
Realistic NPCs in Video Games
Using Different AI Approaches
Bachelor of Science Thesis in Computer Science and Engineering

Gustav Grund Pihlgren
Martin Nilsson
Mikael Larsson
Oskar Olsson
Tobias Foughman
Victor Gustafsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden, June 2016

The Authors grants to Chalmers University of Technology the non-exclusive right to
publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet. The Authors warrants that they are the authors to the Work,
and warrants that the Work does not contain text, pictures or other material that
violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Authors has signed a copyright agreement with a third party regarding
the Work, the Authors warrants hereby that they have obtained any necessary per-
mission from this third party to let Chalmers University of Technology store the
Work electronically and make it accessible on the Internet.

Realistic NPCs in Video Games Using Different AI Approaches

Gustav Grund Pihlgren
Martin Nilsson
Mikael Larsson
Oskar Olsson
Tobias Foughman
Victor Gustafsson

© Gustav Grund Pihlgren, June 2016
© Martin Nilsson, June 2016
© Mikael Larsson, June 2016
© Oskar Olsson, June 2016
© Tobias Foughman, June 2016
© Victor Gustafsson, June 2016

Examiner: Niklas Broberg

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

[Cover: An image from the video game created during this project that has been
transmuted using Deep Dream Generator [1], a website that uses neural networks to
transmute images. This image along all other images from the game is made from
several other images. Some of these images are made by the project members and
the others can be found correctly accredited in Appendix A]

Department of Computer Science and Engineering
Göteborg, Sweden, June 2016

Abstract

This bachelor thesis describes the process of creating an AI for realistic NPCs. It
compares different approaches used to implement AI in order to try to convey their
advantages and disadvantages to contribute towards the creation of more immersive
NPCs in video games.

The work was divided into two main categories: The first to create a video game
in which to implement NPCs and the other to create an AI to control these NPCs.
A variety of different implementations were investigated during the course of this
project and are discussed in this report, and a game was created to test one of them.

Sammandrag

Denna kandidat rapport beskriver processen av att skapa en AI för realistiska
NPCer. Den jämför olika tekniker som används för att implementera AI för att
försöka förmedla deras fördelar och nackdelar för att kontribuera till skapandet av
mer inlevelsefulla NPCer i datorspel.

Arbetet var indelat i två huvudkategorier: Den första var att utveckla ett datorspel
för att utveckla NPCer i, och den andra var att utveckla en AI för att kontrollera
dessa NPCer. En mängd olika implementationer undersöktes under projektet och
diskuteras i denna rapport, och ett spel utvecklades för att testa en av dessa.

Keywords: AI, programming, NPC, videogame, simulation, realistic.

iii

Dictionary

Character - An object without intelligence that may be controlled by an intelligent
source (i.e. an AI or a player).
Artificial Intelligence (AI) - Intelligent control unit for the characters.
Non-player character (NPC) - A character which is controlled by the AI.
World - The complete collection of items, characters, structures and environment
that makes up a video game.
Model-view-controller (MVC) - A software design pattern used to separate un-
derlying data and the visual presentation of that data from each other.
Tileset - A collection of images and textures in fixed sizes that are used to model
the game world, merged into the same image, side by side in a grid.
Java - An object-oriented, multi-platform programming language developed by Sun
Microsystems, specifically designed to let a program run unaltered on many different
devices and operating systems.
Slick2D - Slick2D is a set of tools and utilities for handling 2D graphics, as well as
other things such as music and particles.
Sprite - An image or animation in a video game.

v

Preface

This report is a bachelor thesis at the Department of Computer Science and En-
gineering, Chalmers University of Technology, performed in the spring of 2016. It
describes and discusses the planning and implementation of a realistic AI to be used
in a resource based simulation game.

We want to thank: the institution for technical language, the Chalmers library and
Daniel Sjölie, our supervisor.

vi

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 3
1.3 Scope . 3

2 Technical Background 5
2.1 Slick2D . 5
2.2 Model-View-Controller . 5
2.3 Tiled Map Editor . 6
2.4 UML Diagrams . 6
2.5 Pathfinding . 6

2.5.1 The A* Search Algorithm . 7
2.5.2 A* Algorithm On Two-Dimensional Grids 7

2.6 Defining Believable and Realistic NPCs 8
2.7 Artificial Intelligence approaches . 9

2.7.1 Finite State Machines as Artificial Intelligence 9
2.7.2 Structuring FSMs Using Hierarchy 10
2.7.3 Problem Solving as AI Technique 11
2.7.4 Machine Learning . 11

3 Development of the Game 13
3.1 Software Design . 14
3.2 Creating the UML-Diagram . 14
3.3 Defining a Human In-Game . 15

3.3.1 Needs . 16
3.3.2 Traits . 16

3.4 Defining the Game World . 17
3.4.1 Resources . 17
3.4.2 Structures . 17

3.5 Implementing the Game . 18
3.5.1 Pathfinding in the Game . 18
3.5.2 Updating the Game World . 19
3.5.3 Displaying the Game World 19

4 Development of the AI 21
4.1 Preparatory Literary Study . 21

vii

Contents

4.2 Early Experiments . 21
4.3 Early stage FSM . 22
4.4 Development process . 22
4.5 The AI Class: ArtificialBrain . 23
4.6 Transitions Between States . 24

5 Final Implementation of the Game 25

6 Final Implementation of the AI 27

7 Discussion 31
7.1 Making the game from scratch . 31
7.2 Scrapped ideas . 32

7.2.1 Social Interaction between characters 32
7.2.2 Relations between characters 33
7.2.3 Character skills . 33
7.2.4 Long- and short-term goals of Characters 33
7.2.5 Trading resources between characters 33
7.2.6 Reproduction of characters . 34
7.2.7 Lack of Test Data . 34

7.3 Are Our NPCs Realistic? . 34
7.4 Choosing Between Believable and Realistic 35
7.5 Ways of Overcoming Obstacles of Realistic NPCs in the Industry . . 36
7.6 Finite State Machines in Video Games 37

7.6.1 Implementing NPCs using FSM 37
7.6.2 Advantages of Finite State Machines 37
7.6.3 Disadvantages of Finite State Machines 38

7.7 Our Finite-State Machine Implementation 38
7.8 Problem Solving In Video Games . 39

7.8.1 Implementing NPCs Using Problem Solvers 39
7.8.2 Advantages of Problem Solving 40
7.8.3 Disadvantages of Problem Solving 41

7.9 Machine Learning . 41

8 Conclusion 43

Bibliography 45

Appendices I

A Images from the Game III

B Software Description V

C States of Early AI Implementation XIII

D States of Final AI Implementation XV

viii

1
Introduction

Video games have gone from beginning to gain popularity in the mid-1970s to being
a part of modern culture as well as an economic powerhouse where the global game
market is estimated to reach a total of 100 billion USD in revenues in 2016 [2]. Even
though many high quality games of today have enormous 3D-worlds, with graphics
near photorealism to show for it, immersion is still lacking when it comes to the
behaviour of the NPCs inhabiting these worlds. “The believability of NPC behavior
is crucial for immersion in games and enables seamless interaction between players
and between players and NPCs”[3]. In terms of game immersion, storytelling and
AI research (and other research areas as well)[4], a more intelligent behavior of video
game agents opens up a vast array of unseized opportunities.

1.1 Background

The term Artificial Intelligence was first coined by the American computer- and
cognitive scientist John McCarthy, at the second Dartmouth Conference in 1956 [5].
According to McCarthy "every aspect of learning or any other feature of intelligence
can in principle be so precisely described that a machine can be made to simulate it"
[6]. Still, the idea of artificial intelligence can be traced back to philosophy, fiction
and imagination as early as in the classical period of ancient Greece [7].

Video games didn’t reach mainstream popularity until the 1970s when arcade games
and gaming consoles were first introduced to the general public. However, research
on game AI was already being conducted as early as 1948 on a computerized game
called “Nim” [8]. Just a few years later, in 1951, Christopher Strachey wrote an
AI program for playing checkers and Dietrich Prinz wrote one for chess using the
Ferranti Mark 1 machine at the University of Manchester. Further advancements
in gaming AI led to an AI (IBM’s Deep Blue) beating the ruling world champion
of Chess, in 1997 [9]. More recently the world champion of the board game Go
was beaten by AlphaGo, an AI developed by researchers at Google [10]. Go was
previously the last non-chance combinatorial game with perfect information in which
the best human players were considered better than their AI counterparts [11].

It is worth mentioning that there are some discussions involving whether or not the

1

1. Introduction

term “game AI” exaggerates the valuation of its notion. AI in video games fill a
different role from AI in the academic field [12]. In academics there are several defi-
nitions of what an AI is, but most agree that an AI automates intelligent behaviour
or reasoning [13].

Despite these discussions, there are others who think video games and AI research
go hand in hand. Looking from an entertainment point of view, advancements in AI
research can help to increase the demands to add realistic and intelligent behaviour
to characters in video games. The other way around, as video game environments
become more complex and realistic, they also open up possibilities for acting as a
testing ground for AI research in many different fields [14][4]. Furthermore Demis
Hassabis (CEO of Google DeepMind) stated in his presentation, The Theory of
Everything, that “Games are the perfect platform for developing and testing AI
algorithms” [15]. An example of this is the use of behaviour trees in AI which
originates from its use in video games [16].

There are games out there which have succeeded and have been awarded for their
contribution of influential AI-games. Black & White, currently ranked number one
on the list of the most influential AI games, is a video game developed by Lion-
head Studios and was created in 2001; where Demis Hassabis was one of the lead
programmers. The game incorporates artificial life simulation, in the form of giant
animal-like creatures, combined with strategy. An AI architecture known as belief-
desire-intention (BDI) was used in the game engine and the game also had great
success with machine learning, such as neural networks and decision trees [17].

Despite the progress made in AI research over the last few years, the potential
of AI in video games remains unfulfilled. Even in very recent, “triple A” titles,
such as Grand Theft Auto or Assassin’s Creed, a player will still encounter numer-
ous situations where the AI behaves so unrealistically that it will completely break
immersion. NPCs in these games representing humans lack some of our most funda-
mental cognitive skills, such as memory or the ability to communicate information
to one another. A common trait of the titles mentioned is that a player can commit
a crime in front of the guards, flee and then return to the very same guard minutes
(or even seconds) later. The guard will have no memory of the recent event, nor
will he remember the player. [3].

Even games that use AI as a selling point, or have been praised for their AI, often
will not provide what one could expect these days in terms of game immersion. In
2012, the game Skyrim [18] won the Academy of Interactive Arts & Sciences “Game
of the Year” award [19], as well as numerous other prizes and is considered one of the
best games of all time[20]. Still, the AI of the game is prone to break immersion time
and time again through unrealistic or irrational behavior. A typical example from
Skyrim would be that an NPC could ask you to perform some mundane task that
he or she is not capable of doing themselves, like clearing their house of mudcrabs.
However, when a dragon suddenly appears, the NPC will forget that he or she is
merely a weak citizen and will attempt to slay the dragon with their bare hands,
showing no signs of fear [3].

2

1. Introduction

1.2 Purpose

The purpose of this bachelor thesis is to describe the process of developing a video
game and the AI that controls the NPCs in this video game. This process also serves
as basis for investigating what it takes for an NPC to be realistic and how different
AI approaches can be used to implement realistic NPCs in video games.

1.3 Scope

Considering that the focus of this project lies on creating artificial intelligence, the
foundation of the game (the game without NPC) will be simple in both its visual
aspect and its gameplay aspects. The foundation of the game will be designed with
focus on making a world that NPCs can interact with, change, and be challenged
by. The game will thus not necessarily be challenging (or fun) for a human player,
but rather be an open world to test and challenge the AI.

The game to be created will be a survival game extended with elements from the
strategy genre. The elements from strategy are there to challenge the AI. It forces
the AI to take different factors into account, such as resource management, in order
for it to survive. The initial intention was to implement multiple different AIs using
various approaches in order to compare them to each other.

