
Counting Unique Molecular Identifiers
Using PCR-branching Models
Master’s thesis in Master Programme Data Science and AI

Yizhe Gu
Hongyi Zhan

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se




Master’s thesis 2022

Counting Unique Molecular Identifiers
Using PCR-branching Models

Yizhe Gu
Hongyi Zhan

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology
Gothenburg, Sweden 2022



Counting Unique Molecular Identifiers Using PCR-branching Models
Yizhe Gu
Hongyi Zhan

© Yizhe Gu, Hongyi Zhan, 2022.

Supervisor: Serik Sagitov, Department of Mathematical Sciences, Chalmers
Examiner: Marina Axelson-Fisk, Department of Mathematical Sciences, Chalmers

Master’s Thesis 2022
Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: DNA double-helix structure

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iii



Counting Unique Molecular Identifiers Using PCR-branching Models
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Chalmers University of Technology

Abstract
DNA sequencing technology plays an essential role in biomedical research, espe-
cially in cancer genetics. However, errors in the sequencing process can confuse
the results of detecting the actual variants. In order to distinguish these two mu-
tations, researchers add Unique Molecular Identifiers(UMI), a unique tag sequence
to each fragment of the original DNA molecules and do UMI counting on the se-
quenced molecules. Since the whole sequencing process, including DNA barcoding
and amplification, is complex. Many parameters are invisible in actual biological
experiments. A DNA barcoding algorithm based on level order traversal and a
mathematical model of DNA amplification assuming molecules with memory and
based on the growth patterns of population and molecular diversity is introduced,
which are the critical steps for simulation. The project aims to obtain simulation
results similar to the actual laboratory data by adjusting the model parameters and
thereby determining the appropriate parameter values to help biological experiments
perform better.

Keywords: DNA sequencing, Polymerase Chain Reaction(PCR), Unique Molecular
Identifiers(UMI), Size-dependent branching.
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Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

PCR Polymerase Chain Reaction
UMI Unique molecular identifiers
NGS Next-generation Sequencing
CDF Cumulative Distribution Function
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Nomenclature

Below is the nomenclature of parameters that have been used throughout this thesis.

Parameters

r1, r2, r3, r4 DNA barcoding efficiency rates
r The average of DNA amplification rate for exponential growth
α the α in the beta distribution of DNA amplification
d2 The second dilution rate
K The environment in DNA amplification
M The mutation rate in DNA amplification
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1
Introduction

Since researchers began to dissect the double helix structure of DNA, significant
efforts have been made to explore the complexity and variability of genomes. DNA
sequencing, the most popular technology in molecular biology, is the process of de-
termining the ACGT sequence of four nucleotides in a DNA segment which can
help researchers analyze genes better in the field of biotechnology and medical re-
search. For example, DNA sequencing helps determine the type of cancer, which
then guides the patient’s treatment decisions. In addition, It also helps researchers
understand changes in cancer genes and develop new drugs. The primary barriers to
deeper genome investigation are sequencing throughput limitations and high costs.
High-throughput technologies have initially addressed these issues which makes the
expenditure fall rapidly, giving rise to a new term: Next-Generation Sequencing
(NGS). This massively parallel sequencing technique can determine the order of
nucleotides in the complete or partial genome of DNA or RNA. Applying NGS
technology to DNA sequencing allows for massively parallel DNA analysis, increas-
ing the speed and reducing the cost. However, since the whole sequencing process
is very complicated and many parameters are not visible in the actual biological
experiments, it is necessary to design reasonable mathematical models and find pa-
rameter values to guide further on how to conduct the experiments more efficiently
and cost-effectively.

Polymerase Chain Reaction(PCR) used in DNA sequencing can amplify specific
DNA fragments to make enough analyzable copies. It can be regarded as a particular
DNA replication in vitro, which can significantly increase DNA trace amounts. The
sample is first heated to denature and separate the DNA into two single strands, and
then two new DNA strands are constructed using the original strand as a template
with the help of polymerase. Since the advent of PCR, mutation gene detection
technology based on PCR has developed rapidly. Not only can it detect the mutated
gene in a short time, but even a minimal amount of tissue can be detected by PCR
amplification.

However, some errors also occur and are not easily detectable in DNA sequenc-
ing. To improve the accuracy and exclude errors caused by DNA polymerases and
sequencing processes in the subsequent analysis, the concept of Unique Molecular
Identifiers (UMI), also known as molecular barcoding, is introduced. It is a unique
tag sequence which is added to each fragment of the original sample to distinguish
between thousands of different fragments in the same sample. In turn, PCR am-
plification bias can be handled in DNA sequencing. For example, the two types of

1



1. Introduction

errors are indistinguishable without the UMIs, as shown on the left of Figure 1.1.
However, if UMIs are added, the copies with the same UMI should be derived from
the same molecule in the result. Therefore, if it is a low-frequency mutation on
the original molecule, all copies of it should carry this mutation. If it is a random
error, it is more likely to be present in only one copy or several copies because of an
error that happened to occur during a round of PCR amplification or sequencing.
Therefore, it is essential to count UMIs in DNA sequencing.

Figure 1.1: How to distinguish the error types by UMIs.

1.1 Objective
This thesis project aims to develop mathematical models and algorithms to repro-
duce actual data, which is the result of DNA sequencing, thus discovering the hidden
parameter values in the experiments. The whole experiment is divided into two ma-
jor parts: PCR barcoding and PCR amplification. The findings of the project will be
helpful in future research by Sahlgrenska Center for Cancer Research in Gothenburg.

1.2 Research questions
The research questions which are chosen as a guideline for the thesis project are

• How do the different parameters during the simulation influence the final re-
sults?

• How to select parameters to avoid overfitting.
• How to tune the model within the margin of errors to get valuable parameters

on the premise of reproducing the real data?

2



1. Introduction

1.3 Outline
Section 2 and Section 3 provide the background and theory of the chosen models
and algorithms based on DNA sequencing. Section 2 describes the primary methods
for DNA amplification and sequencing and then summarizes the existing methods
through an extensive literature reading in this field. Section 4 introduces the specific
process of implementing the models and algorithms, and which results are shown in
Section 5 with a brief discussion. The comparison and analysis of the whole project
are discussed in detail in Section 6, where the future work is also included. Finally,
Section 7 summarizes the entire work of the thesis project.
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2
Background

The development of DNA sequencing has dramatically advanced the exploration of
biological and medical research. From the dideoxyribonucleotide chain-termination
method invented by Sanger in the 1970s, which can only sequence one DNA frag-
ment [1] to next-generation sequencing(NGS), a massively parallel sequencing tech-
nology which identifies variants and mutant alleles with higher sensitivity, DNA
sequencing has entered an era of high throughput and low cost.

DNA sequencing is separated into four main processes: DNA barcoding, DNA am-
plification, sequencing, and data analysis which the first three steps are shown in
Figure 2.1.

Figure 2.1: An example of DNA sequencing.

However, the experiment is not simply to count UMIs. The sequencing results
include the cluster size and the number of cluster sizes. The cluster size is written
as X, which means that for one kind of UMI, it appears X times. The number of
cluster sizes is written as Y , which means that there are Y kinds of UMIs appearing
X times. According to this counting method, the sequencing results in Figure 2.1
are shown in Table 2.1.

Table 2.1: The result of DNA sequencing in Figure 2.1.

Cluster size (X) 1 2 3 4 5 6 7 8
The number of cluster size (Y ) 2 2 0 1 0 0 0 1

4



2. Background

Since individual DNA molecules cannot be replicated quantitatively for detection,
counting the number of individual DNA molecules becomes very difficult [2]. Be-
sides, DNA damage and polymerase inactivation can also cause errors in sequenc-
ing results [3]. Therefore, to overcome these difficulties, Unique Molecular Identi-
fiers(UMIs) are introduced into the sequencing process, which are short sequences
composed of 8-12 nucleotides and are attached explicitly to each target DNAmolecule
by a limited number of PCR cycles during the DNA barcoding process of library
preparation. After sequencing, it can be traced back to the original DNA as long as
the number of the same UMI is counted. Meanwhile, performing the standard mul-
tiplex pre-amplification approach can avoid non-specific PCR products due to the
generation of randomized UMI sequences [4]. If the DNA sample is too small, minute
but essential information will be challenged to retain. Therefore, all molecules with
UMIs are subjected to PCR amplification to obtain more copies of DNA after bar-
coding, and then the reads of UMIs can be counted after sequencing.

