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Optimal Restart Games
General Theory and Near-Optimal Strategies for Rivest’s Coin Game
ANTON ÄLGMYR, BJÖRN MARTINSSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
The purpose of this thesis was to analyze the Rivest coin game. To do this we
formally introduced a type of game which we call restart games and built a theoretical
framework for analysis of such games. Most of this theory was derived by connecting
restart games to quitting games (optimal stopping problems) with ideas based on [1].

Through this framework we have developed two strategies for playing the Rivest
coin game which we have shown to be constant-factor from optimal. These strategies
seem to generalize well to other similar games, in particular we have shown them to
be constant-factor from optimal in another related coin game.

The theoretical framework also provided means to analyze the Rivest coin game
numerically and even construct an optimal strategy for any particular instance of the
game. The constructed optimal strategy, along with some other simple strategies,
was analyzed and reaffirms the optimality analysis while also highlighting some
important differences between our strategies and an optimal strategy.

Keywords: Rivest coin game, restart game, quitting game, optimal stopping, Markov
decision process, dynamic programming, complexity analysis, speedrun
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1
Introduction

Suppose you have a computer program whose runtime is stochastic. Sometimes the
program might have a bad run that ends up taking a lot of time. In that case it
might make sense to abort the program and start anew, sacrificing your invested
time with the hope of getting a better start. In such a situation, when should you
restart the program to minimize the expected total runtime? This scenario would be
an instance of what we will call an optimal restart problem.

The idea of augmenting a random process with restarts to improve running times
is not a new concept, but has been studied in different contexts.

In the case where the internal state of the underlying random process is hidden,
there is a well-known result that says that there exist a universal strategy that comes
within a logarithmic factor of the expected optimal run time [2].

In the case where the internal state is observable, you can do better. For example,
Janson and Peres investigated adding restarts to random walks on lattices to minimize
hitting time, where they found the asymptotic behavior of the expected hitting time
for an optimal strategy [3].

Dixon’s factorization algorithm is another example where this kind of random
process occurs. To analyze this process in isolation Rivest (of RSA fame) introduced
a restarting coin game as a simple model [4][5]. In the paper of Hu and Venkatesh [5]
they include a succinct summary of the premise of the game:

An individual has 20 fair coins in his pocket. He takes coins out of his
pocket one at a time and tosses them, his objective being to obtain 15
heads. If fewer than 15 heads transpire in any round of 20 tosses, he
must return all 20 coins to his pocket and restart the game. He also
has the option of restarting the game at any point by ending a round of
tosses and returning all 20 coins to his pocket before starting anew. The
problem facing our protagonist is to choose an optimal restart strategy
which would minimize the expected number of tosses he has to make
before achieving his goal of 15 heads.

The Rivest coin game is good toy problem to analyze to gain insight for a category
of restart problems.

Our motivation for investigating the Rivest coin game comes from the idea of
modeling speedruns, the task of completing some game as quickly as possible. In
particular we want to model the act of speedrunning to beat some record time. In
the progression of the run you might gain or lose time relative to your target. At
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which point is it better to abort the current run and restart and reset the timer?
This is an optimal restart problem.

The connection with the Rivest coin game is modeling fixed time gains/losses
as coin tosses (heads/tails). The analogue of beating some record time is to end up
with heads exceeding some goal amount.

1.1 Aim of the project
The aim of this thesis is to analyze the Rivest coin game. What is required to be
optimal or close to optimal? Does insights for this game generalize to other similar
games?

1.2 Methodology
The theoretical analysis will define what we call restart games and develop a frame-
work for analyzing such games. For this formulation and framework, inspiration
has been taken from [1], which investigates Markov decision processes where the
player is given some number of Markov chains and is allowed to pick which Markov
chain to advance, with the goal of minimizing the expected time until a terminating
state is reached in any of the Markov chains. The restart game concept that will be
presented here have a lot in common with this, and could conceptually be thought
of as the limit where there are infinitely many identical Markov chains to pick from.

The previous investigation of the Rivest coin game done by Hu and Venkatesh [5]
investigates the performance of a number of simple strategies in depth (down to
explicit formulas for the simplest ones). However, in their paper (and other papers
on the subject) there has been no attempt at proving any sense of optimality for a
strategy. In contrast, this thesis we will, from the ground up, prove the constant-
factor from optimal behavior for two simple strategies, the promising strategy and
the probabilistic strategy, for the Rivest coin game (along with a related coin game).

Like in the aforementioned article, we will also analyze the Rivest coin game
numerically using some insights from the restart game framework to prove correct-
ness of the methods used. Dynamic programming and a variant of binary search
will be employed to allow for performant calculations. The calculations involve
very wide dynamic range of numbers and therefore we will make use of arbitrary
precision arithmetic to eliminate any arithmetical errors. The numerical results
will help visualize the behavior of various algorithms and reaffirm the optimality of
the promising strategy and the probabilistic strategy, while also highlighting the
differences between the strategies that are constant-factor from optimal, as well as
shedding light on the lack of sharpness of our theoretical bounds.
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1.3 Outline
In Chapter 2 we introduce restart games and a framework for analyzing them. In
Chapter 3 two specific games are introduced, the Rivest coin game and another related
game (Good Coin Bad Coin). In Chapter 4 all strategies that will be considered
in the thesis will be presented, most importantly the promising strategy and the
probabilistic strategy whose properties will be analyzed. In Chapter 5 the promising
strategy is shown to be constant-factor from optimal in the two coin games, which
concludes the theoretical portion of the thesis. In Chapter 6 numerical methods for
analysing the Rivest coin game are presented, along with numerical results which
allows for comparison of key properties for different strategies. Finally, discussion
and conclusions will be presented in Chapters 7 and 8 respectively.
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2
The theory of restart games

To begin we will introduce a base game which will later be augmented with restarts
to create restart games. The base games will also be augmented to a quitting game
as a tool for proving theorems about the restart games.

2.1 Base game
Definition 2.1 (Base game). A base game is a Markov chain G = (X∪L∪W,P, s0),
where X∪L∪W are the states of the game (X,L,W are disjoint), P is the probability
transition matrix for transitions from X to X ∪ L ∪W , and s0 ∈ X is the initial
state. Since the base game is a Markov chain it can not be controlled in any way,
only observed.

You start out in the initial state s0 ∈ X, then using the probabilities given by
the probability transition matrix P you transition until you reach a state in L or W .
If you reach W then the game is won, otherwise the game is lost.

There are two additional constraints we will require a base game to have. The
state space State(G) := X is required to be finite, and for any state in X there must
be a non-zero probability of being able to reach a state in L ∪W with one or more
transitions.

Definition 2.2 (Base game conditioned on win/loss). Given a base game G, define
the base game GW as the game G conditioned on winning, meaning that had you
played the entire game through you are conditioned to end up in W . Likewise define
GL as conditioned on losing, meaning that you will end up in L.

2.2 Restart game
The base game can be augmented into a restart game as follows.

Definition 2.3 (Restart game). Given a base game G we define the corresponding
restart game Restart(G).

Restart(G) is played in rounds. Each round starts out with a new instance of the
base game. Each round will consist of a sequence of choices. You have the choice to
either play, meaning you do a transition in the base game, or restart, meaning you
move on to the next round.
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If you ever reach a losing state in the base game then you are forced to restart.
If you reach a winning state in the base game then you are said to have finished the
current round, which in turn also ends the entire restart game.

For a round in the restart game, let t denote the number of times you played.
Let T be the sum of t over all rounds in the restart game. The goal is to minimize
E(T ), the expected duration of the game.

2.2.1 Restart strategies
The way of making the choices in Definition 2.3 is what makes a restart strategy. A
restart at the beginning of a round does nothing and just adds the complication of
infinitely many zero cost rounds, hence w.l.o.g. we can disallow such restarts.

It is also reasonable to restrict ourselves to restart strategies that will always
make the same choice in a given state, which is formalized in the following definition.

Definition 2.4 (Stochastic Markovian restart strategies). A stochastic Markovian
restart strategy in Restart(G) is a restart strategy that for each state s ∈ State(G)
plays with some fixed probability (only dependent on s).

Definition 2.5 (Determinsitic Markovian restart strategies). A deterministic Marko-
vian (DM) restart strategy in Restart(G) is a restart strategy that plays in some
A ⊆ State(G) and restarts in Ac.

The goal is to find an optimal restart strategy, i.e. a strategy that attains the
infimum of E(T ). The restriction to DM restart strategies turns out to not be limiting
in this regard.

Theorem 2.1 (Existence of an optimal DM restart strategy). For every restart
game there exists an optimal restart strategy that is a DM restart strategy.

Lemma 2.2 (Deterministic strategies are at least as good as stochastic). For
every stochastic Markovian strategy in the restart game there exists a deterministic
Markovian strategy for which E(T ) is either equal or smaller.

Proof of Lemma 2.2. Start out with any stochastic Markovian strategy S . Construct
the DM restart strategy S ′ by for every state, make S ′ play the action that minimizes
the duration of the game had you played S in the future (if there are many such
actions then pick any).
Claim. Let the restart strategy Zm be the strategy that plays S ′ for the first m actions
and plays S after that point. Then for m ≥ 0, E(T ) is equal or smaller when playing
Zm compared to S .

The proof of the claim is done by induction. The statement is trivially true for
m = 0. Assume it holds for m− 1, then note that the mth action done by S ′ is the
optimal action assuming you will play S from action m+ 1 and onwards. So if the
claim is true for m− 1 it is true for m.
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The claim shows that it is possible to postpone the transition to the stochastic
strategy arbitrarily far while not increasing the expected duration. Assuming the
limit behavior of the expected value is not pathological this means that the DM
strategy Z∞ = S ′ is at least as good as S .

Proof of Theorem 2.1. In this proof only the subset of Markovian strategies need
to be analyzed, because the only information that matters during the game is the
current state of the base game. So the only thing that needs to be shown is the
existence of an optimal DM strategy over the set of all Markovian strategies.

From Lemma 2.2 it follows that only DM strategies need to be considered, and
as the set of DM strategies is finite there must exist an optimal one.

2.2.2 Master theorem for restart games
There is a fundamental formulation for the expected duration of a restart game. This
formulation comes from separating realizations of the base game into win-conditioned
games GW and loss-conditioned games GL, and rounds into restarting rounds R and
non-restarting/finishing rounds ¬R.

To state the theorem some additional notation will be introduced, let ES (·) and
PS (·) be the expected value and probability when using strategy S . For this to be
well-defined we will restrict ourselves to DM strategies. Some illustrative examples
of the notation are

ES (t | R)
Playing with strategy S , the expected round length given that a restart
occurs.

PS (¬R | GW )
Playing with strategy S , the probability to finish a round (winning
the game) given that the base game is win-conditioned.

P(GL)
The probability of the base game being loss-conditioned, i.e. had you
played without restarts it would have ended in a loss.

Lemma 2.3 (Duration of a restart game). Given a DM restart strategy S with
PS (¬R) > 0, i.e. the strategy S has a non-zero probability of finishing, then

ES (T ) = ES (t | R) PS (R)
PS (¬R) + ES (t | ¬R).

Theorem 2.4 (Master theorem for restart games). Lemma 2.3 can be further split
conditioned on winning/losing the base game as

ES (T ) = ES (t | GL) 1
PS (¬R | GW )

P(GL)
P(GW ) + ES (t | GW , R) PS (R | GW )

PS (¬R | GW ) + ES (t | ¬R).

Proof of Lemma 2.3. Let N denote the number of rounds played by the strategy and
let ti denote the length of round i. The duration of the game T can be written as

T =
(
N−1∑
i=1

ti

)
+ tN .
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The first N − 1 rounds are restart rounds and the last round is a winning round.
Note that the ti for i < N are independent and identically distributed and also
independent of N − 1. Therefore we can calculate the expected value of T using
Wald’s equation. The expected value is

ES (T ) = ES

(
N−1∑
i=1

ti

)
+ ES (tN)

{Wald’s equation} = ES (t1)ES (N − 1) + ES (tN)

= ES (t | R)
(

1
PS (¬R) − 1

)
+ ES (t | ¬R)

= ES (t | R) PS (R)
PS (¬R) + ES (t | ¬R).

Proof of Theorem 2.4. This can be shown by either rewriting using Bayes’ formula
or using a derivation similar to the one in Lemma 2.3. The proof itself is left out for
the sake of brevity.

The point of the rewriting in Theorem 2.4 is to separate the strategy-independent
part of the expression, P(GL)/P(GW ), from the rest. There is also another more
fundamental reason why the rewriting is natural.

An instance of a base game G can thought of as having a predetermined outcome
unknown to the player. This means that it is possible to split the analysis of G into
two different games GW and GL, and then combine the two to recreate G. Informally
this can be described as

G =

GW with probability P(GW )
GL with probability P(GL).

