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A genetic programming approach to finding discrepancies in log files
MARTIN GULLIKSSON
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
An evolutionary algorithm is used to find discrepancies in log files. From a set
of error-free reference logs, a set of regular expression patterns describing the logs’
general structure is generated using genetic programming. The patterns can then be
checked against logs containing errors, with the goal being that added, removed and
reordered lines are detected. Using a regex-oriented approach allows for grouping
lines together even though the contents are not exactly the same in every instance.
The approach works well so long as the log files provided do not contain too much
noise.

Keywords: log analysis, evolutionary algorithm, genetic programming, regular ex-
pressions, openmpi.
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1
Introduction

In software development, a large portion of time is usually spent troubleshooting
problems. When a user or tester reports an issue and provides a set of log files, the
developers have to analyze these files to find the cause of the issue. Depending on
the size of the logs and the nature of the problem, this can be a tedious and time-
consuming process. If it is possible to automate parts of this workflow, it will allow
the software developers to spend more time with feature development as opposed to
maintenance.
This project has been performed together with Ascom, a global company that pro-
vides solutions focused on healthcare ICT and mobile workflows.

1.1 Related work
Several tools for automated log analysis have been developed over the years[1][2].
Typical methods for finding discrepancies in log files include principal component
analysis[3] and support vector machines[4]. These types of classifiers generally work
well but they can sometimes be difficult to debug due to them being black box
models. It is difficult to correlate the input data and output data by simply analysing
the models’s structure. Similarly, it is difficult to predict how the output of the model
changes as the input changes. Explainable types of learning algorithms, however,
can be easily understood, predicted and debugged[5].
The method used in this project uses genetic programming to autonomously generate
a list of regular expressions (regex) from (error-free) training data which is then used
to find discrepancies in error logs. Generating regex patterns from a list of strings has
been done in the past[6][7][8], but distinctive for this project is that the data to be
matched is not known beforehand. It is up to the algorithm to extract similar strings
from the input data and generate regular expressions to match these strings.

1.2 Aim
The aim of the project is to investigate the feasibility of using an evolutionary algo-
rithm approach to find discrepancies in log files. Using log files from normal opera-
tion as training data, the algorithm should learn the types, ordering and quantities
of log entries the logs usually contain. When a log file containing discrepancies is
provided, it should be able to find these inconsistencies and present them to the

1



1. Introduction

developer in a meaningful way. The purpose is to prevent the developer from hav-
ing to sift through large portions of information which is irrelevant to the problem
at hand, which ultimately saves time and effort. Potentially the algorithm could
also find discrepancies that the developer would not have found on their own. This
kind of algorithm is especially helpful to track down errors which occur seemingly
randomly.

1.3 Limitations
The log file analyzer program should (theoretically) be able to analyze any kind of
plaintext file, but the the scope for this project is largely limited to analyzing logs
from Logcat, the logging system built into the Android operating system. Logcat
entries have a predetermined format with the following structure:
[date] [time] [process -id] [thread -id] [ priority ] [tag ]: [log message ]

The log files to be compared are assumed to be of similar nature and duration. For
example, the training dataset may consist of 100 log files from successful system
startups, while the error logs are from system startups where a certain background
service fails to start due to some unknown reason. The goal in this case would be for
the program to correlate the service failing to something else happening in another
part of the system, likely the explanation for the crash.
Log files containing errors are assumed to be clearly labelled as such, and kept
separate from the error-free reference data logs.
Log files do not have to be analyzed in realtime. That being said, the computational
performance should still be sufficient enough to not be a hindrance.

1.4 Ethical considerations
The purpose of the log file analyzer described in this report is to quickly and ef-
fortlessly find the root cause of observed issues. The purpose is not to map out the
behaviour patterns of users or infringe on their privacy. The program described in
this report is released as free, open source software. Since such software can be used
by anyone for any purpose, it may be used in ways which is in conflict with the
sentiment described here.
Training data for the project has been gathered from in-house at Ascom. This means
that privacy from end users is preserved.

1.5 Thesis outline
This report is divided into theory, methods, results and conclusions. Section 2
discusses the theory behind regular expressions and genetic programming. Section 3
explains how to combine these two concepts into a functional log file analyzer. Then,
in Section 4, its performance is evaluated on three different datasets, created from
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three different bug reports. Finally, Section 5 summarizes which parts work well,
which parts do not, and possibilities for the future.
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2
Theory

This section describes the theory behind genetic programming and regular ex-
pressions, which are the building blocks needed for implementing the log file an-
alyzer.

2.1 Genetic programming

Genetic programming (GP) is a type of evolutionary algorithm (EA), an optimiza-
tion algorithm which mimics evolution in nature[9]. The algorithm creates a random
set (population) of individuals and assigns a fitness score to each one depending on
how well it satisfies certain criteria. New individuals are created based on the best
ones in previous set (selection and reproduction), and this process is repeated many
times (generations) in order to maximize the fitness score. The training is typi-
cally stopped after a specified number of generations, after a specified amount of
time or when the maximum fitness score hasn’t increased for a certain number of
generations.
Genetic programming is an evolutionary algorithm which specifically focuses on
evolving computer programs. Individuals in genetic programming are typically rep-
resented as tree structures consisting of operators and values. Each individual is
given a fitness score depending on how well the corresponding computer program
solves the task at hand.
New individuals are created using crossover and mutation. Crossover is performed
by swapping two random subtrees between two individuals. Mutation is performed
by modifying an individual in some way, for example replacing/adding/removing a
random subtree or replacing a random operator/input value.

2.2 Regular expressions

A regular expression (regex) pattern is a character sequence used to extract data
from a stream of text, commonly used in conjunction with the UNIX command
line utilities grep and sed. Regular expressions can be written to extract e-mail
addresses, hyperlinks or any other kind of content[10].
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Type 3

Type 2

Type 1

Type 0

Regular

Context-free

Context-sensitive

Recursively enumerable

Figure 2.1: The Chomsky hierarchy of formal grammars. All regular languages
are context-free, all context-free languages are context-sensitive and all context-
sensitive languages are recursively enumerable. The language of regular expressions
is an example of a regular language.

2.2.1 Theoretical background

The language of regular expressions is made up of a type 3 grammar according
to the Chomsky hierarchy, see Figure 2.1. This means that a regular expression
can be implemented using finite state automation[11][12][13]. Type 2 grammars
(e.g. XML) can be implemented using pushdown automation, a type of automation
which uses stack memory. Type 1 grammars (e.g. most programming languages) can
be implemented using linear bounded automaton, a type of automation which uses
a finite amount of arbitrary memory. Type 0 grammars can be implemented using
a Turing machine, a type of automation which has an infinite amount of arbitrary
memory[14].
Using less expressive languages like regular expressions, despite not being as flexible,
has its advantages. The language is faster and easier parse. Additionally, creating
well-formed programs using stochastic, automated means (e.g. an evolutionary al-
gorithm) is more feasible if the grammar is more restrictive.
A regular expression is created using one of the following constants:

• ∅: empty set
• ε: empty string
• a, b, ...: single literal character

and new regular expressions can be created from existing ones R, S using the oper-
ations:

• RS: concatenation of R and S
• R|S: alternation (match either R or S)
• R∗: match zero or more of R (Kleene star)

The operations are visualized in FSM form in Figure 2.2 and Figure 2.3. These
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(a) Concatenation (b) Alternation (c) Kleene star

Figure 2.2: Visualization of the three primitive regex operations, ab, a|b and
a*, as finite state machines. In each case, the regex engine starts out in the state
represented by the black disk on the left. The regex engine then loops through the
input string and changes state based on the current character in the string. If the
state machine stops at the state represented by the encircled blue disk on the right,
the regex pattern successfully matches the input string.

Figure 2.3: Visualization of a more complex regex pattern, (b|ab*ab*)*. This
pattern matches input strings containing any number of a’s and b’s so long as the
number of a’s is an even number (0, 2, 4, . . . ). If the input string is empty, the state
machine immediately reaches the target state by using the topmost connection. If
the input string contains a single b, the state machine reaches the target state by
using the connection below the topmost one. If there are multiple b’s, the state
machine can return to the starting state using the connection at the bottom. The
connection in the middle containing the two a’s matches two a’s in the input string
at a time. If the input string contains an odd number of a’s, there is eventually only
a single one left to match. This causes the state machine gets stuck in the middle
of the connection since it’s forced to match an a, but there is none.

figures were generated using the regex debugger and visualizer Debuggex1.
All additional regular expression syntax (shown in Section 2.2.2) can be derived
using the three elementary operations shown in this section. As examples, a regex
range [a-f] can be written as (a|b|c|d|e|f) and an optional character a? can be
written as (a|ε).

