

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, February 2014

Comparison and evaluation of 3D mobile game engines

Master of Science Thesis in the Programme Interaction Design

AKEKARAT PATTRASITIDECHA

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a non-
commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this
agreement. If the Author has signed a copyright agreement with a third party
regarding the Work, the Author warrants hereby that he/she has obtained any
necessary permission from this third party to let Chalmers University of Technology
and University of Gothenburg store the Work electronically and make it accessible on
the Internet.

Comparison and evaluation of 3D mobile game engines

Akekarat Pattrasitidecha

© Akekarat Pattrasitidecha, February 2014.

Examiner: Ulf Assarsson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden February 2014

Abstract
Game engines are vital for developing 3D applications and games today. This is
because the engines significantly reduce resources---time and manpower---to
implement mandatory but complex functionalities. However, with over 100 engines
available with highly different ranges of features, performance, license, and cost,
selecting an appropriate game engine for a specific objective becomes a challenging
problem.

This thesis aims to mitigate this problem by developing a comparison matrix for
selecting a game engine. We define criteria for selecting engines and critical aspects
of mobile 3D game development to be included in the matrix. Then, we evaluate this
matrix by a case study that is, from given requirements, selecting an engine by using
the matrix.

Evaluation of the comparison matrix is carried out through case study, that advocate
the correctness, and robustness of the comparison matrix.

Keywords
Game engine, mobile, 3D, comparison matrix

Table of content

1 INTRODUCTION 5

1.1 MOTIVATION 5
1.2 PROBLEM AREA 5
1.3 TASK AND OBJECTIVES 6

2 PREVIOUS WORK 7

3D GAME ENGINE COMPARISON 7

3 RESEARCH PROBLEM 10

4 COMPARISON MATRIX 10

4.1 DEFINE COMPARISON CRITERIA 11
4.1.1 PROGRAMMING LIBRARIES 12
4.1.2 USABILITY 20
4.1.3 DEVELOPMENT PLATFORM 30
4.1.4 DEPLOYMENT PLATFORM 31
4.1.5 PRICE 32
4.2 DEFINE 3D GAME ENGINE FILTER CRITERIA 33
4.3 CHOOSE 3D GAME ENGINE 33
4.4 INVESTIGATE EACH CHOSEN GAME ENGINE 34
4.4.1 PROGRAMMING LIBRARIES 34
4.4.2 USABILITY 34
4.5 COMPARISON MATRIX 35
4.6 CONCLUSION 36
4.6.1 CATEGORY BY MAIN ASPECTS 36

5 CASE STUDY 37

5.1 DEMO REQUIREMENTS 37
5.2 CHOOSE 3D GAME ENGINE FROM COMPARISON MATRIX 37
5.3 RESULT 38
5.4 FEEDBACK 40

6 CONCLUSION 42

6.1 LIMITATION 42
6.2 FUTURE WORK 43

7 REFERENCES 43

1 Introduction

This thesis focuses on creating a comparison matrix, which will help users pick the
optimal 3D game engine on mobile platforms for their purposes. The thesis
evaluates appropriate comparison criteria with a subset of chosen 3D mobile game
engines. Then, all of the evaluation results will be showed in the comparison matrix.

1.1 Motivation

Nowadays, games are more popular to consumers than the past. Vgsales states that
game industry is growing very fast. The game industry is larger than the movie
industry (Arstechnica, 2007). Since many companies make a high profit from games,
many developers create games.

In order to create a 3D game, implementers need to have various high-level skills
because there are plenty of techniques within 3D games (Eberly, 2006). The
magnitude of techniques used in 3D games for rendering and special effects is high
(Eberly, 2006) . A modern competitive rendering engine for a graphics intensive
game can require several man-years (Epic Games, 2011). A real-time application like
a 3D game also requires numerous optimizations. But, plentiful 3D games are using
the same optimizations and same set of core techniques. Therefore, many
companies offer a game engine, which is system that provides core functionality of a
real‐time 3D game.

3D game engines help game companies reduce their cost, time, and resources, since
a game producer can use ready-made functionalities of the engine. But, there are
many game engines with different features. It is hard to choose the engine for
different purposes. Once company chooses a game engine, their game features are
limited to that engine. Cost of changing engine is extremely high. People who want
to select a 3D game engine need to understand true functionalities of each engine,
but supplier of the engines try to show their engines’ advantages but hide their
engines’ disadvantages. Therefore, a comparison matrix from a rigorous study will
help them to choose their optimal 3D game engine much easier.

1.2 Problem Area

This thesis focuses on developing a comparison matrix for 3D game engines on
mobile platform. Since game frameworks have countless functionalities, the most
important features should be included in comparison criteria. Taxonomy of each
evaluation criterion should also be decided. Additionally, taxonomy should not be
very complicated but provide enough information. Secondly, choosing a 3D game
engine from all game engines is another problem because some game engines are
not worth to compare. For example, game engines that lack important
functionalities should be excluded. Third, there is no document that provides all

evaluation information for a specific engine. We need to investigate the entire set of
selected 3D game engines ourselves (see Chapter 4).

1.3 Task and Objectives

Objective of this thesis is to create a matrix for comparing 3D game engines in
mobile platform. Companies can use the comparison matrix to choose 3D game
engine easier because important information of standout game engines is
investigated. The comparison matrix should be easy to read and has enough
information. In order to create comparison matrix, we decide to do these following
tasks.

1. Comparison criteria selection: There are countless functionalities within
game engines, but these are immoderate information for game engine
evaluator. In order to compress information, the most important 3D game
engine features should be decided. Comparison criteria are rows of
comparison matrix.

2. Comparison criteria taxonomy determination: This step chooses appropriate
taxonomy for each criterion. Taxonomy is shown directly to the reader, so it
should be intuitive information. For example, taxonomy should not be long
text because it will clutter the comparison result.

3. 3D game engine filter criteria selection: Every game engines should be
investigated, but numerous game engines are created. Therefore, we can not
add all game engines into the matrix because the comparison matrix will be
cluttered. As a result, creating game engine filter criteria is a proper method
to handle all game engines equally.

4. Choosing 3D game engine: This task is to study all game engines, then we
screen out many unqualified game engine by using the filter criteria. For
example, if some game engines have very small set of features or no high-
quality games are implemented from those engines, they should not be
evaluated because they are much worse than other game frameworks. These
chosen game engines are columns of comparison matrix.

5. Research each chosen 3D game engine: Many chosen game engines are
investigated in this task. This inspection focuses on chosen comparison
criteria. As a result, the comparison matrix is completed.

Furthermore, before this comparison matrix is used, we will evaluate this
comparison matrix by creating one demo application. Company will give the demo
requirements. Then, comparison matrix will be used to decide optimal 3D game
engine. After that, we will implement demo application using the chosen 3D game
engine. While we use comparison matrix ourselves, we will know benefits and
drawbacks of this comparison matrix.

2 Previous Work

This chapter provides background knowledge for reader. Additionally, the previous
game engine comparison works are explained.

3D Game Engine Comparison

Today, there are 334 game engines listed in DevMaster.net database
(DevMaster.net, 2012). This website contains much information about game
engines, but this information is not separated between mobile and other platforms.
Therefore, information in this website is not specific for handheld platform. Many
functionalities of 3D game engine are different between mobile and other platform
because the performance of Graphics Processing Unit (GPU) in mobile and other
platforms are extremely different. In addition, OpenGL ES and mobile DirectX in
mobile have lower number of functionalities than OpenGL and DirectX. For
example, real-time Ambient Occlusion, 3D graphics algorithm that approximates
dynamic advanced lighting, but this technique in Shiva3D is not available in mobile
device (Tobias Ritschel, 2009).

