
Master’s thesis 2015

Performance Evaluation of Feature Learning For

Stroke Classification In A Microwave-based
Medical Diagnostic System

Yimeng Hou

Master of Communication Engineering
Department of Signals and Systems

Chalmers University of Technology
Gothenburg, Sweden



Abstract

In recent years, stroke has become an important issue to consider medically
and socially since it poses high rate of human mortality and disability world-
widely. It typically results from impaired blood supply in the brain. Patho-
logically, it can be classified into two types: ischemic stroke and hemorrhagic
stroke. While early treatment can effectively save lives, the treatment to each
type are different and wrong treatment may deteriorate patients’ condition.
Therefore, it is necessary to diagnose the type of stroke before any treatment
is performed. Medfield Diagnostics proposed a solution for stroke diagnostics
in pre-hospital scenarios where a medical instrument called Strokefinder can
be used to diagnose stroke type. This instrument uses microwave antennas to
transmit and receive response signals and acquire the data for each patient.
After that, machine learning algorithms are used to process the data and per-
form classification. Earlier methods already show high classification accuracy
for predicting the correct type of stroke.

This thesis is a successive research based on earlier development from Med-
field Diagnostics and aims to investigate whether new methods would further
improve the performance of stroke classification. Specifically, a methodology
named feature learning will be evaluated. One of the common feature learning
algorithms is autoencoder, which is a reconstruction-based unsupervised learn-
ing algorithm with the purpose of dimensionality reduction. Since the data
from stroke diagnostic instrument is massive and high-dimensional, applying
autoencoder before a classifier will lower the dimension of acquired data and
may possibly improve the classification performance.

The thesis starts with basic theory of autoencoder and support vector ma-
chine (SVM) classifier, introduces the complete pipeline for classification which
includes preprocessing, autoencoder, SVM and performance evaluation. In ad-
dition to normal autoencoder, the idea of class-specific autoencoder will be
brought up and implemented. Essentially, the performance of three schemes are
compared in detail, which covers SVM without autoencoder, SVM with normal
autoencoder and SVM with class-specific autoencoder. The performance results
contain classification Accuracy and AUC with various cross-validation methods
by testing stroke datasets from lab simulation in Medfield Diagnostics and other
external datasets such as CIFAR-10 and MNIST.

Keywords: stroke, microwave technique, classification, support vector
machine, autoencoder, class-specific autoencoder
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Nomenclature

AUC Area Under Curve, specifically, the area under ROC

AE Autoencoder, one of the feature learning algorithms

ANN Artificial Neural Network, one of the multi-layer learning network

BP BackPropagation, an algorithm for calculating partial derivatives

CSAE Class-Specific Autoencoder, distinguish from NAE

CIFAR-10 An open image dataset for machine learning

CT X-ray Computed Tomography, medical imaging technique

FN True Negative, one of the classification outcomes

FP True Positive, one of the classification outcomes

L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno method, one method
used for solving optimization problem.

MNIST An open image dataset for machine learning

MRI Magnetic Resonance Imaging, medical imaging technique

NAE Normal Autoencoder, distinguish from CSAE

NCG Nonlinear Conjugate Gradient, a method used for solving optimization
problem.

numTr A variable which is short for the number of training examples

p Number of neurons in the hidden layer in autoencoder

ROC Receiver Operation Curve, a 2D graph showing classification performance

SVM Support Vector Machine, one of the discriminative classifiers

TN True Negative, one of the classification outcomes

TP True Positive, one of the classification outcomes

λ Regularization term in the cost function of autoencoder
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1 Introduction

1.1 What is Stroke?

Stroke, or precisely brain stroke, occurs when blood supply is impaired in human
brain. It is officially defined by World Health Organization as neurological deficit
of cerebrovascular cause that persists beyond 24 hours or is interrupted by death
within 24 hours. Currently, it is the second-most common cause of death. 6.7
million people died of stroke in 2012, which is increased by 1 million comparing
to 2000 [1]. Although extensive clinical effort has been made in the prevention
and treatment of stroke during the past decades, there is still a long road to
explore solutions for decreasing the mortality caused by stroke.

Pathologically, strokes are classified into 2 types: Ischemic stroke (IS) and
Hemorrhagic stroke (HS). IS occurs when brain cells suffer from the shortage of
blood supply, which may be resulted from the prevention of the normal flow of
blood by clots. HS may result from the rupture of vessels. The bleeding may
cause rising of intracranial pressure, inflammation or shortage of blood supply
for brain cells [2].

As a solution, clots dissolving treatment is typically applied to IS patients
within a time window of several hours from the onsets of the symptoms. How-
ever, this procedure is not applicable to HS patients since it may be life-
threatening. To suit the remedy according to the case, it is important to identify
whether the brain bleeds before any treatments are initiated. Nowadays, one
common procedure to differentiate the types of stroke relies on CT or MRI med-
ical tomography technique, which is expensive, immobile and not widely and
full-time available.

1.2 Solution from Medfield Diagnostics

A microwave-based diagnostic solution is developed in close collaboration be-
tween Medfield Diagnostics AB and Chalmers University of Technology. The
aim of the solution is to provide stroke diagnosis in prehospital scenarios, which
is implemented by a portable diagnostic instrument named Strokefinder 1. A
picture of Strokefinder can be found in Figure 1.

Differing from CT and MRI instruments which are based on penetration
and magnetic resonance respectively, Strokefinder uses microwaves to discover
valuable information in brain matters. It is implemented by microwave anten-
nas around the target area. During the measurement stage, some antennas will
transmit the microwave signal in turns while others will receive the response
signals. A data matrix contains measurements on various channels and fre-
quencies will be acquired 2. With some signal processing and machine learning
algorithms, it is already possible to diagnose the types of stroke with high ac-
curacy based on the data collected by Strokefinder [3][4]. The current method
employed by Medfield Diagnostics are direct classification without any interme-
diate feature learning step [5], which already yielded good performance.

1Common prehospital scenarios may include ambulance, clinic and emergency room etc.
2A channel represents an arrangement of transmitting or receiving status of the antennas.
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Figure 1: A picture of Strokefinder MD100. It’s a headrest stroke diagnostic
instrument where measurements are performed in a supine position by eight
broadband microwave antennas with various combination of channels.