Researchers have shown that the branching process can be used as a stochastic
model for the problem of counting molecules after multiple cycles of PCR ampli-
fication [5] [6] which can also be applied to the PCR amplification process with
UMIs [7] [8]. The multi-type Galton-Watson process with immigration proposed by
Serik Sagitov and Anders Ståhlberg [8] is a particular example of the multi-type
Galton-Watson process with neutral mutations studied in [9]. In the first part of
this project, we focus on using the branching process formulation in [8] as a theo-
retical basis to design a typical algorithm of level order traversal of a Binary tree to
simulate the barcoding process and verify the theoretical results in the paper.

For amplification before sequencing, we mainly concentrate on the amplification
rate. Florian et al. proposed that PCR amplification still follows a Galton-Watson
branching process [10] and UMI reads are determined by a Poissonian sampling
model for NGS [11]. However, since the polymerase works feverishly at the begin-
ning, gradually inactively and finally does not work with increasing PCR cycles, the
actual PCR amplification rate is not a simple constant probability. Jagers et al.
introduce a formula with quite large Michaelis-Menten constant K and the number
of molecules to describe the probability of successful amplification [12]. Lalam et
al. [13] introduce a saturation parameter on top of [12] to precisely calculate am-
plification rate. In this project, we build a model of amplification rate based on
[12] [13] where molecules have memory and each amplification cycle obeys a new
beta distribution.

Since lower amplification rates result in fewer UMI reads, leading to complete unse-
quencing and variation that can occur during sequencing, the results of UMI reads
are still inaccurate. For sequencing errors, Smith et al. proposed an algorithm
to merge the original UMI with error versions that are highly similar to it [14].
Pflug et al. introduce an error correction threshold to remove UMI reads below this
threshold [7]. In this project, edit distance which indicates the number of nucleotide
differences between two UMIs is used for correction.

5



3
Theory

The theory of the whole process shown in Figure 3.1 is described in Section 3. First,
the target molecules are amplified in a limited number of cycles with four different
barcoding efficiency rates. UMI is added to the molecules that meet the conditions in
this barcoding process during 3 or 5 PCR cycles. Next, the molecules after the first
stage dilution are amplified in 26 or 28 PCR cycles based on the amplification rate
corresponding to the growth pattern of population size and the diversity of molecules
with memory. Then the molecules are sequenced after the second dilution, and the
UMI reads are the final results.

Section 3.1 introduces the perfect and imperfect duplication in the PCR barcoding
process. The detailed DNA amplification and sequencing are shown in Section 3.2
and Section 3.3, respectively.

Figure 3.1: The whole process of the project.

3.1 DNA barcoding
The accuracy in the PCR process can be improved with the help of adding UMI,
which is beneficial to error correction. In this PCR barcoding process, we mainly
focus on the results of UMI counting starting from a double-stranded molecule.
According to biological theory, UMIs are only counted on the complete DNA strand,
that is, a DNA strand with a head and tail containing both forward primer and
reverse primer.

Figure 3.2: A complete DNA strand

We will take the PCR barcoding process at cycle t = 3 as an example to elaborate
on the perfect and imperfect PCR barcoding processes, respectively.

6



3. Theory

3.1.1 Perfect PCR barcoding process
The DNA is assumed to be fully amplified during the barcoding PCR process. That
is, the PCR barcoding efficiency rate is 100%. The outcomes of three cycles of the
perfect PCR barcoding process are shown in Figure 3.3. At the top of the figure,
the double strands at t = 0 represent the initial DNA molecule which are labelled
0 and 1. The new strand obtained by taking the strand of the initial molecule as a
template must be incomplete. The difference is that there is no UMI in the primer
of the new strand, which is copied according to the sense strand, while the UMI
exists in the primer of the new strand obtained by using the nonsense strand as
the template. Therefore, in the following cycles, numbers are still used to represent
newly generated incomplete DNA strands without UMIs, and those with UMIs are
represented by lowercase letters a, c, g. It can be considered that there are two kinds
of primers, and when a DNA strand containing a primer is used as a template for
amplification, it must generate a new DNA strand with both primers, that is, a full
strand named with capital letters A,B,C,D,E, F . Furthermore, we can conclude
that when the complete strand containing the two primers is used as the template
strand, the new strand obtained by amplification must be a complete strand. The
difference is that the nonsense strand obtained by the complete sense strand is the
same type as the template strand, while the sense strand obtained by the complete
nonsense strand is a new complete strand containing the new UMI.

Figure 3.3: The perfect amplification in t = 3

According to the above rules, we can get six types of DNA molecules

• S1, the original sense strand in blue labeled by 0

• S2, the original nonsense strand in red labeled by 1

• S3, the incomplete nonsense strands without UMI in red labeled by 2, 3, 4, ...

• S4, the incomplete sense strands with UMI in blue labeled by a, b, c, ...

7



3. Theory

• S5, complete sense strands in blue labeled by B,D,E, F, ...

• S6, complete nonsense strands in red labeled by A,C, ...

The generation of new strands can be written as

S1 −→ S3, S2 −→ S4, S3 −→ S5,

S4 −→ S6, S5 −→ S6, S6 −→ S5
(3.1)

When t = 3, there are eight complete single-stranded molecules and six unique
UMIs, A,B,C,D,E, F , which have the following size

Table 3.1: The cluster and its size of perfect PCR barcoding process at t=3.

Cluster A B C D E F
Size 2 2 1 1 1 1

It can be generalized to the situation from t = 2 to t = 6. Their cluster size and
numbers are shown in Table 3.2 according to the counting method in Section 2.
That is, when t=2, two kinds of UMIs appear once. When t=3, four kinds of UMIs
appear once, two kinds of UMIs appear twice and so on.

Table 3.2: The cluster sizes and their numbers of perfect PCR amplification at t
cycles.

Cluster size 1 2 3 4 5 Total

t = 2 2 0 0 0 0 2
t = 3 4 2 0 0 0 6
t = 4 8 4 2 0 0 14
t = 5 16 8 4 2 0 30
t = 6 32 16 8 4 2 62

A cluster is a collection of complete molecules with the same UMI. Based on an
early version of Serik paper [8], let Zt(m) be the number of cluster size m at cycle
t. It is obvious that

Zt(m) = 0, m ≥ t (3.2)

let Zt be the total number of cluster size at cycle t.

Zt = Zt(1) + ...+ Zt(t− 1) (3.3)

According to Table 3.2 and Figure 3.3, we can deduce

8



3. Theory

Z1 = 0, Zt+1 = 2Zt + 2, t ≥ 1 (3.4)

Therefore,

Zt = 2t − 2, t ≥ 1 (3.5)

Furthermore, we can get

Zt+1(1) = Zt + 2, t ≥ 1 (3.6)

Zt+1(m+ 1) = Zt(m), m ≥ 2, t ≥ 1 (3.7)

inferring that increasing the cluster size by one reduces the number of clusters by
half

Zt(m) = 2t−m, m ≥ 1, t ≥ m+ 1 (3.8)

Therefore, the proportion of the number of cluster sizes to the total number for large
t is

Zt(m)/Zt −→ 2−m, m ≥ 1, t −→∞ (3.9)

3.1.2 Imperfect PCR barcoding process
In practical situations, we cannot guarantee that each DNA strand can be amplified
entirely affected by the experimental environment. Therefore, four different proba-
bilities r1, r2, r3 and r4 are used in this PCR barcoding process which is related to
the generation of new strands. According to information from Sahlgrenska Center
for Cancer Research, their relationship satisfies

0 < r1 < r2, r3 < r4 < 1 (3.10)

r1 is the PCR barcoding efficiency rate of S1 −→ S3 and S2 −→ S4 in equation 3.1.
r2 is the PCR barcoding efficiency rate of S3 −→ S5, which may be similar to r3,
the PCR barcoding efficiency rate of S4 −→ S6. r4 is associated with the generation
from complete strands S5 −→ S6 and S6 −→ S5.

It is straightforward that the cluster size of the imperfect PCR barcoding process is
fewer than that of the perfect PCR barcoding process due to the barcoding efficiency
rates.

9



3. Theory

Figure 3.4: An example of the imperfect PCR barcoding process

The numbers of each cluster size in Figure 3.4 are

Table 3.3: The cluster sizes and their numbers of imperfect PCR barcoding process
at t cycles.

Cluster size 1 2 3 4 5 Total

t = 2 0 0 0 0 0 0
t = 3 1 0 0 0 0 1
t = 4 2 1 0 0 0 3
t = 5 2 2 0 0 0 4
t = 6 3 2 1 0 0 6

Based on an early version of Serik paper [8], for one particular molecule which is
duplicated by efficiency rate r, the process can be regarded as a Binomial distribution
Bin(1, r). Since all molecules are independent in the process, with the number of
type Si molecules at cycle t being Zi

t , we get the branching process.

