
High-speed Serial SpaceFibre Link
Software Evaluation

Master’s thesis in Computer science and engineering

Jesper Mass

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023

Master’s thesis 2023

High-speed Serial SpaceFibre Link
Software Evaluation

Jesper Mass

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2023

High-speed Serial SpaceFibre Link Software Evaluation
Jesper Mass

© Jesper Mass, 2023.

Supervisor: Muhammad Waqar Azhar, Department of Computer Science and Engi-
neering
Advisor: Daniel Hellström, Cobham Gaisler
Examiner: Jan Jonsson, Department of Computer Science and Engineering

Master’s Thesis 2023
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2023

iv

High-speed Serial SpaceFibre Link Software Evaluation
Jesper Mass
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
SpaceFibre is an emerging standard for onboard spacecraft communication. Cobham
Gaisler has recently developed an IP core to communicate through a SpaceFibre
link. However, no software driver API to use the IP is currently available. By
using SpaceFibre the speed of communication can be increased by up to 15 times
compared to the previously used SpaceWire. This increased speed could enable
more data to be sent from sensors quicker for processing at the onboard computer.
Currently, few other drivers for SpaceFibre exist and there is little benchmarking for
how well it actually performs. The aim of this thesis was to design a software driver
to benchmark the actual performance and validate the SpaceFibre IP developed at
Cobham Gaisler. To accomplish this an external tool, developed by the creators of
the SpaceFibre standard, was used: the STAR Fire Mk3. With this tool, a test using
the driver designed in this thesis was performed where the STAR Fire Mk3 was used
to measure the statistics and act as both a recipient and transmitter of messages.
As a result, it was found that the IP core does reach speeds up to 1.91 Gbps for
reception and 1.5 Gbps for transmission with a link running at effectively 2 Gbps.
Using this the user can reach speeds of at least ten times the speed of SpaceWire,
and including all the standardised quality of service the protocol provides.

Keywords: Computer, science, computer science, engineering, project, thesis.

v

Acknowledgements
I would like to thank the company Cobham Gaisler for giving me the opportunity
to write this thesis. I would also like to give extra thanks to, Daniel Hellström,
for supporting me and taking the time out of his busy day to answer my questions
and leading me in the right direction. Joaquin España Nevarra, for answering all
my questions about his SpaceFibre IP and how it works. The other thesis workers
Jonathan Jonsson and Matteo Toselli who kept me entertained throughout the day
with their Borat references.

Jesper Mass, Gothenburg, May 2023

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contribution . 2
1.3 Thesis Outline . 2

2 Background 3
2.1 SpaceFibre . 3

2.1.1 8B/10B encoding . 4
2.1.2 Direct Memory Access . 4

2.2 SpaceWire . 5
2.3 The SpaceFibre IP . 5

3 Design 9
3.1 Low-level API . 9

3.1.1 Initialisation . 9
3.1.2 Virtual channels . 10

3.1.2.1 Transmission . 10
3.1.2.2 Reception . 11

4 Methods 13
4.1 Tools . 13

4.1.1 FPGA . 13
4.1.2 STAR Fire Mk3 . 13
4.1.3 Test setup . 14

4.2 Latency . 15
4.3 Bitrate . 16

4.3.1 Reception . 17
4.3.2 Transmission . 17

5 Results 21
5.1 Latency . 21
5.2 Bitrate . 23

ix

Contents

6 Discussion 27
6.1 Latency . 27
6.2 Datarate . 27
6.3 Summary . 28
6.4 Hardware . 28

6.4.1 Hardware limitations . 28
6.5 Future research . 29

7 Conclusion 31

Bibliography 33

x

List of Figures

2.1 Illustration showing 4 SpaceFibre nodes in a SpaceFibre network. . . 4
2.2 The bit representation of each word in a transmission descriptor. . . . 6
2.3 The bit representation of each word in a reception descriptor. 7

3.1 The data structure is used to reference and keep track of packets in
the descriptors. n can be up to 1024 for transmission and m is defined
in the software. 11

4.1 A block diagram of the hardware architecture of the prototype design. 14
4.2 The test setup used, with the FPGA board, STAR Fire Mk3 and

XILINX adapter. 14
4.3 An illustration of the test setup with the software interfaces and phys-

ical interfaces. 15
4.4 A flowchart illustrating the reception latency test. 16
4.5 A flowchart illustrating the transmission latency test. 17
4.6 A flowchart illustrating the reception bitrate test. 19
4.7 A flowchart illustrating the transmission bitrate test. 20

5.1 The result from the bombardment reception test. 23
5.2 The result from the bombardment transmission test. 24
5.3 The number of packets sent per second during the bombardment re-

ception test. 25
5.4 The number of packets sent per second during the bombardment

transmission test. 26

xi

List of Figures

xii

List of Tables

5.1 The number of clock cycles and microseconds for each of the driver
routines on a 100MHz system. 21

5.2 The bitrate when adding delays to the loop during transmission test. 24

xiii

List of Tables

xiv

1
Introduction

Space is a big place and the amount of information we have about it is continually
growing as we explore more and more of it. To gather more information, the sensors
and technology keep improving, and with that the need to support an increasing
data-rate, increases. Since 2003, a commonly used standard for onboard communi-
cation in spacecraft has been SpaceWire. In 2019, SpaceFibre became an accepted
standard by the European Cooperation for Space Standardization (ECSS). Space-
Fibre is a communications protocol developed by STAR Dundee for the European
Space Agency (ESA), it is backwards compatible with the SpaceWire packet for-
mat. However, SpaceFibre has a theoretical data rate up to 15 times faster than
SpaceWire. It also features up to 32 virtual channels for communication in virtual
networks and one broadcast channel for communicating with all of the connected
nodes at the same time.
Cobham Gaisler has recently developed a SpaceFibre codec and a direct memory
access (DMA) engine which is compatible with the SpaceFibre specification ECSS-
E-ST-50 [1]. It is planned to be included in the next-generation ESA LEON5 fault-
tolerant microprocessor [2, 3]. It will serve high-speed serial transfers over a Space-
Fibre network in modern satellites. The SpaceFibre IP is available as part of the
GRLIB SoC IP Library [4]. Since it was recently developed, it has not yet been
manufactured into a Silicon component from Gaisler. Instead, the IP is designed
and tested using FPGA development boards, which is also a technology targeted by
the GRSPFI IP. During the design and testing of the IP, basic software setups have
been used, but the IP has now reached a certain maturity level. It would now be suit-
able to evaluate a Software stack that could utilize the full bandwidth provided and
benchmark potential bottlenecks in Software. Also to propose hardware optimiza-
tion possible to off-load the Software tasks (the processor). Finding optimizations
or issues that lead to IP improvements, could have a significant positive effect on
next-generation satellite onboard communication. it is important to discover and
evaluate the bottlenecks before starting the manufacturing process into a die. The
study outcome and software stack prototype may become an important part of more
advanced testing, demonstrators, and finally, the user software application.
According to ESA, [5] the resulting software can lead to bit-rates up to 6.25 Gbps,
15 times faster than the previously used standard SpaceWire. The weight of the
wiring can also be reduced by 50% when using optical fibres. Reaching this higher
data transfer speed in onboard communication can reduce the impact of delays in
computer networks. This will enable the use of higher resolution cameras without
impacting the transfer speed, more data to be sent between computational units,
and more precise control of actuators.

