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Abstract

Datatype-generic programming in the dependently typed setting can be achieved
using the universe construction. The set of codes of the universe has an impact
on the datatypes it can express and also on the set of supported datatype-generic
functions.

For example a universe with a code for functions can express datatypes such
as the Brouwer ordinals:

data Ord : Set where

zero : Ord

suc : Ord → Ord

limit : (N → Ord) → Ord -- The function code is needed to

-- describe limit.

It cannot support a meaningful datatype-generic decidable equality however,
because generally equality of functions is undecidable.

This problem often leads to the adaptation of several universes, for example
one without a code for functions for which we can have decidable equality and
another with a code for functions for which we can express datatypes such as
the Brouwer ordinals. Both universes might support, for example, a datatype-
generic mapping and iteration function however, this leads to code duplication
– defeating one of the very aims of datatype-generic programming.

This work proposes a way around this problem by presenting a family of uni-
verses (or an indexed universe), where the index explains what class of datatypes
that is supported. Datatype-generic functions which work over multiple classes
of datatypes, such as mapping and iterating, are implemented using a polymor-
phic index.

The entire development is carried out in Agda. It is at least partially compat-
ible with levitation and ornamentation, which are recently proposed techniques
for avoiding code duplication, both based on the universe construction.
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Chapter 1

Introduction

To avoid code duplication is a central theme in programming. We use abstrac-
tion mechanisms such as functions to isolate pieces of code that recur often and,
in turn, modules to isolate functions that recur often in our programs.

We want to avoid code duplication because it saves us time and effort not
having to write code that we or somebody else already has written. Less code
also means we have to write fewer tests and proofs to assure that the code works
as intended. It also makes maintenance of the code easier, because possible bugs
will be isolated in one function or module rather than spread out across our
programs.

Strongly typed functional programming languages support polymorphism
and higher-order functions which allows to write boiler-plate avoiding functions
such as map and iteration for lists:

data List (A : Set) : Set where

[] : List A

_::_ : A → List A → List A

mapL : ∀ {A B : Set} → (A → B) → List A → List B

mapL f [] = []

mapL f (x :: xs) = f x :: mapL f xs

iterL : ∀ {A B : Set} → (A → B → B) → B → List A → B

iterL c n [] = n

iterL c n (x :: xs) = c x (iterL c n xs)

These traversal functions have to be written for each new datatype however:

data Tree (A : Set) : Set where

leaf : A → Tree A

join : Tree A → Tree A → Tree A

mapT : ∀ {A B : Set} → (A → B) → Tree A → Tree B
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mapT f (leaf x) = leaf (f x)

mapT f (join l r) = join (mapT f l) (mapT f r)

iterT : ∀ {A B : Set} → (B → B → B) → (A → B) → Tree A → B

iterT j l (leaf x) = l x

iterT j l (join x y) = j (iterT j l x) (iterT j l y)

This is clearly a form of code duplication. To be able to avoid it we need a
new abstraction mechanism – datatype-genericity. Researchers, in the strongly
typed programming community, have been working on this problem since the
90s, but despite many proposals no generally agreed upon solution exists.

One of the proposed methods to achieve datatype-genericity is polytypism
[JJ97, Jan00]. By defining functions on the structure of the argument polytyp-
ism lets us reuse the function on arguments of different structures.

In the dependently typed setting this is realised using the universe construc-
tion. It roughly works as follows: We define a datatype of codes called the
universe. The codes allow us to formally state informal descriptions of struc-
tures, such as “a list is either empty or it is a pair of a parameter and a sublist”
or “a tree is either a parameter or a pair of two subtrees”. As you can see both
lists and trees share the “either”, “pair”, “parameter” and “substructure” struc-
tures as do many other common datatypes. So we describe datatypes using the
codes from the universe, the codes are formal versions of “either”, “pair”, etc
and then we have a decoding function which turns the descriptions of, for exam-
ple, lists and trees into actual datatypes. We can then define datatype-generic
functions by pattern-matching on the codes:

map : (code : Universe) → (A → B) → decode code A → decode code B

And we can regain the specific maps by supplying the desired code:

map codeOfList ≡ mapL : (A → B) → List A → List B

map codeOfTree ≡ mapT : (A → B) → Tree A → Tree B

The problem of this approach is that the expressivity of the codes have an
impact on which datatype-generic functions are supported by a universe. For
example, a universe capable of describing datatypes with constructors that con-
tain functions, such as:

data Ord : Set where

zero : Ord

suc : Ord → Ord

limit : (N → Ord) → Ord -- Notice that the argument is a function.

cannot support a meaningful datatype-generic equality function, because in gen-
eral there is no way to decide if two functions are equal.

The usual method for overcoming this problem is to define two universes,
one with support for datatypes containing functions and one without. The
problem of this approach is that datatype-generic functions that are supported
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by both universes need to be written twice. To support the most commonly
used datatypes several universes are needed and this results in a lot of code
duplication.

This work proposes a solution to this problem, by using a single universe
which is indexed by the class of datatypes it supports. The solution, at least
partially, is compatible with more recently proposed techniques for avoiding
code duplication – levitation [CDMM10] and ornamentation [McB11] – which
both are based on the universe construction.

1.1 Related work

The first use of the universe construction to achieve polytypic datatype-genericity
in the dependently typed setting is [PR98] in the programming language LEGO
[LP92]. The universe presented is relatively weak and can only be used to
describe datatypes that are sums of products.

[BDJ03] improves the situation by presenting several universes. Together
the universes can describe all datatypes describable in [PR98] and more – most
notably families of datatypes [Dyb91]. Ideas of how to construct a universe for
families of datatypes came from earlier work [DS99]. The implementation is
done in Alfa [aC].

[Mor07] gives an alternative presentation of the universes in [BDJ03] in
the programming language Epigram [MM04]. The strength of the universes
is improved by allowing so called nested fixpoints. Several larger examples of
datatype-generic programs are given to demonstrate the feasibility of the ap-
proach.

1.2 Plan

We will begin, in chapter 2, by giving a brief tour on how the programming
language Agda [Nor07] works. We will be using Agda throughout the rest of
the work.

Then, in chapter 3, we will have a look at how the universe construction can
be used to achieve datatype-genericity.

After that, in chapter 4, we will try to classify and group datatypes. So for
example, sums of products is one class of datatypes and families of datatypes is
another (larger) class. We do this because, as we have already noted, different
classes of datatypes admit different datatype-generic functions.

In chapter 5 we discuss different design choices one can make when construct-
ing universes and how the choices impact the set of datatype-generic functions
the universe supports.

Then, in chapter 6, we will present a family of universes which is capable of
describing the perhaps most important classes of datatypes. The point of this
design is that we can avoid the code duplication associated with having several
universes for different classes of datatypes.
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Finally, in chapter 7 and 8, we briefly explain the recently proposed tech-
niques levitation and ornamentation and then show that the universe of chapter
6 is at least partially compatible with these techniques.
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Chapter 2

Agda

Agda is a dependently typed functional programming language and a proof
assistant based on Per Martin-Löf’s intensional intuitionistic type theory. The
aim of this chapter is to try to make sense of that last sentence. In particular
we will try to answer the questions:

• What is a dependently typed functional programming language?

• What is a proof assistant?

• What does intensional and intuitionistic mean?

• What is a type theory?

As all these questions are intertwined, we shall not answer them in any particular
order. In the process we will introduce all the language specific features of Agda
that we will use later. Alternative introductions to Agda can be found in [Nor08]
and [BD08]. They cover some features and aspects which are not covered here.

2.1 The similarities with strongly typed func-
tional programming languages

Let us begin by examining the similarities between Agda and strongly typed
functional programming languages such as ML and Haskell.

The syntax for introducing datatypes in Agda is similar to Haskell’s GADT-
style declarations:

data Bool : Set where

true : Bool

false : Bool

data N : Set where

zero : N

7



suc : N → N

data List (A : Set) : Set where

[] : List A

_::_ : A → List A → List A

In Haskell we would have written * instead of Set. Function definitions using
pattern-matching are similar as well:

id : ∀ A → A → A

id A x = x

idBool = id Bool

if_then_else_ : ∀ {A} → Bool → A → A → A

if true then t else f = t

if false then t else f = f

not : Bool → Bool

not b = if b then false else true

_+_ : N → N → N

zero + n = n

suc m + n = suc (m + n)

The difference is that Agda allows not just infix operators (+), but also so called
mixfix operators (such as if then else), where underscores in the type signature
signal where arguments go. Notice also how the A in the type of the identity and
if functions has to be explicitly quantified unlike in Haskell. The curly braces
around the A in the if function says that we would like the type to be implicit
and inferred by Agda rather than passed explicitly as in the identity function.

2.2 The Curry-Howard correspondence and how
to prove propositions

So far we have merely seen how to do things you can do in strongly typed
languages inside Agda. Next we will have a look at things Agda can do that
generally strongly typed programming languages cannot1.

The dependent function type, written as (x : A) → B in Agda, is a gen-
eralisation of the function type, written as A → B, where B may depend on
values, x, of type A. In the special case where B does not depend on values of A,
we get the non-dependent function type:

A → B = (_ : A) → B

1We have to be a bit careful in saying that Haskell is not able to do these things, because
with all its type extensions it can emulate some of the functionality we are about to describe.
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The dependent function type coupled with datatype declarations allows us to
define types such as the dependent pair type:

data Σ (A : Set)(B : A → Set) : Set where

_,_ : (x : A) → B x → Σ A B

The dependent pair type is a generalisation of the pair type where the type of
the second component may depend on values of the first, and in the special case
where it does not we get the non-dependent pair type:

_×_ : Set → Set → Set

A × B = Σ A λ _ → B

proj1 : {A : Set}{B : Set} → A × B → A

proj1 (x , y) = x

proj2 : {A B : Set} → A × B → B -- Where {A B : Set} is sugar for

-- {A : Set}{B : Set}.

proj2 (x , y) = y

The typing rules of the constructors of dependent function and dependent pair
types correspond to the introduction rules for universal (∀) and existential (∃)
quantifiers in (higher-order) intuitionistic2 predicate logic. While the typing
rules of application and uncurrying:

uncurry : {A : Set}{B : A → Set}{C : Σ A B → Set} →
((x : A) → (y : B x) → C (x , y)) →
((p : Σ A B) → C p)

uncurry f (x , y) = f x y

correspond to the elimination rules of ∀ and ∃. The non-dependent function
and pair types correspond to implication and conjunction. The rest of the
connectives of propositional logic are defined as follows:

-- Disjoint union corresponds to disjunction.

data _]_ (A : Set)(B : Set) : Set where

inj1 : A → A ] B

inj2 : B → A ] B

-- Disjunction elimination.

[_,_] : {A : Set}{B : Set}{C : A ] B → Set} →
((x : A) → C (inj1 x)) → ((x : B) → C (inj2 x)) →
((x : A ] B) → C x)

[ f , g ] (inj1 x) = f x

2Intuitionists do not accept the principle of the excluded middle (A ∨ ¬A) and equivalent
principles. In practice this means that indirect methods such as proof by contradiction (to
prove A, assume ¬A and derive a contradiction) and proof by contrapositive (to prove A⇒ B,
one proves ¬B ⇒ ¬A) are not accepted. Proof by contradiction should not be confused with
proof of negation (to prove ¬A, assume A and derive a contradiction), which is accepted.
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[ f , g ] (inj2 y) = g y

-- False, no constructors.

data ⊥ : Set where

⊥-elim : {C : Set} → ⊥ → C

⊥-elim () -- If someone gives us a value of ⊥ we can prove

-- anything. By pattern-matching using () we tell Agda that

-- this is absurd.

¬_ : Set → Set

¬ A = A → ⊥

This allows us to state and prove propositions of logic. Here is a simple example
stating and proving that conjunction is commutative. We give the proof in
natural deduction style first and then as a term in Agda.

Proposition.
A ∧B ⇒ B ∧A

Proof.
[A ∧B]p

B
∧ E2

[A ∧B]p

A
∧ E1

B ∧A
∧ I

A ∧B ⇒ B ∧A
⇒ Ip

Proof.

proof : ∀ {A B} → A × B → B × A

proof = λ p → (proj2 p , proj1 p)

Where ∀ {A B} desugars into {A B : }. Putting underscores on the right hand
side of : or = is a way of telling Agda to try to infer the term, which in this
case is easy because we know the type of the pair datatype’s arguments (Set).

Here is another example, one of de Morgan’s laws:

Proposition.
¬A ∨ ¬B ⇒ ¬(A ∧B)

Proof.

[¬A]f
[A ∧B]p

A
∧ E1

⊥ → E

¬A⇒ ⊥
→ If

[¬B]g
[A ∧B]p

B
∧ E2

⊥ → E

¬B ⇒ ⊥
→ Ig

[¬A ∨ ¬B]s

⊥ ∨ E

¬(A ∧B)
→ Ip

¬A ∨ ¬B ⇒ ¬(A ∧B)
→ Is
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Proof.

proof′ : ∀ {A B} → ¬ A ] ¬ B → ¬ (A × B)

proof′ {A}{B} = λ (s : ¬ A ] ¬ B) → λ (p : A × B) →
[ (λ (f : ¬ A) → f (proj1 p))

, (λ (g : ¬ B) → g (proj2 p)) ] s

The last Agda proof also illustrates how we can access implicit arguments if we
want to.

And finally propositions using quantifiers:

∃−→¬∀¬ : ∀ {A : Set}{P : A → Set}

→ Σ A P → ¬ ((x : A) → ¬ P x)

∃−→¬∀¬ p f = uncurry f p

This correspondence between types and propositions and between programs and
proofs is known as the Curry-Howard correspondence.

Agda has an interactive Emacs mode which helps, or assists, us in building
proofs like the ones above. The details of how it works can be found on the
Agda wiki [Tea11].

By making use of Agda’s support of indexed datatypes [Dyb91], we can define
the identity type which captures the notion of two values being (propositionally)
equal:

data _≡_ {A : Set}(x : A) : A → Set where

refl : x ≡ x

The distinction between unindexed and indexed datatypes is that while both
allow for parameters, such as {A : Set}(x : A), to the left of the colon the
indexed datatypes also allow indices, such as A to the right of the colon. Pa-
rameters are in scope across the whole declaration and may not change3. While
indices are not in scope, but must be provided and might vary across the dec-
laration.

Let us have another example of an indexed datatype before getting back to
the identity type. Here are length indexed lists, also known as vectors:

data Vec (A : Set) : N → Set where

[] : Vec A zero

_::_ : ∀ {n} → A → Vec A n → Vec A (suc n)

Perhaps it is more clear from the vector example that parameters stay the same
while indices might vary.

Anyways, using the identity type and the fact that Agda’s typechecker nor-
malises during typechecking we can prove all kinds of equalities:

3Agda allows for parameters to change in recursive positions, but this is not allowed in
[Dyb91].
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-- Tell Agda about our natural numbers, so she allows us to use decimal

-- notation.

{-# BUILTIN NATURAL N #-}

{-# BUILTIN ZERO zero #-}

{-# BUILTIN SUC suc #-}

test : if true

then 1

else 2 ≡ 1

test = refl

test′ : 1 + 2 ≡ 3

test′ = refl

The typechecker normalises the terms in the type by unfolding the definitions of
if and plus and when it is done both the left and right hand side of the identity
type are equal and we can give the constructor refl.

The dependent function type also allows us to implement induction princi-
ples, or eliminators, for our datatypes:

if : {P : Bool → Set} → (b : Bool) → P true → P false → P b

if true t f = t

if false t f = f

natrec : {P : N → Set} → ((n : N) → P n → P (suc n)) → P zero → (n : N) → P n

natrec s z zero = z

natrec s z (suc n) = s n (natrec s z n)

Using these we can prove more interesting equalities:

not-involutary : ∀ b → not (not b) ≡ b

not-involutary b = if {λ b → not (not b) ≡ b} b refl refl

cong : ∀ {A B : Set}{x y : A}(f : A → B) → x ≡ y → f x ≡ f y

cong f refl = refl

+-assoc : ∀ m n o → m + (n + o) ≡ (m + n) + o

+-assoc m n o = natrec {λ m → m + (n + o) ≡ (m + n) + o}

(λ _ ih → cong suc ih) refl m

Unfortunately it is easier to write these proofs (using the Emacs mode) than to
read them once they are written. Let us step through these proofs slowly.