In the medical field, there is an evaluation research for simulated surgical training
(Stefan Marks, 2007). This paper focuses on choosing 3D game engine to implement
a simulated surgical training system. They evaluate only Unreal Engine, id Tech 4,
and Source Engine because other game engines do not fulfill their requirements.
They choose these engines by the following criteria. First, they neglect game engines
that are in an early development process, not developed, or not maintain anymore.
Secondly, they disregard game engine without sound and other essential features.
Third, they reduce the complexity of implementation by choosing some game
engines, which has an editor. Thus, they do not need to set up other tools or convert
resources from other software. Additionally, they choose editing, content, and
gameplay as comparison criteria, but they explain comparison result in long text.
These long texts do not summarize the result but explain only what they did and
what are the problems of that engine. Therefore, the comparison result of this paper
is hard to use.

The usage of 3D game engine is not limited to game industry, but it can be utilized
for other working field. Mohd Fairuz Shiratuddin uses 3D game engine to teach
Architectural Engineering students instead of Computer-Aided Design and Drafting
(CADD) tools (Mohd Fairuz Shiratuddin, 2007). They choose BuiltITC4, which is
based on C4 Engine. They did not compare many game engines, but they ask some
questions to their students after students use this engine. These following questions
indicate their interests about game engine.

1. Performing tasks is straightforward: World Editor can greatly help 3D virtual
environment designer.

2. Organization of information: Menu layouts, icons, and terms of the engine
should not be unfamiliar for students.

3. Software speed: Since 3D game engine creates real-time application, the
frame rate should be responsive.

4. Software reliability: Software framework should not be crashed while
working.

5. Learning to operate software: This topic is about how easy to learn the
software. The authors believe that 3D game development tools are more
powerful than CADD tools, because game development tools have many more
features such as dynamic lighting, built-in special effects, and visual script
editor.

Seung Seok Noh research about using 3D game engine for 3D entertainment
contents (Seung Seok Noh, 2006). They make comparison table for Quake engine,
Unreal engine, and Jupiter engine but they have only features, weak point, and
masterpiece as comparison criteria.

Game based training is growing rapidly (Dan Fu, 2008). Today, militaries are trained
by simulators (MACEDONIA, 2002). Dan Fu separates evaluation criteria for game
engine technology for training into these following criteria.
1. Native scenario authoring capabilities: Scenario setting is troublesome, if no

scenario editor is provided. Not only, pre-create scenarios are used in military
training, but also unique scenarios for actual frontline battle.

2. Native support for synchronized communications: Even though communication
is not necessary component of training simulation, but this can add team
operation to the training simulator.

3. Cross platform inter-operability: This topic separates in to two parts. First,
source code of the game engine should be accessed either directly, SDK, or API.
Secondly, the game framework should support at least one of Semi-Automated
Forces (SAF) standard such as OneSAF.

4. Capture: This criterion is about an ability to share the event such as
demonstrations, scenarios, or simulation results. These results can be sent either
via video or event logging. Therefore, the receiver can replay these results
anywhere and anytime.

5. Modeled subject matter: Since the game based training focuses on military
simulation, a 3D military model such as soldier and tank is needed.

Additionally, they choose some game engines without providing reasons. Chosen
game engines are Torque Game Builder 2D, Unreal Engine, Game Bryo Element,
Machinima 2.0, VBS1, OLIVE, and BigWorld.

Game engine selection methodology is created by (Panagiotis Petridis, 2010). They
start by defining main comparison criteria, which are audiovisual fidelity, functional
fidelity, composability, accessibility, networking, and heterogeneity. Then, they

break these categories down into many criteria. These following criteria are
methodology for comparing engines in serious games.

1. Audio Visual Fidelity
a. Rendering: These graphics can make same perceptual quality graphics

as real life scene.
i. Texturing

ii. Lighting
iii. Shadows
iv. Special Effects

b. Animation
c. Sound

2. Functional Fidelity
a. Scripting

i. Script
ii. Object Model

b. Supported AI Techniques
i. Collision Detection

ii. Path Finding
iii. Decision Making

c. Physics
i. Basic Physics

ii. Rigid Body
iii. Vehicle Dynamics

3. Composability
a. Import/ Export Content

i. CAD Platforms Supported
ii. Import/ Export Limitations

iii. Content Availability
b. Developer Toolkits

i. SDK/GDK
4. Accessibility

a. Learning Curve
b. Documentation and Support

i. Docs Quality
ii. Technical Support

iii. Community Support
c. Licensing
d. Cost

5. Networking
a. Client Server
b. Peer-to-Peer

6. Heterogeneity
a. Multiplatform Support

They use various taxonomies in comparison criteria such as “YES/NO”,
“Small/Medium/Large”, and full text with description. Chosen game engines are

Quest3D, Blender Engine, Unreal Engine, and Unity Engine. Furthermore, they
create summary chart for every main criteria. In conclusion of the paper, Unreal
Engine surpasses other game engines.

3 Research Problem

Not many academic game engine comparisons have been done. Most of them
compare game engine with specific scenarios such as training, or architectural
design (Dan Fu, 2008) (Mohd Fairuz Shiratuddin, 2007). These objectives are
different from the game application objective, so some of their criteria are altered
from general-purpose game criteria. For example, military 3D model supported
criterion is not important for ordinary game. As a result, some sections of their
comparison table are unusable.

The flaw of these researches is that they mention only some game engines in their
paper, but there are many more game engines than those. Effective comparison
should take all available game engines into account. For example, unmentioned
game engines might perform better than the chosen engine, but the reader does not
know about them.

There is no academic game framework comparison for mobile platform.
Performances of the game engine on various platforms are also different because
they can not implement the same algorithm for every platform. Especially 3D
graphics performance of the mobile platform can not be compared to the Personal
Computer (PC) platform. In addition, the cross platform low-level 3D library, which
is OpenGL or DirectX, is separated from PC API and mobile API.

Comparison matrix for 3D game engine for mobile devices will be useful
contributions because no academic comparison work is done for this. Not only
whole comparison matrix is useful, but comparison criteria themselves are the main
contributions to comparison work also. People can adapt these comparison criteria
to another new 3D game engine. Furthermore, method for choosing game engine is
helpful for other people. We will increase comparison knowledge of the 3D game
engine on mobile platform.

4 Comparison Matrix

In order to create the comparison matrix, we need to define comparison criteria,
choose 3D game engine, and research for capabilities in each 3D game engine.
Comparison matrix’s readers can see the same functionality for every chosen

engine. Therefore, readers can compare game frameworks easily by checking
criteria that they want to know.

4.1 Define comparison criteria

Game engines help game creators to develop a game application faster because
game creator can use implemented technical functionalities and resources in the
game engine (Dan Fu, 2008). Usable features and resources in game engine are
valuable for game developer. Game engine not only helps game implementer create
game faster, but it also improve quality of the game. For example, game engine’s
implementer uses current optimum 3D graphics algorithm for making Ambient
Occlusion. Game creators can use this Ambient Occlusion algorithm on their game
while they do not understand how it works. High quality game engines have
numerous features. The most important functionalities are the most use
components. Game engine technical functionalities are categorized by programming
libraries. For instance, 3D graphics functionalities are embed in 3D graphics library.
In addition, resources in game engine consist of graphics assets and example
projects. Available resources are extremely useful for game creator. For instance,
UDK game engine comes with First Person Shooting (FPS) game project; therefore
game developer can start making FPS game extremely fast. In conclusion,
programming libraries and available resources are comparison criteria.

