

Performance evaluation of amorphous hexa-core for distribution transformers

Bachelor's Thesis in the Bachelor's programme Electric Power Engineering

JOSEFIN ALMÉN & MÅNS BREITHOLTZ

Department of Materials and Manufacturing Technology Division of High Voltage Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2012 Bachelor's thesis 81/2012

BACHELOR'S THESIS IN ELECTRIC POWER ENGINEERING

Performance evaluation of amorphous hexa-core for distribution transformers

by

JOSEFIN ALMÉN & MÅNS BREITHOLTZ

Department of Materials and Manufacturing Technology Division of High Voltage Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2012

PERFORMANCE EVALUATION OF AMORPHOUS HEXA-CORE FOR DISTRIBUTION TRANSFORMERS

© JOSEFIN ALMÉN & MÅNS BREITHOLTZ, 2012

Bachelor's Thesis 81/2012 ISSN 1652-8557 Department of Materials and Manufacturing Technology Division of High Voltage Engineering Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone: + 46 (0)31-772 1000

Gothenburg, Sweden 2012

PERFORMANCE EVALUATION OF AMORPHOUS HEXA-CORE FOR DISTRIBUTION TRANSFORMERS

JOSEFIN ALMÉN & MÅNS BREITHOLTZ

Department of Materials and Manufacturing Technology Division of High Voltage Engineering Chalmers University of Technology

ABSTRACT

Core losses and magnetization characteristics measured for two 15 kVA transformers with the hexa-cores made of amorphous alloy 2605HB1M from Metglas and 0.18 mm thick grain oriented silicone steel from Krupp are studied. The results of the no-load, short circuit and magnetization tests performed in the frequency range 50 - 400 Hz are presented. The results of the measurements show that the amorphous core provided significantly lower losses than the grain oriented one. However, it has a lower saturation point. General observations made during testing are also discussed.

Key words: Hexa-core, power loss, no-load test, amorphous material, grain oriented material

UTVÄRDERING AV AMORF- OCH MAGNETISK ORIENTERAD HEXA-CORE FÖR TRANSFORMATORER JOSEFIN ALMÉN & MÅNS BREITHOLTZ Institutionen för Material och Tillverkningsteknik Avdelningen för Högspänningsteknik Chalmers tekniska högskola

SAMMANFATTNING

Järnförluster och magnetiseringskarakteristik som uppmätts för två 15 kVA transformatorer med hexa-core kärnor gjorda av en amorf legering 2605HB1M från Metglas och ett 0,18 mm tjockt magnetiskt orienterat stål från Krupp har studerats. Resultaten av tomgångs-, kortslutnings- och magnetiseringstestet utförda i frekvensområdet 50-400 Hz presenteras. Mätningarnas resultat visar att den amorfa kärnan gav upphov till betydligt lägre förluster än kärnan av magnetiskt stål. Dock så har den amorfa kärnan en lägre satureringspunkt. Allmänna observationer gjorda under testernas gång diskuteras också.

Nyckelord: Hexa-core, effektförluster, tomgångstest, amorft material, magnetiskt orienterat stål

Contents

ABSTRACT		Ι
SAMMANFATTNING		II
CONTENTS		III
PREFACE		V
1 INTRODUCTION AN	ND BACKGROUND	1
2 WHAT IS A TRANSI	FORMER?	3
2.1 Working principl	e	3
2.2 Losses in a transf	former	3
2.3 The Hexa-core		4
3 MATERIALS FOR T	RANSFORMER CORES	5
3.1 Grain oriented sto	eel	5
3.2 Amorphous mate	rials	5
4 TEST SETUPS AND	PROCEDURE	7
4.1 The test transform	ners	7
4.2 Instruments and s	software	8
4.3 No-load test		9
4.3.1 The Purpose	;	9
4.3.2 Power source 4.3.3 Transformer	e setun	10
4.4 Short circuit test	h	11
4.4.1 The Purpose		11
4.4.2 Power source	e	11
4.4.3 Transformer	setup	12
4.5 Magnetization tes	st	12
4.5.1 The Purpose		12
4.5.3 Transformer	: setup	12
5 RESULTS		15
5.1 No-load losses		15
5.2 Core magnetizati	on	17
5.3 Phase core losses	4	19
5.4 Short circuit test		20

DIS	CUSSION AND COMMENTS	21
COl	NCLUSIONS	23
REF	FERENCES	25
API	PENDIX A	27
9.1	Labview main program.	27
9.2	Labview subVi Get measurements.	28
9.3	Labview subVi Calculate parameters.	29
9.4	Labview subVi Sort data.	30
9.5	Labview subVi Plot data.	31
9.6	Labview subVi Save to file.	32
0 APF	PENDIX B	33
10.1	No-load test amorphous core 50 and 100 Hz.	33
10.2	No-load test amorphous core 200 and 300 Hz.	34
10.3	No-load test amorphous core 400 Hz.	35
10.4	No-load test grain oriented core 50 and 100 Hz.	36
10.5	No-load test grain oriented core 200 and 300 Hz.	37
10.6	No-load test grain oriented core 400 Hz.	38
10.7	Magnetization test amorphous core.	39
10.8	Magnetization test grain oriented core.	40
	DIS CON REH APH 9.1 9.2 9.3 9.4 9.5 9.6 0 APH 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	DISCUSSION AND COMMENTS CONCLUSIONS REFERENCES APPENDIX A 9.1 Labview main program. 9.2 Labview subVi Get measurements. 9.3 Labview subVi Calculate parameters. 9.4 Labview subVi Calculate parameters. 9.4 Labview subVi Sort data. 9.5 Labview subVi Sort data. 9.6 Labview subVi Save to file. 0 APPENDIX B 10.1 No-load test amorphous core 50 and 100 Hz. 10.2 No-load test amorphous core 200 and 300 Hz. 10.3 No-load test amorphous core 400 Hz. 10.4 No-load test grain oriented core 50 and 100 Hz. 10.5 No-load test grain oriented core 200 and 300 Hz. 10.6 No-load test grain oriented core 400 Hz. 10.7 Magnetization test amorphous core. 10.8 Magnetization test grain oriented core.

Preface

In this study, an amorphous and a grain oriented hexa-core transformer of similar size and ratings have been evaluated. The tests have been carried out from April 2012 to May 2012 at the Division of High Voltage Engineering, Chalmers University of Technology, Sweden. This project has been carried out with Assoc. Prof. Yuriy Serdyuk as a supervisor.

We would like to thank Johan Ahlström for helping us with our measuring equipment, Magnus Ellsen for useful tips about our software, Aleksander Bartnicki for helping us with the necessary generator setups and, of course, Yuriy for his support and interest in our work.

Göteborg May 2012

Josefin Almén & Måns Breitholtz

1 Introduction and Background

Transformers are an important part of the electrical grid and they often represent a large investment for power companies. To be economically efficient, transformers should be designed to provide as low power loss as possible. This is especially true for the distribution level where they operate in stand-by mode during significant time and losses in the magnetic core represent an essential part of the total loss. Traditionally, conventional E-shaped cores are used for these transformers. Over the past decades however, a new type of cores from the company Hexaformer AB has entered the market. Such cores have hexagon shaped legs and provide symmetrical magnetic flux paths and have proven to show several advantages over traditional ones, such as lower losses, lower noise, smaller volume etc. [1]. These features make hexatransformers attractive as components of power electronic devices e.g. DC-DC converters. Aiming at further improving of the hexa-core design and exploring new applications for the hexa-core technology, prototype cores made from newly developed amorphous magnetic material 2605HB1M from Metglas and new thin (0.18 mm) grain oriented steel from Krupp have been developed by Hexaformer AB and have been transferred to the High Voltage Engineering group at Chalmers for testing. The purpose of this study is to evaluate the performance of the transformers built with such cores focusing on behaviour of core loss at frequencies in the range from 50 Hz and up to 400 Hz.

2 What is a transformer?

The transformer is a crucial component in the electrical system. Its main task is to transform voltage from one level to the other and to do this with low losses. On its way from generation sites to consumers, the voltage is transformed up or down several times. Particularly when power is to be transported over long distances, it is most advantageous to use a high voltage level. When the generated power reaches its destination, it is transformed down again for distribution to the customers. The transformer can also be viewed as a device to connect circuits without them having any galvanic contact [2].

2.1 Working principle

The function of a transformer is based on the principles of magnetic induction stating that if a changing current flows through a coil, a magnetic flux is induced. Since the flux travels poorly through air, a magnetic core can be used to lead the flux. Thus, when a voltage u1 (Figure 2.1) is applied to the primary winding with N1 turns wound around an iron core, the current in the winding will create a magnetic flux in the core. This flux will in turn travel through the iron and reach the secondary winding. According to the law of induction, this winding will try to oppose the change in the flux by inducing a voltage u2. The voltage u2 will have the same shape as u1, but it will be either higher or lower depending of the ration of the numbers of turns in the windings. If we consider the transformer to be ideal (e.g. lossless), the power input at the primary winding is equal to the output power at the secondary [2].

2.2 Losses in a transformer

For a real transformer, the power losses have to be considered. It cannot be viewed as ideal, which means that one should take into account the reluctance in the iron core and the resistances of the windings. These parameters give rise to losses which consists of loss due to the leakage flux, iron losses and losses in the windings. The aim of any transformer design is to keep these losses as low as possible.

In Figure 2.2 below, the losses are represented in an equivalent circuit of a transformer. In the diagram, the R_1 and R_2 represent the resistances of the windings which cause voltage drops. In ideal calculations these resistances are neglected. In an ideal core, it is assumed that the current needed to create the flux is zero. However when the reluctance is considered, there must be a small current in order to induce the

Figure 2.1 A schematic picture of a transformer.

Figure 2.2 A full equivalent circuit of a transformer.

flux. The magnetization circuit is depicted as the magnetizing inductance X_m and the resistance R_{fe} representing losses in the iron core due to circular (eddy) currents. The terms jXl1 and jXl2 indicate the part of the flux that leaks out of the core and, therefore, will not reach the secondary winding. The winding resistance and the leakage inductance of both sides are often combined and placed together on either transformer side as R_k and jX_k .

In a transformer, the no-load loss (aslo called core loss) represents a large part of the total losses over the transformers life time. It is, therefore, important to perfect the core both regarding the shape and material in order to minimize them [2].

2.3 The Hexa-core

The fact that the conventional E-core is not optimal from the point of view of power loss has been known since the end of the nineteenth century. A symmetrical flux path where all the phase winding would lie within equal distance from each other (Figure) was found to be a superior way to build a core. But even though this was known and a symmetrical core was even developed [1], it was far too costly and complicated to manufacture. Since then, the E-shape has been considered as a good enough solution.

The hexa-core goes back to the original idea about a symmetrical structure. Nowadays, new technology allows the manufacturer to wind long metal ribbons in a specific way to create a triangle like placing of the transformer legs (see Figure 2.3). The legs themselves obtain a hexagon cross section and, inherently, such a core is called hexa-core. This type of cores have proven to have several advantages such as lower losses, less vibrations, less noise, being smaller in size and weight and having a more robust construction [1]. Also, manufacturing process can be atomized in a large extent.

Figure 2.3 A hexa-core.

3 Materials for transformer cores

3.1 Grain oriented steel

Grain oriented (silicone) steel is also known as electrical steel. This material is commonly used for manufacturing transformer cores and also for rotors and stators of electrical motors. Grain oriented steel is made to meet specific magnetic requirements, such as high permeability and low core losses. The steel usually contains up to 3% of silicone, which provides higher electric resistivity for the material. This in turn hinders the eddy currents in the core [4]. The magnetic components are usually assembled from sheets of the steel with the thickness of 0.23 mm.