When we are proving that the not function is its own inverse, we begin
by using the induction principle for booleans. We explicitly pass P : Bool →
Set, which is the predicate on booleans we want to show holds for all booleans,
in this case it happens to be the proposition we are trying to prove. Then we
pass the boolean, b. Now the next two arguments to the induction principle
are proofs that P true = not (not true) ≡ true and P false = not (not
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false) ≡ false hold. It is clear by the definition of the not function that
these are true by reflexivity, so we pass refl.

The proof that addition is associative starts off in the same way, we use the
induction principle and pass the predicate we want to show holds. Then we
have to provide two proofs, let us start with the base case. P zero = zero +

(n + o) ≡ (zero + n) + o, this normalises using the definition of plus (zero
+ n = n) to: n + o ≡ n + o, which holds by reflexivity. In the step case we
have to show that for all natural numbers, m, if P m holds than so does P (suc

m). So we have to prove P (suc m) = suc m + (n + o) ≡ (suc m + n) + o

or, rewritten using the definition of plus (suc m + n = suc (m + n)), suc (m

+ (n + o)) ≡ suc ((m + n) + o) and we are given P m = m + (n + o) ≡
(m + n) + o. So we merely need to add suc to both sides of the equation and
that is what cong suc does.

We could also use pattern-matching to prove the same equalities:

not-involutary′ : ∀ b → not (not b) ≡ b

not-involutary′ true = refl

not-involutary′ false = refl

+-assoc′ : ∀ m n o → m + (n + o) ≡ (m + n) + o

+-assoc′ zero n o = refl

+-assoc′ (suc m) n o = cong suc (+-assoc′ m n o)

2.3 The termination and positivity checkers and
consistency

Something one has to be careful about when proving things like this is to not
write non-terminating programs:

bottom : ⊥
bottom = bottom

While this definition typechecks, it is not a proof, because it does not terminate.
Clearly if this would be allowed it would make our logic inconsistent.

The well known halting problem states that it is impossible to tell if a pro-
gram written in a Turing complete language will terminate or not. So we can
either restrict the language so that it is not Turing complete, by for example only
allowing eliminators which are primitively recursive and therefore terminating.
Or we can add a termination decision procedure which is sound (all programs
that it says terminate in fact do so), but incomplete (there are programs it says
do not terminate when they in fact do so).

Type theory uses the former approach and only allows eliminators. Agda
on the other hand does the latter. It allows us to use general recursion and has
a so called termination checker which complains unless recursive calls are on
structurally smaller data. For example, let us look at the definition of append
for lists:

13



_++_ : ∀ {A} → List A → List A → List A

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

In the definition the recursive call, xs ++ ys, is on structurally smaller data,
because xs is structurally smaller (we peeled off a constructor) than x :: xs.

It might be helpful to know that terminating programs using pattern-matching
can be translated to programs using eliminators [GMM06], even though Agda
does not do this translation.

Besides non-termination there is a problem related to data declarations that
breaks the consistency of our logic:

data Bad : Set where

bad : (f : Bad → ⊥) → Bad

loop′ : Bad → ⊥
loop′ (bad f) = f (bad f)

loop : ⊥
loop = loop′ (bad loop′)

The problem is that Bad occurs a negative position (to the left of a function
type) in the constructor bad. Agda has a so called positivity checker which
complains about dangerous datatypes such as the above. The positivity checker
is incomplete and has not been proven to be sound.

Type theory is usually presented with a fixed set of types, most of which
we have seen: dependent and non-dependent functions, pairs, disjoint unions,
natural numbers, booleans, the identity type and also the type of well-founded
trees (the W-type) which we have not seen yet:

data W (A : Set)(B : A → Set) : Set where

sup : (x : A) → (B x → W A B) → W A B

All these types are shown to be consistent, if one wants to add new datatypes
besides those then one has to prove that the new datatypes also are consistent
as well.

It might be helpful to know that a large class of consistent unindexed and
indexed datatypes can be translated into W-types [Dyb97, AM09]. This trans-
lation is not done by Agda. The translation relies on extensionality, which we
shall discuss next.

2.4 Intensional versus extensional type theory

We have seen two notions of equality so far. Definitional equality (=) which is
used when defining functions and also by the typechecker as it normalises terms
during typechecking. And propositional equality (≡) or the identity type, which
is used to prove equalities as we have seen.
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In intensional type theories (such as the one Agda is based on) these two
notions of equality are kept separate. Typechecking is decidable, because we
know what our definitions are and can hence test equalities by unfolding the
definitions.

In extensional type theories the two notions of equality are merged, result-
ing in more expressivity at the expense of losing decidable typechecking. The
reason for the loss is the merge, we no longer have all equalities at hand when
typechecking – in general we do not know whether an equality is propositionally
provable or not.

Perhaps most notably extensional type theories allow us to prove that if two
functions are point-wise equal they are equal:

Extensionality : Set1 -- We will explain what the 1 means in a

-- moment, ignore it for now.

Extensionality = {A : Set}{B : A → Set}{f g : (x : A) → B x}

→ (∀ x → f x ≡ g x) → f ≡ g

This is called extensionality for functions and it is what the translation men-
tioned at the end of the last section relies on. We shall see other examples that
rely on extensionality later.

How equality should be handled is one of the major open problems in type
theory. Recent developments have been to trying provide extensionality while
retaining decidable typechecking.

2.5 Universe levels and universe level polymor-
phism

As we hinted on in the comment above, we will now explain what Set1 is. It is
perhaps best illustrate by a question: what is the type of Set?

It cannot be that Set : Set, because that leads inconsistency via varia-
tions of the well known paradox discovered by Russell.

A common solution to the problem, which is adopted by Agda, is to create
an infinite hierarchy of universes: Set : Set1 : Set2 : ... : Setω.

So in the definition of Extensionality above we had two Sets, A and B,
thus it type must be at least Set1. Another example are lists containing Set:

data List1 (S : Set1) : Set1 where

[] : List1 S

_::_ : S → List1 S → List1 S

large-list : List1 Set

large-list = N :: Bool :: ⊥ :: []

To avoid defining lists, or any other datatype, for each universe level we can
define a universe level polymorphic version:
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data List {a : Level}(A : Set a) : Set a where

[] : List A

_::_ : A → List A → List A

The level datatype is structurally the same as the datatype of natural numbers:

data Level : Set where

zero : Level

suc : Level → Level

And as you might guess Set = Set0 = Set zero and so on. Sometimes a
datatype might contain two or more sets, in which case the level of the datatype
will be the maximum:

data Σ {a b}(A : Set a)(B : A → Set b) : Set (a t b) where

_,_ : (x : A) → B x → Σ A B

We can also manually lift sets to higher levels using the following datatype:

data Lift {a `}(A : Set a) : Set (a t `) where

lift : A → Lift A

-- The trivially true datatype.

data > : Set where

tt : >

>1 : Set1
>1 = Lift >

tt1 : >1

tt1 = lift tt

And terms of lifted datatypes can be lowered again:

lower : ∀ {a `}{A : Set a} → Lift {a}{`} A → A

lower (lift A) = A

tt′ : >
tt′ = lower tt1

2.6 Programming using dependent types

So far we have mostly seen how we can use dependent types to prove things,
in this section we will have a look at how we can exploit them when writing
programs.

A problem in the strongly typed setting is that many functions are partial:
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data Maybe (A : Set) : Set where

just : (x : A) → Maybe A

nothing : Maybe A

lookup : ∀ {A} → N → List A → Maybe A

lookup n [] = nothing

lookup zero (x :: xs) = just x

lookup (suc n) (x :: xs) = lookup n xs

tail : ∀ {A} → List A → Maybe (List A)

tail [] = nothing

tail (x :: xs) = just xs

As we use functions like lookup and tail in our programs we have to keep
checking if we got a value or not, even if we know that in some context the
functions will not fail. This is annoying and leads to unsafe version of the
functions being adopted, where instead of returning a Maybe a runtime error is
given in the nothing cases. This is not a good solution of course, after all we
like to work in strongly typed languages precisely because they help us many
avoid runtime error.

In the dependently typed setting we can do better. By making use of depen-
dent types we can convince Agda that a function in some context will not fail.
For example, if we lookup any position i ∈ {0, 1, ..., n− 1} of a list of length n
we will never fail:

-- Fin n is a type with n elements.

data Fin : N → Set where

zero : ∀ {n} → Fin (suc n)

suc : ∀ {n}(i : Fin n) → Fin (suc n)

-- Alternative definitions.

⊥′ = Fin 0

>′ = Fin 1

Bool′ = Fin 2

lookupV : ∀ {A n} → Fin n → Vec A n → A

lookupV zero (x :: xs) = x

lookupV (suc i) (x :: xs) = lookupV i xs

The case when the vector is empty need not be given, because when the vector
is empty n = 0 and Fin 0 or ⊥ which means we got a proof of false and this is
clearly absurd.

When defining the tail function we can say that the argument is a non-empty
vector and thus avoid giving the empty case:

tailV : ∀ {A n} → Vec A (suc n) → Vec A n

tailV (x :: xs) = xs
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Another aspect is that we can more precisely state what the specifications of
our programs are. When we append two lists, we know that the resulting list’s
length will be the sum of the original lists:

_++L_ : ∀ {A} → List A → List A → List A

[] ++L ys = ys

(x :: xs) ++L ys = x :: (xs ++L ys)

But Agda does not know this, and will gladly allow us to write an incorrect
version of append:

_++L′_ : ∀ {A} → List A → List A → List A

[] ++L′ ys = []

(x :: xs) ++L′ ys = x :: (xs ++L′ ys)

If we could explain to Agda the fact we know about the resulting list’s length,
then it would be in a better position of helping us avoid making mistakes:

_++V_ : ∀ {A m n} → Vec A m → Vec A n → Vec A (m + n)

[] ++V ys = ys

(x :: xs) ++V ys = x :: (xs ++V ys)

If we would try to make the same mistake we did in the bad version of list
append, Agda would complain saying that the length of the empty vector is not
0 + n = n.

Here is another example, say we are writing an equality test for booleans:

_
?
=_ : Bool → Bool → Bool

true
?
= true = true

true
?
= false = false

false
?
= true = false

false
?
= false = false

This is a fairly easy thing to get right, but if we copy-paste program or are
careless we might make a mistake. If we instead had explained to Agda what
equality test means in terms of the identity type:

data Dec (P : Set) : Set where

yes : (p : P) → Dec P

no : (¬p : ¬ P) → Dec P

_
?
=′_ : (b b′ : Bool) → Dec (b ≡ b′)

true
?
=′ true = yes refl

true
?
=′ false = no (λ ())

false
?
=′ true = no (λ ())

false
?
=′ false = yes refl
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Then Agda would again not allow us to make the mistake, because it would ask
us for an impossible proof (false 6≡ false = false ≡ false → ⊥). The λ
() construct is a shorthand for a function from something absurd to anything
else, in the above case the absurd things are that true ≡ false and false ≡
true respectively.

Another important advantage of using
?
=′ over

?
= becomes apparent when

we use them:

use : Bool → Bool → Set

use b b′ = if b
?
= b′ then {! We know b and b′ are the same. !}

else {! We know that they are not the same. !}

But Agda does not know this, it has no idea of the fact that
?
= is an equality

test, all Agda knows is that it is a function returning a boolean. If we use the
other approach however:

use′ : Bool → Bool → Set

use′ b b′ with b
?
=′ b′

use′ b .b | yes refl = {! Agda knows b and b′ are the same! !}

use′ b b′ | no p = {! Agda knows they are not the same,

p is a proof of that fact! !}

We will explain with next, for now think of it as a way of casing on an argument.
The dot says that the value has to be b, there is no choice given that we have
pattern-matched on the proof that b ≡ b′.

The fact we can explain things to Agda in this way is important when we
program using dependent types. We shall come back with an example of this
after we have explained how with works.

2.7 The with and rewrite constructs

The with construct [MM04] is an extensions which further improves the use-
fulness of pattern-matching. It allows us to introduce a new variable to match
on:

filter : {A : Set}(p : A → Bool)(xs : List A) → List A

filter p [] = []

filter p (x :: xs) with p x

... | true = x :: filter p xs

... | false = filter p xs

The three dots gets translated to the line above them:

filter p (x :: xs) with p x

filter p (x :: xs) | true = x :: filter p xs

filter p (x :: xs) | false = filter p xs

The with construct desugars in the following way:
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mutual

filter′ : {A : Set}(p : A → Bool)(xs : List A) → List A

filter′ p [] = []

filter′ p (x :: xs) = helper p x xs (p x)

helper : {A : Set}(p : A → Bool)

(x : A)(xs : List A)(b : Bool) → List A

helper p x xs true = x :: filter′ p xs

helper p x xs false = filter′ p xs

Where the mutual explicitly tells Agda that the following block of functions are
mutually defined.

The with construct is not only useful for defining functions, but also when
proving properties4:

n+0≡n : (n : N) → n + 0 ≡ n

n+0≡n zero = refl

n+0≡n (suc n) with n + 0 | n+0≡n n

... | .n | refl = refl

What happens is that in the case when n is zero the definition of + normalises
the type to 0 ≡ 0 which is trivially proved. In the other case, when n is suc

n, the type normalises to suc (n + 0) ≡ suc n and then gets stuck not able
to normalise further. So what we do is abstract over n + 0, this creates a
new variable, and the induction hypothesis n+0≡n n at the same time, by then
matching on the proof of the induction hypothesis the new variable gets unified
with the left hand side and we learn that the new variable must be n! The dot
says that this value is forced and cannot be anything else. Recall that our type
was suc (n + 0) ≡ suc n, we just showed that n + 0 has to be n so our new
type is suc n ≡ suc n which again is trivial.

Here is another example of the same trick:

lemma : (m n : N) → m + suc n ≡ suc (m + n)

lemma zero _ = refl

lemma (suc m) n with m + suc n | lemma m n

... | ._ | refl = refl

This pattern of rewriting the type using the induction hypothesis, or any other
proved equality, is so common that there is a construct, rewrite, which does
exactly this:

n+0≡n′ : ∀ n → n + 0 ≡ n

n+0≡n′ zero = refl

n+0≡n′ (suc n) rewrite n+0≡n′ n = refl

lemma′ : (m n : N) → m + suc n ≡ suc (m + n)

4Note that Agda names can contain any non-whitespace characters, allowing us to give our
property a telling name.
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lemma′ zero n = refl

lemma′ (suc m) n rewrite lemma′ m n = refl

The proofs using rewrite (n+0≡n′ and lemma′) translate to those without
(n+0≡n and lemma).

2.8 More on programming with dependent types

Another use of pattern-matching and with are so called views [MM04]. We can
use views to make Agda learn something about the data we pass to them. Here
we use a view to check if a natural number, n is within a range, m, and if so
embed the n into Fin m:

toN : ∀ {n} → Fin n → N

toN zero = 0

toN (suc i) = suc (toN i)

data Range (m : N) : N → Set where

inside : (x : Fin m) → Range m (toN x)

outside : (n : N) → Range m (m + n)

range : ∀ m n → Range m n

range zero n = outside n

range (suc m) zero = inside zero

range (suc m) (suc n) with range m n

range (suc m) (suc .(toN x)) | inside x = inside (suc x)

range (suc m) (suc .(m + n)) | outside n = outside n

It is range and Range that constitute the view. Here are two examples that
show how the view works:

example : range 3 2 ≡ inside (suc (suc zero))

example = refl

example′ : range 3 5 ≡ outside 2

example′ = refl

This can be used to range check a natural number given at runtime by the user,
thereby getting a refined Fin datatype which can be used for safe lookups into
vectors for example:

state : Vec String 3

state = "apa" :: "bepa" :: "cepa" :: []

check : (n : N) → String

check n with range 3 n

check ._ | inside x = "Inside: " ++ lookup x state
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check ._ | outside n = "Outside: " ++ show n

main : IO >
main =

putStrLn "Feed me something between 0 and 2" >>= λ _ →
read >>= λ n →
putStrLn (check n) >>= λ _ →
return tt

The same technique can be used to, for example, typecheck raw, or untyped,
λ-calculus terms into well-typed terms. For the well-typed terms a nice total
evaluator can be given, whereas for the raw terms we would need a partial
evaluator with runtime errors5.