Additionally, game developers are the main target user of this thesis. Therefore,
usability of game engine is another important comparison criterion. Usability
includes ease of learning, efficiency of use, memorability, error frequency, and
subjective satisfaction (Jakob Nielsen, Prioritizing Web Usability, 2006). 3D game
engine should be intuitive and easy to learn because new game developer can start
implementing game with engine faster. Available resources help game developer
learn the engine faster; so game engine resources criterion is in “ease of learning”
criterion. Tools of 3D game engine can improve efficiency of working process and
also reduce error frequency. Standout 3D game engines have many powerful tools.
These tools can improve workflow and reduce working time. Hence, these tools can
reduce the cost of 3D game. 3D game engine is not the only required component for
developing a 3D game, but implementer needs 3D modeling tools also. Not all of the
3D game engines support all 3D modeling tools. There are many 3D modeling tools.
Some 3D modeling tools are extremely expensive, but some tools are free. Some
companies are expert on specific 3D modeling tools, so they prefer to use game
engine that support for that 3D modeling tools. Since, there are many aspects of 3D
modeling tools, we separate it from other comparison criteria topics. In conclusion,
learning curve, tools, and supported 3d modeling tools are comparison criteria.

For investor point of view, they choose the most worth game engine for them. Cost,
income, and quality of game engine are necessary information for them. Cost of
using game engine is cost and licensing of the game engine itself. This might be the

largest investment of the game. Income of game comes from selling the game or
services. Target customer of game and services can be categorized by deployment
platform. For example, if target customer group is iOS’s users, game should be run
on iOS platform. Furthermore, development platform is also important because
some company has only PC or Mac. So they do not need to pay for extra
development environment. Therefore, price, development platform and deployment
platform are comparison criteria.

All main criteria are programming libraries, tools, learning curve, supported 3D
modeling tools, deployment platform, and price. These criteria will be broken down
to more specific criteria. The most useful comparison criteria are the most use
functionalities of game engines. These criteria’s result of each game engine should
be different; otherwise they are useless comparison criteria. For example, the
capabilities of modify vertex shader and pixel shader are already exist in two main
3D graphics libraries which are OpenGL and DirectX. Therefore, these should not be
comparison criterion.

Some previous comparison works define very specific criterion topics for their
scenario such as interoperability, modeled subject matter and editing (Stefan Marks,
2007) (Dan Fu, 2008). These criteria are useless for other scenario. For example, a
reader of their paper knows that one game engine has very good interoperability,
but they do not know about specific aspect of their interoperability by reading the
comparison result. While reader does not know about detail of the comparison
result, they can not adapt it to their scenario. On the other hand, if they use
“supported Semi-Automated Forces (SAF) format” as comparison criteria, reader
will immediately understand that this criterion is for SAF format only. Additionally,
the taxonomy of the comparison criteria should be more informative than yes or no
if possible. The taxonomy of SAF criterion can be a list of supported SAF format
name for each engine. If the reader wants to use some SAF format, so they will know
which engine is plausible for them.

4.1.1 Programming Libraries

3D game engine is implemented by assembling many programming libraries
together. Common programming library collection for 3D game engine consists of
3D graphics, physics, collision detection, I/O, sound, AI, and network library
(Panagiotis Petridis, 2010). Collision detection is included in physics engines,
because these physics engine simulates real-world physics. Other than these
libraries, modern and powerful game engine embeds more libraries such as special
effect, and video library. These libraries have different capabilities, which help
game developer in various ways. Finally, 3D graphics, physics, sound, AI, network,
special effect, and video libraries are included in programming libraries criterion.

4.1.1.1 3D Graphics

The most visible feature of game is graphics. Therefore graphics is one of the most
important module for game. Unlike 2D graphics, 3D graphics has countless
rendering algorithm from extremely fast to extremely slow. Since, game is
interactive application,
real-time graphics algorithms are suitable for game application. The fastest graphics
techniques that can produce the most beautiful graphics are used in many games.
These techniques are valuable for 3D game engine.

Most mobile devices use OpenGL ES programming library to compute 3D graphics,
thus 3D graphics on mobile phone are limited by OpenGL ES. This means that most
of 3D game engine can do same thing, but major difference is that some engines
have some 3D graphics technique built in with engine. So, users do not have to
implement some techniques by using OpenGL ES that is very complicated.

Most used 3D graphics techniques for 3D game should be available in 3D game
engine. 3D graphics comparison criteria should not be very basic features;
otherwise these criteria can not separate between high quality and low quality game
engine. Most used 3D graphics techniques are implemented in many high quality
games. High quality games prove that some 3D graphics techniques are appropriate
for mobile platform. So, We can find these efficient features by investigating high
quality 3D game on mobile device.

One of the best graphics game on mobile platform is Infinity Blade. Infinity Blade
wins WWDC Apple design awards (WWDC Apple Design Awards, 2011). This game
shows capabilities of 3D game engine and new mobile devices. Infinity Blade’s
implementers optimize everything that they can. They use per pixel specular
lighting for characters with one directional light (Epic Games, 2011), but it is only
one draw call for this because they use optimized bumped specular shader.
Moreover, there is no real time lighting on environment. They use baked lighting
that includes global illumination, ambient occlusion, baked-in normal maps, and
custom painted details. This baked lighting is very fast to compute because it
already preprocesses textures with lightmap. Consequently, high quality 3D
graphics can run on new mobile devices with these graphics techniques.

Figure 4-1 Infinity Blade gameplay screenshot. Real lighting on character and fake lighting on
environment.

Figure 4-2 Lightmap with and without texture.

Figure 4-3 Baked normal with and without texture.

Figure 4-4 Custon modulate with and without texture.

Furthermore, this game is implemented on top of Unreal Engine 3. This 3D graphics
result is quite similar to UDK game engine’s demo application, which is Epic Citadel.
For this demo, they use parallax mapping and normal mapping on different models
(Tschida, 2010). For lighting, they use Global Illumination preprocessing technique
to make realistic light in the scene. Moreover, implementers create reflective marble
surfaces and cobblestone roads effect by using dynamic specular lighting with
texture masks technique. Environment mapping technique is used to create
reflection floor effect. This demo does not have any characters but they have
dynamic movement trees, which is possible by implementing vertex deformation
and skeletal animation. Additionally, lens flares and light coronas are added to this
demo.

Figure 4-5 Parallax mapping and normal mapping with lens flares and light coronas in Epic Citadel.

Figure 4-6 Reflective floor and reflective marble surface on statue.

After investigating high-level 3D graphics game on mobile devices, 3D graphics
techniques that are appropriate and fast enough for mobile devices include Bump
Mapping, Normal Mapping, Parallax Mapping, Static Global Illumination, and
Ambient Occlusion. As we stated before, all of these techniques can be implemented
on OpenGL ES, but some techniques need lots of work to be done. So, it is worthy to
have these techniques ready in 3D game engine. In conclusion, each of these 3D
graphics technique is an evaluation criterion. The following are evaluation criteria
specification.

Bump Mapping Value: “o” = yes, “x” = no
Normal Mapping Value: “o” = yes, “x” = no
Parallax Mapping Value: “o” = yes, “x” = no
Global Illumination Value: “o” = yes, “x” = no
Ambient Occlusion Value: “o” = yes, “x” = no

4.1.1.2 3D Physics

3D Physics create dynamic object in 3D world. It simulates real world physics into
3D virtual world. Additionally, it needs to calculate force and collision detection of
each 3D model. There are so many types of object material in real world like rubber,
metal, gas, fluid, cloth, and glass. These materials’ effect can be achieved by different
3D graphics algorithm. Therefore, physics library can not simulate all of material, so
physics library needs to choose which material they will support. For example,
rubber bounce effect can be simulated by Soft Body technique (Miao Song, A
framework for dynamic deformation of uniform elastic two-layer 2D and 3D objects
in OpenGL, 2008). In addition, physics engine is very important to simulate real
world effects for 3D game engine. For example, when bomb explodes, object around

should be diffracted. Physics feature is extremely complicated. Therefore so many
3D game engines use other Physics Engine to achieve these dynamic simulations.
There are many different algorithms for different physics library.