3.2 Amorphous materials

Amorphous magnetic materials are non-crystalline and do not have magnetic domains. They are made by rapidly cooling the melted metal, thus making it solidify in an irregular pattern (Figure 3.1). This fast cooling is achieved by pouring the metal on a spinning wheel which creates cascades of thin (tens of micrometres) ribbons of metal. The metal solidifies so quickly that it does not have time to form a crystalline structure. These ribbons are then wound into a transformer core. Advantages of this material as a core material include low coercivity, which means lower hysteresis losses, and high electrical resistance, which reduces eddy currents in the core. However, this material is also somewhat brittle and expensive to manufacture [3].

Figure 3.1 Production process of amorphous metals [5].

4 Test setups and procedure

4.1 The test transformers

The transformers are shown in Figure 4.3 and their characteristics are presented in Table 4.1. Note that the transformer with the grain oriented core has a copper band for grounding while the amorphous transformer does not. Both transformers were designed to operate at a magnetic flux density of 1T.

The testing of the transformers involved a three phase short circuit test, a three phase no load test and a magnetization test, which is a no load test on a single phase only. The tests are all meant to be performed at different voltage/current and frequency levels up to their nominal values. Because of this, a grid connected power source could not be used. Instead, a setup of generators were used which could provide different frequency ranges, see Figure 4.1. The basic procedure for all the three tests is illustrated in Figure 4.2.

Figure 4.3 The amorphous (left) and grain oriented (right) hexa-core transformers

	Amorphous	Grain oriented
Weight	55 kg	49 kg
Coupling	Dy	Dyn
Operating frequency	400 Hz	400 Hz
Rated Power	15 kVA	15 kVA
Voltage level	400 V	400 V
Current level	21,7 A	21,7 A
Number of turns Y	33	33
Number of turns D	57	57
Core material	Metglas 2605HB1M	Silicone steel, 0.18mm
Core leg cross section	3991 mm2	3991 mm2
Core length (one loop)	1,4 m	1,2 m
Winding material	Copper	Copper

Table 4.1Properties the test transformers.

Figure 4.1 A photo of the generators used

Figure 4.2 Schematics of the test setup.

4.2 Instruments and software

In the experiments, a Norma 3-phase power analyser D6100 has been used to measure the voltage, the current and the phase angle, see Figure 4.5. A LabView program was designed to automatically obtain the results of the measurements, to sort them and to store in a text file. A simple flow chart of the LabView program is shown in Figure 4.6. Further, a Matlab program was written to calculate other parameters from the

Figure 4.5 The power analyser (right) and generator control (left).

Figure 4.6 Flowchart of the LabView program.

measured data and to represent the data in a graphic form. The LabView and Matlab programs can be found in the appendix.

4.3 No-load test

4.3.1 The Purpose

The purpose of the no-load test is to evaluate the core parameters and to determine the losses caused by the core properties. In a transformer, the no load losses is a large part of the total losses. The sought parameters in this test are those of the magnetizing branch (X_m, R_{fe}) in the diagram in Figure 2.2.

4.3.2 **Power source**

This test was needed to be conducted at several different voltage and frequency levels to cover the transformers operational range. To achieve this, different external power generators were used in different setups that provided the required range of the parameters.

4.3.3 Transformer setup

The no-load test is often performed on the low voltage side for safety reasons. It is always safer to avoid conducting measurements on high voltages if possible. Since the transformation ration for the tested hexa-transformers is 1:1, the test was conducted on the Y-side for the sake of easier calculations. Figure 4.7 shows the setup for these measurements (note that the delta coupled side is left open) and Figure 4.8 shows the actual setup in the laboratory.

Figure 4.7 Measurement setup for no load test.

Figure 4.8 No-load test conducted on the grain oriented core.

The voltage was adjusted in steps until the nominal voltage was reached. With the measured values of the voltage, current and power, the parameters jX_m and R_{fe} could be calculated. In this case, the values of jX_k and R_k (see Figure 2.2) were ignored in order to simplify the calculations. This only caused a minor error, since they were much smaller than jX_m and R_{fe} due to the low currents in this test. The measurements started at 20 V and the voltage increased in steps up to 400 V for the grain oriented transformer and 360 V for the amorphous one. The lower voltage level for the amorphous transformer was a precaution, since it became considerably loud and noisy at higher voltages.

4.4 Short circuit test

4.4.1 The Purpose

From the short circuit test, the losses caused by the winding resistance can be determined. The sought parameters are the winding resistance R_k and the leakage inductance jX_k as depicted in Figure 2.2.

4.4.2 **Power source**

In this test, the voltage applied to a primary winding should be adjusted until a nominal current is measured in the secondary. This presented some difficulties for this setup. Since the very low resistance in the winding is the only the resistance the current will meet, the voltage needed to reach nominal current is very small. The generators used in the previous tests however, could not supply such low voltages. Instead, the transformers were connected to a lab bench (see Figure 4.9) which provided lower voltage levels. The drawback of this was that the test could only be performed at one frequency level; 50 Hz and only up to 10 A which is a half of the nominal current.

Figure 4.9 The lab bench to which the test transformers were connected.

4.4.3 Transformer setup

For the short circuit test, the Y-coupled side was used again for the measurements as shown in Figure 4.10. Note that the delta coupled side of the transformer is short circuited. Figure 4.11 shows the laboratory setup.

4.5 Magnetization test

4.5.1 The Purpose

To determine the saturation point of the core, a magnetization curve is needed to be obtained.

4.5.2 **Power source**

Like for the no-load test, the generator setup was used for the magnetization measurements.

4.5.3 Transformer setup

The setup for this test is the same as for the no-load test. The only difference is that the measurements were conducted on one phase only. The reason for this is that the

Mains 400 V 50 Hz

Figure 4.10 Test setup for the short circuit test.

Figure 4.11 Short circuit test conducted on the amorphous core.

Figure 4.12 Test setup for the magnetization test.

other two phases would have interfered with the flux. Figure 4.12 shows the transformer measurement setup.

5 Results

This chapter presents the results of the measurements. For the sake of comparison, the corresponding graphs for the grain oriented and the amorphous core will be shown together. Since a circumstantial short circuit test could not be conducted, the parameters of the core and the windings will not be displayed. Instead, the losses will be presented directly.

5.1 No-load losses

In Figures 5.1, the no-load losses are presented as a function of the magnetic field density at five different frequencies. As it is seen, the losses become higher at higher frequencies at similar B-field. When compared, one can conclude that the losses in the amorphous core are roughly half of that of the grain oriented at the same flux density (note the different scales on the y-axis).

Figure 5.1 No-load losses for the amorphous (a) and grain-oriented (b) cores at different frequencies.

Figure 5.3 shows the power factor ($\cos \Phi$) for both transformers as a function of the magnetic field density at different frequencies. From the graphs, it can be found that the maximum power factor grows up to unity at higher frequencies. It can also be seen that the reactive part of the losses increases rapidly at higher flux density for the amorphous transformer. The grain oriented transformer however, does not display such dramatic changes at its operating point (1 T).

Figure 5.3 Power factor for the amorphous (a) and the grain oriented (b) cores.

5.2 Core magnetization

In order to analyse

the magnetization of the transformers in terms of the magnetic flux density and magnetic field (so-called B-H curve), these quantities should be deduced from the measured parameters. The procedure was established by considering the following.

The induced voltage in a transformer is a function of the number of turns in the transformer winding N and the varying flux Φ :

$$U_{rms} = \frac{N}{\sqrt{2}} * \frac{d\Phi}{dt}$$
(5.1)

The flux itself is harmonic and it can be represented as:

$$\Phi(t) = \Phi_{max} * \sin\omega t = A * B_{max} * \sin\omega t$$
(5.2)

where A is the cross section area of the core and B_{max} is the amplitude of the magnetic flux density. Accounting for the angular frequency $\omega = 2\pi f$ (f is the frequency in Hz), the derivative of the flux in (5.1) is

$$\frac{d\Phi(t)}{dt} = 2\pi f * A * B_{max} * \cos(2\pi f t) = 2\pi f * A * B_{max}$$
(5.3)

Finally, by combining equations (5.1) and (5.3), one obtains the induced voltage

$$U_{rms} = \frac{2\pi f * A * B_{max} * N}{\sqrt{2}} = 4,44 * f * A * B_{max} * N$$
(5.4)

From equation (5.4), the magnetic flux density B_{max} can be calculated for the given frequency f by utilizing the measured magnitudes of U_{rms} and known parameters A and N of the transformer.

To calculate the H-field, equation (5.5) is used:

$$H = \frac{N*I}{l} \tag{5.5}$$

where I is the RMS value of the current and *l* is the equivalent length of the core.

The magnetization curves of the cores are presented in Figures 5.5 and 5.6. It is worth noting that the saturation point is lower for the amorphous core than for the grain oriented one (note that the scales on the B-axis are slightly different in the two graphs). The cores are both meant to be operating around 1 T, which is applicable for the grain oriented. For the amorphous however, it is far too close to the saturation point. On the other hand, the linear part of the amorphous curve occurs at a much lower H-field than for the grain oriented, which means a lower magnetizing current. Note that the values of H are the RMS-values.

Figure 5.5 Magnetization curves for the amorphous core at different frequencies.

Figure 5.6 Magnetization curves for the grain oriented core at different frequencies.

5.3 Phase core losses

For hexa-transformers, the symmetry of the losses in the core is an inherent property and, therefore, can be used as an indication of e.g. core integrity. Thus, the measurements of the core loss in the grain oriented transformer showed the same level of losses in each phase as seen in Figure 5.7. For the amorphous core, however, considerable differences in the losses in different phases were noted, Figure 5.8. The reasons for that may be some internal damages of the material (e.g. broken strips), which might appear during core production or its thermal treatment due to extremely high brittleness of the amorphous ribbon used.

Figure 5.7 Phase no-load losses for the grain oriented core at 50 Hz.

Figure 5.8 Phase no-load losses for the amorphous core at 50 Hz.

5.4 Short circuit test

The short circuit test presented a lot of difficulties. As previously mentioned in section 4.4.2, the generators from the no-load test could not be used since they could not provide a voltage low enough. Instead, a lab setup with an auto transformer connected to the grid was used. This introduced significant limitations in the test since it could only be performed at 50 Hz and only within a limited current range - the highest current level being not even half of the nominal current. It is, therefore, difficult to draw any conclusions from the data that was collected. It is impossible to know exactly how the parameters would change at higher currents. However, from the data points investigated, they seem to be unaffected by changes in the current level. Had the frequency level been variable though, it is safe to say that the variables would have increased. But since the parameters from the short circuit test is related to the windings of the transformer, and this study mainly aims to investigate the core, there was therefore no real need to investigate further. The values obtained for R_k and X_k (see Figure 2.2) at the different current levels are shown in Table 5.1. and Table 5.2.

Table 5.1 The results of the short circuit test for amorphous core at 50 Hz.

	l = 4,5	11 (A)	l = 6,1	07 (A)	l = 7,0	87 (A)
	Rk (mΩ)	Xk (mΩ)	Rk (mΩ)	Xk (mΩ)	Rk (mΩ)	Xk (mΩ)
Amorphous	39,8	21,6	39,7	21,2	40,1	20,0

Table 5.2The results of the short circuit test for grain oriented core at 50 Hz.

