlin / Heidelberg, 2003. doi:
10.1007/3-540-36572-9 30.

A.K. Karlson, B.B. Bederson, and J.L. Contreras-Vidal. Understanding
single-handed mobile device interaction. Technical report,
Human-Computer Interaction Lab, University of Maryland, January 2006.
URL http://www.cs.umd.edu/localphp/hcil/tech-reports-

search.php?number=2006-02.

L. Kim and M.J. Albers. Presenting information on the small-screen interface:
effects of table formatting. Professional Communication, IEEE Transactions
on, 46(2):94 – 104, june 2003. doi: 10.1109/TPC.2003.813165.

Jennifer Lawinski. Two decades of e-reader evolution. Webpage, sep 2010.
URL http://money.cnn.com/galleries/2010/technology/1010/

gallery.ereader_history/index.html.

Marie Lebert. Technology and Books for all. University of Toronto, 2008. URL
http://www.etudes-francaises.net/dossiers/booksforall.pdf.

Margus Pala. Phonegap performance measurement results, January 2012.
URL http://marguspala.com/phonegap-performance-measurement-

results/.

Pekka Parhi, Amy K. Karlson, and Benjamin B. Bederson. Target size study
for one-handed thumb use on small touchscreen devices. In Proceedings of
the 8th conference on Human-computer interaction with mobile devices and

34

http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html
http://developer.android.com/index.html
http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2006-02
http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2006-02
http://money.cnn.com/galleries/2010/technology/1010/gallery.ereader_history/index.html
http://money.cnn.com/galleries/2010/technology/1010/gallery.ereader_history/index.html
http://www.etudes-francaises.net/dossiers/booksforall.pdf
http://marguspala.com/phonegap-performance-measurement-results/
http://marguspala.com/phonegap-performance-measurement-results/

services, MobileHCI ’06, pages 203–210. ACM, 2006. ISBN 1-59593-390-5.
doi: 10.1145/1152215.1152260.

Yong S. Park and Sung H. Han. Touch key design for one-handed thumb
interaction with a mobile phone: Effects of touch key size and touch key
location. International Journal of Industrial Ergonomics, 40(1):68 – 76,
2010. ISSN 0169-8141. doi: 10.1016/j.ergon.2009.08.002. URL http:

//www.sciencedirect.com/science/article/pii/S0169814109001036.

Phone-size.com. Phone size - phone size comparison made easy!, 2012. URL
http://phone-size.com.

Annie Piolat, Jean-yves Roussey, and Olivier Thunin. Effects of screen
presentation on text reading and revising. International Journal of
Human-Computer Studies, 47(4):565 – 589, 1997. ISSN 1071-5819. doi:
10.1006/ijhc.1997.0145. URL http:

//www.sciencedirect.com/science/article/pii/S1071581997901452.

Brad Reed. A brief history of smartphones. PC World, 2010. URL
http://www.pcworld.com/article/199243/a_brief_history_of_

smartphones.html.

Andy Rubin. Android at mobile world congress: It’s all about the ecosystem.,
feb 2012. URL
http://googlemobile.blogspot.se/2012/02/androidmobile-world-

congress-its-all.html. (Accessed 2012-05-03).

Christopher A. Sanchez and James Z. Goolsbee. Character size and reading to
remember from small displays. Computers and Education, 55(3):1056 – 1062,
2010. ISSN 0360-1315. doi: 10.1016/j.compedu.2010.05.001. URL http:

//www.sciencedirect.com/science/article/pii/S0360131510001235.

Telecommunications. Product of the month: Bellsouth cellular/ibm release
simon pda. Telecommunications, 28(1):116, January 1994. URL
http://research.microsoft.com/en-

us/um/people/bibuxton/buxtoncollection/detail.aspx?id=40.

C. P. Thacker, M. McCreight E, B. W. Lampson, R. F. Sproull, and D. R.
Boggs. Alto: A personal computer. Palo Alto Research Center, 1979. URL
http://www.computer-refuge.org/bitsavers/pdf/xerox/parc/

techReports/CSL-79-11_Alto_A_Personal_Computer.pdf.

Jenifer Tidwell. Designing Interfaces. O’Reilly, 2005.

Wikipedia. Comparison of android devices, May 2012. URL
http://en.wikipedia.org/wiki/Comparison_of_Android_devices.