There are many 3D physics engines, but PhysX, Havok, Open Dynamics engine
(ODE), Newton Game Dynamics, and Bullet are popular physics engine (Wikipedia,
2011). So, information for this evaluation criterion should be name of the physics
engine that they use. Thus, name of physics engine can show many different
capabilities about dynamics object in each 3D game engine because each physics
engine has different set of features. But overall result PhysX is the best physic
engine compared to other engine (Adrian Boeing, 2007). Thus, 3D game engines that
use PhysX will be marked as green color because it has an advantage for them to use
PhysX physics engine. Some 3D game engines that implement their own physics
engine will be marked as “o”. Then, 3D game engine that does not use physics
library will be marked as “x”.

Figure 4-7 This scene includes thousands of dynamic pipes using PhysX physics engine.

4.1.1.3 Artificial Intelligence

Artificial Intelligence (AI) is important for most of the games because monsters or
computer’s players need to use AI in order to fight with human automatically, but
there is no common AI that can be used with most of the game because there are
countless types of game. Additionally, some 3D game engines implement AI about

path finding and character behavior. This AI technique is mostly used for some
game genre like Role-Playing Game (RPG), First Person Shooter (FPS), and Real
Time Strategy (RTS). Countess AI techniques can be used for game depending on
gameplay itself. There is no main category of AI techniques that cover all AI
algorithms for game. Consequently, information of this evaluation criterion is “o” for
yes or “x” for no.

4.1.1.4 Network

Network in this case is not the network to browse Internet but it is network to
communicate between each game client. Network library is required in multiple
device multi-player game because each multi-player games client needs to
communicate with other client. There are many network models of multiplayer
game, but the most complicated network model for multiplayer game is massive
multiplayer online game (MMO) because numerous people can play on the same
virtual world at the same time. For example, World of Warcraft is one of the most
successful MMO game. It can support more than 1 million concurrent users
(Schramm, 2008). Consequently, information of this evaluation criterion is “o” for
yes, “x” for no, and “MMO” for network library that support MMO game.
Additionally, MMO supported library will be marked with green color.

Figure 4-8 This image shows one event in World of Warcraft games. There are thousands of characters,
which are real human playing this game in same place.

4.1.1.5 Particle Effects

Particle effects are special technique to reproduce effect from real world. By using
particle effect, designer can copy effect like fire, trails, explosion, dust, fog, and cloud
conveniently. Numerous particles can be created from set of emitters, so particle
effects mimic behavior of some phenomenon like dust, fog, and cloud. Particle
effects can also copy more advanced effects like explosion with many configurations.
Consequently, information of this evaluation criterion is “o” for yes or “x” for no.

Figure 4-9 This is explosion effect created from many particle effects. Six images on top left are used for
each billboard particle in this explosion

4.1.1.6 3D Audio

3D audio is different from normal audio because it has 3D position in 3D world. So,
it is like real world that every sound has its own position. If players are near to the
audio source, the sound will be louder. Only 3D sound position feature is not good
enough for advanced game engine. So, some 3D game engines use powerful audio
library in order to edit sound and optimize performance. Moreover, some 3D game
engines support 2.0, 4.0, and 5.1 audio channels, therefore player can hear
surrounded sound. Performance of real-time application like game is very
important, so compression and optimization of audio source is necessary.
Furthermore, streaming audio from Internet is another possible feature for audio
library also. As a result, information of this evaluation criterion is name of the audio
engine, “o” for yes, or “x” for no.

Figure 4-10 This is scene in Unity3D editor, which is use fmod library. Each speaker icon is position of
one sound in virtual world.

4.1.1.7 3D Video

3D video is not like normal video at all because 3D video can be played on 3D
texture. So, texture can move and rotate with the 3D model. Additionally, game
implementer can use shader with video texture [Figure 4-11]. There is no separated
3D video engine but there are differences between video compression algorithms.
Video compression algorithm is very critical issue because video usually is very
large file. All game engines need video compression algorithm that can compress
video to small size but still preserve high video quality. So, information of this
evaluation criterion is name of video codec, “o” for yes, or “x” for no.

Figure 4-11 This is one example of using video texture and pixel shader in one scene.

4.1.2 Usability

Usability includes ease of learning, efficiency of use, memorability, error frequency,
and subjective satisfaction (Jakob Nielsen, Prioritizing Web Usability, 2006). 3D
game engine should be easy to learn because new developer can start working with

the engine faster. Memorability is similar to learning, because users need to know
the system and remember engine’s user interface before they can use it. Tools of 3D
game engine can improve efficiency of use and also reduce error frequency. High-
end 3D game engine has many tools. These tools can improve workflow and reduce
working time. So, these tools can reduce the cost of 3D game. Not only 3D game
engine is required to develop new game, but implementer needs 3D modeling tools
also. Not all of the 3D game engines support all 3D modeling tools. In addition, these
3D modeling tools are expensive so it is one of the overall investments of game. In
conclusion, ease of learning, and efficiency of use are main evaluation criteria for
usability.

4.1.2.1 Ease of learning

Ease of learning does not have direct indicator to measure. One way to measure this
criterion is to investigate how developer learn game engine. There are many
resources that created from the owner for user such as documentation, tutorials,
and examples. These resources are necessary for game developer; otherwise game
developer can not understand the engine. Not only 3D game engine’s creator can
create tutorials and examples, but game engine’s user can make them too.
Therefore, community of each 3D game engine is very important also. For examples,
Unity3D engine has many websites teaching Unity3D. So, there are much more
learning resources. These communities means that many people are using the
engine, so 3D game engine’s user can ask a question to them. Moreover, Unity3D
also has asset store which is market place for Unity project. These stores extremely
help developers, because they can buy the codes and assets, which already built on
Unity3D game engine. Each of these website has their own community. All good 3D
game engines always have their tutorials, examples, and communities. We decide to
show “1” to “5” indicate the quality and amount of tutorials, examples, and
communities.

Additionally, each programming language has different learning curve, but
sometimes programmers already understand that programming language, that
engine will be easy for them to implement. So, taxonomy of programming language
criteria should be name of programming language, because this criterion depends
on comparison matrix’s user. Furthermore, if user has a problem working with
engine, the best way to solve the problem is to ask the engine’s support. Support
from 3D game engine is beneficial for user, so it should be one of our evaluation
criteria. Most of the engines do not have these features without pay more money.
Therefore, we indicate as “o” for has support and “x” for no support.

4.1.2.2 Efficiency of Use

Efficiency of use is the next step from learning. Well-designed game engine should
provide efficient workflow; because game developers have to work with workflow
designed by game engine’s creator. Game engine’s workflow is defined by set of
tools. This is not whole workflow, but it defines a part of whole workflow. Not only
efficient workflow can reduce the working time, but well-designed tools can also
reduce working time. Most of the time, game development workflow needs to use
3D modeling tools in order to create 3D resources. In summary, tools and supported
3D modeling tools are main criteria of this topic.

4.1.2.2.1 Tools

3D game engine is not only set of library but it also has set of development tools.
Basically, all resource files for 3D game engine should be editable by development
tools because designers can see the real result in the 3D game engine. So, designer
does not need to export and import 3D assets to 3D game engine so many times.
Consequently, development tools can optimize workflow of the 3D game
development. Moreover, programmers need some tools for development such as
programming editor, debugger, and profiler. There are many types of 3D resources
such as map, animation, material, AI, GUI, particle effect, cut scene, and audio. So,
each one of these 3D resources is one editor. But these editors might combine into
few tools in 3D game engine because it is easier to work with few applications.