Z3
t = Bin(1, r1) + Z3

t−1

Z4
t = Bin(1, r1) + Z4

t−1

Z5
t = Bin(Z3

t−1, r2) +Bin(Z6
t−1, r4) + Z5

t−1

Z6
t = Bin(Z4

t−1, r3) +Bin(Z5
t−1, r4) + Z6

t−1

(3.11)
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3. Theory

The expectation M i
t = E(Zi

t)

M3
t = M2

t = r1 +M2
t−1 = r1t

M5
t = r1r2(t− 1) +M5

t−1 + r4M
6
t−1

M6
t = r1r3(t− 1) + r4M

5
t−1 +M6

t−1

(3.12)

To obtain the number of cluster sizes, two parts are divided to compute. Let Xt(m)
be the number of S4 clusters of size m at cycle t. Then for 1 ≤ m ≤ t− 1,

Xt(m) = Bin(Xt−1(m− 1), r3) +Bin(Xt−1(m), 1− r3)

Xt(0) = Bin(1, r1) +Bin(Xt−1(0), 1− r3)
(3.13)

And

Z4
t = Xt(0) + ...+Xt(t− 1) (3.14)

Expected values Kt(m) = E(Xt(m)), for 0 ≤ m ≤ t− 1,

Kt(m) = Kt−1(m− 1)r3 +Kt−1(m)(1− r3), Kt(−1) = r1

r3
(3.15)

The second part is S5 cluster which uses Yt(m) to represent the number of cluster
size m at cycle t. Then for 2 ≤ m ≤ t− 1,

Yt(1) = Bin(Z3
t−1, r2) +Bin(Z6

t−1, r4) +Bin(Yt−1(1), 1− r4)

Yt(m) = Bin(Yt−1(m− 1), r4) +Bin(Yt−1(m), 1− r4)
(3.16)

And

Z5
t = Yt(1) + ...+ Yt(t− 1) (3.17)

Expected values Lt(m) = E(Yt(m)), for 0 ≤ m ≤ t− 1,

Lt(1) = r1r2(t− 1) + r4M
6
t−1 + Lt−1(1)(1− r4)

Lt(m) = Lt−1(m− 1)r4 + Lt−1(m)(1− r4)
(3.18)

Furthermore, the number and the total number of clusters and their expectation for
1 ≤ m ≤ t− 1 are

Zt = Z4
t + Z5

t −Xt(0)

Zt(m) = Xt(m) + Yt(m)
(3.19)
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Mt = E(Zt) = M4
t +M5

t −Kt(m)

Mt(m) = E(Zt(m)) = Kt(m) + Lt(m)
(3.20)

3.1.3 Breadth-First Search
The traversal algorithm Breadth-first search(BFS) is used for connected graphs,
which is a blind search. The goal is to do all nodes searching in the graph and
examine the results systematically which means it does not consider the possible
location of the result but scours the entire graph until it finds a result. Generally, the
queue, a data structure, is used to assist the implementation of the BFS algorithm.
The steps of this algorithm are

• Add the root node into the queue.

• Take the first node from the queue and check whether it is the wanted node
or not. If it is found, end the search and return the result. Otherwise add all
unexamined nodes to the queue.

• When the queue is empty which means all nodes has been went through, end
the search and return the results.

• Repeat step 2.

For example, the order of nodes in Figure 3.5 is A −→ B −→ C −→ D −→ E −→ F −→ G.

Figure 3.5: The order of nodes in Breadth-first search

The PCR barcoding process of DNA in Figure 3.5 can be regarded as a connected
graph where the new molecules are generated one by one according to the barcoding
rules, and the UMIs are counted at the same time. The only difference is that if the
target molecule with UMI is found, the program does not stop but continues going
through all the molecules until it finishes all cycles.

12
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3.2 Dilution
The reagent containing DNA molecules is diluted during the dilution, and then a
portion of it is extracted for use in the next stage. The parameter in this process
is called the dilution rate. Dilution rate is the main difference between these two
dilution stages, while other issues are so minor that they make little difference.
For dilution 1, its dilution rate is 3, while for dilution 2, this is a hyperparameter
symbolized as d2. Whether it can participate in the next stage is independent of
each molecule. Taking the rate in the first dilution as an example, it equals three
means that for each molecule, it has a one-third probability of advancing to the
next stage and a probability of two-thirds of being discarded. This is a Bernoulli
experiment.

cluster size after dilution ∼ Binomial(cluster size before dilution, 1
dilution rate

)
(3.21)

This equation shows the situation in the following. Let us consider a cluster after
the dilution. Its cluster size will follow a binomial distribution, with the parameters
being the cluster size before dilution and the inverse dilution rate.

3.3 DNA amplification
DNA amplification can be viewed as DNA replication. The polymerase is an en-
zyme involved in DNA replication. It catalyzes the polymerization of deoxyribonu-
cleotides, mainly in the form of a template.

Similar to DNA barcoding, amplification is not always achieved successfully, so the
amplification efficiency rate is used to measure the probability that a molecule will
amplify successfully or not under the influence of the environment and the overall
population size in the environment. Also, amplification does not always produce
a perfect complementary DNA molecule. Sometimes mutation occurs, also known
as the phantom, which produces a molecule that is not perfectly complementary
to the original molecule. The mutation rate is to measure the probability of this
phenomenon.

3.3.1 Amplification efficiency rate
Traditional measure [12] for amplification efficiency rate has some limitations under
this topic. It considers only one kind of molecule, which means every molecule is
treated equally in the simulation. Furthermore, it does not reflect the differences
among molecules and their own property in the environment. Instead, the PCR
amplification steps that must be performed before sequencing often amplify differ-
ent molecules with different efficiencies, thus biasing the sequencing results and the
measured abundance [15]. As a result, variation based on beta distribution is intro-
duced to show the diversity of the amplification efficiency rate of different molecules.

13
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At the same time, molecules are assumed to have some inherent properties, also
known as memory. If a cluster of molecules exhibits a greater efficiency rate than
others at the start, it can be expected to maintain in the future amplification.

The most essential things for distribution are the mean and variance. These will be
elaborated on below.

3.3.1.1 Amplification efficiency rate from overall perspective

[12] reveals the relationship between molecule population size, environment and am-
plification efficiency rate. Despite the variability between different molecules, this
theory can be used as the overall expression of this process. It is used as the mean
of the beta distribution in the whole simulation. This shows that if all molecules are
treated as a whole, how do they amplify based on the environment and population
size.

Suppose the number of molecules at round #n in the environment is zn, the proba-
bility of successful amplification rn is given by

rn = K

K + zn
(3.22)

, where K is the Michaelis-Menten constant. K represents the support of the envi-
ronment for amplification and will not change across the process. However, K does
not mean the limitation of the environment.

Figure 3.6: The relationship between efficiency rate and population size when
K = 108

Figure 3.6 illustrates the equation 3.22.The situation is that when zn is much smaller
than K, rn is close to 1. Furthermore, with the increase of zn, rn gradually converges
to 0 but the whole amplification will not stop. As a result, the growth of the
population size will be exponential in the beginning. When zn is much bigger than
K, the growth of the number of the molecules in the environment will be linear

14
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because:

rn · zn = Kzn
K + zn

= K
K
zn

+ 1

so that
lim
zn→∞

rn · zn = K (3.23)

When zn is big enough, the environment will increase K more molecules in every
amplification round.

Figure 3.7: Total number of molecules during amplification with K = 108

Figure 3.7 illustrates how the change of two phases. When zn ≤ 108, about round 15
in the figure, zn grows exponentially. After round 15, amplification quickly turns into
the linear growth phase. This phenomenon is called saturation[23]. Some models
will introduce a new parameter to describe the point that divides the two phases,
which is also called the saturation point. However, this point will be very close to
K[23]. Since we do not want too many parameters, which may result in overfitting,
we assume that K is the watershed into the saturation phase.