	I = 4,4	24 (A)	l = 6,1	12 (A)	l = 7,9	01 (A)
	Rk (mΩ)	Xk (mΩ)	Rk (mΩ)	Xk (mΩ)	Rk (mΩ)	Xk (mΩ)
Grain oriented	40,7	25,4	40,7	25,1	41,0	25,4

6 Discussion and comments

From the presented results, one can conclude that the amorphous material has much lower losses. However, the following observations were made regarding this core.

The amorphous transformer is meant to operate at 1 T. It was discovered though, that this was too close to the saturation point. When testing at the higher voltage and frequency range, the noise and vibrations became so strong that the testing had to be aborted when higher magnetic flux density levels were reached. For the last voltage levels at the higher frequency, ear protection was a necessity. This meant that the core could not be tested for the nominal voltage and frequency. For the grain oriented core however, values above 1 T could be reached without any similar problems. Since one of the purposes of these experiments was to compare two transformer cores at the same nominal values and the amorphous core has a lower saturation level than anticipated, the following calculations were made to avaluate the losses if the cross section area of the amorphous core would be increased in order to handle flux levels corresponding to 400 V test voltage.

If one assumes that the appropriate flux level for the amorphous material is 0.6 T and equation (5.4) is considered, it becomes clear that the cross-section area needs to be increased:

$$A_2 = \frac{1}{0.6} * A_1 = 1.67 * A_1 \tag{6.1}$$

This will cause the total weight and thereby the total no-load losses to increase with the same factor:

$$S_2 = 1,67 * S_1 \tag{6.2}$$

Two things were neglected in this reasoning: the contributing extra copper losses from the longer copper winding needed to have the same number of turns around a thicker core and the fact that the length of the loop will increase when the area increases. Another possible solution instead of increasing the core area would be to increase the number of turns in the winding. The no-load losses would remain roughly unchanged, but the copper losses would increase. Table 6.1 shows the calculated no-load losses for the amorphous core and the measured values of the grain oriented core at nominal voltage and frequency.

Core type	No-load losses (VA)	Mass (kg)
Grain oriented	476	49
Amorphous 1.67*A	175	92

Table 6.1 Comparison between the cores at the same nominal values.

The second observation regards the phase losses of the amorphous core, which turned out to differ from each other, as seen in Figure 5.8. This indicates that the core might be damaged or otherwise faulty. If this is the case, it might mean that the results discussed in the previous point have been affected negatively and that the amorphous core is indeed able to be operated at its nominal values. The asymmetry of the phases would also account for the high noise level.

7 Conclusions

- The core losses are lower for the amorphous transformer, but one must note that for it to operate at the intended 400 V @ 400 Hz, the core would have to be larger than the grain oriented core.
- The saturation point of the amorphous material turned out to be lower than predicted; saturation starts at about 0.7-0.8 T. A suitable voltage level for the amorphous transformer for its current size is 280 V.
- Based on the consideration of the symmetry of the phase core losses, there is a possibility that the amorphous core have somehow been damaged, either during the manufacturing process or from mechanical stresses during transportation.
- The amorphous transformer was found to be quite noisy that may be related to possible internal damages.

8 References

[1] <u>www.hexaformer.com</u>

[2] Department of Energy and Environment: Compendium for the course Electrical engineering *Electrical Engineering* {Elteknik}, Chalmers University of technology, Göteborg.

[3] W. NG, H., Hasegawa, R., C.Lee, A., Lowdermilk, L. (1991): Amorphous Alloy Core Distribution Transformer. *Proceedings of the IEEE*, Vol 79, No. 11, pp. 1608-1610

[4] www.wikipedia.org

[5] www.brgenergy.com

9 Appendix A

9.1 Labview main program.

9.2 Labview subVi Get measurements.

9.3 Labview subVi Calculate parameters.

9.4 Labview subVi Sort data.

9.5 Labview subVi Plot data.

9.6 Labview subVi Save to file.

10 Appendix B

10.1 No-load test amorphous core 50 and 100 Hz.

Q3 0,2387 0,2880 0,2881 0,52815 0,52855 0,52555 0,53555 0,53555 0,53555 0,53555 0,53555 0,53555 0,5355 1,1247 1,1247 1,1247 1,1247 1,1245 5,6860 6,9982 5,5860 6,9982 5,5860 6,9982 6,9982 0,2319 0,2319 0,2319 0,2319 0,2319 0,2319 0,2319 0,2319 0,2319 0,2319 0,2319 0,2319 0,2319 0,2319 0,2328 1,12287 1,12287 1,1287 1,	2,7866 3,7042 4,9562 6,7910 9,2392 12,7772 17,8008
Q2 0,2194 0,2659 0,4116 0,4126 0,4242 0,4242 0,4728 0,6775 0,6775 0,6775 0,6775 0,6775 0,6775 0,6775 0,6775 2,8875 2,8875 2,8875 2,8875 2,8875 2,8875 2,8875 2,9600 0,5935 0,7282	2,3544 3,1063 4,1438 5,7133 7,8657 11,0222 15,4492
Q1 0,1934 0,2348 0,3712 0,4209 0,4287 0,4287 0,4287 0,5377 0,5377 0,5377 0,5377 0,5377 0,5377 0,5345 0,9144 1,0489 1,0489 1,04894 1,0489 1,04894 1,0489 2,7894 2,7894 2,7894 1,0489 1,04817 0,3227 0,3227 0,3227 0,3227 0,5390 0,5390 0,5390 0,5390 0,5390 0,5390 0,5390 0,5390 0,5390 0,5390 0,5390 0,5327 0,5390 0,5390 0,5390 0,5327 1,1386 1,1386 1,1386 1,1386 1,1386 1,1386 1,1386 1,1386 1,1386 1,1386 1,1386 1,1386 1,1386 1,1386 0,5322 0,5322 0,5322 0,5322 0,5322 0,5322 0,5322 0,5322 0,5322 0,5322 0,5322 0,5322 0,5322 0,5322 0,5322 0,5322 0,5326 0,5327 1,1386 0,5327 1,1386 0,5327 1,1386 0,5327 1,1386 0,1377 1,1386 0,1377 1,1386 0,1377 1,1386 0,1377 1,1386 0,1377 1,1386 0,1377 1,1386 0,1377 1,1386 0,1377 1,1386 0,1377 1,1386 0,1377 1,1386 0,1377 1,1386 0,2327 1,1386 0,2327 1,1386 0,2327 1,1386 0,2327 1,1386 0,2327 1,1386 0,2327 1,1386 0,2327 1,1386 0,2327 1,1386 0,2327 1,1386 0,2327 1,1386 0,2327 0,2222 0,2	2,2577 3,0011 4,0434 5,5990 7,6824 10,6017 14,6902
P3 0,4363 0,5502 0,7481 0,8943 1,0068 1,0068 1,0319 1,2145 1,2578 1,2578 1,2578 1,2578 1,2603 2,6735 2,6735 2,6735 2,6735 2,6735 3,1169 3,2169 3,2936 3,2936 3,2936 3,2936 3,2936 3,2936 3,2936 3,2936 3,20619 0,5643 0,5643 0,5643 3,1169 3,2936 3,2936 3,2936 3,2936 3,2936 3,2936 3,2053 3,2053 3,2053 3,2058 3,2056 3,2056 3,2056 3,2056 3,2056 3,2056 3,2056 3,2056 3,2056 3,2056 3,2056 3,2056 2,2777 2,2777 3,25577 3,25577 3,25577 2,27577 3,25577 2,27577 2,27577 2,27577 2,27577 3,25577 2,27577 2,27577 2,27577 2,27777 2,27577 2,27577 2,275777 2,27577 2,27577 2,27577 2,275777 2,275777 2,275777 2,275777 2,275777 2,275777 2,275777 2,275777 2,275777 2,275777 2,275777 2,275777 2,275777 2,275777 2,2757777 2,2757777 2,27577777777 2,2757777777777	4,4353 5,0777 5,7717 6,5829 6,5829 7,4283 8,2840 8,2840 9,1138
P2 0,4784 0,6000 0,8091 0,9694 1,1514 1,1159 1,1159 1,1159 1,1214 1,3188 1,4657 1,7011 1,8124 1,9500 1,9500 1,9500 2,7022 3,0885 3,4894 3,8325 4,2498 1,9502 1,9253 1,0582 1,9253 1,0582 1,0582 1,3253 3,6098 4,1530 4,1530	4,8043 5,5399 6,3523 7,3253 8,4175 9,7820 11,3974
P1 0,4408 0,5565 0,7451 0,8923 0,9960 1,0518 1,1924 1,1924 1,3187 1,5948 1,5948 1,5948 1,5948 1,5948 2,2186 2,2058 2,2058 2,2120 0,6771 0,9881 1,5983 1,6790 0,6771 0,9881 1,5983 2,3509 2,3509 2,3509 2,3509 2,3509 2,3509 3,2921 3,7406	4,2540 4,8014 5,3795 6,0407 6,7619 7,5573 8,2921
B3 top 0,2973 0,2473 0,4707 0,5062 0,5576 0,5576 0,5576 0,5575 0,5575 0,5771 0,5771 0,7770 0,7771 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,7770 0,77700 0,77700 0,77700 0,77700 0,77700 0,77700 0,77700 0,777000 0,777000 0,77700000000	0,6969 0,7483 0,7980 0,8493 0,8985 0,9485 0,9983
82 top 0,2975 0,3463 0,47202 0,47202 0,55056 0,55056 0,55056 0,55056 0,55056 0,55050 0,55050 0,57757 0,27725 0,27759 0,27759 0,27759 0,27759 0,27759 0,27199 0,277500 0,277500 0,277500 0,277500 0,277500 0,277500 0,277500 0,277500 0,277500 0,277500 0,277500 0,277500 0,277500 0,2775000 0,2775000 0,27750000000000000000000000000000000000	0,6999 0,7515 0,8014 0,8530 0,9023 0,9526 1,0026
81 top 0,2971 0,24197 0,4127 0,4721 0,55683 0,55683 0,55749 0,55748 0,55748 0,55749 0,5715 0,5715 0,7715 0,5713 0,91450 0,91450 0,91450 0,21922 0,91450 0,21923 0,21923 0,24425 0,24435 0,24435 0,24435 0,24435 0,24435 0,24435 0,24435 0,24435 0,24435 0,24435 0,24435 0,24435 0,24435 0,24435 0,24435 0,24445 0,02445 0,02456 0,024566 0,0245666 0,0245666666666666666666666666666666666666	0,6978 0,7493 0,7990 0,8504 0,8997 0,9497 0,9997
Q tot 0,6514 0,7886 1,0324 1,4051 1,4441 1,4969 1,7902 2,0948 2,6815 3,0011 3,4332 4,8992 6,7284 9,0997 11,7902 15,0723 15,072	7,3973 9,8118 13,1423 18,1029 24,7884 34,4052 47,9441
P tot 1,3554 1,7066 2,3028 2,7571 3,0926 3,1703 3,1703 3,1703 3,1703 3,1703 3,1703 3,1703 5,0675 5,0675 5,0675 5,0675 5,0675 5,0289 9,01111 10,4696 10,4696 10,4696 3,2058 3,0258 10,4696 10,4696 10,4696 10,4696 10,4696 10,4695 10,72673 3,0258 3,0258 3,0258 3,0258 3,0258 3,0258 3,0258 3,0258 3,0258 3,0258 3,0258 3,0258 3,0258 10,4696 10,4696 10,4696 10,4695 10,4695 10,755	13,4913 15,4196 17,5021 19,9485 22,6090 25,6264 28,8055
λ3 0,8773 0,8860 0,8860 0,8876 0,8876 0,8876 0,8876 0,88762 0,88762 0,88762 0,88762 0,88762 0,88762 0,88769 0,8762 0,88769 0,8279 0,8279 0,8279 0,2466 0,6154 0,4258 0,2446 0,0222 0	0,8468 0,8079 0,7587 0,6960 0,6266 0,5440 0,5440 0,4557
A2 0,9090 0,9143 0,9205 0,9205 0,9205 0,9207 0,9207 0,9207 0,833 0,833 0,833 0,833 0,833 0,833 0,833 0,833 0,833 0,833 0,833 0,833 0,5806 0,5906 0,5006 0,50	0,8980 0,8722 0,8376 0,7885 0,7307 0,5937 0,5937
 λ1 λ1 0,9158 0,92140 0,92140 0,92111 0,921116 0,921116 0,91116 0,91116 0,92011 0,5575 0,5575 0,5575 0,5575 0,5575 0,5575 0,5575 0,5575 0,5575 0,5275 0,5275 0,5236 0,5236 0,5236 0,5236 0,9236 0,9309 0,9236 0,9309 0,9263 0,9264 	0,8833 0,8480 0,7994 0,7334 0,7334 0,7334 0,5805 0,5805 0,4916
Is Is Is Is 1 0,057 0,068 2 0,067 0,077 1 0,077 0,078 1 0,078 0,077 2 0,073 0,0101 3 0,1016 0,07145 4 0,17145 0,017145 7 0,088 0,1016 8 0,1016 0,0235 3 0,1455 0,2325 7 0,2325 3 9 0,023 0,0233 10 0,068 1 11 0,066 0,0933 12 0,0235 1 13 0,066 0,0933 14 0,088 0,0106 10 0,068 0,0933 10 0,068 0,0933 10 0,088 0,0933 10 0,088 0,0933 10 0,088 0,0933 10 0,0933 0,0105 <td>1 0,129 5 0,144 6 0,19 8 0,226 5 0,275 7 0,343</td>	1 0,129 5 0,144 6 0,19 8 0,226 5 0,275 7 0,343
12 12 12 13 14 13 13 13 14 14 13 14 <	 18 0,13 29 0,14 29 0,16 36 0,18 34 0,26 33 0,26 33 0,32
mms 11 r mms 11 r 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	 6 0,11 7 0,11 6 0,11 6 0,11 6 0,12 1 0,22
ms U3r 8,70 9 12,23 5 14,83 6 15,54 6 15,54 6 15,54 7 19,2 2 20,6 6 25,54 6 22,55 6 22,55 6 22,55 6 22,55 7 22,55 8 31,7 8 31,7	4 40,7 5 43,7 8 46,6 9 49,6 7 52,5 2 55,4 4 58,3
ms U2 r 8,70 8,71 1 13,8 10,12 1 13,8 1 15,03 2 15,5,05 2 15,5,05 2 17,7 2 10,92 2 17,7 2 20,7 2 20,	1 40,9 3 43,9 3 46,8 4 49,8 4 49,8 5 2,7 1 55,7 7 58,6
Ultrr 00 8,69 8,69 8,69 8,69 10,11	100 40,8: 100 43,8: 100 46,7: 100 49,7: 100 55,5: 00 55,5: 00 55,5: 00 58,47