3

1. Introduction

4

2
Technical Background

These first subsections will briefly describe the tools and techniques used in order
to create the game; since a lot of work is required to get a game running. The last
subsection of this chapter focuses on giving the reader a brief introduction to well
known AI approaches.

2.1 Slick2D

Slick2D is an open source Java library, wrapped around LWJGL (Lightweight Java
Graphics Library) [21]. It contains tools to facilitate the use of images, animations
and other graphic components, as well as tools for things like sound and particles.
These tools exists to make Java game development easier, as it relieves a lot of the
workload for programmers whose main focus does not comprise of graphics handling.

2.2 Model-View-Controller

Model-View-Controller, MVC for short, is a design pattern for software applications
[22][23]. The design is popular as it separates pure logic and the user interface from
one another into three interconnected parts: model, view and controller. The most
prominent benefit of the design is more organized and manageable code, which is
an important feature of larger applications. Other benefits of dividing the code in
this way are:

• Reusable code
• More extendable code
• Allows for concurrent work between developers, responsible for different fields,

without stepping on each others toes.

Some possible drawbacks to Model View Controller:

• Increasing complexity as applications sometimes cover other patterns, in ad-

5

2. Technical Background

dition to the MVC.
• If the model is actively changing it can mean excessive update of the corre-

sponding view.
• Excessive information passing between the three interconnected parts, if poorly

constructed for the specific purpose.
• The three parts have to be synchronized in order to display correct information

in real-time.

How these three parts are interconnected vary significantly between applications,
depending on what is most preferable for that specific application. It also comes
down to different opinions and interpretations on what is the overall best way to
implement the design pattern.

2.3 Tiled Map Editor

Tiled is a free map editor program that can be used to create 2D-maps for games
[24]. It’s compatible with the Slick2D library and the two are easy to use together.
Tiled makes world creation easier as it removes the coding that has to be done in
order to create a world in run time. Instead, one basically paints the world with a
tile set of one’s own choosing.

2.4 UML Diagrams

UML stands for Unified Model Language and is a general-purpose, modelling lan-
guage in the field of software engineering intended to provide a standard way of
visualizing the design of a system. The notation has evolved from the work of
Grady Booch, James Rumbaugh, Ivar Jacobson, and the Rational Software Corpo-
ration to be used for object-oriented design, but has since been extended to cover a
wider variety of software engineering projects[25][26].

2.5 Pathfinding

In games where NPCs move dynamically around the terrain, as opposed to pre-
determined paths, there needs to be some way of moving about the world with
regard to solid objects and non-traversable terrain. This way of finding a viable
path is called ‘pathfinding’ and utilizes some kind algorithm in order to to so. Some
instances may require the absolute shortest path from point A to point B, while
others are content with just finding a path. Many different versions of this kind of
algorithm have been used throughout the industry [27].

6

2. Technical Background

A pathfinding algorithm will, given a graph, find a path from one point to another.
More advanced algorithms also guarantee that the found path is the shortest path
between the two points, at a small reduction in efficiency. There are several way to
define the ‘shortest path’; it can mean simply the least amount of transitions in the
path or the lowest cost of all the transitions in the path.

Initially, when searching a graph, you add the starting node to a list of discovered
nodes, called the ‘frontier’. Then the algorithm will check each discovered node and
if that node is the final node, the path has been found. If the node was not the
final one then the that node will be added to a list of considered nodes, to keep
the algorithm from checking a node several times, then adds all connected nodes to
the frontier and selects a new node to search from. If there are no discovered nodes
left to search from then there is no path to be found. In what order the nodes are
searched depends on what pathfinding algorithm is used.

2.5.1 The A* Search Algorithm

One of the most popular pathfinding algorithms is A* (sometimes A-star). A*
searches the graph by selecting what node to search from next using a programmer-
defined heuristics function. This function is based on what knowledge the program-
mer has of the graph and determines what node is most likely to be part of the
shortest path to the end node. For the algorithm to be guaranteed to find the short-
est path, the heuristic needs to be admissible. This means that, in all cases, the value
of the heuristic is always equal or better than the real value of that path. Because
of this the performance of A* depends heavily on how good the heuristics function
is at guessing the shortest path. Guessing a bad value will force the algorithm to
explore more nodes than it would need to, resulting in worse performance.

2.5.2 A* Algorithm On Two-Dimensional Grids

In 2D-video games, one particular problem is having NPCs find their way around the
world without walking into solid objects. A solution to this problem is converting
the map into a 2D grid. A cell in the grid can either be empty or occupied. Empty
means that the character can walk to or through that cell whereas occupied means
that the place is unreachable. An example can be found in figure 2.1. To be able to
pathfind through this grid it is modelled as a graph. Each empty cell becomes a node
with transitions to all empty adjacent cells. Always selecting the node with shortest
straight line to the end is an efficient heuristic when searching for the shortest path
through a 2D grid.

7

2. Technical Background

Figure 2.1: A pathfinding grid on a world of rocks. Crossed out cells are occupied

For searching this grid by using the A* algorithm, an efficient heuristic is to always
select the node with the shortest possible path to the end. This makes A* on 2D
grids excellent for finding paths around solid objects [28].

2.6 Defining Believable and Realistic NPCs

This section and most of the report will concern NPCs that represent humans or
human-like characters. For the purpose of this thesis it is important to make a
difference between the words believable and realistic. Note that these definitions
are neither standardized in the academic field of AI nor in the video game industry;
they are here simply to make the report easier to understand.

According to the book “Artificial Intelligence: A Modern Approach”, the field of
AI can be divided into four main categories [13]. These can be seen as different
approaches to intelligence. First, the field can be divided into rational and human
AIs. Rational AIs are made to reach a goal or find a solution. This could lead to a
rational AI taking an unintuitive decision because it calculated that would be the
best decision at the moment. Human AIs are made to make the decision a human
would. Further these two groups can each be divided into AIs that act and AIs that
think. When designing an AI that acts one does not care for how that AI works
as long as it acts intelligently. Conversely when designing an AI that thinks the
underlying decision process is important. This gives us the four groups: Thinking
rationally, acting rationally, thinking humanely and acting humanely [13].

In our definition, an NPC is believable when it appears to be human. There are
no requirements on the underlying mechanics of the NPC as long as the NPCs’

8

2. Technical Background

behaviour is apparently human. An example of this could be that an NPC has no
need for drinking, as it cannot become thirsty, but it will purchase a drink anyway
to keep up the illusion that it is human. The character of a believable NPC could
be viewed as a puppet and the AI is tasked with making this puppet seem human.
Referring to the categories from the previous paragraph, the AI of a believable NPC
would therefore be of the type that “acts humanely”.

In our definition, an NPC is realistic when it simulates a human. The character can
be seen as a body and the AI as the brain. This type of AI does not simply perform
typical human actions for the sake of illusion, but has an actual need to do so or
else it will perish. A good example is The Sims; in The Sims, a character does not
drink because “that is what a human would probably do”, but because it has an
underlying need to do so. The AI in this case would either fall in the category of
thinking rationally or humanely, depending on the design of the AI.

2.7 Artificial Intelligence approaches

There is a multitude of designs available to the programmer when implementing
artificial intelligence for video game NPCs. What design to choose should be deter-
mined by the desired behaviour of the NPCs in question. The following paragraphs
will describe how some of the most popular designs work, as well as what their
advantages and disadvantages are.

2.7.1 Finite State Machines as Artificial Intelligence

A Finite State Machine, FSM for short, is a system that has a finite number of
states that an AI can enter. Each state is unique and determines the behaviour
of the AI. What state the AI will transition into next is decided by predetermined
conditions. Let us take an example of a basic NPC in the form of a city guard.
For simplicity, the following states the AI can enter and transition between will
be patrol, suspicious and attack. If the guard has not spotted the player, it will
patrol the area. Granted that the guard is in patrol state and the player is suddenly
spotted, the guard will transition into the suspicious state and actively search for
the player. When in suspicious state, the guard has 15 seconds to spot the player
again in order to transition into attack state, chasing and attacking the player. If
the condition of spotting the player in the following 15 seconds is not met, the guard
will transition back to patrol state. This FSM is visualized in figure 2.2.

9

2. Technical Background

Figure 2.2: Visualization of a simple FSM, using three states.

The advantage of an FSM is that it is easy to implement and understand. They are
easy to expand, as long as the number of states is relatively small. Debugging also
becomes relatively simple, since the actions performed can often be traced back to
a specific state [29].

One of the disadvantages of an FSM is that it become increasingly difficult to man-
age, maintain and expand as the number of states grow larger. For every state
already defined in the state machine that should be able to transition to the newly
created state, new transitions and conditions for them have to be defined. FSMs can
be predictable if their states and transitions are defined by overly simplistic rules.
They can also get stuck in unrealistic behaviour if the conditions for transitioning
are too many, too strict or poorly defined [29].

2.7.2 Structuring FSMs Using Hierarchy

A common problem with FSMs is that often the logic of a state cannot be reused
in a different context. For example, you might want to reuse the attack state of an
NPC on several occasions, but the transition conditions may not allow it. States
are often designed around specific logic that has to be provided in order for the
state to work as it should. If that logic is not provided, which is most likely the
case if the state is used in a context it is not designed for, the FSM will fail. As a
developer you are faced with two options. Either states have to be complicated and
account for all contexts the state might be used for, or you have a lot of redundancy
and have to make numerous specific transition conditions for a lot of states [30].

10

2. Technical Background

Hierarchical FSMs allow you to keep your states fairly simple while avoiding a lot
of the redundancy [31]. Hierarchical FSMs use something called “super states”. For
example there is a game with five different weapons, all of which change the way
an NPC attacks and requires its own state. Instead of having five different attack
states that have to be considered in every state that can transition into an attack
state, there can be one attack super state.

The super state contains the logic required to determine which of the five attack
states that should be used, depending on what weapon the NPC has. Now every
time the NPC wants to attack it will first go to the attack super state and then to
the correct sub-state corresponding to the weapon used.

2.7.3 Problem Solving as AI Technique

In the field of AI, problem solving is the study of finding a correct sequence of
actions needed to solve a given problem; the solution is often called the goal of that
problem. A problem can be modelled as a directed graph where each node represents
a possible state of the problem and each transition is an action that changes the
state of the problem. For a problem to be solvable there needs to be at least one
solution (goal state) that is reachable from the starting state [13].

A problem solving AI is a design that, given a certain problem, uses this modelling
technique to find a solution. To get a sequence following some specific constraints,
for example the sequence with the least number of actions, one could use a more
advanced problem solver.

Commonly a problem solver will not have a complete graph to work with but rather
have a starting state, the possible actions for that state, conditions for what is
regarded as a goal state and knowledge of how the state will change when performing
an action. With this information, the problem solver can generate its own graph by
creating the states that each action would transition to; consequently having an AI
repeat the process from the possible actions in each new state until a goal state is
found.

2.7.4 Machine Learning

Machine learning is a field within computer science that deals with constructing
algorithms that look for and recognize patterns in data in order to make predictions
based on new data. Implementations of these algorithms are trained on a set of
training data, allowing them to improve themselves. The training data is the same
kind of data that is to be supplied to the running program, along with the desired
result. The program then evaluates its own performance and adapts in order to
improve [32].

11

2. Technical Background

A subgroup to Machine Learning is the so called Unsupervised Learning. The central
concept of Unsupervised Learning is that no desired result is supplied. The algorithm
gives a result based on all the data supplied by trying to find patterns in it [33].

Machine learning is not a new concept, but has gained a lot of momentum in the
recent years through the expanding collection of data, affordable processing power
and inexpensive storage.

12

3
Development of the Game

This chapter is going to describe the creation of the game. To be able to implement
the AI in this project a world with distinct rules for the AI was needed. Creating
this world was done in several steps.

The first step was to define the humans in-game, the world, the objects within it
and the interactions between these objects. This was done in a software description
which consists of two parts, a plain text description of the desired result and then
a formal definition using functional requirements. Below is an excerpt of the list of
functional requirements:

1. Characters should have needs.
2. The magnitude of the needs should increase over time.
3. Characters should have skills.
4. The skills should increase when used.
5. Characters should have traits.
6. . . .