3.3.1.2 Linear and exponential amplification

Figure 3.7 shows how the amplification goes from linear growth to exponential and
into saturation. However, the situation in the actual experiment is that the efficiency
rate in the exponential phase is not very close to 1, but only a very large number[13].
Therefore we add a hyperparameter r to fix the distribution of the efficiency rate
before the population size reaches K. Figure 3.8 illustrates the change of efficiency
rate of one cluster of molecules in the simulation.
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Figure 3.8: The change of the efficiency rate of one cluster of molecules at different
round n

3.3.1.3 Variation of efficiency rate

The simulation model uses the beta distribution to model the variation of effi-
ciency rates rn of different clusters at different round n to show the diversity among
molecules. Here focus on the difference in the efficiency rates of different clusters at
the same round.

rn ∼ Beta(αn, βn) (r ∈ [0, 1)) (3.24)

The mean of Beta distribution is

E(Beta(αn, βn)) = αn
αn + βn

(3.25)

To make the mean of the Beta distribution equals to ??,

K

K + zn
= αn
αn + zn·αn

K

= αn
αn + βn

(3.26)

so that
βn = zn · αn

K
(3.27)

For beta distribution, the parameters αn and βn have 7 different combinations with
different shapes as shown in Figure 3.9

For efficiency rate, a reasonable assumption is that it obeys a skew-normal distribu-
tion, instead of a monotonically increasing or decreasing one. As a result, αn should
be greater than one across the process.
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Figure 3.9: The shape of 7 different combinations of parameters αn and βn for
distribution Beta(αn, βn)

Figure 3.10: Beta distribution in simulation at different rounds: blue #round 1,
orange #round 16, green #round 20, red #round 25, purple #round 28 with α = 5
and K = 108

Suppose αn is fixed across the simulation, which means αn = α, where α is a
hyperparameter in the simulation. Figure 3.10 exemplifies how the change of beta
distribution will be during amplification under this assumption. As for amplification
proceeds, the center of the distribution moves left. Furthermore, the distribution
changes dramatically when the population size approaches K, which is about the
15th round.

At the same time, we focus on the change of the variance during amplification. The
variance of Beta distribution is

V ar(Beta(α, βn)) = αβn
(α + βn)2(α + βn + 1) (3.28)

Use En as abbreviation of E(Beta(α, βn). Substituting βn = α
En
− α gives

V ar(Beta(α, βn)) = (1− En)E2
n

α + En
, (3.29)

which can be viewed as a convex quadratic function of En. From equation 3.25,
when α is fixed, En is a monotonically decreasing function of βn while equation 3.27
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points out βn is monotonically increasing with zn. As a result, as zn becomes bigger,
V ar(Beta(α, βn)) will increase and then decrease. Figure 3.11 illustrates the change
of variance. This change is in line with the general perception. When amplification
begins, most of the molecules amplify at a very high-efficiency rate at first. As
for amplification proceeds, a portion of the molecules has entered a linear growth
phase, while another portion is still growing exponentially, creating a high point of
variance. After amplification enters the second phase, the vast majority of molecules
grow linearly in number, so that the variance decreases.

Figure 3.11: Variance of beta distributions at different #round in amplification
with α = 5 and K = 108

Some idea may think the variance among molecules is always exist. As a result,
another assumption is that the variance of distribution may be fixed. Under this
idea, suppose variance is fixed to σ,

z·a2

K

(a+ z·a
K

)2(a+ z·a
K

+ 1) = σ

σ[(K + z)3a3 +K(K + z)2a2] = K2za2

Since a 6= 0, so that

a = K(Kz − σ(K + z)2)
σ(K + z)3 (3.30)

b = z(Kz − σ(K + z)2)
σ(K + z)3 (3.31)

K(Kz − σ(K + z)2)
σ(K + z)3 > 1

σ <
K2z

(2K + z)(K + z)2 (3.32)

Since α has been supposed to be bigger than 1. Moreover, denominator is of higher
order than the numerator. The variance will be very small to meet all the require-
ments. As a result, we still use alpha as the hyperparameter instead of variance.
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3.3.1.4 The property of molecules

The property of a molecule lies in the fact that different molecules will act differently
in the same environment. The very natural idea is to assume that there is a suffi-
cient number of clusters and order them by r decently. Then another assumption
can be made that the ranking of the molecules does not change in each round of
amplification. This can be called the memory of molecules.

A cumulative Distribution Function (CDF) is introduced to represent this feature.
For point (x, y)(y ∈ [0, 1] in CDF, it represents that for a distribution, it is in the y
quantile when the value x is taken. In other words, if we take N samples from the
distribution (N is large enough), then x is larger than N · y of the samples.

Figure 3.12: CDF of beta distributions in different rounds and their 0.4 quantile
and 0.8 quantile. Left panel: #round 13. Right panel: # round 20.

Suppose there are two different molecules, one in the quantile 0.4 of the distribu-
tion and the other in the quantile 0.8. Figure 3.12 shows how to determine their
efficiency rates at different rounds. In each round, the values of x corresponding
to y = 0.4 and y = 0.8 in the CDF of beta distribution are the efficiency rates of
the two molecules. At #round 13, efficiency rates are 0.70 and 0.87 respectively.
Moreover, at #round 20, they are 0.14 and 0.22.

Figure 3.13 shows the comparison between without and with memory. Suppose the
efficiency rate of molecules is independent. Alternatively, we can say they do not
have memory. At every round of amplification, the sample from beta distribution
decides their efficiency rate. The left figure shows how it will be under this scenario.
The efficiency rate goes up and down rapidly, which is not reasonable. The different
property of different molecules results in diversity.

Furthermore, this significant fluctuation does not reflect the idea properly. The
correct figure shows the efficiency rate after introducing the idea of memory. It
becomes relatively smooth. It keeps the same in the exponential growth phase and
drops after entering linear growth.
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Figure 3.13: The comparison between the change of rn of a particular cluster of
molecules during amplification when without and with memory.

3.3.2 Amplification mutation
Mutations arise as mistakes in DNA replication and when DNA polymerases copy
damaged templates[20]. At each replication, mutation may occur, creating a molecule
that does not belong to the original cluster. This molecule creates a new cluster
and is amplified with other molecules in subsequent experiments. For instance, if a
mutation occurs in one amplification, the number of erroneous molecules increases
even if it never occurs again. The ratio to the total number is not constant. There-
fore, estimating the mutation rate is an arduous task. The simulation and method
of estimation will be described later.

3.4 DNA sequencing
Modern sequencing technology decomposes the input genomic DNA (or, in some
cases, reverse transcription RNA) into millions of nucleotide sequences, which is
also called reading. The errors caused by experiments are so stubborn that de-
spite the continuous improvement of sequencing technology nowadays, the data pro-
duced by these technologies are still biased by introducing random and systematic
errors[21].The error rate in sequencing is typically 0.1% - 1% for each base pair
sequenced[22].

3.4.1 Error correction
In bioinformatics, edit distance is used to eliminate the error caused by sequencing
error[14]. The edit distance quantifies the different degrees of the two strings. It
calculates the minimum number of operands required to convert one string to an-
other. The Levenshtein distance is one kind of edit distance used in our simulation.
It allows deletion, insertion and substitution. Suppose we have two molecules a and
b. Their length is |a| and |b| respectively. The Levenshtein distance between a and
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b is noted as lev(a, b).

lev(a, b) =



|a|, |b| = 0,
|b|, |a| = 0,
lev(tail(a), tail(b), a[0] = b[0]

1 +min


lev(tail(a), b)
lev(a, tail(b))
lev(tail(a), tail(b)

, otherwise

(3.33)

where the tail() of some string x is a string of all but the first character of x, and
x[n] is the nth character of the string x, counting from 0. Figure 3.14 illustrates

Figure 3.14: Left panel is the frequency diagram without introducing sequencing
error. The middle panel is the on with error and the right panel is after correction
with edit distance equal to 1.

the result of one of our simulations. When we introduce sequencing error, the
percentage of singleton increases dramatically. However, the difference compared to
the first graph’s data is tiny after correction. The bioinformatics way of handling
the sequencing error has an excellent effect. As a result, we will not pay attention
to sequencing errors in the following discussion.

3.5 Error in experiment
Errors in NGS are caused by various factors, including DNA damage, errors caused
by polymerase during library construction, and sequencer read errors[16, 17, 18].
The error occurs when, during amplification or sequencing, it changes a base pair
in the UMI so that the molecule no longer belongs to the original cluster. The
different polymerases in the experiment showed different errors in the results[19].
The polymerase used in this experiment is Platinum SF, and for each base pair, the
probability of error is 0.178%. The length of UMI is 12 so that the total error of the
whole experiment is

TotalError = 1− (1− 0.178%)12 = 2.12% (3.34)

After discussion with researchers and the fact we introduced before, the sequencing
error is about 0.1%. So the percentage of molecules with error,notated as Me before
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sequencing, is

Me + (1−Me) ∗ [1− (1− 0.1%)12] = TotalError

so that
Me = 0.91% (3.35)

In the simulation, the percentage of molecules with error will be compared with
0.91%.
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This section explains the methods applied in this project. Section 4.1 describe the
characteristics of the lab data. The application of the algorithm in Section 3.1 and
the implementation of amplification rules in the PCR barcoding and amplification
processes are described in Section 4.2 and Section 4.3. The simulation of DNA
sequencing is shown in Section 4.4.