It turns out that the probabilities can be varied independently of GW and GL.

Theorem 2.5. Given a base game G, the game

G′ :=

GW with probability P(G′W )
GL with probability P(G′L)

P(G′W ) = 1− P(G′L) ∈ (0, 1)

is also a base game.

Remark. G′ is different from G unless P(G′W ) = P(GW ).
Remark. G and G′ share the same state space, with the intepretation that you are in
a superposition of playing either GW or GL. To show that G′ is a base game one just
needs to show that G′ is a Markov chain, i.e. the transition probability matrix exists,
i.e. transition probabilities are only dependent on the current state of the game.
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Proof of Theorem 2.5. Firstly note that GW and GL are Markov chains since it is
well known that a Markov chain conditioned on reaching a certain state is in itself a
Markov chain.

Secondly, suppose that when playing G′ the first n + 1 states reached are
s0, s1, . . . , sn. Note that the conditional probability of G′W given this history only
depends on the present state sn and not the full history. One way to show this is to
apply Bayes’ theorem to the ratio

P(G′W | history)
P(G′L | history) = P(G′W )

P(G′L)
P(history | G′W )
P(history | G′L)

= P(G′W )
P(G′L)

P(history | GW )
P(history | GL)

= P(G′W )
P(G′L)

P(GL)
P(GW )

P(GW | history)
P(GL | history) .

Since G is a Markov chain, the RHS only depends on the present state sn. So
P(G′W | history) and P(G′L | history) on the LHS must also only depend on sn and
not the full history.

Lastly, note that playing G′ given history can be seen as playing GW with
P(G′W | history) and playing GL with P(G′L | history). As the conditioned games are
Markov chains and the conditional probabilities given history only depend on the
present state, G′ is a Markov chain.

So changing the win/loss probabilities in the base game only affects the fraction
P(GL)/P(GW ) in Theorem 2.4. Everything else remains the same.

In the case of hard games, P(GW )� 1, the first term will dominate and the only
thing the strategy can affect is ES (t | GL)

PS (¬R | GW ) .

2.2.3 Grade/optimality
This section only aims to state a number of theorems about how to optimally play
restart games by introducing something we call the grade of a state in a restart game.
The proofs of these theorems will be done in Section 2.5 using the connections between
restart games and their corresponding quitting games established in Section 2.4.

Definition 2.6 (Minimum duration). For a restart game Restart(G), define the
minimum duration E∗(T ) := minS ES (T ) over all possible DM restart strategies in
Restart(G).

Note that this definition of minimum duration coincides with the infimum of
E(T ) over all restart strategies according to Theorem 2.1.

Definition 2.7 (Grade). Given a base game G and s ∈ State(G) define the grade
γ(s) as the minimum duration of Restart(G′) where G′ is a modified version of G
with the initial state set to s.

9



Theorem 2.6 (Optimal restart criterion). A DM restart strategy S plays Restart(G)
optimally if and only ifPlays in {s ∈ State(G) : γ(s) < E∗(T )}

Restarts in {s ∈ State(G) : γ(s) > E∗(T )}

In the case of γ(s) = E∗(T ) the action taken is arbitrary.

The optimal restart criterion says what a DM strategy needs to fulfill in order to
be optimal. It is also possible to state a similar theorem pertaining to forcing the
player to not restart in a set of states.
Theorem 2.7 (Forced to play). Given a restart game Restart(G) with minimum
duration E∗(T ), then

min
S∈F

ES (T ) ≤ max(E∗(T ), γ(s1), . . . , γ(sn)),

where F is the set of all DM restart strategies S that does not restart in {s1, . . . , sn} ⊆
State(G).

This theorem is the key insight used to do constant-factor from optimal analysis.
The idea is that from knowing that the grade of some set of states is a constant factor
from the minimum duration, then it follows that it is possible to find a constant-factor
from optimal strategy that plays in those states.

2.3 Quitting game
Restart games are just one of the possible games you can create using a base game.
The problem with restart games is that it is not possible to view playing from any
state as a restart game in itself because you need to keep track of which state to
restart to (s0). Due to this we will introduce a new category of games similar to
restart games, which we will call quitting games.
Definition 2.8 (Quitting game). Given a base game G and quitting cost q ≥ 0,
define the corresponding quitting game Quitting(G, q) as playing a single round of
the base game. The round will consist of a sequence of choices. You have the choice
to either quit, meaning you pay the quitting cost q and terminate, or play, meaning
you pay 1 and do a transition in the base game.

If you ever reach a losing state in the base game then you are forced to quit. If
you reach a winning state in the base game then you terminate without having to
pay the quitting cost.

The goal of the game is to minimize the expected total cost Cq. This is an optimal
stopping problem.

For a quitting game, playing from any state is in itself a quitting game with the
initial state set to this state. This symmetry means that as long as we know the
optimal action for an arbitrary initial state, we know how to play the quitting game
optimally. There is also a strong connection between restart games and quitting
games which will allow us to prove the optimality theorems about restart games.
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2.3.1 Quitting strategies
The way of making the choices in Definition 2.8 is what makes a quitting strategy.
It is possible to directly translate DM restart strategies into quitting strategies
by switching restarting and quitting. Note however that there is a single quitting
strategy that cannot be translated into a restart strategy, the strategy that quits at
the initial state.

The parallel to DM restart strategies will be called DM quitting strategies and
the existence of an optimal DM quitting strategy follows from the same argument as
in Theorem 2.1.

2.3.2 Master theorem for quitting games
To formulate the master theorem for quitting games we will use similar notation as
the one for restart games. Just as with restart games, the number of times the play
action is taken before termination is denoted by t. The analogue of the duration of
the game T of a restart game is the total cost Cq. Instead of denoting the outcome of
a round as R (restarted) or ¬R (finished), we will for quitting games use Q (quitted)
and ¬Q (finished).

Theorem 2.8 (Duration of a quitting game). Given a quitting game Quitting(G, q)
and a DM quitting strategy S

ES (Cq) = PS (Q)(ES (t | Q) + q) + PS (¬Q)ES (t | ¬Q).

Proof. This is simply a decomposition of ES (Cq) based on the outcome (quit-
ted/finished).

2.3.3 Grade/optimality
This is the optimality criterion for quitting games which depends on the grade defined
for restart games. This will be proved in Section 2.5.

Theorem 2.9 (Optimal quitting criterion). A DM quitting strategy S plays Quitting(G, q)
optimally if and only ifPlays in {s ∈ State(G) : γ(s) < q}

Quits in {s ∈ State(G) : γ(s) > q},

where γ is the grade defined for Restart(G). In the case of γ(s) = q the action taken
is arbitrary.

Corollary 2.10 (Alternative definition of grade). Despite the grade being defined
for restart games, from Theorem 2.9 it is possible to give many equivalent definitions
of γs purely in terms of quitting games.

1. γ(s) is the smallest quitting cost q such that it is optimal to play in s.
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2. γ(s) is the largest quitting cost q such that it is optimal to quit in s.

3. γ(s) is the quitting cost q such that the optimal action at s is arbitrary.

Remark. Any of these three alternative definitions could be used as the basis for
analysis of restart and quitting games. We originally got the idea of using grade
from [1], which defines the grade only in terms of quitting games. Since this thesis
aims to analyze restart games, we have arbitrarily chosen to define γ in terms of
restart games.

2.4 Connection between restart games and quit-
ting games

This section aims to prove all of the optimality theorems for restart games and
quitting games by using the connection between them. A big part of the reasoning
used is based on using DM restart strategies to play quitting games.

Theorem 2.11 (Relationship between restart and quitting games). Let G be a base
game and let S be a DM restart strategy for Restart(G). Then for q ≥ 0

ES (T ) < q ⇐⇒ ES (Cq) < q (2.1)
ES (T ) > q ⇐⇒ ES (Cq) > q (2.2)
ES (T ) = q ⇐⇒ ES (Cq) = q (2.3)

where T is the duration of Restart(G) and Cq is the total cost of Quitting(G, q).

Corollary 2.12 (Corollary of Theorem 2.11). For a base game G and a DM restart
strategy S on Restart(G), S is optimal at Restart(G) if and only if it is optimal at
Quitting(G, q = E∗(T )).

Lemma 2.13. Let G be a base game and let S be a DM restart strategy for Restart(G)
such that PS (¬R) > 0. Then for q ≥ 0

ES (Cq) = PS (R)q + PS (¬R)ES (T ).

Proof of Lemma 2.13. The proof is just algebraic manipulation of Lemma 2.3 and
Theorem 2.8. The two theorems state that

ES (T ) = ES (t | R) PS (R)
PS (¬R) + ES (t | ¬R)

ES (Cq) = PS (Q)(ES (t | Q) + q) + PS (¬Q)ES (t | ¬Q).

Note that all the Qs can be replaced with Rs as the quantities only involve one
round in the quitting/restart game and as such are equivalent. Combining the two
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expressions gives

ES (Cq) = PS (Q)(ES (t | Q) + q) + PS (¬Q)ES (t | ¬Q)
= PS (R)(ES (t | R) + q) + PS (¬R)ES (t | ¬R)
= PS (R)q + PS (R)ES (t | R) + PS (¬R)ES (t | ¬R)

= PS (R)q + PS (¬R)
(

ES (t | R) PS (R)
PS (¬R) + ES (t | ¬R)

)
= PS (R)q + PS (¬R)ES (T ).

Proof of Theorem 2.11. In the case PS (¬R) = 0 then ES (T ) is infinite which is
greater than any q. Also ES (Cq) ≥ q + 1 as S is a restart strategy which will always
quit in the quitting game, so the total cost will be at least q + 1.

In the case of PS (¬R) > 0 we can apply Lemma 2.13. So we know that

ES (Cq) = PS (R)q + PS (¬R)ES (T ).

Note that ES (Cq) is a weighted mean of q and ES (T ). Thus the statement in the
theorem follows trivially as PS (¬R) > 0.

Proof of Corollary 2.12. For any DM restart strategy S playing Restart(G) and
Quitting(G, q = E∗(T )), by Theorem 2.11,

ES (T ) = E∗(T ) ⇐⇒ ES (Cq) = E∗(T ).

Note that by definition ES (T ) = E∗(T ) implies optimality at Restart(G).
If ES (Cq) = E∗(T ) then S must also be optimal at Quitting(G, q = E∗(T )). This

is because any better DM quitting strategy cannot afford to quit immediately, which
would be a DM restart strategy and by Theorem 2.11 would violate the optimality
of S in the restart game.

2.5 Proofs of optimality theorems
We are finally at the point where we can prove all the optimality theorems. First we
prove the optimality criterion for quitting games Theorem 2.9, which is then used
to prove the optimality criterion for restart games Theorem 2.6 and the impact of
forcing play in restart games Theorem 2.7.

Proof of quitting criterion Theorem 2.9. Any state in the quitting game is in itself
a quitting game with the same quitting cost q. This means that it is enough to prove
that the quitting criterion is correct for the first move at the initial state s0, since
then it will be correct for every move.
Criterion implies optimality There are two distinct cases to handle. Namely
that γ(s0) ≤ q implies that there exists an optimal quitting strategy that plays as its
first action, and that γ(s0) ≥ q implies that there exists an optimal quitting strategy
that quits as its first action.
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Case γ(s0) ≤ q The only strategy that does not play as its initial move quits
at cost q. So the only thing to prove is the existence of a strategy that plays as its
first action and that has cost ≤ q.

One such strategy is S ∗, the restart strategy optimal in Restart(G). By definition
γ(s0) ≡ ES∗(T ) which was assumed to be ≤ q. So Theorem 2.11 implies that
ES∗(Cq) ≤ q.

Case γ(s0) ≥ q In this case any restart strategy S fulfills ES (T ) ≥ γ(s0) ≥ q.
Again Theorem 2.11 together with ES (T ) ≥ q implies that ES (Cq) ≥ q. So all quitting
strategies that play in s0 have ES (Cq) ≥ q. The strategy that quits immediately has
cost q and is therefore optimal.
Optimality implies criterion Again there are two distinct cases to handle.
Namely that optimality implies playing if γ(s0) < q, and that optimality implies
quitting if γ(s0) > q.

Case γ(s0) < q Assume for the sake of contradiction that an optimal strategy
quits in s0 at cost q. From the definition of grade there exists a restart strategy
with ES (T ) = γ(s0) < q, and by Theorem 2.11 ES (Cq) < q. This contradicts the
assumption of optimality, hence any optimal strategy must play in s0.

Case γ(s0) > q Assume for the sake of contradiction that an optimal strategy
S plays in s0. From the definition of grade, using S in the restart game results
in ES (T ) ≥ γ(s0) > q, and by Theorem 2.11 ES (Cq) > q. This contradicts the
assumption of optimality as quitting at s0 would be a better strategy, hence any
optimal strategy must quit in s0.