2.2.2 Regular expression syntax
A regex pattern may consist of atoms, quantifiers, anchors and lookarounds. Atoms
specify what is matched and quantifiers specify how many times each atom should
match. An anchor matches a position in the input string and lookarounds assert
whether a certain sub-pattern matches the input string at a given position.
List of atoms:

1https://www.debuggex.com
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• a matches ’a’ (character literal)
• (?:abc|def|ghi) matches one string of either ’abc’, ’def’ or ’ghi’ (alterna-

tion)2

• [abc] matches one character of either ’a’, ’b’ or ’c’ (character set)
• [^abc] matches one character that is not ’a’, ’b’ or ’c’ (negated character set)
• [A-f] matches one character in the ASCII range from ’A’ to ’f’ (character

range)
• [^A-f] matches one character which is not in the ASCII range from ’A’ to ’f’

(negated character range)
• . (dot) matches any character (wildcard)
• \d matches [0-9] (digit character)
• \D is the inverse of \d (non-digit character)
• \s matches space, tab, etc. (whitespace character)
• \S is the inverse of \s (non-whitespace character)
• \w matches [a-zA-Z0-9_] (word character)
• \W is the inverse of \w (non-word character)

List of quantifiers:
• a? ’a’ is optional
• a+ ’a’ occurs one or more times
• a* ’a’ can occur any number of times (including zero)
• a{4} ’a’ occurs exactly 4 times in a row (same as ’aaaa’)
• a{4,8} ’a’ occurs between 4 and 8 times in a row

By default, quantifiers are greedy, i.e. they try to match as many characters as
possible. Quantifiers can be made lazy by appending a question mark (?) which
makes them match as few characters as possible.
List of anchors:

• ^ matches the beginning of the line
• $ matches the end of the line
• \b matches the beginning or end of a word (word boundary)
• \B is the inverse of \b (non-word boundary)

List of lookarounds:

2In regular expression syntax, parenthesis (...) can be used to specify operator precedence.
Parenthesis also signifies a capture group, i.e. the string matched by it is stored in a register for
later use (e.g. backreferences). If only the operator precedence functionality of the parenthesis is
needed, it is better to instead use a non-capturing group (?:...) for increased computational
efficiency.

8
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• a(?=<regex>) asserts that ’a’ is followed by <regex>, but <regex> is not
consumed (positive lookahead)

• a(?!<regex>) asserts that ’a’ is not followed by <regex>, <regex> is not
consumed (negative lookahead)

• (?<=<regex>)a asserts that ’a’ is preceded by <regex>, but <regex> is not
consumed (positive lookbehind)

• (?<!<regex>)a asserts that ’a’ is not preceded by <regex>, <regex> is not
consumed (negative lookbehind)

Not all of the regex syntax mentioned in this section is used in the project, but is
included for here for the sake of completeness.
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3
Methods

This section describes the implementation of the log file analyzer, which is named
Regea. Its source is available at GitHub1. The program consists of two separate
Python scripts: regea.py for generating regular expression patterns to match the
training data and regea_diff.py for finding added, removed and reordered lines
using the generated patterns. This report describes the implementation of Regea as
of version 1.0.0.
Regea uses the Python module DEAP[15]2 for implementing genetic programming, a
combination of the python module regex3 and the stand-alone application ripgrep4

(PCRE25 back-end) for evaluating regex patterns, and OpenMPI6 for paralleliza-
tion.

3.1 Input data and preprocessing
Regea expects two sets of log files as its input: error-free training data logs and one
or more log files which are known to contain discrepancies. The training logs (or
reference logs) are used to learn the types and quantities of usually occurring log
entries and their ordering. Each log file in the training data should be a record of
the same test or event, and there should be exactly one test per file. As an example,
the input files may be organized according to:

• Error files (contain discrepancies)
– xx63.log
– xx96.log

• Reference files (error-free training data)
– xx01.log
– xx02.log
– . . .

1https://github.com/gullikx/regea
2https://github.com/DEAP/deap
3https://bitbucket.org/mrabarnett/mrab-regex
4https://github.com/BurntSushi/ripgrep
5https://www.pcre.org
6https://www.open-mpi.org
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3. Methods

– xx94.log
– xx95.log
– xx97.log
– xx98.log

Since this project aims to analyze logs from Andorid logcat, the structure of the log
messages is known. To make it easier to compare and classify the log entries, dates,
times, and process id:s are stripped from the data. For example, the log entry:
09 -22 23:55:08.142 723 723 I PackageManager : Time to scan packages : 0.515 seconds

is simplified to:
I PackageManager : Time to scan packages : 0.515 seconds

using string manipulation prior to beginning the training.

3.2 Generating regular expression patterns
This section describes the implementation of the Python script regea.py in the
Regea source code.
Regea learns the structure of the training data by generating regex patterns for each
line in the data.
For each log entry, for example:
I PackageManager : Time to scan packages : 0.515 seconds

the program attempts to create a corresponding regex pattern, for example:
^I PackageManager : Time to scan packages : [0 -9]+\.[0 -9]+ seconds$

This way, it is possible to cross-check how often and at what positions this log entry
occurs across the training data, even though the contents are not exactly the same in
every instance. Log entries typically consist of a constant string with a few variable
parts inside of it, e.g. time stamps or memory addresses. A visual overview of the
method is shown in Figure 3.1.

3.2.1 Training loop
A visual overview of the training loop is shown in Figure 3.2. The training data logs
are concatenated together and then iterated. A list of regular expression patterns is
kept during training. For each line, Regea checks whether any of the regex patterns
in the pattern list match the line. If at least one matching regex is found, the line
is assumed to have been seen before and the loop continues to look at the next line.
If no matching regex is found, a new regular expression is created using genetic
programming as described in Section 3.2.2. After having iterated though all of the
training data logs, all log entries in the training data are matched by at least one
regex in the regular expression list. The list containing regular expressions is then
exported and can be checked against a log file containing errors.
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... packages: 0.515  seconds
... packages: 0.239  seconds

... packages: 0.349  seconds

... packages: 0\.\d+  seconds

Log file 1 Log file 2 Log file 3 Regex pattern list

Figure 3.1: Visual overview of the method. The idea is to find similar log entries
across a set of log files, and create a regular expression pattern which matches these
entries. The list of regular expressions can then be used to detect discrepancies
(added, removed or reordered lines) in a log file containing errors.

Current position

Line matched by a pattern?

Yes

Continue to the next line

No

Create regex to match the line and
insert it into the regex pattern list

Regex pattern list

Lo
g
 f

il
e

 1
Lo

g
 f
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e

 2
Lo

g
 f

il
e

 3

Figure 3.2: Visual overview of the training loop. The log files are concatenated
together and iterated sequentially. During training, regular expressions for all pre-
viously unmatched log entries are generated using genetic programming. The end
result is a list of regular expressions which describes the contents of the training
data.
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Concatenate

Concatenate

Concatenate

Concatenate

Concatenate Concatenate

Concatenate

Concatenate

Range Range

Range

32 126

WordBeginning

Range

Wildcard

Wildcard

32 6357 86

44 126

NonWordBoundary

NonWordBoundary

Figure 3.3: Tree representation of an example regex pattern, \B.\B[,-˜][9-V][
-\?][ -˜](?:\b(?=\w)). The tree is traversed in depth-first order in order to
construct the regex pattern.

3.2.2 Genetic programming implementation
Regex patterns are generated using genetic programming, a type of evolutionary
algorithm which is used to evolve computer programs. Individuals in genetic pro-
gramming are usually represented as tree structures, consisting of different types of
nodes. An example of a regex pattern represented as a tree structure is shown in
Figure 3.3.
The genetic programming algorithm is run for each (previously unmatched) entry
in the logs, which means that the number of generated regex patterns will ideally
be about the same as the number of distinct types of log messages.
During the evolution of a regex pattern, all individuals are padded with wildcard
characters and anchored with ’ˆ’ and ’$’ so that they match whole lines. For ex-
ample, if the evaluation of the tree structure for an individual gives the regex pat-
tern:
^ example \s\d$

it may be padded to
^........ example \s\d ................... $

The number of wildcard characters to add is chosen so that the regex matches the
target string (the log line at the ’current position’ in Figure 3.2). The motivation for
this is that the regex should match log lines which are similar to the target string,
which have a similar length. However, requiring exactly the same length is a bit too
strict (a number can have a variable number of digits, for example). Instead, the
number of wildcard is specified as a range:
^.{5 ,11} example \s\d.{16 ,22}$
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The size of these ranges can be set as an input argument to Regea.

3.2.2.1 Node types

Tree structures in genetic programming are made up of different types of nodes. A
node can either be a terminal, which takes no inputs, or an operator which takes a
set of other nodes as inputs. The terminal node types can be further divided into
constants and ephemerals (Python DEAP terminology). A constant terminal type
only has a single possible value, while an ephemeral can have one of many different
possible values. The terminal node types implemented in Regea are shown in Ta-
ble 3.1 and the operator node types implemented in Regea are shown in Table 3.2.
Each node has specified input and output data types. The genetic programming im-
plementation takes this into consideration when generating new individuals.
Some of the operators mentioned in Section 2.2.2 are not present in Table 3.1 or
Table 3.2 and are also not implemented in the code of Regea. The Kleene star (*)
and plus (+) are not implemented because they can match a variable number of
characters, making it difficult to assign a fitness value. They are also not easily
mutated into other structures. Negative lookarounds are not implemented as it
is too easy for the algorithm to illicitly gain large amounts of fitness using them.
Positive lookbehinds are not implemented due to performance issues. Variable-size
lookbehinds are also not implemented by PCRE2.

Table 3.1: Available terminal node types for creating individuals in the genetic
programming algorithm. Some terminal types can have one of many different values
(ephemeral), while other terminal types can only have one possible value (constant).

Node type Possible value(s) Output type
Ascii code (32, 33, ..., 126) ascii code
Boolean (True, False) boolean
Specific character ( , !, ..., 0...z, ..., ˜) regex
Empty string regex
Wildcard . regex
Word boundary \b regex
Non-word boundary \B regex
Word beginning (?:\b(?=\w)) regex
Word end (?:(?<=\w)\b) regex
Digit \d regex
Non-digit \D regex
Word character \w regex
Non-word character \W regex
Whitespace character \s regex
Non-whitespace character \S regex
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Table 3.2: Available operator node types for creating individuals in the genetic
programming algorithm. The numbers next to the input types specifies that there
are multiple inputs of that type.