4.1 Data description
The data is from Sahlgrenska Center for Cancer Research in Gothenburg. For
each set of data, it is obtained from 7750 double-stranded DNA molecules after
the process of barcoding, amplification and sequencing. Each set of data contains
molecule cluster size and the number of these cluster sizes. There are five kinds
of molecules and two experimental setups. The same experiment is repeated three
times for each kind of molecule. The only difference is the experimental setups. One
is PCR barcoding cycle t = 3, PCR amplification cycle x = 28 and the other is PCR
barcoding cycle t = 5, PCR amplification cycle x = 26.

First, the data distribution is observed by drawing histograms for a preliminary
analysis. The horizontal coordinate is cluster size, and the vertical coordinate is the
number of cluster sizes. The bar charts in the first line is at t = 3, x = 28 and in the
second line is at t = 5, x = 26. For each column, it represents a molecule. From left
to right, they are TP53_374_358, TP53_202_B, TP53_153_168, TP53_098_109
and TP1.

Figure 4.1: The distribution of lab data.
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From these bar charts, It can be found that the number of molecules with cluster
size 1 far exceeds the other cluster sizes, and the overall trend is decreasing, which
is that the greater the cluster size is, the less the number of molecules with that
cluster size is. Besides, compared the first line with the second line, the number of
clusters at t = 3, x = 28 is significantly greater than that at t = 5, x = 26, which
has a longer tail in the distribution. Here, since cluster size after 50 is small and
almost invisible in the bar chart, we only show the data of the first 50, the actual
tail of the first situation may reach about 70, while the other is around 10. We are
mainly focused on the singletons and the tails.

For each kind of molecule, its total number is obtained by Equation 3.3. The total
number at t = 3, x = 28 is smaller than the total number at t = 5, x = 26 for the
first four molecules. However, the last one is exactly the opposite of them. Besides,
the first four molecules all belong to the family of TP53. Therefore, we do not
consider the last TP1 molecule and remove it.

Figure 4.2: The total number of cluster size at t = 3, x = 28 and t = 5, x = 26.

In order to deeply explore and analyze why such data appears and which parameters
are they caused by, we perform the simulation based on Section 3 according to
the flow of biological experiments, DNA barcoding, Dilution 1, DNA amplification,
Dilution 2 and DNA sequencing, add distributions for the parameters in the model
and find the reasonable parameter values by adjustment to get similar results to the
experimental data.
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4.2 DNA barcoding simulation

4.2.1 Initialization
According to the description of Section 3.1, six kinds of molecules can be obtained in
the process of barcoding, which needs to be named and classified in the program to
facilitate the subsequent UMI counting. Since UMIs are only added to the different
complete strands and influenced by the position of the complete strands, the shapes
of the complete strands first need to be distinguished, representing the complete
sense strands and the complete nonsense strands respectively. Moreover, in order
to precisely determine which molecule each molecule will be amplified into in the
PCR barcoding process, the relationship of strand generation is also necessary to
be defined, which is shown in Table 4.1 with the types of template strands on the
left and the types of new strands which are amplified by the corresponding template
strands on the right.

Table 4.1: The representation of the relationship of strands generation in code.

Template chain New chain

000u 001
000d 100
100 201
102 201
001 102
201 102

In Table 4.1, "000u" and "000d" represents the original sense strands and the original
nonsense strands, respectively, which are in S1 and S2 target. "102" and "201"
represents the complete sense strands and complete nonsense strands, respectively,
which are in the S5 and S6 target. "001" and "100" represents the strands in S3 and
S4 target respectively.

4.2.2 Level Order Traversal
Before defining the rules of DNA barcoding in detail, the main framework of the pro-
gram, Level Order Traversal, which is the application of Breadth-First search(BFS),
is introduced first. The DNA amplification process for barcoding can be regarded
as a binary tree which consists of a root node and many child nodes. In this DNA
binary tree, the root node represents the initial DNA molecules, and its child nodes
correspond to the new DNA molecules produced during the PCR process. Level
Order Traversal traverses the nodes layer by layer according to the tree diagram so
that the UMI can be counted for subsequent DNA amplification and sequencing.
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Figure 4.3: An example of Level Order Traversal for DNA barcoding

It looks the same as the Breadth-First search. However, the format of result required
by the Level Order Traversal needs to distinguish each level to know which cycle each
molecule is in, that is, to return a two-dimensional array [[A][BC][DEFG]] which is
different from that of BFS. The traversal result of BFS is a one-dimensional array
[ABCDEFG], and each layer cannot be distinguished.

The specific process is to put the root node, that is, the initial DNA template, into
the double-ended queue firstly, where the elements can be popped from both ends
and insertion and deletion operations can be performed on both sides. For each
cycle, DNA molecules in a layer are stored in the queue, and one DNA molecule is
removed at a time for PCR barcoding according to the DNA barcoding function.
The new DNA molecules are put into the left and right nodes if the amplification is
successful. If either strand is not successfully amplified, the strand is placed directly
into the node, and the other node holds the next generation of DNA amplified from
the other strand, which is the situation of node D and node E in Figure 4.3. If both
strands are not successfully replicated, then the two single strands are placed in the
left and right nodes, respectively, which is the situation of node F and node G in
Figure 4.3. For the node with only one strand, one of its child nodes will be empty.
Therefore, the nodes that are not empty are placed in the queue, and the operation
is repeated for the next cycle. The cycle t is used to limit the number of iterations
so as to traverse the nodes layer by layer. In other words, t is the layer.
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Figure 4.4: The process of Level Order Traversal

4.2.3 DNA barcoding rules
In this section, DNA barcoding rules will be introduced explicitly that only focus
on counting UMIs on the complete strands according to the biological law. Each
sense strand and nonsense strand are amplified according to different amplification
efficiencies determined by the strand type. The strands with the same name mean
containing the same UMI. Further judgment is made on the strand to give it a
specific barcoding rule: the complete strands must be copied to obtain the complete
strands. Therefore, the first thing needed to judge is whether the molecular strand
input by the program is a complete strand or not. Secondly, since the position of
the strand will also affect the type of the new strand, it is crucial to determine its
position after judging whether it is a complete strand. Then a new strand containing
UMI with a specific name and shape can be obtained according to the naming rule,
numbers, lower or upper letters.
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Figure 4.5: The process of DNA barcoding rules

4.3 DNA amplification simulation
Below is the whole process of the DNA amplification simulation. There is prelimi-
nary work and subsequent processing before and after amplification. They will be
introduced together.

Figure 4.6: The Whole Amplification Process

In Figure 4.6, there are two stages of dilution. Cluster sizes after dilution are
randomized based on equation 3.21.
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4.3.1 Amplification rules

Figure 4.7: The simple process of amplification rules for one molecule

This section focus on amplification rules. Figure 4.7 illustrates the process for a
single molecule. This is a simple demo diagram. The cluster size will be enormous
in the actual simulation. For each cluster, in each round, we assign a different effi-
ciency rate to evaluate whether the amplification is successful or not randomly. If
amplification is unsuccessful, this molecule will not produce anything in this round.
Otherwise, we will continue to determine if this round will generate an error ran-
domly. If a mutation occurs, a new cluster with size one is created. If there is no
mutation, a copy of the initial molecule is generated, so the size of the initial cluster
will be doubled.

In the simulation, the amplification efficiency rate will keep the same in the beginning
and then constantly change with the number of rounds and the environment. The
beta distribution expresses the difference in the efficiency rate of different molecules.
In the beginning, every cluster is arranged with a random number in [0, 1) as their
quantile over all the molecules. Before each round of amplification, the total number
of molecules z in the environment is calculated.

If z is more diminutive than K, the distribution is fixed. Otherwise, r = K
K+z is

calculated as the mean of efficiency rate, where K is the Michaelis-Menten constant.
At each round, a beta distribution with a mean equal r is used to generate different
efficiency rates for different clusters based on their quantile generated in the very
beginning.
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4.4 DNA sequencing simulation
In order to maximize the restoration of the experimental process, we considered the
sequencing error as well as the correction algorithm.