2.9 Modules and records

Finally just a quick note on some of the basic functionality of modules and
records in Agda. Unlike in Haskell, we can have modules inside modules in
Agda:

module InnerModule where

id′ : {A : Set} → A → A

id′ x = x

The outer module is the main module in which this document is written. We
can also parametrise modules:

module ParametrisedModule (A : Set) where

pid : A → A

pid x = x

We can provide the parameters upon opening the parametrised modules:

open ParametrisedModule Bool

-- pid : Bool → Bool, is now in scope.

Opening the inner module makes its content available in the outer module.
Records can be thought of as nested Σ-types where each field may depend

on previous fields. Here is an example which captures what it means for there
being an isomorphism between two sets:

record _∼=_ (A B : Set) : Set where

field

to : A → B

5The full example can be found in [Nor08].
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from : B → A

left-inverse : ∀ x → to (from x) ≡ x

right-inverse : ∀ x → from (to x) ≡ x

Here is an example instance of the isomorphism record, showing that there is
an isomorphism between the booleans and the set of two elements:

iso : Bool ∼= Fin 2

iso = record

{ to = to

; from = from

; left-inverse = left-inverse

; right-inverse = right-inverse

}

where

to : Bool → Fin 2

to true = zero

to false = suc zero

from : Fin 2 → Bool

from zero = true

from (suc zero) = false

from (suc (suc ()))

left-inverse : ∀ x → to (from x) ≡ x

left-inverse zero = refl

left-inverse (suc zero) = refl

left-inverse (suc (suc ()))

right-inverse : ∀ x → from (to x) ≡ x

right-inverse true = refl

right-inverse false = refl
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Chapter 3

Datatype-genericity using
the universe construction

In this chapter we shall give an introduction to datatype-generic programming
using the universe construction [ML84]. Much of the rest of this work will be
variations of the basic techniques presented here.

Let us first recall the main motivation behind datatype-genericity. We would
like to avoid writing a new instance of, for example, the mapping and iteration
function for each new datatype we introduce:

data List (A : Set) : Set where

[] : List A -- Pronounced "nil"

_::_ : (x : A)(xs : List A) → List A -- and "cons".

data Tree (A : Set) : Set where

leaf : (x : A) → Tree A

fork : (l r : Tree A) → Tree A

mapL : ∀ {A B} → (A → B) → List A → List B

mapL f [] = []

mapL f (x :: xs) = f x :: mapL f xs

mapT : ∀ {A B} → (A → B) → Tree A → Tree B

mapT f (leaf x) = leaf (f x)

mapT f (fork l r) = fork (mapT f l) (mapT f r)

iterL : ∀ {A C : Set} → (C → C) → C → List A → C

iterL c n [] = n

iterL c n (x :: xs) = c (iterL c n xs)

iterT : ∀ {A C : Set} → (C → C → C) → (A → C) → Tree A → C

iterT s b (leaf x) = b x
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iterT s b (fork l r) = s (iterT s b l) (iterT s b r)

Once we have defined the datatype-generic versions of map and iteration we can
state and prove more general theorems, for example:

map id $ id

and

map (g ◦ f) $ map g ◦ map f

Where f $ g = ∀x→ f x ≡ g x, i.e. f and g are point-wise equality1.
Given that a proof of a property of some function often is at least as long

as the definition of the function and often there are more than one property –
datatype-generic proofs can potentially save a lot of work.

So how do we achieve datatype-genericity? Let us have a look at the types
of the mapping functions again:

mapL : ∀ {A B} → (A → B) → List A → List B

mapT : ∀ {A B} → (A → B) → Tree A → Tree B

What we would like to do is to somehow abstract out the common part of these
definitions, namely List and Tree both of type Set → Set. Here is a first
attempt:

map : ∀ {A B}(F : Set → Set) → (A → B) → F A → F B

We would like to define map by induction on the structure (F : Set→ Set) of its
argument (F A : Set). The problem is we cannot do induction on F : Set→ Set,
because it is a function. This is where the universe construction comes in.

Let us define a universe with the two structures we are interested in:

data U : Set where

list tree : U

It has the following decoding function:

[[_]] : U → (Set → Set)

[[ list ]] A = List A

[[ tree ]] A = Tree A

Now we can define a datatype-generic map function:

map : ∀ {A B}(Σ : U) → (A → B) → [[ Σ ]] A → [[ Σ ]] B

This allows us to define map on the structure of its argument, as desired:

map list f [] = []

map list f (x :: xs) = f x :: map list f xs

map tree f (leaf x) = leaf (f x)

map tree f (fork l r) = fork (map tree f l) (map tree f r)

1We cannot prove that two functions are propositionally equal, for example map id ≡ id,
because our propositional equality (≡) is intensional, as discussed in the previous chapter.
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The list and tree specific mapping functions can be regained by applying map
to the desired structure:

map list $ mapL

map tree $ mapT

Another way to see this is that we have given syntax to a subspace of Set→ Set.
This subspace is way too small however, it only allows us to work with lists and
trees and not very efficiently either. We have merely moved the problem from
separate definitions (mapL and mapT) to a single one (map). The problem is that
while this allows us to define functions on the structure of their arguments, the
structure is too coarsely grained.

Let us investigate the structure of our datatypes more closely:

[] ::

A List A︸ ︷︷ ︸
ListA

leaf

A

fork

Tree A Tree A︸ ︷︷ ︸
TreeA

Let us start with lists. First we have a choice of structure, we can either con-
struct a list using a nil or a cons. In the nil case we are done. In the cons case
we need to provide a pair of a parameter and a recursive call.

For trees we also have a choice. In the leaf case we need to provide a
parameter, and in the fork case we need a pair of recursive calls.

Let us try to give formal syntax to what we just informally said above.

data Sig : Set where

_+_ : (Σ Σ′ : Sig) → Sig -- "Either"

ε : Sig -- "Done"

ψ : Sig -- "Provide parameter"

_*_ : (Σ Σ′ : Sig) → Sig -- "Pair"

ρ : Sig -- "Recursive call"

We can now formally describe the structure of lists and trees as follows:

′List = ε + ψ * ρ -- Times binds stronger than plus, as usual.
′Tree = ψ + ρ * ρ

We have introduced a universe, Sig for signature, we use the codes of the uni-
verse to describe the structure, or (type) signature, of datatypes. The signature
assumes, just like in our first attempt, we got the parameter at hand, so our
decoding function will reflect this assumption, but there is also a further as-
sumption made – the fact that we know how to construct substructures, i.e. the
recursive calls.

So rather than making our decoding function of type Set → Set we shall
make it Set × Set → Set where the first Set in the pair is the parameter
assumption and the second is the substructure assumption.
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[[_]] : Sig → (Set × Set → Set)

[[ Σ + Σ′ ]] X = [[ Σ ]] X ] [[ Σ′ ]] X

[[ ε ]] X = >
[[ ψ ]] X = proj1 X

[[ Σ * Σ′ ]] X = [[ Σ ]] X × [[ Σ′ ]] X

[[ ρ ]] X = proj2 X

How do we discharge the substructure assumption when using the universe?

map : ∀ {A B}(Σ : Sig)

→ (A → B) → [[ Σ ]] (A , ?) → [[ Σ ]] (B , ?)

Where the question marks need to be filled with something like:

[[ Σ ]] (A , [[ Σ ]] (A , · · · ) · · · )

This seemingly endless repetition can be captured using a datatype representing
the least fixpoint of a signature given the parameter:

data µ (Σ : Sig)(A : Set) : Set where

〈_〉 : [[ Σ ]] (A , µ Σ A) → µ Σ A

Why is this safe? How do we know that the repetition will eventually end?
Informally the idea is that eventually we will hit some of the base cases of the
signature and the recursion will stop. A formal treatment is out of scope of this
work.

Using the fixpoint construction we can now discharge the substructure as-
sumption:

map : ∀ {A B}(Σ : Sig) → (A → B) → µ Σ A → µ Σ B

To define map it helps to have the following helper function:

bimap : ∀ Σ {A B C D}(f : A → B)(g : C → D)

→ [[ Σ ]] (A , C) → [[ Σ ]] (B , D)

bimap ε f g x = x

bimap ψ f g x = f x

bimap ρ f g y = g y

bimap (Σ + Σ′) f g (inj1 s) = inj1 (bimap Σ f g s)

bimap (Σ + Σ′) f g (inj2 t) = inj2 (bimap Σ′ f g t)

bimap (Σ * Σ′) f g (s , t) = bimap Σ f g s , bimap Σ′ f g t

Now we can finally define our mapping function:

map : ∀ {Σ A B} → (A → B) → µ Σ A → µ Σ B

map {Σ} f 〈 s 〉 = 〈 bimap Σ f (map f) s 〉

The iteration function can also be defined using the helper:

iter : ∀ Σ {A C} → ([[ Σ ]] (A , C) → C) → µ Σ A → C

iter Σ φ 〈 s 〉 = φ (bimap Σ id (iter Σ φ) s)
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The φ is a [[ Σ ]]-algebra:

Algebra : Sig → Set → Set → Set

Algebra Σ A C = [[ Σ ]] (A , C) → C

It is a fancy word for a function which assuming some result has been com-
puted for all the substructures computes the result for the structure. The iter-
ator lifts the algebra to least fixpoints, discharging the algebra’s assumption by
(bi)mapping (the identity and) its induction hypothesis.

We will have examples next, but first a quick note on termination. Agda’s
termination checker complains about not being able to see that map and iter

are terminating, even though they clearly are. We can overcome this problem
by unfolding and inlining the definitions of bimap with map and iter:

bimapMap : ∀ Σ Σ′ {A B} → (A → B) → [[ Σ ]] (A , µ Σ′ A)

→ [[ Σ ]] (B , µ Σ′ B)

bimapMap ε Σ′′ f tt = tt

bimapMap ψ Σ′′ f a = f a

bimapMap ρ Σ′′ f 〈 s 〉 = 〈 bimapMap Σ′′ Σ′′ f s 〉
bimapMap (Σ + Σ′) Σ′′ f (inj1 s) = inj1 (bimapMap Σ Σ′′ f s)

bimapMap (Σ + Σ′) Σ′′ f (inj2 t) = inj2 (bimapMap Σ′ Σ′′ f t)

bimapMap (Σ * Σ′) Σ′′ f (s , t) = bimapMap Σ Σ′′ f s

, bimapMap Σ′ Σ′′ f t

map′ : ∀ {A B} Σ → (A → B) → µ Σ A → µ Σ B

map′ Σ f 〈 s 〉 = 〈 bimapMap Σ Σ f s 〉

bimapIter : ∀ Σ Σ′ {A C} → Algebra Σ′ A C

→ [[ Σ ]] (A , µ Σ′ A) → [[ Σ ]] (A , C)

bimapIter ε Σ′′ φ tt = tt

bimapIter ψ Σ′′ φ a = a

bimapIter ρ Σ′′ φ 〈 s 〉 = φ (bimapIter Σ′′ Σ′′ φ s)

bimapIter (Σ + Σ′) Σ′′ φ (inj1 s) = inj1 (bimapIter Σ Σ′′ φ s)

bimapIter (Σ + Σ′) Σ′′ φ (inj2 t) = inj2 (bimapIter Σ′ Σ′′ φ t)

bimapIter (Σ * Σ′) Σ′′ φ (s , t) = bimapIter Σ Σ′′ φ s

, bimapIter Σ′ Σ′′ φ t

iter′ : ∀ Σ {A C} → Algebra Σ A C → µ Σ A → C

iter′ Σ φ 〈 s 〉 = φ (bimapIter Σ Σ φ s)

The fact that the termination checker cannot detect the termination here should
not be a grave concern – the termination checker is limited and cannot be
expected to deal with arbitrary programs.

We shall stick to the simple definitions and ignore the termination checker’s
complaints.
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3.1 Examples

To get the datatype for lists, we take the least fixpoint of its signature:

′List = ε + ψ * ρ

List : Set → Set

List A = µ ′List A

We can define functions similar to the standard constructors2 of list:

[] : ∀ {A} → List A

[] = 〈 inj1 _ 〉

_::_ : ∀ {A} → (x : A)(xs : List A) → List A

x :: xs = 〈 inj2 (x , xs) 〉

Here is an example list and a test that map works:

list : List N

list = 1 :: 2 :: 2 :: 3 :: []

map-list : map suc list ≡ 2 :: 3 :: 3 :: 4 :: []

map-list = refl

We can define a function computing the length of a list using our iterator:

length : ∀ {A} → List A → N

length {A} = iter _ φ
where

φ : Algebra ′List A N

φ (inj1 _) = 0

φ (inj2 (_ , ih)) = suc ih

The algebra explains how to compute the length of a list structure, given that
it has already been computed for the sublists. If the structure is nil, there are
no sublists and the length is zero. And if the structure is a cons and we have
the length of the sublists, then we get the length of the structure by adding one
to the length of the sublists.

Here is a test to see if it works:

length-list : length list ≡ 4

length-list = refl

The length function we just defined is specific to lists, using datatype generics
we can define a function counting the number of parameter occurrences for any
datatype in our universe:

2It would have been much nicer to be able to introduce a pattern synonyms [AR92] which
would have allowed us to pattern match on nil and cons.
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elems : ∀ {Σ A} → µ Σ A → N

elems {Σ} {A} = iter Σ (φ Σ)
where

φ : ∀ Σ′ → Algebra Σ′ A N

φ ε tt = 0

φ ψ a = 1

φ ρ ih = ih

φ (Σ + Σ′) (inj1 s) = φ Σ s

φ (Σ + Σ′) (inj2 t) = φ Σ′ t

φ (Σ * Σ′) (s , t) = φ Σ s +N φ Σ′ t

Here is a test to see if it seems to work:

elems-list : elems list ≡ 4

elems-list = refl

The test suggest it works, but to be sure let us prove that the list specific length
function is point-wise equal to the more general datatype-generic function:

length-elems : ∀ {A} → length {A} $ elems -- Agda wants to know what

-- the type of the elements

-- is. We could of course

-- also have used the

-- following type:

-- length-elems : ∀ {A}(xs : List A) → length xs ≡ elems xs

length-elems 〈 inj1 _ 〉 = refl

length-elems 〈 inj2 (x , xs) 〉
rewrite length-elems xs = refl

Note that changing list to a snoc list or adding a new constructor, singleton :
A→ List A, for example, would break the length function, but not the generic
one counting parameter occurrences.

We can also define a datatype-generic function which computes the depth of
a datatype, i.e. the number of “recursive calls”.

depth : ∀ {Σ A} → µ Σ A → N

depth {Σ} {A} = iter Σ (φ Σ)
where

φ : ∀ Σ′ → Algebra Σ′ A N

φ ε tt = 0

φ ψ a = 0

φ ρ ih = suc ih

φ (Σ + Σ′) (inj1 s) = φ Σ s

φ (Σ + Σ′) (inj2 t) = φ Σ′ t

φ (Σ * Σ′) (s , t) = φ Σ s t φ Σ′ t -- _t_ is the max function.
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For lists, the length and depth are the same, but that is not generally true as
we shall see.

length-depth : ∀ {A} → length {A} $ depth

length-depth 〈 inj1 _ 〉 = refl

length-depth 〈 inj2 (x , xs) 〉
rewrite length-depth xs = refl

If the parameter of a datatype is the naturals, we can calculate the sum by
adding them up:

sum : ∀ {Σ} → µ Σ N → N

sum {Σ} = iter Σ (φ Σ)
where

φ : ∀ Σ′ → Algebra Σ′
N N

φ ε tt = 0

φ ψ n = n

φ ρ ih = ih

φ (Σ + Σ′) (inj1 s) = φ Σ s

φ (Σ + Σ′) (inj2 t) = φ Σ′ t

φ (Σ * Σ′) (s , t) = φ Σ s +N φ Σ′ t

sum-list : sum list ≡ 8

sum-list = refl

The test suggest it works, but to be sure let us prove that it is point-wise equal
to the list specific version, which is easier to understand:

sumL : List N → N

sumL = iter _ φ
where

φ : Algebra ′List N N

φ (inj1 _) = 0

φ (inj2 (n , ih)) = n +N ih

sum-sumL : (xs : List N) → sum xs ≡ sumL xs

sum-sumL 〈 inj1 _ 〉 = refl

sum-sumL 〈 inj2 (n , ns) 〉 rewrite sum-sumL ns = refl

If we look closely at the general and specific algebras, we notice that the specific
is indeed just a special case of the general.