Node type Input type(s) Output type
Identity (any) (same as input)
Concatenate regex (2) regex
Optional regex regex
Range ascii code (2) regex
Negated range ascii code (2) regex
Set boolean (95) regex
Negated set boolean (95) regex
Positive lookahead regex regex

3.2.2.2 Generating the initial population

The initial population is generated using wildcard characters and concatenation
operators. The amount of wildcard characters depend on the size of the input
string. To aid with later mutation, some wildcard characters are chosen randomly
to be replaced with filled ASCII ranges, [ -˜].
By creating the initial population this way, one gets large, non-specific individuals
which the genetic programming algorithm can make more specific over time. If the
initial population was created randomly, any valid individuals would be very small
(only one or two characters) since the probability of a long, randomly generated
regex matching a certain string is very small.

3.2.2.3 Fitness evaluation

The choice of fitness function is very important for generating regex patterns of
reasonable generality. If the patterns are too specific, e.g.
^I PackageManager : Time to scan packages : 0\.515 seconds$

instances of the same log entry will be classified as entirely different entries (over-
fitting). If the patterns are too broad, e.g.
^. P .......... g ............[a-x]... p ...................... $

different types of log entries will be classified as the same type of entry (underfit-
ting).
The fitness function for a regular expression in Regea has the form:

f = fmfc (3.1)

where f is the fitness. The component fm is hereafter called the matching fitness
and the component fc is hereafter called the complexity fitness.
The matching fitness fm ∈ {0, 1} varies according to the number of matches in the
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reference files for the regex pattern. It is calculated according to:

fm = 1
N

N∑
i=1

1/ni ni > 0
0 otherwise

where ni is the number of times the regex matches in reference file i, and N is the
total number of reference files. If there is exactly one match in each of the N files
in the reference data, the matching fitness has a perfect value of 1:

fm = 1
N

N∑
i=1

1
1 = N · 1

N
= 1

If any reference files have more than one match or none at all, the matching fitness
fm will be lower. The motivation for this type of fitness function is that it encourages
regex patterns which are specific enough to match as few times as possible in the
reference files, but not so specific that some reference files are excluded.
The matching fitness does not work well on its own, since it has (at least) two issues.
The first issue is that the fitness value has a strict maximum. If the matching fitness
is 1, the regex pattern cannot get anymore specific since the fitness cannot get any
higher. The second issue is that small advancements in specificity are not rewarded.
If a regex range [a-t] is condensed to [b-g] it has gotten more specific, but if the
number of matches across the reference data is the same the fitness will also be the
same. To counteract these issues, the complexity fitness is introduced.
The complexity fitness is calculated by looking at the contents, the atoms and
operators, of the regex patterns. Remember that the regex patterns are represented
as tree structures. The tree is iterated and each node in the tree has a fitness
associated with it. The fitness assigned to each node type is shown in Table 3.3.
The total complexity fitness fc for a regex pattern is the sum of the contributions
from all nodes in the tree.
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Table 3.3: Contribution to the complexity fitness fc in (3.1) for the different types
of regex nodes listed in Table 3.1 and Table 3.2. Node types above the horizontal
line are operators while node types below the horizontal line are terminals. The
fitness contributions are tuned such that more specific nodes provide more fitness.
Some operators, like the lookarounds, do not provide any fitness. The reasoning
is that the nodes connected to the lookarounds (the input arguments) provide the
fitness instead. The fitness for optional nodes is negative as to prevent the algorithm
from gaining fitness from inserting large amounts of optional expressions (though
this can still happen in some instances).

Node type Fitness contribution
Identity 0
Concatenate 0
Optional −1
Range 1/(number of allowed characters)
Negated range 1/(number of allowed characters)
Set 1/(number of allowed characters)
Negated set 1/(number of allowed characters)
Positive lookahead 0
Ascii code 0
Boolean 0
Specific character 1
Wildcard 1/(number of printable characters) = 1

100 = 0.01
Word boundary 0.5
Non-word boundary 0.5
Word beginning 1
Word end 1
Digit character 1/(number of digit characters) = 1

10 = 0.1
Non-digit character 1/(number of non-digit characters) = 1

90 ≈ 0.0111
Word character 1/(number of word characters) = 1

63 ≈ 0.0159
Non-word character 1/(number of non-word characters) = 1

37 ≈ 0.0270
Whitespace 1/(number of whitespace characters) = 1

6 ≈ 0.166
Non-whitespace 1/(number of non-whitespace characters) = 1

94 ≈ 0.0106

The reason that the complexity fitness fc and the matching fitness fm are multiplied
together in the fitness function (3.1) is to make the fitness zero if there are no matches
in any of the reference files (because fm would be zero).
Additionally, there are a few situations where the fitness value of a regex pattern is
immediately evaluated to zero. These include:

• The regex does not match the target string (the log line at the ’current position’
in Figure 3.2).

• The regex contains two or more anchors in a row, e.g. \b\b and
(?:\b(?=\w))(?:\b(?=\w)).

• Padding the regex pattern with wildcard characters fails to produce a pattern
which matches the target string (unlikely, but can happen for patterns which
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contain certain combinations of operators).
This list would also include regex patterns which fail to compile due to syntax
errors, but care has been taken so that all regex pattern generated by Regea are
well-formed.

3.2.2.4 Generating new individuals

Individuals are selected for reproduction using tournament selection and new indi-
viduals are created using one-point crossover and several types of mutation. The
types of mutation are as follows, each with its own adjustable probability:

• Uniform – replace a random subtree with a new, randomly generated subtree
• Node replacement – replace a terminal with another one of the same output

type
• Regenerate ephemeral – randomize the value of one of the ephemeral terminals

in the tree (e.g. change a specific character to another specific character)
• Regenerate ephemeral all – randomize the value of all ephemeral terminals in

the tree
• Insert – insert a randomly generated subtree
• Shrink – remove a random subtree

This creates a new set of individuals to make up the next generation of the evolution,
and the fitness evaluation and selection process are repeated.
The evolution process for a regex pattern is time-limited, i.e. it is stopped after a
specified number of seconds (or minutes). This is in contrast to running the evolution
for a specified number of generations, or until a specified fitness target is reached.
The motivation for the current method is that it prevents inefficient-to-evaluate
regex patterns from severely slowing down the program. This issue has been largely
mitigated in later versions of Regea, but the time-limited evolution cutoff has still
been kept.

3.2.3 Implementation details
Pseudocode:
def generatePattern (line , fileContents ):

population = initializePopulation ()

timeStart = time.time ()
while time.time () - timeStart < timeLimit :

population . evolve ()
return getBestIndividual ( population )

fileContents = [None] * nInputFiles
for iFile in range ( nInputFiles ):

fileContents [ iFile ] = inputFiles [ iFile ]. read (). splitlines ()

regexPatterns = []
regexPatterns . extend ( getIdenticalLinesAcrossAllFiles ( fileContents ))
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fileContentsConcatenated = []
for iFile in range ( nInputFiles ):

fileContentsConcatenated . extend ( fileContents [ iFile ])

for line in fileContentsConcatenated :
if not anyMatch ( regexPatterns , line ):

patternNew = generatePattern (line , fileContents ) # performed in parallel
regexPatterns . append ( patternNew )

outputFile . write ( regexPatterns )

Regea keeps two lists during training, see Figure 3.2. One list contains the log
entries from all log files concatenated together. The other list contains the as-of-
yet generated regex patterns. The program iterates through the log entry list and
checks if any of the patterns in the regex list matches the current line. If not, a new
pattern is created and added to the regex list. The genetic programming logic is
implemented using the Python module DEAP.
This project uses a combination of the Python module regex and the stand-alone
application ripgrep with the PCRE2 back-end for implementing regular expres-
sion operations. ripgrep is very efficient but calling an external application has
extra overhead. Using python-regex is therefore faster for smaller data sizes while
ripgrep is faster for larger data sizes.
Lines which are identical across all log files are added directly to the regex list when
starting the program. This saves time since fewer patterns need to be generated by
the evolutionary algorithm. Finding identical lines is done efficiently by sorting the
file contents alphabetically.
Generating regex patterns is parallelized using OpenMPI. The nodes (processes/threads)
are organized in a master-worker configuration with a single node iterating through
the concatenated log entries list while the worker nodes are generating regex pat-
terns. If the master node finds a log entry which isn’t matched by any pattern, it
sends it to an idle worker node and then moves on to the next entry. When a worker
node is finished generating a pattern, it sends the pattern back to the master node
and receives a new log line in return.
Since generating regex patterns is performed in parallel, two or more worker nodes
may simultaneously be creating regex patterns for very similar or identical lines.
This can waste a bit of time but it does not affect the final result negatively.
When the program has iterated through the entire list with log entries, it writes
the regex list to a file called regea.output.patterns. This list of regex patterns is
used in Section 3.3 and Section 3.4 for finding discrepancies.