The process in the sequencer can be viewed as a single round PCR to read out the
detailed sequence of molecules. We did not simulate this process but only introduced
sequencing error. Since the PCR in the sequencer is used to read nucleotides, the
error will be for each nucleotide and not for the whole molecule. The length of UMI
in the experiment and simulation is 12. Hence each cluster is randomly assigned a
specific sequence. Sequences are randomly generated from ATCG. Each nucleotide
will have a 0.1% probability of changing into one of the other three, with the same
probability of changing into each one to simulate sequencing error.

In bioinformatics, edit distance is used for the correction algorithm of the sequencing
error and mutation error. The most common use in the lab is merging two clusters
with an edit distance of 1. Furthermore, this is also used in the simulation.
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The results based on manual tuning hyperparameters are shown in this section. The
comparison of the results of theory to simulation and the distribution of final data
reproduced according to the actual data are depicted in Section 5.1 and Section 5.2
separately. Besides Section 5.2 also describes the suitable parameter values chosen.

5.1 The number of cluster size
If the results of the theoretical formula and the simulation results can be cross-
verified, we have confidence that the simulation of the PCR barcoding process is
reasonable. In turn, it can be considered that the data obtained by barcoding sim-
ulation with 7750 molecules as the original data are reasonable, guaranteeing the
correctness of subsequent experiments. First, we will focus on the number of cluster
sizes.

In Figure 5.1, we compare the sizes of each cluster size in theory and simulation of
PCR barcoding cycle t = 3, PCR amplification cycle x = 28 on the left and PCR
barcoding cycle t = 5, PCR amplification cycle x = 26 on the right. The solid
line and the thicker dashed line show the simulated results and the theoretical re-
sults, respectively. Four different colour lines are drawn, representing the results in
different efficiency rates (r1, r2, r3, r4): blue (1, 1, 1, 1), green (0.6, 0.7, 0.8, 0.9), red
(0.4, 0.6, 0.7, 0.9), black (0.3, 0.4, 0.5, 0.9).

It is evident that the two lines almost overlap, illustrating that the theory and the
simulation are mutually validated. In addition, for different efficiency rates, the
larger the efficiency rate is, the larger the total number of cluster sizes. As the
number of cycles increases, leading to more amplified molecules, the faster the total
number of cluster sizes increases. Therefore, the PCR barcoding process simulation
can be considered a rational experiment.
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Figure 5.1: The comparison of theory results to simulation results in the number
of cluster size.

5.1.1 The proportion of cluster size
As stated in the equation of section3, when t tends to infinity, Zt(m)/Zt is an
exponential distribution 2−m. Therefore, we conjecture that this relationship applies
to the incomplete duplication with four efficiency rates. Figure 5.2 shows the change
of proportion of cluster size at t = 3, x = 28 and t = 5, x = 26 for the same four
different efficiency rates above. We can notice that the curves converge as t becomes
larger. This is in accordance with the above hypothesis. For t = 5, x = 26, it is
remarked that the four solid lines almost overlap, and their distribution tends to be
the same, which means the proportional distribution of cluster size does not have
a big difference for these efficiency rates. Since our project has nine parameters,
making the model tuning really difficult, our results mainly focus on the distribution
of cluster size rather than the number itself. Then the influence of four barcoding
efficiency rates r1, r2, r3 and r4 on the final results can be ignored for the time being
and just select the appropriate efficiency rates and keep them constant. In this
project, r1 = 0.6, r2 = 0.7, r3 = 0.7 and r4 = 0.9 according to the biological law and
our own trails.

Figure 5.2: The proportion of cluster size with different efficiency rates.
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5.1.2 The final DNA barcoding results
The molecules with a UMI are our primary focus. Therefore, the results of the
barcoding simulation, that is, the numbers of each cluster size of 7750 molecules
after barcoding, are saved to a CSV file and served as initial data in the following
steps.

Table 5.1: An example of the final results in PCR barcoding process at t = 3.

Cluster size 1 2
Molecule1 3 2
Molecule2 1 1
Molecule3 4 2
... ... ...
Molecular7750 2 0

The data format is shown in Table 5.1. For example, the numbers of cluster size 1
and 2 of Molecule 1 are 3 and 2 separately.

5.2 Lab results vs Simulation results
Read the CSV file of the barcoding results and perform the simulation by the DNA
amplification model for these molecules with UMI according to Section 4. In order
to make the distribution of results similar to that of the actual experimental results,
we obtain the following reasonable results by adjusting α in Beta distribution, The
average DNA amplification rate for exponential growth r, the second dilution rate
d2, the environmental parameter K and mutation rate M these five parameters.
The proportion distribution is shown in these figures: lab results in the first line and
simulation results in the second line. The four sets of bar charts from left to right are
the results of TP53_374_358, TP53_202_B, TP53_153_168 and TP53_098_109
separately.
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Figure 5.3: The proportion comparison of lab results to simulation results at
t = 3, x = 28.

Figure 5.4: The proportion comparison of lab results to simulation results at
t = 5, x = 26.

We can observe that the simulation results are similar to the real lab results. They
should be kept constants for K and M according to the experimental setting, which
is K = 108 and M = 4×10−4. Besides, α, r and d2 should be the same for the same
molecule in the two cases of PCR barcoding cycle t = 3, DNA amplification cycle
x = 28 and PCR barcoding cycle t = 5, DNA amplification cycle x = 26. Therefore,
the choice of other parameters for each molecule by tuning the model is shown in
Table 5.2.

Table 5.2: The parameters for each molecule.

α r d2

TP53_374_358 12 0.9 24000
TP53_202_B 5 0.75 75000
TP53_153_168 10 0.8 35000
TP53_098_109 26 0.7 30000
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Discussion

6.1 Choice of Parameters
The choice of the parameters is mainly based on the advice from laboratory re-
searchers and our trials and errors.

6.1.1 α, r and d2

The analysis focuses on how these three parameters change the singleton distribution
and tail length, as shown in these three figures. The left y axis is the tail length,
and the right y axis is the singleton distribution. Since the trend is the same, we
will take t = 3, x = 28 as an example.

Figure 6.1: The influence on singletons distribution and tail length as α and r
increases.

As α increases from 10 to 50 and other parameters do not change, the variance of
the beta distribution will become smaller, leading to a decrease in the proportion of
singleton and a shorter tail.

As r increases from 0.6 to 0.9 and other parameters remain the same, the ampli-
fication rate increases and more molecules with a UMI are produced. Under the
same dilution rate, the cluster size of molecules gets bigger. Thus, the proportion
of singleton gets smaller. At the same time, according to equation 3.29, when r
becomes more significant, the variance of beta distribution becomes smaller, which

35



6. Discussion

can also result in a shorter tail. The cluster size in the final result will show more
aggregation.

Figure 6.2: The influence on singletons distribution and tail length as d2 increases.

Then as d2 increases from 20000 to 80000 and other parameters remain unchanged,
the probability of each molecule being selected becomes smaller. Thus it is easier
to generate more small cluster sizes and more singletons. Since a large cluster size
is less likely to be generated, the tail is shorter.

Table 6.1: The influence on singleton distribution and tail length by only increasing
α, r or d2.

Singleton Tail

α Decrease Decrease

r Decrease Decrease

d2 Iecrease Decrease

6.1.2 Environment parameter K
For K, it is a hidden parameter in the experiment. Although it represents the sup-
port of the environment for amplification, it is not a parameter that can be measured
in reality with experimental instruments. It can only be speculated based on the
final result. K = 108 is adopted throughout the simulation.

There is a possibility that it could be a more considerable number. 109 or even
more significant numbers are all possible. However, the simulation needs to be
judged whether amplification is successful and whether mutation will occur. As K
increases, the number of operations in the program will grow exponentially, which
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is a significant disadvantage for tuning the parameters afterwards. So larger K is
not adopted in the simulation.

Besides, we think changing K will only make little difference to the final result. It
is because since the dilution rate is also a hyperparameter, a more enormous value
of dilution rate can be applied to eliminate the influence of larger K.

However, it is undeniable that K is also treated as the saturation point. It has
some influence on the shape of the final distribution. However, due to the limit of
computational power, this question is not studied.

As to the reason why K is fixed for all molecules, it represents the support from
the environment. All molecules amplify in the same environment at the beginning.
However, different molecules may consume the environmental resource at a different
rate during amplification. Nevertheless, since it is very complex in biology and the
exact sequence is not studied in the simulation, it is assumed to be the same.