The full software description, including the full reasoning behind these functional
requirements, can be found in appendix B.

The second step was to structure the process of implementing the game. Firstly how
to handle version control. Secondly decide on the overall software design, which was
decided to be a implementation of the design pattern MVC. And thirdly to create
a UML-diagram based on the functional requirements.

The third, and last, step was to implement the game. This step was naturally the
largest, and was done over several iterations. This allowed for the development of
the AI to start as soon as possible, as only a very basic game was required for testing
the first versions of the AI.

13

3. Development of the Game

3.1 Software Design

It was decided that this project should utilize one of several different possible model-
view-controller (MVC for short) implementations. In this section, the way that the
different parts of MVC were designed to work and interact in this particular project
will be explained.

Figure 3.1: Illustration of the implementation of MVC in this project.

The controller is the main thread in the program. It works as a bridge between
the model and the view, handling events and passing information between these
packages. Its main tasks are to update the game at every cycle, listen to the input
from the view and run the AI. The controller also sends a list containing what
objects to render and where to render them. The controller is in theory split into
two parts; one is the controller that handles the public information and the other is
a smaller AI-controller that only has access to the data linked to the characters.

The view in the MVC presents the data stored in the model. It displays everything
that exists in the game such as characters, structures and resources. The view is
the front-end of the application and works by constantly listening to the input of
the player, passing on the received information to the controller.

The model is a logic representation of the game. It acts as the memory of the game,
keeping track of what objects are active, their position and their state. The model
also contains the functions for modifying the world, used in the update stage of
the controller. The model will, when asked by the controller, pass along or update
information. The main controller can ask for any public data whilst the AI-part
only can ask for data related to the character it controls. A visualization can be
seen in figure 3.1.

3.2 Creating the UML-Diagram

In order to outline how all the classes in the model relate to one another as well as
achieving a more sensible structure in the code, a UML-diagram was developed. The
UML-diagram was created by adding a class for every noun found in the functional
requirements. Then, some were combined into one as they shared most properties
with each other, and as such could be represented by the same class. Next interfaces

14

3. Development of the Game

and help classes were added where they were considered needed. After a few repe-
titions of these two steps, the UML-diagram in figure 3.2 was the result. Although
some changes were made during the iterative development of the game, the most
parts of the UML-diagram remained unchanged.

Figure 3.2: The UML-diagram that was used as outline for the development of
the model.

3.3 Defining a Human In-Game

As the purpose of this game was to implement a realistic AI, it was important to
properly define a human in-game. Several different aspects of the in-game humans
were planned for several different reasons.

In order to make the characters realistic, it was decided to give them needs similar
to those of a human. For the character to survive, it has to manage these needs. It
was also decided that the characters should have traits that determine how they act
and how their needs change, forcing them to think differently. These two aspects of
the characters where the most central and will therefore be covered more thoroughly
in the two following sub chapters.

In order to give the NPCs something to do, other than just satisfying their needs, the
concept of goals was introduced. Two different types of goals were envisioned: short
term goals as well as a lifelong goal. To further differentiate the NPCs from each
other, the concept of skills was discussed. Skills were supposed to decrease the time
it takes for the character to gather a corresponding resource as well as increasing the
yield from that resource, thus allowing the character to gather it more efficiently.

15

3. Development of the Game

3.3.1 Needs

A character was decided to have three different basic needs; hunger, thirst and en-
ergy. The three needs were based on the the underlying physiological needs of a
human being according to Maslow’s hierarchy of needs [34]. Hunger represents the
need to eat, thirst the need to drink and energy the need to sleep. The higher the
value of the need, the better for the character. These needs must be considered by
the AI, with a high priority, in order to avoid certain death. The main objective
for the AI is to survive as long as possible. Managing resources is therefore im-
portant because by eating, drinking and sleeping, the AI can restore its needs and
consequently survive.

• Hunger: Managed by eating food such as meat, crops or fish, gathered from
places like animals, farms and lakes.

• Thirst: Managed by drinking water, gathered from lakes.
• Energy: Managed by sleeping in houses (or resting outside if not a house

owner).

The needs should deplete continuously over time in the game, though the depletion
rate can vary depending on the traits of the character. If any basic need is fully
depleted the character should die.

There were also plans to implement secondary needs for the characters. Secondary
needs are non-fatal and will instead affect the character in a negative way if not
managed properly. There were several secondary needs planned for the game, such
as socializing, intimacy and attention. These were more centered around interaction
compared to the basic needs and were supposed to give the NPCs a more realistic
behaviour around each other.

3.3.2 Traits

The purpose of the traits was to vary a character’s behaviour, and were inspired by
the seven deadly sins. Here follows a description of the way the traits were intended
to work. The character is affected by its traits, which are randomized when the
character is initiated. These were implemented to give some uniqueness to each
character. The character is affected by each trait on a scale from 0 to 100. The
effect of each trait is the following:

• Greed : Will be more likely to amass wealth, in the form of gold.
• Gluttony: A character will get hungry faster.
• Sloth: A character’s energy will deplete faster.
• Lust: Will be more likely to reproduce.
• Wrath: Decreases the damage taken from attacks.
• Envy: Increases the range of vision for a character.
• Pride: More difficult to form relations as well as less likely to accept unfavor-

16

3. Development of the Game

able trades

3.4 Defining the Game World

When the in-game humans (or characters) had been defined, the next step was to
define the world they were to inhabit. To give the characters a way to manage their
needs, it was decided that the world should contain a number of resources. For the
AI to be able to improve their situation and allow for more effective management of
needs the concept of structures was introduced. The next two sub chapters will in
further detail describe the envisioned resources and needs.

3.4.1 Resources

This chapter will describes the way that resources were envisioned. The resources in
the game are means for the NPC to survive. A character can gather these resources
and use them for various purposes. Resources are either spawned at random loca-
tions at initialization of the world or spread from an already existing source. They
are divided into three major categories: renewable, finite and infinite resources.

• Renewable resources - these resources reproduce as long as they exist in the
world. For example, new trees will grow in proximity to other trees. If all
trees are chopped down, no more trees will grow.

• Finite resources - these resources spawn in a fixed amount when the world is
initiated. When these resources have been depleted the characters will have
to manage without them. Stone will exist in the world as finite resources.

• Infinite resources - a resource that can be gathered infinitely and will never
deplete. Water is an example of an infinite resource, as it will remain in the
game no matter how much water is gathered.

Animals are a special case in this project, but can be considered a renewable resource.
They will wander the world and may reproduce when in close proximity to one
another. The characters can hunt these animals for meat, which is why they are
mentioned in this section.

3.4.2 Structures

This subsection will describe the way that structures were envisioned. One choice
the AI has, in order to replenish needs more conveniently, is to construct different
buildings. Structures require resources in order to be built, and these have to be
gathered before beginning construction. There are a few buildings that can be
constructed for different purposes and they are the following:

17

3. Development of the Game

• Houses - accommodate characters. Here they should be able to sleep and
recover energy. A character should preferably have a house, as sleeping in a
house restores more energy than resting out in the open.

• Stockpiles - a place where characters can store their resources. The stockpile
inventory should be larger than a single character’s inventory.

• Windmill - a building that characters can work at to produce crops they can
harvest for food. Any character should be able to work at any windmill and
harvest the crops growing there.

3.5 Implementing the Game

The implementation of the game was done by dividing the development process into
several steps. At each weekly meeting, decisions were made on further improvements
that had to be done as well as what to implement next. The first step in the process
consisted of implementing the most essential and basic parts of the model. This step
included the coding of necessary interfaces as well as setting up the basic skeleton
code to some of the classes in accordance with the UML-diagram.

Next came the development of the view and controller, along with the communica-
tion between the three interconnected parts of the MVC. After this step, the only
thing remaining before obtaining a simple but working game was to add all the
residual necessities regarding the model, which the AI would later need access to.
Following this, was an iterative process of refactoring the code to be more efficient
and manageable, as well as adding new features.

The following subsections will describe some of the most central parts of the devel-
opment; pathfinding, update function and displaying the game. These parts were
developed in several iterations, just as the rest of the game. However, as they were
very central, they did not undergo any major changes in the later iterations.

3.5.1 Pathfinding in the Game

In order for the NPCs to navigate through the world, a pathfinder class was im-
plemented. This class has two main uses; the first is to map a grid over the world
containing information of where the character can, and cannot, move. The second
one is to calculate a path between the character and some point in the world. In
case there is no way to get to that specific point, the pathfinder will return an empty
path. The path is generated as a list of nodes. The character will visit each node in
order, finally reaching its destination at the final node. By using these nodes, which
are essentially straight lines in the bigger path, the character can move around the
world whilst avoiding solid objects it should not be able to walk through.

To find the shortest path between two points the pathfinder uses a A* algorithm

18

3. Development of the Game

specialized on finding the shortest path on a 2D-grid. This path will be converted
into a list of nodes that is returned by the pathfinder.

3.5.2 Updating the Game World

In this game it was decided that the update function should normally run 60 times
per second. The update function loops through every dynamic object in the world
and executes a specific update method for each and every one of the different objects.
These update functions should do different things depending on what kind of object
it is; trees will spread, crops will grow, characters will move, and so on and so forth.

3.5.3 Displaying the Game World

To make the game interesting as well as understandable, sprites were utilized to
display the world graphically. The project took imagery from the web that is licensed
under Creative Commons. The images used in the game that were neither made for
this project nor public domain can be found in appendix A. These images were then
applied to the objects in the world, such as vegetation, structures or characters; so
that it could be seen on the screen. A screenshot of the game can be seen in figure
3.3.

Figure 3.3: A screenshot from the game displaying a NPC sowing crops at a farm
in a small village. References to the creators of images used in the game can be
found in appendix A

19

3. Development of the Game

20

4
Development of the AI

This chapter will focus on how the AI was developed and implemented into the
game. It will cover early testing, how an early stage FSM was implemented as well
as how it developed over time. This chapter will only cover the development of the
actual implementation. Comparisons and thoughts on how additional approaches
might have been used can be found in chapter 7.

4.1 Preparatory Literary Study

Entering the project all members were more or less inexperienced with Artificial
Intelligence. Learning more about AI in general, as well as the standards used in
the industry, was a top priority. This included reading about AI in popular games,
how they were used and how to implement them. Since AI is such a broad field and
implementations vary in so many ways, focus was on the most popular approaches
used in the video gaming industry.

4.2 Early Experiments

Early in the development process, before the characters were complete enough to
be controlled by an AI, a prototype problem solver was implemented. The goal of
the prototype was to see what it would take to implement an actual problem solver
AI later on. The prototype could take an abstract model of a character and a list
of possible actions the character could perform and then calculate what sequence of
actions would lead to the optimal outcome. Optimal in this case refers to keeping
the character’s needs as satisfied as possible, as well as collecting the maximum
amount of resources. Though limited, the prototype worked satisfyingly.

21

4. Development of the AI

4.3 Early stage FSM

Development of the FSM implementation started halfway through the project. The
game had enough of the basic elements required to test the functionality of the AI,
however, it was not complete. From this point in the process the AI and game
functionality was developed in parallel. In many cases, when new functionality was
added, support for that functionality were implemented in the AI as well.

A basic AI was desirable as it could be used to test and confirm that the most trivial
logic of the game was working. A primitive FSM was implemented where the AI
would only have a few states for collecting resources. This early implementation
was, as stated, a good start to find bugs in the program and to have something to
expand upon. Only a few resources were available for gathering to satisfy the needs
of a character. There were no AI methods for constructing different buildings or
socially interacting with other characters.

Additional functions were added to the AI continuously. As new things like con-
struction and more resources were added, states were implemented in the AI that
could handle these new functions. This kept bugs and other issues to a minimum
as they could be fixed before going on to the next feature.