1.3 Assumption

In fact, the raw data from microwave measurement contains high-dimensional
features from which bleeding information may not be easily identified by a clas-
sifier. If appropriate features learning or dimension-reduction methods could
be applied before the classifier, more discriminative features may be generated
and used for classification. Based on this assumption, we will introduce another
category of machine learning algorithms: feature learning, as an additional step
of the ordinary data processing procedure. The entire pipeline will include data
preprocessing, feature learning, classifier and performance evaluation, which is
shown in Figure 2.

Raw 

Data
Preprocessing

Feature

Learning
Classfier

Without 

Feature learning

With 

Feature Learning

Performance Evaluation

Figure 2: The system block diagram. The solid lines represent the work flow
with feature learning while dashed lines represent that without feature learning.

1.4 Purpose and goal

The purpose of the thesis is to evaluate one specific feature learning method:
autoencoder and to verify whether adding autoencoder can improve the classi-
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fication performance. Specifically, the goals of the thesis are:

• Explore appropriate preprocessing methods for raw data from Strokefinder.

• Implement normal autoencoder and class-specific autoencoder

• Fit learned features into a support vector machine classifier.

• Evaluate this methodology on data from laboratory measurements of stroke
by comparing the performance between with and without applying autoen-
coder.

• Evaluate this methodology on other external datasets.

1.5 Scope

For the purpose of convenient research, the implementations are carried out in
Matlab, as it covers a collection of toolboxes for various developed algorithms.
Specifically, Statistics and Machine Learning Toolbox gives efficient implemen-
tation of SVM classifiers and Cross-validation method. An external Matlab
Toolbox named minFunc is invoked as an efficient solution of optimization [6].
The autoencoder is implemented manually based on the starter code from Stan-
ford University [7].

An autoencoder may contain one or several hidden layers. While autoen-
coders with different number of hidden layers may work in similar method, the
one with several hidden layers will require an additional pre-training step as
prerequisite to work efficiently. However, the investigation of pre-training need
considerable time and effort and cannot be covered in this project due to limited
time.

Support vector machine was used as the only classifier as other classifier
available from Medfield Diagnostics cannot yield good results due to unexpected
reasons.
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2 Theory

2.1 Preprocessing

Preprocessing is an initial data processing stage which is applied on raw data
to improve the efficiency and ease of subsequent learning process. Typical pre-
processing methods usually includes data cleaning, integration, reduction and
transformation [8].

The task of data cleaning and integration is usually data correction, denoise,
dealing with missing value,etc., which is used to maintain the integrity and
consistency of the data. For numerical data containing features from different
examples, the data is preferred to be transformed into a standard 2-D real matrix
in which each column presents an attribute while each row presents an example.
Data reduction is used to reduce the volume of data, hence yield a simplified
representation, with the purpose of improving the efficiency of processing data.
Data transformation is always used to reinforce the quality of data or change
the form of data so that the pattern inside data may be easier to discover and
features are more discriminative. In many cases, data transformation captures
particular interest since the given dataset may be already in good condition.

Commonly-used methods in data transformation includes mean reduction,
standardization and rescaling [9]. Mean reduction simply calculates the mean
of each attribute and subtracts the entire matrix by the mean vector, µ. Stan-
dardization performs similarly but divide the data matrix by the the standard
deviation, σ. The data matrix will become a zero-mean, unit-variance matrix
across each training example. The intuition behind these two steps is to equalize
the weights of different attributes to the predictions and to avoid some particular
features dominating the results. Rescaling typically map the numerical range
of original data from R into either [0, 1] or [−1, 1] subject to the requirement of
subsequent algorithm.

The rule for customising preprocessing methods for specific learning algo-
rithm are flexible. The quality of preprocessing methods are often evaluated by
end performance. For example, in classification problem, good preprocessing
methods is the one that gives lowest classification error. Note that it is essen-
tial to maintain the consistency of ways of preprocessing training and testing
data, i.e. apply same mean, sigma and rescaling factor calculated from training
dataset to testing dataset. Otherwise, there will be a apparent degradation of
the classification performance [10].

2.2 Autoencoder

Feature learning is a process of selecting, converting or combining known fea-
tures from one representation into another, usually with the purpose of dimen-
sion reduction. It may be jointly used with preprocessing to provide subsequent
classifier with enhanced features, since part of effort in machine learning task
always goes into the design of representation of the data [11]. However, hu-
man engineering of feature design is time-consuming and prone to mistakes.
Although the features generated by automatic procedures may be difficult to
interpret by human, it may yield surprising good learning results. Autoen-
coder(AE) is one of those automatic procedures. It is a reconstruction-based
unsupervised learning algorithm which is constructed based on layered network,
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where the learning process can be performed layer-by-layer. Given the data in
the input layer, an AE encodes it into intermediate representation in the hidden
layers and try to reconstruct the original data in the output layer. It’s an iter-
ative process in which the reconstruction quality would be improved with more
iterations.

A typical AE usually has an hourglass structure: n < p where p and n are
the number of units in the hidden and output layer, respectively. This AE will
learn a compressed representation of the input data. However, the case when
n > p may be of interest. In this case, the AE will enlarge the feature spaces
from Rn to Rp, which may be applicable to cases when the original feature space
is small. No matter which case it is, the AE will automatically find patterns or
higher-level representations of the data.

Due to randomly initialized weights and the numerical accuracy of the opti-
mization algorithm, the autoencoder will learn uncertain output features given
certain input features each time it run, which means it’s a high-variability model.

Although AE is a multi-layer learning network, it has a fundamental dif-
ference from traditional artificial neural network (ANN): It cannot be used for
regression or classification directly in the output layer comparing to ANN since
the output layer is merely used for evaluate how well an AE is trained and is
not actual output of interest [12].

2.2.1 Structure

AE is formulated by multi-layer network. Each layer contains several neurons,
which are the basic arithmetic units. Except the output layer, each layer also
contains an bias unit regarded as an intercept term for calculation. The struc-
ture of AE is shown in Figure 3.

+1

.

.

.

+1

.

.

.

.

.

.

Input Layer Output Layer

Hidden Layer

Figure 3: fully connected AE with three layers. In each layer, several neurons
are deployed, which is denoted by a blank circle. The circles with +1 inside are
bias units. The arrows indicates the connectivity of units and data flows. Data
is processed in one direction from the input to the output layer.