Proof of restart criterion Theorem 2.6. According to Corollary 2.12, any DM restart
strategy S that is optimal at either Restart(G) or Quitting(G,E∗(T )) must be optimal
at both. As such the quitting criterion Theorem 2.9 with q = E∗(T ) will also work as
a restart criterion.

Proof of forced to play Theorem 2.7. Note that in the quitting game Quitting(G, q)
the DM quitting strategy S whichPlays in {s ∈ State(G) : γ(s) ≤ q}

Quits in {s ∈ State(G) : γ(s) > q}

is optimal according to the quitting criterion Theorem 2.9. As S is optimal at
Quitting(G, q)

ES (Cq) ≤ q. (2.4)

Now consider q = max(E∗(T ), γ(s1), . . . , γ(sn)). As E∗(T ) is the grade of the
initial state and S only quits if E∗(T ) > q, the strategy will not quit immediately
and as such is a restart strategy. For restart strategies we can apply Theorem 2.11
which together with (2.4) gives

ES (T ) ≤ q = max(E∗(T ), γ(s1), . . . , γ(sn)).
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3
Coin games

In this section two coin games will be introduced. The primary game is very similar
to the coin game proposed by R. L. Rivest as a model for one part of the well-
known Dixon’s factorization algorithm [4][5], for use in analyzing possible runtime
improvements of the algorithm. The secondary game is a related game introduced
by us that is easier to analyze, in the hope that the proof techniques will carry over
to the primary game (which turned out to be correct).

For both games the probability p ∈ (0, 1) of a coin flip being heads will be
considered a hyperparameter, meaning it will be thought of as a constant when
analyzing the games.

3.1 The Rivest coin game
The original Rivest Coin game is getting ≥ K heads in a sequence of N coin flips. If
this is not achieved during N tosses the sequence is discarded and you get to try
again. As soon as K heads is achieved the game stops. Note that this could happen
in the middle of the sequence. On top of this you are allowed to voluntarily discard
an unfavorable sequence at any time and try again. The goal is to minimize the
expected total number of coin tosses until the game terminates.

For the sake of simplicity we make a minor change to this game, namely that
the terminating condition is changed so that game ends if the sequence contains
≥ K heads after making all N coin tosses. The extra cost from this is that the
winning round has to be played to completion. This is a cost of size ≤ N and will
be quickly dominated as the game gets harder (when ε gets larger). This variation
will be referred to as Rivest(N,K; p).
Definition 3.1 (The base game of the Rivest coin game, Rivest(N,K; p)). The
game takes two parameters N and K where N > 0 and 0 ≤ K ≤ N , and one
hyperparameter p ∈ (0, 1). A state in the game is represented by (n,Hn), the number
of tossed coins and the number of heads among those tossed coins. The starting
state of the game is (0, 0). The transition from state (n,Hn) is decided by a coin flip
with probability p. Getting a head means transition to (n+ 1, Hn + 1) and getting a
tail means transition to (n+ 1, Hn). Winning states are {(N,HN) : HN ≥ K} and
losing states are {(N,HN) : HN < K}. An illustration of a game instance can be
seen in Figure 3.1.
Remark. An alternative parameterization of the game that is useful in analysis is
Rivest(N, ε; p), where ε := K/N − p. The formulation in ε captures how much
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Figure 3.1: The (base game of the) Rivest coin game for N = 4, K = 2. Circles represent states,
and the arrows between the states represent transition probabilities. At n = 4 the top three green
states are the winning states and the bottom two red states are losing states.

better/worse than average you need to be, and is useful in the analysis because
asymptotic behavior of optimal strategies turns out to be readily expressed in ε.

Dealing with ε ≤ 0 is something that is a bit bothersome in the analysis, in that
the game behaves radically different than when ε > 0. However, this case is trivial
and can easily be dealt with. Importantly, if ε ≤ 0 then

P(GW ) ≥ 1
2 (3.1)

which follows from

ε ≤ 0 =⇒ P(GW ) ≥ P(HN ≥ bNpc | HN ∼ Binomial(N, p))

and that the median of Binomial(N, p) is either bnpc or dnpe. The means that for
ε ≤ 0 when playing the game without voluntary restarts, the expected number of
rounds played is at most 2.

3.2 Good coin bad coin (GCBC)
The formulation in ε invites one variation of the game that lends itself well to analysis.
Rounds that win the Rivest base game could (in a heuristic sense) be seen as having
been played with a lucky coin with a higher probability of heads, likewise playing
a round of such a coin would most likely lead to winning the game. This can be
formalised as follows.

Definition 3.2 (The base game of good coin bad coin, GCBC(N, ε, r; p)). The game
has one hyperparameter p ∈ (0, 1) and three parameters N > 0, ε ∈ (0, 1− p] and
r ∈ (0, 1). At the beginning of the game you are given an unknown coin to play with.
With probability r the coin is a bad coin with P(head) = p and with probability
1− r the coin is a good coin with P(head) = p+ ε. After a sequence of N tosses you
win if you have a good coin, otherwise you lose.
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The observable state is only (n,Hn), the number of tossed coins and the number
of heads among those tossed coins, which will be the state in the base game. But
the “true state” is (n,Hn, good/bad) where the states and state transitions for
(n,Hn, good) and (n,Hn, bad) are defined in a similar manner as for the Rivest coin
game, but with differently biased coins.

Remark. Note that

State(GCBC(N, ε, r; p)) = {(n,Hn) : n < N}

where the observable states can be seen as being superposition of the “true states”.
In this interpretation, when you have made the Nth toss and arrive at state (N,HN )
you win or lose with some probability dependent on HN . From the observer’s point of
view this probability is just the probability of having a good coin given the observed
state. So while HN by itself does not determine whether you win or lose the game,
the higher HN is, the higher the probability of having a good coin is.
Remark. One seemingly big difference between Rivest and GCBC is that only GCBC
has the parameter r. However according to Theorem 2.5 it is possible to generalize
Rivest in order to add an r parameter to it as well. So the parameters of two games
are not that different.

3.3 Ease of analysis or ease of numerical simula-
tion

One interesting thing to note is that the two games are very much opposites when it
comes to ease of analysis. Finding an optimal strategy to the Rivest coin game is
straightforward to do numerically, but it is more difficult to analyze in terms of win-
conditioned and loss-conditioned rounds. On the other hand GCBC is straightforward
to analyze as win-conditioned rounds have good coins and loss-conditioned rounds
have bad coins, but finding an optimal strategy for it numerically is a bit more
involved.
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4
Strategies

This section contains all the strategies considered in this thesis. The strategies are
intended for use in both the good coin bad coin game and the Rivest coin game
introduced in Chapter 3. All the strategies introduced in this section will be compared
in the numerical analysis, but only the indolent strategy I , the promising strategy P
and the probabilistic strategy Pr will be considered in the theoretical analysis.

4.1 Indolent strategy
The indolent strategy I is the strategy that never voluntarily restarts. For I there
are mainly three properties of interest used in this thesis.

• The probability to finish a win-conditioned round is PI (¬R | GW ) = 1.

• For Rivest(N, ε; p) and GCBC(N, ε, r; p), the length of a round is always N .

• As I never restarts, its distribution of heads at the end of a round can be
used to bound the distribution for other strategies. This connection makes
analyzing some properties of the optimal strategy possible by just analyzing I ,
which will be an essential part of the proofs later on in Section 5.3.2.

4.2 Promising strategy
The promising strategy is a new and original strategy constructed in order to play
Rivest(N, ε; p), ε > 0. One motivation behind the strategy is the idea to split the
game into several intervals of length δ with δ chosen in such a way that with a fixed
probability the number of heads tossed inside any of these intervals will be ≥ (p+ ε)δ,
and so from CLT it follows that δ = O(1/ε2).

With this construction of intervals it is possible to make the strategy behave a lot
like a geometric sum. This can be done by doing restarts at the end of an interval ni
if the number of heads < (p+ ε/2)ni. On loss-conditioned rounds it is expected to
only play O(1) intervals, and on win-conditioned rounds it will finish the round with
probability bounded away from zero. The formal definition of the strategy is the
following

Definition 4.1 (The promising strategy P for Rivest(N, ε; p) and GCBC(N, ε, r; p)).
P takes two parameters, α > 0 and β ∈ (0, 1).
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If ε ≤ 0 then P is completely indolent and will never try to restart. If ε > 0
then it will place equidistant checkpoints with distance δ := dα/ε2e. So checkpoints
are placed at ni := iδ, i = 1, 2, . . . , b(N − 1)/δc. It will restart at checkpoint i iff
Hni < (p+ βε)ni.

The choice of α and β are rather arbitrary, one reasonable choice is α = 2 and
β = 0.5 which we will use going forward.

The basic idea of P is to place equidistant checkpoints with distance δ and only
allow restarts at these checkpoints. This limitation forces the strategy to wait before
taking an action, which will give the strategy significant information to base its
decision on. The main drawback is that this forces rounds to be at least δ long, even
in cases where early restarts could be beneficial. This means that δ needs to be
deliberately chosen to take both effects into account. It turns out that δ close to
1/ε2 is a good choice.

Theorem 4.1 (Promising strategy is constant-factor from optimal). For the games
GCBC(N, ε, r; p) and Rivest(N, ε; p), if the parameters α and β are chosen such that

ln 2
2 < (1− β)2α,

then EP (T ) is at most a constant factor from E∗(T ) (constant w.r.t. N , ε and r).

Remark. The constraint on α and β comes from Theorem 4.3. Other than fulfilling
this constraint, the choice of α and β is rather arbitrary and will only affect numerical
constants in the derived bounds. One reasonable choice is α = 2 and β = 0.5, which
will be used as an example whenever constants are numerically evaluated.

Theorem 4.1 is the main result of this thesis and will proven in Chapter 5.

4.2.1 Properties
In the master theorem for restart games, Theorem 2.4, there are three important
properties of a strategy. The expected length of a loss-conditioned round EP (t | GL),
the probability of finishing a win-conditioned round PP (¬R | GW ), and the expected
length of a win-conditioned restart round EP (t | GW , R).

For the promising strategy it is obvious that the length of any round is at least
min(N, δ). In the case of a loss-conditioned round it is also possible to bound the
length of a round from above.

Theorem 4.2 (Upper bound on EP (t | GL)). In both GCBC(N, ε, r; p) and Rivest(N, ε; p),
ε > 0, the expected length of a loss-conditioned round

EP (t | GL) ≤ α + 1
ε2

1
1− e−2β2α

{α = 2, β = 0.5} = 1
ε2 4.746...
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Another important property is PS (¬R | GW ). The promising strategy plays a
substantial amount of time before restarting and because of this is able to keep this
probability finite, i.e. if it is possible to win, it will win with probability bounded
away from zero.
Theorem 4.3 (Lower bound on PP (¬R | GW )). In both GCBC(N, ε, r; p) and Rivest(N, ε; p),
the probability to finish a win-conditioned round

PP (¬R | GW ) ≥ 1− 1
e2(1−β)2α − 1

{α = 2, β = 0.5} = 0.418...
Remark. The bound is only usable if

ln 2
2 < (1− β)2α,

otherwise the bound on the probability is trivial.
The only property left to analyze is EP (t | GW , R). As a consequence of The-

orem 4.3 the promising strategy will only play a finite expected number of win-
conditioned restart rounds. This in turn means that the trivial bound EP (t | GW , R) ≤
N is sufficient to do constant-factor from optimal analysis.

Proof of Theorem 4.2 for GCBC(N, ε, r; p). One way of thinking of P is that at
every checkpoint there is a buy-in cost to continue playing. This cost is δ except
after the last checkpoint where it is ≤ δ. This means that the length of a round

t ≤ δ(1 + #buy-ins){
δ =

⌈
α

ε2

⌉
, ε < 1

}
≤ α + 1

ε2 (1 + #buy-ins).

A buy-in at checkpoint i requires that you both clear all the checkpoints before i
and have enough heads at ni. To get an upper bound on EP (#buy-ins | GL) the first
requirement can be dropped to get

EP (#buy-ins | GL) ≤
∑
i

P(Hni ≥ (p+ βε)ni | Hni ∼ Binomial(ni, p))

{Hoeffding’s inequality (A.1)} ≤
∑
i

e−2β2ε2ni

{
ni = i

⌈
α

ε2

⌉
≥ i

α

ε2

}
≤
∑
i

e−2β2αi.

Therefore
EP (t | GL) ≤ δ(1 + EP (#buy-ins | GL))

≤ α + 1
ε2

(
1 +

∑
i

e−2β2αi

)

≤ α + 1
ε2

∞∑
i=0

e−2β2αi

= α + 1
ε2

1
1− e−2β2α

.
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Proof of Theorem 4.2 for Rivest(N, ε; p), ε > 0. Just note that

EP (t | GL) ≤ EP (t).