300	300	300	300	300	300	300	300	300	300	300	300	300	300	300 -	300 -	300	300	300	-	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	-
145,75	140,09	134,25	122,61	116,67	110,99	105,13	99,29	87,70	81,81	76,04	70,18	54,46	52,65	46,75	40,79	34,69	22,88	16,28	U1 rms	104,49	98,63	93,08	87,36	81,35	75,70	59,87	54,04	58,42	52,54	46,60	40,75	34,69	28,50	22,80	16,19	8,40	U1 rms
145,63	139,88	134,02	122,40	116,55	110,80	104,97	99,18	87,55	81,77	75,91	70,08	64,33	52,55	46,69	40,79	34,62	22,88	16,25	U2 rms	105,16	99,26	93,67	87,91	81,88	76,19	70,31	64,46	58,79	52,86	46,89	41,00	34,91	28,68	22,94	16,29	8,45	U2 rms
144,34	138,64	132,89	121,34	115,57	109,85	104,02	98,26	86,84	81,02	75,30	69,43	63,82	52,07	46,33	40,43	34,37	22,71	16,07	U3 rms	104,46	98,60	93,05	87,33	81,34	75,68	69,85	64,03	58,40	52,52	46,59	40,73	34,68	28,49	22,79	16,18	8,40	U3 rms
0,233	0,217	0,203	0,183	0,175	0,168	0,161	0,154	0,141	0,135	0,129	0,122	0,116	0,103	0,096	0,088	0,081	0,064	0,053	l1 rm	0,239	0,205	0,183	0,166	0,153	0,144	0,135	0,127	0,119	0,112	0,104	0,096	0,088	0,079	0,07	0,059	0,042	l1 rm
0,255	0,236	0,22	0,196	0,186	0,177	0,168	0,161	0,147	0,14	0,133	0,126	0,12	0,106	0,099	0,091	0,083	0,066	0,055	s 12 rm	0,268	0,232	0,206	0,186	0,17	0,157	0,146	0,136	0,128	0,119	0,111	0,102	0,094	0,084	0,075	0,063	0,046	s 12 rm
0,257	0,236	0,219	0,193	0,182	0,173	0,165	0,157	0,144	0,137	0,131	0,124	0,118	0,104	0,097	0,09	0,082	0,064	0,053	s 13 rm	0,276	0,234	0,205	0,182	0,165	0,152	0,141	0,132	0,124	0,115	0,107	0,099	0,091	0,082	0,074	0,06	0,043	s 13 rm
0,818	0,852	0,879	0,913	0,924	0,931	0,936	0,940	0,941	0,941	0,939	0,937	0,934	0,925	0,919	0,911	0,901	0,870	0,844	s λ1	0,707	0,779	0,835	0,876	0,904	0,920	0,930	0,936	0,938	0,937	0,933	0,928	0,920	0,903	0,886	0,873	0,816	s λ1
8 0,848	6 0,872	2 0,892	9 0,917	7 0,925	9 0,930	9 0,934	1 0,936	5 0,938	3 0,937	7 0,936	5 0,933	5 0,930	6 0,920	1 0,914	5 0,905	5 0,893	7 0,859	0 0,825	λ2	6 0,768	4 0,822	0 0,862	2 0,890	3 0,912	5 0,924	8 0,93	1 0,935	0 0,936	2 0,935	9 0,93	6 0,926	4 0,918	6 0,906	8 0,892	9 0,864	1 0,794	λ2
32 0,78	24 0,82	20 0,85	75 0,89	56 0,90	0,91	45 0,92	59 0,92	33 0,92	76 0,92	50 0,92	36 0,92	04 0,92	0,91	14 0,90	56 0,89	39 0,88	92 0,84	52 0,80	λ3	37 0,66	28 0,73	26 0,78	19 0,83	22 0,86	42 0,88	15 0,90	53 0,90	53 0,91	51 0,91	18 0,91	51 0,90	31 0,89	58 0,87	20 0,85	12 0,83	17 0,75	λ3
88 66	41 81,	22 75,	17 63,	141 57,	.38 52,	03 48,	47 43,	82 35,	76 31,	70 27,	46 24,	18 21,	.16 15,	49 12,	9,8 53	37 7,5	54 3,8	180 2,1	Ρt	87 58,	37 51,	87 45,	30 40,	66 35,	876 31,	16 27,	94 23,	.32 20,	.30 16,	.02 13,	35 11,	147 8,6	80 6,2	98 4,3	35 2,5	49 0,8	Ρt
5650	6910	1620	3640	9511	9439	1287	6093	2839	3973	8697	2753	0830	0619	3973	961	670	026	465	ot	5893	6242	8484	5687	5768	3014	2423	5038	1540	9110	8966	1798	209	747	921	147	634	с т
61,8924	50,5651	41,5901	29,2321	24,9636	21,6275	18,9095	16,6721	13,2551	11,8448	10,5924	9,4392	8,3982	6,4409	5,5435	4,6727	3,8109	2,2704	1,4643	Q tot	57,0767	41,4226	30,8152	23,2052	17,7099	14,1305	11,4537	9,4785	7,9918	6,7465	5,6801	4,7715	3,8927	3,1006	2,3716	1,5076	0,6718	Q tot
0,8307	0,7984	0,7651	0,6988	0,6649	0,6325	0,5992	0,5659	0,4998	0,4662	0,4334	0,4000	0,3674	0,3000	0,2664	0,2325	0,1977	0,1304	0,0928	B1 top	0,8933	0,8432	0,7957	0,7468	0,6954	0,6471	0,5973	0,5475	0,4994	0,4491	0,3984	0,3483	0,2965	0,2436	0,1949	0,1384	0,0718	B1 top
0,8300	0,797:	0,7638	0,6970	0,664	0,631	0,5982	0,565	0,4990	0,4660	0,4326	0,3994	0,3666	0,2995	0,2662	0,2324	0,1973	0,1304	0,0926	B2 top	0,8990	0,8485	0,8008	0,7515	0,7000	0,6513	0,601:	0,5510	0,5026	0,4519	0,4009	0,3505	0,2984	0,245	0,1961	0,1392	0,0722	B2 top
0,822	2 0,790	3 0,757	5 0,691	2 0,658	5 0,626	2 0,592	2 0,560	0,494	0,461	5 0,429	1 0,395	5 0,363	5 0,296	L 0,264	1 0,230	3 0,195	1 0,129	5 0,091	B3 top	0,893	5 0,842	3 0,795	5 0,746	0,695	3 0,647	L 0,597	0,547	5 0,499) 0,449	9 0,398	5 0,348	1 0,296	L 0,243	L 0,194	2 0,138	2 0,071	B3 top
6 27,747:	1 25,8814	4 24,008;	5 20,5403	7 18,8578	1 17,3342	8 15,8186	0 14,3563	9 11,6508	7 10,3728	1 9,1816	7 8,0403	7 6,9823	8 4,9995	1 4,1078	4 3,2796	9 2,5174	4 1,2652	6 0,7227) P1	0 17,6402	9 15,759;	5 14,1836	6 12,7214	4 11,2704	0 10,0068	1 8,7728	3 7,6012	3 6,5427	0 5,4998	3 4,5260	2 3,6437	5 2,8096	5 2,0345	8 1,4195	3 0,8276	8 0,2879	9 P1
L 31,4732	1 28,7988	7 26,3467	3 21,9880	3 20,0441	2 18,2254	5 16,5188	3 14,9515	3 12,0344	3 10,7181	9,4503	8,2701	7,1709	5,1294	4,2183	3,3759	2,5780	1,3031	0,7400	P2	2 21,6898	7 18,9400	5 16,6456	14,5833	12,6678	3 11,0548	9,5618	8,2173	7,0243	5,8824	4,8286	3,8844	2,9964	2,1842	1,5308	0,8811	0,3056	P2
29,3459	26,9993	24,8029	20,8279	. 19,0483	17,3863	\$ 15,7951	14,3012	11,5992	. 10,3116	9,1373	7,9665	6,9294	4,9364	4,0710	3,2400	2,4757	1,2344	0,6843	P3	19,2586	16,9282	15,0228	13,2681	11,6384	10,2367	8,9053	7,6803	6,5923	5,5284	4,5454	3,6506	2,8145	2,0558	1,4403	0,8051	0,2700	P3
19,4530	15,8660	13,0086	9,1212	7,7650	6,7495	5,9024	5,2052	4,1696	3,7204	3,3426	2,9835	2,6589	2,0447	1,7608	1,4797	1,2086	0,7146	0,4593	Q1	17,6180	12,6667	9,3482	6,9982	5,3198	4,2463	3,4465	2,8567	2,4181	2,0466	1,7326	1,4561	1,1935	0,9643	0,7397	0,4603	0,2038	Q1
19,6554	16,1370	13,3546	9,5338	8,1958	7,1516	6,2932	5,5779	4,4364	3,9750	3,5528	3,1736	2,8245	2,1709	1,8673	1,5810	1,2932	0,7759	0,5065	Q2	18,0446	13,0814	9,7602	7,3953	5,6895	4,5691	3,7346	3,1079	2,6342	2,2290	1,8803	1,5829	1,2937	1,0155	0,7758	0,5131	0,2334	Q2
22,7853	18,5552	15,2248	10,5732	9,0022	7,7270	6,7151	5,8887	4,6493	4,1514	3,6967	3,2826	2,9146	2,2267	1,9153	1,6116	1,3112	0,7800	0,4989	Q	21,4132	15,6772	11,7097	8,8142	6,7001	5,3136	4,2716	3,5117	2,9414	2,4707	2,0686	1,7320	1,4053	1,1208	0,8553	0,5338	0,2346	Q