The calculation of an AE is proceeded layer-by-layer from the input to the
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output layer. The value of each neurons in layer l+ 1 is the linear combination
from neurons from layer l. A mathematical representation is shown in Equation
2. M and N are the number of units in layer l and l + 1, respectively. Wij

denotes the weight for the connection from ith units in Layer L to jth units in
Layer L+1, the superscript l denotes the lth layer.

z
(l+1)
i =

M∑
j=1

Wijx
(l)
j + b

(l)
i (1)

ai = f(zi) (2)

where i = 1, 2, ..., N

The values z after linear combination will be mapped non-linearly into a
narrower numerical range to calculate the activations denoted by a. Common
choice for the mapping function are sigmoid function and hyperbolic tangent
function, which map the input data into R ∈ [0, 1] and [−1, 1], respectively.
The selection of the appropriate mapping functions is based on the numerical
range of input data. For example, non-negative data should particularly choose
sigmoid function while real-valued data may choose tanh function.

f(z) = 1
1+e−z Sigmoid Function

f(z) = ez−e−z

ez+e−z Hyperbolic Tangent Function

The layer-by-layer, feed-forward process will continue until the output layer
is reached. The hypothesis of reconstructed data h(x) is shown in Equation 3,
where L is the number of layers in AE and each aj is a column vector including
all training examples,

h(xj) = a
(L)
j (3)

2.2.2 Training

It seems obvious that the weights of the AE regarding to data is unknown before
training. Therefore, applying feed-forward process once is not expected to get
the exactly perfect reconstruction in the output layer. In fact, the strategy
of training AE is to iteratively adjust the weights so that the reconstruction
approaches optimum gradually. To quantitatively model the difference between
the input data and reconstruction data, a quadratic loss function is used, which
is denoted by Jdirect and is shown in Equation 4. Note that K is the number
of training examples in the dataset.

Jdirect(W, b) =
1

2K

K∑
k=1

‖h(xk)− xk‖2 (4)

However, numerous solutions to the loss function may exist. To simplify the
model and prevent overfitting, regularization should be applied into the model
[13]. In an AE, it is implemented by adding an extra term called weight penalty,
which is denoted by Jweights and is shown in Equation 5. It is calculated by
summing up all the squared weights in the AE. λ is a coefficient for weight
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penalty which controls the level of regularization. When λ = 0, the AE work
perfectly to current data but poorly when generalizing to unknown data.

Jweight(W, b) =
λ

2

L∑
l=1

M∑
i=1

N∑
j=1

(W l
ij)

2 (5)

The total cost function can be presented as:

Jtotal(W, b) = Jdirect(W, b) + Jweight(W, b) (6)

Now the problem can be viewed as minimizing a nonlinear function J with
respect to the weights W and b. There are plenty of optimization methods to
perform this task. Nonlinear Conjugate Gradient (NCG) is one of them for
solving multivariate nonlinear equation. It has advantages over other methods
like L-BFGS especially for high-dimensional training data [14]. The operation
of NCG requires two set of parameters in each iteration: function value and the
gradients of variables. Specifically, given a function f(x) with n variables to
minimize, NCG works in the following way:

In the first iteration n = 1, use steepest descent direction as searching di-
rection d1 = −g1 and use line search to find best step size α and update the
variable value.

For the following n ≥ 2 iterations, it will [15][16]

1. Calculate β using Hestenes-Stiefel method βn =
gTn (gn−gn−1)

(gn−gn−1)T dn−1

2. Update conjugate direction dn+1 = −gn + βndn

3. Line-searching to determine best updating step size α, α > 0

4. Update variable xn+1 = xn + αdn

However, Hestenes-Stiefel method is gradient-based optimization method
which need information for the gradient of each weights in each iteration, which
is mathematically presented as:

∇J(W, b) = { ∂

∂W
(l)
ij

J(W, b);
∂

∂b(l)
J(W, b)} (7)

Since the input dataset contains numerous training examples, the overall
partial derivatives of each weight are the sum-averaged ones from each examples
plus the weight penalty term, which is shown in Equation 8 and 9. Suppose
that the data contains features from K training examples.

∂

∂W
(l)
ij

J(W, b) =
1

K

K∑
k=1

∂

∂W
(l)
ij

J(W, b)k + λW
(l)
ij (8)

∂

∂b(l)
J(W, b) =

1

K

K∑
k=1

∂

∂b(l)
J(W, b)k (9)

Instead of other direct mathematical methods , backpropagation(BP) is com-
monly used as an efficient calculation of those partial derivatives [17]. As re-
quired in BP, a deviation term in each unit will be calculated. In each iteration,
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the algorithm will calculate the deviation between theoretical output values (i.e.
input values) and observed values for each units. The deviation will be allocated
backward to the units in the former layer based on the weights. This operation
will continue until it reaches second layer 3.

Note that, for learning network with more than one hidden layer, the algo-
rithms may not work well [18]. This is because the gradients for former layers
may be quantitatively too small to tune the weights efficiently and is likely to
stuck in the local minimas [19]. As a solution, pre-training is usually intro-
duced before AE to provide a initial estimation of the weights [20]. However,
pre-training is unnecessary in our project since the AE used has only one hidden
layer.

By definition, the error terms for the output layer and other layers can be
calculated in Equation 10 and 11, respectively. Note that f ′(z) is the deriva-
tive of nonlinear mapping function f(z) and • notation denotes element-wise
multiplication [13][21].

δ(L) = −[h(x)− a] • f ′(z(l)) (10)

δ(l) = WT δ(l+1) • f ′(z(l)) (11)

Known the error terms of each units, the gradients of each example k can
be calculated via Equation 12 and 13

K∑
k=1

∂

∂W
(l)
ij

J(W, b)k = δ
(l+1)
i (a

(l)
j )T (12)

K∑
k=1

∂

∂b(l)
J(W, b)k = δ

(l+1)
i (13)

Substitute Equation 12 and 13 to Equation 8 and 9, all information is known
to proceed iterative training process.

A overview of optimization process is shown in Figure 4. To begin with, the
weights W and b will be assigned with random values close to zero, which is a
common way to initialize variables. In each iteration of the entire process, the
AE will calculate the cost and gradients by feedforward and backpropagation
process, respectively. These process will be iteratively performed until the gra-
dients are quantitatively too small or maximum number of iterations is reached.
Although it does not guarantee to find the global minimum, previous researches
indicate the reconstructed error is already low enough for the AE which contains
less than 2 hidden layers [18].