This is because GL only includes those games where HN < K, while not conditioning
on loss will also include those where HN ≥ K, Rounds with HN ≥ K will have more
heads in general which will make the lengths of the rounds longer.

EP (t) is just the expected length of a round played using P with a p-coin, which
is exactly what the previous proof covers.

Proof of Theorem 4.3 for GCBC(N, ε, r; p). It is possible to bound PP (¬R | GW )
from below by bounding PP (R | GW ) from above. PP (R | GW ) can be interpreted as
the probability of doing a restart at any of the possible checkpoints,

PP (R | GW ) =
∑
i

PP (restart at ni | GW ).

For the restart to happen at checkpoint i it is required that you clear all check-
points< i and have too few heads at ni. To get an upper bound on PP (restart at ni | GW )
the first requirement can be dropped to get

PP (restart at ni | GW ) ≤ P(Hni < (p+ βε)ni | Hni ∼ Binomial(ni, p+ ε))
= P(Hni < ((p+ ε)− (1− β)ε)ni | Hni ∼ Binomial(ni, p+ ε))

{Hoeffding (A.2)} ≤ e−2(1−β)2ε2ni{
ni = i

⌈
α

ε2

⌉
≥ i

α

ε2

}
≤ e−2(1−β)2αi.

Therefore

PP (¬R | GW ) = 1− PP (R | GW )
= 1−

∑
i

PP (restart at ni | GW )

≥ 1−
∑
i

e−2(1−β)2αi

≥ 1−
∞∑
i=1

e−2(1−β)2αi

= 1− 1
e2(1−β)2α − 1 .

Proof of Theorem 4.3 for Rivest(N, ε; p). For Rivest there are two cases, either ε ≤ 0
or ε > 0. If ε ≤ 0 then P is completely indolent and therefore PP (¬R | GW ) = 1.

If ε > 0 then the proof is almost the same as for GCBC, the only difference is the
method used to show the bound on PP (restart at ni | GW ). From the same argument
as before

PP (restart at ni | GW ) ≤ P(Hni < (p+ βε)ni | GW ).
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GW cointains many different games, all with HN ≥ K, i.e. the number of heads at
the end of the game must result in a win. Now note that the probability on the RHS
is maximized when HN = K which will make Hn hypergeometrically distributed. So,
letting Hni ∼ HyperGeom(K,N, ni), we have

PP (restart at ni | GW ) ≤ P(Hni < (p+ βε)ni)
= P(Hni < ((p+ ε)− (1− β)ε)ni)

{Hoeffding (A.4)} ≤ e−2(1−β)2ε2ni .

This is the same exact bound as for GCBC.

4.3 Probabilistic strategy
Unlike the promising strategy, the probabilistic strategy is very general and can be
played on any restart game.

Definition 4.2 (Probabilistic strategy Pr for any Restart(G)). Pr takes in one
parameter, λ ∈ (0, 1). It restarts at a state iff the probability of winning the base
game playing from that state is < λP(GW ).

It turns out that this strategy behaves similarly to the promising strategy, to
the extent that Theorem 4.1 can be used to prove that the probabilistic strategy is
constant-factor from optimal.

Theorem 4.4 (Probabilistic strategy is constant-factor from optimal). For GCBC(N, ε, r; p)
and Rivest(N, ε; p), the probabilistic strategy Pr is for any choice of λ constant-factor
from optimal, i.e. EPr (T ) is at most a constant factor from E∗(T ) (constant w.r.t.
N , ε and r; but not w.r.t. p and λ).

The first similar behavior is that both strategies only restart on a fraction of the
win-conditioned rounds. For the promising strategy this is stated in Theorem 4.3,
and a similar theorem can be stated for the probabilistic strategy.

Theorem 4.5 (Upper bound on P(R | GW ) for the probabilistic strategy). For any
restart game Restart(G) such that P(GW ) > 0 it holds that

PPr (R | GW ) ≤ λ.

Proof of Theorem 4.5. Note that for Pr

PPr (GW | R) ≤ λP(GW ). (4.1)

This is because the probabilistic strategy only restarts if the probability of the round
being a winning round is lower than λ times what it was initially. The condition for
restarting does not depend on the future which makes the time of restart a stopping
time, so (4.1) follows from the strong Markov property.
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Combining inequality (4.1) with Bayes’ theorem it follows that

PPr (R | GW ) = PPr (GW | R)
P(GW ) PPr (R)

≤ λPPr (R)
≤ λ.

The other similarity between P and Pr is that the bound in Theorem 4.2 can
also be used to bound the probabilistic strategy. This is because that for appropriate
choices of α and β, the probabilistic strategy is more aggressive than the promising
strategy.

Theorem 4.6 (Probabilistic is more aggressive than promising). Valid for GCBC(N, ε, r ≥
1/2; p) and Rivest(N, ε; p). Let Pr be the probabilistic strategy with parameter λ, and
P be the promising strategy with parameters α and β such that

4e−2(1−β)2α ≤ λ.

If P restarts at a state (n,Hn) then Pr also restarts at (n,Hn).

Proof of Theorem 4.6. To show that P restarting implies that Pr restarts, it is
necessary to show that when P restarts, the conditional probability of winning is
< λP(GW ).

If ε ≤ 0 then promising strategy never restarts, so the statement in the theorem
is trivially true. If ε > 0 then as seen in the proof of Theorem 4.3

P(Hni < (p+ βε)ni | GW ) ≤ e−2(1−β)2α

holds for both games. From Bayes’ theorem it follows that

P(GW | Hni < (p+ βε)ni) = P(Hni < (p+ βε)ni | GW )
P(Hni < (p+ βε)ni)

P(GW )

≤ e−2(1−β)2α

P(Hni < (p+ βε)ni)
P(GW ).

The denominator needs to be bounded from below in different ways depending on
the game.

For Rivest it holds that

P(Hni < (p+ βε)ni) ≥
1
2

as the bound (p+ βε)ni is above the median of Hni .
For GCBC it holds that

P(Hni < (p+ βε)ni) ≥ P(Hni < (p+ βε)ni | GL)P(GL)

≥ 1
4
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as the probability of playing with a bad coin r = P(GL) is assumed to be at least
1/2, and (p+ βε)ni is above the median of Hni when playing with a bad coin.

So for both Rivest and GCBC we have that

P(GW | Hni < (p+ βε)ni) ≤
e−2(1−β)2α

P(Hni < (p+ βε)ni)
P(GW )

≤ 4e−2(1−β)2αP(GW ).

Now using the assumption 4e−2(1−β)2α < λ gives

P(GW | Hni < (p+ βε)ni) < λP(GW ).

This means that the probabilistic strategy would have restarted if the promising
strategy had restarted.

Now, having proved that the probabilistic strategy is more aggressive than the
promising strategy, it is possible to prove Theorem 4.4 using Theorem 4.1.

Proof of Theorem 4.4. Note that for GCBC(N, ε, r; p) with r < 1
2 , the probabilistic

strategy is constant-factor from optimal since

• r < 1
2 implies at least half of the rounds are win-conditioned rounds

• Theorem 4.5 implies that the expected number of win-conditioned rounds
played by Pr is bounded by a constant.

So we can assume r ≥ 1/2 in the future, which is necessary in order to be able to
use Theorem 4.6.

What remains is analyzing the terms in the master theorem for restart games,
Theorem 2.4, and showing that EPr (T ) is bounded from above by a constant times
EP (T ). The three terms describe the expected cost of loss-conditioned rounds, the
expected cost of restarted win-conditioned rounds, and the expected cost of the
winning round.

Let X denote the sum of the last two terms. Note that for GCBC and Rivest,
independent of strategy, X ≥ N . For Pr , Theorem 4.5 implies that X is bounded
from above by a constant times N . This means that Pr is no more than a constant
factor from minimizing X, so X can be ignored.

Only the first term remains, and the only part of it that is strategy dependent is
the factor

E(t | GL)
P(¬R | GW ) .

Theorem 4.6 says that Pr is more aggressive than P , so the numerator EPr (t | GL) ≤
EPr (t | GL). For Pr , Theorem 4.5 implies that the denominator is bounded away
from zero. This means that the ratio (and as a consequence the entire term) cannot
be more than a constant factor larger for Pr than for P .

So Pr is constant-factor from P . Since P is constant-factor from optimal according
to Theorem 4.1, it follows that Pr is constant-factor from optimal.
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4.4 Properties of an optimal strategy
There are some properties that any optimal DM restart strategy must have playing
Rivest and GCBC. One obvious property is that the optimal strategy must restart
immediately if the strategy is not able to win the current round no matter the
outcome. Another more subtle property is that if it restarts in state (n,Hn) must
also restart in (n,Hn − 1).

Definition 4.3 (Consistent strategy). A DM restart strategy S for Rivest(N, ε; p)
or GCBC(N, ε, r; p) is said to be consistent if for each n < N there exists a cutoff
point cn ∈ {0, . . . , n}, such that S restarts at state (n,Hn) iff Hn < cn.

The indolent strategy is the most trivial example of a consistent strategy. Note
that out of all consistent strategies, indolent is the one that keeps the worst rounds.
Every other consistent strategy will try to filter out the bad rounds. So given that n
coins has been tossed, out of all consistent strategies, indolent minimizes the number
of heads up to that point. Formally this can be stated as the following.

Theorem 4.7 (Indolent has the fewest number of heads). Valid for Rivest(N, ε; p)
and GCBC(N, ε, r; p). Let n ∈ {0, . . . , N}, k ∈ {0, . . . , n} and S be any consistent
strategy. Then

PS (Hn ≥ k | ¬R) ≥ PI (Hn ≥ k | ¬R).

Proof of Theorem 4.7. While the theorem is intuitively correct, it is possible to
formally show it using the Fortuin–Kasteleyn–Ginibre (FKG) inequality [6]. The
inequality states that if A and B are two increasing events then they are positively
correlated, i.e.

P(A ∩B) ≥ P(A)P(B),

or equivalently
P(A | B) ≥ P(A).

Note that the statement in the theorem is equivalent to

PS (Hn ≥ k | GW ,¬R) ≥ P(Hn ≥ k | GW ).

which is exactly
P(A | B,GW ) ≥ P(A | GW ),

where A is the event that Hn ≥ k and B is the event that S does not restart. So, to
apply FKG all that is necessary to show is that A and B are increasing events.

That A and B are increasing events follows directly from the definition in [6] and
that S is consistent. A is an increasing event since if you take an outcome in A and
replace a tail with a head, it will still lie in A. The same also holds for B.

Theorem 4.7 is a fundamental inequality for all consistent strategies playing Rivest,
and as such connects any optimal DM restart strategy to the indolent strategy. This
will be used in the proof of Theorem 4.1 to allow certain bounds on the indolent
strategy to be used on any optimal DM restart strategy.
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4.5 Other strategies
There are three extra strategies considered in the numerical analysis.

Optimist
Only restarts if there is 0 probability of winning

Promising (δ = 1)
A degenerate case of the promising strategy with distance 1 between checkpoints

27



28



5
Optimality of promising

In this section we will prove Theorem 4.1, the theorem stating that the promis-
ing strategy P is constant-factor from optimal playing either GCBC(N, ε, r; p) or
Rivest(N, ε; p). For simplicity we will prove the statement for P with parameters
α = 2 and β = 0.5, but the exact same proof works for any α and β such that

ln 2
2 < (1− β)2α

and will only result in a different numerical constant.
To simplify notation, anytime c or ci is used it refers to a positive constant

(constant w.r.t. N , ε and r; but not w.r.t. p).

Definition 5.1 (Constant-factor from optimal). A DM strategy S is said to be
constant-factor from optimal in either game if

ES (T ) ≤ cE∗(T ).

The method used to show that a strategy is constant-factor from optimal is based
on the following theorem

Theorem 5.1. Valid for strategy S = P or S = I . Given GCBC(N, ε, r; p) or
Rivest(N, ε; p), if for some restriction of the (N, ε) parameter space there exists a
DM restart strategy S ′ such that

ES (t | GL) ≤ c1ES ′(t | GL),

then for that restriction there exists a c2 (dependent on c1) such that

ES (T ) ≤ c2ES ′(T ).

Proof of Theorem 5.1. The theorem follows from analysis of the parameters in the
master theorem for restart games, Theorem 2.4.

Note that the indolent strategy I has PI (¬R | GW ) = 1 and in the case of the
promising strategy P , Theorem 4.3 states that PP (¬R | GW ) is bounded from below
by a positive constant. Essentially this means that both strategies are a constant-
factor away from maximizing P(¬R | GW ), so no other strategy could improve this
parameter by more than a constant factor.