3.2.4 Time complexity analysis

This section evaluates the time complexity of generating regular expressions to
match the training data.
Notation:
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• N – number of log files in the training data
• l – number of lines per file
• c – number of characters per line
• R – number of regex patterns generated during the training
• M – total number of individuals across all generations during the evolution of

a single regex pattern
Assume that the training data consists of N log files, each containing l lines con-
sisting of c characters. The total number of log lines across the entire training set is
therefore Nl. This concatenated list of log lines is iterated and for each of the lines,
Regea checks if any of the previously generated regex patterns match the line. If any
of the previously generated regex patterns match, Regea continues to the next line.
If no regex pattern match, a new regex pattern is generated to match the line before
continuing. Assume that R number of regex patterns are created during training,
each with a size and evaluation time proportional to the line length c. The time
complexity to check whether each log line is matched by any pattern is therefore
O(NlRc).
The genetic programming algorithm is run R times, since a total of R regex patterns
are created. Assume that the total number of individuals across all generations is
M . To calculate the matching fitness fm for each individual, the number of matches
for all files in the training data is evaluated. This requires Nl evaluations for each
individual resulting in a total of NlM evaluations and anO(NlMc) time complexity.
To calculate the complexity fitness fc for an individual, the individual has to be
iterated. The size of each individual is derived from the length of the log line, c.
The time complexity for calculating the complexity fitness is therefore O(Mc).
The combined time complexity is:

T (N, l, c, R,M) = O(NlRc+R(NlMc+Mc)) = O(RcNlM)

The best case time complexity occurs when all l log lines in all N log files are
completely identical. In this case, a single regex pattern is created to match the
first line in the first file and then all subsequent lines in the training data will be
matched by that one pattern. No more patterns are created, leading to R = 1 and
the time complexity

T (N, l, c,M) = O(1 · lcNM) = O(lcNM) (3.2)

A scenario which is probably more realistic is that the N log files have similar
contents, but the log lines within each file are distinct from one another. When
iterating through the first log file, new regex patterns are generated for most lines.
When iterating through the subsequent files, most of the lines are already matched
by at least one pattern (since the contents are very similar to the previous files).
This means that the number of generated regex patterns R after iterating through
all log files is close to the log length l, regardless of the number of files N . The time
complexity becomes

T (N, l, c,M) = O(l · cNlM) = O(l2cNM) (3.3)
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resulting in a time complexity with an additional factor l relative to (3.2).
The worst case time complexity occurs when the contents of the N log files are
completely unique. This would mean that the regex patterns generated by iterating
through the first log file does not match any of the log lines in the subsequent files.
This means that a new regex pattern has to be generated for every line in every file,
leading to R ≈ Nl. The time complexity becomes

T (N, l, c,M) = O(Nl · cNlM) = O(l2cN2M)

resulting in a time complexity with an additional factor N relative to (3.3).

3.3 Finding reordered log entries
This section, together with Section 3.4, describes the implementation of the Python
script regea_diff.py in the Regea source code.
The ordering of the log entries are compared by converting each log file into an array
of integers, by substituting each entry with the index/indices of the regex pattern(s)
matching it. As an example, the log entries
I PackageManager : Time to scan packages : 0.515 seconds
I PackageManager : Time to scan packages : 0.318 seconds
I WifiManager : Disconnected from wifi
I PackageManager : Time to scan packages : 0.826 seconds

may produce an array [10, 10, 8, 10]. This indicates that the lines 1, 2 and 4 are
matched by the same regex pattern whereas line 3 is matched by a different pattern.
If a line is matched by multiple patterns, all pattern indices are inserted into the
array, for example [10, 10, [2, 8, 45], 10].
Regea now generates ordering rules for how these integers relate to each other. A
rule can be one of the following types:

• ”Pattern A always matches before all matches for pattern B”
• ”Pattern A always matches after all matches for pattern B”
• ”Pattern A always matches before some match for pattern B”
• ”Pattern A always matches after some match for pattern B”
• ”Pattern A always matches directly before pattern B”
• ”Pattern A always matches directly after pattern B”

Rules are created for how each pattern relates to every other pattern according
to the above rule types. The rules are checked against the training set for their
validity. The validity for a rule is calculated by evaluating how large proportion
of the training data logs satisfy the rule. All rules which have a validity above a
certain threshold (default: 0.90) are added to a set.
After training, the generated valid rules are evaluated for an error log. A colored
heatmap of the error log is generated and outputted in HTML-format, which can
be opened using any web browser. The file highlights each log line according to the
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number of violated ordering rules for that line. Lines which have been dislocated
further distances are more likely to have a more intense highlighting, as they have
been dislocated relative to many other log lines. Also note that different log lines
have a different number of ordering rules associated with them. The more the
training data agrees with where a line should be positioned, the more valid ordering
rules can be created for that line. A line with more ordering rules associated with it
will quickly get an intense highlighting if dislocated, since there are a lot of ordering
rules to potentially be violated.

3.3.1 Implementation details
Pseudocode7:
# Generate ordering rules
rulesValid = set ()
for pattern in regexPatterns :

for patternOther in regexPatterns :
if pattern == patternOther :

continue
for ruleType in ruleTypes :

rule = Rule(pattern , patternOther , ruleType )
ruleValidity = 1.0
for referenceFile in referenceFiles :

if not rule. evaluateForFile ( referenceFile ):
ruleValidity -= 1.0 / len( referenceFiles )
if ruleValidity < threshold :

break
else:

rulesValid .add(rule)

# Highlight log lines with deviations
orderingHeatmap = zeros (len( errorFile ))
for line in errorFile :

for rule in getRulesForLine ( rulesValid , line ):
if not rule. evaluateForLine (errorFile , line ):

orderingHeatmap [line] += 1

The list of generated regex patterns is iterated in a double for-loop, and rules are
created which relates every pattern to every other pattern. The validity of each rule
is calculated by evaluating it for the training data. OpenMPI is used to create and
evaluate ordering rules in parallel. Creating and evaluating ordering rules is very
computationally efficient since the rules are evaluated using integer comparisons,
rather than performing any regex operations.

3.3.2 Time complexity analysis
This section evaluates the time complexity of creating and evaluating ordering
rules.
Notation:

• N – number of log files in the training data
7The for...else syntax means that the code inside the else clause is executed if and only if

the for-loop is ran to its completion, i.e. it is not exited using a break statement.
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• l – number of lines per file
• c – number of characters per line
• R – number of regex patterns generated during training
• m – number of lines per file matched by each regex pattern

Maps are generated which describe which lines are matched by which patterns at
which positions (and vice versa) according to Section 3.3. After this, no further regex
operations need to be performed it is possible to perform O(1) (amortized) lookup
of this information. To create these maps, every log line in the training data must
be checked against every generated regex pattern, giving the time complexity

T (N, l, R, c) = O(NlRc)

This assumes that the time required to evaluate a regex pattern is proportional to
c.
Rules are created which describe the position of the matches for every pattern rela-
tive to every other pattern in a log file. Thus, the total number of possible ordering
rules is R2 (the fact that there are multiple types of rules is left out here for sim-
plicity, but it would add a constant factor to the expression).
All of the possible ordering rules are evaluated for their validity across the training
data logs. Each ordering rule encompasses two regex patterns, and these two pat-
terns can match any number of lines m within the file. The positions of all the m
lines matched by the first pattern must be compared to the positions of all of the
m lines matched by the second pattern. The total number of positions to compare
for all R2 ordering rules in a single file is therefore R2m2. Assume that l = Rm.
If R ≈ 1, then m ≈ l. If R ≈ l, then m ≈ 1. The number of comparisons R2m2

is therefore approximately l2 for both R ≈ 1 and R ≈ l. The time complexity of
evaluating all possible ordering rules for N files is therefore

T (N, l, R,m) = O(R2m2N) = O(l2N) = O(Nl2)

3.4 Finding added/removed log entries

This section, together with Section 3.3, describes the implementation of the Python
script regea_diff.py in the Regea source code.
With the regex patterns generated, the mean and standard deviation of the number
of matches across the training set are calculated, see Table 3.4.
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Table 3.4: The number of matches in the training data logs and a corresponding
error log for the generated regex patterns. In this example, pattern 2 points to a
discrepancy since the number of matches in the error log deviates significantly from
the training data logs.

Regex pattern Matches in training logs (mean, std. dev.) Matches in error log
<pattern 1> µ = 1, σ = 0 1
<pattern 2> µ = 5, σ = 2 30
<pattern 3> µ = 50, σ = 5 47

... ... ...

If the number of matches in the error log for a certain pattern deviates from the
training data (pattern 2 in Table 3.4), it is assumed to be a discrepancy. Entries in
the error log which are not matched by any pattern are immediately assumed to be
discrepancies (since no similar log lines appear in the training data).
Regea creates an output file similar to a diff-file, but in HTML-format. The output
file shows lines which have been added in green and lines which have been removed
in red. The intensity of the color depends on the certainty (the multiple of standard
deviations from the mean). Green lines are simply highlighted, but red lines need to
be imported from the reference data (since they do not exist in the error log).
If the number of matches for a regex pattern in the error log is less than one standard
deviation below the mean of the training data, a random line matched by the pattern
is imported from the training data and inserted into the error log. All lines matched
by a regex pattern should be very similar, which means that the exact line to be
inserted is not of great importance. Finding the most optimal position to insert
the line into the error log is done by evaluating the ordering rules used for finding
reordered lines (see Section 3.3). Regea evaluates the number of violated ordering
rules for each possible insertion position in the error log. The line is then finally
inserted into the position where it violates the least number of rules. If there is a
tie, the line is inserted into the first of the tied positions (lowest index). A side
effect of this is that lines to be inserted which do not have any valid ordering rules
applicable to them will always be inserted at the top of the file (since Regea has no
information about where they should be put).

