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Geometry Identification from Point Cloud Data
MAITREYA DEEPAK DAVE
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Abstract: The aim of this thesis is to conduct a comparative study of different al-
gorithms which can learn from 3D (x,y,z) point cloud data and are able to conduct
per-point classification. The point clouds of interest for this thesis are the one’s
which represent a 360-degree view of an object. For example, the input is a point
cloud representing a knife with two parts: the blade and the handle. For such an
input, the algorithms must be able to classify which points of this point cloud belong
to blade and to the handle. To solve this task different types of deep-learning based
models like graph-based neural networks and non-grid point convolution networks
were implemented and analyzed. These models perform with over 80% accuracy
which is quite remarkable given the input is only raw 3D coordinates with no need
of voxelization. The models have also been tested on synthetic datasets as well as
an object scanned using a LiDAR camera. These algorithms can be applied in au-
tonomous driving, augmented/virtual reality applications, medical data processing
and 3D animation industry.

Keywords: point, cloud, part, segmentation, pointnet, dgcnn, kpconv, 3D, deep-
learning, supervised
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1
Introduction

The geometric shape of an object can be described as the description of an object
without its scale, orientation and reflection. This means that if we do any of these
operations on an object, the geometrical shape or structure of the object should
remain the same and not turn into a new distinct shape.
In recent years, research in object identification with point cloud data as an input
has turned into a growing topic of research as it leads to many applications in vision
perception, virtual/augmented reality, robotics, and medical imaging. The idea of
this thesis is to investigate AI-based methods to segment out geometrical shapes
from the 3D point clouds with as little human intervention as possible.
Task associated with 3D are

• 3D Geometry Analysis which consists of tasks like object classification, seg-
mentation of a given object or a scene, finding correspondences between dif-
ferent but similar data.

• 3D Synthesis which consists of tasks like reconstruction of a partial point cloud,
automatic shape completion or predictive shape modelling.

1.1 Objectives
The objective of this thesis is to conduct a comparative study of different algorithms
which segment geometrical shapes from point cloud data. By achieving this, one
could use the results for further tasks like component verification, synthetic data
generation, visualization and more. The research questions to investigate are as
follows

Question 1
What possible deep learning based models exist to perform part segmentation of
point clouds? How well do they perform?

Question 2
How efficiently do the models handle raw point clouds as an input ?
Since point cloud data can be obtained either from sensors directly or estimated
from images, there can be quite a lot of variation in the point density, missing
points, outlier and accuracy of the obtained point cloud. To answer this question,
the models are trained on synthetically available data and tested on test dataset
which is an unseen subset of the training dataset as well as with point clouds ob-
tained from scanning an object using LiDAR based camera. The input point during
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1. Introduction

training stage is obtained by uniformly sampling a 3D mesh made in CAD program.
However, when testing the point clouds using scanned data, the point cloud has
outliers, missing points and randomly jittered points which need to be taken care
of.
Question 3
Are all geometric shapes recognized with the same accuracy? Which geometric
shapes are easier to identify? The visualizations of predictions made on the test
datasets will be analyzed.

1.2 Previous Work
Geometry identification from a point cloud can be seen as a point cloud segmentation
task. There has been significant research in this area in recent years, the credit for
this advancement goes to machine learning techniques [22, 23, 17, 33]. Methods
before machine learning [18, 25] relied on hand-crafted features for specific tasks
but it may not always be easy to find the optimal set of features by hand. Deep
learning models like [22], showed remarkable results in 3D object classification, part
segmentation, and semantic segmentation of point clouds. These results motivated
more research in this area, the result of which emergence of models based on 3D
point-based networks [17, 31], graph-based networks [36, 34], networks-based on
projecting data to a different dimensional space [28, 1], capsule networks [3]. A
common approach in all the models has been down-sampling the input point cloud
as the cost of computation is directly proportional to the number of input points.
Hence, there is an inevitable loss of information. The task of segmentation without
downsampling a point cloud is called fine-grained segmentation of point cloud, while
[37] delivered very good results for this task it has been approached in a supervised
manner which makes it less practical for developing an application with. [9] provides
a detailed account of deep-learing based methods for various point cloud related
tasks.

1.3 Structure of report
The thesis begins with an introduction of the problem statement, the objective of
this thesis, and the previous work done in this area. We start with the background
which introduces different types of representations of 3D data and dwells in-depth
about point clouds which is the focus of this thesis. Then we provide a basic overview
of deep-learning followed by different types of deep-learning approaches taken by re-
searchers for 3D point cloud analysis. Then methodology chapter provides important
details of each of the implemented models, explaining how they work. The develop-
ment stage introduces the hardware setup used to train the models, the hardware
used to capture real-world test data, and how this captured data was processed.
The results chapter presents numerical and visual results of training and testing the
models. The results were examined in the discussion chapter. Finally, the conclusion
speaks of what was achieved and proposes possible future work directions.
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2
Background

2.1 Introduction to 3D Representations
To represent 3D data, we have multiple representations. Here I briefly introduce
a few of the most commonly used representations and then dive deeper into point
clouds which is relevant for this thesis.

Multi-view representation
A multi-view representation is usually a 2D image based representation method
where multiple 2D images of the same object/scene are captured from multiple view-
points of the 3D object and then processed with 2D convolutional neural network
(CNN) models. Usually some kind of localization information about the capture
device should be available or estimateable for accurate processing of these images.
Multi-view representations are highly convenient because we already have state of
art 2D CNN models which are capable of object detection as semantic segmenta-
tion. Based on this representation networks like in [29] were developed to learn 3D
knowledge of shapes from their 2D views.

Figure 2.1: Image depicting camera taking images of an object from multiple
viewpoints

3



2. Background

Voxel Grid Representation
Voxel Grid Representation is a Volumetric representation method and the represen-
tation is obtained by voxelizing a 3D mesh or 3D point cloud. In context of 3D
data, we can start by representing the 3D data with a 3D bounding box, then define
a voxel to be a rectangular parallelepiped (whose dimension shall be much smaller
than the original bounding box). A 3D grid of such voxels shall be used to match
the dimensions of the bounding box. Each voxel has an occupancy value which tells
us whether the voxel is within the original 3D data or not. Based on the resolution
of our voxel we can have a fine or a coarse representation of our original data.

(a) Voxel Grid of size 0.01
(b) Point cloud downsampled using voxels
of size 0.01

(c) Voxel Grid of size 0.05
(d) Point cloud downsampled using voxels
of size 0.05

Figure 2.2: Voxelization results on point cloud representation of Standford Bunny

This representation is a very well defined data structure and can be used directly
with 3D CNN architectures but the voxelization process requires high memory usage

4



2. Background

and suffers from information loss which makes it inefficient.

Mesh Representation
A mesh is a surface-based representation method and one of the most commonly
used ones in the 3D community. It consists of sets of vertices, edges and faces
which all together define the shape and volume of a 3D object/scene. The faces in a
mesh can be triangular (triangle mesh), quadrilateral (quad mesh) or even a convex
polygon (n-gonal mesh). The advantage with mesh representation is that it does
not suffer from information loss like a voxel grid or a point cloud but it is also an
unnatural data structure as an input to a neural network.

Figure 2.3: Mesh representation of Standford Bunny
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2. Background

Depth Images
Depth images are mainly available as RGBD images i.e. colour images with depth
information obtained in the form of distance from the camera origin. This depth
information is available for each pixel in the image. However, it is relatively difficult
to create a model which can work accurately with only RGBD images as an input.
Moreover the data acquisition with respect to the depth information is sensitive to
lighting conditions as well as the material of the objects present in the scene.

(a) RGB Color image

(b) Depth image

Figure 2.4: Corresponding color and depth images captured using Intel’s Realsense
L515 Camera
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2. Background

Signed Distance function
A signed distance function (SDF) is an implicit representation method i.e. it uses
some function f to represent a 3D object. Mathematically, SDF f of a given set
ω determines the distance (magnitude) of a point β from the boundary of the set,
along with the sign indicating whether the point is within the set or not. Hence,
the function f encodes the surface (boundary) of a shape. While the SDF is a
very interesting representation method, there has been little work done with it with
respect to our problem defined in section 1.1. However, it can be an interesting
representation to look into for reconstruction of the 3D object using the results of
point cloud segmentation.