The expression for ES (T ) in Theorem 2.4 contains three terms. The third term
ES (t | ¬R) = N in the case of GCBC and Rivest. The second term for S is ≤ cN as

29



PS (¬R | GW ) is bounded away from zero and trivially ES (t | GW , R) ≤ N . So the
only way for c2 to not exist, i.e. ES ′(T )� ES (T ), is for the first term for S ′ to be much
smaller than the first term for S, which can only happen if ES ′(t | GL)� ES (t | GL).
This would contradict the existence of c1.

Note that this theorem allows for comparison between strategies. For example
because EI (t | GL) = N ≥ EP (t | GL) it follows from Theorem 5.1 that

EP (T ) ≤ cEI (T ).

One implication from this is that if indolent is constant-factor from optimal for some
subset of the games, then the same is true for promising. A generalized version of
this result is stated in the following corollary.

Corollary 5.2 (Corollary of Theorem 5.1). Valid for strategy S = P or S = I . Given
GCBC(N, ε, r; p) or Rivest(N, ε; p), if for some restriction of the (N, ε) parameter
space S ′ is constant-factor from optimal and ES (t | GL) ≤ cES ′(t | GL) then S is also
constant-factor from optimal.

This corollary is the most important tool for constant-factor from optimal analysis.
The idea is to show that P is constant-factor from optimal by showing that there exists
some constant-factor from optimal strategy S ′ such that ES (t | GL) ≤ cES ′(t | GL).
It then follows from Corollary 5.2 that P is also constant-factor from optimal. This
means that most of the proof of Theorem 4.1 will be about showing the existence of
S ′, a strategy that is constant-factor from optimal while also playing loss-conditioned
rounds of roughly the same length as P .

5.1 Regions
The proof of P being constant-factor from optimal for GCBC(N, ε, r; p) and Rivest(N, ε; p)
is different depending on N and ε. For ε > 0 there are 3 regions

1. 1−p
4 < ε

2. 1−p
4 ≥ ε, N < 4

ε2

3. 1−p
4 ≥ ε, N ≥ 4

ε2

The first two regions deal with boundary cases. Region 1 is the case where
p+ ε ≈ 1 and region 2 is the case where N is small in comparison to 1

ε2
. Note that

the constants (the fours in the enumeration) used are not entirely arbitrary. They
are chosen so that bounds on probabilities come out correct. The constants could
be fine-tuned to make the final constant factor (stated in Theorem 5.11) be a lot
smaller, but here the constants are taken to be integer to make the proofs nicer.

Theorem 5.3 (Valid for GCBC and Rivest, region 1). Promising is constant-factor
from optimal.
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Theorem 5.4 (Valid for GCBC and Rivest, region 2). Indolent is constant-factor
from optimal.

Theorem 5.5 (Valid for GCBC and Rivest, region 3). Promising is constant-factor
from optimal.

Using these three theorems it is possible to prove Theorem 4.1. So the focus from
this point onwards will be to prove these three theorems, containing six statements.
It will be done in four proofs, two of them will be mostly trivial and will be done in
this section. The other two will need more advanced techniques and will be proven
in the next section.

Proof of the optimality theorem, Theorem 4.1. The three regions covers almost all
possible choices of N and ε. The only exception is ε ≤ 0 in the case of Rivest, but
that case is trivial as P will be indolent by definition and from inequality (3.1) it
follows that the expected number of rounds in the game is at most 2. So for ε ≤ 0 P
is clearly constant-factor from optimal, so we only have to take into account ε > 0.

Combining Theorem 5.4 and Corollary 5.2 (with S = P and S ′ = I ) implies P is
constant-factor from optimal in region 2, which together with Theorems 5.3 and 5.5
implies P is constant-factor from optimal.

Proof of Theorem 5.3, GCBC and Rivest, region 1. In region 1 1−p
4 < ε so Theo-

rem 4.2 gives that
EP (t | GL) ≤ 42

(1− p)2 4.746...,

which is a constant. Together with Corollary 5.2 (with S = P and S ′ being an
optimal strategy) it follows that P is constant-factor from optimal.

The following is a proof of Theorem 5.4 in the case of Rivest. The corresponding
proof for GCBC will be done in the next section.

Proof of Theorem 5.4, Rivest, region 2. For Rivest(N, ε; p)

P(GW ) = P(HN ≥ (p+ ε)N), where HN ∼ Binomial(N, p),

which can be bounded independent of ε as

P(HN ≥ (p+ ε)N) = P
 HN − pN√

Np(1− p)
≥ ε

√
N√

p(1− p)


{
Region 2 =⇒ N <

4
ε2

}
≥ P

 HN − pN√
Np(1− p)

≥ 2√
p(1− p)

.
Note that for large enough N this is bounded from below by a positive constant as
CLT yields

P
 HN − pN√

Np(1− p)
≥ 2√

p(1− p)

 N→∞−−−→ 1− Φ
 2√

p(1− p)


> 0.
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For finite N there are only finitely many choices of (N,K), and by definition of
Rivest P(GW ) is always > 0. Taken together, this means that for the entirety of
region 2

P(GW ) ≥ c.

This in turn implies that in region 2 I will finish the game in a finite expected number
of rounds, independent of N and ε, and is thus constant factor from optimal.

5.2 Box of forced play
It is left to show that indolent is constant-factor from optimal for region 2 for GCBC,
and that promising is constant-factor from optimal in region 3 for GCBC and Rivest.
In order to do these proofs we will need to construct a constant-factor from optimal
strategy that plays loss-conditioned rounds of similar length as the promising strategy.
The idea is to enforce play for some subset of the states, and then using

• Theorem 2.7 to show there exists a constant-factor from optimal strategy that
abides by these rules.

• Kolmogorov’s inequality to show that the enforcement of play will lead to
playing rounds of similar length as the promising strategy.

The subset of states chosen to enforce play on is the following box.

Definition 5.2 (Box of forced play). For GCBC(N, ε, r; p) and Rivest(N, ε; p),
ε > 0, define the box of forced play to be the set of states (n,Hn) such that

n ≤ 1
2ε2 and Hn − p n ≥ −

1
2ε.

Lemma 5.6 (Strategy forced to play in box). Valid for region 2 and 3 in GCBC
and region 3 in Rivest. There exists a constant-factor from optimal strategy that
plays for all states in the box.

In the rest of this section we will use Lemma 5.6 to prove all remaining optimality
theorems. The lemma itself will be proven in the next section. To help break down
the arguments, we will first state and prove the following two propositions, and then
use them in order to prove the remaining optimality theorems.

Proposition 5.7. Valid for region 2 in GCBC(N, ε, r; p). There exists a constant-
factor from optimal strategy S and a constant c such that

ES (t | GL) ≥ cN.

Proposition 5.8. Valid for region 3 in GCBC(N, ε, r; p) and region 3 in Rivest(N, ε; p).
There exists a constant-factor from optimal strategy S and a constant c such that

ES (t | GL) ≥ c

ε2 .
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Definition 5.3 (Stuck in box). Following the rule of playing inside the box, for a
round define stuck in box as the event that

Hn − p n ≥ −
1
2ε, ∀(n,Hn) ∈ {(k,Hk)}tk=0 : n ≤ 1

2ε2 .

Proof of Proposition 5.8, GCBC, region 3. Lemma 5.6 states that there exists a
constant-factor from optimal strategy S that plays everywhere inside the box of
forced play. Note that N > 1

2ε2 in region 3 so being stuck in box means playing at
least 1

2ε2 times. So to show that ES (t | GL) ≥ c
ε2

all that is needed is to show that
P(stuck in box | GL) is bounded away from zero.

Using Kolmogorov’s inequality (A.5) it is possible to show that the probability of
the complementary event, 1− P(stuck in box | GL), is

P
min
n≤ 1

2ε2

(Hn − p n) < − 1
2ε

 ≤ 4ε2 1
2ε2p(1− p)

= 2p(1− p)

≤ 1
2 ,

so P(stuck in box | GL) ≥ 1
2 .

Proof of Proposition 5.8, Rivest, region 3. Lemma 5.6 states that there exists a
constant-factor from optimal strategy S that plays everywhere inside the box of
forced play. The goal is to show that P(stuck in box | GL) is bounded away from
zero, which would imply that ES (t | GL) ≥ c

ε2
for some constant c.

Using Bayes’ formula it follows that

P(stuck in box | GL) = P(stuck in box)− P(stuck in box | GW )P(GW )
P(GL)

≥ P(stuck in box)− P(GW )

The same argument as in the proof of Proposition 5.8 for GCBC can also
be applied to Rivest (the analysis only deals with p-coins). Thus we have that
P(stuck in box) ≥ 1

2 .
Now note that in region 3, letting HN ∼ Binomial(N, p),

P(GW ) = P(HN ≥ (p+ ε)N)
{Hoeffding’s inequality (A.1)} ≤ e−2ε2N

{Region 3 =⇒ N ≥ 4
ε2} ≤ e−8.

In conclusion

P(stuck in box | GL) ≥ 1
2 − e−8,

which is bounded away from zero.
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Proof of Proposition 5.7, GCBC, region 2. Lemma 5.6 states that there exists a
constant-factor from optimal strategy S that plays everywhere inside the box of
forced play. Note that N

8 ≤
1

2ε2 in region 2 so being stuck in box means playing at
least N

8 times. So if it is shown that P(stuck in box | GL) is bounded away from zero,
then it follows that ES (t | GL) ≥ cN for some constant c.

Note that region 2 and region 3 are very similar for a fixed ε. The difference is
that region 2 contains small N (N < 4

ε2
) and region 3 contains large N (N ≥ 4

ε2
).

It was shown in the proof of Proposition 5.8 for GCBC in region 3 (large N) that
P(stuck in box | GL) ≥ 1

2 . For fixed ε, P(stuck in box | GL) is a decreasing function
as a function of N , as it is more probable to get stuck in a narrower box. So the
same bound on P(stuck in box | GL) is also valid in region 2 (small N).

Combining these propositions with Corollary 5.2 it is possible to prove the
remaining optimality theorems.

Proof of Theorem 5.4, GCBC, region 2. Proposition 5.7 states that there exists a
constant-factor from optimal strategy S ′ such that ES ′(t | GL) ≥ cN . Since EI (t | GL) ≤
N it follows from Corollary 5.2 (with S = I and S ′ = S ′) that I must also be constant-
factor from optimal.

Proof of Theorem 5.5, GCBC and Rivest, region 3. Proposition 5.8 states that there
exists a constant-factor from optimal strategy S ′ such that ES ′(t | GL) ≥ c

ε2
. Since one

of the properties of P , given by Theorem 4.2, is that EP (t | GL) ≤ 1
ε2

4.746... it follows
from Corollary 5.2 (with S = P and S ′ = S ′) that P must also be constant-factor
from optimal.

5.3 Grades inside box
This section aims to prove the only remaining result, Lemma 5.6. First note that
Lemma 5.6 can directly be proven by combining Theorem 2.7 with the following
lemma.

Lemma 5.9 (States inside the box of forced play are not too bad). Valid for region
2 and 3 in GCBC and region 3 in Rivest. The grade of states inside the box of forced
play is at most cE∗(T ).

To prove Lemma 5.9 we need to analyze the grade of states inside the box in the
different games. It happens to be that it is more natural to show this statement for
a bigger box.

Definition 5.4 (The extended box). For GCBC(N, ε, r; p) and Rivest(N, ε; p), ε > 0,
define the extended box to be the set of states (n,Hn) such that

n ≤ 1
2ε2 and Hn − (p+ ε)n ≥ −1

ε
.

Lemma 5.10 (States inside the extended box are not too bad). Valid for region 2
and 3 in GCBC and region 3 in Rivest. The grade of states inside the extended box
is at most cE∗(T ).
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Proof of Lemma 5.9. Simply note that the box of forced play fits inside the extended
box as the two boxes have the same width n ≤ 1

2ε2 and for the big box

Hn − np ≥ −
1
ε

+ εn

and for the small box

Hn − np ≥ −
1
2ε.

Now note that because n ≤ 1
2ε2

−1
ε

+ εn ≤ − 1
2ε,

so the height constraint for the box of forced play is more strict than the constraint
for the extended box.

The rest of this section will only be to prove Lemma 5.10 as this is the only result
yet to be proven. The proof for the two games are very different, GCBC (in region 2
and 3) will be basic and relatively short, while the proof for Rivest (in region 3) will
require a lot of calculations and bounds.

5.3.1 GCBC
The proof of Lemma 5.10 for GCBC will be based on the idea that when you are
inside the extended box, the conditional probability of having a bad coin given
history will not be much higher than what it was initially. This in turn will imply
that the grade of every state inside the extended box are also not much higher than
for the initial state.