35

http://www.sciencedirect.com/science/article/pii/S0169814109001036
http://www.sciencedirect.com/science/article/pii/S0169814109001036
http://phone-size.com
http://www.sciencedirect.com/science/article/pii/S1071581997901452
http://www.sciencedirect.com/science/article/pii/S1071581997901452
http://www.pcworld.com/article/199243/a_brief_history_of_smartphones.html
http://www.pcworld.com/article/199243/a_brief_history_of_smartphones.html
http://googlemobile.blogspot.se/2012/02/androidmobile-world-congress-its-all.html
http://googlemobile.blogspot.se/2012/02/androidmobile-world-congress-its-all.html
http://www.sciencedirect.com/science/article/pii/S0360131510001235
http://www.sciencedirect.com/science/article/pii/S0360131510001235
http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/detail.aspx?id=40
http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/detail.aspx?id=40
http://www.computer-refuge.org/bitsavers/pdf/xerox/parc/techReports/CSL-79-11_Alto_A_Personal_Computer.pdf
http://www.computer-refuge.org/bitsavers/pdf/xerox/parc/techReports/CSL-79-11_Alto_A_Personal_Computer.pdf
http://en.wikipedia.org/wiki/Comparison_of_Android_devices

A. Statement of user
requirements and
acceptance criteria

A.1 Introduction

This is a requirements specification document which will cover the most signif-
icant use-cases and functional requirements of the application. This document
covers the goals of the final product. As the application is fairly advanced, there
are no guarantees that all requirements will be fulfilled or that all use-cases will
be achievable, due to time constraints.

A.1.1 Purpose

The purpose of this document is to specify all functional-, non-functional- and
quality requirements for the Android application 3Book. This document also
covers project limitations and use-cases.

A.1.2 Definition of customer and user group

This application is intended for everyone in possession of an Android smartphone
that runs an operating system of version 2.2 or later.

A.2 Use cases

A.2.1 Add to collection

Goal: Add a book to the application’s book collection(database).
Main actor: User.

36

Main flow

1. Assumption: User views the start screen.

2. User touches the ”Open/Import” menu option.

3. Open import activity is displayed, showing a file browser.

4. User navigates to a folder containing e-books.

5. User touches one book.

6. Application displays a popup asking if user would like to open the book
or import the book. The popup allows the user to set a default action.

7. User selects the import option.

8. Application displays a progress-bar dialogue while adding the book to the
application database.

9. Application displays a toast notification when the operation is complete.

Alternative flow

5-7:

1. User selects multiple books.

2. Application displays multi-select related icons in the bottom of the GUI.

3. User touches import option.

A.2.2 Open book

Goal: Open a book and begin to read.
Main actor: User.

Main flow

1. Assumption: User views the start screen.

2. User touches the ”Open/Import” menu option.

3. Open import activity is displayed, showing a file browser.

4. User navigates to a folder containing e-books.

5. User touches one book.

6. Application displays a popup asking if user would like to open the book
or import the book with a choice to set a default action.

37

7. User selects the import option.

8. Read activity is displayed, displaying a progress-bar dialogue while the
book is loading.

9. Application displays the first page of the book.

Alternative flow

2-7:

1. User touches ”My Collection” menu option.

2. Collection activity is displayed, showing a list of books.

3. User touches a book in the list.

A.2.3 Change page using gestures

Goal: Be able to flip page backwards or forward with different
types of gestures.

Main actor: User.

Main flow

1. Assumption: User has opened a book.

2. Choice: User performs a navigation action.

(a) User uses a finger to swipe the page in left or right direction.

(b) User touches within 0-33% or 66-100% of the screen width.

(c) User uses volume buttons to change page.

3. Application shows the next page with an animation or by actively attach-
ing a new page to user’s finger while swiping.

A.2.4 Open read overview

Goal: Display menu options, chapter menu and basic settings
while reading.

Main actor: User.

38

Main flow

1. Assumption: User has opened a book.

2. User touches the menu hard-key.

3. Application shows the action bar, status bar and a chapter selection list.
Chapters in the chapter scroller are represented as an scaled down versions
of the first page in each corresponding chapter. The book text becomes
covered by a black shape with some transparency.

Alternative flow

2:

1. User touches within 33-66% of the screen width.

A.2.5 Change chapter

Goal: Change the current book chapter to another one.
Main actor: User.