Figure 2.5: SDF learned via DeepSDF[20] applied on Standford Bunny (a) depic-
tion of the decision boundary of underlying implicit surface where SDF < 0 and
SDF > 0 means inside and outside of the surface respectively, (b) 2D cross-section
of the signed distance function, (c) rendered 3D surface recovered from SDF = 0

Point Cloud
A Point cloud is a set of 3D points distributed in a 3D space. Each of these 3D
points has a deterministic position denoted by a certain (x, y, z) coordinate and can
have more information attributes like RGB colour values. Point cloud representation
certainly has more significance over multi-view representation, depth images, voxel
grids because they preserve more high-quality geometric information without any
discretization. Moreover, they can be sampled directly from a mesh and can also be
processed to a voxel grid if at all necessary. However, this representation method
loses information about local connections between points which a mesh has. While
they may not be the most natural data structure to work on, they are relatively
better than most other standard representations. In the next subsection we shall
have a more deeper look at point clouds.

7



2. Background

Figure 2.6: Point cloud representation of Stanford Bunny

2.1.1 Point Cloud Theory
A point cloud is a very simple data type, it is basically a set of points in a space.
We define a point cloud P in 3D Euclidean space as follows

P = {xi εR3}i≤N (2.1)

where N is the number of points in a given point cloud. Typically, a point cloud
would consist of only spatial coordinates {x, y, z} but can include more information
like colour information in terms of RGB values for each point or normals of each
point expressed as (nx, ny, nz). In that case, we can define P as follows

P = {(xi, fi) |xi εR3, fi εRD}i≤N (2.2)

where fi represents the D-dimensional additional point feature vector.
Since point clouds are just collections of unordered points they have no information
about the connectivity of the points.

2.1.2 Challenges with Point Clouds
When working with point clouds, one has to deal with new challenges which have
not been addressed before when working with neural networks. Below, we list some
of the challenges encountered when working with point cloud data and their possible
solutions.
Varying number of points:
When working with 2D CNNs, the input to such models is well defined structured
data. For example, in tasks like image classification, images of varying size are pre-
processed before feeding as an input to the CNN model. The pre-processing step can

8



2. Background

involve re-sizing all the images to the same size, hence the same sized pixel arrays
will represent every image.
In case of point clouds, we may not have the same number of points representing an
object. The simplest solution would be to sample a fixed number of points from the
point cloud. However, the source of the point cloud as well as the sampling strategy
used plays an important role in which points are sampled and eventually shall affect
our model. The most commonly used sampling methods are uniform sampling and
the farthest point sampling (FPS). The objective of FPS is to sample a fixed number
of points Q from a set of N points, such that all the sampled points are farthest
from each other. FPS has a certain randomness and non-uniformity associated with
it whereas uniform sampling works by creating a 3D voxel grid from the point cloud
data and the points closest to the voxel center are then selected.

Irregularity (unorderedness):
Point cloud data is an unordered set which means that the system does not know
which point has a higher preference or if all the points have same level of impor-
tance. Here, we define the concept of permutation π which is a bijective function
of a point cloud, mapping the index set onto itself. Let the original point cloud be
defined as follows

P = {x1, x2, x3, . . . , xN} (2.3)

By using the permutation

π : {1, 2, 3, . . . , N} −→ {1, 2, 3, . . . , N} (2.4)

we obtain the reordered point cloud,

Pπ = {xπ1, xπ2, xπ3, . . . , xπN} (2.5)

If we have a function f such that for all permutations π, we have :

�(x1, x2, x3, . . . , xN) = �(xπ1, xπ2, xπ3, . . . , xπN) (2.6)

then such a function � is called a symmetric function. Examples of such functions
are max ,min, sum, average and product. Here, we give a simple example of using
max (column-wise maximum) applied on a point cloud P and Pπ. P consists of 5
points, represented by (x, y, z) coordinates and no additional features like color or
normal information and Pπ represents a reordered version of P . For ease of viewing,
the maximum values in each column are made darker.

P =


0.1 0.2 0.5
0.5 0.1 0.2
0.1 0.2 0.1
0.2 0.5 0.4
0.7 0.3 0.3

Pπ =


0.2 0.5 0.4
0.5 0.1 0.2
0.7 0.3 0.3
0.1 0.2 0.5
0.1 0.2 0.1

 (2.7a)

max(P ) = max(Pπ) = (0.7, 0.5, 0.5) (2.7b)

9



2. Background

The conclusion to draw over here is that one must have some transformation process
so that raw point cloud data can be transformed into an input suitable for neural
networks or we must design the neural networks so that they are “permutation in-
variant”. To achieve permutation invariance, the use of symmetric functions can be
one suitable strategy.

Noise and outliers in point clouds:
Point clouds can be obtained directly from sensor’s like LiDAR (Light Detection
and Ranging), derived from images or estimated from RGBD maps. Each method
of point cloud accquisition results in a point cloud with different point density, dif-
ferent additional feature information. A LiDAR can have a point density less than
10 points/m2 and even more than 100 points/m2 depending on the sensor. Point
clouds obtained from RGBD images usually have a point density between 10 to 100
points/m2 whereas for point clouds dervied from images it depends on the spatial
resoulution of the cameras used. When point clouds are estimated then the reso-
lution of their depth estimation depends on the underlying model used for point
cloud construction. While the LiDAR sensor gives a direct point cloud, its accuracy
is dependant on the lighting conditions and the material of surface present in its
field of view. Depending on how the point cloud is accquired, there maybe missing
points, outliers present and even irregular distortions.

10



2. Background

2.2 Deep Learning Primer

Deep learning is a machine learning technique based on the fact that there is enough
training data available. Deep learning architectures are based on Artificial Neural
Networks (ANN). The concept of artificial neuron develops from the neurons in
the human brain, which work by receiving inputs from other neurons and give an
output. Mathematically we model artificial neurons (also known as perceptrons) to
have an input passing through an activation function which would decide the final
action. Figure 2.7 represents a perceptron which takes inputs x := x1, x2, . . . , xN
and produces an output y. Each input value xi of x is associated with a weight value
wi in weight vector w which indicates the significance of the input value. For the
perceptron to produce an output, it needs to be "fired up" just like a real neuron,
the condition for this firing is the weighted sum of the inputs must be more than
the set threshold of the perceptron. Alternatively one can define the negation of
the threshold as the bias b of the preceptron and then incorporate it in the input
vector itself by setting x0 = b = −threshold and w0 = 1. This pre-activation result
is denoted by z and passed as an input to the activation function σ for final output.
Hence, we come to the following formulation

y = σ(z) (2.8)

where, z = b+
n∑
i=1

wixi (2.8a)

z =
n∑
i=0

wixi (2.8b)

z = wTx (2.8c)

Figure 2.7: A perceptron taking input vector x, multiplying it with weight vector
w and producing output y after processing it via its activation function σ.
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2.2.1 Activation Functions

The activation function of a perceptron defines its output. We use Rectified Linear
Unit (ReLU) and one of its variants, leaky ReLU in our models. Mathematically
ReLU is a max function with linear behaviour for positive values and 0 for negative
values. Leaky ReLU a is modification of ReLU which allows negative values of the
input to exist by scaling them down by a value of α. The functions are defined as
follows:-

σ =

max(0, z) , if z ≥ 0
αz , if z < 0, ReLU: α = 0, Leaky_ReLU: α ∈ (0, 1)

(2.9)

Figure: 2.8 provides a simple visualization of the respective activation functions.