Proof of Lemma 5.10 for region 2 and 3 for GCBC(N, ε, r; p). The grade of a state
(n,Hn) is defined as playing a modified version of the game with (n,Hn) as the initial
state. Note that this is in itself a GCBC game but with a smaller N and different
r = P(GL) (the probability of being given a bad coin). Clearly N being smaller just
makes the game easier, so the focus will be on how P(GL) changes given history.

It turns out that considering the ratio P(GL)
P(GW ) is more natural than considering

P(GL) directly. Using Bayes’ theorem it is possible to bound how this ratio changes
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from knowing that the first n tosses resulted in Hn = k heads.

P(GL | Hn = k)
P(GW | Hn = k) = P(GL)

P(GW )
P(Hn = k | GL)
P(Hn = k | GW )

= P(GL)
P(GW )

(
n
k

)
pk(1− p)n−k(

n
k

)
(p+ ε)k(1− p− ε)n−k

= P(GL)
P(GW )

(
p

p+ ε

)k( 1− p
1− p− ε

)n−k

= P(GL)
P(GW )

(
1− ε

p+ ε

)k(
1 + ε

1− p− ε

)n−k

{1 + x ≤ ex} ≤ P(GL)
P(GW )exp

(
− ε

p+ ε
k + ε

1− p− ε(n− k)
)

= P(GL)
P(GW )exp

(
− ε

(p+ ε)(1− p− ε)(k − n(p+ ε))
)

Assuming the state (n, k) is inside the extended box in region 2 or 3, this ratio can
be bounded further as

P(GL | Hn = k)
P(GW | Hn = k) ≤

P(GL)
P(GW )exp

(
− ε

(p+ ε)(1− p− ε)(k − n(p+ ε))
)

{
k − n(p+ ε) ≥ −1

ε

}
≤ P(GL)

P(GW )exp
(

1
(p+ ε)(1− p− ε)

)
{
p+ ε ≥ p,

1− p
4 ≥ ε

}
≤ P(GL)

P(GW )exp
(

4
3

1
p(1− p)

)
.

The conclusion is that inside the extended box

P(GL | Hn)
P(GW | Hn) ≤

P(GL)
P(GW )exp

(
4
3

1
p(1− p)

)
.

This in turn implies that for any state (n,Hn) inside the box

γ(n,Hn) ≤ γ(0, 0)exp
(

4
3

1
p(1− p)

)
.

This is because the ratio P(GL)
P(GW ) is the only parameter in the master theorem for restart

games, Theorem 2.4, that could increase had you used the same strategy playing the
modified game, and that increase is bounded by the factor exp

(
4
3

1
p(1−p)

)
.

5.3.2 Rivest
This section will prove the only remaining unproven result, Lemma 5.10 for Rivest,
by using a bound on the indolent strategy. This bound on indolent will be proven in
the next section.
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Hn − np

ǫ−1

ǫ−2/2

ǫ−1

ǫ−2/2

Figure 5.1: Translation of the lower part of the extended box. The lower part of the extended box
is drawn in red in the bottom-left, and the translated box is drawn in blue in the top-right. Note
that winning from the bottom-right state in the extended box is the same as starting at the origin
and reaching the top-left corner of the translated box (or higher).

The idea of the proof of Lemma 5.10 is that winning a round from playing in
any state inside the extended box is the same thing as playing Rivest but having a
shorter game and needing more heads. Consider translating the lower part of the
extended box from the origin to the end of the game, see Figure 5.1. If when playing
from the origin you pass above (≥) the translated box, then you would have won
playing from anywhere inside the extended box.

First we will state a theorem about this for the indolent strategy and then show
that the same holds for optimal strategies as well.

Theorem 5.11 (Indolent wins earlier and with a margin). Valid in region 3 for
Rivest(N, ε; p). For the indolent strategy I and n such that N − 1

2ε2 ≤ n ≤ N it holds
that

PI

(
Hn ≥ n(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ ¬R) ≥ (1− e− 9
16
)1

3e−
9.36
p(1−p) .

There are two reasons why this theorem is only stated for the indolent strategy.
One is that it is possible to show it by just doing analysis on a random walk without
involving any restarts. The second reason is that the indolent strategy is the extreme
case of a consistent strategy (Definition 4.3), and by Theorem 4.7 the bound will
hold for any consistent strategy. This means that Theorem 5.11 combined with
Theorem 4.7 can be used to show a lower bound on the grades inside the extended
box.

Proof of Lemma 5.10 in region 3 for Rivest(N, ε; p). Let S ? be an optimal DM strat-
egy in Rivest. W.l.o.g. S ? can be assumed to be consistent. S ? being consistent
means that according to Theorem 5.11 and Theorem 4.7

PS?

(
Hn ≥ n(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ ¬R) ≥ (1− e− 9
16
)1

3e−
9.36
p(1−p) .
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where N − 1
2ε2 ≤ n ≤ N . This means that if S ? doesn’t restart, then it will pass

above the translated box (as described in Figure 5.1) with probability bounded from
zero.

The implications from this is that if you play S ? from any state (n,Hn) inside
the extended box as if that state was the origin state, the probability of winning a
round will be at least

(
1− e− 9

16
)

1
3e−

9.36
p(1−p) PS?(¬R). Moreover, the expected duration

from playing S ? from (n,Hn) can be used to upper bound γ(n,Hn),

γ(n,Hn) ≤
(
1− e− 9

16
)−1

3 e
9.36
p(1−p)γ(0, 0).

5.4 Bounds on indolent for Rivest
This section aims to prove the only remaining result, Theorem 5.11. The calculations
used to show the bound given in the theorem are relatively heavy, but follows a
rather simple idea.

The idea is to analyze how quickly the binomial distribution decays. From
knowing this it is possible to show that the indolent strategy will, when it finishes a
round, not only have exactly the necessary numbers of heads but also, with probability
bounded away from zero, have an excess of heads (to be concretized in Lemma 5.13).
The last step is to show that having this margin at the end of the game also implies
that the strategy will, with probability bounded away from zero, have an excess
amount of heads even earlier in the game, proving Theorem 5.11.

The first question is, for how long is the tail of the binomial distribution “con-
stant”?

Lemma 5.12 (Property of the binomial distribution). Let p ∈ (0, 1) and ε ∈
(
0, 1−p

4

]
.

Let n and k be integers such that n(p+ ε) is integer, n ≥ 4
ε2

and 0 ≤ k−n(p+ ε) ≤ 3
ε
.

Then
1 ≤ f(n(p+ ε), n, p)

f(k, n, p) ≤ e
9.36
p(1−p)

where f(k, n, p) is the probability mass function of the binomial distribution.

So the probability mass function f(k, n, p) for the binomial distribution can be
bounded from below by a constant times f(n(p+ ε), n, p) when n(p + ε) ≤ k ≤
n(p+ ε) + 3

ε
and n ≥ 4

ε2
.

Proof of Lemma 5.12. Note that for the binomial distribution

f(k, n, p)
f(k + 1, n, p) = (k + 1)(1− p)

(n− k)p .

Given the constraints in the theorem it follows that

nε ≥ 4
ε
≥ 4,
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which in turn yields the following bounds

k ≤ n(p+ ε) + 3
ε

≤ n
(
p+ 7

4ε
)

and

k + 1 ≤ n
(
p+ 7

4ε
)

+ 1

≤ n(p+ 2ε).

So
f(k, n, p)

f(k + 1, n, p) = (k + 1)(1− p)
(n− k)p

≤ n(p+ 2ε)(1− p)
n(1− p− 7

4ε)p

=
(

1 + 2 ε
p

)(
1 + 7

4
ε

1− p− 7
4ε

)

{1 + x ≤ ex} ≤ exp
(

2 ε
p

+ 7
4

ε

1− p− 7
4ε

)
{
ε ≤ 1− p

4

}
≤ exp

(
2 ε
p

+ 28
9

ε

1− p

)

= exp
(
ε

10p+ 18
9p(1− p)

)

{p ≤ 1} ≤ exp
(
ε
28
9

1
p(1− p)

)

≤ exp
(
ε

3.12
p(1− p)

)
.

From this we get that for k ≥ n(p+ ε)

f(n(p+ ε), n, p)
f(k, n, p) =

k−1∏
i=n(p+ε)

f(i, n, p)
f(i+ 1, n, p){

f(i, n, p)
f(i+ 1, n, p) ≤ eε

3.12
p(1−p)

}
≤
(

eε
3.12
p(1−p)

)k−n(p+ε)

{
k ≤ n(p+ ε) + 3

ε

}
≤
(

eε
3.12
p(1−p)

)3/ε

= e
9.36
p(1−p) .

This shows the inequality on the right hand side. To show ≥ 1 just note that the
mean of the binomial distribution np ≤ n(p+ ε) ≤ k, and the Binomial is decreasing
after the mean, so

f(n(p+ ε), n, p)
f(k, n, p) ≥ 1.
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Lemma 5.12 is a tool that describes the decay rate of the tail of the binomial
distribution. With this lemma, it is possible to show how much margin the indolent
strategy can reasonably be expected to have when it wins, i.e. how many extra heads
it has when it finishes a round.
Lemma 5.13 (Winning with a margin). Valid for the indolent strategy I playing
Rivest(N, ε; p). If 0 < ε ≤ 1−p

4 and N ≥ 4
ε2

then

PI

(
N(p+ ε) + 2

⌊
1
ε

⌋
≤ HN

)
PI (N(p+ ε) ≤ HN) ≥ 1

3e−
9.36
p(1−p) .

Proof of Lemma 5.13. The lemma can be proven using the bound in Lemma 5.12.
First rewrite the expression in order to be able to use the bound,

PI

(
N(p+ ε) + 2

⌊
1
ε

⌋
≤ HN

)
PI (N(p+ ε) ≤ HN)

=
PI

(
2
⌊

1
ε

⌋
≤ HN −N(p+ ε)

)
PI

(
0
⌊

1
ε

⌋
≤ HN −N(p+ ε)

)
=

PI

(
2
⌊

1
ε

⌋
≤ HN −N(p+ ε) < 3

⌊
1
ε

⌋)
+ PI

(
3
⌊

1
ε

⌋
≤ HN −N(p+ ε)

)
PI

(
0
⌊

1
ε

⌋
≤ HN −N(p+ ε) < 3

⌊
1
ε

⌋)
+ PI

(
3
⌊

1
ε

⌋
≤ HN −N(p+ ε)

)
{
a

b
≤ 1⇒ a+ c

b+ c
≥ a

b

}
≥

PI

(
2
⌊

1
ε

⌋
≤ HN −N(p+ ε) < 3

⌊
1
ε

⌋)
PI

(
0
⌊

1
ε

⌋
≤ HN −N(p+ ε) < 3

⌊
1
ε

⌋) .
What remains is bounding the probability in the numerator from below, and the
probability in the denominator from above. As these are integrals, they can be
trivially bounded from below by the interval width times the minimum, and from
above by the interval width times the maximum. Note that because the binomial
distribution is decreasing after its mean Np we have that

PI

(
0
⌊1
ε

⌋
≤ HN −N(p+ ε) < 3

⌊1
ε

⌋)
≤ 3

⌊1
ε

⌋
f(N(p+ ε), N, p),

where f is the probability mass function of the binomial distribution, and in a similar
manner it follows from Lemma 5.12 that

PI

(
2
⌊1
ε

⌋
≤ HN −N(p+ ε) < 3

⌊1
ε

⌋)
≥
⌊1
ε

⌋
e−

9.36
p(1−p)f(N(p+ ε), N, p).

So
PI

(
2
⌊

1
ε

⌋
≤ HN −N(p+ ε) < 3

⌊
1
ε

⌋)
PI

(
0
⌊

1
ε

⌋
≤ HN −N(p+ ε) < 3

⌊
1
ε

⌋)
≥

⌊
1
ε

⌋
e−

9.36
p(1−p)f(N(p+ ε), N, p).

3
⌊

1
ε

⌋
f(N(p+ ε), N, p),

= 1
3e−

9.36
p(1−p) .
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With Lemma 5.13 proven there is only one single proof left in this entire chapter,
the proof of Theorem 5.11.

Proof of Theorem 5.11. This theorem essentially says that if you finish a round, then
with probability bounded away from zero you will have had more than enough heads
earlier in the game. Lemma 5.13 already states that if you finish a round then
with probability bounded away from zero you will win with an excess of heads, so
Theorem 5.11 essentially generalizes Lemma 5.13.

First note that if N = n then the inequality reduces to a weaker version of
Lemma 5.13, so the inequality in that case simply follows from Lemma 5.13. So we
can assume that n 6= N going forward.