2.3 Classification

2.3.1 Introduction

Classification is one of the most common tasks in statistics and machine learning.
It discriminates the examples from different classes based on the attributes they

3The input layer and output layer are regarded as first and last layer, respectively. The
sequence of other layers are in a ascending order from the input layer to output layer.
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Figure 4: A block diagram of the entire optimization process. The optimization
starts from random weights initialization and ends up until it reaches iteration
limits.

own 4. It is usually performed in a supervised learning way in which the classifier
assigns classes to unlabeled examples based on information of given examples.
Suppose each example has a vector of n attributes {x1, x2, x3, ..., xn} and a
label y indicating which class it belongs to regarding to the specific dimension
we concern. To perform supervised classification, this known dataset will be
used as training data for building classification models. When new unlabeled
data (also known as testing data) is coming, the classifier will assign labels to
the testing examples based on the rules previously defined. A schematic view
of supervised classification procedure is shown in Figure 5.

Another type of classification is unsupervised learning. It refer to the sce-
nario where no label knowledge for each example is available. Therefore, the
algorithm is trying to ’discover’ instead of ’learn’ the pattern. The classification
is usually performed by clustering analysis which is based on modeling the dis-
tribution of examples in multi-dimensional feature space. The examples which
belong to the same cluster may share similarity in particular aspects. Unsuper-
vised classification is popular in applications such as Business intelligence, user
behavior analysis,etc.

2.3.2 Performance evaluation

The performance of a classifier is a measurement of how well it performs the
classification task. A good classifier should predict the labels accurately with
preferably little time (Some application requires real-time processing). Consider
binary classification problems in which labels of the examples y ∈ {+1,−1}.
Correct prediction means the predicted label of an example by the classifier ŷ
is identical with the true label y.

4The terms: attributes, features or predictors have the same meaning and are interchange-
able in this thesis.
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Figure 5: General supervised classification process. It ’teaches’ a model with
appropriate learning methods based on the training examples so that the model
could predict the label of unknown data.

y = ŷ True

y 6= ŷ False

Specifically, there are 4 possible outcomes.

ŷ = +1|y = +1 True Positive (TP)

ŷ = −1|y = −1 True Negative (TN)

ŷ = +1|y = −1 False Positive (FP)

ŷ = −1|y = +1 False Negative (FN)

After classification, the counts in each scenario will be collected and pre-
sented in a Confusion Matrix, which is the basis for further study of the classi-
fication. The most commonly used methods in performance evaluation is Accu-
racy and ROC. Accuracy is an intuitively straightforward evaluation of classi-
fication performance. It is a ratio of correct number of classification over total
number of classification, which is shown mathematically in Equation 14.

ACC =
TP + TN

TP + TN + FP + FN
(14)

Receiver Operating Curve (ROC) is a graphical tool of evaluating binary
classification results. Each point in the graph is one classification outcome.
For classifiers which yield continuous classification results, it shows a smooth
curve generated by varying discrimination threshold. For discrete classifier,
stair-like curve is plotted based on the posterior probability of each class 5.

5Posterior probability is the conditional probability of Event B happens after Event A is
observed, which can be described mathematically as P (B = bi|A = a)
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The horizontal and vertical axises are the False Positive Rate and True Positive
Rate, respectively. The optimal classification point lies in (0, 1) where all the
positive labels are classified correctly with no errors. Comparing to ACC which
sometimes provides evaluation, ROC offers more comprehensive information
about the classification.

Area Under Curve (AUC) is a scalar metric of evaluating classification per-
formance. It is calculated by summing up or integrating the area under ROC.
Similar with ACC, high AUC value means high overall classification perfor-
mance.

2.3.3 A binary classification example

Suppose that two types of wine were to be classified by several tasters from a
big, messy cellar where it contains a number of wine with different labels. To be
efficient and novel, they decided to use machine learning algorithms to perform
the task. To start with, they brought some basic chemical equipments to analyze
and extract attributes from each label of wine. They set up 13 attributes they
want to test on each bottle of wine. For examples, the content of alcohol, acid,
magnesium or phenols, the color intensity, etc. [22]. After they have applied
this test on wine with all existing labels, it is easy to classify the wines only by
identifying the labels of the rest of wines.

They regularized all the information in standard data form. In this case,
the size of the data matrix is 100*13, each row in the matrix corresponds to
an example of wine while each column corresponds to an attribute. They care-
fully cleaned, smoothed and normalized the data to ensure the quality of the
dataset. This step is known as preprocessing, which is an indispensable part of
classification procedure. Since they were uncertain about how well the classifier
would work. They randomly set aside 20 examples from 110 total examples
as the testing dataset to evaluate their method. This step is known as cross-
validation, which is usually combined with classification performance to evaluate
a model. After they applied some classification methods, a graphical view of
the classification process is shown in Figure 6.

The method they used in the wine classification problem constructed a
boundary for separating each class space, which is termed a discriminative
model. After they applied this model to testing dataset and varying the thresh-
old of separation 6, the corresponding ROC is shown in Figure 7.

2.3.4 Support vector machine

Support Vector Machine(SVM) is one of the discriminative models for super-
vised classification problem. It constructs a hyperplane in multi-dimensional
feature space and separates data of different labels. Given training data in
which labels are specified, SVM will firstly construct a model where it is trained
and classification specifics such as decision boundaries, kernels, number of fea-
tures are defined. When new observations is coming, they are classified based
on which side of hyperplane they belong to.

For the case when two classes of examples are separable by a hyperplane,
SVM finds the optimal hyperplane that yield largest margins between any in-
stances of different classes [23]. This hyperplane is defined in Equation 15 and

6Varying the threshold can yield different confusion matrices.
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Figure 6: A 2-D graph showing the classification process, Two random features
from 13 features are visualized.