(a) ReLU (b) Leaky ReLU

Figure 2.8: Visualization of Activation Functions: ReLU and Leaky ReLU

2.2.2 Multi-layer perceptron

The perceptron presented by equation 2.8 represents a single layer perceptron. Now
we build on this idea to develop the a network with arbitary number of layers
containing multiple perceptrons. This type of network is known as a Multilayer
perceptron (MLP), it is also known as a "vanilla" neural network or a feedforward
neural network. It consists of an input layer to receive the inputs, one output layer
that makes a prediction and an arbitary number of hidden layers in between them.
Since it is quite understood that every perceptron layer has an input and output,
we shall consider the total number of layers in a MLP by only counting the number
of hidden layers. Figure 2.9 is an example network graph of a 3-layer perceptron
with 4 units in the input layer represented by red boxes, 3 units in the output
layer represented by green boxes. The 1st, 2nd, and 3rd hidden layers consist of 4,
3 and 2 perceptron units respectively which are represented as a blue circle. For
convenience of visualization, the weights associated with each input are not displayed
in the figure.
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Figure 2.9: Network graph for a 3-layer perceptron

2.2.3 Loss Function and Optimization
Part segmentation is essentially a multilabel (or multiclass) classification problem
i.e. the model must identify the label of every point in an input point cloud. An
object point cloud can have m > 0 parts and for each part a new label is assigned.
The loss function that is used for training all the models is called Cross-Entropy Loss.
Cross entropy indicates the distance between the predicted output distribution of a
model and the original distribution. Following equation 2.10 represents calculation
of a loss for each class, where yc is the prediction made by the neural network for
a class c for an input sample s and gt represents the corresponding true values for
the same class and input sample.

loss = −
m∑
c=1

gts,c log(ys,c) (2.10)

Now that we have our loss function, can come to the optimization aspect of our
network. For our network to learn and we must tell it to update its weight matrix
such that the loss function is minimized. Todo so we use the stochastic gradient
descent (SGD) method as it reaches the minima in a shorter amount of time than
algorithms like gradient descent and newton’s method.

2.2.4 Convolutional Neural Networks
Convolutional neural networks (CNN) are a different type of neural network which
have a special structure and are typically used for data which have a grid-like topol-
ogy. This is because they were designed to find patterns in the data using the
convolution operation. There are two main layers in a CNN, the first is the convo-
lution layer and the second is the pooling layer. The convolution layer as the name
suggests performs convolution using a convolutional kernel or filter which is slided
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accross the input data. The output of convolution is called as a feature map or an
activation map. Figure 2.10 shows the output of convoluting a 4 × 3 with a 2 × 2
kernel.

Figure 2.10: Convolution operation

A pooling layer is also known as a subsampling layer which reduces the sample size
of a feature map, making the processing faster. The output of a pooling layer is
called a pooled feature map. The function used to perform pooling is usually either
max or avg. Following figure 2.11 shows the result of max pooling operation on an
example feature map.

Figure 2.11: Demonstration of max pooling in CNN

A CNN is constructed by stacking multiple convolution and pooling layers. By doing
so different layers capture different features present in the input data. Finally a fully
connected layer, i.e. MLP, is used to generate a prediction. Figure 2.12 shows a
simple CNN architecture consisting of an input layer, combination of convolution
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layers and pooling layers acting one after the other, and the result of final pooling
layer being sent to the fully connected layers which give us the output/prediction.

Figure 2.12: High level view of a simple CNN architecture

2.3 Introduction to 3D Deep Learning

2.3.1 Projection Networks
The idea of a projection network is as the name suggests, to project the 3D point
cloud data to a more suitable data format. The inspiration for these networks started
from one of the earliest and most simplest methods which was to use multiple 2D
images which would be generated from 3D point cloud projections; and then process
these 2D images with state of the art 2D CNN models as done in [29]. Combin-
ing actual multi-view depth maps, 2D images and 3D-to-2D projections come at
a computational cost. Similar works on projecting the 3D data to tangents and
then performing tangent convolutions like [30] also exists and shows great ability to
process large-scale point clouds but they are dependent on the ability of the model
to estimate the tangent. Moreover projection based methods are sensitive to view-
points, cannot exploit underlying geometry and suffer from structural information
loss.

A different type of projection network, sometimes referred to as a discretization-
based network, which projects the 3D point cloud to sparse lattice structures or vol-
umetric representations have been introduced in [28] and [39] respectively. While the
models made for these networks provided good results, volumetric representations
require high memory usage for fine resolution and suffer from information loss inher-
ently. Moreover since they are naturally sparse in nature, using dense convolutions
was inefficient in the first place. However, projection of 3D point clouds to lattice
structures has more advantages. Models like Sparse Lattice Network (SPLATNet)
can project both multi-view 2D images and 3D point clouds to high dimensional
permutohedral lattice [14] and operate on them with Bilinear Convolutional Layers
[28], delivering very good results. However, they are still limited by the grid struc-
ture of lattice which eventually puts a constraint on the convolution operation. This
thesis does not implement any type of projection or discretization based networks.
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2.3.2 Point-wise Networks
Point-wise networks are a new type of neural network which are designed specifically
to work with point cloud data. The focus of these networks is to try to learn features
directly from the 3D points as an input. Moreover these networks do not have a
convolution element to them and therefore, making them completely different from
the regular deep learning approaches which are based on convolution. There are
two significant models in this area, PointNet [22] and its successor PointNet++
[23], which are explained in sections 3.2 and 3.3 respectively.

2.3.3 Graph-based Convolution Networks
Use of graphs to add structure to unstructured data has been gaining attention in the
recent years due to the rise of convolution operators defined specifically for graph-
based neural networks. There are two types of convolution operations possible on
a graph: spectral and spatial. Spectral-based convolution approaches like [36] carry
out multiplication of filters with spectral representation of the graph in the Fourier
domain whereas spatial-based convolution methods put their focus on aggregating
features from edges for each node. The graph-based approach explored in this thesis
is called Dynamic Graph CNN (DGCNN) [34] and is explained in section 3.4.

2.3.4 Point Convolution Networks
Convolution operation can be seen as a template-matching operation when dealing
with images. One of the main reasons why CNNs have been so successful in dealing
with images is because of the structure of images i.e. images are dense and discrete,
and they can be easily represented by arrays while preserving meaning of the pixel
intensities. Point clouds on the other hand are sparse and continuous and hence we
need a new way to define convolution on point clouds. Point Convolution network
formulations are dominated either by the use of MLPs to formulate the kernel or
by the use of explicitly defined geometric kernels. A point convolution network
explored in this thesis is based on a new convolution operator called Kernel Point
Convolution (KPConv) [31] and is explained in section 3.5.
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3.1 Introduction

Selecting the appropriate models to implement from a long list of models was a
tough a choice. One motivating factor was to see the use of these models for some
real world applications like in [7, 21, 2, 12, 27]. Finally PointNet, PointNet++,
Dynamic Graph CNN and Kernel Point Convolution for point clouds were decided
to be implemented. The following sections go in depth about each of the networks.

3.2 PointNet

The idea of PointNet is to compute features for every point in the point cloud
directly. The input to this model is a N ×F point cloud, where N is the number of
points and F is the number of information channels. F is expressed as the 3 + D,
where 3 represents the 3-dimensional cartesian coordinates and D represents the
additional features. For example, for D = 0 =⇒ F = 3 we have spatial coordinates
(x, y, z) and an input point cloud of size N × 3 or with D = 3 =⇒ F = 6 we could
add the three RGB values per-point, then our input vector would look like this
(x, y, z, r, g, b) and an input point cloud of size N × 6. The architecture of PointNet
helps it to achieve tasks like object classification, part segmentation and semantic
segmentation. For segmentation the output is a prediction matrix of size N × m
i.e. for each of the N points, there is a prediction made for each of the m labels.
PointNet uses symmetric functions (refer to Section: 2.6) to bypass the problem of
irregularity in point clouds.

X = {x1, x2, . . . , xN} ⊂ RF , N ∈ R
where, F = 3 +D

(3.1)

Considering the simplest case where the input point cloud has only N number of
3D cartesian coordinates i.e. D = 0 =⇒ F = 3, so we have

X =


x1
x2
...
xN


where, xi = (x, y, z), i ∈ {1, 2, . . . , N}, N ∈ R

(3.2)
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We can then define the PointNet function fpn as follows

fpn(X) = γ(�(h(X))), RN×F −→ Rk

where, i ∈ {1, 2, . . . , N}, N ∈ R
h : RN×F −→ RN×M , M ∈ R
� : RN×M −→ R1×M

γ : R1×M −→ Rk

(3.3)

Here the function h indicates a list of MLP’s, γ is implemented as a MLP and
� represents a symmetric function. The proposed PointNet model in [22] uses
M = 1024 which means that h consinsts of 1024 MLPs, each MLP takes in a point
xi as input and ouputs a scalar value. So the function h can be modelled as follows

h(X) = (h1(xi), h2(xi), . . . , h1024(xi)), RN×3 −→ RN×1024

where, hj : R3 −→ R
j ∈ {1, 2, . . . ,M}, M ∈ R

(3.4)

The function h would be applied on all N points resulting in a N × 1024 matrix.
These extracted features (per-point features) are then aggregated using the sym-
metric function � = max. This results in a global feature vector of size 1 × 1024.
Finally, γ represents a new MLP which processes the global feature vector to output
a point set feature of size k.