10.2 No-load test amorphous core 200 and 300 Hz.

Q3	0,4842	0,7640	1,0077	1,3087	1,6190	1,9224	2,2368	2,5674	2,9003	3,2506	3,6165	3,9981	4,4041	4,8042	5,2558	5,7253	6,2245	6,7972	7,3963	8,1143	8,8987	9,8004	10,8696	12,0954	13,5759	15,3085	17,4187	20,0135	23,0024	26,7117	31,0974	36,4280	42,6071	50,0227
Q2	0,4951	0,7743	1,0132	1,3080	1,6146	1,9105	2,2145	2,5275	2,8508	3,1907	3,5345	3,9015	4,2904	4,6700	5,1049	5,5412	6,0189	6,5496	7,1113	7,7663	8,4766	9,2800	10,2026	11,2633	12,5139	13,9881	15,7195	17,8496	20,3387	23,4088	27,0746	31,5566	36,8149	43,1428
Q1	0,4494	0,7091	0,9351	1,2164	1,5056	1,7877	2,0801	2,3799	2,6856	3,0035	3,3291	3,6664	4,0284	4,3758	4,7707	5,1726	5,5925	6,0872	6,5911	7,1937	7,8451	8,6133	9,4811	10,4914	11,7122	13,1483	14,8813	17,0271	19,5430	22,6686	26,4542	31,0941	36,5653	43,2273
33	0,6082	1,1013	1,5862	2,2469	2,9742	3,7329	4,5608	5,4569	5,3986	7,4105	3,4654	9,5749	10,7630	11,9577	13,2510	14,5755	15,9259	17,4109	18,8698	20,4879	22,0783	23,7872	25,5627	27,3923	29,3203	31,3684	33,4860	35,7641	38,1024	40,6166	43,2467	46,1001	19,1067	52,3796
2	,6555 (,1725	.,6764	,3550	,1055	,8888	1,7428 4	,6620	,6292 (,6750	3,7701 8	,9110	1,1405	2,3886	3,7504	5,1294	6,5538	8,1052	9,6547	1,3807	3,0890	4,9054	6,8291	8,8256	0,9498	3,1681	5,5570	8,0967	0,6887	3,5175 4	6,4669	9,6251	2,8969	6,3867
1	,6426 C	,1464 1	,6370 1	,3023 2	,0371 3	,8026 3	,6367 4	,5352 5	,4758 6	,4946 7	,5581 8	,6771 9	0,8641 1	2,0702 1	3,3852 1	4,7138 1	6,0714 1	7,5761 1	9,0343 1	0,6445 2	2,2332 2	3,9105 2	5,6360 2	7,4012 2	9,2166 3	1,1127 3	3,0607 3	5,0958 3	7,1179 4	9,2754 4	1,4618 4	3,7515 4	6,0940 5	8,5997 5
B3 top P	0,0687 0	0,0968 1	0,1197 1	0,1466 2	0,1729 3	0,1979 3	0,2227 4	0,2476 5	0,2722 6	0,2972 7	0,3217 8	0,3462 9	0,3712 1	0,3954 1	0,4205 1	0,4450 1	0,4691 1	0,4944 1	0,5184 1	0,5438 2	0,5681 2	0,5928 2	0,6174 2	0,6419 2	0,6665 2	0,6910 3	0,7158 3	0,7407 3	0,7649 3	0,7898 3	0,8143 4	0,8391 4	0,8633 4	0,8878 4
B2 top	0,0694	0,0978	0,1210	0,1482	0,1748	0,2000	0,2251	0,2503	0,2752	0,3003	0,3252	0,3499	0,3752	0,3997	0,4250	0,4498	0,4741	0,4997	0,5240	0,5496	0,5742	0,5992	0,6241	0,6488	0,6737	0,6984	0,7234	0,7487	0,7731	0,7982	0,8230	0,8481	0,8726	0,8973
B1 top	0,0694	0,0978	0,1210	0,1482	0,1748	0,2000	0,2251	0,2503	0,2752	0,3004	0,3252	0,3499	0,3752	0,3997	0,4250	0,4498	0,4742	0,4997	0,5240	0,5497	0,5742	0,5992	0,6241	0,6488	0,6737	0,6985	0,7235	0,7487	0,7732	0,7983	0,8231	0,8482	0,8726	0,8974
Q tot	1,4291	2,2470	2,9560	3,8341	4,7381	5,6217	6,5303	7,4727	8,4372	9,4472	10,4797	11,5663	12,7213	13,8510	15,1339	16,4418	17,8412	19,4313	21,0974	23,0719	25,2154	27,6927	30,5462	33,8442	37,8063	42,4411	48,0216	54,8919	62,8835	72,7900	84,6240	99,0810	115,9950	136,3970
tot	6906'	3,4195	1,8997	09060	,1148	1,4266	3,9377	6,6493	9,5048	2,5856	5,7923	9,1635	32,7633	86,4188	10,3928	14,4257	18,5651	3,0842	57,5544	\$2,5062	57,3880	2,6010	8,0100	33,6050	39,4970	5,6420	02,1080	08,9610	15,9080	23,4110	31,1720	39,4790	48,1080	57,3710
λ 3 F	0,7823 1	0,8216 3	0,8441 4	0,8641 6	0,8783 9	0,8890	0,8978 1	0,9049 1	0,9108 1	0,9158 2	0,9196 2	0,9228 2	0,9255 3	0,9279 3	0,9296 4	0,9308 4	0,9314 4	0,9315 5	0,9310 5	0,9297 6	0,9275 6	0,9246 7	0,9203 7	0,9148 8	0,9074 8	0,8987	0,8872 1	0,8727 1	0,8561 1	0,8355 1	0,8119 1	0,7846 1	0,7553 1	0,7232 1
72	0,7980	0,8345	0,8558	0,8742	0,8872	0,8975	0,9061	0,9131	0,9187	0,9234	0,9275	0,9305	0,9332	0,9357	0,9375	0,9390	0,9398	0,9404	0,9403	0,9399	0,9387	0,9371	0,9347	0,9314	0,9271	0,9214	0,9146	0,9055	0,8945	0,8807	0,8640	0,8438	0,8208	0,7942
i λ1	0,8195	0,8505	0,8683	0,8842	0,8960	0,9050	0,9124	0,9187	0,9237	0,9282	0,9320	0,9351	0,9376	0,9401	0,9420	0,9434	0,9445	0,9449	0,9450	0,9443	0,9430	0,9408	0,9379	0,9339	0,9282	0,9211	0,9119	0,8997	0,8848	0,8661	0,8430	0,8151	0,7834	0,7472
ns 13 rm	1 0,048	1 0,059	9 0,067	8 0,076	6 0,084	3 0,091	9 0,098	6 0,104	2 0,11	8 0,116	4 0,122	0,128	6 0,134	2 0,139	8 0,145	3 0,15	9 0,156	5 0,162	1 0,167	7 0,173	3 0,179	0,186	7 0,192	4 0,199	2 0,207	0,216	0,225	0,237	2 0,249	5 0,263	9 0,28	6 0,299	6 0,322	8 0,349
ms 12 rr	48 0,05	59 0,06	67 0,06	75 0,07	83 0,08	90,0 6	97 0,09	03 0,10	09 0,11	15 0,11	21 0,12	26 0,13	32 0,13	37 0,14	43 0,14	48 0,15	53 0,15	59 0,16	64 0,17	7 0,17	76 0,18	81 0,19	87 0,19	93 0,20	0,21	07 0,22	14 0,23	23 0,24	32 0,25	43 0,26	55 0,27	71 0,29	88 0,31	1 0,33
ms I1 r	0,0 0,0	54 0,0	0,0	30 0,0	16 0,0	29 0,0	10 0,0	93 0,10	59 0,10	52 0,1	27 0,1	0,10	35 0,13	51 0,1	38 0,1,	,12 0,1	,75 0,1	,66 0,1	,29 0,10	,23 0,1	,91 0,1	,69 0,1	,45 0,18	,17 0,19	,94 0,2	,67 0,20	,46 0,2	,29 0,2	,96 0,2	,77 0,2	,51 0,2	,31 0,2	,97 0,28	,71 0,3
ms U3 r	4 16,0	9 22,6	1 28,0	7 34,5	9 40,4	9 46,2	6 52,1	5 57,5	7 63,6	6 69,5	7 75,2	7 81,0	8 86,8	0 92,5	4 98,5	24 104	92 109	90 115	59 121	59 127	33 132	18 138	00 144	78 150	62 155	40 161	25 167	15 173	87 178	75 184	55 190	41 196	14 201	93 207
ns U2 ri	16,2	22,8	28,3	34,6	40,8	46,7	52,6	58,5	64,3	70,2	76,0	81,8	87,7	93,5	99,4	4 105,	3 110,	1 116,	0 122,	0 128,	4 134,	8 140,	1 146,	9 151,	2 157,	1 163,	6 169,	6 175,	9 180,	7 186,	7 192,	3 198,	5 204,	5 209,
f U1 rn	400 16,24	400 22,89	400 28,31	400 34,67	400 40,89	400 46,79	400 52,66	400 58,55	400 64,38	400 70,27	400 76,08	400 81,87	400 87,78	400 93,51	400 99,44	400 105,2	400 110,9	400 116,9	400 122,6	400 128,6	400 134,3	400 140,1	400 146,0	400 151,7	400 157,6	400 163,4	400 169,2	400 175,1	400 180,8	400 186,7	400 192,5	400 198,4	400 204,1	400 209,9