Let us now introduce trees.

′Tree = ψ + ρ * ρ

Tree : Set → Set

Tree A = µ ′Tree A
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leaf : ∀ {A}(x : A) → Tree A

leaf x = 〈 inj1 x 〉

fork : ∀ {A}(l r : Tree A) → Tree A

fork l r = 〈 inj2 (l , r) 〉

tree : Tree N

tree = fork

(fork

(leaf 1)

(leaf 2))

(fork

(fork (leaf 3) (leaf 4))

(leaf 5))

Our datatype-generic functions work as expected:

elems-tree : elems tree ≡ 5

elems-tree = refl

depth-tree : depth tree ≡ 3

depth-tree = refl

sum-tree : sum tree ≡ 15

sum-tree = refl

sum-map-tree : sum (map suc tree) ≡ 20

sum-map-tree = refl

Finally, let us take a look at some datatype-generic proofs. Let us start with
proving that:

∀ Σ→ map {Σ} id $ id

We will need the following helper to do it:

private -- Code inside private blocks is not visible outside the

-- current module. I like to put local lemmas inside private

-- blocks, so that I know that they are local.

bimap-id : ∀ Σ {A B}(g : B → B)(ih : g $ id)

→ bimap Σ id g $ id {A = [[ Σ ]] (A , B)}

bimap-id ε g ih _ = refl

bimap-id ψ g ih _ = refl

bimap-id ρ g ih b = ih b

bimap-id (Σ + Σ′) g ih (inj1 s) rewrite bimap-id Σ g ih s = refl

bimap-id (Σ + Σ′) g ih (inj2 t) rewrite bimap-id Σ′ g ih t = refl

bimap-id (Σ * Σ′) g ih (s , t) rewrite bimap-id Σ g ih s

| bimap-id Σ′ g ih t = refl
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Our first property can now easily be proved:

map-id : ∀ Σ {A} → map id $ id {A = µ Σ A}

map-id Σ 〈 s 〉 rewrite bimap-id Σ (map id) (map-id Σ) s = refl

Next let us prove:

∀ Σ→ map {Σ} (g ◦ f) $ map {Σ} g ◦ map {Σ} f

We will need the following helper:

private

bimap-compose : ∀ Σ {A B C D E F}(f : A → B)(g : B → C)(h : D → F)

(i : D → E)(j : E → F)(ih : h $ j ◦ i)

→ bimap Σ (g ◦ f) h $ bimap Σ g j ◦ bimap Σ f i

bimap-compose ε f g h i j ih s = refl

bimap-compose ψ f g h i j ih s = refl

bimap-compose ρ f g h i j ih s = ih s

bimap-compose (Σ + Σ′) f g h i j ih (inj1 s)

rewrite bimap-compose Σ f g h i j ih s = refl

bimap-compose (Σ + Σ′) f g h i j ih (inj2 t)

rewrite bimap-compose Σ′ f g h i j ih t = refl

bimap-compose (Σ * Σ′) f g h i j ih (s , t)

rewrite bimap-compose Σ f g h i j ih s

| bimap-compose Σ′ f g h i j ih t = refl

The second property is now again easily proved:

map-compose : ∀ Σ {A B C}(f : A → B)(g : B → C)

→ map {Σ} (g ◦ f) $ map g ◦ map f

map-compose Σ f g 〈 s 〉
rewrite bimap-compose Σ f g (map (g ◦ f)) (map f) (map g)

(map-compose Σ f g) s = refl

Next we shall, assuming a set, A, with decidable equality, show that we can
define a decidable equality on the least fixpoint of any signature with A as
parameter:

∀ Σ→ (x y : µ Σ A)→ x ≡ y ∨ x 6≡ y

We will define decidable equality like this:

data Dec (P : Set) : Set where

yes : (p : P) → Dec P

no : (¬p : ¬ P) → Dec P

DecEq : Set → Set

DecEq A = (x y : A) → Dec (x ≡ y)

For the proof we will need the proof that our constructors are injective:
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private

Injective : ∀ A B (f : A → B) → Set

Injective A B f = ∀ {x y} → f x ≡ f y → x ≡ y

Injective2 : ∀ A B C (f : A → B → C) → Set

Injective2 A B C f = ∀ {x x′ y y′} → f x y ≡ f x′ y′ → x ≡ x′ × y ≡ y′

〈〉-injective : ∀ {Σ A} → Injective ([[ Σ ]] (A , µ Σ A)) (µ Σ A) 〈_〉
〈〉-injective refl = refl

inj1-injective : ∀ {A B} → Injective A (A ] B) inj1
inj1-injective refl = refl

inj2-injective : ∀ {A B} → Injective B (A ] B) inj2
inj2-injective refl = refl

,-injective : ∀ {A B} → Injective2 A B (A × B) _,_

,-injective refl = refl , refl

dec-cong : ∀ {A B}{x y : A}{f : A → B} → Injective A B f

→ Dec (x ≡ y) → Dec (f x ≡ f y)

dec-cong inj (yes refl) = yes refl

dec-cong inj (no x6≡y) = no (λ fx≡fy → x 6≡y (inj fx≡fy))

dec-cong2 : ∀ {A B C}{x x′ : A}{y y′ : B}{f : A → B → C}

→ Injective2 A B C f → Dec (x ≡ x′) → Dec (y ≡ y′)

→ Dec (f x y ≡ f x′ y′)

dec-cong2 inj (yes refl) (yes refl) = yes refl

dec-cong2 inj (no x6≡x′) _ = no (λ fxy≡fx′y′ →
x6≡x′ (proj1 (inj fxy≡fx′y′)))

dec-cong2 inj _ (no y6≡y′) = no (λ fxy≡fx′y′ →
y6≡y′ (proj2 (inj fxy≡fx′y′)))

To make the assumption about the parameter set which is decidable, we will
use a parametrised inner module, which will make the set and the decidable
equality in scope inside the module:

module Eq (A : Set)(_
?
=A_ : DecEq A) where

Using a helper we can now prove our property:

helper : ∀ Σ {X}(ih : DecEq X) → DecEq ([[ Σ ]] (A , X))

helper ε ih tt tt = yes refl

helper ψ ih a b = a
?
=A b

helper ρ ih x y = ih x y

helper (Σ + Σ′) ih (inj1 s) (inj1 t) = dec-cong inj1-injective (helper Σ ih s t)
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helper (Σ + Σ′) ih (inj1 s) (inj2 t) = no λ ()

helper (Σ + Σ′) ih (inj2 s) (inj1 t) = no λ ()

helper (Σ + Σ′) ih (inj2 s) (inj2 t) = dec-cong inj2-injective (helper Σ′ ih s t)

helper (Σ * Σ′) ih (s , t) (s′ , t′) = dec-cong2 ,-injective (helper Σ ih s s′)

(helper Σ′ ih t t′)

_
?
=_ : ∀ {Σ} → DecEq (µ Σ A)

_
?
=_ {Σ} 〈 x 〉 〈 y 〉 = dec-cong 〈〉-injective (helper Σ _

?
=_ x y)

We discharge the assumptions by providing a decidable set when opening the
module:

open Eq N _
?
=N_ -- The proof that N is decidable is in the standard

-- library (Data.Nat).

And finally, a couple of examples to test our decidable equality. Where True

turns the yes constructor of Dec into the unit type and False does the same
thing for the no constructors:

?
=-list : True (list

?
= list) × False (list

?
= 1 :: list)

?
=-list = tt , tt

?
=-tree : True (tree

?
= tree) × False (tree

?
= leaf 2)

?
=-tree = tt , tt

3.2 Discussion

We have seen how to write datatype-generic functions and proofs about them in
Agda using the universe construction. We designed our universe after analysing
the structure of lists and trees. While our universe can describe a large class of
datatypes, it should not come as a surprise that there are datatypes whose sig-
natures cannot be expressed – we designed it after analysing only two particular
datatypes after all.

Now that we got an idea of how this works, we shall in the following two
chapters try to do what we did in this chapter – analyse datatypes and design
universes for them – in a more systematic way.
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Chapter 4

Classes of datatypes

In order to be able to construct universes which support large classes of datatypes,
we need first to identify what classes there are.

Another reason for wanting to classify datatypes is because different classes
support different datatype-generic functions.

Let us list the perhaps most important classes and give a couple of exam-
ple instances of datatypes in each class and some supported datatype-generic
functions.

4.1 Finite datatypes

The finite datatypes are datatypes with a finite number of elements. The empty
and the unit datatype are examples:

data ⊥ : Set where

data > : Set where

tt : >

The booleans are another example:

data Bool : Set where

true false : Bool

Yet another example is the datatype of the days of the week:

data Week : Set where

monday tuesday wednesday thursday friday : Week

saturday sunday : Week

The finite datatypes support datatype-generic function such as decidable equal-
ity and finite enumeration.
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4.2 One-sorted datatypes

The one-sorted datatypes are a superset of the finite datatypes where recursion
is allowed. This makes it possible to define, for example, the natural numbers:

data N : Set where

zero : N

suc : N → N

The list of booleans is another example:

data ListBool : Set where

[] : ListBool

true::_ : ListBool → ListBool

false::_ : ListBool → ListBool

list = true:: false:: []

Binary trees are another example:

data Tree : Set where

leaf : Tree

fork : Tree → Tree → Tree

This class also supports enumeration. The enumeration will be potentially infi-
nite rather than finite however.

4.3 Iterated induction

This is a superset of the one-sorted datatypes where we are allowed to refer to
previously defined sets when building new ones, hence the name.

An example, which we could not define before, is the list of natural numbers:

data ListN : Set where

[] : ListN

_::_ : N → ListN → ListN

Another is a simple expression language:

data Expr : Set where

con : N → Expr

plus : Expr → Expr → Expr

4.4 Infinitary induction

This is another superset of the one-sorted datatypes where we can also use
functions from previously defined sets as arguments to our constructors.

The Brouwer ordinals is an example datatype in this class:
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data Ord : Set where

zero : Ord

suc : Ord → Ord

limit : (N → Ord) → Ord

ω = limit f

where

f : N → Ord

f zero = zero

f (suc n) = suc (f n)

ω2 = limit g

where

f : N → Ord → Ord

f zero o = o

f (suc n) o = suc (f n o)

g : N → Ord

g zero = zero

g (suc n) = limit (λ h → f h (g n))

The reason that it is called infinitary induction is because we get infinitary trees:

limit

Ord . . . Ord︸ ︷︷ ︸
|N|=ω times

Infinitary induction breaks enumeration, as we know from Cantor’s diagonali-
sation argument.

4.5 Parametrised datatypes

This is also a superset of the one-sorted datatypes where we are allowed to refer
to a parameter, as A below:

data List (A : Set) : Set where

[] : List A

_::_ : A → List A → List A

This is the class for which we constructed a universe in the previous chapter.
We can generalise the parametrised datatypes to n parameters, thus getting

n-ary parametrised datatypes. Here is an example of a binary parametrised
datatype:

data _]_ (A B : Set) : Set where

inj1 : A → A ] B

inj2 : B → A ] B

38



We can also add iterated and infinitary induction to this class. An example, is
parametrised higher-order syntax [Chl08]:

data Term (V : Set) : Set where

var : V → Term V

lam : (V → Term V) → Term V

app : Term V → Term V → Term V

bool : Bool → Term V

Parametrised datatypes support mapping and, given that we got decidable
equality for the parameters, it also supports decidable equality.

4.6 Many-sorted datatypes

These are also known as mutual datatypes – datatypes whose definitions mu-
tually depend on each other. This is a generalisation of one-sorted datatypes.
Examples include, the even and odd natural numbers:

mutual

data Even : Set where

zero : Even

suc : Odd → Even

data Odd : Set where

suc : Even → Odd

two : Even

two = suc (suc zero)

three : Odd

three = suc (suc (suc zero))

Another example are so called rose trees:

mutual

data Rose (A : Set) : Set where

node : A → Forest A → Rose A

data Forest (A : Set) : Set where

ε : Forest A

_::_ : Rose A → Forest A → Forest A

rose : Forest N

rose = node 1

(node 2 ε :: ε)
:: node 3

(node 4
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(node 5 ε :: ε)
:: node 6 ε :: ε)
:: ε

We can generalise many-sorted datatypes to iterated infinitary induction over
n-ary parametrised many-sorted datatypes.

4.7 Finitary indexed induction

Finitary indexed induction [Dyb91] is what we get when we allow sets to be
indexed by other sets to create, possibly infinite, families of sets.

We have seen instances of those already:

data Vec (A : Set) : N → Set where

[] : Vec A zero

_::_ : ∀ {n} → A → Vec A n → Vec A (suc n)

data _≡_ {A : Set}(x : A) : A → Set where

refl : x ≡ x

Indexed inductive definitions come in two forms. A general form, which includes
the ones we have seen so far, where the target index can be any term:

-- Even predicate.

data GEven : N → Set where

zero : GEven 0

2+ : ∀ {n} → GEven n → GEven (suc (suc n))

geven : GEven 4

geven = 2+ (2+ zero)

There is also a restricted form where the target index can only be a variable
and we use propositional equality to get the same effect as in the general form:

data REven : N → Set where

zero : ∀ {i} → i ≡ 0 → REven i

2+ : ∀ {i n} → i ≡ suc (suc n) → REven n → REven i

reven : REven 4

reven = 2+ refl (2+ refl (zero refl))

Another distinction we make is small versus large indices. So far we have only
seen small indices, that is datatypes indexed by sets. But we could also index
by Set (the type of all small sets) in which case we get an datatype with a large
index:

data Term : Set → Set1 where

con : ∀ {A} → A → Term A
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_,_ : ∀ {A B} → Term A → Term B → Term (A × B)

fst : ∀ {A B} → Term (A × B) → Term A

snd : ∀ {A B} → Term (A × B) → Term B

term : Term Bool

term = fst (con true , con 2)

Indexing by large sets is not allowed in [Dyb91].
We can define many-sorted datatypes by using an index:

data EvenOdd : Bool → Set where

zeroE : EvenOdd true

sucE : EvenOdd false → EvenOdd true

sucO : EvenOdd true → EvenOdd false

Even = EvenOdd true

Odd = EvenOdd false

two : Even

two = sucE (sucO zeroE)

three : Odd

three = sucO (sucE (sucO zeroE))

Thus making it a superset of the iterated n-ary parametrised many-sorted
datatypes.

4.8 Infinitary indexed induction

Similarly to the infinitary induction generalisation we can generalise finitary
indexed induction to infinitary indexed induction. By doing so we can define,
for example, the set of accessible elements:

data Acc {A : Set}(_<_ : A → A → Set) : A → Set where

acc : ∀ x → (∀ y → y < x → Acc _<_ y) → Acc _<_ x

4.9 Inductive-recursive

In inductive-recursive definitions [Dyb00, DS99, DS01] we mutually define a
datatype (inductive) which uses, and is used in the definition of, a function
(recursive).

Examples of this class include Martin-Löf’s universe à la Tarski:

mutual

data U : Set where
′⊥ ′> ′

N : U
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_′]_ : U → U → U
′Σ ′Π ′W : (S : U) → (El S → U) → U

_′≡_ : {S : U} → El S → El S → U

El : U → Set

El ′⊥ = ⊥
El ′> = >
El (S ′] T) = El S ] El T

El (′Σ S T) = Σ (El S) (λ s → El (T s))

El (′Π S T) = (s : El S) → El (T s)

El ′
N = N

El (′W S T) = W (El S) (λ s → El (T s))

El (S ′≡ T) = S ≡ T

Another example is fresh lists, lists that promise that all their elements are
unique.

mutual

data FreshList (A : Set) : Set where

nil : FreshList A

cons : (x : A)(xs : FreshList A)(p : Fresh x xs) → FreshList A

Fresh : ∀ {A} → A → FreshList A → Set

Fresh z nil = >
Fresh z (cons x xs p) = z 6≡ x × Fresh z xs

fresh : FreshList Bool

fresh = cons true (cons false nil tt) ((λ ()) , tt)

-- stale : FreshList Bool

-- stale = cons true (cons true nil tt) (? , tt) -- true 6≡ true

The class can be generalised to indexed induction-recursion [DS06], where the
datatype may be indexed.