To address the problem of invariance to rigid transforms, PointNet introduced a spa-
tial transformer network (STN) which aligns an arbitrary point cloud to a canonical
space. This network is sometimes also called as the Joint Alignment Network and
allows spatial manipulation of the data within the network itself. The idea of this
network is to somehow canonize the input point cloud. STN is used twice in the
PointNet model, once as an input transfer where the output is a 3x3 matrix and
second time as a feature transformer where the output is a 64x64 matrix.

The PointNet model architecture [22] consists of two networks. The first network
is called the Classification Network whose core base is the PointNet function men-
tioned in Section 3.3. The second network is called the Segmentation Network whose
task is to output per-point scores for m semantic subcategories. The input to this
network is the global feature vector k as well as the per-point feature vector which is
the result of h function. This network acts as input transformer as well as a feature
transformer when the input is being processed in the Classification Network. An
overview of the PointNet architecture can be seen in Figure: 3.1. The complete
network architecture details can be found in [22].
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Figure 3.1: Network Architecture of PointNet

3.3 PointNet++
PointNet++ is the successor to PointNet architecture. The reason to build this
model was to overcome the main drawback of PointNet, namely that PointNet did
not really capture interaction between points. To capture this point interaction,
PointNet++ introduced a new layer called Sampling and Grouping Layer. The
result of this layer is then fed into PointNet Layer for feature extraction. The
combined process of Sampling and Grouping Layer followed by a layer PointNet is
called Set Abstraction Layer (SAL). PointNet++ is based on multiple SAL which
helps it to achieve local feature aggregation for every point. We know introduce the
Sampling and Grouping Layer.
Sampling Layer

1. This layer is used to generate centroids from the given input point cloud. The
centroids are sampled using the Farthest Point Sampling (FPS) algorithm.

2. The objective of this algorithm is to sample a fixed number of points Q from
an input point cloud P and output a sampled point cloud Pq such that all the
points in Pq are farthest from every other point in Pq for the same value of
Q. This methods provides a good coverage of the entire point cloud. For an
algorithmic implementation please refer to A.1.

P = {x1, x2, . . . , xN} (3.5a)
Pq = {x1, x2, . . . , xQ} where Q < N (3.5b)

Grouping Layer
1. The objective of this layer is to find a fixed number of nearest neighbours for

all of the points in Pq. There are two possible approaches to do this: by using
the ball query search or the k-Nearest Neighbours (kNN) algorithm. kNN is
a simple algorithm which shall find a fixed number of neighbours from every
sampled point based on a distance metric. Wheras ball query search forms a
sphere/ball with every point in Pq and a predefined radius, and then returns
all the points within the sphere. For an algorithmic implementation please
refer to A.2.

2. The input to this layer is the original input point cloud P and the sampled
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point cloud Pq, the output of this layer is a neighbourhood point setNm ∀ q ∈ Q
in the Euclidean space.

An overview of this architecture can be seen in Figure: 3.2. The complete network
architecture details can be found in [23].

Figure 3.2: Network Architecture of PointNet++

3.4 Dynamic Graph CNN
Dynamic Graph CNN is a graph-based approach to solve classificaiton and segmen-
tation problems of point cloud data. It creates a graph from the point cloud data by
finding a fixed number of nearest neighbours of the input data points and then pro-
ceeds to compute features and apply convolution. The original paper [34] introduces
the concept of “EdgeConv” operator which eventually replaces the MLP used in the
PointNet. The model takes points, can take additional features as an input, it then
computes a neighbourhood point set Ni for every point and then calculates edge
values using “EdgeConv” operator for each point in every Ni; then it aggregates
the results for every Ni. It performs very well for segmentation, but the computa-
tional complexity of the model increases very fast as it is a graph-based method in
which the graph is updated after every layer. Figure:3.4 shows the architecture of
the model for classification and segmentation. Following is the explanation of the
EdgeConv and layer update operation.
Edge Convolutions (EdgeConv)

1. We start by using the simplified equation mentioned in Section 3.6.

X = {x1, x2, . . . , xN} ⊂ RF , N ∈ R
where, F = 3 +D

2. Compute a directed graph G using vertices, V and edges, E. Vertices of this
graph are from X i.e. the points themselves and the edges which represent the
connectivity between different vertices are computed using k-nearest neigh-
bours algorithm. The graph also includes a "self-loop" which means that every
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vertex is also connected to itself. The graph G = (V,E) now represents a local
point cloud structure where

V = {1, 2, . . . , N}
E ⊂ V × V

(3.6)

3. Next we compute the edge feature as follows

eij = hΦ(xi, xj)
where, hΦ : RF ×RF → RFn

i ∈ V
j ∈ V

(3.7)

Here hΦ is a nonlinear function with learnable parameters Φ
4. Convolution and feature aggregation! To convolute point xi we make use of

the neighbourhood information of the point xi given by j : (i, j) ∈ E, the edge
features eij, and a symmetric function (explained here 2.6) denoted by �. The
output x′

i is then given by

x
′

i = �j:(i,j)∈E eij

where, eij = hΦ(xi, xj)
(3.8)

Figure:3.3 gives a visual representation of the EdgeConv operator.

Figure 3.3: Visual representation of EdgeConv Operation of DGCNN

Selecting correct � and hΦ(xi, xj) functions is important here as they have
crucial influence on the properties of EdgeConv. For � its adviseable to use
max function. hΦ(xi, xj) is implemented as a MLP but the input to MLP can
vary. For example, if we consider PointNet then hΦ(xi, xj) = hΦ(xi), hence
the MLP extracts features based on only the point xi. The original paper [34]
suggests 3-4 options for selecting � and hΦ.

Update Layer
1. For every layer l the graph Gl is recomputed using the k-nearest neighbours

approach.
2. The nearest neighbours are computed in the feature space using L2 distance.
3. Using a symmetric function like max-pooling, permutation invariance is by-

passed.
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Figure 3.4: Network Architecture of Dynamic Graph CNN

3.5 Kernel Point Convolutions

Kernel Point Convolutions (KPConv) for point clouds [31] proposed a new type
point convolution method which was meant to overcome the limitations of previous
architectures. To achieve the, author proposed a kernel function to compute point-
wise filters. In convolutions on 2D images, we have the kernel weights associated
with pixel values and the filters we use are discrete and fixed in size. In KPConv,
we have kernel points instead of pixels, and they are used to determine the kernel
weights. We then use this kernel function to iterate over small neighborhoods of the
point clouds, this is analogous to using 2D kernel filters and traversing them accros
an image. To understand the formulation of convolutions in KPConv we begin by
redefining original point cloud equation (defined in equation2.2) for the scope of this
section. We split our P into two parts, in the following way

PKP ∈ RN×3 (3.9a)
FKP ∈ RN×D (3.9b)

Application of kernel function gKP to input data point FKP at point x is equal to
the weighted sum of neighbouring point features with the neighbourhood Nx defined
as a ball in 3D space with radius r ∈ R. The convolution operation if defined as
follows

(FKP ∗ gKP )(x) =
∑

x̂i ∈Nx

gKP (x̂i − x)fi

where, Nx =
{
xi ∈ PKP

∣∣∣∣ ||x̂i − x|| ≤ r
} (3.10)

The idea of kernel function gKP is that it must be able to apply different weights
to different areas inside a neighborhood. Drawing a comparison to the 2D CNN,
where kernels are usually defined as a square matrix of size smaller than input data
matrix, KPConv defines the kernel gKP using K support points which are known as
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kernel points. Figure 3.5 provides a comparison between a kernel of 2D CNN and
KPConv.