10.3 No-load test amorphous core 400 Hz.

		_				_		_			_		_				_	_		_	_					_		_	_				_				_			_
100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	-		50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	-
81,23	78,40	74,94	70,29	67,93	65,65	60,97	55,61	49,84	46,79	40,93	34,86	31,97	28,47	25,69	23,25	19,26	16,35	13,10	8,42	U1 rms		40,58	39,31	38,38	35,17	33,48	31,64	30,75	28,79	26,76	25,73	23,01	20,94	19,34	17,80	16,12	14,57	11,19	8,60	U1 rms
81,05	78,23	74,77	70,13	67,77	65,50	60,83	55,75	49,96	46,92	41,04	34,95	32,05	28,54	25,76	23,31	19,31	16,41	13,14	8,45	U2 rms		40,50	39,26	38,33	35,09	33,40	31,60	30,69	28,72	26,80	25,74	23,04	20,96	19,36	17,83	16,12	14,60	11,22	8,60	U2 rms
80,83	78,02	74,57	69,94	67,58	65,31	60,66	55,53	49,77	46,73	40,87	34,81	31,93	28,42	25,65	23,21	19,24	16,33	13,09	8,42	U3 rms		40,46	39,20	38,26	35,04	33,36	31,55	30,63	28,68	26,74	25,68	22,98	20,90	19,33	17,78	16,07	14,55	11,19	8,58	U3 rms
0,506	0,474	0,443	0,410	0,395	0,383	0,359	0,338	0,313	0,300	0,274	0,247	0,234	0,217	0,203	0,190	0,168	0,150	0,128	0,091	l1 rms		0,421	0,391	0,372	0,327	0,310	0,293	0,286	0,270	0,258	0,251	0,233	0,220	0,209	0,199	0,187	0,176	0,150	0,127	11 rms
0,511	0,479	0,447	0,413	0,398	0,384	0,359	0,337	0,311	0,297	0,271	0,244	0,230	0,214	0,200	0,187	0,165	0,148	0,126	0,091	12 m		0,429	0,397	0,378	0,330	0,311	0,294	0,286	0,270	0,256	0,249	0,231	0,217	0,206	0,196	0,184	0,173	0,148	0,125	12 m
0,510	0,479	0,448	0,414	0,400	0,386	0,362	0,340	0,313	0,300	0,274	0,246	0,233	0,216	0,202	0,190	0,167	0,150	0,128	0,092	5 13 rm		0,428	0,397	0,379	0,332	0,313	0,296	0,288	0,272	0,259	0,251	0,233	0,219	0,209	0,198	0,186	0,175	0,150	0,127	s I3 rm
0,8406	0,8562	0,8680	0,8752	0,8769	0,8769	0,8745	0,8628	0,8506	0,8419	0,8217	0,7960	0,7832	0,7651	0,7510	0,7364	0,7129	0,6889	0,6601	0,6028	s λ1		0,7296	0,7540	0,7692	0,7995	0,8076	0,8120	0,8126	0,8137	0,8036	0,7992	0,7863	0,7728	0,7581	0,7446	0,7270	0,7083	0,6604	0,6160	s λ1
0,8402	0,8570	0,8696	0,8774	0,8793	0,8792	0,8766	0,8647	0,8519	0,8430	0,8226	0,7966	0,7836	0,7656	0,7521	0,7370	0,7145	0,6915	0,6639	0,6099	λ2		0,7333	0,7586	0,7740	0,8049	0,8128	0,8173	0,8171	0,8177	0,8061	0,8013	0,7874	0,7728	0,7592	0,7451	0,7261	0,7081	0,6625	0,6194	72
2 0,8373	0,8533	0,8657	0,8740	0,8763	0,8769	0,8759	0,8635	0,8527	0,8447	0,8262	0,8018	0,7895	0,7723	. 0,7588	0,7442	0,7216	0,6970	0,6675	0,6068	λ3		0,7217	0,7476	0,7638	0,7985	8 0,8083	0,8141	. 0,8155	0,8182	. 0,8074	0,8039	0,7917	\$ 0,7790	. 0,7660	. 0,7520	. 0,7361	. 0,7171	0,6702	0,6279	73
3 103,851	3 95,8090	7 86,7820) 75,9270	3 70,9120) 66,2870) 57,5016	3 48,7755	39,7661	35,3906	27,6291	3 20,5281	3 17,5034	3 14,1412	3 11,7105	9,7463	6,8964) 5,0661	3,3253	3 1,3987	P tot		37,7086	35,0639	33,2859	3 27,7958	3 25,2651	22,7165	3 21,5079	19,0393	16,6624) 15,4676	12,6400) 10,6345	9,1886	7,8915	6,5589	5,4354	2 3,3291) 2,0231	P tot
0 67,250	57,995	49,694	41,900	38,756	36,195	31,713	28,464	24,462	22,564	19,034	15,494	13,791	11,804	10,201	8,8797	6,7178	5,2780	3,7462	1,8335	Q tot		35,489	30,601	27,666	20,777	18,317	16,183	15,286	13,461	12,248	11,541	9,8607	8,6750	7,8310	7,0178	6,1454	5,3727	3,7452	2,5528	U tot
0 1,3	9 1,3	6 1,2	0 1,2	2 1,1	2 1,1	9 1,0	4 0,9	9 0,8	3 0,8	6 0,6	3 0,5	7 0,5	4 0,4	9 0,4	0,3	0,3	0,2	0,2	0,1	B1		0 1,3	0 1,3	7 1,3	4 1,2	9 1,1	0 1,0	5 1,0	5 0,9	8 0,9	7 0,8	0,7	0,7	0,6	0,6	0,5	0,4	0,3	0,2	ВI
888 1	404 1	813 1	018 1	614 1	224 1	424 1	508 0	521 0	001 0	0 866	960 0	466 0	867 0	392 0	974 0	293 0	795 0	240 0	440 0	top B		875 1	441 1	124 1	025 1	448 1	820 1	514 1	843 0	152 0	0 862	867 0	161 0	614 0	085 0	512 0	981 0	828 0	941 0	top B
,3857	,3375	,2784	,1990	,1587	,1198	,0400	,9532	,8542	,8022	,7017	,5976	,5480	,4880	,4404	,3986	,3302	,2805	,2247	,1444	2 top		,3849	,3423	,3106	,1998	,1422	,0806	,0493	,9820	,9164	,8802	,7878	,7168	,6619	,6096	,5511	,4993	,3835	,2939	2 top
1,3820	1,3339	1,2750	1,1958	1,1554	1,1166	1,0371	0,9495	0,8509	0,7989	0,6988	0,5952	0,5459	0,4860	0,4386	0,3969	0,3289	0,2792	0,2238	0,1439	B3 top		1,3837	1,3405	1,3083	1,1982	1,1407	1,0787	1,0473	0,9808	0,9142	0,8781	0,7859	0,7146	0,6610	0,6081	0,5496	0,4975	0,3826	0,2934	B3 top
34,5509	31,8310	28,8099	25,2090	23,5527	22,0297	19,1405	16,2183	13,2506	11,7989	9,2222	6,8596	5,8487	4,7260	3,9126	3,2575	2,3015	1,6872	1,1055	0,4618	P1		12,4605	11,5794	10,9933	9,1929	8,3679	7,5304	7,1411	6,3333	5,5492	5,1550	4,2181	3,5558	3,0673	2,6382	2,1960	1,8168	1,1111	0,6734	P1
34,7719	32,0922	29,0581	25,3998	23,6992	22,1359	19,1538	16,2603	13,2196	11,7551	9,1587	6,7911	5,7848	4,6699	3,8665	3,2164	2,2754	1,6767	1,1018	0,4679	P2		12,7406	11,8340	11,2225	9,3201	8,4495	7,5831	7,1687	6,3283	5,5346	5,1317	4,1849	3,5136	3,0332	2,6051	2,1578	1,7911	1,0974	0,6665	P2
34,5298	31,8876	28,9156	25,3204	23,6581	22,1239	19,2109	16,2950	13,2955	11,8324	9,2484	6,8780	5,8706	4,7459	3,9320	3,2736	2,3196	1,7025	1,1181	0,4693	P3		12,5075	11,6477	11,0732	9,2829	8,4483	7,6019	7,1984	6,3790	5,5802	5,1793	4,2362	3,5651	3,0872	2,6481	2,2042	1,8278	1,1209	0,6831	P3
22,2625	19,2077	16,4812	13,9365	12,9114	12,0766	10,6177	9,5028	8,1920	7,5632	6,3954	5,2155	4,6432	3,9774	3,4396	2,9927	2,2642	1,7750	1,2578	0,6114	Q		11,6788	10,0877	9,1333	6,9077	6,1105	5,4129	5,1211	4,5251	4,1093	3,8771	3,3149	2,9198	2,6387	2,3651	2,0742	1,8107	1,2633	0,8611	Q
22,4402	19,3002	16,4975	13,8900	12,8361	; 11,9937	10,5148	9,4451	8,1269	7,4997	6,3319	5,1529	4,5859	3,9236	3,3881	2,9501	2,2280	1,7517	1,2411	0,6079	Q2		11,8137	10,1644	9,1798	6,8704	6,0549	5,3465	5,0569	4,4556	4,0631	3,8313	3,2764	2,8853	2,6004	2,3316	2,0434	1,7858	1,2408	0,8448	Q2
22,5474	19,4889	16,7165	14,0745	13,0077	12,1264	10,5834	9,5154	8,1438	7,4987	6,3075	5,1263	4,5633	3,9040	3,3748	2,9380	2,2257	1,7516	1,2474	0,6147	Q		11,9965	10,3463	9,3562	6,9993	6,1528	5,4229	5,1087	4,4818	4,0776	3,8321	3,2687	2,8698	2,5912	2,3209	2,0271	1,7764	1,2414	0,8468	Q3