1

1. Introduction

1.1 Problem Statement
SpaceFibre is a standard for a communications protocol developed by STAR-Dundee
and published by ECSS. Cobham Gaisler has developed an IP compliant with the
SpaceFibre standard intended to be released with their upcoming GR765 board. As
The IP has matured, it is now ready for a software driver to be developed. A soft-
ware driver that can initiate, configure and utilize the hardware registers according
to the IP and specification to communicate with other nodes connected. The Space-
Fibre protocol is up to 15 times faster than the previously used standard SpaceWire.
Enabling this could provide the means to send more data from sensors such as cam-
eras to the central onboard computer. Introduced in the SpaceFibre standard is
the Quality of Service (QoS) aspect. The standardization of QoS would simplify
the use of other SpaceFibre-compatible equipment to reduce the loss of packets and
increase the guarantee that important data will reach the end-point. By implement-
ing a software driver for the SpaceFibre IP and running it on a development FPGA,
this thesis will show that the driver implemented will deliver the messages over the
SpaceFibre protocol. it will also validate the SpaceFibre IP developed at Cobham
Gaisler and the LEON5 core, and evaluate the performance of the new DMA and
HW/SW interface. An external tool will be used to receive and send messages as
well as measure statistics. Investigating the latency caused by the driver will make
it easier to predict the execution time and the overhead.

1.2 Contribution
Contributions of this thesis are:

• A software driver for using the SpaceFibre core developed by Cobham Gaisler,
• An evaluation of the DMA engine developed by Cobham Gaisler,
• An evaluation of the SpaceFibre core developed by Cobham Gaisler.

1.3 Thesis Outline
The structure of this thesis is as follows. In Chap. 2 the necessary technical back-
ground for SpaceFibre, SpaceWire and the SpaceFibre IP will be explained. In
Chap. 3 the design of the software driver constructed in this thesis will be described.
In Chap. 4 for the test setup and the tests to be performed on an FPGA with the
SpaceFibre IP to test the hardware and the software driver will be presented. In
Chap. 5 the results of the tests from Chap. 4 will be presented. In Chap. 6 the
results from Chap. 5 will be discussed and reviewed. In Chap. 7 the thesis will be
wrapped up and the results will be related to the thesis problem.

2

2
Background

2.1 SpaceFibre

The SpaceFibre standard is a very high-speed serial link and network technology
created by STAR-Dundee and was released by the ECSS in 2019. It is a commu-
nications protocol created for onboard communication in spacecraft and offers data
rates of 5 Gbit/s.
According to the SpaceFibre standard [1], the nodes in a SpaceFibre network are
connected by copper or fibre cables. SpaceFibre is using a point-to-point connection
to connect the ports of two nodes. Each connection is called a link and can consist of
multiple lanes that allow the nodes to send data in parallel. Each link is a full-duplex
which allows simultaneous transmission and reception of packets. An illustration of
a SpaceFibre network can be seen in Fig. 2.1. Every port in a SpaceFibre node is
running individual iterations of the IP and will use separate controllers in software.
Each link can use up to 32 virtual channels, to send data through. Using these
channels, the node can sort the data already at reception by the hardware. Each
virtual channel is assigned a bandwidth, a timeslot, and a priority to ensure that
important communication channels get the needed space on the link. SpaceFibre
uses the same packet format as SpaceWire to simplify bridging to older SpaceWire
components. The format is suggested as destination address, a cargo and an end of
packet (EOP), or an error end of packet (EEP) marker if an error occurred during
transmission. During transmission and reception, the standard makes no difference
between the destination address and the cargo, this is up to the receiving application
to interpret. The maximum length of the packet is not set by the standard but is
implementation-specific.
The broadcast channel is used for communicating with all nodes in the network.
When a broadcast message is received by a routing switch, it is propagated to all
ports and is further spread across the network. A network can consist of 256 broad-
cast channels, though it can consist of even more nodes as not every node needs to
be able to send broadcast messages even if they can receive them. During config-
uration, if the node intends to transmit broadcast messages, a broadcast channel
number shall be set. This is used to identify what node the broadcast messages were
transmitted from. A node should not change from the broadcast channel number
it first used in the network. Broadcast messages are more restricted in their packet
format than virtual channel messages. A broadcast message consists of 8 bytes of
data.

3

2. Background

NN

NN

SpaceFibre node SpaceFibre link

SpaceFibre
port

Figure 2.1: Illustration showing 4 SpaceFibre nodes in a SpaceFibre network.

2.1.1 8B/10B encoding
When a signal is sent over a physical wire, the DC bias can drift if the signal contains
too many 1s or 0s in sequence, resulting in bit errors. Using 8-bit/10-bit encoding
can prevent this from occurring by encoding the 8-bit message as 10-bits where no
more than five of the same bit value is sent in sequence. Doing this will in the long
run result in the number of ones and zeroes transmitted being 50%. Because of
this, it will also offer enough state transitions to base clock recovery on. This is a
method used in many communication protocols to avoid errors and is also used in
SpaceFibre to make communication systems onboard spacecraft more fault tolerant.
When transmitting 8 bytes, first a D/K bit is added, this shows the receiving codec
whether this is data or control characters. These 9 bits are then encoded into a
10-bit symbol. This will make the communication more fault tolerant, but it will
also slow down the data transfer rate as more bits are required to transfer the data.
The data that is to be transferred make up 80% of the symbol. In a link with a bit
rate 2.5 Gbps, this will result in a 2 Gbps theoretical data transfer rate.

2.1.2 Direct Memory Access
During a traditional memory operation, the processor core could potentially be busy
for a long time handling the memory operation. It would also take longer as all the
data had to pass through the processor first before reaching its destination. However
using a DMA engine can allow a piece of hardware to access the memory to write or
read, without involving the processor. In the case of SpaceFibre, the DMA engine
allows the data being received on the link to be immediately written to the memory

4

2. Background

or read from the memory in the case of transmission. Using a DMA engine in a time-
critical system can be really important as otherwise, any transmission or reception
would occupy the processor core and keep it from doing anything else.