4.1.2.2.1.1 Map Editor

Map editor is used the most because it combines 3D resource together in order to
create 3D world. Game player will play within 3D world all the time. So 3D world
should be very beautiful. Designer needs to make beautiful scene, but it is very hard
to create game compatible 3D world from 3D modeling tools, because 3D modeling
tools are designed for movies industry. 3D world for movie industry is totally
different from 3D world in game. Game is real-time application with more than 30
frames per second, but 3D movies can pre render every frame with 11.5 hours per
frame in “Cars 2” (Terdiman, 2011). All 3D game engine do not work closely with 3D
modeling tools, so some settings of 3D world in 3D game engine might be different
from 3D modeling tools. This causes the different in 3D world after import scene.
Furthermore, if 3D game engine does not have map editor, it will need to export and
import so many times because designer cannot see the actual result from 3D
modeling tools. The problem is that the 3D world might be different result on many
applications. If 3D game engine has map editor, designer can change some small
thing so fast. Additionally, there is some technique that should not import 3D model
directly like terrain. Terrain can be created by 2D gray image, so there is no need to
save so large 3D model for terrain. If map editor tool can create terrain by 2D gray
image, it will reduce the size of 3D game. Consequently, information of this

evaluation criterion is “o” for game engine that has map editor or “x” for game
engine without map editor.

Figure 4-12 This is map editor in UDK engine.

4.1.2.2.1.2 Animation Editor

Animation asset can be created by 3D modeling tools, but it might not be perfect
because settings of 3D modeling tools and 3D game engine might not be the same.
Moreover, there are some extra features of each 3D game engine that 3D modeling
tools cannot do. For example, character animation can be linked with 3D physics, so
character can interact with 3d object by using 3D animation. Furthermore, 3D
modeling tools do not have some optimizations that 3D game engine can do. In
conclusion, animation editor inside 3D game engine is the best solutions for create
animation for 3D game engine. Consequently, information of this evaluation
criterion is “o” for game engine that has animation editor or “x” for game engine
without animation editor.

Figure 4-13 This is animation editor in UDK engine.

4.1.2.2.1.3 Material Editor

There are countless shaders because shader is programmable. But shader codes are
different between each 3D game engine and also different between 3D game engine
and 3D modeling tool. So designer cannot import shader from 3D modeling tool to
3D game engine directly. Additionally, material editor can show the result of the
shader. Therefore, designer can create specific effect so easily. Some 3D game
engine has many ready-made materials; so game designer can use it without writing
any code. Furthermore, some game engine like UDK has complete real time visual
interface for editing material, thus it is much easier for designer. Consequently,
information of this evaluation criterion is “o” for game engine that has material
editor or “x” for game engine without material editor.

Figure 4-14 This is material editor in UDK engine. User can use visual scripting editor like this instead of
writing shader code.

4.1.2.2.1.4 AI Editor

Most used AI technique is a navigation system, so this system is built-in technique
for some 3D game engines. AI editor can help designer to put waypoint or spawn
point of AI character. After game designers set waypoint and spawn point in the 3D
game engine, they can run the game to test AI very easy. Consequently, information
of this evaluation criterion is “o” for game engine that has AI editor or “x” for game
engine without AI editor.

Figure 4-15 This scene shows flocking of enemy characters from UDK engine.

4.1.2.2.1.5 GUI Editor

Graphics user interface (GUI) is a 2D user interface. Even though the game is 3D, but
countless 3D game has 2D user interface. It uses for main control of the application
such as menu screen and options screen. GUI editor helps designers to make GUI
because they can put each control wherever they want on the screen. It includes
many ready-made GUI control like slide bar, checkbox, and button, so game
developer can use them very conveniently. Benefit of these ready-made GUI is that
users are familiar with these controls. Consequently, information of this evaluation
criterion is “o” for game engine that has GUI editor or “x” for game engine without
GUI editor.

Figure 4-16 This is Shiva 3D editor, which has GUI editor features.

4.1.2.2.1.6 Particle Effect Editor

Particle effect is quite complicated because it combines material, emitter, and
particle together. Additionally, some advanced particle effects need to combine
many different particle effect in order to create high-level effect. There are so many
parameters for each particle effect, which are time based. It use fast graphics
algorithm with thousands of particles. It can imitate the slow effect with faster
computation time. So, real-time result of particle effect is very necessary for creating
complicated effect. Consequently, information of this evaluation criterion is “o” for
game engine that has particle effect editor or “x” for game engine without particle
effect editor.

Figure 4-17 Particle effect editor from UDK engine. Texts on the right show parameter of current effect.
Graph on bottom right show value of each parameter within time range. Left top image is the real-time
render of current particle effect.

4.1.2.2.1.7 Cut Scene Editor

Cut scene editor is cinematic tool for 3D game engine. Designer can create cut scene
very easily by using their game resources because cut scene will render the 3D
world in real-time. Usual map editor can organize cut scene as well, but it needs a lot
more work to create cut scene from map editor without cut scene feature. Cut scene
editor controls cameras, 3D models, 3D animations, particle effects, and pixel
shaders based on time and key frame. Therefore, real-time movie scene can create
interactive movie scene. Moreover, editor can also pre render the scene to video file.
So, movie scene can be created beautiful and complicated scene from PC, which is
more powerful than mobile devices. Then, game plays the pre-render movie on
mobile devices instead of renders the scene in real-time. Information of this
evaluation criterion is “o” for game engine that has cut scene editor or “x” for game
engine without cut scene editor.

Figure 4-18 This is cut scene editor of UDK engine.

4.1.2.2.1.8 Audio Editor

Audio editor is not only 3D positioning audio on the scene, audio editor also helps
designer to adjust ranges of sound in 3D world. This editor helps a designer to edit
attenuation curves. In addition, the editor can modify or add sound effect to original
audio file. For example, hard surface reflects sound, so designer can add echo effect
to the sound without changing the original audio source. Information of this
evaluation criterion is “o” for game engine that has audio editor or “x” for game
engine without audio editor.

Figure 4-19 This is audio editor of Unity3D engine

4.1.2.2.1.9 Programming Editor

Programming editor is mostly used by programmer because the editor is the main
editor that programmer can add a gameplay logic and an event. Nowadays, there are
many powerful editors like Eclipse, NetBeans, Visual Studio, XCode, and Mono
Develop. Some 3D game engines use these programming editor, but some engine
use their own programming editor. For example, UDK engine has Unreal Kismet,
which is a visual scripting editor, but it can do only basic game logic. If
implementers need to create complicated logic, they have to use Unreal Script with
other programming editor. There are many advantages and disadvantages for each
programming editor. We can not judge the best editor because advantages and
disadvantages depend on user’s skill also. Information of this evaluation criterion
will be name of programming editor, and “o” for in house editor.

Figure 4-20 This is Unreal Kismet, visual scripting editor of UDK engine.

4.1.2.2.1.10 Debugger

Debugger usually is combined with programming editor, but debugger is a very
useful feature of programming editor. It should be separated evaluation criteria.
This editor helps programmers a lot while developing an application. The debugger
can stop the application at a specific line of code and programmers can check all the
current value at run time. So, programmers know the source of the bug and they can
fix bug efficiently. Information of this evaluation criterion is “o” for game engine that
has debugger or “x” for game engine without debugger.

Figure 4-21 This Mono develop is use as debugger for Unity3D engine.