10.4 No-load test grain oriented core 50 and 100 Hz.

33	0,3637	1,2350	2,2703	3,0852	4,2750	5,3859	5,5736	9,0435	10,2920	11,5614	12,8278	14,0663	15,3019	16,5585	19,1760	20,5290	21,9686	23,4477	25,1320	26,9741	29,1040	34,5846	38,5501	43,1373	33	0,2859	2,6309	3,2707	14,7642	21,6603	28,3903	35,1282	38, 1660	11,4215	45,1046	t9,7378	C 0 1 1 7
5	,3626	,2374	,2939	,1285	,3515	,4926	,7112	,2518	0,5217	1,8307	3,1191	4,3829	5,6506	6,9257	9,5646	0,9362	2,3658	3,8441	5,5386	7,3857	9,5368	5,1857	9,3194	4,1319	2	,2901	,6719	,4797	5,1866	2,3242	9,3775	6,5698	9,8377	3,3767	7,3413	2,3343	
1	,3654 0	,2592 1	,3381 2	,1967 3	,4394 4	,6055 5	,8420 6	,4182 9	0,7010 1	2,0194 1	3,3114 1	4,5821 1	5,8379 1	7,1202 1	9,6947 1	1,0208 2	2,4092 2	3,8356 2	5,4570 2	7,2397 2	9,3075 2	4,7144 3	8,7208 3	3,4848 4	10	,2908 0	,7223 2	,6226 8	5,3942 1	2,4912 2	9,3723 2	6,1699 3	9,1543 3	2,4018 4	6,0388 4	0,7426 5	7 0017
0	3343 0	2423 1	5080 2	5332 3	4128 4	2184 5	2544 6	,9501 9	,5545 1	,4217 1	,4906 1	,7517 1	,2136 1	,9404 1	,9760 1	,3778 2	,9869 2	,8339 2	,0297 2	,4529 2	,2586 2	,0457 3	,2247 3	,1107 4		2887 0	2126 2	,6526 8	,2627 1	,3068 2	,9482 2	,3475 3	6,7188 3	0,0078 4	4,2578 4	9,7138 5	E 4601 E
P3	25 0,3	59 1,	75 2,	37 3,	'81 5,	00 7,	59 9,	575 13	340 16	19 19	273 22	816 25	409 29	587 32	441 40	891 45	538 49	699 54	546 60	447 65	280 71	614 84	767 91	954 98	B3	04 0,	64 3,	610 12	182 26	532 44	133 66	100 94	6573 10	0992 12	5510 13	0965 14	16 16
P2	0,33	1,21	2,44	3,54	5,27	7,04	9,03	7 13,6	1 16,2	7 19,0	22,1	1 25,3	3 28,8	7 32,5	3 40,6	5 45,0	5 49,7	3 54,6	9 59,9	5 65,4	7 71,3	84,2	0 91,4	5 98,2	P2	0,29	3,14	5 12,3	5 25,8	1 43,7	5 66,4	1 94,0	42 106,	58 120,	52 134,	J3 150,	7 167
P1	0,3326	1,2337	2,4993	3,6258	5,4156	7,2251	9,2743	13,9937	16,609:	19,495	22,579;	25,864:	29,3473	33,102	41,1903	45,630(50,274	55,1483	60,3919	65,8635	71,740	84,7508	92,099(99,171	P1	0,2929	3,2266	12,7155	26,464	44,628:	67,590(95,554:	108,20	121,87(136,43(152,37(160 60'
B3 to p	0,0686	0,1366	0,1967	0,2388	0,2954	0,3453	0,3956	0,4961	0,5451	0,5951	0,6447	0,6939	0,7429	0,7923	0,8905	0,9401	0,9893	1,0383	1,0881	1,1372	1,1865	1,2846	1,3341	1,3780	B3 to p	0,0453	0,1595	0,3302	0,4941	0,6587	0,8228	0,9865	1,0522	1,1176	1,1830	1,2486	10101
B2 to p	0,0690,0	0,1374	0,1979	0,2403	0,2971	0,3473	0,3979	0,4990	0,5483	0,5986	0,6485	0,6980	0,7472	0,7970	0,8957	0,9457	0,9952	1,0444	1,0945	1,1436	1,1932	1,2920	1,3417	1,3857	B2 to p	0,0460	0,1609	0,3328	0,4983	0,6645	0,8299	0,9950	1,0616	1,1276	1,1933	1,2593	1 2765
B1 top	0,0691	0,1378	0,1984	0,2408	0,2978	0,3481	0,3989	0,5002	0,5496	0,6000	0,6500	0,6996	0,7490	0,7989	0,8979	0,9479	0,9976	1,0469	1,0971	1,1464	1,1961	1,2950	1,3448	1,3889	B1 top	0,0460	0,1614	0,3334	0,4992	0,6651	0,8309	0,9966	1,0629	1,1292	1,1949	1,2612	1 3774
tot	,0919	,7318	,9025	,4095	3,0652	6,4858	0,1277	7,7125	1,5154	5,4095	9,2549	3,0330	6,7901	0,6057	8,4404	2,4851	6,7450	1,1300	6,1250	1,6010	7,9470	04,4880	16,5880	30,7530	tot	,8668	,0249	5,3709	5,3415	6,4760	7,1420	07,8640	17,1570	27,1960	38,4770	52,8100	71 9620
t t	95 1	921 3	50 6	8017 9	057 1	858 1	659 2	997 2	986 3	918 3	910 3	000 4	010 4	040 5	8210 5	0950 6	0180 6	6560 7	3700 7	7670 8	3260 8	0680 1	7970 1	5750 1	t	20 0	354 8	258 2	390 4	6870 6	9580 8	9020 1	5800 1	9750 1	2260 1	1700 1	1 1000
P to	7 0,99	2 3,69	4 7,45	3 10,8	8 16,1	5 21,4	3 27,5	1 41,5	3 49,3	3 57,9	6 67,1	6 77,0	8 87,4	5 98,6	7 122	1 136	5 150	5 164	4 180	6 196	8 214	8 253	1 274	4 295	P to	5 0,87	7 9,58	0 37,7	7 78,5	4 132	6 200	2 283	6 321	3 361	9 405	0 452	0 503
λ3	0,676	0,709	0,741	0,762	0,784	0,801	0,815	0,839	0,849	0,859	0,868	0,877	0,885	0,893	0,905	0,911	0,915	0,919	0,922	0,924	0,925	0,924	0,921	0,915	λ3	0,710	0,773	0,837	0,871	0,898	0,920	0,937	0,941	0,945	0,947	0,949	0 947
λ2	0,6759	0,7009	0,7296	0,7497	0,7716	0,7884	0,8028	0,8279	0,8392	0,8499	0,8602	0,8700	0,8789	0,8873	0,9010	0,9070	0,9121	0,9166	0,9200	0,9225	0,9239	0,9228	0,9187	0,9123	λ2	0,7075	0,7623	0,8246	0,8619	0,8908	0,9145	0,9320	0,9368	0,9405	0,9433	0,9442	0.9430
λ1	0,6731	0,6998	0,7303	0,7501	0,7734	0,7901	0,8047	0,8296	0,8406	0,8512	0,8614	0,8711	0,8800	0,8882	0,9022	0,9083	0,9134	0,9179	0,9215	0,9241	0,9257	0,9254	0,9218	0,9158	λ1	0,7096	0,7643	0,8277	0,8644	0,8930	0,9171	0,9352	0,9403	0,9445	0,9475	0,9488	0 9478
13 rms	0,062	0,110	0,147	0,171	0,200	0,223	0,245	0,287	0,306	0,325	0,343	0,362	0,380	0,398	0,434	0,453	0,472	0,491	0,511	0,532	0,555	0,605	0,635	0,665	13 rms	0,051	0,148	0,261	0,348	0,427	0,504	0,582	0,614	0,647	0,682	0,720	0.762
12 rms	0,061	0,108	0,145	0,168	0,197	0,220	0,242	0,283	0,302	0,321	0,339	0,357	0,375	0,394	0,431	0,449	0,469	0,488	0,509	0,530	0,553	0,604	0,634	0,665	12 rms	0,051	0,146	0,257	0,343	0,421	0,499	0,578	0,611	0,645	0,681	0,719	0.762
11 rms	0,061	0,109	0,148	0,172	0,201	0,225	0,247	0,288	0,307	0,326	0,345	0,363	0,381	0,399	0,435	0,453	0,472	0,491	0,511	0,532	0,554	0,605	0,635	0,667	11 rms	0,051	0,149	0,263	0,350	0,428	0,506	0,584	0,617	0,651	0,687	0,726	0.768
U3 rms	8,02	15,98	23,01	27,94	34,56	40,39	46,28	58,03	63,77	69,61	75,42	81,17	86,90	92,68	104,17	109,97	115,73	121,46	127,28	133,02	138,79	150,27	156,06	161,19	U3 rms	7,95	27,98	57,94	86,70	115,58	144,37	173,10	184,62	196,10	207,58	219,08	230 58
U2 rms	8,07	16,08	23,15	28,10	34,76	40,62	46,55	58,37	64,14	70,02	75,86	81,65	87,41	93,23	104,78	110,62	116,41	122,17	128,03	133,78	139,58	151,13	156,95	162,10	U2 rms	8,07	28,23	58,40	87,43	116,59	145,62	174,58	186,28	197,85	209,39	220,96	737.57
1 rms	60	6,11	3,20	8,17	4,84	0,72	6,66	8,51	4,30	0,19	6,04	1,84	7,62	3,45	05,03	10,88	16,69	22,46	28,33	34,10	39,91	51,48	57,31	62,47	1 rms	,08	8,31	8,51	7,60	16,71	45,79	74,86	86,50	98,13	. 99,60	21,30	32 01
) T	200 8	200 1	200 2	200 2	200 3	200 4	200 4	200 5	200 6	200 7	200 7	200 8	200 8	200 9	200 1	200 1	200 1	200 1	200 1	200 1	200 1	200 1	200 1	200 1	Ĵ	300 8	300 2	300 5	300 8	300 1	300 1	300 1	300 1	300 1	300 2	300 2	300 2

10.5 No-load test grain oriented core 200 and 300 Hz.

10.6 No-load test grain oriented core 400 Hz.

400 104,23 400 86,98 400 69,69 400 115,77 15,96 52,18 173,51 133,19 34,42 271,35 265,62 254,14 248,32 237,04 231,14 225,44 219,58 196,66 185,11 161,79 150,04 242,66 208,11 259,99 U1 rms 198,82 175,42 268,53 210,40 163,56 274,33 262,84 256,92 251,02 245,33 239,64 233,68 227,92 221,99 187,15 151,69 134,65 117,05 105,37 87,94 70,45 52,76 34,80 16,13 U2 rms 266,38 197,22 133,57 116,11 U3 rms 11 rms 12 rms 13 rms 260,73 249,01 231,79 226,08 208,70 185,64 174,01 162,25 104,53 69,89 34,52 16,01 272,13 254,87 243,35 237,71 150,47 87,23 52,33 220,20 0,491 0,791 0,776 0,762 0,747 0,732 0,718 0,675 0,632 0,604 0,548 0,704 0,689 0,661 0,576 0,407 0,377 0,082 0,519 0,450 0,331 0,281 0,225 0,160 0,722 0,765 0,751 0,708 0,666 0,568 0,370 0,081 0,737 0,694 0,680 0,596 0,540 0,157 0,780 0,624 0,512 0,483 0,275 0,651 0,442 0,399 0,324 0,220 0,754 0,711 0,279 0,783 0,768 0,725 0,670 0,628 0,545 0,375 0,740 0,698 0,683 0,656 0,601 0,573 0,517 0,448 0,404 0,224 0,082 0,489 0,329 0,159 0,8474 0,7627 0,9529 0,9513 0,9478 0,9437 0,9317 0,9203 0,9077 0,8977 0,7944 0,9496 0,9416 0,9262 0,8785 0,8645 0,8249 \geq_1 0,9569 0,9558 0,9543 0,9458 0,9368 0,9140 0,8865 0,8266 0,7653 0,9496 0,9480 0,9425 0,9312 0,9524 0,9511 0,9463 0,9445 0,9405 0,9360 0,9259 0,9203 0,9143 0,8983 0,8871 0,8488 0,7965 0,9538 0,8793 0,8655 22 0,9548 0,9080 0,7641 0,9221 0,9559 0,9532 0,9516 0,9500 0,9443 0,9378 0,9329 0,8528 0,9569 0,9545 0,9483 0,9463 0,9423 0,9277 0,9163 0,9102 0,9007 0,8899 0,8825 0,8692 0,8305 0,7990 Σ P tot 450,4930 200,3110 613,4730 588,5590 516,8960 494,5120 472,7660 429,6120 408,6420 369,0110 262,0530 230,1360 161,1180 103,3420 564,8840 540,5640 331,5060 295,8050 124,9620 74,4420 49,6294 28,9740 13,1112 3,0053 2,5380 78,5390 Q tot 182,4160 128,9710 92,0410 64,7630 30,8023 178,0270 155,0790 150,8950 137,7500 110,9380 55,7537 9,9478 187,7830 173,0460 168,3390 163,9030 159,6130 146,3060 120,0500 101,5670 42,9006 19,6721 1,1354 1,1113 0,7416 1,1598 1,0863 1,0614 1,0372 1,0132 0,9880 0,9636 0,9386 0,8895 0,8406 0,7912 0,6915 0,6413 0,5693 0,4948 0,4455 0,2979 0,0682 0,3718 0,2230 0,1471 B1 top 0,7498 1,1478 0,5755 1,1235 0,9742 0,7999 0,6484 1,0982 1,0730 1,0486 0,9489 0,8498 0,4504 0,3011 1,1726 1,0243 8866'0 0,8993 0,6991 0,5003 0,3759 0,2255 0,1488 0,0690 B2 top 0,9663 0,6432 1,0161 0,9908 0,7438 0,6935 0,7935 0,5709 1,1386 1,1145 1,0894 1,0644 1,0402 0,4963 0,0684 1,1632 0,9412 0,8921 0,8430 0,4468 0,3729 0,2987 0,2237 0,1476 B3 top 41,7178 34,5105 4,3666 0,9993 Ρ1 205,3807 197,0345 172,9349 165,4262 143,6240 136,5796 110,7100 98,7674 87,4847 66,8434 53,7823 9,6632 189,0596 180,8917 158,0922 150,6237 24,8521 16,5654 123,2694 76,8098 87,1275 41,4732 1,0026 196,0114 188,1006 172,0825 164,6435 157,3870 149,9722 143,0006 136,0042 122,7899 66,5431 9,5985 4,3517 P2 204,3307 110,2690 98,3772 53,4967 34,2713 179,9700 76,4908 24,6768 16,4438 195,5357 60,6157 61,7433 87,4469 1,0040 171,8726 142,9935 187,7512 164,4657 157,2911 149,9030 136,0572 110,5250 66,9196 ВЗ 203,7720 179,7287 122,9453 98,6619 53,8468 41,7765 34,5646 24,9140 16,6223 9,7138 4,3912 76,8433 56,0621 54,6057 53,2052 51,7186 48,8553 49,1248 62,3551 59,2028 57,6056 50,3520 46,0441 43,1522 43,1656 40,2179 40,1241 37,2021 18,7692 30,8990 0,8475 34,0870 26,3920 21,7789 14,4484 14,2787 6,6219 3,3384 ß 10,3785 55,2582 46,1734 56,7907 52,1652 21,5758 0,8432 63,6162 60,1964 53,7440 50,7122 37,0405 30,6951 26,1721 18,5644 6,5359 3,3038 33,8868 10,2442 Q2 58,4433 55,4858 42,6533 51,1988 49,8338 36,6988 25,9785 21,4102 0,8477 61,8154 45,5308 3,3043 60,0651 58,6370 57,0066 54,0491 52,6661 48,3272 39,7092 30,4452 33,5973 18,4222 14,1741 6,5153 ß 10,1808