2.2 SpaceWire
SpaceWire is one of the standards for onboard communication in spacecraft in 2022.
It is the predecessor of SpaceFibre and works in similar ways. It offers data rates
of 2 Mbps to 200 Mbps on a full-duplex connection, called a link, according to the
specification [6]. A major functional difference for the software and user between
SpaceWire and SpaceFibre is that SpaceWire does not by default utilize QoS func-
tions such as virtual channels and prioritizing. When SpaceWire-D [7] was intro-
duced they added timeslots to improve the QoS and make it more deterministic.
There are also implementations of SpaceWire where virtual channels do exist how-
ever since this is not standardized it might not work properly when combining
equipment from multiple manufacturers. A major difference with the hardware is
the physical cable. SpaceWire does not use optical fibre cables and can therefore not
reach the same link speed as SpaceFibre. Similarly to SpaceFibre, there is no set
packet format to make it simple to customize for the application. The current imple-
mentation of the SpaceWire standard in Cobham Gaisler’s products reaches a write
rate of 159.81 Mbps and read rate of 159.99 Mbps, according to their benchmark-
ing[8] using a link rate of 200 Mbps. However, they can operate with a link frequency
of 400 MHz, leading to an effective measured data transfer rate of 320 Mbps. Their
system frequency lies at 250 MHz and uses buses with a width of 32 to 128 bits
which leads to a maximum internal rate of up to 8 Gbps. This could indicate that
the speed of the communication would be a bottleneck.

2.3 The SpaceFibre IP
LEON5 is an implementation of the Sparc architecture. The hardware used in this
report is a prototype of a partial GR765 processor implemented in a Xilinx FPGA
and which includes one LEON5 core. As explained in Cobham Gaisler’s manual
[9] the SpaceFibre IP developed by Cobham Gaisler used in this project functions
by writing packets to descriptors. Descriptors are structures in memory informing
the SpaceFibre codec about the message to be transmitted or received. During
transmission, the descriptor informs the codec of the length and placement of the
header and data to be sent. During reception, it informs the codec of where to place
the data and gives a space to inform the user of the length of the packet and other
flags such as error flags. The SpaceFibre core steps through these descriptors in order
as it transmits and receives packets. Therefore it’s required that they are placed
in a contiguous area in memory. During the initialisation of the SpaceFibre core,
before any packets can be transmitted or received, the descriptors’ memory space
is allocated by the user. The size of this descriptor table is set to fit the number of
descriptors set when synthesizing the IP and has to align with the size of the table.
The number of transmission descriptors can be 64, 128, 256, or 512. Reception

5

2. Background

descriptors are half the size of transmission descriptors, as will be explained later in
the thesis, and the number of them can be 128, 256, 512, or 1024.

Figure 2.2: The bit representation of each word in a transmission descriptor.

The size of one transmission descriptor is 16 bytes and the contents can be seen in
Fig. 2.2. When a packet is to be sent the following steps are to be taken. First, the
driver selects a descriptor and enters the address to the header and/or data to be
sent and the number of bytes to send for each of them. Most of the time this will be
the next descriptor pointed to by the hardware register, as the codec steps through
the table in order. This will continue until it reaches the end, at which point it will
go back to the beginning of the table. Multiple descriptors can be prepared, but

6

2. Background

they still need to be in sequence on the descriptor table. If the length is 0 for either
of them the respective header or data will not be sent. After the packet has been
added to a descriptor the driver sets the enable bit of the descriptor to indicate that
it is ready to be sent. When a descriptor has been enabled a bit in a control register
has to be set to show the codec that there are descriptors available for sending. The
codec will then read the descriptor the hardware register points to, and send the
number of bytes the length indicates from the addresses given. The descriptor enable
bit will be cleared by the hardware when the transmission is finished to indicate that
the descriptor is ready to be used again. After transmission of that descriptor, the
hardware register will increment to point to the next descriptor. The codec will keep
sending any enabled descriptors until it reaches a descriptor not enabled, it will then
clear the descriptor available bit and set the transmission finished bit instead. The

Figure 2.3: The bit representation of each word in a reception descriptor.

size of the reception descriptor is 8 bytes, as can be seen in Fig. 2.3. In contrast to
transmission descriptors, reception descriptors are set up in preparation to receive.
Empty memory space is created and the address is written to the packet address
field and the descriptor enable bit is set. When a packet is received the codec checks
the reception descriptor it’s currently pointing to see if it’s available for reception.
If it is, the codec stores the message at that location, set the packet length to the
number of bytes the received message was and increment the descriptor pointer to
point to the next descriptor.

7

2. Background

8

3
Design

3.1 Low-level API
The first step of developing the driver is to implement all the low-level APIs in-
teracting with the hardware. These are developed for a Bare-C Cross-Compiler 2
(BCC2). The APIs are developed to be scalable and context-independent to allow
the user to use them as needed. The routines should produce the same result no
matter the circumstances during which they are called, as long as there’s room in
the descriptor table.

3.1.1 Initialisation
To enable and start using the SpaceFibre core it first has to be set up and initialised.
While the order is not vital, each of the steps needs to be performed before the link
can be used for communication.
One step is to configure the core by writing the settings to the control registers
necessary. Such as the control registers to set up the timeslots and bandwidth of
the virtual channels.
Another important step to set up the core is to map the available, up to 32, virtual
channels, that are intended to be utilised, to the, up to eight DMA engines. Then
to use them the DMA engines need to be enabled for transmission and/or reception.
Both of these things are done by configuring hardware registers.
A third step in the initialisation consists of initialising the lane itself. This can be
done actively by setting the start lane bit in the relevant hardware register, but also
passively by setting the autostart bit in the same register. When using the autostart
mode the port will instead wait until the other side of the link tries to initialise the
link. By this time it can be a good idea to reset all the status bits as nothing should
trigger them to be set immediately again.
The final step before the core is set up to transmit and receive packets is to create
a memory area for the descriptors. This needs to be allocated beforehand as the
SpaceFibre core will cycle through them automatically without the processors’ input.
The size of the area needed is known from the capability register stating how many
descriptors the core is configured for and the known size of each of them. A smaller
memory area is okay, as long as the wrap flag is set in the final descriptor telling
the codec to go back to the start again, instead of continuing to the final descriptor.
When all these steps are done, the SpaceFibre core is ready to communicate with
another SpaceFibre-enabled node on the other side of the link.