Figure 3.5: Visualization Comparison:
Left: Regular Convolution on 2D Image and Right: Kernel Point Convolutions on
Un-ordered 2D Points

Figure 3.6: Visualization of kernel points, center and points of a point cloud in a
neighborhood

The input to this function is neighboring points centered on x and defined as x̂i =
xi − x, the domain of the function becomes B3

r =
{
x̂i ∈ R3

∣∣∣ || x̂i ≤ r ||
}
. The

kernel points are defined by {x̃k
∣∣∣ k < K} ⊂ B3

r and have a learnable weight matrix
Wk

∣∣∣ k < K} ⊂ RDin×Dout associated with them. Here Din and Dout represent the
number of input dimensions incoming from the previous layer and the number of
output dimensions. For visual representation of this setting see figure 3.6. The
kernel function gKP for a point x̂i ∈ B3

r is then defined as follows

gKP (x̂i) =
∑
k<K

ψ(x̂i, x̃k)Wk (3.11)

where, ψ is a linear correlation function which measures how much the kernel point
x̃k is correlated with each neighboring point x̂i. By logic, the correlation should be
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higher for two points which are close to each other and is defined as follows

ψ(x̂i, x̃k) = max

0, 1− ||x̂i − x̃k||
σ

 (3.12)

where, σ is used as an influencer for distance and is selected based on the point cloud
density. Kernel point positions are critical to the convolution operator and KPConv
provides way to express deformable kernels. However since the results presented in
the paper for part segmentation of objects didn’t have any substantial difference in
them, I worked only with the rigid version of the kernel.
Core Ideas:

1. Two architectures are provided in the original paper called as KP-CNN and
KP-FCNN. The first one deals with classification while the later deals with
segmentation task. KP-FCNN has the same encoder module with variations in
the decoder stage for segmentation. Following we first introduce the network
parameters and then the are the basic layers used in both architectures.

2. We first set the cell size dll for every layer l. Using the cell size other parameters
will be computed. The distance parameter in kernel points is set as σl = Σ×dll.
We make use of the rigid kernel only for which the convolution radius is set
to 2.0 ∗ σl. The number of kernel points K = 15, Σ = 1.0 and he first cell size
dl0 depends on the dataset used and in case of ShapeNetPart will be 0.02 i.e.
2 cm.

3. Sampling Layer: Downsampling the point cloud using uniform sampling to
reduce the density of inputs at each layer.

4. Pooling Layer: In KPConv, the number of points is reduced progressively, so
the cell size is doubled at every pooling layer to increase the effective reception.
Finally max pooling is used to obtain the pooled features.

5. KPConv Layer: This is layer is the main convolution layer which takes in an
input PKP , their corresponding features FKP and the matrix of neighborhood
indices Nmat ∈ [[1, N ]]N

′×nmax . Here N ′ is the number of locations where the
neighborhoods are computed. The neighborhood matrix is forced to have the
size of the biggest neighborhood nmax, causing the matrix to have unwanted
entries. For points whose neighbours are less than nmax, the unwanted matrix
entries are simply ignored. Figure 3.7 shows the complete network architec-
tures, [31] contains complete details regarding training the network.
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Figure 3.7: Network Architecture of KPConv
KP-FCNN: Kernel Point - Fully Connected Neural Network used for Segmentation

3.6 Evaluation Metrics

To measure the results of segmentation the following metrics were used:
1. Accuracy (Acc) score is expressed as a percentage and is simply calculated as

the number of correctly predicted labels over total number of samples i.e.

Accuracy = 100
N

N−1∑
i=0

1(gti = yi) % (3.13)

where N is the total number of samples, gti and yi is the true and predicted
label of the ith sample, respectively.

2. Average Accuracy (Avg Acc) score is useful when the classes are imbalanced.
To calculte this metric we need to know sensitvity and specifity of our classifier.
Sensitivity is defined as the true positive rate and specificity is defined as the
true negative rate. Then the average accuracy is defined as the arithmetic
mean of sensitvity and specifity. An outcome is true positive when the model
correctly predicts the positive class and it is a true negative when the model
predicts the negative class corretly. If the model predicts the positive class
incorrectly then the outcome is false positive, simarly if it predicts the negative
class incorretly then the outcome of the model is false negative.

Sensitivity = true positives
true positives + false negatives

Specifity = true negatives
false positives + true negatives

Average Accuracy = Sensitivity + Specifity
2
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where N is the total number of samples, yi and ŷi is the true and predicted
labels of the ith sample, respectively.

3. Intersection over Union (IoU) captures the ratio of the area of the overlap and
the area of the union. Mathematically, for two sets A and B, IoU is defined
as follows:-

IoU(A,B) = |A ∩B|
|A ∪B|

(3.15)

Now that we know what is IoU let us define it for our case. Let us say there are
S number of shapes/samples from C number of object categories. Each object
will have different number of parts, and it is not necessary that the samples
belonging to the same object category have same number of parts. Once a
prediction is made by the model, we begin by calculating the IoU of each
part type in the category C, this is done by computing the IoU between the
groundtruth and the prediction. If the union of groundtruth and prediction
points is 0, then we count the part IoU as 1. We then average IoUs for all
part types in category C to get mIoU for that particular shape. To calculate
mean(IoU) for the category, we take average of mean(IoUs) for all shapes in
that category. For ease, henceforth the use IoU means this particular result,
unless specified as something else.
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4.1 Hardware

4.1.1 Data Capture Hardware
For data collection, Intel’s RealSense LiDAR Camera L515 was used. The L515
uses a Micro electro-mechanical systems (MEMS) to scan an Infrared (IR) sensor
over the device’s entire Field-Of-View (FOV), the result of which is then processed
by an Application-Specific Integrated Circuit (ASIC) to output a 3D point cloud.
Table 4.1 below lists the two resolutions available in which one can capture a point
cloud, followed by Table 4.2 mentioning the different important specifications of the
device. For a complete set of the device’s operating modes refer to table: C

Sr. No. Depth Resolution (w x h) Number of depth points per second FOV
1 640 x 480 9.2 million 70o x 55o ±2o
2 1024 x 768 23.6 million 70o x 55o ±2o

Table 4.1: L515 operating models

Depth frame rate 30 frames per second
RGB frame rate 30 frames per second
F Number 2.0
Focal Length 1.88mm
Focus type Fixed
RGB sensor FOV (H × V) 69o × 42o (±1 o)

Table 4.2: L515 device specifications

L515 is also equipped with a 6 Degrees-Of-Freedom (DOF) Inertial Measurement
Unit (IMU). Raw accelerator and gyroscope values can be obtained from the device.
Having an IMU equipped with a camera (and LiDAR) is helpful as one can com-
pute the pose of the sensor using the IMU information and therefore localize the
movement of the sensor. By combining this localization information and visual data
captured, one can attempt to solve the problem of simultaneous localization and
mapping (SLAM). The challenge of SLAM is about moving a device in an environ-
ment and developing or updating a map made out of captured visual data (images
or point clouds or both) while keeping track of the current position of the sensor.
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There are many approaches to solve this task but considering the time constraints
and a new study to be performed to achieve good quality results for SLAM, making
use of the IMU was not considered for this thesis.

4.1.2 Computation System
The Vera cluster is built on Intel Xeon Gold 6130 CPU’s. The system consists of
in total 245 compute nodes (total of 7848 cores) with a total of 28 TiB of RAM
and 13 GPU’s (8 NVIDIA Tesla V100 and 5 NVIDIA Tesla T4). The GPU used
for training the models is NVIDIA Tesla V100 32 GB. For exact system bifurcation
and GPU details, we refer to [32] and [6] respectively.

4.2 Dataset & Preprocessing

4.2.1 Synthetic Dataset
For training the models, I have used an information rich 3D model repository called
ShapeNet [4]. It contains over 3 million shapes from online 3D model repositories.
Moreover there are different types of annotations available for the models like part
correspondences, part hierarchies, functional annotations of parts, physical anno-
tations like texture and weight. ShapeNetPart dataset contains 16,881 pre-aligned
shapes from 16 categories, annotated with 50 segmentation parts in total. The
objects in each category are labeled with 2 to 5 segmentation parts. The authors
provide the dataset in a compressed format with 12,137 ( 70%) shapes for train-
ing, 1,870 ( 10%) shapes for validation, and 2,874 ( 20%) shapes for testing. For
the purpose of this thesis ShapeNetPart is an ideal candidate to work with. Before
given as an input to the models, the dataset is pre-processed such that the number of
points for each object category is sampled to 2048 using uniform sampling and then
each point cloud is subjected to random transformations (rotations, translations,
jittering).