An example using this generalisation is used in the Bove-Carpetta method
[BC05], which allows us to define nested recursive functions, such as McCarthy
91 function, in a structurally recursive manner.

mutual

data dom91 : N → Set where

dom100< : ∀ {n} → 100 < n → dom91 n

dom≤100 : ∀ {n} → n ≤ 100 → (p : dom91 (n + 11))

→ dom91 (f91 (n + 11) p) → dom91 n

f91 : ∀ n → dom91 n → N

f91 n (dom100< h) = n - 10

f91 n (dom≤100 h p q) = f91 (f91 (n + 11) p) q
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Indexed inductive-recursion is a superset of infinitary indexed induction, and
thus encompasses all previous classes.

4.10 Inductive-inductive

Inductive-inductive definitions [FS10, AFMS11] are ones where we mutually
define an indexed datatype and the type of its index, so that the constructors
of the index may refer to the datatype and the other way around.

An instance of this class is the datatype of sorted lists:

mutual

data SortedList : Set where

[] : SortedList

_::_,_ : (n : N)(xs : SortedList)(p : n ≤L xs) → SortedList

data _≤L_ (m : N) : SortedList → Set where

[] : m ≤L []

_::_ : ∀ {n xs}(p : m ≤ n)(q : n ≤L xs) → m ≤L (n :: xs , q)

list = 1 :: (2 :: (3 :: [] , _) , _)

, s≤s z≤n :: (s≤s (s≤s z≤n) :: []) -- Agda can infer the inner proofs.

-- bad = 2 :: (1 :: [] , _) , ? -- 2 ≤L (1 :: [] , _)

Inductive-inductive definitions are not covered by the theory of indexed inductive-
recursive definitions presented in [DS06].

4.11 Nested fixpoints

This is a generalisation which applies to many of the classes we have seen. It
adds the ability to nest fixpoints:

data Rose (A : Set) : Set where

rose : A → List (Rose A) → Rose A

That is, as we are defining a recursive datatype, such as Rose, we may use it in
another recursive datatype, such as in List above.

Nested fixpoints are not covered by the theory of indexed inductive-recursive
definitions [DS06].

4.12 Discussion

We have only given a few example datatype instances of each class, what we
would like is to have a clear specification of each class, which we can then
use when constructing our universes. Next chapter will give a hint at what
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a specification might look like, but it will be far from anything satisfactory.
Something you might have noticed already is the recurring pattern of iterated
induction, infinitary induction, parameters and so on.

Different classes of datatypes admit different generic functions. For example
the finite datatypes are enumerable using a list while the other classes have po-
tentially infinite datatypes, as the natural numbers, and therefore would require
a colist unless they are uncountable, as the ordinals, in which case we cannot
enumerate them at all. Decidable equality does not generally work when you
add infinitary induction to a class. A systematic analysis of what generic func-
tions work over what classes has, as far as I know, not been done.

There are many classes which we have omitted, in particular coinductive
classes and inductive-coinductive ones.
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Chapter 5

Universe design choices

In the preceding chapter we identified different classes of datatypes and discussed
how they support different datatype-generic functions.

Next we shall show that there are more than one way to design a uni-
verse which supports a certain class of datatypes and how the set of supported
datatype-generic functions depends on this design choice.

5.1 Finite datatypes

First we will try to illustrate the difference between “syntactic” universes and
more “semantic” presentations in the context of finite datatypes. This distinc-
tion is emphasised by [Mor07] and [AMM07]. Most the ideas presented here
will be from [AMM07], where they are described in more detail.

Let us start off by looking at a “syntactic” universe. The universe we con-
structed in chapter 3 is a “syntactic” universe and it has most of the codes we
need to describe the finite datatypes. Recall however that there was no way
to describe the signature of the empty type. Also we cannot have (infinite)
parameters nor recursive structures, so we have to remove those codes.

data Sig : Set where

∅ ε : Sig

_+_ _*_ _^_ : (Σ Σ′ : Sig) → Sig

[[_]] : Sig → Set

[[ ∅ ]] = ⊥
[[ ε ]] = >
[[ Σ + Σ′ ]] = [[ Σ ]] ] [[ Σ′ ]]
[[ Σ * Σ′ ]] = [[ Σ ]] × [[ Σ′ ]]
[[ Σ ^ Σ′ ]] = [[ Σ′ ]] → [[ Σ ]]

Bool = [[ ε + ε ]]
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Chessboard = [[ a-h * 1-8 ]]
where

a-h = ε + ε + ε + ε
+ ε + ε + ε + ε

1-8 = ε + ε + ε + ε
+ ε + ε + ε + ε

a1 : Chessboard

a1 = inj1 _ , inj1 _

The “semantic” representation for finite datatypes is the family of finite sets:

data Fin : N → Set where

zero : ∀ {n} → Fin (suc n)

suc : ∀ {n}(i : Fin n) → Fin (suc n)

Sig = Fin

Bool′ = Sig (1 + 1)

Think of the natural number as the code, that says how many elements the type
contains without saying anything about its structure.

true : Bool′

true = zero

false : Bool′

false = suc zero

Chessboard′ = Sig (8 * 8)

a1′ : Chessboard′

a1′ = zero

The constructors of datatypes described in the “semantic” representation above
become tedious to define. We can do better.

inl : ∀ {m} n → Sig m → Sig (m + n)

inl n zero = zero

inl n (suc i) = suc (inl n i)

inr : ∀ {m} n → Sig m → Sig (n + m)

inr zero i = i

inr (suc n) i = suc (inr n i)

sum : ∀ m {n} → Sig m ] Sig n → Sig (m + n)

sum m (inj1 i) = inl _ i
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sum m (inj2 j) = inr m j

true′ : Bool′

true′ = inl {1} 1 zero

false′ : Bool′

false′ = inr {1} 1 zero

pair : ∀ {m} n → Sig m × Sig n → Sig (m * n)

pair {suc m} n (zero , j) = inl (m * n) j

pair n (suc i , j) = inr n (pair n (i , j))

a1′′ : Chessboard′

a1′′ = pair {8} 8 (zero , zero)

This is closer to the constructor definitions we had when using the “syntactic”
universe. There is however an important difference; the notion of structure
appears to be lost in the “semantic” presentation. See, for example, above
when we define a1′′, we appear to be using some notion of pair structure there,
but really the result is the same as when we did not:

a1′≡a1′′ : a1′ ≡ a1′′

a1′≡a1′′ = refl

We could regain the structure by defining inverses for sum and pair. case below
is an inverse of sum and a similar inverse can be defined for pair.

data SigPlus (m n : N) : Sig (m + n) → Set where

isInl : (i : Sig m) → SigPlus m n (inl n i)

isInr : (j : Sig n) → SigPlus m n (inr m j)

sigPlus : ∀ m n (i : Sig (m + n)) → SigPlus m n i

sigPlus zero n i = isInr i

sigPlus (suc m) n zero = isInl zero

sigPlus (suc m) n (suc i) with sigPlus m n i

sigPlus (suc m) n (suc .(inl n i)) | isInl i = isInl (suc i)

sigPlus (suc m) n (suc .(inr m j)) | isInr j = isInr j

case : (m n : N) → Sig (m + n) → Sig m ] Sig n

case m n i with sigPlus m n i

case m n .(inl n i) | isInl i = inj1 i

case m n .(inr m j) | isInr j = inj2 j

Now we can define, for example, the if function for our booleans in two ways –
directly or by first regaining the structure:

if : ∀ {n} → Bool′ → Sig n → Sig n → Sig n

if zero t f = t
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if (suc zero) t f = f

if (suc (suc ())) t f

if′ : ∀ {n} → Bool′ → Sig n → Sig n → Sig n

if′ b t f = [ (λ _ → t) , (λ _ → f) ]′ (case 1 1 b)

if$if′ : ∀ {n} b (t f : Sig n) → if b t f ≡ if′ b t f

if$if′ zero t f = refl

if$if′ (suc zero) t f = refl

if$if′ (suc (suc ())) t f

The point of having this choice becomes clearer when we define functions which
may or may not depend on the structure. The if function is neutral in this
regard, it only needs to know the value of the boolean. A function which benefits
from the structureless setting is decidable equality:

_
?
=_ : ∀ {n}(x y : Sig n) → Dec (x ≡ y)

zero
?
= zero = yes refl

zero
?
= suc j = no (λ ())

suc i
?
= zero = no (λ ())

suc i
?
= suc j with i

?
= j

... | yes i≡j = yes (cong suc i≡j)

... | no i 6≡j = no (λ suci≡sucj → i 6≡j (suc-inj suci≡sucj))
where

suc-inj : ∀ {n}{i j : Fin n} → Fin.suc i ≡ suc j → i ≡ j

suc-inj refl = refl

We could define decidable equality for the “syntactic” universe also, we would
need extensionality for the exponential case however, but the definition would
be longer and we would need lemmas similar to suc-inj above for each of the
constructors that the syntactic universe decodes into (inj1, inj2, , , etc (as
we saw in chapter 3).

On the other hand, the proof that times distributes over plus is dependent
on the structure:

data SigTimes (m n : N) : Sig (m * n) → Set where

isPair : (i : Sig m)(j : Sig n) → SigTimes m n (pair n (i , j))

sigTimes : ∀ m n (i : Sig (m * n)) → SigTimes m n i

sigTimes zero n ()

sigTimes (suc m) n i with sigPlus n (m * n) i

sigTimes (suc m) n .(inl (m * n) i) | isInl i = isPair zero i

sigTimes (suc m) n .(inr n j) | isInr j with sigTimes m n j

sigTimes (suc m) n .(inr _ _) | isInr .(pair _ (i , j))

| isPair i j = isPair (suc i) j

48



split : (m n : N) → Fin (m * n) → Fin m × Fin n

split m n i with sigTimes m n i

split m n .(pair _ (i , j)) | isPair i j = i , j

dist : ∀ m n o → Sig (m * (n + o)) → Sig ((m * n) + (m * o))

dist m n o Σ with split m (n + o) Σ
... | x , y with case n o y

... | inj1 y1 = inl (m * o) (pair n (x , y1))

... | inj2 y2 = inr (m * n) (pair o (x , y2))

We cannot define dist by induction on Σ, because Agda cannot unify the index
of Σ’s constructors (zero and suc) with the index of Σ (m * (n + o)) and thus
Agda will not let us naively match on Σ.

If we step back a little, we might notice that the “syntactic” and “seman-
tic” representations are isomorphic and that the functions sum, pair and their
inverses case and split are the witnesses of this isomorphism. It is easier to
show this if we index the syntactic universe by the number of inhabitants, like
this:

data Sig′ : N → Set where

∅ : Sig′ 0

ε : Sig′ 1

_⊕_ : ∀ {m n}(Σ : Sig′ m)(Σ′ : Sig′ n) → Sig′ (m + n)

_~_ : ∀ {m n}(Σ : Sig′ m)(Σ′ : Sig′ n) → Sig′ (m * n)

[[_]]′ : ∀ {n} → Sig′ n → Set

[[ ∅ ]]′ = ⊥
[[ ε ]]′ = >
[[ Σ ⊕ Σ′ ]]′ = [[ Σ ]]′ ] [[ Σ′ ]]′

[[ Σ ~ Σ′ ]]′ = [[ Σ ]]′ × [[ Σ′ ]]′

We can then show:

⇒ : ∀ {n}(Σ : Sig′ n) → [[ Σ ]]′ → Sig n

⇒ ∅ ()

⇒ ε _ = zero

⇒ (Σ ⊕ Σ′) s = sum _ (Sum.map (⇒ Σ) (⇒ Σ′) s)

⇒ (Σ ~ Σ′) s = pair _ (Prod.map (⇒ Σ) (⇒ Σ′) s)

⇐ : ∀ {n}(Σ : Sig′ n) → Sig n → [[ Σ ]]′

⇐ ∅ ()

⇐ ε i = _

⇐ (Σ ⊕ Σ′) i = Sum.map (⇐ Σ) (⇐ Σ′) (case _ _ i)

⇐ (Σ ~ Σ′) i = Prod.map (⇐ Σ) (⇐ Σ′) (split _ _ i)

To show that these form an isomorphism we also need to show:

⇐⇒id : ∀ {n}(Σ : Sig′ n) → ⇐ Σ ◦ ⇒ Σ $ id
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⇒⇐id : ∀ {n}(Σ : Sig′ n) → ⇒ Σ ◦ ⇐ Σ $ id

I have left out the code for this last bit, because it is rather long and I have a
lemma (injectivity of pair) left to complete the proof.

5.1.1 Syntactic universe with distinct constructors

We just saw two very different, but isomorphic, representations of the finite
datatypes – “syntactic” and “semantic”. The point being that one representa-
tion is sometimes better suited than the other for defining some function.

Next I will try to make the point that we can have different representations
of “syntactic” universes. For example, here is a universe for finite datatypes
that only allows you to define datatypes as sums of products:

Sig = List (List Bool)

′Bool : Sig
′Bool = [] :: [] :: []

[[_]] : Sig → Set

[[ xss ]] =
⊕

xss

where⊗
: List Bool → Set⊗
[] = >⊗
(true :: xs) = > ×

⊗
xs⊗

(false :: xs) = ⊥ ×
⊗

xs⊕
: List (List Bool) → Set⊕
[] = ⊥⊕
(xs :: xss) =

⊗
xs ]

⊕
xss

B : Set

B = [[ ′Bool ]]

t : B

t = inj1 _

f : B

f = inj2 (inj1 _)

So there is some structure here (sums and products), but we are not given
control over it. The advantage of this is that we can easily recognise what a
constructor is – the sums.

[PR98] use this approach for parametrised one-sorted datatypes and use the
fact that they know what the constructors are to formulate and prove a “no
confusion” theorem; two different constructors of some datatype, c1 and c2, are
unequal (c1 6≡ c2), for instance [] 6≡ x :: xs.
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5.2 m-ary parametrised n-sorted finitary datatypes

In chapter 3 we constructed a universe for unary parametrised one-sorted finitary
datatypes. We shall here show how to generalise this to m-ary parametrised n-
sorted finitary datatypes and then further generalise it so that it can handle
iterated and infinitary induction.

Recall the type of our decoding function from chapter 3:

[[_]] : Sig → (Set × Set → Set)

Where the first Set in the product was the parameter and the second was the
recursive call. The perhaps most natural idea is to try to replace both Sets
with a vector of Sets:

[[_]] : ∀ {m n} → Sig m n → (Vec Set m × Vec Set n → Set)

And then change the codes of parameter and recursive call to be able to pick
the desired set from this vector simply by looking it up:

data Sig (m n : N) : Set where

ε : Sig m n

ψ : (i : Fin m) → Sig m n

ρ : (o : Fin n) → Sig m n

_+_ _*_ : (Σ Σ′ : Sig m n) → Sig m n

[[_]] : ∀ {m n} → Sig m n → (Vec Set m → Vec Set n → Set)

[[ ε ]] is os = >
[[ ψ i ]] is os = lookup i is

[[ ρ o ]] is os = lookup o os

[[ Σ + Σ′ ]] is os = [[ Σ ]] is os ] [[ Σ′ ]] is os

[[ Σ * Σ′ ]] is os = [[ Σ ]] is os × [[ Σ′ ]] is os

To achieve many-sorted datatypes we will index the fixpoint, as described in
the previous chapter:

tabulate : ∀ {n}{A : Set1} → (Fin n → A) → Vec A n

tabulate {zero} f = []

tabulate {suc n} f = f zero :: tabulate (f ◦ suc)

data µ {m n}(Σ : Sig m n)(is : Vec Set m) : Fin n → Set where

〈_〉 : ∀ {o} → [[ Σ ]] is (tabulate (µ Σ is)) → µ Σ is o

We can now describe the two-sorted datatype of even and odd natural numbers:

EvenOdd : Sig 0 2

EvenOdd = (ε + ρ (suc zero))

+ ρ zero

We get the actual datatypes by supplying the correct index to the fixpoint:
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Even : Set

Even = µ EvenOdd [] zero

Odd : Set

Odd = µ EvenOdd [] (suc zero)

And then we can define the constructors:

zeroE : Even

zeroE = 〈 inj1 (inj1 _) 〉

sucE : Odd → Even

sucE n = 〈 inj1 (inj2 n) 〉

sucO : Even → Odd

sucO n = 〈 inj2 n 〉

There is a problem however, there is nothing that stops us from defining bad
constructors, such as:

sucO′ : Even → Odd

sucO′ n = 〈 inj1 (inj1 _) 〉 -- Same as zeroE, which is Even...