9

3. Design

3.1.2 Virtual channels
The virtual channels in a SpaceFibre link act as a way to sort the data using the
channels as tags, offering a method to sort the data already by the sending node.
To implement QoS each virtual channel can be given a number of timeslots, in
which that channel can transmit over the SpaceFibre link. If multiple channels are
assigned the same timeslot each channel is also assigned a priority and a bandwidth
reservation to make sure there is no bus-hogging. All of these parameters for QoS
are configured in hardware registers. The routine should function the same way
regardless of which virtual channel is being written to. The virtual channel should
be an input to the routines to make it easy for the user to select which virtual channel
should be used and to make it independent of the hardware implementation, rather
than having individual routines for each of the virtual channels. Using additional
routines for each virtual channel would bloat the driver with functions the hardware
might not even have access to, since it is configurable how many virtual channels an
implementation of the IP core has.
The two main groups of routines needed to utilise the SpaceFibre core is transmission
and reception. The reception routines will be two: readying descriptors to be used,
and reading the descriptors that have received a message and stored it in memory.
The second group is the transmission routines, which are used to transmit messages.
The transmission routines are just like the reception routines divided into two: one
routine to schedule messages to be sent, and one to reclaim used and sent descriptors
to be used again. Both of the mentioned groups of routines will be further described
in the following sections.

3.1.2.1 Transmission

Cobham Gaisler’s hardware implementation of the SpaceFibre standard uses a mem-
ory area with descriptors. The memory address of the first descriptor works as the
base address and then the remaining descriptors are offset from that address. As
can be seen in Chap. 2.3, each transmission descriptor consists of 4 words. The first
word contains flags and the length of the header. The second word contains the
address to where the header is stored. The third word contains the length of the
data. The fourth word contains the address to the data. In a descriptor, the length
of the header or the length of the data can be 0, but not both. If both the length
of the header and the length of the data are set to 0, no message will be sent, as
there is nothing to send. A message can be sent using only the header or only the
data, but also using both. However when using both the user should be aware that
the protocol fetches the header separately from the data, which will create extra
overhead, rather than just using one of them.
As illustrated in Fig. 3.1, There is a descriptor pointer which contains the ID of
the next descriptor to be written to, and also a counter indicating how many more
descriptors are available for use. Another structure exists, the packet pointer, which
contains the ID of the next packet to write to and a counter for how many more
packets are available. The number of packets is not defined in the standard but can
be defined in the software.

10

3. Design

0 1 2 3 4 5 n-3 n13

Descriptors

6 7 8 9 10 11 12 n-2 n-1

0 1 2 3 4 5 m-3 m136 7 8 9 10 11 12 m-2 m-1

Packets

3 +m-3

3 +n-3 Descriptor pointer

Packet pointer

Figure 3.1: The data structure is used to reference and keep track of packets in the
descriptors. n can be up to 1024 for transmission and m is defined in the software.

When a packet is to be sent, it is written to the packet that is pointed to by the
packet pointer and the packet counter is decreased. The packet is then sent to the
driver-API. First of all the driver checks if there are any free descriptors by making
sure the descriptor counter is not 0. The driver then finds the descriptor through
the ID in the descriptor pointer and writes the length of the header and data to
the descriptors. It then adds the address to the header and data in the respective
descriptor word. When the packet is written to a descriptor, the descriptor enable
bit is set, and the descriptor available bit in the assigned DMA control register is
also set. this is to indicate to the codec that there are new messages to be sent. The
user also needs to call on a driver-API to reclaim used descriptors and clear them
from any old data to prevent it from interfering with future transmissions.

3.1.2.2 Reception

The implementation of SpaceFibre uses the same technique for reception as for
transmission. The routines for reception are divided into two routines: one for
readying the descriptors for receiving data, and one for checking the descriptors if
any data has been received. Before any messages can be received the driver has
to enable the descriptors for reception. This is done by the ready routine. It is
setting the relevant flags, that were introduced in Chap. 2.3. This includes writing
the address of an empty packet in the packet address word, enabling the descriptor
and setting the descriptor available bit in the assigned DMA control register.
The packets need to be prepared beforehand and allocated memory space. The
maximum number of bytes a packet can receive needs to be determined before
creating the packets to make sure they can fit the incoming packets. To make sure
the incoming packets will not overflow into non-allocated memory if they are larger
than expected, the maximum number of bytes can be set in a hardware register.
When an incoming message surpasses this limit it sets the error end of package

11

3. Design

(EEP) and truncated flag of the descriptor to let the user know the content is not
reliable. The number of packets created is independent of the number of descriptors.
The user can accept data in packets and read them at a pace determined by the user
while readying new descriptors again with other packets. The user can also create
fewer packets than there are descriptors. However, when doing this all descriptors
cannot be readied as there are not enough packets. The driver does not care about
what packets are provided or where they are. When a message has been received
the reading routine will check the descriptor if the enable bit has been cleared and
if there’s a data length written in the descriptor. If that is the case it will return
the length of the data received to be used when reading the packet in the list.
The descriptor pointer in this case contains the ID of the next descriptor to read and
check if it contains a package and a counter for how many descriptors are available
to be readied again. The packet pointer contains the ID of the next packet to be
enabled for reception and a counter for how many packets are not enabled and are
waiting to be used. Any packets received will be located at the end of this counter.

12

4
Methods

In this chapter, the tests used to benchmark the system and driver will be explained.
It will start by presenting the tools used and then continue by presenting each of
the tests.

4.1 Tools
Two tools were used to benchmark the system, the FPGA running a prototype of a
partial GR765 with a LEON5 core and a STAR Fire Mk3.

4.1.1 FPGA
A XILINX FPGA with a prototype, partial implementation of the GR765 was used
to run the driver prototype. It includes a subset of the GR765 functionality to focus
on the performance of the GRSPFI. In Fig. 4.1 a block diagram of the design can
be seen. In this prototype design, there’s a Xilinx memory controller, in the finished
GR765, this will instead be replaced by a DDR3 controller with Error Detection
And Correction (EDAC). Additionally, the GR765 will contain a level 2 cache before
the memory controller among other units. In the diagram, the SpaceFibre core is
located in the GRSPFI. Beyond this lies the codec and the Serialiser and deserialiser
(SERDES). Of which the latter is responsible for translating the digital data into
a serialised signal to be transmitted on the cable and the other way around for
incoming signals. The path the data takes when being received is from the GRSPFI
straight to the Xilinx memory controller through the AHB bus, instead of travelling
via the processor. This is because the GRSPFI has a DMA, and can access the
memory independently from the processor. When the descriptors are modified this
is done from the processor cores and thus does not have to pass through the GRSPFI,
The codec will fetch the information from the descriptors in memory as they are
needed.
The AHB bus in the block diagram is an AMBA AHB bus running on the system
frequency 100 MHz and has a 128 bit width.