6.1.3 Mutation rate M
It is hard to calculate in theory how large the mutation rate will cause how much
error in the final result. In our simulation, the mutation rate is fixed as 4× 10−3.

The theoretical total error rate caused by mutation has been calculated in equa-
tion 3.34. The error under the choice of mutation rate in the simulation is slightly
bigger than the theory.

Advice from the lab researchers is that the mutation rate should be around 10−6,
which is much smaller compared with our choice. This might be caused by choice of
K. If K is more prominent in the simulation, a lower mutation rate may also create
a similar result.

The mutation rate is all the same among all molecules. It is because that mutation
is mainly caused by polymerase error. Furthermore, the same polymerase is used
across all experiments. So we treat them the same as all molecules.

6.2 Difference between t = 3 and t = 5
It is easy to observe that for t = 3, the figure shows a longer tail compared with
t = 5. The reason for this phenomenon is discussed below.

With the limit of the environment, the population size will grow slowly after reach-
ing the saturation point. However, because of the fact that t = 5 has two more
barcoding round, it has more clusters. The total number of molecules grows much
slower than the number of clusters. So the cluster size for each cluster is minor than
t = 3. Thus, for t = 5, under the same dilution rate, the result is more aggregation
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in smaller cluster size.

For example, on average, t = 3 has 100 clusters and 10000 molecules. So the size for
each cluster is 100. On the other hand, t = 5 has 200 clusters and 15000 molecules.
Each cluster size has 75 on average. Under the same dilution rate, such as 10, t = 3
will retain 10 for each cluster size, and t = 5 will reserve 7.5 on average. As a result,
cluster sizes after dilution will be smaller for t = 5, thus having a shorter tail.

6.3 The memory mechanism
Memory is the representation of molecule property. Since diversity in amplification
comes from the different properties of molecules, the property is intrinsic and will
not change across the amplification. The property’s amplification efficiency is in-
fluenced and related to its previous performance. Therefore memory is introduced.
It is natural because significant fluctuation for a particular molecule cluster is not
realistic.

However, this memory mechanism needs proof from the biological experiment. More-
over, there could be a better idea to realize the thought of memory. For example, a
simple Markov Chain is used in the simulation. It will be better if a more compli-
cated one can be constructed. Nevertheless, the difficult point is how to maintain
the whole distribution for all molecules, that is, the beta distribution. Another idea
is that maybe every cluster has its own internal parameters for amplification, so
they do not need to sample from the overall distribution.

6.4 Future work
In the first place, for the current model, we need to align the metric of the simulation
results with the actual data. Here, due to the time limitation, the high complexity of
biological experiments with invisible internal operations and many parameters, we
only focus on the distribution of cluster size rather than the number itself. Besides,
the parameters are chosen chiefly based on manual tuning. Afterwards, we need to
find a better way to optimize the parameters rather than manually adjusting them
to make the results more accurate. This will involve some knowledge of operations
and optimization.

Secondly, our model involves many assumptions. Although all of them are natural
and reasonable based on biological knowledge, evidence is needed to prove these
assumptions. As a result, we hope to conduct some biological experiments like real-
time fluorescence quantitative PCR. Conducting biological experiments can be very
labour-intensive and costly, but it is the best way to understand the whole biological
process.

Last but not least, some situations in the experiment could be more complicated
than the simulation. Take K as an example; we assume K is the same for all clusters

38



6. Discussion

and molecules. However, it is possible that although all molecules are in the same
environment, the support provided is not the same for all molecules. An exaggerated
example is that the same rainforest can support three monkeys but only one gorilla.
The difference in the experiments will not be that great, but each cluster may have
its own parameters. This will make the whole program much more complicated.

We believe that for this paper, there are still some features in the data that have
not been reproduced. There are some data that we have excluded that the lab
researchers tell us are normal. Future work should focus on how to include these
cases.
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7
Conclusion

With the premise that Unique Molecular Identifiers(UMI) has been shown to be
effective in distinguishing sequencing errors from true variants in DNA sequencing,
it makes sense to do the simulation for UMI counting in DNA sequencing to get the
similar results to the real laboratory data by introducing a DNA barcoding algo-
rithm and building a mathematical model for invisible DNA sequencing experiments
to find reasonable parameter values.

In our project, we first introduce and implement a DNA barcoding algorithm based
on Level Order Traversal with four parameters of DNA barcoding efficiency rates
r1, r2, r3 and r4 according to different strand generations. The simulation results are
similar to the theory results calculated by the equations in an early version of Serik
paper [8]. It can be found that these four parameters have a less influence on the
proportion of cluster size than the number of cluster size which makes us use the
proportion as a metric for the result comparison to reduce the difficulty of tuning
the model.

A mathematical model of DNA amplification assuming molecules with memory and
based on the growth patterns of population and molecular diversity has been built
with three parameters to tune, α, the α in the beta distribution of Equation 3.27,
r, the average of DNA amplification rate for exponential growth and d2, the second
dilution rate and two parameters with constant values, K, the environment in DNA
amplification and M , the mutation rate in DNA amplification. The appropriate
parameter values for each molecule are found. Besides, it is observed that only in-
creasing α or r makes singletons distribution and tail length both show a decreasing
trend. However, only increasing d2 makes tail length rise but singleton distribution
fall.

In summary, the simulation based on the DNA barcoding algorithm and DNA ampli-
fication mathematical model can reproduce similar results to real laboratory results
of TP53 molecular family with specific parameter values.
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A
Appendix 1

A.1 DNA barcoding code

1 from os import name
2 import random
3 import c o l l e c t i o n s
4 import numpy as np
5 import matp lo t l i b . pyplot as p l t
6 import pandas as pd
7

8 # Store data in the structure of tree.
9 # [updown] indicates the two chains of DNA.

10 # Left and right are the new generation of DNA copied with up and down chains
11 #as templates respectively.
12 class TreeNode :
13 def __init__( s e l f , val , l e f t=None , r i g h t=None ) :
14 s e l f . va l=va l
15 s e l f . l e f t = l e f t
16 s e l f . r i g h t = r i gh t
17

18 #102:the complete upper chain 201:the complete lower chain.
19 per f ec t_cha in = [ ’102’ ,’201’ ]
20 #Define the corresponding relationship of the chain, the key on the left is the type
21 #of template chain, and the value on the right is the type of new chain.
22 s t ruc t_tab l e = {’000u’ : ’001’ ,
23 ’000d’ : ’100’ ,
24 ’100’ : ’201’ ,
25 ’102’ : ’201’ ,
26 ’001’ : ’102’ ,
27 ’201’ : ’102’ ,
28 }
29

30 chain_num = {}
31

32 number_index = 1
33 l e t t e r_ index = ’C’
34
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35

36 #This function is used to get the new chain, including its name and type.
37 def c r e a t eS t ru c t (name , chain , p o s i t i o n ) :
38 global number_index , l e t t e r_ index
39

40 i f chain in per f ec t_cha in :
41 i f po s i t i o n==’up’ :
42 new_down = str (name)+’_’+st ruc t_tab l e . get ( chain )
43 chain_num [ str (name) ] = chain_num [ str (name) ]+1
44 return new_down
45 else :
46 new_up = str ( number_index )+’_’+
47 s t ruc t_tab l e . get ( chain )
48 chain_num [ str ( number_index ) ] = 1
49 number_index+=1
50 return new_up
51

52 else :
53 i f po s i t i o n==’up’ :
54 i f str . i s a l pha (name) :
55 new_down = le t t e r_ index+’_’+
56 s t ruc t_tab l e . get ( chain )
57 l e t t e r_ index = chr (ord ( l e t t e r_ index )+1)
58 else :
59 new_down = name[: −1]+’_’+
60 s t ruc t_tab l e . get ( chain )
61 chain_num [ name [ : −1 ] ] = 1+chain_num [ name

[ : −1 ] ] i f name [ : −1 ] in chain_num . keys ( )
else 1

62 return new_down
63

64 else :
65 i f s t ruc t_tab l e . get ( chain ) not in per f ec t_cha in :
66 new_up = str ( number_index )+’*’+’_’+
67 s t ruc t_tab l e . get ( chain )
68 else :
69 new_up = str ( number_index )+’_’+
70 s t ruc t_tab l e . get ( chain )
71 chain_num [ str ( number_index ) ] = 1
72 number_index += 1
73 return new_up
74

75 #This function generates two new DNAs based on the parent DNA,r1,r2,r3 and r4.
76 #Save the new DNAs to left and right node.
77 def dup l i c a t e ( parent : TreeNode , r1 , r2 , r3 , r4 ) :
78 [ up , down ] = parent . va l
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79 i f up == ’None’ :
80 down_name , down_chain = down . s p l i t (’_’ )
81 r = random . random ( )
82 p = r1
83 i f down_chain==’201’ :
84 p=r4
85