4.1.2.2.1.11 Profiler

Profiler is really needed for real-time game because everything in game affect frame
rate of the application. The hardest part of 3D game is to optimize graphics and
logic, such that user can play the best 3D graphics for their devices. Profiler shows
bottleneck calculation of the game, so implementers know the problem, and then
game developers can fix it. Otherwise, this bottleneck would be very hard to
investigate through whole computation of the game. Information of this evaluation
criterion is “o” for game engine that has profiler or “x” for game engine without
profiler.

Figure 4-22 This is profiler of Unity3D engine.

4.1.2.2.2 Supported 3D Modeling Tools

3D modeling tools are designed for creating 3D animation movies. So it has all the
features to make movies. These tools can make 3D animation movies from scratch,
so they are capable of making 3D model, 3D animation, 3D effect, particle effect, and
render movies. 3D game does not use all features from the tools.

The most famous 3D modeling tools for 3D game are MAYA, 3D Studio MAX,
Blender, and SoftImage (XSI). Not every 3D game engine supports all of these tools.
It is too complicated to show every detail of these tools with 3D game engine, so we
will separate each 3D modeling tools to one of evaluation criteria. Most of 3D
designers are specialized with only one 3D modeling tool, so it is worthy for them to
know about which 3D game engine they can work with. So, information of this
evaluation criterion is “o” for yes or “x” for no.

4.1.3 Development Platform
The main computer OS are Windows, OSX, and Linux. Market share of Windows,
Mac OSX, and Linux are 68.74%, 7.78%, and 6.81% (Zachte, 2012). Other than these
three platforms have less than one percent market share. Some game engine

support iOS platform, but cannot run game engine on Mac OSX. These engines have
disadvantage, because all application that can publish on Apple store must use Mac
OSX. Windows, Mac OSX, and Linux are evaluation criteria. Information of this
evaluation criterion is “o” for yes or “x” for no.

4.1.4 Deployment platform

This report focuses on mobile platform, so the main mobile platforms are the most
important. Top four mobile operating system (OS) are SymbianOS, iOS, Android, and
Blackberry OS [Figure 4-23]. These four mobile OS cover more than 80 percent of all
mobile OS in the world, but not all of these platforms are suitable for 3D game.
(Techcrunch, 2011) states that Nokia will make Windows phone instead of Symbian
phone, so SymbianOS does not have competitive future. Additionally, first
Blackberry phone is released on year 2002, which is very fast compared to iOS and
Android, but number of available applications on Blackberry OS is much less than
iOS and Android [Figure 4-24]. This statistics shows that not many games are
developed for Blackberry OS, and not many Blackberry OS’s users play game.
Additionally, Windows Phone 7 is new and powerful. Windows Phone 7
Marketplace reaches 30000 applications within 11 months [Figure 4-25]. Windows
Phone 7 has more applications than Blackberry OS within one year, so this platform
can be one of the best mobile platforms. It cannot compare with iOS and Android
today, which has more than 200000 applications. As a result, Android, and iOS are
the most suitable platform for game application. We will show the entire gaming
platform because some developers might want different platforms. But if which 3D
game engine has both iOS and Android, they will be highlight with green color.
Otherwise they will be highlight with red color.

Figure 4-23 This global statistics shows that top 4 mobile OS are SymbianOS, iOS, Android, and
Blackberry OS. (StatCounter, 2011)

Figure 4-24 This statistics shows number of game application available for each mobile OS. (DigitalBuzz,
2011)

Figure 4-25 This graph shows that number of application in Windows Phone 7 is growing rapidly. It
reached 30000 applications in 11 months since October 2010. (wp7applist, 2011)

4.1.5 Price

License of 3D game engine is like other software package, which has open source,
free, price per year, price without royalty and price with royalty. So, price or type of
license should be in comparison matrix. Information of this evaluation criterion is
“opensource” for open source game engine, price for proprietary without royalty
fee, price per year for year subscription, or price with royalty fee.

4.2 Define 3D game engine filter criteria

More and more games are successful these days. Those games use different tools
and libraries in order to create game, because there are plenty of powerful
programming libraries. Game developers can use these libraries to speed up their
work, but the most appropriate tool for creating game is game engine, because these
engines are designed for game application. This paper is interested on 3D mobile
game, so we can remove all 2D game engine and non-mobile game engine.

Furthermore, 3D games use so many resources on mobile device, so only new
mobile phone models can run high quality 3D games. Therefore, we will focus on
only successful smart phone operating systems, which are SymbianOS, Blackberry
OS, iOS, and Android [Figure 4-23]. Nokia changes their new phone to Windows
phone platform (Techcrunch, 2011); therefore not many Symbian phones will be
released in the future. Consequently, Symbian OS is not appropriate platform for 3D
game. Additionally, number of Windows Phone 7 applications is growing rapidly
[Figure 4-25]. So 3D game engine should support at least one of these four
platforms, which are Blackberry OS, Windows Phone 7, iOS, and Android.

Our goal is to provide usable comparison result, because user wants to know which
game engine that they will invest on. Their chosen game engine will affect the
overall result of their games. We can prove that 3D game engine is valuable by
checking number of released mobile game from that engine. If those games are too
low quality and not many of them on mobile devices, that 3D game engine will be
removed from our comparison matrix. If game engine has 3D game on mobile
devices less than 3 games, it means that no one use it. As a result, it lacks of
community. About open source 3D game engine, if the latest update is more than
one year, it shows that it lacks of developer community. Since this game engine does
not update new features. It will lose other game engine, because computer science is
growing rapidly. As a result, 2D, non-mobile, mobile without successful platform,
low quality, and tiny community game engines are inappropriate game engines for
comparison.

4.3 Choose 3D game engine

Before we can choose 3D game engine, we should find existing 3D game engine list
first. There are 345 game engine in Devmaster game engine database
(devmaster.net, 2011), 336 game engines in Moddb (DesuraNET Pty Ltd. All Rights
Reserved., 2012), and more than 150 game engines in Wikipedia (Wikipedia, 2012).
After we use obvious filter like non-mobile, and non-3D, game engines passed both
criteria are Unity, Raydium, Linderdaum Engine, ShiVa Engine, Esenthel Engine,
Unreal Development Kit, GameStart, App Game Kit, DX Studio, SIO2, Ogre3D,
Unigine, Sunburn, oolongengine, jPCT, and Marmalade. All of these game engines,
Linderdaum Engine is not release full version, therefore this game engine will not be

compared. All chosen game engine other than Linderdaum Engine pass all the
filtered criteria.

4.4 Investigate Each Chosen Game Engine

This section investigates and evaluates every comparison criteria with every chosen
game engine. Most of these information are available in game engine’s website. They
show some features in their demo project. We consider only features that are
officially built within game engine. Programming libraries, usability, development
platform, deployment platform, and price are main criteria that we will explain.
Since all official game engine websites indicate development platform, deployment
platform, and price, we explain only programming libraries and usability.

4.4.1 Programming Libraries
This topic has two main categories, which are 3D graphics and other libraries. For
all libraries other than 3D graphics library, we can retrieve information from game
engine’s website. Some information for 3D graphics is tricky to find, because they
are small but important features. For example, Shiva3D support ambient occlusion
but not support for mobile.

4.4.2 Usability
Ease of learning and efficiency of use are main aspect for this topic. About ease of
learning, it includes tutorial, example, community, programming language, and
technical support. There is no direct information about how many tutorials,
examples, and communities. We evaluate them by check number and quality of
tutorials, examples, and communities that can access without paying more money.
Game engine’s creator provides mostly tutorials. Communities provide few of them.
Examples are available from game engine’s creator and communities. Number of
active forums, website, and asset store are required to determine how many
communities. Programming language and technical support information are
available from their website. We investigate tools topic in efficiency of use by
checking all of each game engine’s tools. Most of game engine’s tools are embedded
in one application. Each game engine’s application has various editors.