4.1.2 STAR Fire Mk3
To benchmark the software design, a tool called STAR Fire Mk3[10], developed by
STAR-Dundee was used. It can be connected through the SpaceFibre port and
controlled through the software on the connected computer. The STAR Fire Mk3

13

4. Methods

GRSPFIGRSPW2LEON5 GRSPW2 GRSPFI AHB UART AHB JTAG

AHB/APB MCTRL
(XILINX)
 DDR

GPIO APB UART GPTIMER

M M M M M

M

S S S

S

S

SS

AHB

APB

S
AHB CTRL

AHB TRACE

S

IRQ CTRL

S

S

Figure 4.1: A block diagram of the hardware architecture of the prototype design.

features built-in hardware to generate and check data in real-time to prevent com-
puter latency from affecting the execution. Through the software STAR-Fire Mk3
Controller and STAR-Fire Mk3 Statistics, the STAR-Fire Mk3 can be controlled and
used to gather statistics. On the other end was the FPGA with a partial prototype
GR765 including a LEON5[2] processor and a SpaceFibre core.

4.1.3 Test setup

Figure 4.2: The test setup used, with the FPGA board, STAR Fire Mk3 and
XILINX adapter.

During the tests the setup in Fig. 4.2 was used, using the XILINX adapter to program
the FPGA. The FPGA board was running the driver prototype on a partial GR765
processor prototype. The STAR Fire Mk3 was used to transmit packets to, and
receive from the FPGA.
As illustrated in Fig. 4.3 the PC communicated with the Xilinx adapter using the
in-house debugging interface GRMON[11]. The Xilinx adapter then in turn commu-

14

4. Methods

nicates with the FPGA through JTAG, enabling the user to download software, run
and debug it by reading and writing to the registers and memory. Using the STAR
fire GUI the user can connect to the STAR Fire Mk3 and set it up to communicate
with the FPGA over SpaceFibre as if it was another unit in the network.

PC

STAR Fire Mk3

FPGA

Xilinx adapter

SpaceFibre

JTAG

USB

USB

STAR Fire GUI

GRMON

Figure 4.3: An illustration of the test setup with the software interfaces and
physical interfaces.

4.2 Latency
To determine the latency of the driver a test was set up where the driver routines
were repeatedly called and the number of clock cycles was recorded before and after
calling the routines. To get a span of how long the driver actually takes, multiple
tests were done where the number of times in a loop the routine was called was
varied. The number of clock cycles was then divided by the number of times the
routine was called and an average number of clock cycles was found. The STAR Fire
Mk3 was used to fill the available reception descriptors and receive the transmission
packet during the tests.
To get the time for running only one of the routines some limitations had to be set.
For reception there were only 512 descriptors, so the time could only be measured for
readying the 512 descriptors. For reading them they had to have received a packet
first, and then the time was measured for reading the 512 descriptors. During the
calling of the readying and reading routines, the reception of packets was turned off
in the codec. This was done to reduce the delay caused by DMA operations. The
flowchart illustrating this test can be seen in Fig. 4.4.
The test was similarly constructed for transmission, however, for transmission, only
256 descriptors were available. First, the time was measured to prepare 256 de-
scriptors for sending. The packets were then sent and the time was measured to
reclaim them again after all of them had been sent. Again the transmission of the
packets was turned off during the time the sending and reclaiming routines were
being called, to stop the DMA from interfering. The flowchart illustrating this test
can be seen in Fig. 4.5.
One important point in these tests was to not allow the codec operations to interrupt
the routines on the bus by transmitting and receiving packets. This was done by

15

4. Methods

Allocate memory
for packets

Yes

No
512 descriptors

readied?

Ready reception
descriptor

Initialise codec

Start stopwatch

Report time

Yes

No
512 descriptors

read?

Read received
packets

Start stopwatch

Report time

Enable reception
and wait 1 second

Disable reception

Test complete

Figure 4.4: A flowchart illustrating the reception latency test.

disabling the codec during the tests and enabling it again in between to allow it to
transmit or receive messages on the descriptors.

4.3 Bitrate

To determine the bitrate The STAR-Fire Mk3 was again used to transmit and receive
messages to and from the FPGA board running the SpaceFibre driver.
For this test, the STAR Fire Mk3 and the FPGA running the partial GR765 pro-
totype will bombard each other with messages to read out the data-transfer fre-
quency. Because of the flow control properties of SpaceFibre messages will never
be sent faster than they can be received. This test will be performed in two steps:
one where the STAR Fire Mk3 transmits packets to the FPGA, and one where the
FPGA transmits packets to the STAR Fire Mk3. This is to avoid the writing and
reading of packets competing over the bus, even though the link is full-duplex.
Important to have in mind is that the signalling rate of the link is 2.5 Gbps but with
the 8b/10b encoding, the theoretically highest speed is 80% of that, i.e. 2 Gbps.

16

4. Methods

Create trash data

Yes

No
256 descriptors

sent?

Send packet

Initialise codec

Start stopwatch

Report time

Yes

No
256 descriptors

reclaimed?

Reclaim sent
descriptors

Start stopwatch

Report time

Enable transmission
and wait 1 second

Disable
transmission

Test complete

Figure 4.5: A flowchart illustrating the transmission latency test.

4.3.1 Reception
To measure the bitrate of reception a testing software as illustrated in Fig. 4.6 was
set up to initiate the SpaceFibre core and then run in a loop. During each cycle
of the loop checking for incoming messages and readying new descriptors to receive
messages through. To reduce the impact of the memory speed an area in memory
was allocated the size of a packet and then this area was reused for all the packets.
In each run of the loop, the driver routines to read incoming packets were called,
and the information was trashed as that is irrelevant as long as no error flags were
set. A packet was then initiated with the memory area and used to call the ready
routine. The STAR-Fire Mk3 was set up to transmit packets with random data with
a data signalling rate of 2.5 Gbit/s. The built-in random data generator is used to
avoid any latencies caused by the slow USB3 connection to the PC. A counter is
also set up to record how many messages are being received.

4.3.2 Transmission
To measure the bitrate of transmission, just as for reception, the testing software as
illustrated in Fig. 4.7 was set up to initiate the SpaceFibre core, and then run in a

17

4. Methods

loop. Sending messages and reclaiming messages that have been sent each cycle of
the loop. As in reception, the STAR Fire Mk3 was set up, but this time to receive
messages instead. Because the memory latency should have minimal impact the
same data was sent in every packet. As the content of the packets did not matter,
trash data was used. To create the trash data memory was allocated with the size
of the packet. This memory was then without being cleared sent as is. This way the
data to be sent could be created before entering the loop. In the loop the reclaim
routine was first called, to reclaim any successfully sent packets. then the data was
assigned to a packet and sent using the send routine. In this test, only the data
section of the packet was used, To not create additional overhead. As headers didn’t
exist in SpaceWire, using only the data will give a more comparable result.