The problem here is that there is no connection between the index supplied to
the fixpoint and the argument to the constructor of the fixpoint.

We can fix this problem in, at least, two different ways.
One way to do it is to change the decoding function so that it gets access to

the index:

[[_]] : ∀ {m n} → Sig m n → (Vec Set m → Vec Set n → Fin n → Set)

And we add a code that lets us fix the index:

data Sig (m n : N) : Set where

η : (o : Fin n) → Sig m n

-- [...]

[[_]] : ∀ {m n} → Sig m n → (Vec Set m → Vec Set n → Fin n → Set)

[[ η o ]] is os o′ = o ≡ o′

-- [...]

data µ {m n}(Σ : Sig m n)(is : Vec Set m) : Fin n → Set where

〈_〉 : ∀ {o} → [[ Σ ]] is (tabulate (µ Σ is)) o → µ Σ is o

We now describe our datatype and define the constructors as follows:

EvenOdd : Sig 0 2

EvenOdd = (η zero + ρ (suc zero) * η zero)

+ (ρ zero * η (suc zero))
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Even : Set

Even = µ EvenOdd [] zero

Odd : Set

Odd = µ EvenOdd [] (suc zero)

zeroE : Even

zeroE = 〈 inj1 (inj1 refl) 〉

sucE : Odd → Even

sucE n = 〈 inj1 (inj2 (n , refl)) 〉

sucO : Even → Odd

sucO n = 〈 inj2 (n , refl) 〉

The bad constructor cannot be defined, because the return type is Odd (which
has index suc zero) while we are trying to build something of type Even (which
has index zero), we thus get an equality constraint which we cannot satisfy:

-- sucO′ : Even → Odd

-- sucO′ n = 〈 inj1 (inj1 {!!}) 〉 -- zero ≡ suc zero

This way of describing datatypes, using η, is similar to the restricted form of
inductive families that we saw in the last chapter:

data EvenOdd′ : Fin 2 → Set where

zeroE′ : ∀ {i} → i ≡ zero → EvenOdd′ i

sucE′ : ∀ {i} → EvenOdd′ (suc zero) → i ≡ zero → EvenOdd′ i

sucO′ : ∀ {i} → EvenOdd′ zero → i ≡ suc zero → EvenOdd′ i

The other solution to the problem is to index the description. We keep the
decoding function as it was:

[[_]] : ∀ {m n} → Sig m n → (Vec Set m → Vec Set n → Set)

We can change the fixpoint as follows:

data µ {m n}(Σ : Fin n → Sig m n)(is : Vec Set m) : Fin n → Set where

〈_〉 : ∀ {o} → [[ Σ o ]] is (tabulate (µ Σ is)) → µ Σ is o

Now we get access to the index when describing our datatypes:

EvenOdd : Fin 2 → Sig 0 2

EvenOdd zero = ε + ρ (suc zero)

EvenOdd (suc zero) = ρ zero

EvenOdd (suc (suc ()))

Even : Set

Even = µ EvenOdd [] zero
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Odd : Set

Odd = µ EvenOdd [] (suc zero)

zeroE : Even

zeroE = 〈 inj1 _ 〉

sucE : Odd → Even

sucE n = 〈 inj2 n 〉

sucO : Even → Odd

sucO n = 〈 n 〉

The bad constructor is impossible to define, because the return type is Odd (≡
µ EvenOdd [] (suc zero)):

-- sucO′ : Even → Odd

-- sucO′ n = 〈 {!!} 〉

To construct a value of Odd, we need by construction to give something of type
Even to the constructor of our fixpoint, because:

[[ EvenOdd (suc zero) ]] [] (tabulate (µ EvenOdd []))

≡
[[ ρ zero ]] [] (tabulate (µ EvenOdd [])

≡
lookup zero (tabulate (µ EvenOdd []))

≡
µ EvenOdd [] zero

≡
Even

5.2.1 Adding iterated and infinitary induction

Iterated and infinitary induction can be added irrespectively of which of the two
solutions we just saw one chooses.

It can be achieved by adding the following two codes:

data Sig (m n : N) : Set1 where

κ : (K : Set) → Sig m n

_⊃_ : (K : Set)(Σ : Sig m n) → Sig m n

Notice that since both these codes take Sets as argument the Sig datatype
cannot be in Set anymore, it must be in at least Set1.

[[_]] : ∀ {m n} → Sig m n → (Vec Set m → Vec Set n → Set)

[[ κ K ]] is os = K

[[ K ⊃ Σ ]] is os = K → [[ Σ ]] is os
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Also note that it is important that the first argument to ⊃ is an already defined
set and not a Sig, because otherwise we could describe dangerous datatypes.

We can now define a simple expression language with naturals and addition,
or the Brouwer ordinals:

′Expr : Sig 0 1
′Expr = κ N + ρ zero * ρ zero

′Ord : Sig 0 1
′Ord = ε + ρ zero + N ⊃ ρ zero

Adding iterated or infinitary induction using κ and ⊃ both break decidable
equality, because we cannot decide if two values of an arbitrary type or if two
functions in general are the same.

We could limit the argument of κ to be a decidable set (a set for which we
can decide if two of its inhabitants are the same), then we would retain decidable
equality for the universe at the cost of having to prove that each set we use in
iterated induction is in fact decidable.

A better way of adding iterated induction might be to make κ take a Sig as
argument instead of a Set. Here is a smaller universe that does this:

data Sig : Set where

κ : (Σ : Sig) → Sig

-- [...]

mutual

[[_]] : Sig → (Set → Set)

[[ κ Σ ]] X = µ Σ
-- [...]

data µ (Σ : Sig) : Set where

〈_〉 : [[ Σ ]] (µ Σ) → µ Σ

The proof that this universe has decidable equality is analogue to the one we
saw in chapter 3, we shall therefore not repeat it here.

5.3 |I|-ary parametrised O-indexed datatypes

This universe is a generalisation of the universe for m-ary parametrised n-sorted
datatypes where we allow an infinite number of parameters1 and sorts. To make
this more clear, let us first rewrite the universe from the previous section using
the following isomorphism:

iso : ∀ {n} → Extensionality _ _ → Vec Set n ∼= (Fin n → Set)

iso ext = record

{ to = →-to-−→ (λ xs i → lookup i xs)

1I am not sure if this is useful in practice.
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; from = →-to-−→ tabulate

-- →-to-−→ lifts functions on sets to functions on setoids, upon

-- which the isomorphism record is defined in the standard library.

; inverse-of = record

{ left-inverse-of = left-inverse-of

; right-inverse-of = right-inverse-of

}

}

where

left-inverse-of : ∀ {n}(xs : Vec Set n)

→ tabulate (flip lookup xs) ≡ xs

left-inverse-of [] = refl

left-inverse-of (x :: xs) = cong (_::_ x) (left-inverse-of xs)

right-inverse-of : ∀ {n}(I : Fin n → Set)

→ flip lookup (tabulate I) ≡ I

right-inverse-of I = ext (lemma I)

where

lemma : ∀ {n}(I : Fin n → Set)(i : Fin n)

→ lookup i (tabulate I) ≡ I i

lemma I zero = refl

lemma I (suc i) = lemma (I ◦ suc) i

We get:

data Sig (m n : N) : Set where

ψ : (i : Fin m) → Sig m n

ρ : (o : Fin n) → Sig m n

-- [...]

[[_]] : ∀ {m n} → Sig m n

→ ((Fin m → Set) → (Fin n → Set) → Set)

[[ ψ i ]] X Y = X i

[[ ρ o ]] X Y = Y o

-- [...]

data µ {m n}(Σ : Fin n → Sig m n)(X : Fin m → Set) : Fin n → Set where

〈_〉 : ∀ {o} → [[ Σ o ]] X (µ Σ X) → µ Σ X o

At this point it should be pretty clear that there is nothing that stops us from
replacing the finite sets Fin m and Fin n with two that are, potentially, infinite.

data Sig (I O : Set) : Set where

ε : Sig I O

ψ : (i : I) → Sig I O
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ρ : (o : O) → Sig I O

_+_ _*_ : (Σ Σ′ : Sig I O) → Sig I O

[[_]] : ∀ {I O} → Sig I O → ((I → Set) → (O → Set) → Set)

[[ ε ]] X Y = >
[[ ψ i ]] X Y = X i

[[ ρ o ]] X Y = Y o

[[ Σ + Σ′ ]] X Y = [[ Σ ]] X Y ] [[ Σ′ ]] X Y

[[ Σ * Σ′ ]] X Y = [[ Σ ]] X Y × [[ Σ′ ]] X Y

We can now describe families of datatypes such as vectors:

′Vec : N → Sig > N
′Vec zero = ε
′Vec (suc n) = ψ tt * ρ n

If we specialise I to Fin m and O to Fin n we get the universe in the previous
section.

We are not quite done yet. We cannot describe the dependency between
structures, as in the description of, for example, the Σ-type:

data Σ (A : Set)(B : A → Set) : Set where

_,_ : (x : A) → B x → Σ A B

The second argument of the constructor depends on the value of the first. In
order to be able to describe structures like these, we will add a code for the
Σ-type:

data Sig (I O : Set) : Set1 where

ε : Sig I O

σ : (A : Set)(φ : A → Sig I O) → Sig I O

-- [...]

Pow : Set → Set1
Pow X = X → Set -- Shorthand.

[[_]] : ∀ {I O} → Sig I O → (Pow I → Pow O → Set)

[[ ε ]] X Y = >
[[ σ A φ ]] X Y = Σ A λ x → [[ φ x ]] X Y

-- [...]

Using σ we can define κ and +:

κ : ∀ {I O} → Set → Sig I O

κ K = σ K λ _ → ε

_+_ : ∀ {I O}(Σ Σ′ : Sig I O) → Sig I O

Σ + Σ′ = σ Bool λ b → if b then Σ else Σ′
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5.3.1 Iterated and infinitary induction

As we just saw, we can use σ to define κ and thus get the naive version of
iterated induction which breaks decidable equality (this does not matter much,
because σ already breaks decidable equality).

Adding infinitary induction is a matter of adding a code for the dependent
function type:

data Sig (I O : Set) : Set1 where

π : (A : Set)(φ : A → Sig I O) → Sig I O

-- [...]

[[_]] : ∀ {I O} → Sig I O → (Pow I → Pow O → Set)

[[ π A φ ]] X Y = (x : A) → [[ φ x ]] X Y

-- [...]

A limitation of this approach is that we cannot define datatypes such as:

data Term (V : Set) : Set where

var : V → Term V

lam : (V → Term V) → Term V

app : Term V → Term V → Term V

Because in the lam case the π code expects a set as its first argument, while we
would like to give it (a code for) a parameter.

5.3.2 Adding nested fixpoints

In order to add support for nested fixpoints to our universe we need to mas-
sage it further using yet another isomorphism. Recall the unindexed fixpoint
representation from above:

[[_]] : ∀ {I O} → Sig I O → (Pow I → Pow O → O → Set)

_⊆_ : ∀ {I} → Pow I → Pow I → Set

X ⊆ Y = ∀ {i} → X i → Y i -- Another recurring pattern we

-- shall introduce a shorthand for.

data µ {I O}(Σ : Sig I O)(X : Pow I) : Pow O where

〈_〉 : [[ Σ ]] X (µ Σ X) ⊆ µ Σ X

The isomorphism we need is the following (we skip the inverse proofs this time):

iso′ : ∀ {I O} → (Pow I → Pow O → Pow O) ∼= (Pow (I ] O) → Pow O)

iso′ {I}{O} =

begin

(Pow I → Pow O → Pow O)
∼=〈 record { to = →-to-−→ (uncurry′ {A = Pow I}{Pow O}{Pow O})

; from = →-to-−→ (curry′ {A = Pow I}{Pow O}{Pow O})
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} 〉
(Pow I × Pow O → Pow O)

∼=〈 record { to = →-to-−→ (λ F X → F (X ◦ inj1 , X ◦ inj2))

; from = →-to-−→ (λ F P → F [ proj1 P , proj2 P ]′)

} 〉
(Pow (I ] O) → Pow O)

�

If we rewrite the type of our decoding function using the isomorphism we get:

[[_]] : ∀ {I O} → Sig I O → (Pow (I ] O) → Pow O)

_〈]〉_ : ∀ {A B} → Pow A → Pow B → Pow (A ] B)

P 〈]〉 Q = [ P , Q ]′

data µ {I O}(Σ : Sig I O)(X : Pow I) : Pow O where

〈_〉 : [[ Σ ]] (X 〈]〉 µ Σ X) ⊆ µ Σ X

Or alternatively, we can move the disjoint union from the decoding function to
the fixpoint:

[[_]]′ : ∀ {I O} → Sig I O → (Pow I → Pow O)

data µ′ {I O}(Σ : Sig (I ] O) O)(X : Pow I) : Pow O where

〈_〉 : [[ Σ ]]′ (X 〈]〉 µ′ Σ X) ⊆ µ′ Σ X

Notice how the fixpoint applied to a signature has the same type as the decoding
function (Pow I → Pow O). This allows us to add a code for fixpoints as follows:

data Sig (I O : Set) : Set1 where
′µ : (Σ : Sig (I ] O) O) → Sig I O

π : (A : Set)(φ : A → Sig I O) → Sig I O

-- [...]

mutual

data µ {I O}(Σ : Sig (I ] O) O)(X : Pow I) : Pow O where

〈_〉 : [[ Σ ]] (X 〈]〉 µ Σ X) ⊆ µ Σ X

[[_]] : ∀ {I O} → Sig I O → (Pow I → Pow O)

[[ π A φ ]] X o = (x : A) → [[ φ x ]] X o

[[ ′µ Σ ]] X o = µ Σ X o

-- [...]

5.4 Algebraic versus “record-like” codes

So far we have seen “syntactic” universes with algebraic codes, that is: zero (∅),
one (ε), plus (+), times (*), exponentiation (⊃), constants (κ) and projections
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(ψ and ρ). The descriptions we get using algebraic codes are tree-like because
plus and times take two descriptions.

Alternatively we could pick a set of codes which would only allow us to create
right-nested “record-like” descriptions, by avoiding plus and times:

data Sig (I O : Set) : Set where

ε : Sig I O

ψ_*_ : (i : I)(Σ : Sig I O) → Sig I O

ρ_*_ : (o : O)(Σ : Sig I O) → Sig I O

σ′_,_*_ : (n : N)(xs : Vec (Sig I O) n)(Σ : Sig I O) → Sig I O

Where plus is replaced by σ′, which is a finite version of the σ code we have
seen above, while times is built-in into the other codes.

′List : Sig > >
′List = σ′ 2 , ε :: ψ tt * ρ tt * ε :: [] * ε

In the next and also later chapters we shall see why the “record-like” represen-
tation might be advantageous.

5.5 Discussion

We have seen some of the choices one has when constructing a universe for
different classes of datatypes.

Universes for inductive-inductive and inductive-recursive datatypes can be
found in [FS10] and [DS99].

We have also seen the distinction between so called “syntactic” and “se-
mantic” representations in the context of finite datatypes. “Semantic” repre-
sentations exist for two other classes of datatypes we looked at also, they are
called containers and indexed containers respectively. [Mor07] presents these
and shows that they are isomorphic to their syntactic counterparts. [Mor07]
also notes the interest of having both representations, because some functions
are easier to define on one of them than the other.

Besides “semantic” representations there are also significantly different ways
to design “syntactic” ones. We saw an example of this where we gave a “syn-
tactic” universe where we made it clear that all datatypes described in it are
sums of products and thus it is clear what a constructor is. Another example is
the difference between algebraic and “record-like” representations.

It would be interesting to try to somehow formalise all this informal com-
parison between different approaches.

Another interesting aspect is the proof of the existence of fixpoints. [BDJ03]
sketches how to show that all their universe are embeddable into the universe of
infinitary indexed definitions (with extensionality) which are in turn embeddable
into the indexed inductive-recursive definitions (with extensionality) for which
there is a model in classical set theory [DS03].
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While a more constructive path has been taken by [Mor07] by giving con-
tainer semantics and then showing that the containers can be reduced to W-
types [AM09].