Main flow

1. Assumption: User has opened a book.

2. User opens the reading overlay (see previous use case).

3. Application shows the overlay.

4. User scrolls the list and touches a chapter.

5. Application displays a progress dialogue while loading chapter.

6. Application displays the chapter when done loading.

Alternative flow

4:

1. User touches the ”more” icon from action bar to display the menu.

2. Application displays read activity menu.

3. User touches ”Table of contents” option.

4. Table of contents activity is displayed, showing a list containing all the
chapters of the book.

5. User touches a chapter.

6. Read activity is displayed.

39

A.2.6 Use dedicated views

Goal: View different types of content in corresponding dedicated
activities.

Main actor: User.

Main flow

1. Assumption: User has opened a book and navigated to a page with a
dedicated view element such as an image (the application will only support
some types of view elements).

2. User touches view element.

3. Application launches the dedicated view activity.

A.2.7 Add bookmark

Goal: Add a bookmark to the current page.
Main actor: User.

Main flow

1. Assumption: User has opened a book.

2. User opens overlay menu.

3. Application displays overlay menu.

4. User touches ”bookmark” action icon from the action bar.

5. Overview closes and bookmark graphic slides down from the top of the
current page. A bookmark is written to the application database.

A.2.8 Adjust different settings

Goal: Change different application settings.
Main actor: User.

Main flow

1. Assumption: User views the start screen.

2. User touches the settings menu.

3. Application displays settings activity.

4. User makes adjustments.

5. Application saves adjustments.

40

Alternative flow

2:

1. Assumption: User displays an activity a with settings icon in action bar.

2. User touches settings icon from the action bar.

A.3 Functional requirements

The functional requirements are specified as follows:

Priority 1 Feature must be implemented for basic application functionality.

Priority 2 Feature should be implemented to provide use value.

Priority 3 Feature is desired to improve usability.

Priority 4 Feature could be implemented as time permits to increase function-
ality.

A.3.1 Browse for books

Requirement: User should be able to browse the file system to open a
book.

Priority: 1.

A.3.2 Open a supported e-book for reading

Requirement: Open a e-book that is supported by application.
Priority: 1.

A.3.3 Page changing

Requirement: Change page by using gestures, touches or buttons.
Priority: 1.

A.3.4 Change chapter

Requirement: Change chapter by using chapter selector list, table of
contents view or by viewing last page in current chapter).

Priority: 1.

41

A.3.5 Compatibility

Requirement: Application should be compatible with Android 2.2 and
subsequent releases.

Priority: 1.

A.3.6 Display images

Requirement: Show images and other graphical content in a book.
Priority: 2.

A.3.7 View content in dedicated activity

Requirement: Use the dedicated views to explore different types of book
content such as images and tables.

Priority: 2.

A.3.8 Adjust settings

Requirement: User should be able to change some basic application- and
reader settings such as font-size and margins.

Priority: 2.

A.3.9 Add book/books to collection

Requirement: Use the file browser to add books to book collection.
Priority: 3.

A.3.10 Multi language support

Requirement: Support for multiple languages.
Priority: 3.

A.3.11 Widget

Requirement: Add a book widget to the desktop.
Priority: 4.

A.4 Non-functional requirements

The non-functional requirements are specified as follows:

42

Priority 1 The requirement must be satisfied for the application to be used
commercially.

Priority 2 The requirement is desired be fulfilled to increase the application
usability.

A.4.1 Consistency

Requirement: Elements that look the same, should act the same. Use
same layout design, margins, text sizes etc throughout the
entire application.

Priority: 1.

A.4.2 Performance

Requirement: Application should run smoothly and heavier operations
should be should be run in separate threads to prevent UI
lock-ups.

Priority: 2.

A.4.3 Maintainability

Requirement: All code should be well commented (javadoc is not re-
quired). The code will primarily follow Android conven-
tions and secondarily Java conventions.

Priority: 2.

A.4.4 Usability

Requirement: Interactions with the application should provide visual
feedback.

Priority: 2.

A.4.5 Error handling

Requirement: All exceptions should be properly handled. Errors should
not crash application but show an error dialogue box in-
stead.

Priority: 2.

43

A.5 Quality standards

A.5.1 Code design

• The majority of the code will practise Model-View-Controller architectural
pattern.

• Package structure should be well organized.

A.5.2 User interface

• Application should practice the Android 4.0 design guidelines where pos-
sible.

• A ”Less is more”-approach should be followed throughout the entire ap-
plication.

44

	Definitions
	Introduction
	Design
	Implementation details
	Result
	Discussion
	Conclusions and Future Work
	Bibliography
	Appendices
	Statement of user requirements and acceptance criteria