3.4.1 Implementation details
Pseudocode:
# Calculate matching frequencies for all regex patterns
freqMeans = {}
freqStddev = {}
errorFreq = {}

for pattern in regexPatterns :
nMatchesPerReferenceFile = countMatches (pattern , referenceFiles )
freqMeans [ pattern ] = mean( nMatchesPerReferenceFile )
freqStddevs [ pattern ] = stddev ( nMatchesPerReferenceFile )
errorFreq [ pattern ] = countMatches (pattern , errorFile )
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# Highlight added lines in green
diffHeatmap = zeros (len( errorFile ))
for line in errorFile :

patternsMatchingLine = getPatternsMatchingLine (line , patterns )
if len( patternMatchingLine ) == 0:

diffHeatmap [line] = <large value > # line unique to error log
else:

for pattern in patternsMatchingLine :
if errorFreq [ pattern ] > freqMeans [ pattern ]:

diffHeatmap [line] += countStddevs ( freqMeans [ pattern ],
freqStddevs [ pattern ], errorFreq [ pattern ])

diffHeatmap [line] /= len( patternsMatchingLine )

# Import and insert missing lines ( highlighted in red)
for pattern in regexPatterns :

if errorFreq [ pattern ] < freqMeans [ pattern ]:
if ( countStddevs ( freqMeans [ pattern ],

freqStddevs [ pattern ], errorFreq [ pattern ]) > threshold ):
line = getRandomLineToInsert (pattern , referenceFiles )

violationsPerPosition = getRuleViolationsPerPosition (line , errorFile )
insertPositionBest = argmin ( violationsPerPosition )
errorFile . insert ( insertPositionBest , line)
diffHeatmap [line] = <large negative value >

The mean and standard deviation for the number of matches for each pattern is
evaluated. These values are then compared to the number of matches in the error
log for each pattern. Lines which are matched by patterns occurring more often
than the mean are highlighted in highlighted in green. The strength of the color
depends on the multiple of standard deviations from the mean. For each pattern,
a line is imported from the reference data and inserted if it occurs too few times
relative to the training data. The line is inserted at the position where it violates
the least number of ordering rules and is highlighted in red. OpenMPI is used to
calculate pattern match frequencies and insert lines in parallel.

3.4.2 Time complexity analysis
This section evaluates the time complexity of performing statistical analysis of the
regex patterns, highlighting added lines in an error log and importing removed lines
from the training data.
Notation:

• N – number of log files in the training data
• l – number of lines per file
• c – number of characters per line
• R – number of regex patterns generated during training

The same lookup maps as in Section 3.3.2 are used, which are created with time
complexity O(NlRc).
The mean and standard deviation of the number of matches for each pattern across
the training data is evaluated. Looking up the number of matches for a single pattern

26



3. Methods

in a single file is performed with time complexity O(1) amortized. Evaluating the
number of matches for all regex patterns for all training data files therefore has
the time complexity O(NR). Evaluating the number of matches for each of the R
patterns in a single error file is done in the same way except that there is only a
single file, leading to the time complexity O(R). Comparing the number of matches
for each pattern against the mean and standard deviations of the training data has
the time complexity O(R). Additionally, each line in the error log is checked whether
it has at least one regex pattern matching it. This has time complexity O(1) for
each line, and therefore O(l) for all l lines. The total time complexity for finding
added/removed lines becomes:

T (N,R, l) = O(NR +R +R + l) = O(NR + l)

Following the reasoning in Section 3.2.4, the best case time complexity (R ≈ 1)
is

T (N, l) = O(N + l)

and the worst case time complexity (R ≈ Nl) is

T (N, l) = O(N2l2)

Log entries which are deemed by Regea to be missing in the error log are imported
from the training data and inserted into the error log. Assuming that a large portion
of the R2 total possible ordering rules are valid, evaluating the valid rules for an
error log has time complexity O(R2m2) = O(l2) (see Section 3.3.2). Checking all l
locations in the error log for the best position to insert a line has the time complexity
O(l3). Inserting l log lines has the time complexity:

T (l, R,m) = O(R2m2l2) = O(l4)
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4
Results

Regea has been tested on a variety of datasets. This section shows the performance
on three different sets, designated A, B and C. Datasets A and B were generated
using an automated testing system, while dataset C was generated by human op-
erators. Dataset A contains logs from a bug which caused missing audio during
phone calls, dataset B contains contains logs from a bug which caused missing no-
tifications, and dataset C contains logs from a bug which caused sub-par phone call
audio quality when Bluetooth was active. The properties of the three datasets are
shown in Table 4.1.

Table 4.1: Properties of the three datasets used to quantify the performance of the
log file analyzer. Here, N denotes the number of training log files in the dataset,
l denotes the number of log lines per file, ld denotes the number of duplicate lines
per file (lines which are found at least once in all logs in the dataset), and c denotes
the number of characters per log line. The values are written using their mean
µ and their standard deviation σ across the dataset. Dataset C was generated by
human operators (rather than automated testing) which explains the larger standard
deviation σ for the log length l.

Dataset N l ld c
A 96 (µ ≈ 1687, σ ≈ 283) (µ ≈ 782, σ ≈ 21) (µ ≈ 102, σ ≈ 69)
B 88 (µ ≈ 3538, σ ≈ 140) (µ ≈ 1588, σ ≈ 50) (µ ≈ 112, σ ≈ 70)
C 26 (µ ≈ 1749, σ ≈ 1144) (µ ≈ 715, σ ≈ 95) (µ ≈ 92, σ ≈ 55)

4.1 Finding discrepancies
The results from training on dataset A are shown in Listing 4.1, Listing 4.2, Fig-
ure 4.1 and Figure 4.2. Listing 4.1 shows a heatmap of an error log which highlights
reordered lines while Listing 4.2 shows a heatmap of an error log which highlights
added/removed lines, Figure 4.1 and Figure 4.2 show the heatmaps as histograms.
These figures also contain the histogram for an error-free reference log, to show that
it does not show as large discrepancies as a log containing errors. Similarly, the
results from training on dataset B are shown in Listing 4.3, Listing 4.4, Figure 4.3
and Figure 4.4. The results from training on dataset C are shown in Listing 4.5,
Listing 4.6, Figure 4.5 and Figure 4.6. A comparison of the results across all datasets
is shown in Table 4.2 and Table 4.3.
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D hwcomposer : (0:2) Layer + (mva =0 x0/sec =0/ prot =0/ alpha =1:0 xff/ blend =0002/ dim =0/ fmt
D AudioPolicyServiceCustomImpl : AudioCommandThread () processing set volume stream
D AudioPolicyServiceCustomImpl : AudioCommandThread () processing set volume stream
D AudioPolicyServiceCustomImpl : AudioCommandThread () processing set volume stream
D AudioPolicyServiceCustomImpl : AudioCommandThread () processing set volume stream
D AudioPolicyServiceCustomImpl : AudioCommandThread () processing set volume stream
D AudioPolicyServiceCustomImpl : AudioCommandThread () processing set volume stream
D AudioPolicyServiceCustomImpl : AudioCommandThread () processing set volume stream
D AudioPolicyServiceCustomImpl : AudioCommandThread () processing set volume stream
V Ascom Phone (VoIP ): Call cleanup
V Ascom Phone (VoIP ): Audio cleanup
I SurfaceFlinger : [Built -in Screen (type :0)] fps :9.176484 , dur :1198.72 , max :212.05 ,m
D PhoneSip : sip_call :: change_media_state () [0 x8E9] await_answer -> answer_received
D PhoneSip : VOIP_CHAN .0 -> AC_CH .0 : CHANNEL_MEDIA_SENDRECV
D PhoneSip : VOIP_CHAN .0 -> AC_CH .0 : CHANNEL_MEDIA_CONFIG (0x10 ,172.20.17.2:25506 ,
D PhoneSip : sip_call :: change_state () [0 x8E9] Alerting -> Connected
D PhoneSip : VOIP_CHAN .0 -> AC_CH .0 : CHANNEL_MEDIA_CONNECTED
D PhoneSip : sip_call :: change_media_state () [0 x8E9] answer_received -> idle
D PhoneSip : VOIP_CHAN .0 -> AC_CH .0 : CHANNEL_MEDIA_SENDRECV
D PhoneSip : VOIP_CHAN .0 -> AC_CH .0 : CHANNEL_MEDIA_CONFIG (0x10 ,172.20.17.2:25506 ,

Listing 4.1: An excerpt of a heatmap describing the differences in ordering between
an error file and an average reference file in dataset A. Lines which are more yellow
violate more ordering rules. For the bug searched for in this case, the issue is that
the function ”V Ascom Phone (VoIP): Audio cleanup” is being run at the wrong
point in time, which Regea successfully highlights. In this case many lines are
highlighted, since the bug causes a lot of secondary effects in the ordering of the log
lines. Lines which are longer than what fits on the page are shown as truncated.

V Ascom Phone (VoIP ): enterWifiInCallMode - mocked out
I Telecom : InCallController : Calling onAudioStateChanged , audioState : [ AudioState
V Ascom Phone (VoIP ): createStartInCallActivityIntent : open extra action = 0.
D PhoneSip : VoipCall .2280 -> AC_CH .0 : PH -TONE -ON
D PhoneSip : AC_CH .0[ -]: PhTone on 2 0 23 0x0 500 1000/3000 0/0 0/0 0/0
D PhoneSip : AC -DSP0: update_dsp (1) 00 0 0 0
V AudioPolicyIntefaceImpl : getOutput ()
D AudioTrack : InitializeMTKLogLevel : default level [2]
D AudioTrack : set (): 0 x7bd8b2dc00 , streamType -1, sampleRate 0, format 0x1 , channe
D AudioTrack : Building AudioTrack with attributes : usage = 3, content = 4, flags =
D AudioALSAStreamManager : + closeInputStream (), in = 0xecbcb800 , size () = 1
D AudioTrack : set: 0 x7bd8b2dc00 , Create AudioTrackThread , tid = 3321
D AudioDetectPulse : setDetectPulse , mIsDetectPulse 0, 0 x7c61fad0e8
V Ascom Phone (VoIP ): onCallAudioStateChanged 0: [ AudioState isMuted : false , route
V AudioPolicyIntefaceImpl : getOutputForAttr ()
D AudioPolicyManagerCustomImpl : getOutputForAttr () device 0x4 , sample_rate 0, form
D AudioFlinger_Threads : Client defaulted notificationFrames to 256 for frameCount
D AudioFlinger : track (0 xed990d00 ): mIsOut 1, mFrameCount 960 , mSampleRate 48000 , m
D AudioTrackShared : InitializeMTKLogLevel : default level [2]
D AudioFlinger : track (0 xed990d00 ): mFastIndex 3, mStreamType 8, mName -1