61



Chapter 6

A universe for datatypes

In preceding chapters we saw that there are many different classes of datatypes
and some functions are definable over one class but not the other, for example
decidable equality does not work for infinitary datatypes, while mapping works
for both finitary and infinitary datatypes.

In this chapter we will propose a way to construct a single universe for many
classes of datatypes. This allows us to define equality for finitary datatypes and
a single mapping function which works for both finitary and infinitary datatypes
and families of datatypes.

The idea is to index the universe by which class it supports.

Finitary? = Bool

Unindexed? = Bool

Class = Finitary? × Unindexed?

We can combine two classes as follows:

_
∧
_ : Class → Class → Class

(f , u)
∧

(f′ , u′) = (f ∧ f′ , u ∧ u′)

Using this we can now define our universe.

data Sig (I O : Set) : Class → Set1 where

ψρ : ∀ c (i : I) → Sig I O c

η : ∀ c (o : O) → Sig I O c

_+_ _*_ : ∀ {c c′}(Σ : Sig I O c)(Σ′ : Sig I O c′) → Sig I O (c
∧

c′)

_⊃_ : ∀ {f u}(K : Set)(Σ : Sig I O (f , u)) → Sig I O (false , u)

σ : ∀ {f u}(A : Set)(φ : A → Sig I O (f , u)) → Sig I O (f , false)

π : ∀ {c}(A : Set)(φ : A → Sig I O c) → Sig I O (false , false)

The class has to be given explicitly when a code can generate a signature which
can be in multiple classes1.

1Agda can not infer the classes of the subsignatures Σ and Σ′ of, for example, + if it knows
the class of Σ + Σ′, because there is not an unique solution.
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We can now get specific classes in the following way, for example, m-ary
parametrised n-sorted finitary datatypes, or just finitary types (FT):

ft = true , true : Finitary? × Unindexed?

FT : N → N → Set1
FT m n = Sig (Fin m ] Fin n) (Fin n) ft

The m-ary parametrised n-sorted infinitary datatypes, or infinitary types:

it = false , true

IT : N → N → Set1
IT m n = Sig (Fin m ] Fin n) (Fin n) it

The |I|-ary parametrised O-indexed family of finitary datatypes, or finitary fam-
ilies (where | | is the cardinality):

ff = true , false

FF : Set → Set → Set1
FF I O = Sig (I ] O) O ff

The |I|-ary parametrised O-indexed family of infinitary datatypes, or infinitary
families:

if = false , false

IF : Set → Set → Set1
IF I O = Sig (I ] O) O if

The decoding function and fixpoint are the same as in the previous chapter,
except for the class index:

Pow : Set → Set1
Pow A = A → Set

[[_]] : ∀ {I O c} → Sig I O c → (Pow I → Pow O)

[[ ψρ _ i ]] X o = X i

[[ η _ o′ ]] X o = o′ ≡ o

[[ Σ + Σ′ ]] X o = [[ Σ ]] X o ] [[ Σ′ ]] X o

[[ Σ * Σ′ ]] X o = [[ Σ ]] X o × [[ Σ′ ]] X o

[[ K ⊃ Σ ]] X o = K → [[ Σ ]] X o

[[ σ A φ ]] X o = Σ A λ x → [[ φ x ]] X o

[[ π A φ ]] X o = (x : A) → [[ φ x ]] X o

data µ {I O c}(Σ : Sig (I ] O) O c)(X : Pow I) : Pow O where

〈_〉 : [[ Σ ]] (X 〈]〉 µ Σ X) ⊆ µ Σ X
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ψ : ∀ {I O} c → I → Sig (I ] O) O c

ψ c i = ψρ c (inj1 i)

ρ : ∀ {I O} c → O → Sig (I ] O) O c

ρ c o = ψρ c (inj2 o)

6.1 Examples of datatypes

Here are some examples of datatypes which, hopefully by now, are self-explanatory.

′List : FT 1 1
′List = η ft zero + ψ ft zero * ρ ft zero

List : Set → Set

List A = µ ′List (const A) zero

[] : ∀ {A} → List A

[] = 〈 inj1 refl 〉

_::_ : ∀ {A} → A → List A → List A

x :: xs = 〈 inj2 (x , xs) 〉

′EvenOdd : FT 0 2
′EvenOdd = η ft zero + ρ ft (suc zero) * η ft zero

+ ρ ft zero * η ft (suc zero)

private

Fin0-elim : ∀ {A} → Fin 0 → A

Fin0-elim ()

Even = µ ′EvenOdd Fin0-elim zero

Odd = µ ′EvenOdd Fin0-elim (suc zero)

zeroE : Even

zeroE = 〈 inj1 refl 〉

sucE : Odd → Even

sucE n = 〈 inj2 (inj1 (n , refl)) 〉

sucO : Even → Odd

sucO n = 〈 inj2 (inj2 (n , refl)) 〉

′Ord : IT 0 1
′Ord = η it zero + ρ it zero + (N ⊃ ρ it zero)

Ord = µ ′Ord (λ ()) zero
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limit : (N → Ord) → Ord

limit f = 〈 inj2 (inj2 f) 〉
′Vec : FF > N
′Vec = η ff 0

+ σ N λ m → ψ ff _ * ρ ff m * η ff (suc m)

Vec : Set → N → Set

Vec A n = µ ′Vec (const A) n

[]V : ∀ {A} → Vec A zero

[]V = 〈 inj1 refl 〉

_::V_ : ∀ {A n} → A → Vec A n → Vec A (suc n)

x ::V xs = 〈 inj2 (_ , x , xs , refl) 〉

-- Not real parameters...
′W : (A : Set)(B : A → Set) → IF ⊥ >
′W A B = σ A λ x → π (B x) λ _ → ρ if _

W : (A : Set)(B : A → Set) → Set

W A B = µ (′W A B) (λ ()) tt

sup : {A : Set}{B : A → Set}(x : A)(f : B x → W A B) → W A B

sup x f = 〈 x , f 〉

The mapping and iterator functions are defined as follows:

imap : ∀ {I O c}(Σ : Sig I O c){X Y : Pow I}

→ (X ⊆′ Y) → [[ Σ ]] X ⊆ [[ Σ ]] Y

imap (ψρ _ i) f a = f _ a

imap (η _ o) f refl = refl

imap (Σ + Σ′) f (inj1 s) = inj1 (imap Σ f s)

imap (Σ + Σ′) f (inj2 t) = inj2 (imap Σ′ f t)

imap (Σ * Σ′) f (s , t) = imap Σ f s , imap Σ′ f t

imap (K ⊃ Σ) f h = λ k → imap Σ f (h k)

imap (σ A φ) f (a , s) = a , imap (φ a) f s

imap (π A φ) f h = λ a → imap (φ a) f (h a)

〈[_,_]〉 : ∀ {I O}{P Q : Pow I}{R S : Pow O}

→ (P ⊆ Q) → (R ⊆ S) → (P 〈]〉 R) ⊆′ (Q 〈]〉 S)

〈[ f , g ]〉 (inj1 _) = f

〈[ f , g ]〉 (inj2 _) = g

map : ∀ {I O c}(Σ : Sig (I ] O) O c){X Y : Pow I}

→ (X ⊆′ Y) → µ Σ X ⊆ µ Σ Y

map Σ f 〈 s 〉 = 〈 imap Σ 〈[ f _ , map Σ f ]〉 s 〉
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Alg : ∀ {I O c}(Σ : Sig (I ] O) O c) → Pow I → Pow O → Set

Alg Σ X Y = [[ Σ ]] (X 〈]〉 Y) ⊆ Y

iter : ∀ {I O X Y c}(Σ : Sig (I ] O) O c) → Alg Σ X Y → µ Σ X ⊆ Y

iter Σ φ 〈 s 〉 = φ (imap Σ 〈[ id , iter Σ φ ]〉 s)

The class index complicates generic functions which are defined by pattern-
matching on the signature, such as decidable equality.

lemma-
∧

: ∀ c c′ → c
∧

c′ ≡ ft → c ≡ ft × c′ ≡ ft

lemma-
∧

(true , true) (true , true) p = refl , refl

lemma-
∧

(true , true) (false , _) ()

lemma-
∧

(true , true) (_ , false) ()

lemma-
∧

(_ , false) _ ()

lemma-
∧

(false , _) _ ()

The problem, which we already hinted at earlier, is that if we give the signature,
Σ in the helper function below, a specific class index, say ft, and we try to
pattern-match on the signature we would give an error from Agda saying that
in, for example, the Σ + Σ′ case, the resulting index (c

∧
c′) cannot be unified

with ft. This means that Agda cannot figure out a unique solution for what
c and c′ should be for the result of c

∧
c′ to be ft. The above lemma is the

solution, but it is too complicated for Agda to figure out. In general there is no
unique solution, for example when the resulting index is ff.

The solution to the problem is to let the class index be a variable. A variable
is easily unified and hence Agda allows pattern-matching on it. Instead we
supply a proof (a constraint) that c ≡ ft. We cannot pattern-match on the
proof, for the very reasons stated above. But we can rule out the impossible
cases, for example in the ⊃ case, p has type (false , u) ≡ (true , true),
this is clearly absurd and we are thus need not give a definition for this case (it
works out similarly for σ and π).

module Eq {m : N}

(X : Fin m → Set)

(_
?
=X_ : ∀ {i : Fin m} → DecEq (X i)) where

helper : ∀ {n c}{Y : Fin n → Set}(Σ : Sig (Fin m ] Fin n) (Fin n) c)

(p : c ≡ ft)(ih : {i : Fin n} → DecEq (Y i))

→ {i : Fin n} → DecEq ([[ Σ ]] (X 〈]〉 Y) i)

helper (ψρ _ (inj1 i)) p ih a b = a
?
=X b

helper (ψρ _ (inj2 o)) p ih a b = ih a b

helper (η _ o) p ih refl refl = yes refl

helper (_+_ {c}{c′} Σ Σ′) p ih (inj1 s) (inj1 t)

with helper Σ (proj1 (lemma-
∧

c c′ p)) ih s t

helper (Σ + Σ′) p ih (inj1 s) (inj1 .s) | yes refl = yes refl

... | no s6≡t = no (λ inj1s≡inj1t → s6≡t (inj-inj1 inj1s≡inj1t))
helper (Σ + Σ′) p ih (inj1 s) (inj2 t) = no (λ ())
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helper (Σ + Σ′) p ih (inj2 s) (inj1 t) = no (λ ())

helper (_+_ {c}{c′} Σ Σ′) p ih (inj2 s) (inj2 t)

with helper Σ′ (proj2 (lemma-
∧

c c′ p)) ih s t

helper (Σ + Σ′) p ih (inj2 s) (inj2 .s) | yes refl = yes refl

... | no s6≡t = no (λ inj2s≡inj2t → s6≡t (inj-inj2 inj2s≡inj2t))
helper (_*_ {c}{c′} Σ Σ′) p ih (s , t) (s′ , t′)

with helper Σ (proj1 (lemma-
∧

c c′ p)) ih s s′

| helper Σ′ (proj2 (lemma-
∧

c c′ p)) ih t t′

helper (Σ * Σ′) p ih (s , t) (.s , .t) | yes refl | yes refl = yes refl

... | yes _ | no t6≡t′ = no (λ s,t≡s′,t′ → t 6≡t′ (proj2 (inj-, s,t≡s′,t′)))

... | no s6≡s′ | _ = no (λ eq → s 6≡s′ (proj1 (inj-, eq)))

helper (K ⊃ Σ) () ih x y

helper (σ A φ) () ih x y

helper (π A φ) () ih x y

_
?
=_ : ∀ {n}{Σ : FT m n}{o : Fin n} → DecEq (µ Σ X o)

_
?
=_ {Σ = Σ} 〈 x 〉 〈 y 〉 with helper Σ refl _

?
=_ x y

... | yes x≡y = yes (cong 〈_〉 x≡y)

... | no x 6≡y = no (λ 〈x〉≡〈y〉 → x6≡y (inj-〈〉 〈x〉≡〈y〉))

Here are a couple of examples of using the mapping and equality functions:

vec : Vec N 3

vec = 1 ::V 2 ::V 3 ::V []V

vec′ = map _ (const suc) vec

map-vec : vec′ ≡ 2 ::V 3 ::V 4 ::V []V

map-vec = refl

open import Data.Nat using () renaming (_
?
=_ to _

?
=N_)

open Eq (const N) _
?
=N_

list : List N

list = 1 :: 2 :: 3 :: []

list′ = map _ (const suc) list

map-list : list′ ≡ 2 :: 3 :: 4 :: []

map-list = refl

?
=-list : True (list

?
= list) × False (list

?
= list′)

?
=-list = tt , tt
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6.2 Discussion

Currently iterated induction has to be done using σ, which makes the resulting
datatype end up in, at least, the finitary families class (FF). We could, perhaps,
add a code κ : (Σ : Sig I O c) → Sig I O c), to remedy this problem.

The explicit passing of classes to the codes which could be in many classes
is tedious. It seems mechanical. The class is always the same as the type of the
datatype we are describing, so it is probably easy to add some language support
for this.

Having special language support for it would make data special, however.
Part of the reason the solution to generic programming using the universe is
so nice is that it is not special. If we give up the algebraic codes and instead
use “record-like” codes we could do away with

∧
and all the problems it causes

with pattern-matching. I have done some experiments with the “record-like”
approach and it seems promising, due to lack of time they are not included here
however.

It would be interesting to try to fit finite, inductive-inductive and inductive-
recursive datatypes into this universe as well.
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Chapter 7

Levitation

In this chapter we shall give a quick overview of what levitation [CDMM10] is
and show that the universe we defined in the previous chapter supports levita-
tion.

Levitation is a recently proposed technique which builds upon the idea that
universes are themselves datatypes and can thus be described just like any other
datatype. This enables us to write generic functions which manipulate descrip-
tions themselves. The use of this is perhaps best illustrated by an example.

Most programming languages have variables, for example:

data Lang1 : Set where

var : String → Lang1
nat : N → Lang1
add : Lang1 → Lang1 → Lang1

t1 = add (var "x") (nat 1) -- x + 1

data Lang2 : Set where

var : String → Lang2
bool : Bool → Lang2
if : Lang2 → Lang2 → Lang2 → Lang2

t2 = if (var "y") (bool false) (bool true) -- not y

Often when dealing with languages with variables we want to be able to substi-
tute variables:

s1 : t1 [ nat 2 / "x" ]1 ≡ add (nat 2) (nat 1)

s1 = refl

s2 : t2 [ bool false / "y" ]2
≡ if (bool false) (bool false) (bool true)

s2 = refl
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Levitation allows us to write a generic function on codes (descriptions of datatypes)
which generically adds a variable constructor to a datatype description.

data Lang1
′ : Set where

nat : N → Lang1
′

add : Lang1
′ → Lang1

′ → Lang1
′

fm : Lang1
′ ? String ∼= Lang1 -- Where ? adds a variable constructor

-- (free monad construction).

Substitution can then be defined once and for all using datatype-genericity:

_[_] : µ (Σ ? X) → (X → µ (Σ ? Y)) → µ (Σ ? Y)

The key to being able to do levitation is to have a universe which is strong
enough to be able to describe its own signature.

The if class of the universe from the previous chapter has this property, but
we need to raise the levels of some of the sets first.

data Sig (I O : Set) : Class → Set2 where

ψρ : ∀ c (i : I) → Sig I O c

η : ∀ c (o : O) → Sig I O c

_+_ _*_ : ∀ {c c′}(Σ : Sig I O c)(Σ′ : Sig I O c′) → Sig I O (c
∧

c′)

_⊃_ : ∀ {f u}(K : Set1)(Σ : Sig I O (f , u)) → Sig I O (false , u)

σ : ∀ {f u}(A : Set1)(φ : A → Sig I O (f , u)) → Sig I O (f , false)

π : ∀ {c}(A : Set1)(φ : A → Sig I O c) → Sig I O (false , false)

We have to manually lift the equality proof of η, otherwise the decoding is the
same as before.