18

4. Methods

Allocate memory
for packets

No

Yespacket received?

Ready reception
descriptor

Read incoming
packet

Increment
packetcounter

Initialise codec

No

Yes

Duration of test
complete

Report
packetcount

Test complete

Figure 4.6: A flowchart illustrating the reception bitrate test.

19

4. Methods

Create random
data

No

YesSent descriptor
reclaimed?

Send SpaceFibre
packet

Reclaim sent
descriptors

Increment
packetcounter

Initialise codec

No

Yes

Duration of test
complete?

Report
packetcount

Test complete

Figure 4.7: A flowchart illustrating the transmission bitrate test.

20

5
Results

In this chapter the results from the tests described in Chap. 4 are presented.

5.1 Latency
After performing the tests described in Sec. 4.2 the results for each of the driver
routines are stated in Tab. 5.1. As can be seen, the transmission routines take
an increased amount of clock cycles compared to the respective reception routines.
This makes sense because the transmission descriptors consist of 16 bytes, while the
reception descriptors consist of 8 bytes. The AMBA protocol allows bus widths of
8, 16, 32, 64, 128, 256, 512, and 1024 bits. The implementation in the FPGA has a
bus width of 128 bits. After a quick read test by trying to read from the memory
and looking at the bus traffic, the number of clock cycles required for reading 32 bits
is about 47 clock cycles. Reading up to 128 bits in the prototype using the AMBA
protocol should take about as long, but as one word in the descriptors is read at a
time and not all at once this is not fully taken advantage of.

Reception Transmission
Ready Read Send Reclaim
105 cc 84 cc 139 cc 102 cc
1.05 us 0.84 us 1.39 us 1.02 us

Table 5.1: The number of clock cycles and microseconds for each of the driver
routines on a 100MHz system.

When readying the descriptor it reads the first word to check if it’s already enabled.
This can be done by looking at the descriptor enable bit, and the data length bits,
neither of the bits should be set. Reading a word from memory takes about 47
clock cycles. Writing to memory however is not as easily predictable, it depends on
the cache coherency protocol and if the data is requested immediately after. When
only writing to memory the processor does not care about when it is done, it will
continue executing the next instructions as soon as it is able to, as it does not need
to wait for the data being stored into memory. When readying a descriptor, the
routine will write the relevant flags to the first word, the enable bit, and then the
address to store the data in the second word of the descriptor.
When reading a packet the routine will load the first word of the descriptor to check
if it is no longer enabled and if there is a data length stored, this again takes 47
clock cycles. If it is disabled and a data length is found, the routine will return the

21

5. Results

length of the data from the routine. To prepare for being readied again and avoid
any potential errors, the routine will also clear all bits of the descriptor.
The sending routine takes significantly longer than both of the reception routines.
When running the sending routine it will read both the first and the third word in
the descriptor. Each word requiring 47 clock cycles leads to at least 94 clock cycles,
and then additional cycles are spent on the logic of the driver and interruptions on
the shared bus. The first descriptor word contains the descriptor enable bit and
the length of the header, and the third descriptor word contains the length of the
data. If a descriptor is to be used for sending it should be empty in all bit places. If
the descriptor is free, the routine will write to all four words in the descriptor. The
driver is zero-copy so the execution time of the routines is independent of the size
of the packet being transmitted. The routine does not know whether the user wants
to transmit a header, data, or both. It will copy the address to both the header and
the data into the descriptor and write the length of both the header and the data.
If the length of either is zero it will not transmit that part of the packet.
The reclaim routine is similar to the read routine, it will check that the descriptor is
disabled and that there is a length written to it. In the case of the reclaim routine,
it will check both the header length and the data length. Reading the two relevant
words, the first and the third word requires just like the send routine two reads that
require about 47 clock cycles each. If the packet in the descriptor has been sent the
routine will clear all the bits in the descriptor to make it clear that it is ready for
new packets.

22

5. Results

5.2 Bitrate

100 101 102 103 104 105 106

Packet size (Bytes)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Gb
ps

RX bitrate

Figure 5.1: The result from the bombardment reception test.

The results from tests described in Sec. 4.3 are plotted on a graph with the package
size on the x-axis and the resulting bitrate on the y-axis. The resulting plots can be
seen in Fig. 5.1 and Fig. 5.2. As can be seen in both figures the bit-rate starts off
low, around 0.01 Gbps. At this point the Packets are so small the DMA is quickly
transmitting or receiving the packets to the descriptors as they are made available.
As the packet size increases, at 20 Bytes, the transfer rate starts to increase. It
plateaus when it reaches a packet size where it spends the majority of the time
sending the data rather than handling descriptors, which is by 5000 Bytes. The
result that the transmission bitrate falls behind the reception bitrate is expected,
as transmission descriptors are twice the size of reception descriptors fetching them
takes twice as long, and with the AMBA protocol reading takes longer than writing,
as first, a read request has to be transmitted before the memory starts sending data
to be read. As opposed to when writing, where a write request is followed by the
data to be written and sent on the bus and immediately written to the memory.
As can be seen in Fig. 5.2 the graph with the transmission bitrate starts to plateau
at 1.5 Gbps when the package size reaches 5000 Byte. As opposed to the reception
bitrate which reaches the speed of 1.9 Gbps before it reaches its peak. This is likely
caused by the hardware and not by the processor core hogging the bus during the
loop. This is confirmed by adding a delay in the loop to stop the processor from
handling descriptors when the queue is full, to prevent the processor core from
accessing the memory as often and leave the bus to the IP core. This however only
leads to slightly faster bitrates but still about 85% of the reception bitrate. The
delay of 100 clock cycles was chosen with regard to the results in Tab. 5.1, as that is

23

5. Results

100 101 102 103 104 105 106

Packet size (Bytes)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Gb
ps

TX bitrate

Figure 5.2: The result from the bombardment transmission test.

roughly the length of one run of the routine. This delay was then multiplied to see
if additional time would increase the performance. To ensure that the delay itself
causes minimal impact on the execution of the test, an assembly routine, counting
the number of clock cycles in the processor core was used. With the total number
of clock cycles taken by the send routine, the reclaim routine and a few more for the
loop logic, 100 clock cycles were selected as the delay in the loop. The packet size
100 000 Bytes was selected as it is when the core has reached peak performance.
As can be seen in Tab. 5.2 the bitrate does increase a bit without the interference of
the processor, as would be expected as the processor and the SpaceFibre core share
the same bus. However, it still does not reach the theoretical maximum transfer
speed.

Delay: 100× 0 1 2 3 4
Bitrate: 1.501 1.594 1.594 1.594 1.594

Delay: 100× 5 6 7 8 9
Bitrate: 1.595 1.595 1.595 1.595 1.596

Delay: 100× 10 100 1000 10000 100000
Bitrate: 1.596 1.596 1.596 1.595 1.595

Table 5.2: The bitrate when adding delays to the loop during transmission test.