Listing 4.2: An excerpt of a heatmap describing the difference between an error
file and an average reference file in dataset A. Lines deemed by Regea to have been
added in the error log relative to the reference data are highlighted in green, with
the strength of the color depending on the certainty. Lines which are deemed to
be missing from the error log are imported from the reference data and inserted
at reasonable positions. These are shown in red. In this case, the error log shows
discrepancies related to the Android audio system, caused by the reordered log line
mentioned in Listing 4.1.
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Figure 4.1: The heatmap in Listing 4.1 shown as a histogram, both for an error
log and for an error-free reference log. The histogram bins at x = 0 have been
truncated for readability. Their actual values are 698 for the error log and 1452 for
the reference log. The value for the reference log at x = 60 is caused by an Android
background service which was performing tasks while this log was being recorded.
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Figure 4.2: The heatmap in Listing 4.2 shown as a histogram for an error log and
for an error-free reference log. Note that the histogram only includes lines which
Regea perceives to be added (shown in green in Listing 4.2). Removed lines (shown
in red in Listing 4.2) are not included since they are not part of the actual error log.
The actual (non-truncated) values for the histogram bins at x = 0 are (1205, 1425).
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E AudioSystem -JNI: Command failed for android_media_AudioSystem_setStreamVolumeInd
D APM_AudioPolicyManager : setVolumeCurveIndex : wrong index 0 min =1 max =15
I A : Refresh account policy .
E APM_AudioPolicyManager : setVolumeIndexForAttributes failed to set curve index fo
E AudioSystem -JNI: Command failed for android_media_AudioSystem_setStreamVolumeInd
I Telecom - NewOutgoingCallBroadcastIntentReceiver : Received new -outgoing -call - broad
D APM_AudioPolicyManager : setVolumeCurveIndex : wrong index 0 min =1 max =15
E APM_AudioPolicyManager : setVolumeIndexForAttributes failed to set curve index fo
E AudioSystem -JNI: Command failed for android_media_AudioSystem_setStreamVolumeInd
I hwservicemanager : getTransport : Cannot find entry vendor . mediatek . hardware . pplag
W SearchServiceCore : Abort , client detached .
I Telecom - NewOutgoingCallIntentBroadcaster : Placing call immediately instead of wa
I Telecom - CallsManager : Creating a new outgoing call with handle : tel :****: NOCBIR
I Telecom - CallsManager : isSpeakerphoneEnabledForTablet : NOCBIR . oR@rzE
I Dialer : InCallActivity . getShouldShowVideoUi - null call
I Dialer : InCallActivity . getShouldShowRttUi - null call
I Dialer : InCallFragment . onCreateView
I SetupWizard : [aru] [ logReason :Get Notification Priority , UserDismissed : false , P
I Telecom - PhoneAccountRegistrar : getSimCallManager : SimCallManager for subId -1 qu
I Telecom - CreateConnectionProcessor : Trying attempt CallAttemptRecord ( ComponentInf

Listing 4.3: An excerpt of a heatmap describing the differences in ordering between
an error file and an average reference file in dataset B. For this dataset, Regea only
found minor discrepancies in the ordering of the log entries.

I Dialer : InCallFragment . setCallState - PrimaryCallState , state : 13, connectionL

I Dialer : VideoPauseController . onPrimaryCallChanged - new call: [ DialerCall_42 ,
D AudioTrack : ~ AudioTrack (3498): 0 x75b2b57800
I BufferQueueConsumer : [ Toast #0]( this :0 x7823f49000 ,id :7506 , api :0,p:-1,c :478) setDe
E AxessManagementService : at com. ascom . services . OkHttpClientProvider$InternetConne
I Dialer : InCallPresenter . setBoundAndWaitingForOutgoingCall - setBoundAndWaiting
I Dialer : ProximitySensor . updateProximitySensorMode - screenOnImmediately : true ,
I Dialer : ReturnToCallController .hide - hide () called without calling show ()
I Dialer : InCallFragment . onButtonGridCreated - InCallUiReady
I Dialer : InCallFragment . setAudioState - audioState : [ AudioState isMuted : false ,
I MediaFocusControl : requestAudioFocus () from uid/pid 10156/1741 clientId = android .
D AlertIndicatorService : set value :000000000000000
I BufferQueue : [unnamed -478 -7850]( this :0 x7824076800 ,id :7850 , api :0,p:-1,c: -1) Buffe
I BufferQueueConsumer : [unnamed -478 -7850]( this :0 x7824076800 ,id :7850 , api :0,p:-1,c:4
I BufferQueueConsumer : [unnamed -478 -7850]( this :0 x7824076800 ,id :7850 , api :0,p:-1,c:4
I BufferQueueConsumer : [com. android . dialer /com. android . incallui . InCallActivity #0](
I BufferQueueConsumer : [com. android . dialer /com. android . incallui . InCallActivity #0](
D Surface : Surface :: allocateBuffers (this =0 x7595267000 )
W ActivityManager : Slow operation : 60 ms so far , now at startProcess : building log
I BufferQueueProducer : [ StatusBar #0]( this :0 x7823fa9800 ,id:2, api :1,p:1050 ,c :478) qu

Listing 4.4: An excerpt of a heatmap describing the difference between an error
file and an average reference file in dataset B. There are a few lines missing related
to notifications and the audio system, which is very plausible considering the bug is
related to missing notifications. A few lines can also be seen being faintly highlighted
in green.
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Figure 4.3: The number of violated ordering rules per line for dataset B shown as
a histogram. The actual (non-truncated) values for the histogram bins at x = 0 are
(3521, 3650).
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Figure 4.4: The number of extra occurrences for each log line for dataset B shown
as a histogram. The actual (non-truncated) values for the histogram bins at x = 0
are (1691, 1680).
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I AudioPolicyManagerCustomImpl : -computeGainTableCustomVolume volume 1.000000 stre
D AudioPolicyClientImpl : invalidateStream : type 10
D APM_AudioPolicyManager : stopOutput portId 20
D APM_AudioPolicyManager : stopOutput () output 13, stream 1, session 25
I AudioPolicyManagerCustomImpl : -computeGainTableCustomVolume volume 1.000000 stre
D View : [ Warning ] assignParent to null: this = DecorView@836e3f9 [ dialer ]
D KeyguardUpdateMonitor : handlePhoneStateChanged () - mPhoneState = 0
D Surface : Surface :: disconnect (this =0 x7c89c5a000 ,api =2)
I BufferQueueProducer : [ Splash Screen com. android . dialer #0]( this :0 x7d6752b800 ,id :2
I InputTransport : Destroy ARC handle : 0 x7cfc20b620
I BufferQueueProducer : [ FramebufferSurface ]( this :0 x7d4f9ef000 ,id:0, api :1,p:495 ,c:4
I GED : ged_boost_gpu_freq , level 100 , eOrigin 2, final_idx 1, oppidx_max 1, oppid
I Ascom Phone (VoIP ): Call: 7000
V Ascom Phone (VoIP ): enterWifiInCallMode - mocked out
D PhoneSip : VoipCall .34 -> AC_CH .0 : PH -TONE -ON
D PhoneSip : AC_CH .0[ -]: PhTone on 2 0 23 0x0 500 1000/3000 0/0 0/0 0/0
D PhoneSip : AC -DSP0: update_dsp (1) 00 0 0 0
V Ascom Phone (VoIP ): Outgoing call 0 x1022 to 7000. Has properties =true.
V Ascom Phone (VoIP ): onCallAudioStateChanged 0: [ AudioState isMuted : false , route
I AscomEventLog : SIP: Outgoing call (0 x1022 )

Listing 4.5: An excerpt of a heatmap describing the differences in ordering between
an error file and an average reference file in dataset C. This dataset did not contain
any major ordering discrepancies.

D AudioALSAStreamIn : getCapturePosition (), timestamp not change , update time 25100
I Proximity : distance = 2
I hwcomposer : [ HWCDisplay ] [ Display_0 (type :1)] fps :34.822975 , dur :1033.80 , max :149.
D PhoneSip : AC_CH .0[0]: RTP packet loss 36 0
V Ascom Phone (VoIP ): exitWifiActiveMode - mocked out
I Dialer : ProximitySensor . updateProximitySensorMode - screenOnImmediately : false ,
D AudioALSAStreamIn : getCapturePosition (), timestamp not change , update time 25104
D AudioALSAStreamIn : getCapturePosition (), timestamp not change , update time 25105
I BufferQueueProducer : [com. android . dialer /com. android . incallui . InCallActivity #0](
D AudioALSAStreamIn : getCapturePosition (), timestamp not change , update time 25106
I Proximity : distance = 1
D lights : write_int open fd =7
D PQ : ccorr table index =0
D PQ : [ PQ_SERVICE ] setPQParamWithFilter configFlag : 1
D AAL : onBacklightChanged : 409/1023 -> 0/1023( phy :0/4095)
D AAL : onBacklightChanged : change screen state 3( On) -> 0( Off)
D AALLightSensor : AALLightSensor setEnabled 0-->0
D AAL : 02 -26 06:08:24.680 BL= 0,ESS= 256 ,
I BufferQueueProducer : [ StatusBar #0]( this :0 x7d4a58f800 ,id:2, api :1,p:1209 ,c :495) qu
D SurfaceFlinger : Setting power mode 0 on display 0

Listing 4.6: An excerpt of a heatmap describing the difference between an error
file and an average reference file in dataset C. As these log files were recordings
of phone calls performed by human operators, they contained a lot of extra noise.
This excerpt shows an example of this: readings from the proximity sensor, used
to turn the phone’s display off when holding it against the ear. The log line ”D
PhoneSip: AC_CH .0[0]: RTP packet loss 36 0” is related to the actual bug
associated with this dataset, and is faintly highlighted in green. The occurrence of
packet loss points to the call quality issue being networking-related, which provides a
suitable starting point for further debugging. However, the root cause of the packet
loss itself is not found within the logs.
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Figure 4.5: The number of violated ordering rules per line for dataset C shown as
a histogram. The actual (non-truncated) values for the histogram bins at x = 0 are
(1498, 1294).
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Figure 4.6: The number of extra occurrences for each log line for dataset C shown
as a histogram. The actual (non-truncated) values for the histogram bins at x = 0
are (1190, 1136).
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Table 4.2: The number of added/removed lines for an error log in each dataset.
In this table, a line is assumed to have been added or removed if the number of
occurrences for the line in the error log deviates more than one standard deviation
from the training data mean. A line is counted as reordered if it violates at least
one valid ordering rule.