4.4 Development process

The first step was to make a blueprint, seen in figure 4.1, of the states that were
needed, as well as mapping transitions between these states. State transitions were
designed hierarchically, meaning that states could only transition from a higher level
in the hierarchy to a lower level, or vice versa, never between states on the same
level.

Figure 4.1: The state transition blueprint, arrows represent possible transitions,
bubbles represent states.

This was the envisioned state machine, what the blueprint looked like before the

22

4. Development of the AI

first line of code was written. At first glance it looks a lot like a behaviour tree,
but it differed from a common behaviour tree in the sense that there was very little
planning at the node level. Additionally, it also had to transition to idle state before
going deeper in the tree structure, meaning this implementation can disregard levels
of the tree when transitioning [35].

When the blueprint was laid out, an ArtificialBrain class was made along with
classes that represented each state. The ArtificialBrain is the main class of the
AI, it contains all the AI variables along with the functionality to make transitions
between and executing each state. At this stage, queues were used to control the
flow of states, they were later replaced with stacks. The idle state is at the top of
the hierarchy and was intended for planning the AI’s next move.

At this point the AI could walk, eat, sleep, drink and gather resources. Although
simple, it was advanced enough to test how additional features not essential to
survival played together with the essential features. A list of the states implemented
in the AI at this point in the development process can be found in appendix C.

The AI had perfect information about the world, meaning it knew where everything
was at all times. There was no functionality for social interaction, reproduction
or building houses yet. From this point the AI was developed iteratively as more
elements of the game were finished and could be used by the AI.

4.5 The AI Class: ArtificialBrain

The initial implementation of the ArtificialBrain was simple. It had an update()
method that was executed by the controller once every iteration. It was decided that
each state should have its own run() method which determines the AI’s behaviour.
This method should be executed from the update() method of ArtificialBrain.

As stated in the previous section, the AI had perfect information about the world.
As perfect information is not a realistic representation of a human’s perception of
the world, the AI should not have this kind of knowledge. For this reason a simple
form of memory was implemented in the AI. This memory was a list of objects that
the character had walked past in the world. As structures were implemented, this
solution was used to keep track of their position as well.

As new states were implemented and the AI became more advanced, new tools had to
be implemented in the ArtificialBrain to accommodate for the increased complexity.
These tools were stacks and lists, intended to store information needed by certain
states, as well as allowing the AI to perform sequences of several states, giving it a
basic sense of planning.

To increase performance, it was decided that the supervision of primary needs, that
was previously in the idle state, was to be moved to the ArtificialBrain. This removed

23

4. Development of the AI

the need for the AI to enter the idle state to gain access to this functionality.

4.6 Transitions Between States

A state transition is moving from one state to another. Without them, the AI would
never change state and consequently never do anything.

In the early implementation the transitions were designed to be hierarchical, meaning
that the AI could only transition from a higher to a lower level and back again, in the
hierarchy of states. It could not transition between states on the same level. This
design was used to keep the transitions neatly structured but as the FSM grew more
complex, there was a need for some states to break this structure. The transitions
were kept as hierarchical as possible, giving some states the ability to transition
directly to states that would not have been possible in a pure hierarchical design
or behaviour tree. Additionally, the idle state was initially always used to perform
state transitions.

24

5
Final Implementation of the Game

The implementation of the game resulted in a functioning world which the NPCs
could exist in and change. The NPCs were able to gather water from the ponds and
gather food, either by killing cows, fishing in the ponds or farming crops. They were
also able to construct the three different structures described in subsection 3.4.2.
The NPC could also collect various amounts of the raw materials wood and stone
in order to construct these structures. Of the original 43 functional requirements
in the software description, all but 8 were successfully implemented in the game.
These 8 were:

• 44. Characters should have skills.
• 45. The skills should increase when used.
• 50. Characters should be born.
• 55. The AI should make decisions based on the current goals of the character.
• 56. The effect on the needs and wishes of the character, that the traits and
• skills have, should affect the AI’s decisions.
• 58. The AI should take the actions of other NPCs into account when deciding

on actions for the NPC.
• 63. The world should have a basic weather system.
• 69. The number of houses in the village should set the max population of the

village.

The majority of the envisioned concepts in chapter 3 were implemented. However,
Skills, Goals and three Traits, were not implemented due to time limitations. The
three unimplemented Traits were Lust, Greed, and Pride.

Most of the classes in the UML-diagram were implemented, however a few were
removed for various reasons. Some minor changes were also made to the UML-
diagram during the course of the project. The final UML-diagram can be seen in
figure 5.1.

In the finished game most of the NPCs could successfully live long enough to die
from old age and before that had time to build a house, farm and stockpile. A
screenshot of the finished game with explanations can be seen in figure 5.2.

25

5. Final Implementation of the Game

Figure 5.1: The final UML-diagram of the model made in this project.

Figure 5.2: A screenshot from the game with explanatory text explaining the
different parts of the game. The screenshot displays three NPC working at a farm
in a small village. References to the creators of images used in the game can be
found in appendix A.

26

6
Final Implementation of the AI

The final implementation of the AI is a “stack based finite state machine”. The AI
has a set of states that determine its behaviour depending on which state it finds
itself in, at a given time.

The AI is controlled by the class ArtificialBrain. This class can, as the name sug-
gests, be seen as the brain of the character. The brain class is updated and executed
every controller update and contains all the functionality for executing each state.
The brain class is also responsible for checking if the character is hungry, thirsty or
tired. If so, the AI will enter the state corresponding to the behaviour necessary to
address this. For instance, if the character is hungry, the AI will stack its current
state, allowing it return to it later and transition into the hungry state.

Each state is an individual class that has its own unique methods that represents the
actions an AI can perform, these methods are then executed in the run() method.
The run() method of each state is called by the update() method in the Artificial-
Brain. A complete list of the states in the AI can be found in appendix D.

The ArtificialBrain consists of several components that are used to model the be-
haviour of the AI, these components are:

• A stack of states - This stack contains all the states that are waiting to
be executed. This is used to control the flow of the states. Some actions
require several states and transitions to be performed, for instance reaching
a satisfying level of hunger, or building something. By using a stack it can
push all the states required to perform an action and then execute them in
order. It is also used as a means for the AI to be able to remember what it
was doing previously, in case it has to interrupt itself to do something of more
importance.

• A stack of structures - This stack contains all the structures that are cur-
rently due for construction.

• A stack of objects to move to - This stack is used to remember where the
NPC was going when returning to a stacked MovingState.

• Two stacks of resources - One stack, the FindResourceStack, contains all

27

6. Final Implementation of the AI

the resources that the AI currently wants to gather, but does not have in mem-
ory. The other, the GatherStack, contains all the resources that are necessary
for a stacked state. In gather state, the AI will gather the first resource on this
stack. If the AI does not know where the first resource on the GatherStack is,
it will push that resource onto the FindResourceStack and go look for it.

• A resource memory - This is a list of resources that the AI has walked past.
The AI remembers where these resources were so that it can easily find them
again. For instance, where the closest lake that it knows of is.

• A structure memory - This a list of structures that the AI has walked past.
The AI remembers where these structures are so that it can easily find them
again. For instance, where the closest farm that it knows of is.

The idle state is the state the AI enters between states or when it has nothing to
do. It is also used for popping states from the stack. If it has states on the state
stack, the first state is popped once the idle state is executed and the AI transitions
into that state. The run() method of the popped state is executed, and when the
state reaches the end of run(), the AI will go back into idle state and pop the next
state from the state stack. If it does not have any states on the stack, the AI will
pick another task randomly based on where it is in its lifecycle. For example; if the
NPC has not yet built a house, and is lacking the resources to do so, it will choose
to gather these resources unless there is something of more importance to attend to,
like managing primary needs.

The AI will always start by building a house for itself. If the AI has a house it will
proceed to build a stockpile and a farm, the order in which these structures are built
is random. However, the AI will only build a farm if there is no farm present in its
structure memory. A farm requires a lot of resources to build, and many characters
can work on the same farm. Therefore it would be unnecessary to build a farm if
one has already been built and it knows where that farm is. If the AI has built a
stockpile and has a farm in its memory, the AI will either hunt for food, gather a
random resource or work on a farm for crops.

In the beginning of its lifecycle, the AI follows a simple, hardcoded plan. The AI
will start by checking if it has a home, i.e. somewhere to sleep. If it doesn’t, its
first task will be to build one if it has the materials required. If it doesn’t have the
materials, it will gather them. It does not make plans in advance or prepare for the
future. It simply reacts to its current state and does what is necessary to proceed.
When the AI is finished with these predetermined actions, it will gather a random
resource.

The AI will only interrupt itself in a task if it recognizes one of its primary needs
is under a certain threshold. If so, the ArtificialBrain will push the AI’s current
state onto the state stack, saving it for later. It will then force the AI into a state
increasing the corresponding need. When the AI has finished eating, drinking or
sleeping, it goes back to do what it did before it got hungry, thirsty or tired.

28

6. Final Implementation of the AI

The AI has almost no ability to plan for the future. The AI will only take on a task
if it is what is necessary at that moment in time, and as can be seen earlier in this
section, sometimes it is completely random. The only thing the AI plans for are
the states needed in order to complete a certain task, which could be argued not to
be planning at all. For instance if it wants to gather a certain resource that it has
in memory, the AI knows that it will have to stack the moving state to get there,
and the corresponding gather state for that resource in order to gather it once that
resource has been reached.

29

6. Final Implementation of the AI

30

7
Discussion

The desired behaviours of NPCs in video games differ wildly. It is difficult to say
that there is a best approach to AI for NPCs. With our limitations we have narrowed
our scope down to NPCs in survival games. Still the survival genre is too broad a
field to raise one AI approach as superior.

In this section we will first discuss alternatives to creating a game from scratch, and
features that were left out of our game. This is followed by a discussion of believable
contra realistic NPCs. Finally we will go through three different AI approaches that
one may use to implement an NPC in a video game. We will discuss the advantages
and disadvantages from our own experiences in development, as well as what we
have learned about implementing realistic NPCs through the course of this project.

7.1 Making the game from scratch

We decided to make the game ourselves from scratch to retain control of what
features we could implement. The group was in general interested in creating a
game from scratch and saw this project as a good opportunity to explore this area.

Other options were considered, such as Unity or Unreal Engine, which could have
been very good options since they both have very good AI frameworks that could
have streamlined the process. Unreal was discarded because we felt like the real
power tools of it are for 3D games, and since we wanted to have our game very
simple, we wanted to make a 2D game. Unity uses C#, which is an object oriented
language, but the group had no experience with either C# or Unity. What we had
experience with though, was Java, and a few members of the group were already
experienced with game development using this language. We realized that making
the game would take quite some time, and we wanted to hit the ground running to
finish the game as soon as possible. Hence, Java was the language we chose.

As creating a game is no small task, it might have been easier, and quicker, to create
a modification (or mod for short) to an already existing game with good support
for mods. However, the choice of game would limit us to using the tools of that
game, and the AI to that world. So while it might have been quicker, it would have

31

7. Discussion

been necessary to research the code of said game, it would also have been a limiting
factor to what we could achieve. A benefit of creating a mod would have been that
we would be able to compare our result with the original NPCs.

7.2 Scrapped ideas

Entering the project there were many ideas concerning how we could make the AI
more realistic. We found many of these interesting and we think that they could
have given a lot of depth to our AI. Unfortunately, many of them had to be discarded
for various reasons. This chapter will cover those features, what they were intended
to accomplish and why they had to be tossed.

7.2.1 Social Interaction between characters

To increase the sense of realism and immersion in the game, we wanted to give
the NPCs the ability to socially interact with each other. Social interaction was
supposed to be a tool for the NPCs to build relations. One NPC talking to another
would either increase or decrease the relationship status with that NPC, depending
on how similar their traits were. In this way NPCs could make new friends or
enemies. This would have given the AI more depth.

Social interaction was also supposed to be a tool for the AI to gain more information
about the world, without having to go out and explore everything for itself. When
two NPCs would talk to each other, they would exchange information about the
location of resources and structures.