The main idea of the proof of Theorem 5.11 is to split the probability on th LHS
of the inequality

PI

(
Hn ≥ n(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ ¬R)
into two factors in such a way that one factor can be bounded using Lemma 5.13,
and the other can be bounded using Hoeffding’s inequality (A.3). Starting out with
the probability we get

PI

(
Hn ≥ n(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ ¬R)
= PI

(
Hn ≥ n(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ HN ≥ N(p+ ε)
)

≥ PI

(
Hn ≥ n(p+ ε) +

⌊1
ε

⌋
∧HN ≥ N(p+ ε) + 2

⌊1
ε

⌋ ∣∣∣∣ HN ≥ N(p+ ε)
)

= PI

(
Hn ≥ n(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ HN ≥ N(p+ ε) + 2
⌊1
ε

⌋)
×

PI

(
HN ≥ N(p+ ε) + 2

⌊1
ε

⌋ ∣∣∣∣ HN ≥ N(p+ ε)
)

= PI

(
Hn ≥ n(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ HN ≥ N(p+ ε) + 2
⌊1
ε

⌋)
×

PI

(
HN ≥ N(p+ ε) + 2

⌊
1
ε

⌋)
PI (HN ≥ N(p+ ε)) .

Lemma 5.13 implies that the ratio can be bounded from below by 1
3e−

9.36
p(1−p) . The

only remaining probability left to bound is

PI

(
Hn ≥ n(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ HN ≥ N(p+ ε) + 2
⌊1
ε

⌋)
≥ PI

(
Hn ≥ n(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ HN = N(p+ ε) + 2
⌊1
ε

⌋)
= PI

(
HN −Hn ≤ (N − n)(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ HN = N(p+ ε) + 2
⌊1
ε

⌋)
= 1− PI

(
HN −Hn > (N − n)(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ HN = N(p+ ε) + 2
⌊1
ε

⌋)
.
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To simplify notation, let

Q := PI

(
HN −Hn > (N − n)(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ HN = N(p+ ε) + 2
⌊1
ε

⌋)
.

Note that (HN −Hn|HN) ∼ HyperGeom(N(p + ε) + 2
⌊

1
ε

⌋
, N,N − n). The goal is

to use Hoeffding’s inequality (A.3) to bound Q from above. In order to apply the
Hoeffding bound to Q we will first rewrite Q in such a way that it is natural to apply
the inequality, namely

Q = P(X > (q + t)(N − n))

where X ∼ HyperGeom(N(p + ε) + 2
⌊

1
ε

⌋
, N,N − n), q = (p + ε) + 2

N

⌊
1
ε

⌋
and

t =
⌊

1
ε

⌋(
1

N−n −
2
N

)
. Since

t =
⌊1
ε

⌋( 1
N − n

− 2
N

)
{

1
N − n

≥ 2ε2,
2
N
≤ ε2

2

}
≥
⌊1
ε

⌋3
4

1
N − n

,

which is positive, we can apply the Hoeffding bound (A.3) to get

Q ≤ e−2t2(N−n){
t ≥

⌊1
ε

⌋3
4

1
N − n

}
≤ exp

(
−2
⌊1
ε

⌋2 9
16

( 1
N − n

)2
(N − n)

)

= exp
(
−9

8

⌊1
ε

⌋2 1
N − n

)
{ 1
N − n

≥ 2ε2
}
≤ exp

(
−9

4

⌊1
ε

⌋2
ε2
)

{⌊1
ε

⌋2
ε2 ≥ 1

4

}
≤ e− 9

16 .

The conclusion is that

PI

(
Hn ≥ n(p+ ε) +

⌊1
ε

⌋ ∣∣∣∣ ¬R) ≥ (1− e− 9
16
)1

3e−
9.36
p(1−p) .
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6
Numerical analysis

The quitting version of the Rivest coin tossing game is useful not only for theoretical
analysis but also for numerical computation. Here we will present methods for
computing an optimal strategy for any given instance of the game, followed by some
results of such computations in Section 6.3.

We will consider an instance of Rivest(N,K; p) defined in Section 3.1. It it
natural to relabel the state space for computational uses. Let (n, k) be the state
with n coins left to toss and k heads left until reaching K heads.

6.1 Computing an optimal strategy
One step in computing an optimal restart strategy is computing an optimal strategy
for the quitting version of the game.

For brevity let Tq(n, k) be E∗(Cq) for the Rivest quitting game with initial state
(n, k) with quitting cost q. When analyzing a quitting game on a graph it is often
natural to have the expected cost Tq defined in terms of Tq in other reachable states.
For the quitting version of the Rivest coin game the relation for Tq is particularly
nice because the graph describing the game is a directed acyclic graph (DAG) and
very regular in structure, see Figure 3.1.

Defining a recurrence for Tq is straightforward since the graph is a DAG. At any
given state two choices exist: quit with some quitting cost q, or toss a coin and end
up at one of two new states where we assume Tq is known. The possible outcomes
can be represented graphically in Figure 6.1, and summarized as a formula we have

Tq(n, k) = min{q, 1 + p Tq(n− 1, k − 1) + (1− p)Tq(n− 1, k)}.

with initial values
Tq(0, k) = 0 if k ≤ 0
Tq(0, k) = q if k > 0

corresponding to winning and losing states with no coins left to toss.

6.1.1 Dynamic programming
Naive computation of Tq(N,K) leads to an exponential number of function evalua-
tions, O(2N ). This can be improved by use of dynamic programming, which is a very
broad technique applicable to problems that compose into overlapping subproblems.
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Tq(n, k)

Tq(n− 1, k)
T

Tq(n− 1, k − 1)
H

q

p

1− p

Figure 6.1: Diagram of the two possible choices at state (n, k) which determines Tq(n, k). Either
quit at cost q or continue playing and get one plus the weighted sum of Tq in the two reachable
states.

In essence it involves identifying common subproblems, computing them only once
and storing the results (memoization). In this case evaluating function calls in
increasing order of n (working backwards from the last coin toss) works and brings
the number of evaluation down to O(NK).

As a consequence of Theorem 2.9, if the quitting cost equals the grade of a state
in Rivest then the table computed during the dynamic programming process gives
an optimal DM restart strategy for playing from that state.

6.1.2 Finding the correct quitting cost
In order to apply Corollary 2.12 one needs to know E∗(T ) = γ(N,K). One alternative
definition of grade given in Corollary 2.10 says that γ(N,K) is the largest q such
that quitting at (N,K) is optimal, i.e. largest q such that Tq(N,K) = q. This means
that E∗(T ) can be found with binary search. To be able to binary search a lower and
an upper bound on E∗(T ) is needed. Obtaining a lower bound is no issue (trivially
E∗(T ) ≥ N). Obtaining an upper bounds takes some more finesse (and will yield a
better lower bound in the process).
Finding bounds through repeated squaring and adjustments A rough up-
per and lower bound can be computed through repeated squaring. See Algorithm 1.

Algorithm 1 Find bound through repeated squaring
Postcondition: l ≤ γ < r
1: l ← 1
2: r ← 2
3: while Tr(N,K) = r do
4: l ← r
5: r ← r2

6: return [l, r)

The number of evaluations of Tq(N,K) needed is the smallest x such that 22x > γ,
hence x = dlog2 log2 γe. So it finds an upper bound quickly. The bound on γ can be
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improved by adjusting with earlier terms in the series of squares. Which is equivalent
to a binary search in the exponent of 2n. See Algorithm 2.

The number of evaluations for this improvement step is the same as for the
bounds finding.

Algorithm 2 Binary search in exponent
Precondition: l, r such that l ≤ γ < r and l2 = r = 22x for some integer x
Postcondition: r = 2l
1: for f in {

√
l, . . . , 28, 24, 22, 21} do

2: if Tlf (N,K) = lf then
3: l ← lf
4: else
5: r ← lf

6: return [l, r)

Binary search Now all that remains is to do a binary search between the found l
and r to approach γ. Either continue the binary search until some wanted precision
(relative error) is reached, or continue searching until the strategy derived from the
dynamic programming table is the same for the upper and the lower bound.

When binary searching to a given precision (relative error) the number of iterations
needed is O(#significant digits).

It is worth noting that we while it is technically possible to continue binary
searching the exponent and never falling back on the standard binary search, this
would make q an irrational number, and since the code makes use of exact fractions
this is not feasible.
Total running time If arithmetic operations could have been assumed to take
O(1) time then the complexity would be

O(NK(log log γ + #significant digits))

but this is not the case since we cannot use floating point numbers for such large
numbers, and have to resort to big integer arithmetic (exact fractions). The cost
could be bounded from above by looking at what the worst cost of an arithmetic
operation on fractions could be for a given N and p and multiplying the complexity
by that.

6.2 Implementation details
The simulation code was written in C++ making use of the GNU Multiple Precision
Arithmetic Library (GMP). This was done to keep answers exact, since the numbers
involved far exceed the range and precision of floating point numbers. The actual
implementation is linked in Appendix B.2.
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indolent

optimistic

promising (step 2/ǫ2)

promising (step 0.5/ǫ2)

probabilistic

promising (step 1)

optimal

Figure 6.2: Common legend for all the plots.

6.3 Numerical results
When doing runs for data collections a set of parameters of interest was recorded for
the strategies described in Chapter 4. Specifically, the strategies evaluated were

optimal
the computed optimal strategy

promising (δ = 2/ε2)
promising strategy with distance 2/ε2 between checkpoints

promising (δ = 0.5/ε2)
promising strategy with distance 0.5/ε2 between checkpoints

probabilistic (λ = 1/2)
restarts if probability of winning at a given state is < P(GW )/2

promising (δ = 1)
a degenerate version of the promising strategy with distance 1 between check-
points

indolent
never restarts except when forced to because of failing a round

optimist
only restarts if there is 0 probability of winning

where for all promising strategies β = 1/2. The parameters of particular interest
were

E(t | R)
Expected time of a round, given that there is a restart

E(T )
Expected duration of the game

P(¬R | GW )
Probability of finishing a win-conditioned base game
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E(t | R)
P(¬R | GW )

Closely related to the important fraction discussed in Section 2.2.2

Technical details about how the data generation process was performed can be found
in Appendix B.1. In the following sections a subset of particularly interesting plots
are shown, remaining plots are linked in Appendix B.2. The common legend for all
the plots can be found in Figure 6.2.
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p = 0.5, N = 1000

Figure 6.3: Expected duration of the game relative to optimal. Note that the promising strategies
with O(1/ε2)-spaced checkpoints flatten out to be a constant factor from optimal as soon as the
checkpoints start occurring, which confirms the behavior proven in Chapter 5. Also note that the
two dashed lines (promising with step 1 in red and probabilistic in black) which aren’t constrained
by the spaced out checkpoints have considerably better constant factors.
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Figure 6.4: Normalized duration plot, cropped to contain the non-trivial strategies. Note that
all non-trivial strategies are almost perfectly constant in this plot, despite E(T ) being incredibly
large. Also note that both solid lines (promising strategies) are rather close to optimal (within
a factor of roughly 2 and 4). It should also be noted that the degenerate promising with step 1
is extremely close to optimal except for the most extreme K where probabilistic instead closely
follows the optimal strategy.

6.3.1 Expected total time
The expected duration of a game exhibits the behaviors expected from Chapter 5,
which can be seen in Figure 6.3. Since E(T ) grows very large it is not feasible to
plot it for all strategies in an absolute manner (not relative to optimal). This can
however be handled by plotting E(T )P(GW )ε2 like in Figure 6.4, which normalizes
the growth of E(T ) and removes the 1/ε2 scaling.
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Figure 6.5: Plot showing the important ratio as a function of K and ε. The dotted lines are curves
of the form 2a/ε2, a ∈ Z. Note that all of the non-trivial strategies studied follow the curves closely
for not too small ε.
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Figure 6.6: Plot showing the expected duration of a restarting round as a function of K and ε.
The dotted lines are curves of the form 2a/ε2, a ∈ Z. Note that both promising strategies with
checkpoints spaced out on the order of 1/ε2 (solid black and red) follows the dotted curves closely
as expected. Probabilistic (dashed black) also seems to follow this scaling roughly. Promising with
step 1 and optimal does not follow these lines, meaning E(t | R) is not proportional to 1/ε2. This
in turn implies that their P(¬R | GW ) must have an ε dependence to maintain the 1/ε2 scaling
seen in Figure 6.5. This also mean they are much more aggressive.

6.3.2 Strategy properties
From the theoretical analysis it is clear that 1/ε2 scaling is a key feature of an optimal
(or close to optimal) strategy. It is interesting to investigate if this is apparent in
practice, and how it shows up. For this there are two main results to consider: the
ratio from Section 2.2.2 in Figure 6.5 and the expected round duration of a restarting
round in Figure 6.6. Together these two plots highlights some differences between
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Figure 6.7: An optimal strategy for the case N = 500, K = 275 and p = 0.5, with the initial
state in the bottom left. The light gray area corresponds to play states and the dark gray area
corresponds to restart states. The grid mark multiples of 25, the 45 degree lines marks the boundary
of unreachable and guaranteed loss states respectively. The two other diagonal lines mark the
expected number of heads (related to p) and the number of heads needed to be on pace to finish
the game (related to p + ε). Note that the boundary between play states and restart states lies
between the p and p+ ε lines, and that could be rather well approximated with a line until the very
end, which matches the behavior noted in Figure 6.4.

the strategies.
In Figure 6.5 all of the non-trivial strategies seem to excibit 1

ε2
scaling. This is

to be expected since Chapter 5 shows that the promising strategy is constant-factor
from optimal and hence scales like optimal strategies.