Dataset Log length Added lines Removed lines Reordered lines
A 1357 297 (21.8 %) 321 (23.6 %) 953 (70.2 %)
B 3578 1420 (39.6 %) 291 (8.1 %) 225 (6.3 %)
C 1512 280 (18.5 %) 9 (0.6 %) 287 (19.0 %)

Table 4.3: The number of added/removed lines for an error-free reference log in
each dataset. The number of added, removed and reordered lines are much fewer
than in Table 4.2, except for dataset C.

Dataset Log length Added lines Removed lines Reordered lines
A 1464 63 (4.3 %) 41 (2.8 %) 111 (7.6 %)
B 3664 458 (12.5 %) 36 (1.0 %) 110 (3.0 %)
C 1297 254 (19.6 %) 23 (1.8 %) 213 (16.4 %)

4.1.1 Analysis
As shown in Table 4.2 and Table 4.3, Regea successfully detects that there are more
discrepancies in the error logs than in the reference logs for datasets A and B. This
is not true for dataset C, likely due to the extra noise in the data. This shows that
the accuracy of the results are highly dependent on the quality of the dataset. It
is also important to point out that different types of bugs appear differently in the
log files, and some more easily detectable than others. The bug related to dataset
C was caused by a low level driver issue, and it may therefore not have been visible
in the Android logcat output.
An issue with quantifying the accuracy of the results is that there exists no ground
truth for the datasets. While it is possible to observe the amount of discrepancies
detected, it is difficult to say how many of these discrepancies are related to the
actual issue at hand and how many are false positives. Another issue is that an error
occurring often causes several secondary effects to happen. If a set of discrepancies
is found, it is difficult to determine which ones of these discrepancies are the cause
of the error occurring and which ones are an effect of the error occurring.
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4.2 Performance benchmarking
This section contains a set of performance benchmarks see how the practical time
complexity compares to the theoretical analysis. It is important to point out that
Regea, being based on evolutionary algorithms, does not have a well-defined runtime.
Letting each evolution run for more generations increases the accuracy of the result,
at the cost of more computation time. Regea also has an extensive set of adjustable
parameters, with the default ones being relatively arbitrary. Therefore, it would be
wise to not fixate too much on the exact runtimes when reading this section, but
instead focus more on the differences in runtime depending on the size of the input
data. For reference, the performance benchmarks in this section were conducted
on a dedicated, 46 core OpenMPI cluster consisting of a mixed set of Intel desktop
CPU:s, Sandy Bridge and newer.

4.2.1 Generating regular expression patterns
This section aims to analyze the practical time complexity of Regea’s regex genera-
tion, as a complement to the theoretical time complexity analysis in Section 3.2.4.
For this purpose, the computation time has been measured for a varying number of
log files and varying log file sizes. Dataset B specified in Table 4.1 was used for this
purpose.
The default behavior in Regea is for the evolution of a regex pattern to be termi-
nated after a specified amount of time (see Section 3.2.2.4). However, the true time
complexity would be more accurately measured by having each evolution run for a
specified number of generations instead. Therefore, the number of generations has
been set to a fixed value (100) for the benchmarks in this section. Figure 4.7 shows
the computation time for training on dataset B depending on how many log files
were used, and the size of the files. Figure 4.8 shows corresponding number of regex
patterns generated during the training. Finally, Figure 4.9 uses the data shown
in the two aforementioned figures to approximate the practical time complexity of
Regea’s regex pattern generation.

4.2.1.1 Analysis

Recall from Section 3.2.4 that the theoretical best case time complexity for gener-
ating regular expression patterns is:

T (N, l, c,M) = O(lcNM)

and the theoretical worst case time complexity is:

T (N, l, c,M) = O(l2cN2M)

where N is the number of log files, l is the number of lines per file, c is the number
of characters per line andM is the total number of individuals across all generations
during the evolution of a single regex pattern.
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(a) Training time depending on the
number of log files in the training data.
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(b) Training time depending on the size
of the log files in the training data.

Figure 4.7: Training time for dataset B with the evolution for each regex pattern
for 100 generations. Figure (a) shows the training time depending on the number
of log files, and (b) shows the training time depending on the size of the log files.
For (a), the full log files were used (∼ 3538 lines), and for (b), all 88 log files were
used. For figure (b), the size of the log files were simply truncated to the specified
number of lines.

Looking at Figure 4.7, the computation time seems to increase about linearly with
both the number of log files and the size of the files. Figure 4.8 shows how the
number of generated regex patterns seems to converge for a larger set of log files
and (to a lesser extent) also for larger log file size. Meanwhile, Figure 4.9b shows how
the training time seems to depend quadratically on the amount of regex patterns
created during the training session. Figure 4.9a shows the reason for the quadratic
behavior, as the rate of generating regex patterns slows down over the course of any
given training session.
The fact that the number of generated regex patterns starts to converge for larger
data sizes is plausible. Dataset B contains a total of 88 log files. When Regea
iterates through the first log file, a regex pattern is generated for many of the lines.
When iterating through the second file, most lines will already be matched by a regex
pattern. Thus, fewer patterns are generated when iterating through the second file
compared the first file (assuming the files are of the same length). When iterating
through the third file, even fewer patterns will be generated. Since the different
log files are recorded from the same test case they have a lot of similarities, leading
to quick convergence. The same is true (but to a lesser extent) for larger log file
sizes. The more regex patterns that have already been generated, the higher the
probability that a line is matched by at least one previously-generated pattern. This
is true even for a dataset where the log files are not at all correlated with each other,
since there only exists a finite number of possible strings of finite length.
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Figure 4.8: Number of generated regex patterns during training for dataset B.
Figure (a) shows the number of generated patterns depending on the number of log
files, while (b) shows the number of generated patterns depending on the size of the
log files.

The fact that the training time depends quadratically on the number of generated
regex patterns also seems plausible. Assume that R regex patterns are generated
during a training session. Before generating a regex pattern for a line, Regea checks
whether any of the already generated regex patterns match the line. In the beginning
of the training session there are very few regex patterns to check, but at the end
there are R patterns to check. This causes the training to slow down over time,
see Figure 4.9b. Combining this with the fact that the R patterns also have to be
generated leads to a time complexity which depends quadratically on R.
To summarize, the benchmark results are consistent with the best case time com-
plexity described in Section (3.2.4). Figure 4.8b shows how R < l, and that the
difference between them increases for larger log files. This causes the computation
time to increase linearly with the data size rather than quadratic. To analyze the
time complexity in more detail, the benchmarks will have to be performed multiple
times and have their results averaged. This will mitigate the effects of noise in the
data, making it easier to observe the time complexity behavior.

4.2.2 Creating and evaluating ordering rules
This section aims to analyze the practical time complexity of creating and evaluat-
ing ordering rules, as a complement to the theoretical time complexity analysis in
Section 3.3.2. The time required to evaluate all possible ordering rules for dataset B
depending on the file size and the number of patterns is shown in Figure 4.10.
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Figure 4.9: Figure (a) shows how the list of generated regex patterns grows as
a function of time during an example training session. This rate starts out close
to linear, but decreases over time. Figure (b) shows how the total training time
depends on how many regex patterns were generated during the training. Note that
(a) and (b) have their x-axis and y-axis mirrored relative to each other.

4.2.2.1 Analysis

Recall from Section 3.3.2 that the theoretical time complexity of evaluating all pos-
sible ordering rules for a dataset is

T (N, l, R,m) = O(R2m2N) = O(l2N) = O(Nl2)

As shown in Figure 4.10, the computation time seems to increase quadratically
with both the file size and the number of regex patterns. This is in line with the
theoretical time complexity analysis.

4.2.3 Insertion of missing log entries

This section provides a practical benchmark of the practical time complexity of
inserting missing log entries, as a complement to the theoretical time complexity
analysis in Section 3.4.2. The time required to insert missing log lines depending on
the file size and the number of generated regex patterns is shown in Figure 4.11.
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Figure 4.10: Computation time required to evaluate all possible ordering rules for
dataset B depending on the log file size and the number of generated regex patterns.
The patterns used for creating these figures were the ones generated from creating
Figure 4.7b and Figure 4.8b.

4.2.3.1 Analysis

Recall from Section 3.4.2 that the theoretical time complexity of inserting missing
lines into an error log has the time complexity

T (l, R,m) = O(R2m2l2) = O(l4)

As shown in Figure 4.11, the computation time seems to increase (at least) quadrat-
ically with both the file size and the number of regex patterns. Notice that the
computation times are an order of magnitude higher than in Figure 4.10, which
points to the time complexity being higher than O(l2). This is in line with the
analysis in Section 3.3.2.