4.2.2 Test Data Collection
Accurately capturing a 360o degree point cloud of an object and annotating it is a
laborious task. Here I present the method I followed to have a well defined point
cloud of my test object: ’mug’. I used two different mugs, the first one is brown in
color and is referred as object 1, while the second is white in color and is referred to
as object 2. To accomplish this task, I used Intel’s RealSense LiDAR L515 details
of which can be found in Section 4.1, 3D data processing library Open3D [38] and
3D annotation tool called labelCloud [26]. The data collection pipeline is based on
[5] and is explained in more depth in Appendix:B. Below is the summary of steps
followed to capture the data using L515 and to pre-process it.

1. Keep the camera stationary and save the camera parameters. Place the object
on a box, approximately between 35 cm and 50 cm from the camera origin.
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Figure 4.1f shows the image of object 1 on the box which I used for my data
collection.

2. Capture RGBD images and point cloud, while manually rotating the object
kept on a box. A Graphical User Interface (GUI) was developed to accomplish
this task effectively. The result of this is n_pcd point clouds and n_rgbd color
as well as depth images.

3. For all the n_pcd point clouds:-
(a) Compute the distance of each point to the origin (0, 0, 0) and discard the

point if its distance is more than 50 cm.
(b) Using random sample consensus (RANSAC) method we can identify the

points which belong in a plane in this above filtered point cloud. The flat
planar surface of the box on which the object is placed can be detected
to a workable accuracy. Once the plane is identified, we can discard the
points which belong to this plane.

(c) Since one needs to set the parameters for the above RANSAC-based plane
segmentation. Using an iterative strategy, one can manually keep tuning
different parameters for the first input point cloud till the desired result
is obtained. Once optimum parameters are found, they are saved and
used to process all the remaining n_pcd-1 point clouds.

(d) Each of these segmented point clouds are now downsampled using voxel-
based downsampling and normals for every point are estimated if not
already present.

4. Multiway point cloud registration:-
(a) Compute registrations for each point_cloud with all point_clouds (n_pcds
∗ n_pcds iterations) −→ fused_point_cloud. To compute the registra-
tions a color-based iterative closest point algorithm is used, the result
of which is a transformation matrix needed for aligning 2 point clouds.
Then result of step for object 1 can be seen in figures 4.1a and 4.1b.

(b) If required use RANSAC-based plane segmentation to remove any ex-
isting unwanted plannar surfaces. Use the dimensions of the box as a
means of maximum bound, crop the point cloud to get rid of points too
far way from the main object. For outliers close to the object use statis-
tical outlier filter. Refer to figures 4.1c and 4.1d for results on object 1.
These plane and point removal steps should be performed as required, the
objective is to have a good point cloud representation of the real object.

5. Point Cloud Annotation
(a) Use labelCloud to draw and align 3D bounding boxes for each part of

the point cloud. Save the dimensionsions and centroid of these bounding
boxes.

(b) Create an empty vector called label_vector whose length is the same as
the number of points in fused_point_cloud and initialize it to 0. Using
the geometry information of bounding boxes, find the points which lie
within the boxes and set a label value in label_vector exactly at those
index locations. Repeat this process for all bounding boxes. The result
of labelling object 1 can be seen in figure 4.1e.
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4. Development

(a) Multiway registration result: view 1 (b) Multiway registration result: view 2

(c) Visualization after removing plane us-
ing RANSAC-based plane segmentation &
mild statistical outlier filter

(d) Visualization after statistical outlier
filter with stronger values

(e) Visualization of labels af-
ter manually annoting the point
cloud

(f) True image of mug with the box
on which it kept during data capture

Figure 4.1: Visual results of test data collection process on object 1
30



5
Results

Following are the numerical and visual results from training and testing the previ-
ously explained models. Since it is not possible to have a 3D view in the report, I
have presented the visuals in a constrained manner. Typically all the visual images
provided here are screenshots of 3D plots. There are two types of views (all views are
orthogonal in nature unless specified otherwise) provided: Untransformed view and
transformed view. Untransformed views mean that the screenshot of the 3D view
was taken without rotating or translating the object, whereas transformed view typ-
ically means that the object was rotated and translated for easy comparison. This
was necessary because considering an object which was translated quite far from the
origin (0,0,0), taking an untransformed screenshot would lead to consumption of too
much space. In visualizations, a small coordinate frame also exists. It is represented
as 3 different colored arrows, each one of them pointing in a certain direction. The
red arrow cooresponds to X-axis, green arrow with Y-axis and finally blue arrow
with Z-axis. Ideally all views are arranged such that the viewer see’s the Y-axis
pointing upwards.

5.1 Results on Synthetic Dataset
The test dataset consists of 2874 samples made of 13 object categories. Since there
are so many samples, visualizations of only 1 sample belonging to 2 objects (chair
and airplane) are presented. Two tests were performed on the entire test dataset
called Test 1 and Test 2. For both the test the number of points was set to 2048
and Test 2 was subjected to random translations, rotations and jittering. A new
random transformation was applied for every object, before testing any model.

The radius setting of PointNet++ was set to 0.4 and 0.2 in the first and second
Set Abstraction Layer respectively. For DGCNN, three models were trained, each
of them having a value 10, 25 or 40 as nearest neighbours for every point. The
models were trained for a maximum of 300 epochs (iterations). An early stopping
mechanism was utilized to stop the training process earlier if the relative increase in
validation loss was substantial. For KPConv, the first cell size was set to 0.02, the
number of kernel points were 15 and no early stopping was utilized.

For models: PointNet, PointNet++ and DGCNN, one can find the accuracy, loss
and IoU for the training in figures 5.1a, 5.1c, 5.1e and the validation in figures 5.1b,
5.1d and 5.1f respectively. For KPConv only training loss and training IoU can be
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seen in figures 5.1g and 5.1h respectively.

(a) Accuracy of models during training (b) Accuracy of models during validation stage

(c) Loss of models during training stage (d) Loss of models during validation stage

Figure 5.1: Training results on ShapeNetPart: training dataset

The following table 5.1 provides the training duration for each of the models. This
duration does not include the processing time needed to sample the point clouds.
The average processing time for the ShapeNetPart dataset is 1 to 3 hours based on
the sampling method used.
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(e) IoU of models during training stage (f) IoU of models during validation stage

(g) Loss of KPConv during training stage (h) IoU of KPConv during training stage

Figure 5.1: Training results on ShapeNetPart: training dataset (cont.)

Model Training Duration
PointNet 0 hr 33 min 3 sec
PointNet++ 6 hr 18 min 21 sec
DGCNN (k = 10) 6 hr 31 min 16 sec
DGCNN (k = 25) 9 hr 3 min 10 sec
DGCNN (k = 40) 3 hr 40 min 39 sec
KPConv 72 hours 0 min 0 sec

Table 5.1: Training Duration of all models on ShapeNetPart training dataset

The following table 5.2 provides the three evaluation metrics: accuracy, average
accuracy and IoU, and the testing duration on the test dataset. The results are
provided for Test 1 and Test2.
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Acc Avg Acc IoU Duration (in sec)
Model Name Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2
PointNet 0.92 0.92 0.79 0.77 0.83 0.83 0.65 0.66

PointNet++ 0.92 0.92 0.82 0.79 0.84 0.83 31.83 31.46
DGCNN (k=10) 0.92 0.93 0.74 0.73 0.81 0.81 0.79 0.8
DGCNN (k=25) 0.94 0.93 0.79 0.78 0.84 0.83 0.82 0.88
DGCNN (k=40) 0.92 0.81 0.7 0.55 0.81 0.62 0.81 0.82

Table 5.2: Comparison of the models on Test 1: untransformed test dataset and
Test 2: transformed test dataset

Table 5.3 provides the per object IoU obtained for during training and testing stage
of KPConv. KPConv was trained for only 150 epochs instead of planned 300 as
the computation time exceeded limit of 3 days.