4.5 Comparison Matrix

Figure 4-26 Comparison Matrix

Green color and red color show big advantage and big disadvantage of game engine
in that criterion. For example, there are only UDK and Unigine game engine that has
static global illumination, so they are marked with green color. Raydium,
oolongengine, and jPCT do not have many tools, so they are marked with red color.

4.6 Conclusion

Comparison matrix shows that there is no best game engine for all aspect. Each
game engine has their advantages and disadvantages. We separate winner game
engine to two main categories. First, choosing game engine by the best game engine
for each main aspect. Second, clarify the best game engine for each game genre.

4.6.1 Category by main aspects

As discussed before, the main aspect of 3D game engines are consist of
programming libraries, usability, deployment platform, and price. The most
important programming library is 3D graphics, this is only requiring library for 3D
game engine. Usability divides into ease of learning and efficiency of use. As a result,
3D graphics, other programming libraries, ease of learning, efficiency of use,
deployment platform, and price are the main evaluation aspect of 3D game engine.

4.6.1.1 3D graphics

UDK is the winner of this aspect. This game engine has all listed 3D graphics
features in comparison matrix. This game engine makes the most beautiful graphics
games in mobile devices, because UDK can bake global illumination to texture.

4.6.1.2 Other programming libraries except 3D graphics
Winner of this aspect also goes to UDK, it uses one of the best programming libraries
for each criteria such as PhysX, fmod, and Bink.

4.6.1.3 Ease of learning
The winner of this aspect is Unity3D, because it has the best communities. Tutorial
and examples from the game engine cannot compare to large communities.
Communities are growing extremely fast compared to tutorial and examples that
are provided by engine’s creator. These communities made many code snippets and
third party libraries. These extra code and framework really helps people learn the
platform much faster. Moreover, since there are many people in many communities,
some people will help answer question for beginner. Furthermore, Unity3D has
asset store, which add even more tutorials and examples. Beginner can learn
Unity3D platform fastest, because of these reasons.

4.6.1.4 Efficiency of use
There are many 3D game engines that can be the best of this aspect. UDK which is
supports most of the criteria cannot be winner, because it doesn’t have profiler.
Profiler is very important for analyze and optimize the game. There are many
candidates for this aspect. They also have their advantages and disadvantages.
Therefore, not one of all game engines are the best for this aspect.

4.6.1.5 Deployment platform
Obviously, Shiva3D is the best in this aspect. Shiva3D’s game can be deployed in
more than ten platforms.

4.6.1.6 Price
The best game engine for “price” aspect is open source game engine. There are four
game engines in comparison matrix, which are Ogre3D, Raydium, oolongengine, and
jPCT.

5 Case Study

5.1 Demo Requirements

First, we receive goal of the app. The company wants 3D demo application on iOS
and Android, which is capable to show features about airline search. They want
application with high quality graphics and intuitive, because they want to impress
their client. This project should be delivered in 2 weeks.

After we receive requirements, we design this application as 3D globe. This globe
shows location of countries and airports around the world. Then user can select
each airport to see information of each airport, which includes name, images, prices,
and path to other airports. User can also filter air tickets by price and destination.

5.2 Choose 3d Game Engine from Comparison Matrix

Some criteria in comparison matrix that match with requirements are deployment
platform and 3D graphics. Company wants both iOS and Android, so we can remove
all game engines that do not support both platforms. We have 5 game engines left
include Unity3D, Shiva3D, Marmalade, Esenthel Engine, and SIO2. With these
engines Unity3D is the best engine for 3D graphics because only Unity3D can apply
static global illumination to the scene. Since we need to implement this application
within 2 weeks, ease of learning criterion is very important. Two weeks is very short
time. Unity3D is also the best game engine in this criterion. Therefore, we choose
Unity3D to implement this demo application.

5.3 Result

Figure 5-1 globe application with selecting one airport

Figure 5-2 Globe application with filtered path

Figure 5-3 These two images show all travel routes for Tigerairways and current location

Figure 5-4 These images show how native UI works with Unity3D scene.

Figure 5-5 These images show native map view that can show all Tigerairways's routes

5.4 Feedback

This demo application is a utility application more than game application. So, User
interface is very important. We underestimate graphical user interface (GUI) editor
comparison criterion. Unity3D does not have user GUI editor. Moreover, it does not
support GUI for touchscreen like scroll view. It has only scroll view for mouse input.
We have to implement touch scroll view by ourselves. GUI in Unity3d doesn’t
automatically resize depends on screen size, so we have to scale it by ourselves. In
addition, Zero point of GUI is on bottom-left, which is different from top-left for
touch point. This is the reason why top selling product in assets store is GUI editor.

Figure 5-6 NGUI is top selling product in Unity3D asset store.

Since we do not have more budgets for purchase new component. It is much easier
to use native user interface from iOS. We can use native user interface, because
Unity3D can export to XCode project, which we can modify. There is no official
support from Unity3D’s owner. We manage to make it work by using plugin for
Unity3D. Additionally, we can use all native UI such as map view, scrollable view,
segmented view, tab bar, and etc.

3D graphics features of Unity3d are very easy to use. For example, Unity3D includes
optimized mobile normal map diffuse shader in their editor. Furthermore, Unity3D
editor can make normal map texture from image within editor. Unity3D takes few
minutes to compile and run on actual device, but it has Unity remote application on
device. So, game developer can see and try the application within few seconds. This
application extremely improves workflow.

About ease of learning, as we think Unity3D is very easy to learn. There are so many
examples, code snippet, and tutorials. First of all, there is one project in asset store
that provides globe with map and geo location script [Figure 5-4]. We do not have
extra money, and it does not very complicate. So we decide to implement it by
ourselves. There are many articles about how to calculate position on sphere from
latitude and longitude. They are not the best, because we still need to adjust it in
Unity3D project. We found one article that include Unity3D project for free.
Therefore, it is very easy to implement. This reminds me how important of large
community.

Figure 5-7 Geolocation package in Unity3D asset store

6 Conclusion

This thesis create comparison matrix for 3D mobile game engine. Since each game
engine has many different features, we achieve our goal to help game developers
pick 3D game engine that is the most suitable for them. This comparison matrix
extracts correct features from entire game engines. Game developers can see the
advantages and disadvantages of each 3D game engine very easily. Our case study
shows that our chosen game engine has the same advantages and disadvantages
information with comparison matrix information. For instance, Unity3D engine is
bad at graphical user interface (GUI) in comparison matrix. After we tried Unity3D
engine, we realized that GUI system is really bad in Unity3D engine.

We take most of the game engines in to account in this thesis. This comparison
matrix shows general information of game engines. Those criteria are not specific
information for some application.

6.1 Limitation

Since we have limited time, we cannot evaluate all game engines on the market. This
thesis focuses on 3D and mobile game engine, so we exclude all 2D only game engine
and non-mobile game engine.

Since game engine is software framework, their owners always improve their
system. So, it is not possible to have only one comparison matrix for long time, but
comparison criteria are still useful for future game engine.

6.2 Future Work

We realized one problem about our comparison matrix. Since we are making
comparison matrix for mobile platform. We should change “GUI Editor” criterion to
“Mobile GUI Editor” because there are so many different features between mobile
GUI and desktop GUI. For example, user can only scroll the scrollable view with
roller on mouse or click at scroll bar, but user can scroll the scrollable view by touch
and drag on the actual content of the view. This means that scrollable view in
desktop will not usable for mobile platform.