Socialize was supposed to be a secondary need that, when low, would negatively
affect the character’s ability to work and possibly lower the amount of energy gained
from sleep. Interacting with other characters would replenish this need. The effect of
a low level of the socializing need would be determined by the traits of the character.
For instance, if a character had traits making it more of a lone wolf, it would not
be affected negatively by isolation from other characters.

A lot of work went into making the idea of social interaction a reality, it was some-
thing we wanted to work because it was a prerequisite for many other features.
Among these features were reproduction, relations and trading. There was partial
success. We managed to get two NPCs to talk to each other, but as soon as a
third one wanted to join the conversation, the game would break. This issue proved
complicated to solve due to the way that the software architecture was designed. In
the end, we decided to scrap the idea because time was running out and there were
still many essential features that had not been implemented.

32

7. Discussion

7.2.2 Relations between characters

We wanted the NPCs to be able to build relations with each other. Relations
were supposed to be the base for how an NPC would respond to another in social
interaction. An NPC was supposed to be helpful towards friends and unhelpful
towards enemies or NPCs that NPC did not particularly like.

Relations were also going to be used for family trees, the AI was supposed to know
who its mother, father, brothers, sisters, sons and daughters were. Additionally
relations were intended to allow for reproduction. If a man and a woman got to
a specific grade of relation they would get engaged and eventually have children.
Since social interaction never made it to the final implementation of the game, there
was no good way of building relations. Thus they were never implemented.

7.2.3 Character skills

We wanted the NPCs to have certain skills that would make them more useful in
certain areas than others. When performing a certain task, the NPC’s skill in that
task would increase. It would also decrease over time if the NPC did not perform the
task regularly. Some intended skills were; fishing, farming, trading and exploring.
If an NPC was particularly good at fishing, it would net more fish than other NPCs
with a lower skill level. However, skills had low priority and were never implemented.

7.2.4 Long- and short-term goals of Characters

Another possible extension of the NPCs were long and short term goals. Achieving
these goals would increase its overall happiness and would give more depth to the
game. Short term goals could be: build a house, make a new friend or something
along those lines. Long term goals would require more effort to fulfill and would not
necessarily be something the AI could achieve in its lifetime. Examples of intended
long term goals were: get married, have three children or become the richest person
in the village.

7.2.5 Trading resources between characters

Trading was supposed to be a type of social interaction where one NPC would
propose a trade with another, that NPC would then assess if it was a fair trade and
choose to accept or decline it. The idea was that NPCs that had a lot of a particular
resource could trade that resource for something else that it needed, removing the
need to always gather everything. This would have played well together with the
use of skills, as proffessions could arise naturally. For example: an NPC skilled

33

7. Discussion

in lumbering could trade wood for fish with an NPC that had a high fishing skill.
Trades would have been influenced by relations were an NPC would be more likely to
accept a trade from a friend. Trading was not implemented since social interaction
was discarded.

7.2.6 Reproduction of characters

A vision was that the AI would be smart enough to sustain its society forever. Once
the game had started running, the NPCs would never go extinct. A prerequisite for
this is of course that the AI is able to reproduce, otherwise extinction is inevitable.
Since relations were never implemented in the game, neither was reproduction, ren-
dering this vision unachievable.

7.2.7 Lack of Test Data

With the purpose of implementing a realistic AI in a video game, it would have been
helpful to define tests to verify that the result fulfilled this purpose. These tests
would have been designed to prove that the AI we created fulfilled the definition of
a realistic AI to a satisfactory degree. Unfortunately, such tests were never explicitly
defined, and therefore never performed on the final product.

The reason such tests were never defined was simply that in the early stages of the
project, when such tests should have been defined, we were focused on the literary
study. Therefore, when we realised that such tests should have been defined, it was
too late to implement or conduct them in any reasonable manner.

7.3 Are Our NPCs Realistic?

We lack the data to be able to confidently state that our NPCs are more believable
or realistic than NPCs in games currently on the market. However, several strong
points can be made as to why our NPC make a good proof of concept for a realistic
NPC. In Maslow’s hierarchy of needs the motivators of human behaviour are placed
in a hierarchy. The idea is that the lowest unfulfilled step of the hierarchy drives
the actions of the human. The lowest two steps of the hierarchy Maslow proposes
is “physiological needs” followed by “safety” [34].

Our NPCs acts according to the bottom two of this hierarchy. When they have
pressing hunger, thirst or energy (physiological needs) they will tend to these needs.
If they are satisfied physiologically they will work on security, making sure that they
have somewhere to live and that they will have food for future use. The further
introduction of social interaction and skills could have further led to the inclusion

34

7. Discussion

of two more steps of Maslow’s hierarchy: “Love and belonging” and “Esteem” [34].

One can argue that our NPCs achieve a high level of realism, relative to their
simplicity (being incapable of doing most things a human can do). However we
would argue that they make a good proof of concept, being realistic in performing
the actions they are capable of. As such, they show that better realism for NPCs is
achievable. Worth noting is that the AI in the NPCs is a version of an FSM, which
then shows that realistic NPCs can be made using approaches already known to the
industry.

7.4 Choosing Between Believable and Realistic

It can be a difficult task to make the decision whether one should have a realistic
or believable AI in a video game. One has to take into account what the AI should
accomplish and the amount of computational resources it should be allowed to use.
An AI with focus on realism will require much more computational power than its
believable counterpart; since a realistic AI has to do a lot more planning and decision
making. Believable AI does not suffer from this to nearly the same extent, as its
behaviour is often predetermined.

A well-implemented realistic AI will undoubtedly give the player a deeper sense of
immersion, since the AI will act and behave as a regular person would. In some
games however this might be an undesirable behaviour. In Role Playing Games
(RPG), the player takes on a role of a character in a fictional setting. In these
games, NPCs play a big part in the player experience and they are essential for
the player’s progression through the game. They give the player missions, serve as
storytelling elements, they purchase and sell items; the list goes on.

If these NPCs were entirely realistic, meaning they would have to eat, drink and
sleep, just like human beings, the game could quickly get tedious. Imagine if you
needed a specific quest to progress through the game and the quest giver, a character
which hands out missions, is not where you expect him to be. Perhaps he has gone
hunting and won’t be back for a couple of hours, or perhaps he has taken a stroll
down to the local inn to get something to drink. What if the quest giver dies? This
would certainly be a very immersive experience, but it would slow down the pace
of the game tremendously and could leave the player stuck with nothing to do for
some time. It might even break the game completely.

In order to have realistic AI in this type of game, a game designer would have to
put much bigger thought into the overall design of the game. In these days where
game developers are often limited by tight budgets and time schedules, realistic AI
is rarely a prioritized design choice.

If we take a look at the other side of the coin, what if NPCs are not realistic;
which is the case in most games. Here the player will always be able to progress,

35

7. Discussion

as he can always be sure to find the quest giver where he expects him to be. The
game designer does not have to take into account the difficulties that comes along
with realistic AI. The AI will always behave as the designers expect it to behave,
there is no risk of the AI running into a situation that might not be accounted for
(given that the developer has not made a mistake somewhere, of course). However,
a stationary quest giver that stands in the same position every second of every day
could arguably be an equally undesirable feature, as it takes away the immersion a
realistic AI provides.

As we can see, the choice is anything but easy when it comes to realistic or believable.
A lot of games commonly end up somewhere in between the two, with developers
using both realistic and believable elements to shape their AI.

7.5 Ways of Overcoming Obstacles of Realistic
NPCs in the Industry

Consider the situation where you have a character that is important to the story
of the game. If the character is realistic it may die before playing its part in the
story leading to one of two outcomes. Either the character is revived, which leads
to disbelief, or the character remains dead and therefore a part of the game, maybe
an important one, is lost to the player.

Immortal characters can be observed in the game Skyrim in which important NPCs
will not die if damaged to zero health. Instead the NPC will collapse and remain still
until it regains its health. In this case it not only causes the game to be unrealistic,
but you can also use this to your advantage by sending your NPC allies to attack
the enemy without approaching the enemy on your own. Since your allies cannot
die and will regain health after having been knocked out, they will always win the
fight eventually.

Another common tactic is counting a death of an essential NPC as a death of
the player. This will keep the player defending the NPC and if it dies the game
would usually return to a state before the essential NPC’s, death. Another more
immersive solution can be found in the game Morrowind, a prequel to Skyrim [36].
In Morrowind the essential NPCs are treated just as any other NPC concerning
death, with one small difference; the game will warn you when a essential NPC have
died (something that rarely happens thanks to the game’s design) and advise you
to reload a previous save in which the NPC is still alive. This way the game retains
its realism and gives the player freer hands in how to play, while still keeping the
option to play the game with all of its essential NPCs retained.

Considering this, we would suggest using realistic NPCs when NPC behaviour is a
central part of the game. Games that often fall in this category are Role-Playing
Games (RPG) and simulators. In other cases believable NPCs, imitating human

36

7. Discussion

behaviour should suffice.

7.6 Finite State Machines in Video Games

Finite State Machines is the most popular approach to AIs in video games [37].
There are two main reasons for this: First there is tradition. FSMs have been
popular in the video game industry for a while and as such a lot of the tools used in
the video game industry supports FSMs more than other AI approaches. Secondly
FSM have many qualities appreciated by video game designers a few of which will
be discussed further on in this section.

7.6.1 Implementing NPCs using FSM

How an FSM is used to make AI for NPCs varies from game to game. Sometimes
the FSM is used in cooperation with other AI approaches. However, there are a few
basic ideas that stick around.

An FSM decides the exact behaviour of a NPC from the states and transitions that
have been programmed. Because of this, one usually implements one unique FSM
per NPC type. For example all animals in a game could use the same FSM, if the
behaviour of one species does not differentiate from another, though that same FSM
would probably not suffice for the NPCs representing humans.

7.6.2 Advantages of Finite State Machines

There are good reasons why FSMs have become so popular in the video game in-
dustry. Since an FSM is, by its very nature, easy to divide into parts, this makes
workload easy to divide as well. For example one programmer could program the
state transitions while two other program the different states. Through their sim-
plicity, FSMs are good for setting up a simple prototype that can be made more
advanced by adding more states later on. As a lot of time went into making the
game world, the fast development pace FSMs allow for proved very useful to us.

Since the behaviour in each state as well as the transitions follow a strict set of
instructions, it is easy to implement an NPC with distinct behaviour. The deter-
ministic nature of FSMs makes it easy to know how a piece of the program will
affect the behaviour of the NPC, thus changes are easy to make. If one wants to
make tiny changes to a certain part of the NPCs behaviour, that is easily achieved
by redesigning the concerned states. For more advanced changes one could simply
add more states to deal with the specific problem at hand. This aspect made it easy
for us to make changes to the AI as more states were introduced, and existing states

37

7. Discussion

had to be reworked in order to accommodate for changes these new states brought
along.

7.6.3 Disadvantages of Finite State Machines

As the name suggests, FSMs have finite states. Specifically they only have as many
states as the designer implements. While this approach works great for simple NPCs
in simple circumstances, it poses problematic for more complex situations.

Since each state depends on the circumstances of the NPC, the FSM might often
lack states for the many different situations that can occur in a complex environ-
ment. Even if a state is meant to cover a given situation, the state may be too
general and not always suit the situation given. You could theoretically expand an
FSM until it encapsulates every improbable situation. However, in complex enough
environments, this is an almost impossible task.

The other problem that arises is the growing complexity of the FSM. This is easily
observed by considering the blueprint of an FSM. For each new state created a
designer will have to consider which other states should be accessible from this
one. For an FSM with two states there are two possible moves to be considered,
for three states there are six moves, and for four states there are twelve, hence it
grows quadratically. This is not something that ever became a problem for us, as
we countered it by making our FSM hierarchical.

7.7 Our Finite-State Machine Implementation

Our final AI implementation is, as previously stated, an FSM. Though it is not a pure
FSM, but rather a Stack-Based FSM (SFSM) which is a more common construct
in video game AI [38]. What is referred to as FSM in video game development is
rarely a pure FSM according to its mathematical description. More often the FSM
used is a more complex design. Common designs are Hierarchical FSM or, like in
our case, a SFSM [39].