4.3 A closer look at the inner workings of Regea
This section features a set of miscellaneous results which do not fit neatly into the
previous sections, but are still important for understanding how Regea works.
As explained in Section 3.2.2, Regea uses genetic programming to generate regular
expression patterns to match the lines in the reference files. The specificity and
structure of the regex patterns depends on the training time, the size of the log files,
and how similar the log files are to each other. Below is an example of what an
excerpt of a generated list of regular expressions may look like after training:
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Figure 4.11: Computation time required to insert all missing lines for an error
log in dataset B depending on the log file size and the number of generated regex
patterns.

^.{15 ,21}[! -y].[ -a ](?:\ b(?=\w )).[1 -\~]\ B[!-M]\B[ -y].[ -\^].\B.{30 ,36}$
^.{34 ,40}\ B(?=(?=[7 -F]))\B[3-E].\b.\B..\B[ , -\~]...\b(?:(? <=\w)\b).{0 ,3}$
^.{0 ,3}\b(?:\b(?=\w))\b\S[^% -\~][L-z]\B[M -\~]\ S\B[\^ -\~][ -v]\S[ -C].{34 ,40}$
^.{30 ,36}\ B.[ -\~].\B\w\B[ -\~](?:(? <=\w)\b).\W[ -\~] [ -9][ -\~][\\ -\~]\w.{3 ,9}$
^.{0 ,4}(?=(?:(? <=\ w)\b)\s[Z-v ])(?:(? <=\ w)\b )(?=(?:(? <=\ w)\b)\b.[Z-v]).\w.{40 ,46}$
^.{22 ,28}(?=.)\ W[ -4]..[ -s][ -\~]\B\S..[ -\~]\S.\B. [ -\~]\B\w[ -x ][\\ -\~].{0 ,6}$

As explained in Section 3.3, Regea generates a set of ordering rules according to the
training data. The rules are generated randomly and a validity is assigned to each
rule depending on the proportion of training data logs which satisfy the rule. By
default, a validity of at least 0.90 is required for an ordering rule to be considered
valid. An example distribution of the validities for a set of randomly generated
ordering rules is shown in Figure 4.12a. As can be seen in the figure, all randomly
generated rules have a validity close to zero or one, i.e. they are likely to either
match (almost) all of the training data logs or (almost) none.
As mentioned in Section 3.4, log lines which Regea deems to be missing from an
error log are imported from the training data and inserted into the error log. To
find a reasonable location to insert a line, Regea evaluates the ordering rules for the
line for all positions in the error log. The line is inserted at the position where it
violates the least number of ordering rules. Figure 4.12b shows an example for how
the number of violated ordering rules may depend on the insertion position of a log
line.
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Figure 4.12: Figure (a) shows the distribution of rule validities for a set of ran-
domly generated ordering rules, while (b) shows an example of the number of vi-
olated ordering rules depending on the position when inserting a missing line into
the error log.
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5
Conclusion

A log file analyzer, called Regea, has been implemented which uses genetic program-
ming to generate regular expression patterns. These regex patterns are then used to
classify log entries and perform statistical analysis. Any discrepancies are presented
to the user.
Regea is able to detect discrepancies in log files so long as the files are similar enough,
for example from automated, repeated tests.
The main issue with Regea in its current form is that it only works for very specific
cases. The program requires a large amount of log files for training (up to about a
hundred), the files have to be free of extra noise, and they have to labelled correctly
(error/no error). Creating this kind of dataset by hand is a time-consuming task
and will in many cases be slower than simply studying the log files manually. This
limits Regea to mostly work on log files created by automated testing scenarios.
Additionally, the provided log files have to contain at least some data which is
related to the issue at hand. If nothing related to the error is logged, then nothing
can be found.
Aside from this fundamental issue, there are (at least) three problems with the
current implementation of Regea: the fitness evaluation of the regex patterns, the
output format and the computational performance.
The genetic programming algorithm which generates regular expressions uses a fit-
ness function to evaluate how well each regex pattern performs, as described in
Section 3.2.2.3. A fitness function for an evolutionary algorithm has to explicitly
incorporate all aspects of what one wants the computer to optimize. This can be
a very a difficult thing to do, and failure to do so will cause the algorithm to gain
fitness in ways that were not intended[16]. Aside from this, the fitness function also
needs to be computationally efficient to evaluate, since it is run for each individ-
ual in each generation of the evolution. The fitness function for Regea has been
adjusted and rewritten several times over the course of the project. In its current
state, it aims to create as specific regex patterns as possible which match as few
times as possible per log file (but at least once per file). This provides a reasonable
middle-ground between specificity and generality of the generated regex patterns.
However, the current fitness function requires performing regex operations on all
training data files for every individual in the population for every generation of the
evolution. This is not computationally efficient, and accounts for the majority of
Regea’s runtime. Aside from this, the algorithm currently has the option of exploit-
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ing optional nodes to gain an unjustified amount of fitness. Inserting an optional
node into an individual (remember that individuals are represented as tree struc-
tures) causes that whole subtree to be regarded as optional. The optional node itself
gives a negative fitness (see Table 3.3) but all nodes connected to the optional node
will give a positive fitness, likely resulting in a net-positive fitness contribution for
the optional subtree. A possible solution to this is to apply a modifier to the whole
optional subtree, instead of just the optional node itself. Negative lookaheads have
the same problem as optional nodes, but have more possibilities of being inserted
(since they do not consume characters). Negative lookaheads are therefore excluded
from Regea to prevent too much fitness exploitation.
The output format is another part of Regea which has changed a lot over the course of
the project. The current output format consists of HTML-based, colored heatmaps,
see Listing 4.1 and Listing 4.2. Regea takes an error log file and highlights each line
depending on how much it deviates from the training data. This provides an output
file which is easy and intuitive for a user to understand (a more strongly colored
line points to a more certain discrepancy). However, it hides certain information
which may be of importance. For example, in an ordering heatmap it is possible to
see that one line violates more ordering rules than another, but it is not possible
to see the exact number of violated rules and also not which ordering rules were
violated. This type of data may be relevant depending on the nature of the issue at
hand. Another output format which was tried was JSON. In this case, each line in
the error log had its violated ordering rules as subelements. This worked well but it
was difficult to get an overview by quickly looking through the file. Perhaps Regea
could support multiple different output formats and let the user decide what is the
most appropriate format for each situation.
Another issue is the computational efficiency (or lack thereof). As showed in Fig-
ure 4.7, training on the entirety of dataset B takes about one hour on a 46 node
OpenMPI cluster. This means that the same computation will take several hours
on an average desktop computer. Long log lines are also an issue since larger regex
patterns are slow to evaluate. Performing mutation or crossover on such patterns
also likely leads to patterns which do not match the input data, leading to slow
evolution.

5.1 Future work
The current implementation of Regea has many possibilities for improvements which
have been left unexplored. One such topic is the intricacies of the genetic program-
ming algorithm. Regea has a large set adjustable parameters, including crossover
probability and several mutation probabilities for different types of mutation. These
currently have to be set manually by the user (or left at their default values). It
was planned to have Regea optimize these parameters automatically for the current
dataset, but this optimization logic was not able to be implemented in time for this
report. It will likely be included in a future version of Regea. When initializing
the population, individuals are very generic and grow more specific over time. An-
other possibility is to have individuals start very specific and grow more general over
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time. When calculating the fitness for a regex pattern, the evaluation time for the
pattern can be taken into account to discourage the algorithm from creating regex
patterns which are very slow to evaluate. The simplest way to do this is to divide
the fitness value calculated in Section 3.2.2.3 by the time required to calculate said
fitness. Apart from improving computational efficiency, this can also act as a way
to prevent the algorithm from creating individuals with an abundance of optional
or otherwise unnecessary regex segments.
Another possibility of improvement is the statistical calculations used to determine
whether a line has been added or removed. Currently, the mean and standard
deviations of the number of matches for each regex pattern in evaluated across the
training set and is compared to the number of matches in an error log. This generally
works well enough, but has issues in some scenarios. If a pattern has a mean close
to zero and a high standard deviation, this may cause the difference between the
mean and zero to be less than one standard deviation. It is currently not possible
to detect whether an occurrence of such a pattern is missing from an error log since
the number of occurrences cannot be less than zero. A possible improvement is to
not only compare the number of matches for a pattern in the error log to the mean
and standard deviations for the training data, but also compare it to the min and
max occurrences in the training data.
Another point of interest is that of computational performance. Optimizing the
logic within the fitness function is the most obvious way to do this, as it accounts
for the majority of Regea’s runtime. Other ways include rewriting the application
in a fast, compiled language like C. This way, it will also be possible to use efficient
regex libraries like PCRE2 directly, without having to spawn an external process
like with Python. Furthermore, it will also possible to implement efficient multi-
processing using C11 threads or POSIX threads, bypassing the overhead of using
OpenMPI (though those methods do not allow for parallelizing computations across
multiple computers). Another possibility is to utilize graphics cards (GPU:s) to
speed up calculations. For example, there already exists an efficient implementation
of grep using CUDA[17]. Computational performance is important for evolutionary
algorithms since letting the algorithm run for longer periods of time yields more
accurate results.
As of right now, Regea uses genetic programming almost exclusively to generate
its regular expression patterns. The reasoning for this choice was to explore the
possibilities of using machine learning for analyzing log files. In hindsight, combining
machine learning techniques with more naive methods will probably result in a more
favorable outcome. For example, log lines could be grouped together by using sting
comparison to check for common substrings. Machine learning techniques could then
instead be used to analyze the parts where naive string comparisons are not enough.
This will likely result in a log file analyzer which is more robust, more manageable
and more computationally efficient than the current implementation.
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