We need to summarize the result, so we can not have all details of every game
engine. Otherwise comparison criteria will be very large; therefore it will be very
hard to read. In the future, we can make search application for mobile game engine.
This application will have search and filter features. These features help game
developer to choose their best game engine easier. For example, developers can
choose all game engines that have map editor, PhysX, and price less than 10000US
dollar. Furthermore, this application can have and easy way to add information. We
can provide update information for comparing game engine.

7 References

Zachte, E. (2012). Wikimedia. Retrieved from Wikimedia Traffic Analysis Report -
Operating Systems: http://stats.wikimedia.org/archive/squid_reports/2012-
08/SquidReportOperatingSystems.htm
WWDC Apple Design Awards. (2011). Retrieved from https://developer.apple.com:
https://developer.apple.com/wwdc/ada/
Wikipedia. (2012). List of game engines. Retrieved from
https://secure.wikimedia.org/wikipedia/en/wiki/List_of_game_engines
Wikipedia. (2011). Physics engine. Retrieved from
https://secure.wikimedia.org/wikipedia/en/wiki/Physics_engine
wp7applist. (2011). Apps Stats. Retrieved from http://wp7applist.com/stats/
Xiaoting Wang, X. M. (2010). A Script-based 3D Game Engine—WGE. Biomedical
Engineering and Computer Science (ICBECS) .
vgsales. (2008). vgsales.wikia.com. Retrieved from vgsales.wikia.com:
http://vgsales.wikia.com/wiki/Video_game_industry
Abdullah Al Mazed, M. H. (2005). INCREASING PERFORMANCE OF 3D GAMES USING
PRECALCULATION. 9th International Multitopic Conference, IEEE INMIC 2005 .

Adrian Boeing, T. B. (2007). Evaluation of real-time physics simulation systems.
Proceedings of the 5th international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia .
Arstechnica. (2007). Arstechnica. Retrieved 2007, from arstechnica.com:
http://arstechnica.com/gaming/news/2007/08/gaming-to-surge-50-percent-in-
four-years-possibly.ars
Blow, J. (2004). Game Development: Harder Than You Think. Queue - Game
Development .
Eberly, D. H. (2006). 3D Game Engine Design, Second Edition: A Practical Approach to
Real-Time Computer Graphics. Morgan Kaufmann Publishers.
Epic Games. (2011). Unreal Engine 3 Features. Retrieved from
http://unrealengine.com/features
Epic Games. (2011). The Art of Infinity Blade. Retrieved from
www.unrealengine.com:
http://www.unrealengine.com/files/downloads/GDC2011_IB_BlackMagic_Final.pdf
Dan Fu, R. J. (2008). Evaluating Game Technologies for Training. Aerospace
Conference, 2008 IEEE .
devmaster.net. (2011). DevMaster's Game and Graphics Engines Database. Retrieved
from http://www.devmaster.net/engines/
DevMaster.net. (2012). DevMaster's Game and Graphics Engines Database. Retrieved
from http://www.devmaster.net/engines/
DesuraNET Pty Ltd. All Rights Reserved. (2012). MODDB. Retrieved from
http://www.moddb.com/engines
Dieter Fritsch, M. K. (2004). Visualization Using Game Engines. ISPRS , 621-625.
DigitalBuzz. (2011). Infographic: Mobile Gaming Statistics 2011 . Retrieved from
http://www.digitalbuzzblog.com/infographic-mobile-gaming-statistics-stats-2011/
Donald Mustard, G. M. (2011). The Art of Infinity Blade. Retrieved from
www.unrealengine.com:
http://www.unrealengine.com/files/downloads/GDC2011_IB_BlackMagic_Final.pdf
Frederick M. Weinhaus, V. D. (1997). Texture mapping 3D models of real-world
scenes. ACM Computing Surveys (CSUR) .
Jakob Nielsen, H. (2006). Prioritizing Web Usability. New Riders Press, Berkeley CA .
Jakob Nielsen, H. (2006). Prioritizing Web Usability. New Riders.
John M . Airey, J. H. (1990). Towards Image Realism with Interactive Update Rates in
Complex Virtual Building Environments. I3D '90 Proceedings of the 1990 symposium
on Interactive 3D graphics , 41-50.
John Rohlf, J. H. (1994). IRIS performer: a high performance multiprocessing toolkit
for real-time 3D graphics. SIGGRAPH '94 Proceedings of the 21st annual conference
on Computer graphics and interactive techniques .
MACEDONIA, M. (2002). Games Soldiers Play. Spectrum, IEEE , 39 (3), 32 - 37 .
Miao Song, P. G. (2008). A framework for dynamic deformation of uniform elastic
two-layer 2D and 3D objects in OpenGL. C3S2E '08 Proceedings of the 2008 C3S2E
conference .
Miao Song, P. G. (2008). A framework for dynamic deformation of uniform elastic
two-layer 2D and 3D objects in OpenGL. C3S2E '08 Proceedings of the 2008 C3S2E
conference .

Ming-Hsin Tsai, C.-H. H.-Y. (2006). Game Programming Courses for Non
Programmers. Proceedings of the 2006 international conference on Game research
and development .
Mohd Fairuz Shiratuddin, D. F. (2007). UTILIZING 3D GAMES DEVELOPMENT TOOL
FOR ARCHITECTURAL DESIGN IN A VIRTUAL ENVIRONMENT. 7th International
Conference on Construction Applications of Virtual Reality.
Panagiotis Petridis, I. D. (2010). An Engine Selection Methodology for High Fidelity
Serious Games. VS-GAMES '10 Proceedings of the 2010 Second International
Conference on Games and Virtual Worlds for Serious Applications , 27-34.
Peter Lindstrom, D. K. (1996). Real-time, continuous level of detail rendering of
height fields. SIGGRAPH '96 Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques , 109-118.
Schramm, M. (2008). Chinese WoW hits 1 million concurrent players. Retrieved from
http://wow.joystiq.com/2008/04/11/chinese-wow-hits-1-million-concurrent-
players/
Seung Seok Noh, S. D. (2006). Using a game engine technique to produce 3D
Entertainment contents. ICAT '06 Proceedings of the 16th International Conference
on Artificial Reality and Telexistence--Workshops .
StatCounter. (2011). Global Stats Top 8 mobile OS. Retrieved from
http://gs.statcounter.com/#mobile_os-ww-monthly-200812-201109
Stefan Marks, J. W. (2007). Evaluation of Game Engines for Simulated Surgical
Training. GRAPHITE '07: Proceedings of the 5th international conference on Computer
graphics and interactive techniques in Australia and Southeast Asia .
Techcrunch. (2011). Nokia Confirms Microsoft Partnership, New Leadership Team,
Organizational Changes. Retrieved from
http://techcrunch.com/2011/02/10/nokia-confirms-microsoft-partnership-new-
leadership-team/
Terdiman, D. (2011). New technology revs up Pixar's 'Cars 2'. Retrieved from CNet:
http://news.cnet.com/8301-13772_3-20068109-52/new-technology-revs-up-
pixars-cars-2/
Tobias Ritschel, T. G.-P. (2009). Approximating Dynamic Global Illumination in
Image Space. I3D '09 Proceedings of the 2009 symposium on Interactive 3D graphics
and games .
Tom True, B. G. (2004). Performance OpenGL: Platform Independent Techniques.
SIGGRAPH '04 ACM SIGGRAPH 2004 .
Tschida, C. (2010). The Unreal Engine Can Do For iOS Gaming With Epic Citadel.
Retrieved from appadvice: http://appadvice.com/appnn/2010/09/epic-games-
shows-unreal-engine-ios-epic-citadel