However, the result seen in Figure 6.6 which covers only the numerator of the
ratio shows major differences. In the case of the promising strategy P(¬R | GW ) is
essentially kept fixed, so E(t | R) has 1

ε2
scaling. This is also roughly the case of

probabilistic. The other non-trivial algorithms, including an optimal strategy, does
not exhibit this scaling, but are instead a lot more aggressive in their restarts (which
forces P(¬R | GW ) to be lower as well).

6.3.3 An optimal strategy
From the dynamic programming table the optimal strategy can be derived. One
example of which states it plays in is shown in figure Figure 6.7.
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7
Discussion

We’ve proven that the two strategies, the promising strategy P and the probabilistic
strategy Pr are constant-factor from optimal in the two games GCBC(N, ε; p) and
Rivest(N, ε; p), with the constant only allowed to depend on the probability of heads
p, see Theorems 4.1 and 4.4. Both of these strategies can be generalized to other
restart games, so their properties are of particular interest as they might be shared
by other constant-factor from optimal strategies in restart games similar to Rivest.
Notable properties of restart strategies The main property that both strate-
gies share is that when playing GCBC and Rivest the probability of not restarting on
a win-conditioned round P(¬R | GW ) is bounded away from zero, see Theorems 4.3
and 4.5. This means that in other restart games there might exist constant-factor
from optimal strategies that also keeps P(¬R | GW ) bounded away from zero. In
particular the probabilistic strategy is a good candidate for this since Theorem 4.5
states that P(¬R | GW ) is bounded away from zero in any restart game.

There is also the question of how long you should play before considering to
restart. For example if the first coin tossed was a tail, should you restart? From the
numerical analysis, see for example Figure 6.5, it is clear that the optimal strategy
does early restarts. However this is not the case for the promising strategy, which by
definition will always wait α/ε2 tosses before even considering restarting, so early
restarts is not necessary in order to be constant-factor from optimal.
Scaling Another use of knowing what strategies are constant from optimal is that
it is possible to express the minimum expected duration of the game up to a constant
factor. This can be done by combining Theorems 2.4 and 4.1 to 4.3. The conclusion
is that for a non-trivial instance of Rivest(N, ε; p) and GCBC(N, ε; p), i.e. when
P(GW )� 1 and N > 1

ε2
,

E∗(T ) ∝ 1
P(GW )ε2 .

From the numerical results in Figure 6.4 it is apparent that this is accurate. The
numerical result also shows that the constants involved are much smaller than what
was proven theoretically. Interestingly, the way of accomplishing this scaling is very
different between the strategies. Promising has the optimal scaling, but is not nearly
as aggressive as the strategies that outperform it. The probabilistic strategy plays
more aggressive than promising, but still not as aggressive as the optimal strategy.
Constant factor for the promising strategy For the Rivest coin game the
derived upper bound on the constant factor for the promising strategy is very loose,
at best > 1017, and much worse for extreme values of p (tends to ∞ as p → 0 or
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p→ 1). This is in part because we have valued simplicity in the proof over trying to
optimize the bound, and in part because the problem itself and the methods used
involve exponentials which can easily grow out of hand. Note that this does not
necessarily mean that the strategy itself is bad. In the cases studied numerically
the actual factor for promising is about 2–4, see Figures 6.3 and 6.4, which is much
smaller than the proven bound.
Possible future work One idea of a future subject for investigation could be to
try to improve these theoretical bounds as we see that they are much smaller in the
numerical analysis that what was shown in the theoretical analysis. Shorter and/or
simpler arguments for the bounds and optimality would also be nice.

One significant reason for the very loose bounds is probably that the dependence
on p has been neglected, so this is a prime subject for further investigation. We
intentionally fixed the parameter p in this thesis to make things simpler and to able
to use Hoeffding’s inequality, see Appendix A.1, which is known to be extremely
loose for p close to 0 or 1 [7]. So the analysis for varying p would require the use of
another bound.

Another reason for considering a varying p is to allow for something like fixing Np
and letting N tend to infinity. This would make the binomial distribution in Rivest
tend to a Poisson distribution. So for extreme values of p Rivest will essentially be a
completely different game. In stark contrast, the limit studied in this thesis reduces
to Brownian motion and normal distributions.

A last candidate for future work is to consider the serendipitous mishap that is
the degenerate promising strategy with δ = 1. The strategy came about as a mistake
when doing numerical simulations, but turned out to perform very well (close to
optimal). Looking at Figure 6.4; which include the promising strategy with δ = 2/ε2,
δ = 0.5/ε2 and δ = 1; it seems that the strategy performs increasingly well for smaller
δ, getting very close the optimal strategy. However, in Figure 6.6 it is apparent that
this strategy does not share the properties of the typical promising strategy and
utilizes much more aggressive restarts and as a consequence sacrifices P(¬R | GW ).
It could even be the case that P(¬R | GW ) could become arbitrarily close to zero for
some choice of game parameters.
Generalizability of our results Recall that the Rivest coin game was introduced
as a simplified model of other restart games. Rivest introduced the game to model
one step of Dixon’s factorization algorithm. The Rivest coin game is of course a
good model for this, however the p involved might need to be small. This means
that our proofs for optimality does not tell much of this situation, as the bounds
gets very loose.

Optimization of clinical trials A discipline where optimal stopping is com-
mon is in optimization of clinical trials [8][9]. A game similar to GCBC could be
used to model this kind of scenario. A good coin corresponds to an effective drug,
and a bad coin corresponds to a placebo. Tossing a coin corresponds to trying
the drug on a subject. Head means a positive response and tail means a negative
response. Restarting means abandoning the current medicine and developing a new
one (potentially with some cost). The goal is to minimize the number of test subjects
needed (for cost or humanitarian reasons) to find a good drug. For the sake of
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simplicity, let’s assume that it is mandated that a drug go through N tests before
being able to be considered a good drug.

Without a restart cost, this game is exactly GCBC and we have shown constant-
factor from optimal strategies for this game. Adding a restart cost will make not
discarding good medicines more important. Our strategies already keep a large
fraction of all good medicines, so they will only get better compared to optimal.
So for this kind of simple model of clinical trials our models, our results should
be applicable. But in practice, these kinds of models would be solved numerically
similar to the work we have done.

Speedrunning A motivation for us considering the coin game initially was as
a toy model of speedrunning, completing some game as quickly as possible. Play the
Rivest coin game. Heads are interpreted as gaining some unit of time compared to
some baseline. Tails are interpreted as losing some unit of time compared to some
baseline. The goal is to at the end of the game beat the baseline by some amount,
i.e. setting a record.

There are some major issues with this model. Speedruns are in general not time
homogeneous, but Rivest is. Speedruns typically contains both numerous small time
gains/losses and some rare but very large gains/losses. Modeling this as Rivest can
only capture the small frequent gains/losses. Possibly, if Np would be fixed in Rivest
then it might be possible to model the rare large gains/losses but not the frequent
small ones.
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8
Conclusions

By introducing restart games and a framework for analyzing them, we have managed
to conceive two strategies, the promising strategy and the probabilistic strategy, that
we (for a fixed probability of heads p) proved to be constant-factor from optimal for
the Rivest coin game and the related good coin bad coin game. This shows that the
approach of analyzing based on win-conditioned and loss-conditioned rounds, which
has been the basis for the framework and the main motivation for the promising
strategy, has been very successful.

The most interesting and useful parts of the analysis framework is

• Theorem 2.4 which decomposes the expected duration of a restart game condi-
tioned on win/loss.

• Theorem 2.6 which provides necessary and sufficient conditions for a strategy
to be optimal.

• Theorem 2.7 which shows the effects of forcing a strategy to play in some
states.

• Theorem 2.11 which shows the close connection between restart games and
quitting games (optimal stopping problems).

Theorems 2.4 and 2.7 forms the basis for the analysis of optimality in Chapter 5.
Theorem 2.11 is the key to making the numerical analysis possible.

Overall we think the thesis managed to yield good results in that is has proven
scaling properties of the optimal strategy of the Rivest coin game which (as far as
we know) has not been shown earlier. The numerical results also gives interesting
insights, and suggests some other strategies that could be investigated for optimality
in future works. Another good candidate for future works is to try to analyze the p
dependence that has been neglected in this thesis.
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A
Well-known bounds

A.1 Hoeffding’s inequality
The following bounds are special cases of Hoeffding’s inequality [10].

Theorem A.1 (Tail bounds on binomial distribution). Let X ∼ Binomial(n, p),
then for t > 0

P(X ≥ (p+ t)n) ≤ e−2t2n (A.1)
P(X ≤ (p− t)n) ≤ e−2t2n (A.2)

Theorem A.2 (Tail bounds on hypergeometric distribution). Let X ∼ HyperGeom(K,N, n)
and let q := K

N
, then for t > 0

P(X ≥ (q + t)n) ≤ e−2t2n (A.3)
P(X ≤ (q − t)n) ≤ e−2t2n (A.4)

A.2 Kolmogorov’s inequality
Theorem A.3 (Tail bound on random walk). Let X1, . . . , Xn be independent random
variables with expected value E(Xk) = 0 and variance Var(Xk) <∞ for k = 1, . . . , n.
Then, for each λ > 0,

P
(

max
1≤k≤n

|Sk| ≥ λ
)
≤ 1
λ2Var(Sn),

where Sk = X1 + . . .+Xk.

Corollary A.4 (Corollary of Theorem A.3). In particular if Xk = Yk−E(Yk) where
Yk ∼ Bernoulli(p), then

P
(

max
1≤k≤n

|Sk| ≥ λ
)
≤ 1
λ2

√
np(1− p).

From this it is also possible to construct a single sided bound

P
(

min
1≤k≤n

Sk ≤ −λ
)
≤ 1
λ2np(1− p). (A.5)
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B
Numerical extras

B.1 Data generation
In the case of fixed N and p (the line plots) K was simply swept over all possible k,
k = 1, . . . , N . The parameter space swept in N and p was

(N, p) ∈ {100, 500, 1000} × {0.4, 0.45, 0.5, 0.55, 0.6}.

In the case of fixed p only (here p = 1/2), n was swept exponentially spaced (linear
in the exponent) between l and r and ε was swept linearly in [−p

4 , 1−p]. The number
of sampled points in n and k was chosen deliberately on the form 2m + 1, which
causes the sampled points for m to be a subset of the sampled points for m+ 1. So
m can be swept upwards to generate an increasingly fine grained result, filling in
details.

B.2 Extra resources
A more comprehensive set of plots, as well as the code used for simulation, can be
found at bitbucket.org/algmyr/optimal-restart-extra-content.

III

https://bitbucket.org/algmyr/optimal-restart-extra-content

	1 Introduction
	1.1 Aim of the project
	1.2 Methodology
	1.3 Outline

	2 The theory of restart games
	2.1 Base game
	2.2 Restart game
	2.2.1 Restart strategies
	2.2.2 Master theorem for restart games
	2.2.3 Grade/optimality

	2.3 Quitting game
	2.3.1 Quitting strategies
	2.3.2 Master theorem for quitting games
	2.3.3 Grade/optimality

	2.4 Connection between restart games and quitting games
	2.5 Proofs of optimality theorems

	3 Coin games
	3.1 The Rivest coin game
	3.2 Good coin bad coin ()
	3.3 Ease of analysis or ease of numerical simulation

	4 Strategies
	4.1 Indolent strategy
	4.2 Promising strategy
	4.2.1 Properties

	4.3 Probabilistic strategy
	4.4 Properties of an optimal strategy
	4.5 Other strategies

	5 Optimality of promising
	5.1 Regions
	5.2 Box of forced play
	5.3 Grades inside box
	5.3.1 
	5.3.2 

	5.4 Bounds on indolent for 

	6 Numerical analysis
	6.1 Computing an optimal strategy
	6.1.1 Dynamic programming
	6.1.2 Finding the correct quitting cost

	6.2 Implementation details
	6.3 Numerical results
	6.3.1 Expected total time
	6.3.2 Strategy properties
	6.3.3 An optimal strategy


	7 Discussion
	8 Conclusions
	A Well-known bounds
	A.1 Hoeffding's inequality
	A.2 Kolmogorov's inequality

	B Numerical extras
	B.1 Data generation
	B.2 Extra resources