We decided to use an FSM for our AI. There are a few reasons for our choice of
using FSM rather than any other AI approach we had studied. One reason was
time. Our game had been progressing slower than anticipated and we needed to
have a working AI as fast as possible. We reasoned that FSM was the fastest way to
get a working AI up and running. The lack of time also forced us to start working
on the AI before the rest of the game was finished and the expandability of a FSM
made it easy to add more complexity to the AI as the game was being developed.

The use of an SFSM gives the advantages of having an FSM but with the additional
power of a stack memory. The NPCs could use the stack to push their current state

38

7. Discussion

when they decide to do something else. This way they remember what they were
doing when they complete their new task. For example an AI could go into a build
state because they need a house. In the build state they could realize that they do
not have enough resources to build a house. The natural conclusion is to transition
into a gather-resource state. In this state the AI gathers the resources it needs and
when it is finished it needs to transition into a new state. With a normal FSM, the
AI could not know why it had gathered resources, with an SFSM it can. The NPC,
now finished with the gather state and with no reason to transition to a specific
state, pops the last state pushed onto the stack. This way it returns to the build
state and can finish building its house.

We chose this implementation over a regular FSM as we deemed it gave us greater
control over how the AI behaves. It allowed us to work with sequences of states,
rather than the traditional way of letting each state determine what state comes
next. These sequences are good, because we can easily make sure that the AI does
things in the order that we have intended. An ordinary FSM could give us this
behaviour as well, but with the use of state sequences we could neglect a lot of the
code that would have been necessary in a regular FSM to prevent it from doing
things it was not supposed to. For example, if each state was to decide what the
next state was, we could never be sure that the next state the AI entered would be
the one we intended. Sequences removed some of the difficulty of having to figure
out why the AI did something unexpected.

This implementation could be argued to be bad design, because it comes with a lot
more hard coding and predetermined behaviour, but for the results we sought this
was satisfactory.

7.8 Problem Solving In Video Games

Problem solving was a popular approach for creating game AI early in the field
of Artificial Intelligence. Though because of the brute force nature of problem
solvers the purely problem solving approach was soon abandoned for more efficient
approaches [40].

7.8.1 Implementing NPCs Using Problem Solvers

What we know of problem solving comes from a mixture of studying the AI ap-
proach in literature, developing an early proof-of-concept AI and an, due to lack
of time, unsuccessful attempt to make a full problem solver for the game. Despite
this, or maybe because of it, we feel that we learned a lot of the advantages and
disadvantages of using problem solver to create an AI in a video game.

For an NPC to be able to use problem solving requires a lot of structures in the

39

7. Discussion

game itself. There needs to be a way for the NPC to check what actions are, and
what actions will become, available (or unavailable) by performing each of these
actions. The NPC needs to know how to value its state and maybe even the state
of the world. This requires structures and standards for what actions there are,
what objects are interactable and what a given action would yield. The AI will be
required to simulate the use of each possible action and be able to simulate even
further what actions are possible after that one. There need to be a finite types of
actions. For each action type there need to be a way for the AI to tell the outcome
of this action to be able to search further down the tree of possible routes of actions.

In the game we implemented much of the framework required for a problem solving
AI, as well as began work on the problem solver itself. We divided our actions into
three types, not only for the problem solver but for keeping similar interfaces for the
FSM as well. The three types are; character bound, item bound, and environmental.
The interfaces differed, out of necessity, although it would have been possible to have
an AI which interacted in the same way through each action.

A character bound action represents an action a character does with its body only
interacting with itself. The example from our game is that a character can at any
time sleep on the ground. It is an action that can be performed simply by deciding
to do it.

An item bound action is an action that is bound to some item the character is
carrying. They differ from the character bound in that they require the NPC to
have the given item and in some cases using the item will consume it. An example
from the game would in this case be eating a fish. A fish is something you must
have to eat and eating it would hinder the NPC from eating it again.

Lastly an environmental action is a action bound to an object that is part of the
environment or surroundings. This could be any action that needed or affected a
part of the environment. An example from the game would be chopping wood from
a tree.

The separation of item- and environmental actions was due to the fact that to
perform an environmental action an NPC would need to move to the object they
wish to interact with. Although similar actions, interacting with another instance of
the world, the programming required differed heavily because of the need to move
the character into position.

7.8.2 Advantages of Problem Solving

Problem solving can, given a good interface with the world and a good value function,
calculate the best approach to a given situation. It frees the programmer from
the task of figuring out how the NPC should behave in given situations and focus
instead on the NPCs overall goal. A problem solver can take into account the small
differences between slightly different states and take different actions accordingly.

40

7. Discussion

A problem solver can plan far ahead and therefore think of long term goals. This
could mean the AI decides to take several unbeneficial actions in a row because it
will allow it to take a more beneficial action later on.

Personality and personal goals can be easily implemented into the NPCs as a change
in the AIs value function. Different NPCs value the state of the world differently.
For example an NPC with high greed may have a function that considers the value of
money or gold higher whereas a gluttonous AI values food more. A more advanced
value function may consider the state of the other NPCs. If an NPC like another
they could value the state where the other AI is satisfied more and thus help that
NPC reach that state. Conversely if an NPC has an enemy they may value a state
higher if it is bad for their enemy.

7.8.3 Disadvantages of Problem Solving

Problem solving requires certain structures in the game to be viable. It is also
difficult to implement and test a problem solver if the base of the game is not yet
finished. A problem solver can also be rather heavy on processing if it needs to
plan too often or if the game has such great complexity that very deep searches are
needed to find satisfactory nodes.

The necessity of a value function is another drawback as it in some cases might be
difficult to know how to value a given state and the sole pursuit of increasing that
value might lead to the NPC neglecting everything else. Other problems might arise
if it is difficult to model the changes of the world within the AI. Since it is extremely
ineffective to model the entire world within the AI the states of a problem is often a
more abstract version of the world. If the conversion of the world into a state in the
problem is done poorly the AI is likely to make some bad decisions. However one
could argue that this is how human works as well; we don’t make perfect decisions
because of our imperfect perception of the world.

Problem solving is also a rather difficult AI to predict or make small changes in.
Whereas in an FSM you can modify the specific behaviour in a given state or change
the exact transition between states a problem solver is much more limited when it
comes to detailed control. The value function could be slightly changed as well as
the perception of the world but the AI might still not behave satisfactory. This also
makes the AI less predictable which is important in some games.

7.9 Machine Learning

The possibility of using Machine Learning algorithms in our AI have been discussed,
however due to time restrictions we were unable to implement this in the final
product. One of the implementations we considered was using an unsupervised

41

7. Discussion

learning method to model the relations between the NPCs. The idea was to use the
“k-means” clustering method on the population, represented by their traits, to split
the population into k different groups. By making this calculation for every NPC,
every one of them would get their own idea of what characters belongs to which
groups. This is due to the fact that the k-means algorithm starts off by randomizing
starting values.

This method can be extended by adding an extra parameter, representing the im-
pressions other NPCs have made on the character in question. This value should be
able to change over time, as characters should be able to make new impressions. By
using this parameter, along with the traits when defining clusters, the NPCs will
get more differentiating ideas of the different groups. This would also allow for the
clusters to change over time, giving the NPCs a dynamic idea of what group they
want to associate themselves with.

This way of thinking can be considered realistic as it depends on what impressions
you have of a person as well as what their personality traits are. The fact that the
characters wants to associate with a certain group, rather than single individuals,
makes it so that the opinion it has of others is affected by its current group of
friends. The advantage of this model is that it is a more complex representation of
relationships and as such is able to model more complex relations. The computa-
tional complexity of this model is naturally higher than that of representing each
relation with a scalar, but as the relations would not change often this should not
be a issue.

42

8
Conclusion

AI is a very broad scope and even in small projects like this it takes a lot of time
to develop an AI that we consider is intelligent. We managed to develop a game
world as well as an AI inspired by realism. Not only did we get working NPCs
but also a behaviour that somewhat simulates a society in development. The final
implementation of the game we created contained a hierarchical FSM with a state
stack as the AI approach for controlling the NPCs.

We wanted to create the other approaches that are discussed throughout this report
as well, in order to implement more advanced elements for the AI, such as relations
and planning. Our notion is that the problem solver would have proved to be the
better implementation and would have given a more interesting behaviour, as it
allows for better planning and rational, dynamic decision making. However, the
FSM implementation is still considered, by the group, to be the right choice as a
first implementation, as this was the easiest to get running and still achieved a good
base for us to assess the results on. In hindsight, the group agrees on the fact that
developing a game world was something that took more time than we anticipated.

The main focus of this project was the AI, thus we think that using a pre-existing
world or an engine, like Unity or Unreal Engine, where a world can be created fast,
would have been a better option. The time saved could have been devoted to AI
development, consequently leading to us being able to explore additional approaches
and compare them.

43

8. Conclusion

44

Bibliography

[1] "Login | Deep Dream Generator", Deepdreamgenerator.com, 2016. [Online].
Available: http://deepdreamgenerator.com/generator. [Accessed: 16- May-
2016].

[2] “Global Games Market Revenues 2016 | Newzoo", Newzoo, 2016. [On-
line]. Available: https://newzoo.com/insights/articles/global-games-market-
reaches-99-6-billion-2016-mobile-generating-37/. [Accessed: 26- Apr- 2016].

[3] T. Quandt and S. Kröger, Multiplayer: The Social Aspects of Digital Gaming.
New York: Routledge, 2014.

[4] M. Buro, "Call for AI research in RTS Games", http://www.aaai.org/,
2016. [Online]. Available: http://www.aaai.org/Papers/Workshops/2004/WS-
04-04/WS04-04-028.pdf. [Accessed: 31- May- 2016].

[5] J. McCarthy, M. Minsky, N. Rochester and C. Shannon, "A Proposal for the
Dartmouth Summer Research Project on Artificial Intelligence, August 31,
1955", AI Magazine, vol. 27, no. 4, p. 12, 2006.

[6] M. Childs, "John McCarthy: Computer scientist known as
the father of AI", Independent, 2011. [Online]. Available:
http://www.independent.co.uk/news/obituaries/john-mccarthy-computer-
scientist-known-as-the-father-of-ai-6255307.html. [Accessed: 28- Apr- 2016].

[7] "Machines Who Think", Pamelamc.com, 2016. [Online]. Available:
http://www.pamelamc.com/html/machines_who_think.html. [Accessed:
16- May- 2016].

[8] R. Redheffer, "A Machine for Playing the Game Nim", The American Mathe-
matical Monthly, vol. 55, no. 6, p. 343, 1948.

[9] W. Saletan, "The triumphant teamwork of hu-
mans and computers", Slate, 2007. [Online]. Avail-
able: http://www.slate.com/articles/health_and_science/ hu-
man_nature/2007/05/chess_bump.html [Accessed: 15- May- 2016].

[10] C. Metz, "Google’s AI Wins Fifth And Final Game Against

45

Bibliography

Go Genius Lee Sedol", Wired, 2016 [Online]. Available:
http://www.wired.com/2016/03/googles-ai-wins-fifth-final-game-go-genius-
lee-sedol/. [Accessed: 13- Apr- 2016].

[11] S. Gibbs, "Google’s AI AlphaGo to take on world No 1 Lee Se-
dol in live broadcast", The Guardian, 2016. [Online]. Available:
https://www.theguardian.com/technology/2016/feb/05/google-ai-alphago-
world-no-1-lee-se-dol-live-broadcast/. [Accessed: 13 Apr 2016].

[12] D. Kehoe, "Designing Artificial Intelligence for Games (Part 1) | In-
tel® Developer Zone" ,Software.intel.com, 2009. [Online]. Available:
https://software.intel.com/en-us/articles/designing-artificial-intelligence-
for-games-part-1/. [Accessed: 22- Apr- 2016].