Object Training IoU Testing IoU
Air 84.4 32.5
Bag 85.8 42.0
Cap 85.6 51.8
Car 80.2 30.1
Chair 90.9 38.4

Earphones 77.6 25.1
Guitar 92.4 29.7
Knife 88.7 33.6
Lamp 81.7 28.4
Laptop 95.9 57.7

Motorbike 74.6 23.1
Mug 95.6 78.1
Pistol 84.8 48.0
Rocket 66.5 56.1

Skateboard 81.0 43.7
Table 83.5 29.1
Mean 84.3 40.5

Table 5.3: Object-wise training and testing IoU’s for KPConv on ShapeNetPart
dataset
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(a) True labels (b) Model: PointNet (c) Model: PointNet++

(d) Model: DGCNN (k=10) (e) Model: DGCNN (k=25) (f) Model: DGCNN (k=40)

Figure 5.2: Transformed view of point cloud with color information modified based
on true labels and predicted labels for Test 1 of object 1

(a) True labels (b) Model: PointNet (c) Model: PointNet++

(d) Model: DGCNN (k=10) (e) Model: DGCNN (k=25) (f) Model: DGCNN (k=40)

Figure 5.3: Transformed view of point cloud with color information modified based
on true labels and predicted labels for Test 2 of object 1
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(a) True labels (b) Model: PointNet (c) Model: PointNet++

(d) Model: DGCNN (k=10) (e) Model: DGCNN (k=25) (f) Model: DGCNN (k=40)

Figure 5.4: Transformed view of point cloud with color information modified based
on true labels and predicted labels for Test 1 of object 2

(a) True labels (b) Model: PointNet (c) Model: PointNet++

(d) Model: DGCNN (k=10) (e) Model: DGCNN (k=25) (f) Model: DGCNN (k=40)

Figure 5.5: Transformed view of point cloud with color information modified based
on true labels and predicted labels for Test 2 of object 2
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5.2 Results on Collected Test Data
In this section the models are tested on the data collected using the data collection
process mentioned in the section 4.2.2. There are two objects here both belonging
to the same object category of "Mug". Yet both the object have different properties.
Test object 1 was mentioned in the section 4.2.2 and can be seen in figure: 4.1e, the
other short more curvish "Mug" is our Test object 2 and can be seen in 5.8. The
same models were tested against different number of input points (1024, 2048, 4096,
8129). Results from KPConv are not available due to technical problems. Figure:
5.6 represent different evaluation metrics used for quantizing the performance of the
models. Figure: 5.6d represents the amount of time taken by a model to perform an
inference/prediction of the labels. Figures {5.9, 5.7, ??} and {5.10, 5.8, 5.12} provide
visualizations of ground truth vs predictions from models for different number of
input points for Test Object 1 and for Test Object 2 respectively.

(a) Test accuracy on scanned data for varying input points

Figure 5.6: Testing models on scanned data with varying number of input points
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(b) Test average accuracy (average per class) on scanned data for varying input
points

(c) Test IoU’s on scanned data for varying input points

(d) Test duration on scanned data for varying input points

Figure 5.6: Testing models on scanned data with varying number of input points
(cont.)
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(a) True labels (b) Model: PointNet (c) Model: PointNet++

(d) Model: DGCNN (k=10) (e) Model: DGCNN (k=25) (f) Model: DGCNN (k=40)

Figure 5.7: Untransformed view of point cloud with color information modified
based on true labels and predicted labels for test object 1 (Number of points = 2048)

(a) True labels (b) Model: PointNet (c) Model: PointNet++

(d) Model: DGCNN (k=10) (e) Model: DGCNN (k=25) (f) Model: DGCNN (k=40)

Figure 5.8: Untransformed view of point cloud with color information modified
based on true labels and predicted labels for test object 2 (Number of points = 2048)
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(a) True labels (b) Model: PointNet (c) Model: PointNet++

(d) Model: DGCNN (k=10) (e) Model: DGCNN (k=25) (f) Model: DGCNN (k=40)

Figure 5.9: Untransformed view of point cloud with color information modified
based on true labels and predicted labels for test object 1 (Number of points = 1024)

(a) True labels (b) Model: PointNet (c) Model: PointNet++

(d) Model: DGCNN (k=10) (e) Model: DGCNN (k=25) (f) Model: DGCNN (k=40)

Figure 5.10: Untransformed view of point cloud with color information modified
based on true labels and predicted labels for test object 2 (Number of points = 1024)
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(a) True labels (b) Model: PointNet (c) Model: PointNet++

(d) Model: DGCNN (k=10) (e) Model: DGCNN (k=25) (f) Model: DGCNN (k=40)

Figure 5.11: Untransformed view of point cloud with color information modified
based on true labels and predicted labels for test object 1 (Number of points = 4096)

(a) True labels (b) Model: PointNet (c) Model: PointNet++

(d) Model: DGCNN (k=10) (e) Model: DGCNN (k=25) (f) Model: DGCNN (k=40)

Figure 5.12: Untransformed view of point cloud with color information modified
based on true labels and predicted labels for test object 2 (Number of points = 4096)
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(a) True labels (b) Model: PointNet (c) Model: PointNet++

Figure 5.13: Orthogonal View of point cloud with color information modified based
on true labels and predicted labels for test object 1 (Number of points = 4096)

(a) True labels (b) Model: PointNet (c) Model: PointNet++

Figure 5.14: Top View of point cloud with color information modified based on
true labels and predicted labels for test object 2 (Number of points = 4096)
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6.1 Invariance to geometric transformations

We recall the fact that during the training stage, the point clouds were not subjected
to any kind of transformations. However, for testing, the test dataset was subjected
to random translation, rotation, and jittering. However due to the data collection
process, the scanned objects were inherently were translated and rotated. This is
because the object was kept between 0.35 - 0.5 cm from the camera origin which
was (0,0,0). and in the case of rotation, we can see that for object 1, the bottom of
the mug is not parallel to the XZ-plane but is slightly oriented, whereas for object
2 the entire point cloud is not just flipped with the bottom of the mug being on
top but the plane representing the bottom point cloud is not aligned with XZ-plane.
Comparing the figures: 5.2 with 5.3 and 5.4 with 5.5 we can see that the overall
segmentation results are quite good unless the distortion level is too high as in case
of 5.5f. From table: 5.2 we can see that the there is less than 5% change between
Test 1 and Test 2 for any of the metrics of all the models with DGCNN (k=40) being
an exception. Models: PointNet, PointNet++ and DGCNN (k=25) have the best
results on the test dataset. Looking results from the scanned data, from the figures
5.7, 5.9 and 5.11 for object 1 and 5.8, 5.10 and 5.12 for object 2, one can clearly see
that PointNet outperforms all the other models irrespective of the number of input
points or their orientation.

6.2 Input point cloud structure

6.2.1 Varying the number of input points

The number of input points is an important parameter, as we would ideally like
the point cloud to retain as much information as possible, so that it can then be
used for further applications. From figures:5.6a and 5.6d we can see that the input
point cloud size directly affects the time needed by a model to make an inference.
PointNet again outperforms all the other models with an inference time of around
0.5 sec for 8192 points while consistently delivering accuracy above 90% for all input
point sizes.
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6.2.2 Missing points and outliers
Object 1 was scanned with the bottom of the mug place on a box, recalling the test
data collection process in 4.2.2, we the RANSAC-based plane segmentation removed
the entire flat surface represented by the box. This eventually also removed the
bottom of the mug. While no such bottomless mug was part of the training dataset,
from the figure 5.14 we can see that the results have been quite satisfcatory for
PointNet and PointNet++. Figures 5.11b and 5.11c offer an orthogonal view of
the same result for PointNet and PointNet++ respectively. Object 2 has more
prominient outliers present suchs as points in between the handle and the body of
the mug, and points near the bottom of the mug. These points ideally should not
exist but they have not been removed, in order to test the models against such data.
Clearly PointNet is the only model to classify the points correctly while maintaining
a good accuracy.