16.
h(x) = xT θ + θ0 = 0 (15)

γ(i) = y(i)sgn(h(x)) (16)

where θ is the vector from hyperplane to each example x, β0 is intercept
term. The margin of each example to the hyperplane is presented as γ(i). The
optimization problem can be represented in Equation 17.

arg max
γ,θ,θ0

γ (17)

In case the hyperplane may not fully separate data, SVM grands certain
tolerance to false classification which can be presented in Equation 18 [24]. A
schematic view of a SVM shows in Figure 8.

y(i)sgn(h(x)) ≥ γ(1− ξ) (18)

subject to
∑K
i ξ

(i) ≤ C

Kernel methods are often applied to generate more features. They use
inner-product operations which map original features to higher dimensional
feature space. Suppose each original example i contains a vector of features
{x1, x2, ..., xm}. After applied kernel method, each example will have {x̂1, x̂2, ..., x̂n}
features, wherem < n. There are several commonly used kernel functions, which
is shown below:

• Linear kernel : K(x, x′) = 〈x, x′〉+ c

• Gaussian-RBF kernel : K(x, x′) = exp(−γ‖x− x′‖2)
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Figure 7: The ROC of of wine classification. Each discrete point means a ob-
servation of the classification. Point A indicates that all positive class examples
are correctly classified while point B indicates the opposite. Point C is the ob-
servation which has optimal accuracy since it has minimum euclidean distance
to point (0,1).

• i-th degree polynomial kernel : K(x, x′) = exp(r + γ〈x, x′〉)i

The RBF kernel is suitable to more applications than polynomial kernel and
it has fewer numerical problem [10]. SVM with linear kernel may not get as good
results as with RBF kernel, but it is computationally efficient and is especially
applicable to the case when the number of features are much greater than the
number of training examples.

2.4 Cross-validation

Cross-validation (CV) can be viewed a statistical method of measuring the
performance of a predictive model, i.e. how well current model fits new data.
It divides known data into two independent subsets: training set and validation
set. The former one is used for building model for specific tasks while the latter
one is used to evaluate the performance of that model. Since the performance
of a parametric model always depends on the parameters, cross-validation is
usually performed with the purpose of selecting optimal parameters for current
model. It is an important idea that is widely applied in model-based learning
methods.
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Figure 8: A classification example by SVM classifier in Two-dimensional feature
space. Each circle means a training example in SVM. The examples from two
different classes are separated by the boundary. SVM grants certain tolerance for
false classification, i.e. allow some examples in incorrect side of the hyperplane.
The cost for false classification is numerically denoted by ξi.

2.4.1 Leave-p-out

Suppose the dataset has n total examples, leave-p-out cross-validation method
picks p (0 < p < n;n, p ∈ Z) examples as training data while the rest as testing
data. It is an exhaustive and unbiased validation method as it places all possible
combination of distributing the dataset. However, the computational cost is not
certainly beneficial to the evaluation of a model [25]. Therefore, it may not be
considered the best method as it apparently seems.

2.4.2 k-Fold

k-Fold Cross-validation method randomly divides the dataset into k exclusive
partitions with approximate equal size. In each fold, one partition of the data
will be the testing dataset while other partitions together act as training dataset.
The entire validation process will be performed k times until each partition has
used as testing dataset. In this case, each example in the dataset will be used
for prediction exactly once.

2.4.3 Random sub-sampling

This method randomly divides dataset into training and testing subsets, each
subset contains certain number of examples. To lower the bias, the random sub-
sampling will always be proceeded several times. In this case, some examples
are probable to be used as testing data several times whereas some may never
been used.
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2.4.4 Stratified sampling

Since data contains examples from different classes, the way that randomly
divide the data sets may yield unbalanced number of training examples from
different classes in a dataset, which may bias and degrade the performance of
the model. Stratified sampling is a method of dividing training data set in which
it ensures approximately equal number of examples from each class. It is worth
mention that all the datasets in this project are divided in a stratified manner.
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3 Method

3.1 Preprocessing

Since AE and SVM cannot handle complex number as input data, each element
in data matrix will be took absolute value. After converted into real matrix, the
new features from each observation will be unrolled into a vector. The entire
matrix will be normalized and rescaled into numerical range of R ∈ [−1, 1]
without which AE will be hard to converge in given iterations. A schematic
view of complete procedures of preprocessing is shown in Figure 9.
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Figure 9: A approximately graphical view of preprocessing. Small rectangulars
are elements in data matrix. The mean and variance are vectors while rescaling
factor is a scalar.

After several trials with different combinations of different preprocessing
methods, the result shows that no promising classification results can be pro-
duced from the entire huge matrix, i.e. either ACC or AUC is approximate to
0.5. Except for the poor performance, several other reasons why giving up using
the entire matrix can be concluded below:

• High time expense and memory pressure for calculation.

• High dimensional data makes it hard for AE to learn useful features.

• Overfitting is more possible to occur.

• The optimization process is hard to converge.

As a result, feature selection is necessary during pre-processing step. This
step relies on exhaustively conduct performance evaluation until performance
rises upon a acceptable threshold [26]. With some suggestions from Medfield
Diagnostics, the data measured by side antennas in low frequency band is man-
ually selected. A schematic view of feature selection is shown in Figure 10.
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Figure 10: Feature selection. Note that the left and right rectangulars all refer to
the same observation, i.e each observation has a frequency-by-channel matrix.

3.2 Normal and Class-Specific AE

Two method of using AE are proposed: Normal AE (NAE) and Class-Specific
AE (CSAE). Given a dataset with examples from multiple classes, a NAE will
learn a representation based on all the examples regardless of their labels. In
that case, the weights learned by AE are universal to multiple classes. It may be
problematic sometimes since the features after AE may not be representative
and specific to class. CSAE is one possible solution to multi-class training
problem. It essentially splits the training dataset by class and trains each class
of training examples with AE individually. For example, for n-class classification
problem, the class set Y ∈ {c1, c2, ci, ..., cn} where ci denotes class i. After
class-specific training, the output set W ∈ {w1, w2, wi, ..., wn} where wi denotes
a vector of AE weights for Class i. These weights will be substituted into the
entire original dataset independently and generate the class-specific features.
Finally, these class-specific features will be combined together and used to build
classification model. A view of working flow of NAE and CSAE is shown in
Figure 11.

3.3 AE model selection

Two important parameters: p and λ can influence the performance of the AE.
The choice of selecting p is flexible since there is no hard threshold for recon-
struction error when continuously varying p. Detailed discussion is presented in
Result Section.