As can be seen in Fig. 5.3 and Fig. 5.4. The number of packets sent per second
is relatively unchanged in the beginning, it only drops by 13%. This is because
the packets are so small the DMA quickly writes or reads the data before the next
descriptor is made available. The driver does not copy the data to be transmitted or
was received. no matter the size of the packets, the driver always handles 16 bytes

24

5. Results

for transmission, and 8 bytes for reception. After 100 Bytes, the transmission and
reception start to take longer than an iteration of the loop and the packetrate starts
to drop. As can be seen, when comparing Fig. 5.4 and Fig. 5.3 the packetrate for
transmission is slower than for reception, similar to how the bitrate is also slower
for transmission. This is possibly caused by the fact that transmission descriptors
are twice as big as reception descriptors and as can be seen in Chap. 5.1 the routine
takes nearly twice as many clock cycles to perform. This also makes the processor
core utilize the busses twice as much.

100 101 102 103 104 105 106

Packet size (Bytes)

0

50000

100000

150000

200000

250000

300000

350000

400000

Pa
ck

et
s p

er
 se

co
nd

RX packetrate

Figure 5.3: The number of packets sent per second during the bombardment
reception test.

25

5. Results

100 101 102 103 104 105 106

Packet size (Bytes)

0

50000

100000

150000

200000

250000

300000

350000

400000

Pa
ck

et
s p

er
 se

co
nd

TX packetrate

Figure 5.4: The number of packets sent per second during the bombardment
transmission test.

26

6
Discussion

In this chapter, the results from the previous chapter and their implications will be
discussed. Limitations and potential improvements will be presented.

6.1 Latency
As can be read in Chap. 5.1 the latency of the routines makes sense considering the
amount of data being read from memory.
Having a fast reception routine can be advantageous. If the user is periodically
polling the SpaceFibre device for incoming messages, having a fast routine to check
for incoming messages will not hog the processor. In the same way, if interrupts are
used, having a fast routine will keep it from causing too much overhead whenever
a packet is received. The handling of the data is not included in the latency of the
routines. However, as this is a zero-copy driver and there can be more packets than
descriptors, receiving a packet in one descriptor does not mean the driver stops until
that data is handled. It can be readied with another packet and that packet that
has been received can be handled at the appropriate for the application timeframe.
Having a slower transmission routine than reception will cause the driver to perform
worse during transmission. This is difficult to avoid as the transmission descriptor
is twice the size of the reception descriptor, and reading data on an AMBA AHB
bus is slower than writing. However, the user has more control over when to call for
the transmission routines. As previously mentioned the driver is zero-copy and the
packet to be transmitted has to be prepared beforehand. Transmitting large packets
will cause an equal amount of latency as transmitting small packets.

6.2 Datarate
As can be seen in Fig. 5.1 and Fig. 5.2 the transmit speed depends a lot on the
size of the packets being sent. Small packets will take a longer time to transfer,
with larger packets with a packet size of between 5000 Bytes and 1 000 000 Bytes the
datarate will plateau and remain constant. Comparing this to the results seen in
Fig. 5.3 and Fig. 5.4, using smaller packets allows the driver to transmit multiple
packets faster. Larger packets will require more time to transmit by the codec. The
increased time to transmit will prevent the driver from enabling more descriptors as
the descriptor table will be filled with enabled descriptors.
As the increased packet size causes the packetrate to drop significantly, if there
is vital data to be transmitted periodically, that should be assigned a different

27

6. Discussion

virtual channel. this would allow the packets of that channel, depending on the QoS
parameters, to send their packets interleaved with the virtual channel busy with
large packets.

6.3 Summary
With a fixed latency independent of the size of the packets, both for reception and
transmission the driver offers predictable results. Whereas, for small packets, a
majority of the time will be spent preparing descriptors. For large packets, the
latency of the routine will be only a fraction of the time of reading and writing
packets to and from memory by the codec.

6.4 Hardware
When during the development of the driver the hardware was still in the prototype
stage. There was no other implementation of the Space Fibre core available than
a soft-core on a prototyping FPGA. The implementation of the IP in the FPGA
was delayed and there was no hardware to test the driver on until halfway through
the project when there were a few hundred lines of code to debug. In the end,
the data structures were rewritten for easier debugging and were made into a more
straightforward functional driver.
Another obstacle that halted the development for a period was a bug in the IP
that caused the core not to clear its buffers. If the descriptor pointer was changed
manually during runtime the core wouldn’t update the data address even after a
reset. Because of this the codec save or fetch the data from the previous descriptor
pointed to. This was updated after finding so that the buffers would be cleared
during a restart of the core.
The strange behaviour during the transmission where the bitrate suddenly plateaus
earlier than expected was a great cause for confusion, adding delays in the routine
did not significantly improve the behaviour. The cause for this behaviour is at the
moment of writing not found and investigating it fully could possibly be enough
work for another thesis.

6.4.1 Hardware limitations
The hardware was operating at the frequency of 100 MHz and had a bus width of
128 bits. This frequency is significantly lower than the goal for future use in the
GR765 board, which will be running at a frequency of 1 GHz. In a different hardware
configuration with a higher clock frequency, the maximum speed would be higher.
The rise in transfer speed would also probably occur earlier as the processor would
be faster at preparing many new packets. This is because the bottleneck during
reception and transmission of small packets is the speed at which the CPU can
supply the codec with newly enabled descriptors.
Another limitation of the prototype design was that it was single-core. The upcom-
ing GR765 will be octa-core allowing the preparation of many more packets at a

28

6. Discussion

time. The processor cores would be able to prepare new packets for transmission
in parallel and enable them. It would be able to handle the data in the incoming
packets at the same time as it prepares new descriptors to receive data on.
As the SpaceFibre link can only transmit and receive one packet at a time, the
use of multicore will not raise the maximum bitrate. However, it would allow the
descriptor tables to fill up faster and saturate the link even with smaller packets.

6.5 Future research
For future research, it would be interesting to implement an algorithm to let packets
of certain sizes bypass the level 2 cache to avoid the bottleneck of cache misses, which
will inevitably happen when the size of the packet is larger than what fits in the
cache.
Another suggestion is to investigate how to use the width of the AMBA AHB bus
to the driver’s advantage when doing memory operations. In the prototype FPGA
and the GR765, the width of the AMBA AHB bus is 128 bits, which is equal to the
length of the larger transmission descriptor. If used optimally the bus would allow
the driver to read the entire descriptor in one read. The same thing can be applied
when writing to the descriptors. Even though writing to memory using the AMBA
AHB bus is significantly faster than reading, doing multiple write operations, instead
of one will take longer. This would lower the latency of the driver and allow for more
descriptors to be prepared in the same amount of time. However, this would mainly
have an impact on small packets as that’s where the preparation of the descriptors
is the bottleneck.
Making sure that the driver will still function in a multicore system and not suf-
fer from race conditions as the processor cores are writing to the same packet or
descriptor will also be work for future improvements.