86 i f down_chain==’001’ :
87 p=r2
88

89 i f r <=p :
90 r i g h t = TreeNode ( [ c r e a t eS t ru c t (
91 down_name , down_chain , ’down’ ) ,down ] )
92 else :
93 r i g h t = TreeNode ( [ ’None’ ,down ] )
94

95 return None , r i g h t
96

97 e l i f down == ’None’ :
98 up_name , up_chain = up . s p l i t (’_’ )
99 r = random . random ( )

100 p = r1
101 i f up_chain==’102’ :
102 p=r4
103

104 i f up_chain==’100’ :
105 p=r3
106

107 i f r <=p :
108 l e f t = TreeNode ( [ up , c r e a t eS t ru c t (
109 up_name , up_chain , ’up’ ) ] )
110 else :
111 l e f t = TreeNode ( [ up , ’None’ ] )
112

113 return l e f t , None
114

115 else :
116 up_name , up_chain = up . s p l i t (’_’ )
117 down_name , down_chain = down . s p l i t (’_’ )
118

119 r = random . random ( )
120 p = r1
121 i f up_chain==’102’ :
122 p=r4
123

124 i f up_chain==’100’ :
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125 p=r3
126

127 i f r <=p :
128 l e f t = TreeNode ( [ up , c r e a t eS t ru c t (
129 up_name , up_chain , ’up’ ) ] )
130 else :
131 l e f t = TreeNode ( [ up , ’None’ ] )
132

133 r = random . random ( )
134 p = r1
135 i f down_chain==’201’ :
136 p=r4
137

138 i f down_chain==’001’ :
139 p=r2
140

141

142 i f r <=p :
143 r i g h t = TreeNode ( [ c r e a t eS t ru c t (
144 down_name , down_chain , ’down’ ) ,down ] )
145 else :
146 r i g h t = TreeNode ( [ ’None’ ,down ] )
147

148 return l e f t , r i g h t
149

150 #This function uses the level order traversal framework, which is to traverse layer
151 #by layer according to the tree diagram.
152 def l e v e lOrde r ( time ,
153 root : TreeNode , r1 =0.6 , r2 =0.7 , r3 =0.7 , r4 =0.9) :
154 i f not root :
155 return [ ]
156

157 r e s = [ ]
158 queue = c o l l e c t i o n s . deque ( )
159 queue . append ( root )
160

161 while queue and time >0:
162 time−=1
163 m = len ( queue )
164 ans = [ ]
165 for i in range (m) :
166 tmp = queue . p op l e f t ( )
167 ans . append (tmp . va l )
168 tmp . l e f t , tmp . r i g h t=dup l i c a t e (tmp , r1 , r2 , r3 , r4 )
169

170 i f tmp . l e f t :
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171 #print(tmp.left.val,end=" ")
172 queue . append (tmp . l e f t )
173 i f tmp . r i g h t :
174 #print(tmp.right.val,end=" ")
175 queue . append (tmp . r i g h t )
176 r e s . append ( ans )
177 return r e s
178

179 #t=3
180 tmp = 7750
181 s i z e = 7750
182

183 t = 3 #or t=5
184 Z_count = np . z e r o s ( t−1)
185 #t=3
186 once_Z3 = np . z e r o s ( ( s i z e , 2 ) )
187 #t=5
188 #onceZ5 = np.zeros((size, 4))
189

190 a = 0
191 for i in range (tmp) :
192 chain_num = {}
193 number_index = 1
194 l e t t e r_ index = ’C’
195

196 root = TreeNode ( [ ’A_000u’ ,’B_000d’ ] )
197 ans = leve lOrde r ( t , root )
198

199 b = 0
200 for j in range ( t−1) :
201 a = c o l l e c t i o n s . Counter ( chain_num . va lue s ( ) ) [ j +1]
202 Z_count [ j ] = Z_count [ j ] + a
203 b = b + a
204 #t=3
205 once_Z3 [ i ] [ j ] = a
206 #t=5
207 #onceZ5[i][j] = a
208

209 #t=3
210 dataframe = pd . DataFrame ( once_Z3 )
211 dataframe . to_csv ("new_once_Z3.csv" , index=False , sep=’,’ )
212

213

214 #t=5
215 #dataframe = pd.DataFrame(onceZ5)
216 #dataframe.tocsv(”newonceZ5.csv”, index = False, sep =′,′ )
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A.2 DNA amplification code

1 import csv
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4 from c o l l e c t i o n s import d e f a u l t d i c t
5 from s c ipy . s t a t s import beta
6 from s c ipy . s t a t s import binom
7 import copy
8

9 #read the result of barcoding from csv file
10 def read_barcode ( ba r code_f i l e ) :
11 pcr = [ ]
12 with open( ba r code_f i l e ) as f :
13 f_csv = csv . r eader ( f )
14 header = next ( f_csv )
15 for row in f_csv :
16 pcr . append ( row )
17 pcr = [ [ f loat ( x ) for x in row ] for row in pcr ]
18 pcr = np .sum( pcr , ax i s=0)
19 pcr = [ int ( x ) for x in pcr ]
20 return pcr
21

22 #The two stages dilution based on smapling from binomial distribution
23 def di lus ion_1 ( barcoded , propor t ion ) :
24 count = 1
25 mol_di lut ion = [ 0 ] ∗ 10
26 for i in barcoded :
27 suc c e s s_ f l ag = np . random . rand ( i , count ) <
28 1 / proport ion
29 success_num = np . bincount (np .sum(
30 succe s s_f lag , ax i s = 1) )
31 for i in range (1 , len ( success_num ) ) :
32 mol_di lut ion [ i − 1 ] += success_num [ i ]
33 count += 1
34 return mol_di lut ion
35

36 def di lus ion_2 ( after_amp , prop_1 ) :
37 mol_di lut ion = [ 0 ] ∗ 200
38 num1 = binom . rvs ( after_amp , 1 / prop_1 )
39 for i in num1 :
40 i f i != 0 :
41 mol_di lut ion [ i − 1 ] += 1
42 return mol_di lut ion
43
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44 # Amplification simulation based on parameter in beta distribution, K, mutation
rate and r

45 def ampli fy_beta_fixa ( a f t e r_d i l , a , x , K, mutation , mean) :
46 r e s u l t = [ ]
47 count = 1
48 for i in a f t e r_d i l :
49 for j in range ( i ) :
50 r e s u l t . append ( count )
51 count += 1
52 p e r c e n t i l e = l i s t (np . random . rand ( len ( r e s u l t ) ) )
53 l ength = len ( r e s u l t )
54 for i in range ( x ) :
55 summ = sum( r e s u l t )
56 i f summ < K:
57 b = (1 − mean) ∗ a / mean
58 else :
59 b = summ / K ∗ a
60 means . append ( a /( a+b) )
61 print ( i + 1 , b)
62 bott le_neck = beta . ppf ( p e r c en t i l e , a , b )
63 r_1 . append ( bott le_neck [ 0 ] )
64 suc c e s s_ f l ag = binom . rvs ( r e su l t , bott le_neck )
65 e r r o r_ f l a g = binom . rvs ( succe s s_f lag , mutation )
66 r e s u l t = l i s t (np . array ( r e s u l t ) +
67 np . array ( suc c e s s_ f l ag ) −
68 np . array ( e r r o r_ f l a g ) )
69 error_num = sum( e r r o r_ f l a g )
70 r e s u l t . extend ( [ 1 ] ∗ error_num )
71 pe r c en t i l e_e r r o r = np . random . rand ( error_num )
72 p e r c e n t i l e . extend ( p e r c en t i l e_e r r o r )
73 return r e s u l t
74

75

76 pcr1 = read_barcode (’new_once_Z3.csv’ )
77 pcr2 = read_barcode (’new_once_Z5.csv’ )
78 d11 = di lus ion_1 ( pcr1 , 3)
79 d12 = di lus ion_1 ( pcr2 , 3)
80 alpha = 12
81 K = 10e7
82 mutation = 4 ∗ 10e−4
83 mean = 0 .9
84 r_1 = [ ]
85 means = [ ]
86 a = ampli fy_beta_fixa ( d11 , alpha , 28 , K, mutation , mean)
87 # a = amplifybetaf ixa(d12, alpha, 26, K,mutation,mean)
88 d2 = di lus ion_2 (a , 40000)

VII
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