To choose optimal λ, a line-searching method combined with cross-validation
will be performed. To begin with, a linearly or Exponentially growing sequences
of variables is set up. For example, λ = 0.1n, n = 1, 2, 3, .., 10. For each λ, a
cross-validation process can be applied. To begin with, the training dataset
is randomly divided into sub-training set and validation set. Most common
strategy is to randomly assign one-third of total examples for sub-training set
and the rest for validation set. Concretely, the weights trained by using sub-
training data are substituted into validation dataset and the reconstruction error
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Figure 11: Block diagram showing the mechanism of NAE and CSAE in binary
classification. The procedure always begins with the dataset after preprocessing
and ends up with classifier. The figures from 1 to 5 showing detailed sequence
of each part.

are essentially observed. These errors are the indication of how the weights
generalized to exclusive dataset. The optimal λ is the one that yields lowest
reconstruction error in the validation set. The AE will be re-trained using all
the training examples with that optimal λ.

3.4 SVM model selection

Similar with AE, SVM also relies on parameter searching to get optimal classifi-
cation performance as the optimal parameters are unknown for a given problem.
An interval cross-validation is therefore performed. The specific steps are shown
below:

• Apply cross-validation methods to divide training data into sub-training
and sub-validation sets

• Grid-searching optimal parameter with lowest cross-validation loss in 3-
dimensional parameter spaces [10], i.e. C, γ and kernel function.

• Re-train the SVM model with corresponding optimal parameters

• Predict the labels of testing sets using SVM model.

Figure 12 clearly shows entire procedure of classification.

3.5 Performance evaluation

To evaluate the performance in a comprehensive way, ACC and AUC values are
calculated with various parameters in different schemes. A list of parameters to
be selected are shown in Table 1. For fair comparison of those three schemes,
same training and testing data is used. The performance will be characterised
by mean and standard deviation with several times of measurement.
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Figure 12: A schematic view of SVM classification. The data went through
cross-validation twice: The external cross-validation is a stragety of evaluation
the classification performance with known data. The internal cross-validation is
a model-selection process where optimal parameters are found,

Schemes Parameters
SVM numTr, kernel, C, γ

NAE+SVM numTr, p, λ, kernel, C, γ
CSAE+SVM numTr, p, λ, kernel, C, γ

Table 1: Schemes and parameters for testing, numTr is the number of training
examples, p is the number of hidden units, λ is weight decay parameter, C and γ
are two internal parameters in SVM. A grid-searching method was used to find
the optimal parameters.
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4 Results and Discussion

This chapter will cover all the test results based on current methods. Specially,
it will start with the performance of AE, which can be described by time and
reconstruction error with the number of iteration, training examples and hidden
layers as variables.

The results can be divided into two parts: The first part presents the classifi-
cation performance on external datasets including MNIST and CIFAR-10. The
second part shows stroke classification performance on the two datasets from
Medfield Diagnostics lab measurement.

The performance will be evaluated using Accuracy, AUC value as metrics.
Both mean and standard deviation over several times of tests will be presented.

4.1 Autoencoder

4.1.1 Time with iterations

Two major parts of the model contribute to the total running time. The first
part is training a autoencoder, which mainly depends on how many variables
(in this case, weights) in the optimization function. Given a data set with
m features, n examples and p hidden units, the number of weights W can be
calculated in Equation 19.

W = 2mp+m+ p = (2m+ 1)p+m (19)

With fixed data set, the time spent grows linearly with more hidden units
as it shows in Figure 13.
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Figure 13: AE training time with different number of hidden units . The max
number of iteration is 400. This test is performed in laptop with a CPU of Intel
I5 2.8GHz.

The second part is interval cross-validation process, which can be compli-
cated since number of original features or training examples, cross-validation
folds, ranges of the parameters in line-searching and kernels all contributes to
the running time. A general estimation of the system running time shows in
Figure 14, which shows the decomposition of the entire system running time.
The result is conducted by testing various numbers of training examples and
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fixed p. The time cost for running AE grows roughly linearly. It is concluded
that AE will help improving the time efficiency by generating less number of
refined features for fast classification.
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Figure 14: System running time decomposition with training examples varying
from 100 to 900 and with fixed p = 15% of the number of original features, the
number of testing example is 100, maximum iteration in AE is 400. A 10-fold
internal cross-validation for grid-searching optimal parameters for SVM. The
test environment is the same as Figure 13.

4.1.2 Cost with iterations

The optimization function will return the total cost Jtot in each iteration. It’s
a general metric for evaluating the working performance of the autoencoder.
It seems apparent that more iterations mean less errors the autoencoder made
in the reconstruction. In addition, other factors such as number of hidden
layers or number of train examples will also effect the optimization process of
autoencoder.

An example from CIFAR-10 dataset will be used to explain how AE per-
forms with different parameters [27]. The testing data contains 100 training
examples with 1024 features in each example. The following figures shows how
cost changes with number of hidden units, number of training examples and
number of original features as variables.

If too few hidden units is used, the AE would be short of ’basis’ to represent
the reconstructed data, as it is illustrated in Figure 15 where 5% of the original
features as hidden units could not reconstruct the data very well.

According to Equation 4, the cost is averaged over training examples. There-
fore, only the number of features influences the cost value. These assumptions
can be proved in Figure 15 and Figure 16. In addition, due to high variability
of data, no patterns can be concluded from curves in Figure 16.

It is concluded that lowering p may significantly increase the cost of au-
toencoder, which results in poor reconstruction. Large p is not recommended
since the margin benefit for improving the training is trivial while time cost
grows rapidly. 10% to 20% of the original features as hidden units would be
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Figure 15: The cost with different number of hidden units. The legends are
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hidden layer, the reconstruction quality is improving.
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Figure 16: The cost with different number of training examples.

appropriate choice to start testing with.

4.2 Performance on external datasets

4.2.1 MNIST

MNIST dataset contains greyscale images of handwritten digits with different
styles, each images composes of 28*28 pixels. The intensity of the pixels are
unrolled into a vector and used as features. The dataset includes 2000 images
labeled with digit 1 and another 2000 images labeled with digit 2. Figure 18
shows the estimated cost with different λ. It indicates that λopt = 0.01.

Using optimal parameters, four images before and after autoencoder is shown
in Figure 19.

After running the three schemes, the performance of this dataset shows in
Table 2.
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original image.
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Figure 18: Finding optimal λ with line-searching method. The results is acquired
by training 1000 examples of digit ’2’ with different λ. The cost is the Mean
absolute error (MAE) between input image and reconstructed image.