29

6. Discussion

30

7
Conclusion

After designing the driver and testing it with the SpaceFibre core developed by
Cobham Gaisler the driver has been proven to work.
The data structure chosen for the driver has turned out to be reliable and keeps track
of how many free packets and descriptors are available. It has been functioning
adequately both during reception and transmission, during a saturated link and
during an underutilized link.
A bug was found in the core that was fixed during the course of this thesis, where
the IP core prefetched the descriptors and didn’t reset when the address of the
descriptor table was modified. this caused the core to write and fetch data to and
from the wrong address. Had it not been found it could have caused errors and lost
packets for customers. The core throttles the bitrate during transmission. However,
a cause for this has not yet been found.
Even though the results did not reach the full theoretical maximum of 2 GHz it is
significantly faster than the previously used standard SpaceWire which reached a
maximum of 159.81 Mbps when writing and 159.99 Mbps when reading. In com-
parison, the driver developed in this thesis reached a maximum of 1596 Mbps when
transmitting and 1910 Mbps when receiving, even in this demonstrator prototype.
Unlocking this increased bitrate for onboard communication will further increase the
amount of data to be collected and might further increase the knowledge of space.

31

7. Conclusion

32

Bibliography

[1] SpaceFibre - Very high-speed serial link, ECSS-E-ST-50-11C, May 2019. [On-
line]. Available: https : / / ecss . nl / standard / ecss - e - st - 50 - 11c -
spacefibre-very-high-speed-serial-link/.

[2] Cobham Gaisler AB, “"GR765 Octa-Core Processor",” [Online]. Available:
https://www.gaisler.com/index.php/products/components/gr765,
(accessed: 25.01.2022).

[3] Cobham Gaisler AB, “"Processors",” [Online]. Available: https://gaisler.
com/index.php/products/processors, (accessed: 25.01.2022).

[4] Cobham Gaisler AB, “"GRLIB IP Library",” [Online]. Available: https://
www.gaisler.com/index.php/products/ipcores/soclibrary, (accessed:
25.01.2022).

[5] ESA, “Spacefibre,” [Online]. Available: https://www.esa.int/Enabling_
Support/Space_Engineering_Technology/Onboard_Data_Processing/
SpaceFibre, (accessed: 14.06.2022).

[6] SpaceWire - Links, nodes, routers and networks, ECSS-E-ST-50-12C, May
2019. [Online]. Available: https://ecss.nl/standard/ecss-e-st-50-12c-
rev-1-spacewire-links-nodes-routers-and-networks-15-may-2019/.

[7] STAR-Dundee, “"SpaceWire-D: Deterministic Data Delivery over SpaceWire",”
[Online]. Available: https://www.star- dundee.com/wp- content/star_
uploads / conference _ papers / spacewire / 2014 _ DASIA _ SpaceWire - D _
Deterministic_Data_Delivery_SpaceWire.pdf, (accessed: 12.09.2022).

[8] Cobham Gaisler AB, “"GR740 Technical Note on Benchmarking and Valida-
tion",” [Online]. Available: https://www.gaisler.com/doc/gr740/GR740-
VALT-0010.pdf, (accessed: 20.06.2022).

[9] Cobham Gaisler AB, Grlib ip core user’s manual, (2022). [Online]. Available:
https://www.gaisler.com/products/grlib/grip.pdf.

[10] STAR-Dundee, “"STAR Fire Mk3",” [Online]. Available: https://www.star-
dundee.com/products/star- fire- mk3/#product_features, (accessed:
12.08.2022).

[11] Cobham Gaisler AB, “"GRMON3",” [Online]. Available: https://www.gaisler.
com/index.php/products/debug-tools/grmon3, (accessed: 18.10.2022).

33

https://ecss.nl/standard/ecss-e-st-50-11c-spacefibre-very-high-speed-serial-link/
https://ecss.nl/standard/ecss-e-st-50-11c-spacefibre-very-high-speed-serial-link/
https://www.gaisler.com/index.php/products/components/gr765
https://gaisler.com/index.php/products/processors
https://gaisler.com/index.php/products/processors
https://www.gaisler.com/index.php/products/ipcores/soclibrary
https://www.gaisler.com/index.php/products/ipcores/soclibrary
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Data_Processing/SpaceFibre
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Data_Processing/SpaceFibre
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Data_Processing/SpaceFibre
https://ecss.nl/standard/ecss-e-st-50-12c-rev-1-spacewire-links-nodes-routers-and-networks-15-may-2019/
https://ecss.nl/standard/ecss-e-st-50-12c-rev-1-spacewire-links-nodes-routers-and-networks-15-may-2019/
https://www.star-dundee.com/wp-content/star_uploads/conference_papers/spacewire/2014_DASIA_SpaceWire-D_Deterministic_Data_Delivery_SpaceWire.pdf
https://www.star-dundee.com/wp-content/star_uploads/conference_papers/spacewire/2014_DASIA_SpaceWire-D_Deterministic_Data_Delivery_SpaceWire.pdf
https://www.star-dundee.com/wp-content/star_uploads/conference_papers/spacewire/2014_DASIA_SpaceWire-D_Deterministic_Data_Delivery_SpaceWire.pdf
https://www.gaisler.com/doc/gr740/GR740-VALT-0010.pdf
https://www.gaisler.com/doc/gr740/GR740-VALT-0010.pdf
https://www.gaisler.com/products/grlib/grip.pdf
https://www.star-dundee.com/products/star-fire-mk3/#product_features
https://www.star-dundee.com/products/star-fire-mk3/#product_features
https://www.gaisler.com/index.php/products/debug-tools/grmon3
https://www.gaisler.com/index.php/products/debug-tools/grmon3

Bibliography

34

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contribution
	Thesis Outline

	Background
	SpaceFibre
	8B/10B encoding
	Direct Memory Access

	SpaceWire
	The SpaceFibre IP

	Design
	Low-level API
	Initialisation
	Virtual channels
	Transmission
	Reception

	Methods
	Tools
	FPGA
	STAR Fire Mk3
	Test setup

	Latency
	Bitrate
	Reception
	Transmission

	Results
	Latency
	Bitrate

	Discussion
	Latency
	Datarate
	Summary
	Hardware
	Hardware limitations

	Future research

	Conclusion
	Bibliography