[[_]] : ∀ {I O c} → Sig I O c → (Pow I → Pow O)

[[ ψρ _ i ]] X o = X i

[[ η _ o′ ]] X o = Lift (o′ ≡ o)

[[ Σ + Σ′ ]] X o = [[ Σ ]] X o ] [[ Σ′ ]] X o

[[ Σ * Σ′ ]] X o = [[ Σ ]] X o × [[ Σ′ ]] X o

[[ K ⊃ Σ ]] X o = K → [[ Σ ]] X o

[[ σ A φ ]] X o = Σ[ x : A ] [[ φ x ]] X o

[[ π A φ ]] X o = (x : A) → [[ φ x ]] X o

We can now describe a “lower” ′IF (living in Set1) in the “upper” IF (living in
Set2).

data IFC : Set1 where
′ψρ ′η ′+ ′* ′σ ′π : IFC

′IF : IF Bool >
′IF = σ IFC φ
where

φ : IFC → IF Bool >

70



φ ′ψρ = ψ if true

φ ′η = ψ if false

φ ′+ = ρ if _ * ρ if _

φ ′* = ρ if _ * ρ if _

φ ′σ = σ[ A : Set ] (π[ φ : Lift A ] ρ if _)

φ ′π = σ[ A : Set ] (π[ φ : Lift A ] ρ if _)

IF′ : (I O : Set) → Set1
IF′ I O = µ ′IF (λ b → if b then Lift I else Lift O) _

The “lower” universe’s constructors are defined as follows.

ψρ′ : ∀ {I O}(i : I) → IF′ I O

ψρ′ i = 〈 ′ψρ , lift i 〉

η′ : ∀ {I O}(o : O) → IF′ I O

η′ o = 〈 ′η , lift o 〉

_+′_ : ∀ {I O}(Σ Σ′ : IF′ I O) → IF′ I O

Σ +′ Σ′ = 〈 ′+ , Σ , Σ′ 〉

_*′_ : ∀ {I O}(Σ Σ′ : IF′ I O) → IF′ I O

Σ *′ Σ′ = 〈 ′* , Σ , Σ′ 〉

σ′ : ∀ {I O}(A : Set)(φ : A → IF′ I O) → IF′ I O

σ′ A φ = 〈 ′σ , A , (λ x → φ (lower x)) 〉

π′ : ∀ {I O}(A : Set)(φ : A → IF′ I O) → IF′ I O

π′ A φ = 〈 ′π , A , (λ x → φ (lower x)) 〉

Here is the decoding function and least fixpoint:

[[_]]′ : ∀ {I O} → IF′ I O → (Pow′ I → Pow′ O)

[[ 〈 ′ψρ , lift i 〉 ]]′ X o = X i

[[ 〈 ′η , lift o′ 〉 ]]′ X o = o ≡ o′

[[ 〈 ′+ , Σ , Σ′ 〉 ]]′ X o = [[ Σ ]]′ X o ] [[ Σ′ ]]′ X o

[[ 〈 ′* , Σ , Σ′ 〉 ]]′ X o = [[ Σ ]]′ X o × [[ Σ′ ]]′ X o

[[ 〈 ′σ , A , φ 〉 ]]′ X o = Σ[ x : A ] [[ φ (lift x) ]]′ X o

[[ 〈 ′π , A , φ 〉 ]]′ X o = (x : A) → [[ φ (lift x) ]]′ X o

data µ′ {I O}(Σ : IF′ (I ] O) O)(X : Pow′ I) : Pow′ O where

〈_〉′ : [[ Σ ]]′ (X 〈]〉 µ′ Σ X) ⊆ µ′ Σ X

Here are examples using of the “lower” universe:

′W : (A : Set)(B : A → Set) → IF′ (⊥ ] >) >
′W A B = σ′ A λ x → π′ (B x) λ _ → ψρ′ (inj2 _)
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W : (A : Set)(B : A → Set) → Set

W A B = µ′ (′W A B) (λ ()) tt

sup : {A : Set}{B : A → Set}(x : A)(f : B x → W A B) → W A B

sup x f = 〈 x , f 〉′

Using the “upper” universe with raised set levels results in some manual lifting
and lowering however.

′Vec : FF > N
′Vec = σ (Lift Bool) λ b → if lower b

then η ff 0

else σ (Lift N) (λ m → ψ ff _ * ρ ff (lower m) * η ff (suc (lower m)))

Vec : Set → N → Set1
Vec A n = µ ′Vec (const (Lift A)) n

[] : ∀ {A} → Vec A zero

[] = 〈 lift true , lift refl 〉

_::_ : ∀ {A n} → A → Vec A n → Vec A (suc n)

x :: xs = 〈 lift false , lift _ , lift x , xs , lift refl 〉

7.1 Discussion

In the vector example manual lifting and lowering is tedious, but this is a more
fundamental problem (universe cumulativity), which should be addressed inde-
pendently of what we are working on (code duplication).

There is nothing that stops us from just having a “lower” and an “upper”
universe, we can use universe polymorphism to make an infinite hierarchy of
universes. Our “upper” universe which lives in Set2 can be described by in a
universe living in Set3 and so on.

The described universes do not have the class index, and are thus only IF,
this can probably be fixed, due to lack of time I have not tried.
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Chapter 8

Ornaments

Ornaments [McB11] is another recent technique for dealing with code duplica-
tion that is based on the universe construction.

It comes in two parts. The first is called decoration, it allows us to describe
datatypes incrementally, for example the list datatype is the datatype of natural
numbers with a decorated suc constructor:

data N : Set where

zero : N

suc : N → N

data List (A : Set) : Set where

zero : List A

suc : A → List A → List A

Clearly the two datatypes are very similar, the difference is that we have a
parameter call in the cons constructor – it is this difference that decorations
enable us to express.

What is the benefit? If we know the extra structure (the difference) that,
for example, a list has compared to a natural number it seems plausible that
we should be able to erase or forget this extra structure. This forgetful function
is a generic function that works on all decorations. In the instance, considered
above, when the decoration is the list datatype the forgetful function is the
length function. The second part of ornaments is refinement. Refinement
allows us to refine an index of a datatype using an algebra. For instance, the
vector datatype is a list (which can be thought of as trivially indexed) refined
with the length algebra.

data List (A : Set) : > → Set where

[] : List A tt

_::_ : A → List A tt → List A tt

data Vec (A : Set) : N → Set where
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[] : Vec A zero

_::_ : ∀ {n} → A → Vec A n → Vec A (suc n)

Recall that we can get the length function (and also the length algebra) for free
when we decorate naturals to get lists, hence using ornaments we get vectors
for free.

We also get a generic remembering function which can be used to recompute
a forgotten index. In the instance of vectors it gives us a way to go from lists
to vectors.

We also get a general theorem which says that if we refine some datatype
using some algebra, then the refined datatype’s index will have the same value
as the result of first forgetting the refined index and then iterating the algebra
over the plain datatype.

The specific instance of this theorem concerning lists and vectors reads:

corollary : (xs : Vec A n) → length (forget xs) ≡ n

In a sense the general theorem is just a sanity check; it must hold if we imple-
mented ornaments having the properties we outline above.

In summary ornaments help us when dealing with indexed datatypes by al-
lowing us to describe them in an incremental fashion using decorations and refin-
ing using algebras, they also give us a generic forgetful function for decorations
and refinements and a generic remember function for recomputing forgotten
refinements and generic theorems relating these functions.

We will not give a full implementation of ornaments here, as it is already
given in [McB11]. Instead we shall only focus on explaining and implement-
ing the decoration part and show how it can be adopted to our class indexed
universe.

8.1 Decoration

We start with a simple universe, which has a code for Σ.

data Sig : Set1 where

ε ρ : Sig

σ : (A : Set)(φ : A → Sig) → Sig

[[_]] : Sig → (Set → Set)

[[ ε ]] X = >
[[ ρ ]] X = X

[[ σ A φ ]] X = Σ A λ x → [[ φ x ]] X

data µ (Σ : Sig) : Set where

〈_〉 : [[ Σ ]] (µ Σ) → µ Σ

We then define another universe – the decorative universe – which has the old as
its index. It has the same constructors as the old one modulo ∆, for difference.
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data Deco : Sig → Set1 where

ε : Deco ε
ρ : Deco ρ
σ : (A : Set){Σ : A → Sig} → ((a : A) → Deco (Σ a)) → Deco (σ A Σ)
∆ : (A : Set){Σ : Sig} → (A → Deco Σ) → Deco Σ

We will decode the decorative universe into the plain one:

b_c : ∀ {Σ} → Deco Σ → Sig

b ε c = ε
b ρ c = ρ
b σ A φ c = σ[ a : A ] b φ a c
b ∆ A φ c = σ[ a : A ] b φ a c

To define the signature for natural numbers we use a dependently typed elimi-
nator for booleans.

zero7→_suc7→_ : ∀ {`}{P : Bool → Set `} → P true → P false

→ (b : Bool) → P b

(zero 7→ t suc7→ f) true = t

(zero 7→ t suc7→ f) false = f

′
N : Sig
′
N = σ Bool (zero 7→ ε

suc7→ ρ)

N : Set

N = µ ′
N

zero : N

zero = 〈 true , _ 〉

suc : N → N

suc n = 〈 false , n 〉

Using the decorative universe we can now state that lists are naturals with
decorated successor constructors:

′List : (A : Set) → Deco ′
N

′List A = σ Bool (zero 7→ ε
suc7→ ∆ A (λ _ → ρ))

List : (A : Set) → Set

List A = µ b ′List A c

[] : ∀ {A} → List A

[] = 〈 true , _ 〉
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_::_ : ∀ {A}(x : A)(xs : List A) → List A

x :: xs = 〈 false , x , xs 〉

In order to define the forgetful function we need iteration.

map : ∀ {X Y}(Σ : Sig)(f : X → Y) → [[ Σ ]] X → [[ Σ ]] Y

map ε f _ = _

map ρ f x = f x

map (σ A φ) f (a , s) = a , map (φ a) f s

iter : ∀ {X}(Σ : Sig) → ([[ Σ ]] X → X) → µ Σ → X

iter Σ φ 〈 s 〉 = φ (map Σ (iter Σ φ) s)

Forget removes the extra structure imposed by the ∆, otherwise it leaves things
as they were.

forget′′ : ∀ {Σ X}(D : Deco Σ) → [[ b D c ]] X → [[ Σ ]] X

forget′′ ε x = x

forget′′ ρ x = x

forget′′ (σ A φ) (a , s) = a , forget′′ (φ a) s

forget′′ (∆ A φ) (a , s) = forget′′ (φ a) s

forget′ : ∀ {Σ}(D : Deco Σ) → [[ b D c ]] (µ Σ) → µ Σ
forget′ D x = 〈 forget′′ D x 〉

forget : ∀ {Σ}(D : Deco Σ) → µ b D c → µ Σ
forget {Σ} D x = iter b D c (forget′ D) x

We end with a simple test.

length : ∀ {A} → List A → N

length {A} = forget (′List A)

#0 = zero

#1 = suc #0

#2 = suc #1

#3 = suc #2

test : length (#0 :: #1 :: #2 :: []) ≡ #3

test = refl

Next we will decorate our class indexed universe from previous chapters. The
main difference is the class index and the proof that it is what we need it to be,
namely ff.

data Deco {I O} : (c : Class) → Sig (I ] O) O c → c ≡ ff → Set1 where

ψρ : (i : I ] O) → Deco ff (ψρ _ i) refl

η : (o : O) → Deco ff (η _ o) refl

_+_ : ∀ {Σ Σ′}(O : Deco ff Σ refl)
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(O′ : Deco ff Σ′ refl) → Deco ff (Σ + Σ′) refl

_*_ : ∀ {Σ Σ′}(O : Deco ff Σ refl)

(O′ : Deco ff Σ′ refl) → Deco ff (Σ * Σ′) refl

σ : ∀ A {Σ}(O : (x : A) → Deco ff (Σ x) refl) → Deco ff (σ A Σ) refl

∆ : ∀ {Σ}(A : Set)(O : A → Deco ff Σ refl) → Deco ff Σ refl

b_c : ∀ {I O c}{p : c ≡ ff}{Σ : Sig (I ] O) O c} → Deco c Σ p → FF I O

b ψρ i c = ψρ _ i

b η o c = η _ o

b O + O′ c = b O c + b O′ c
b O * O′ c = b O c * b O′ c
b σ A O c = σ _ λ x → b O x c
b ∆ A O c = σ A λ x → b O x c

We need to do it this way for the same reason as previously stated in order to
be able to define functions by pattern-matching on it.

forget′′ : ∀ {I O c}{X : Pow I}{Σ : Sig (I ] O) O c}(p : c ≡ ff){Y : O → Set}

(O : Deco c Σ p) → [[ b O c ]] (X 〈]〉 Y) ⊆ ([[ Σ ]] (X 〈]〉 Y))

forget′′ ._ (ψρ (inj1 i)) x = x

forget′′ ._ (ψρ (inj2 o)) y = y

forget′′ ._ (η i) refl = refl

forget′′ ._ (Σ + Σ′) (inj1 s) = inj1 (forget′′ refl Σ s)

forget′′ ._ (Σ + Σ′) (inj2 t) = inj2 (forget′′ refl Σ′ t)

forget′′ ._ (Σ * Σ′) (s , t) = forget′′ refl Σ s , forget′′ refl Σ′ t

forget′′ ._ (σ A O) (a , s) = a , forget′′ refl (O a) s

forget′′ ._ (∆ A O) (a , s) = forget′′ refl (O a) s

forget′ : ∀ {I O}{X : Pow I}{Σ : FF I O}(O : Deco ff Σ refl)

→ Alg b O c X (µ Σ X)

forget′ O s = 〈 forget′′ refl O s 〉

forget : ∀ {I O}{X : Pow I}{Σ : FF I O}(O : Deco ff Σ refl)

→ µ b O c X ⊆ (µ Σ X)

forget O = iter _ (forget′ O)

′
N : FF ⊥ >
′
N = η ff _ + ρ ff _

N = µ ′
N ⊥-elim _

zero : N

zero = 〈 inj1 refl 〉

suc : N → N

suc n = 〈 inj2 n 〉
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ListD : Set → Deco ff ′
N refl

ListD A = η _ + ∆ A λ _ → ψρ _

′List : Set → FF ⊥ >
′List A = b ListD A c

List : Set → Set

List A = µ (′List A) ⊥-elim _

[] : ∀ {A} → List A

[] = 〈 inj1 refl 〉

_::_ : ∀ {A} → A → List A → List A

x :: xs = 〈 inj2 (x , xs) 〉

length : ∀ {A} → List A → N

length = forget (ListD _)

#0 = zero

#1 = suc #0

#2 = suc #1

#3 = suc #2

test : length (#0 :: #1 :: #2 :: []) ≡ #3

test = refl

8.2 Discussion

The refinement part of ornaments is not implementable for our class indexed
universe for reasons I do not fully understand. It seems that, from the little
testing I have done, for a universe to admit refinement it needs the “record-like”
codes rather than the algebraic ones (we discussed the difference in chapter 5).
Speaking against this is the fact that [AJG10] are able to define refinement for a
set of codes similar to ours, albeit in category theory (extensional) rather than
(intensional) type theory.

When we decorate natural numbers to get lists, the parameter we add to
the successor constructor is not really a parameter in the sense we worked with
earlier. It is not part of the fixpoint, but rather just passed along to the de-
scription; this makes it impossible for a generic mapping function to target. An
interesting question is if we can construct a decorative universe in which true
parameters can be added.

78



Chapter 9

Conclusion and further
work

We have proposed a solution to the problem of having to define the same function
several times that arises when several universes are used in datatype-generic
programming. The solution using algebraic codes suffers from the need of special
language support to infer the class of the codes. Using the “record-like” codes
we seem to be able to get further without special language support.

The natural next step would be to push the solution using “record-like”
codes further and see if it breaks. It is not clear to me if using the “record-like”
codes is a serious restriction.

After that it would be interesting to see if the universe could be extended to
handle finite, inductive-inductive and inductive-recursive datatypes, datatypes
with nested fixpoints and coinductive datatypes.

An important aspect that has been left out in this work is whether the class
indexed universe is meaningful and consistent. As more classes of datatypes are
added into it, such as inductive-inductive and inductive-recursive datatypes,
this problem is likely to become harder.

A completely different approach to the several universes problem has been
explained to me by Conor McBride. It involves so called deletion ornaments
which lets us delete information from a datatype, provided we give a way to
recover it in the forgetful function. The idea is to delete, for example, the code
for π to get finitary indexed datatypes from the datatype of infinitary indexed
ones and so on. Deletion ornaments are merely mentioned in [McB11] and have
not been implemented. At this point it is not clear to me how all this would
work.
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