Schemes Accuracy AUC
SVM 0.9925 0.9986

NAE+SVM 0.9815 0.9990
CSAE+SVM 0.9925 0.9995

Table 2: Mean ACC and AUC evaluation by using 10-Fold cross-validation. The
results are running by 5 times repeatedly and calculated mean value. RBF kernel
is used in SVM. The standard deviation is numerically neglectable. A reference
ACC from external source is 0.986 [28].

4.2.2 CIFAR-10

This data set is a collection for 32 ∗ 32 pixels grey-scale images, with ordinary
objects or creatures such as cars and horses. Using a subset of this dataset in the
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Figure 19: Two random examples of from MNIST dataset. The left column
shows the original images. The right column shows the corresponding recon-
structed images by AE.

tests, the entire data matrix has a size of 1024∗500, which means 1024 unrolled
pixel intensity value as features and 250 examples in each class. The test also
starts with a line-searching for the optimal parameter λ. Figure 20 intuitively
shows the original and reconstruction images. Since the image data contains
much redundancy (irrelevant objects, patterns or different backgrounds), the
autoencoder will learn a noisy representation of the features, which may explain
why the autoencoder generalize poorly to other images of same class.
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Figure 20: Finding optimal λ by line-searching method. Optimal C lies in the
bottom of ’U’ shape curve from validation sets. The cost denotes MAE.

Figure 21 shows two examples for original and reconstructed images. Figure
22 shows the 2-D errors surface between original and reconstructed data. Both
perspectives indicate the autoencoder is well-trained with minor reconstruction
errors.
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Figure 21: Two examples on original and reconstructed images. The left column
shows the original images while the right colomn shows the reconstructed images
by AE. Intuitively, there is no sensible errors for these images.

Figure 22: The errors surface which contains 100 training examples with 1024
features. The features are translated directly from image pixel intensity so that
it has a numerical value between 0 and 1. The errors are calculated by taking
the subtraction of reconstruction value and original value. The peaks indicate
tiny deviations.
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Thereafter, the data with size of 154*500 will be feed into SVM to perform
classification. The performance results is shown in Table 3. It shows that SVM
with CSAE can achieve equivalent performances.

Schemes Accuracy AUC
SVM 0.80 0.90

NAE+SVM 0.78 0.89
CSAE+SVM 0.81 0.88

Table 3: Mean ACC and AUC evaluation by using 10-Fold cross-validation. The
results are acquired by repeatedly running 5 times and calculated mean value.
RBF kernel is used in SVM. The standard deviation is numerically negligible.

4.3 Performance on stroke datasets

4.3.1 AE Optimization

Applied the model selection methods illustrated before, Figure 23 shows the re-
construction errors with different λ, which indicates the optimal λ ∈ [0, 0.0001].
The ’L’ shape curve of validation data suggests the weights learned by AE will
not cause overfitting. Figure 24 intuitively shows the deviation of reconstruc-
tion for validation data. It is concluded that AE works generally well except the
parts where the numerical scale is very small, as it is seen in the valley of the
curves, which may be explained by the limited accuracy of optimization in AE.
However, there is no evidence shows this deviation will significantly influence
subsequent classification performance.
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Figure 23: Search optimal λ by line-searching method. Note the scale of vertical
axis.

4.3.2 SVM Optimization

Tests in early stage of this project show that when applying RBF or Polynomial
kernels to SVM, the classifier gives poor results, which only yield AUCmax ≈ 0.6.
Possible explanation could be mapping high medical data to higher dimensional
feature space would not yield useful features for classification. As a result, linear
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Figure 24: A comparison between original features and reconstructed features on
testing dataset. A random example from the testing dataset is used. Note that
the features are the absolute value of original complex value. The vertical axis
is in logarithm scale. The test is performed with p = 15% of original features,
λ = 0.0001 and 400 iterations in AE.

kernel will be eventually used as kernel function for SVM. The SVM model is
constructed by line-searching for optimal C and using automatic kernels scale
from Matlab built-in function fitcsvm.

4.3.3 Data description

The stroke datasets are 2-D complex number matrices including hundreds of
observations measured in various frequency samples and channels. Two datasets
are available for testing. They are acquired by artificial bleeding measurements
on manikins in Medfield Diagnostics.

Dataset A contains 1000 observations: 500 from brain bleeding patients
and 500 from healthy people. Each observation includes features collected from
36 channels and 1000 frequency point spanning from 3MHz to 3GHz.

Dataset B contains 985 sections. Each section is considered as an individual
measure interval in which four bleeding sizes can be simulated while other pa-
rameters remain unchanged. The bleeding size ranges from no bleeding(healthy)
up to 60 mm. The tests are based on the three following scenarios:

B-1 Pick the observations with largest bleeding size and no bleeding

B-2 Pick the observations with smallest bleeding size and no bleeding.

B-3 Pick the observations with Random sampled bleeding size and no bleeding.

4.3.4 Preparation

An overview of parameters and methods used in the tests is listed below:

• Apply feature selection so that each example contains 3000 complex num-
ber features from 10 channels 300 frequency points from 1MHz to 1GHz.
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• Use the absolute values of the complex numbers as new features, with
mean-reduction, standardization and rescaling as preprocessing methods.

• Assign λ = 10−5, p = 3000 ∗ 15% and 400 iterations in AE training

• Apply 10-Fold internal cross-validation for searching optimal C parameter,
Linear kernel in SVM

• Apply 10-Fold and random sub-sampling as external cross-validation for
performance evaluation

• Use the mean and standard deviation of Accuracy and AUC values as
metrics for performance comparison.

4.3.5 Dataset A

The classification performance by using random sub-sampling based on the set-
tings above shows in Figure 25 and 26. These results show the mean and
standard deviation of ACC and AUC acquired by running 30 times repeatedly
based on the same parameters. In each time, the medical data is randomly
sub-sampled into training and testing sets in a stratified way. The training sets
contains variable training examples whereas the testing set contains 100 testing
examples. To make a fair comparison, three schemes are all based on same
training and testing examples each time the data is sampled.
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Figure 25: Mean ACC of Dataset A with corresponding standard deviation.