[13] S. Russell and P. Norvig, Artificial intelligence, 2nd ed. Englewood Cliffs, N.J.:
Prentice Hall, 1995.

[14] "Video Games and Artificial Intelligence - Microsoft Re-
search", Research.microsoft.com, 2016. [Online]. Available:
http://research.microsoft.com/en-us/projects/ijcaiigames/. [Accessed: 15-
May- 2016].

[15] Demis Hassabis, CEO, DeepMind Technologies - The The-
ory of Everything", YouTube, 2016. [Online]. Available:
https://www.youtube.com/watch?v=rbsqaJwpu6A/. [Accessed: 15- May-
2016].

[16] M. Olsson, "Behavior Trees for decision-making in Au-
tonomous Driving", M. Sc, KTH Royal Institute of
Technology, 2016. [Online]. Available: http://www.diva-
portal.org/smash/record.jsf?pid=diva2%3A907048&dswid=4279/. [Accessed:
15- May- 2016].

[17] A. Champandard, "Top 10 Most Influential AI Games |
AiGameDev.com", Aigamedev.com, 2016. [Online]. Available:
http://aigamedev.com/open/highlights/top-ai-games/. [Accessed: 15-
May- 2016].

[18] "The Elder Scrolls Official Site", Elderscrolls.com, 2016. [Online]. Available:
http://www.elderscrolls.com/skyrim. [Accessed: 22- Apr- 2016].

[19] Acadamey of Interactive Arts & Sciences, "Game De-
veloper Details", Interactive.org, 2016. [Online]. Available:
http://www.interactive.org/games/game_developer_details.asp?idAward=2012&idGameDeveloper=47.
[Accessed: 31- May- 2016].

[20] "Best PC Video Games of All Time", Metacritic, 2016. [Online]. Available:
http://www.metacritic.com/browse/games/score/metascore/all/pc/filtered?sort=desc.

46

Bibliography

[Accessed: 01- Jun- 2016].

[21] "Slick2D Wiki", Slick.ninjacave.com, 2016. [Online]. Available:
http://slick.ninjacave.com/wiki/index.php?title=Main_Page. [Accessed:
15- May- 2016].

[22] T. Parr, "Enforcing Strict Model-View Separation in Tem-
plate Engines", University of San Francisco. [Online]. Available:
http://www.cs.usfca.edu/p̃arrt/papers/mvc.templates.pdf/. [Accessed:
15- May- 2016].

[23] T. Reenskaug, "The Model-View-Controller (MVC) Its Past
and Present", University of Oslo, 2003. [Online]. Available:
heim.ifi.uio.no/t̃rygver/2003/javazone-jaoo/MVC_pattern.pdf/. [Accessed:
15- May- 2016].

[24] "Introduction - Tiled", Doc.mapeditor.org. [Online]. Available:
http://doc.mapeditor.org/manual/introduction/. [Accessed: 27- Apr-
2016].

[25] G. Booch, J. Rumbaugh and I. Jacobson, The unified modeling language user
guide. Upper Saddle River, NJ: Addison-Wesley, 2005.

[26] UML Diagrams - Learn What They Are and How to Make Them",
Smartdraw.com, 2016. [Online]. Available: https://www.smartdraw.com/uml-
diagram/. [Accessed: 31- May- 2016].

[27] A. Botea, B. Bouzy, M. Buro, C. Bauckhage and D. Nau, "Pathfinding in
Games", Dagstuhl Follow-Ups, vol. 6, 2013.

[28] "Introduction to A*", Red Blob Games, 2014. [Online]. Available:
http://www.redblobgames.com/pathfinding/a-star/introduction.html/. [Ac-
cessed: 15- May- 2016].

[29] J. Brownlee, "Background", Ai-depot.com, 2016. [Online]. Available: http://ai-
depot.com/FiniteStateMachines/FSM-Background.html. [Accessed: 15- May-
2016].

[30] A. Champandard, "On Finite State Machines and Reusability
| AiGameDev.com", Aigamedev.com, 2016. [Online]. Available:
http://aigamedev.com/open/article/fsm-reusable/. [Accessed: 16- May-
2016].

[31] A. Champandard, "The Gist of Hierarchical FSM |
AiGameDev.com", Aigamedev.com, 2016. [Online]. Available:
http://aigamedev.com/open/article/hfsm-gist/. [Accessed: 16- May- 2016].

[32] K. Murphy, Machine learning. Cambridge, MA: MIT Press, 2012.

47

Bibliography

[33] T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning.
New York, NY: Springer, 2016.

[34] A. Maslow, "A theory of human motivation.", Psychological Review, vol. 50,
no. 4, pp. 370-396, 1943.

[35] I. Millington and J. Funge, Artificial intelligence for games. Burlington, MA:
Morgan Kaufmann/Elsevier, 2009.

[36] "The Elder Scrolls Official Site", Elderscrolls.com, 2016. [Online]. Available:
http://www.elderscrolls.com/morrowind. [Accessed: 25- Apr- 2016].

[37] P. Sweetser and J. Wiles, "Current AI in Games: A Review", Australian Jour-
nal of Intelligent Information Processing Systems, vol. 8, no. 1, pp. 24-42,
2002.

[38] S. Rabin, AI game programming wisdom 2. Hingham, Mass.: Charles River
Media, 2006.

[39] S. Rabin, AI game programming wisdom. Hingham, Mass.: Charles River
Media, 2002.

[40] M. Jones, Artificial intelligence. Sudbury, Mass.: Jones and Bartlett Publish-
ers, 2009.

48

Appendices

I

A
Images from the Game

Distributed under Creative Commons 3.0 (CC-BY 3.0).
Created by Zabin, Hyptosis, and Danial Cook.
Available: http://opengameart.org/content/castle-tiles-for-rpgs

Distributed under Creative Commons 1.0 (CC0).
Created by Buch.

III

A. Images from the Game

Distributed under Creative Commons 3.0 (CC-BY-SA 3.0).
Created by Casper Nilsson, Johann Charlot, Daniel Eddeland, Stephen Challener,
Charles Sanchez, Manuel Riecke, Daniel Armstrong, Lanea Zimmerman and Skyler
Robert Colladay.

Distributed under Creative Commons 3.0 (CC-BY-SA 3.0).
Created by Casper Nilsson, Johann Charlot, Barbara Rivera, Chris Phillips and
Lanea Zimmerman.

IV

B
Software Description

Background

We will create a game where the focus lies on creating characters with believable
interaction and behavior and seeing how they affect the world they inhabit. The
game will be seen from a top-down 2D-view and will be developed for PC. The world
will be set in a medieval fantasy world and will be generated to contain resources
like trees, water, stone and gold. When a world has been generated we will place
one, or several, villages in the world, each with their own set of residents who will
have to survive in the world they have been placed. The player will be able to
either stay in the god view or enter the world as a resident, all other residents will
be controlled by the AIs. The AI will decide what the character it controls will do
depending on its current needs. The needs of a character will also depend on the
characters traits and skills. An example would be that a character is hungry, then
it will need to either buy food to eat, or, if it does not have enough money, gather
the food itself. The game will also implement a relation system allowing characters
to have a family, friends or enemies.

Characters

The characters will represent the villagers in the game world. They can be seen as a
sprite (a 2D-animation) and this animation will show the player what the characters
are currently doing. The character is without intelligence, so without a AI it would
never act. In the game’s most simple form, the amount of characters in the world
will decide how fast the population will increase, that is if we don’t implement a
more complex reproduction system around the relationships (see Additional goals.).

The game will show the player the needs, traits and skills of characters, this will show
the player why a character is performing a certain task. The needs of a character will
represent what it requires to be healthy, and staying alive, such as eating, sleeping
and socializing. Skills will decide how good a character is at a task, such as fishing
or farming, and in this case being better would give more food in less time. Traits
will affect the needs, for example a character might be gluttonous and therefore

V

B. Software Description

requires more food when hungry. These different stats will make up the personality
of the character.

Every character will also have a inventory where it can store items such as resources
and money. This will enable different characters to trade with one another. To
perform a trade, the characters must be close to each other and both must agree to
the proposed trade.

The characters should have a age as a way for the player to see how long they have
existed in the world. Characters should also be able to be born, and die of old age.

AI and NPC

The AI will be the ‘brain’ of our character, without it they wouldn’t be able to
survive, let alone act. Every character will be controlled by a AI and the AI will tell
a character how to act depending on its current needs and wishes, this union is our
NPC (Non player character). As the traits and skills of the character affect its needs
and wishes they will also affect the AI’s decision of what the character should do.
The AI will never be seen in the game, it’s purely code running in the background
that makes the NPCs act.

The focus of the project is making this AI capable of making the characters act in
a believable and rational way. This means that the characters must make decisions
based on their environments and decide the best action to take based on this. The
game will feature a number of different AI and thus the NPCs will perform differently
in some situations. The NPCs will react on the actions of other NPC, and also affect
them in return, and interact not make any difference between the player’s character
and other NPCs. How this interaction precedes and what it entails will depend on
the traits of the characters.

World

The world will be a top down 2D-view where all the things in the game plays out.
The world will be relatively large and therefore the player will be able to zoom in
and out on the map to get different levels of detail. The zoom will be implemented
by having 3 different views the player can switch between. In the first, the player
will be able to see the whole world, but smaller things like NPC’s and houses will
be harder to see. The second view will be zoomed out enough to show an entire
village, where the player can see what’s going on in the entire village and how it’s
developing. The third will be the one with highest detail but shows the least of the
map. This view will show the player’s character as well as other NPC’s.

The map will also contain mountains, forests and other places where NPC’s can
gather resources like farms and mines. Regardless of where the player is the entire

VI

B. Software Description

world will be updated equally.

The world will also feature a system for weather and seasons which affects what
resources the NPCs, and player, can find. There will also be a chance for natural
disasters occurring that would negatively affect the characters in some way or other.
There will also be some kind of animal life in the world, that could potentially work
as a resource as well as a threat to the characters.

Structures

The most basic structures, houses, will work as a capacity limit for how many
villagers there can live in a town, there can’t live more people than what the housing
allows. If all the houses are occupied more houses must be built in the town for
the population to be able to keep increasing. There will be additional structures for
resources, like mills, lumberyard and mining camps.

Resources

Characters will be able to extract resources from nature on the sites in the world
where the resource is available. The resources will exist in three categories:

• Unlimited resources – never runs out no matter how much the villagers extract
from the source.

• Renewable resources – resource will spread while there is still some source that
can spread it.

• Limited resources – will only exist in a fixed amount and when it runs out the
world will have to manage without it.

Following are some short description of the resources in the game:

• Wood – trees will exist as a renewable resource since trees will grow up next
to other trees so the forest will expand. NPC’s can chop down trees to get
wood to sell or work with, hence its categorized as a resource, but if all the
trees in the world are cut down then the resource will not come back.

• Water – an infinite resource which will exists in different forms, such as oceans
and rivers. NPC’s can gather water in these locations or build wells which will
be required to sate their thirst. NPC’s can also catch fish to gather food and
use water to improve the agriculture.

• Stone – stone will exist and can be gathered.
• Gold – gold will exist and be able to be extracted from mines. It can be used

in trading with other NPC’s.
• Food – food will be created in farms or caught from fishing and hunting. It

will be used to keep NPC’s from starving and can also be traded.

VII

B. Software Description

Player interaction

The player will be able to either actively interact with the world and the NPC’s by
taking control of a character in the same way that the AI’s do. Or simply view the
world and the NPC’s without being able to influence them or having to worry about
the needs of a character. In either mode of playing the player will be able to view
the world in any of three different views that are listed under the world section.

Additional goals

We hope to implement relations between NPC’s so they can make friends, family
and enemies. The relations will depend on characters traits and somewhat on the
skills as well. This is not a requirement since humans can make connections with
people who have different traits and interests in the real world. If we do implement
this, then the population in the village will depend on how many families living in
the village, also housing will be restricted to family members and so the capacity
of houses will not be maximized, a stranger can’t move in just because there’s an
extra bed. Another goal is implement conflicts between NPC’s, they might fight over
resources or because two family has some kind of rivalry or simply personal issues.
Interactions like these can result in death. We are also thinking about spawning
more than one village in the world to see how residents in different villages interact
with and behave to one another.