10.7 Magnetization test amorphous core.

f	U rms	l rms	B top	H rms	f	U rms	l rms	B top	H rms
50	7,432	0,0426	0,147132	1,734429	300	27,96	0,0501	0,092254	2,039786
50	11,339	0,0507	0,224479	2,064214	300	48,897	0,0685	0,161336	2,788929
50	12,292	0,0526	0,243345	2,141571	300	70,45	0,0843	0,23245	3,432214
50	13,488	0,0547	0,267022	2,227071	300	90,7	0,0975	0,299265	3,969643
50	15,313	0,0579	0,303152	2,357357	300	121,46	0,1165	0,400758	4,743214
50	17,315	0,0613	0,342786	2,495786	300	151,27	0,1343	0,499116	5,467929
50	19,326	0,0649	0,382597	2,642357	300	181,43	0,1533	0,598629	6,2415
50	25,32	0,0749	0,501261	3,0495	300	211,43	0,175	0,697614	7,125
50	30,378	0,0848	0,601394	3,452571	300	231,67	0,1936	0,764396	7,882286
50	33,549	0,0923	0,664171	3,757929	300	241,58	0,2045	0,797095	8,326071
50	36,3	0,1004	0,718632	4,087714	300	251,51	0,2173	0,829859	8,847214
50	38,673	0,1093	0,765611	4,450071	300	271,68	0,2512	0,89641	10,22743
50	40,692	0,1182	0,805581	4,812429	300	291,75	0,3007	0,962631	12,24279
50	43,472	0,1344	0,860617	5,472	300	301,89	0,3343	0,996088	13,61079
50	46,313	0,1573	0,91686	6,404357				-	
50	49,57	0,1961	0,981339	7,984071	f	U rms	l rms	B top	H rms
50	54,63	0,3012	1,081512	12,26314	400	48,85	0,0635	0,120886	2,585357
50	57.559	0.403	1.139497	16.40786	400	80.77	0.0855	0.199876	, 3.481071
50	59.64	0.4992	1.180695	20.32457	400	101.13	0.0977	0.250259	3.977786
	,	,	,	,	400	120.95	0.109	0.299306	4.437857
f	Urms	l rms	B top	H rms	 400	151.59	0.1254	0.375129	5.105571
100	14.084	0.0518	0.139411	2.109	400	181.59	0.1408	0.449368	5.732571
100	27.548	0.0691	0.272684	2.813357	400	201.76	0.1512	0.499281	6.156
100	39.815	0.0824	0.394109	3.354857	 400	232.02	0.1671	0.574163	6.803357
100	49.096	0.092	0.485978	3.745714	 400	252	0.1783	0.623607	7.259357
100	59.89	0.1044	0.592822	4.250571	400	272.03	0.1904	0.673173	7.752
100	65.32	0.1106	0.646571	4.503	400	292.19	0.204	0.723062	8.305714
100	70.58	0.1189	0.698637	4.840929	 400	312.21	0.22	0.772604	8.957143
100	75.94	0.1293	0.751693	5.264357	 400	332.32	0.2393	0.822369	9.742929
100	80.95	0.1418	0.801285	5.773286	 400	352.22	0.2635	0.871614	10.72821
100	86.05	0.1583	0.851767	6.445071	400	382.36	0.316	0.946199	12.86571
100	91.24	0.1806	0.903141	7.353	400	402.38	0.3662	0.995741	14.90957
100	101.31	0.2471	1.002819	10.0605	 	,	-,	.,	,
100	111.33	0.3674	1.102002	14.95843					
	,	-,	,	,	 				
f	U rms	l rms	B top	H rms					
200	14.132	0.0397	0.069943	1.616357					
200	27.731	0.056	0.137248	2.28	 				
200	48.639	0.0751	0.240727	3.057643					
200	70.59	0.0926	0.349368	3.770143					
200	90.99	0.1079	0.450333	4.393071					
200	111.06	0.1232	0.549665	5.016					
200	131.16	0.1401	0.649145	5.704071	 				
200	141.37	0.1503	0.699677	6.119357	 				
200	151.3	0.1621	0.748823	6.599786					
200	161.29	0.1765	0,798266	7,186071					
200	171.48	0.1955	0.848699	7,959643					
200	181.37	0.2195	0.897647	8,936786					
200	191.28	0.2518	0,946694	10.25186					
200	201.44	0.2955	0,996979	12.03107					
200	221,61	0,4225	1,096805	17,20179					

10.8 Magnetization test grain oriented core.

<i>c</i>					c	-				
t	Urms	l rms	B top	Hrms	t		Urms	l rms	B top	Hrms
50	3,349	0,0404	0,0663	1,919		300	39,931	0,1117	0,131753	5,30575
50	12,364	0,1057	0,244771	5,02075		300	59,797	0,157	0,197301	7,4575
50	17,511	0,1323	0,346666	6,28425		300	80,71	0,1996	0,266303	9,481
50	19,593	0,1419	0,387883	6,74025		300	101,03	0,2367	0,333349	11,24325
50	23,573	0,1587	0,466675	7,53825		300	121,2	0,2703	0,3999	12,83925
50	25,764	0,1675	0,510051	7,95625		300	141,05	0,3012	0,465395	14,307
50	30.39	0.1847	0.601632	8.77325		300	161.05	0.3308	0.531385	15.713
50	32,464	0.1923	0.642691	9.13425		300	181.48	0.3601	0.598794	17.10475
50	37 44	0 2104	0 741201	9 994		300	201 68	0 3883	0 665444	18 44425
50	41 504	0 2262	0.821656	10 7//5		300	211 37	0 /017	0 697/17	19 08075
50	41,304 AE A66	0,2202	0,021000	11 /665		200	211,57	0,4017	0,007417	20 41075
50	43,400	0,2414	0,900092	11,4005		200	251,31	0,4297	0,703009	20,41073
50	47,43	0,2473	0,959509	12 1215		200	201,01	0,4371	0,029199	21,71225
50	49,087	0,2554	0,971777	12,1315		300	201,91	0,4721	0,804174	22,42475
50	53,443	0,2732	1,058013	12,977		300	2/1,95	0,4862	0,897301	23,0945
50	55,222	0,2792	1,093232	13,262		300	291,98	0,5149	0,96339	24,45775
50	58,393	0,2949	1,156008	14,00775		300	311,81	0,5439	1,028819	25,83525
50	60,32	0,3076	1,194157	14,611		300	341,98	0,5899	1,128365	28,02025
50	63,42	0,3263	1,255528	15,49925		300	371,83	0,6389	1,226855	30,34775
50	65,347	0,3415	1,293677	16,22125		300	401,99	0,6966	1,326368	33,0885
50	68,3	0,3692	1,352137	17,537		300	431,77	0,7696	1,424628	36,556
50	71,5	0,41	1,415488	19,475		300	452,09	0,8381	1,491674	39,80975
50	74,47	0,4639	1,474285	22,03525		300	461,96	0,8796	1,52424	41,781
50	76,53	0,5151	1,515067	24,46725						
50	77.76	0.5535	1.539417	26.29125	f		U rms	l rms	B top	H rms
	,	-,	_,			400	39 661	0 0993	0.098146	4 71675
f	llrms	l rms	B ton	Hrms		400	59 612	0 1413	0 147518	6 71175
100	1/1 2/11	0.083	0 1/0065	2 0/25		100	101 02	0,1413	0,147510	10 28825
100	14,241	0,003	0,140303	6 52175		400	1/1 01	0,2107	0,249907	12 49525
100	27,007	0,1375	0,27400	0,52175		400	141,01	0,2039	0,550927	15,40525
100	39,854	0,1756	0,394495	8,341		400	181,4	0,3401	0,448898	16,15475
100	49,04	0,2007	0,485423	9,53325		400	201,54	0,367	0,498737	17,4325
100	59,854	0,2282	0,592466	10,8395		400	241,69	0,4182	0,598093	19,8645
100	70,45	0,2534	0,697351	12,0365		400	302,04	0,4934	0,747437	23,4365
100	80,6	0,277	0,79782	13,1575		400	342,36	0,5436	0,847214	25,821
100	91,15	0,3018	0,90225	14,3355		400	382,5	0,5945	0,946546	28,23875
100	101,32	0,3272	1,002918	15,542		400	412,53	0,6335	1,020859	30,09125
100	111,31	0,3543	1,101804	16,82925		400	442,43	0,6731	1,09485	31,97225
100	121,45	0,3863	1,202175	18,34925		400	472,54	0,7145	1,169361	33,93875
100	131,45	0,426	1,30116	20,235		400	502,5	0,7581	1,243501	36,00975
100	141,45	0,4834	1,400145	22,9615		400	532,9	0,8064	1,31873	38,304
100	151,46	0,5794	1,499229	27,5215		400	562,8	0,8617	1,392721	40,93075
100	161.43	0.7644	1.597918	36.309		400	592.8	0.9302	1.46696	44.1845
	,		_,					-,		.,
f	Urms	l rms	B top	Hrms		_				
200	20 772	0 1309	0 1968/17	6 212						
200	55,775 60 07	0,1300	0 207202	Q 5795						
200	00,07 20 EF	0,1000	0 208552	10 61625						
200	100.00	0,2235	0,390003	12 42075		_				
200	100,99	0,261/	0,499826	12,43075						
200	121,04	0,2964	0,599058	14,079						
200	141,25	0,33	0,699083	15,675						
200	161,22	0,3629	0,797919	17,23775						
200	181,28	0,3962	0,897202	18,8195						
200	201,38	0,4305	0,996682	20,44875						
200	221,32	0,4666	1,09537	22,1635						
200	231,45	0,4862	1,145506	23,0945						
200	241,41	0,5067	1,194801	24,06825						
200	261,57	0,5541	1,294578	26,31975						
200	281.44	0,615	1,392919	29,2125						
200	301.52	0.7082	1.4923	33.6395						
200	321.42	0,8783	1.590791	41.71925						