The performance using 10-Fold Cross-validation shows in Table 4 and 5 with
same parameters as in random sub-sampling. Therefore, it may correspond to
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Figure 26: Mean AUC of Dataset A with corresponding standard deviation.

results when numTr = 900 in Figure 25 and 26. The Accuracy and AUC curves
show a ascending trend while the standard deviation curves show a descending
trend. And when numTr = 800, overfitting occurs. These results are rea-
sonable in machine learning since more training examples should provide better
and stable learning performance until overfitting reaches where the performance
starts to oscillate or decline. Meanwhile, adding AE before SVM might offer
tiny improvement comparing to the case when using SVM solely.

Schemes Accuarcy AUC
NAE+SVM 0.73±0.05 0.79±0.05
CSAE+SVM 0.73±0.05 0.79±0.03

SVM 0.74±0.06 0.79±0.03

Table 4: A comparison of three schemes by 10-Fold Cross-validation. Each entry
shows the mean Accuracy or AUC and its standard deviation by running 5 times
repeatedly. The one with highest value is marked by bold font.

Dataset B

The testing results of Dataset B is acquired by running 20 times repeatedly
based on the same parameter setup as it is in Dataset A. The classification
results for the three scenarios is shown below.
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Schemes Accuarcy AUC
NAE+SVM 0.50±0.03 0.50±0.04
CSAE+SVM 0.50±0.03 0.50±0.03

SVM 0.50±0.03 0.50±0.04

Table 5: The control evaluation of the schemes by 10-Fold Cross-validation. The
parameter setting is the same as Table 4 except SVM is trained with randomized
labels.

4.3.6 Dataset B-1

The results in Figure 27 show the performance by using the examples with
largest bleeding size and no bleeding, which gives strong discriminative features.
It shows the highest performance as theoretical expectation. The slope of the
AUC curves are decreasing with more training examples and approaching AUC
= 0.8. However, the standard deviation remains around 0.05, which indicates
the deviation de-correlates with the number of training examples.
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Figure 27: Mean AUC and estimated standard deviation of Dataset B-1. Note
the scales and label of each y axis.

4.3.7 Dataset B-2

The AUC performance is shown in Figure 28. It is acquired by using the exam-
ples with smallest bleeding size and no bleeding, which gives weak discriminative
features. The AUC grows slowly with more training examples with a maximum
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AUC of 0.61. This test suggests the algorithms work not well when the size of
bleeding is not conspicuous.
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Figure 28: Mean AUC and estimated standard deviation of Dataset B-2.

4.3.8 Dataset B-3

The result in Figure 29 shows the performance by for the case in which the
bleeding size is unknown. It shows the performance of this dataset is between
B-1 and B-2 as expected.

4.4 Discussion

4.4.1 Performance

An interception could be noticed when comparing the performance of NAE with
CSAE, which indicates that NAE performs better when the number of training
examples is small and CSAE performs better as more training examples are
used. The results from MNIST and CIFAR-10 datasets shown in Table 2 and 3
illustrated that when large number of examples are used in CSAE+SVM case,
the performance is no worse than the performance when using SVM solely.

The difference regarding to performance for the three schemes is tiny. SVM
shows stable performance in MNIST and CIFAR-10 datasets while shows high
deviations in both Dataset A and B. Therefore, SVM may not be the best model
for stroke patients classification.
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Figure 29: Mean AUC and estimated standard deviation of Dataset B-3.

4.4.2 Variability

AE is considered as high-variation model since it will learn different represen-
tation of the same data each time it runs. As a result, the classifier may yield
different classification results. Therefore, higher deviation is expected when
combining AE to classifier. This is reflected in Dataset B where the curve for
SVM is more smooth and steady than the others.

The estimated standard deviation for all three schemes are all around 0.05,
which is considered high . When analyzing the trend of standard deviation with
training examples, the curves stabilized in Dataset A but continue oscillating in
Dataset B. This indicates more simulations are necessary before the performance
can be estimated accurately.
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5 Conclusion

The tests of combining AE and SVM for classification is successfully carried
out upon different datasets. For stroke classification, the performance using
Linear kernel SVM with model selection can reach a peak AUC of more than
0.8 on both medical datasets. The combination of AE and SVM can hardly
bring noticeable improvements in most cases. The conclusion is also revealed in
external datasets where for most cases, the three schemes get indistinguishably
similar results.

The results also have relatively high standard deviation especially in stroke
datasets though it may decrease with more training examples. This may re-
sult from complex and high-dimensional nature of medical data since SVM has
steady, low-deviation performance in external datasets. Therefore, it indicates
that SVM may not be the best model for stroke classification problem.

It is worth noticing that, for datasets which contain large number of training
examples, CSAE will outperform NAE regarding to performance. This infor-
mation may be helpful as a reference when combining AE with other classifiers.

5.1 Limitation

In the planning stage, several feature selection methods are tested. For example,
use real, imaginary or both parts, use the angle of the complex number as input
features. Unfortunately, due to unknown reasons, none of above methods could
bring promising classification results, i.e. the Accuracy or AUC remains 0.5,
which means totally indiscriminate. Only the method that use the absolute
value of the matrix could finally adopted as.

The training of AE and model selection in SVM may take hours to finish
each time the Matlab code runs. Due to limited time for this project, the mean
and standard deviation measurement of Accuracy and AUC for Dataset A and
B are conducted only 20 or 30 times. As a result, the results may not converge
perfectly.

5.2 Future work

More lab simulation data could be generated if possible since the classification
performance in Dataset B shows the ascending trend of AUC curve with more
training examples. In this case, the classification performance still has space to
improve.

The AE in this project cannot strictly considered as deep learning method
since it contains only one hidden layer [29]. It would be interesting to test
the more complex case where several hidden layers are used, since it would be
more natural to extract features from layer-by-layer process rather than find a
straightforward representation by only one hidden layer [30].

It is difficult to evaluate the quality of features from AE regarding to the
classification performance. Current method only uses the reconstruction error.
It would be biased since this step naively considers well-trained AE would cer-
tainly improved the classification results. It would be necessary to build direct
relation between the performance of AE and classification performance. This
can be a complicated task since AE is of high variability which need numbers
of simulations to model the distribution of the results.

39



For SVM classifier, heuristic methods could be applied instead of grid-
searching methods as it could achieve similar results but be more time-efficient
[10]. More classifiers including regression-oriented could be tested, since bleed-
ing size in the brain is a continuous quantity. Binary classification may pose a
problem in which the hard threshold may cause high distortion.
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