We also discussed to implement “fog of war”, this will cover the map in darkness if no
NPC is currently in that area. If this was the case, NPC’s wouldn’t be all knowing
and therefore would have to explore to find resources and check areas where they had
been before to know if resources were still there, someone could have taken it while
the NPC was away. This would make it possible for NPC’s to share information
with each other to know where resources were most recently collected.

A last goal is to make a tool for the player to create a game world or generate a
random one. Then the player could test scenarios they were interested in or simply
fast get into a new unique world.

Functional Requirements

The following sections will state the planned functionality of the game in the form
of functional requirements.

VIII

B. Software Description

Characters

1. Characters should have needs.
2. The magnitude of the needs should increase over time.
3. Characters should have skills.
4. The skills should increase when used.
5. Characters should have traits.
6. The traits should affect the needs.
7. The traits should be constant and do not change over time.
8. Characters should have an inventory.
9. Characters should be born.
10. Characters should be able to die.
11. Characters should eventually die of old age.

Rationale Characters requires needs and traits so the AI can decide what the charac-
ter must do. The needs must decrease over time to continuously present a challenge
for the one controlling the character. The traits must somehow affect the needs in
order to have a direct influence on the character. They also need skills to determine
how good they are at different tasks which will affect the best way to fulfill their
needs. Inventory will be needed to keep track of what resources a character has and
thus required for trading. Character must be born and be able to die of age or other
reasons so that the population, and state of the world, will change over time.

AI and NPC

12. All AI should be able to control one character each.
13. The AI should make decisions based on the current needs of the character.
14. The AI should make decisions based on the current goals of the character.
15. The effect on the needs and wishes of the character, that the traits and skills

have, should affect the AI’s decisions.
16. The AI should make decisions based on the environment around the character

it controls.
17. The AI should take the actions of other NPCs into account when deciding on

actions for the NPC.

Rationale If the AI cannot control a character it has no purpose there will be no
NPCs in the game. For the AI to be ‘believable’ it must make decisions based on
the needs, wishes, traits and skills of the controlled character. It must also take into
account the environment around the character and the actions of others to appear
‘believable’.

IX

B. Software Description

World

18. The player should be able to zoom in and out between three different levels.
19. The world should contain different resources.
20. The world should contain characters.
21. The world should contain structures.
22. The world should have a basic weather system.
23. The world should contain animal life.
24. The entire world should be constantly evolve and change regardless of where

the player is.

Rationale The world needs to be possible to view, and as the world should be large
different levels of detail are necessary. The world needs characters for the game to
be possible to play. The world must also contain resources so that the characters
can fulfill their needs and survive, less they all die out immediately. The world
should contain structures as they set the max capacity for the villages population.
A basic weather system will be implemented to make the lives of the villagers harder
by randomly spawning harsh weather and natural disasters, this is to take some of
the power of control from the AIs and make them need to adapt to change. There
should also be some kind of animal life in the world, again to take some power from
the AIs in that they may unexpectedly encounter wild animals or gather a resource
that can move (i.e. hunting). As all characters should have equal importance in the
world, it must progress even when the player is not present.

Structures

25. Characters should be able to construct structures.
26. There should be different kinds of structures filling different functions.
27. There should be structures that act as houses.
28. The number of houses in the village should set the max population of the

village.
29. There should be structures that can act as stockpiles for resources.

Rationale For a village to be more than just a collection of characters it needs
to have some kind of structures. For the village to behave in a believable way its
maximum population must depend on the size of the village. The possibility to build
structures gives the NPCs a possibility to make decisions that have an immediate
cost but positive effects in in the long run.

Resources

30. There should be infinite resources in the world.
31. There should be renewable resources in the world.

X

B. Software Description

32. There should be finite resources in the world.
33. Resources should be possible to be collected from set positions in the world.
34. The amount of a finite resource at a certain location should decrease if col-

lected.
35. The amount of a finite resource at a certain location should be able to be

depleted.
36. The amount of a renewable resource at a certain location should decrease if

collected.
37. The amount of a renewable resource at a certain location should increase over

time.
38. The amount of a renewable resource at a certain location should be able to be

depleted.
39. If a renewable resource has been depleted at a certain location, then its amount

at that location should no longer increase.

Rationale For the characters to be able to survive they must be able to collect
resources to satisfy their needs. For the collection of resources to present a challenge
for the NPCs, or the player, some of them must be able to be depleted, and some
limited so that they NPCs must plan ahead to be successful.

Player interaction

40. The player should be able to control a character .
41. The NPC’s should interact with the player controlled character in the same

ways as with each other.
42. The player should be able to view the world without controlling a character.
43. The player should be able to view the world from the three different views

stated above.

Rationale For the player to be able to test how the NPCs react to different actions
taken by characters it is necessary for the player to be able to control a character,
and for the NPCs to interact with this character in the same way as with each other.
As controlling a character and taking care of its needs can distract the player from
the development of the world, it is necessary for the player to be able to view the
world even without controlling a character. As there are several different things one
might want to observe at different times, the world needs to be able to be viewed
from different views.

Non-Functional Requirements

The NPCs should appear believable as humans. The decisions made by the AIs
should always be relevant to the needs, traits, goals and skills of the controlled
character. The game should present information to the player in a clear way. The

XI

B. Software Description

calculations made by the AIs should be efficient enough that the addition of NPCs
should not drastically affect the running speed of the game.

XII

C
States of Early AI Implementation

A list of the states that were in the early implementation of the AI.

• Idle - This state was used to plan the AIs next move, as well as popping the
next state from the state stack making it the current state that would then be
executed in update() of ArtificialBrain. The AI will enter idle state in between
states. It was also used to check if the character was hungry, thirsty or tired.
This was later moved to update() of ArtificalBrain for performance reasons.

• Hungry - The AI would enter this state if hunger fell below a certain threshold.
The AI would first check if the character had food in its inventory. If it did it
would consume it. If it didn’t, the AI would push food onto the gather stack
and look for that.

• Thirsty - The AI would enter this state if thirst fell below a certain threshold.
The AI would first check if the character had water in its inventory. If it did it
would consume it. If it didn’t, the AI would push water onto the gather stack
and look for that.

• LowEnergy - The AI would enter this state when energy fell below a certain
threshold. If the AI had a house it would go home to sleep, if it didn’t it would
rest where it stood.

• Gather - This state is used to gather resources. The AI would check what the
first resource on the gather stack was, it would then go look for that resource.
If there was no resource on the gather stack, the AI would randomize a resource
to look for.

– Material - Specific state that would be entered once the AI reached a
certain resource. This state was used to gather material and put it in the
inventory. This was later split up into specific gathering states for each
resource.

– Food - Same functionality as Material, but for food.

– Water - Same functionality as Material, but for water.

XIII

C. States of Early AI Implementation

• Eat - In this state the AI will consume a food item from its inventory to
replenish hunger.

• Drink - In this state the AI will consume water from its inventory to replenish
thirst.

• Sleep - In this state the AI will sleep to replenish energy. This state could only
be executed when inside a house.

• Resting - In this state the AI will rest to replenish energy. This was not as
effective as the sleep state, but could be performed anywhere. It was used as
a means to replenish energy before the AI had built a house.

XIV

D
States of Final AI Implementation

A complete list of all the states in the final AI implementation of this project.

• Idle - The AI enters idle state between states. It is used to pop the next state
from the stack. The idle state contains the functionality to decide what the
AI should do next. This is hardcoded, to make sure the AI does things in an
appropriate order. It will start by building a house. If it has a house it will
proceed to build a farm or a stockpile. If it has built a stockpile and a farm
it will either hunt, work on a farm or gather the resource of which it has the
lowest amount in its inventory.

• Build - In this state the AI will check what resources it needs in order to build
a specific building. It will then push those resources onto the gather stack and
find resource stack (if those resources are not present in the AI’s memory).

• Drink - In this state the AI will consume water from its inventory to replenish
thirst.

• Eat - In this state the AI will consume a food item from its inventory to
replenish hunger.

• Sleep - In this state the AI will sleep to replenish energy. This state can only
be entered when in a house.

• FindResource - In this state the AI will walk in a random direction until it
finds what it is looking for. This state is used to find resources it does not
currently have in memory.

• Follow - This state is used to follow moving objects around the world; such as
animals. It is used to catch up to an animal the AI is hunting. It was earlier
used to catch up to characters as well, but this functionality was removed
when it was decided not to have social interaction in the game.

• Gather - This state is used to decide what it is to gather if there is nothing on
the gather stack. It is used for transitioning to the specific gather states for
each resource. It is used to determine which resource is the closest, if there is
one. If there isn’t, it is used to transition into Gather<Resource>.

• Gather<Resource> - Each resource has its own specific gather state. These
states are used to actually gather the resource from the node and put it in its
inventory, once the AI has reached the resource in question. For instance if it
is to gather wood and has reached a tree, the AI would enter the GatherWood
state.

XV

D. States of Final AI Implementation

• Hungry - The AI will enter this state if hunger falls below a certain threshold.
The AI will first check if the character had food in its inventory. If it does it
will consume it. If it doesn’t, the AI will push food onto the gather stack and
look for it.

• Thirsty - Same functionality as hunger, but instead of food it will consume or
look for water.

• LowEnergy - The AI will enter this state when energy falls below a certain
threshold. If the AI has a house it will go home to sleep, if it doesn’t it will
rest where it stands. Resting - In this state the AI will rest to replenish energy.
Resting is not as effective as sleeping, but can be done anywhere.

• Moving - In this state the AI finds and follows a path to a destination in the
world. The destination is set by a previous state which then transitions into
the Moving state to move to that destination.

• Hunting - In this state the AI will hunt for animals. This state contains its own
movement and works similar to FindResource but for animals. If an animal is
spotted the AI goes into the Follow state.

• WorkFarm - In this state the AI will work on a farm. When an AI works on
a farm, crops will grow that can be consumed to replenish hunger.

XVI

	Introduction
	Background
	Purpose
	Scope

	Technical Background
	Slick2D
	Model-View-Controller
	Tiled Map Editor
	UML Diagrams
	Pathfinding
	The A* Search Algorithm
	A* Algorithm On Two-Dimensional Grids

	Defining Believable and Realistic NPCs
	Artificial Intelligence approaches
	Finite State Machines as Artificial Intelligence
	Structuring FSMs Using Hierarchy
	Problem Solving as AI Technique
	Machine Learning

	Development of the Game
	Software Design
	Creating the UML-Diagram
	Defining a Human In-Game
	Needs
	Traits

	Defining the Game World
	Resources
	Structures

	Implementing the Game
	Pathfinding in the Game
	Updating the Game World
	Displaying the Game World

	Development of the AI
	Preparatory Literary Study
	Early Experiments
	Early stage FSM
	Development process
	The AI Class: ArtificialBrain
	Transitions Between States

	Final Implementation of the Game
	Final Implementation of the AI
	Discussion
	Making the game from scratch
	Scrapped ideas
	Social Interaction between characters
	Relations between characters
	Character skills
	Long- and short-term goals of Characters
	Trading resources between characters
	Reproduction of characters
	Lack of Test Data

	Are Our NPCs Realistic?
	Choosing Between Believable and Realistic
	Ways of Overcoming Obstacles of Realistic NPCs in the Industry
	Finite State Machines in Video Games
	Implementing NPCs using FSM
	Advantages of Finite State Machines
	Disadvantages of Finite State Machines

	Our Finite-State Machine Implementation
	Problem Solving In Video Games
	Implementing NPCs Using Problem Solvers
	Advantages of Problem Solving
	Disadvantages of Problem Solving

	Machine Learning

	Conclusion
	Bibliography
	Appendices
	Images from the Game
	Software Description
	States of Early AI Implementation
	States of Final AI Implementation