6.3 Drawbacks

6.3.1 Mislabelling of true data
All the models in this thesis are trained on the ShapeNetPart dataset, but the dataset
itself constains wrong labels for certain parts of objects. One of the examples for
this is presented in figure 5.5a, where we can see that there is an engine present
under both the wings but it is labelled same as the wing and not as a different part.
This type of mislabelling poses a problem for our models as they are supervised
models. The model which suffers the most in this case is PointNet as it does not
have any local feature aggregation method built in it. However, from figure 5.4 we
can see that all the DGCNN model variants, PointNet++ and KPConv can identify
the engine which PointNet clearly cannot.

6.3.2 Scaling issues
The results on the transformed version of the test dataset show that the models have
certain resilience towards transformations like translations, rotations and jittering.
However, they do not perform good if the scaling factor of the point cloud is different.
Depending on the point cloud accquisition process, one may have to rescale the point
cloud to match the scale of the training data. The results presented here are obtained
after manually rescaling the collected the test data.
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Deep learning-based methods have shown remarkable performance in point cloud
segmentation. The drawback of these methods lies in the amount of time and
resources spent in capturing and annotating the data, training the models, and op-
timizing the training process. However, they do bring in a certain value, as one does
not need to handcraft features anymore but instead makes use of data and com-
putational power to create features from the supplied data. Part segmentation is
still a very challenging task compared to other segmentation tasks like instance and
semantic segmentation. There exist two main bottlenecks for part segmentation, the
first is the availability of datasets i.e. apart from ShapeNetPart and PartNet (part
of ShapeNet project) there does not exist any other dataset. The second bottleneck
is that most of these models are supervised models meaning one must provide proper
labels along with the training data.

The results of PointNet, PointNet++, DGCNN and KPConv on the ShapeNetPart
dataset do prove their capabilities to create features from a given point cloud but the
implementation of PointNet and DGCNN was the easiest compared to PointNet++
and KPConv. Reflecting back at the training duration of each of the models and
the results they have produced, it is more economical and practical to use PointNet,
followed by DGCNN for solving a particular task. Especially for solving the task
of part segmentation, it would be beneficial, both economically and result-wise, to
make improvements or build new models based on PointNet and DGCNN.

While each model has their own merits and limitations, I believe PointNet and
DGCNN are quite useful as they are ideal candidates to form a basis or draw inspi-
ration from, for developing unsupervised models in the future like in [8]. PointNet
is a surprisingly simple model with only limitation of not having any type of local
feature aggregation and yet delivers amazing results. DGCNN has more customiz-
ability when it comes to change of model parameters but overfits the data very fast,
making it difficult to build deeper networks. Further research in the features learned
by PointNet as done in [13] and better graph regularization methods will contribute
to the success of building more efficient networks. There are many directions in
which these models can be optimized like better point cloud sampling strategies
[10, 15], different neighborhood selection criteria, memory-efficient point processing
blocks [16] and more.
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A
Appendix 1: Algorithms

A.1 Farthest Point Sampling

Algorithm 1: Fastest Point Sampling
Input: P: matrix representing point cloud data of size

(N points x M dimensions)
num_points: number of samples

Output: centroids: vector containing index of sampled point cloud of size
(num_points, 1)

/* to store index values of centroids from the input point cloud */
1 centroids← zeros(num_points, 1)

/* to store euclidean distance between a point and a sets of points */
2 distance← ones(N, 1) ∗ 1e10

/* returns random integer such that 0 ≤ X ≤ N */
3 farthest← randint(0, N)

for i← 0 to num_points by 1 do
/* Set the centroid of ith point to farthest point */

4 centroids[i, 1]← farthest
/* Take the coordinate of P at the farthest point */

5 cloud_centroid← P [farthest,M ]
/* Calculate the Euclidean distance from all points in the point set to

this farthest point */
6 dist← ((P − cloud_centroid)2)

/* Update distances to record the minimum distance of each point in the
sample from all existing sample points */

7 dist_mask ← dist < distance
8 distance[dist_mask]← dist[dist_mask]

/* Find the farthest point from the updated distances matrix, and use it
as the farthest point for the next iteration */

9 farthest← max(distance)
10 return centroids
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A. Appendix 1: Algorithms

A.2 Ball Query Search
Ball query search [23] is a type of nearest neighborhood search very close to the k-NN
approach. The idea behind the ball query search is that given a query point ps which
lies in the point cloud P , we shall find all points P ′ such that the euclidean distance
between ps and every point of P is less than a set radius r. To compute ps, farthest
point sampling is used to assure reception over the entire point cloud P . The advan-
tage of using ball query search over k-NN is that the ball query shall find all points
in a given radius r while k-NN shall find only k fixed points. However for computa-
tional reasons, in the implementation, there is an upper limit for the total number of
points sampled using ball query. Following is the pseudocode for ball query search:
Algorithm 2: Ball Query Search
Input: r: radius of local region

sample_limit: maximum number of samples in a local region
P : input point matrix of size (N points x M dimensions)
Q: query point matrix of size (S query points x M dimensions)

Output: group_idx: index of grouped points of size (S × sample_limit)
1 group_idx = torch.arange(N).view(1, 1, N).repeat([B, S, 1])

/* sqrdists: [K, N] Store the Euclidean distance between the center point Q

and all points P */
2 sqrdists = square_distance(Q,P )

/* Find all distances greater than r2, its group_idx is directly set them to
N */

3 group_idx[sqrdists > r2] = N
/* Sort the array in an ascending order and select the first sample_limit

number of points */
4 group_idx[:, ] = sort(group_idx)[:, : sample_limit]

/* Considering that there may be points in the previous num_sample points
that are assigned N (ie, less than num_sample points in the spherical
area), this point needs to be discarded, and the first point can be used
instead. */

/* group_first: [B, S, k], actually copy the value of the first point in
group_idx to the dimension of [B, S, K], which is convenient for subsequent
replacement. */

5 group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, num_sample])
/* Find the point where group_idx is equal to N */

6 mask = group_idx == N
/* Replace the value of these points with the value of the first point */

7 group_idx[mask] = group_first[mask]
8 return group_idx

II



B
Appendix 2: Test Data Collection

Pipeline

B.1 RANSAC-based Plane segmentation
To remove the top of the box on which the object is place, we make use of RANSAC
to find a plane which fits the largest number of points and eventually represents the
top of the box. To achieve this we make use of Open3D’s segment_plane function
as mentioned in [11]. It has the following three parameters:

• A distance threshold which defines the maximum distance a point can have
to an estimated plane, for it to be considered an inlier i.e. a point within the
estiamted plane.

• The number of points that are randomly sampled to estimate a plane.
• The number of iterations which states how often a random plane is to be sam-

pled and verified.

The function then returns the coefficients of the plane as (a, b, c, d), such that for
each point (x, y, z) on the plane we have ax + by + cz + d = 0 and a list of indices
of the points which lie within the plane. Making use of this list of inlier indices, we
can remove the points which belong to the top of the box. The plane removal takes
place for all the point clouds, but the parameters for the function are set only once.
To find the optimum parameters effectively, a visualization of the segmented point
cloud is shown using default parameter values and if the results are not satisfactory,
new parameters can be entered by the user, followed by a new visualization. This
process takes place in an iterative fasion till the user decides to stop the program,
hence setting the argument values of the function to be used for all the remaining
point clouds. If needed the plane segmentation function can also be called only once
or be used in the above mentioned way to process a set of point clouds.

B.2 Point cloud fusion

B.2.1 ICP registration
The main algorithm used to fuse multiple point clouds here is called Multiway reg-
istration which essentially uses a point cloud registration algorithm like Iterative
Closest Point (ICP) as the base algorithm. ICP takes in two point clouds (source
and target) as an input, and an initial transformation that might roughly align the
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source point cloud to the target point cloud. The output of ICP is a transforma-
tion that aligns the two point clouds. There many variations of ICP available as
mentioned in [24], the one used here is called as point-to-plane ICP [35] and is im-
plemented via Open3D [11].

The point-to-plane ICP algorithm iterates over two steps:
1. To find the correspondence set Cs = {(pi, pj)} from target point cloud Pj, and

source point cloud Pi which is transformed with the transformation matrix
Ti,j. Here pi and pj are points from the source and the target point clouds
respectively.

2. Update the transformation matrix Ti,j by minimizing an objective function
E(T) defined over the correspondence set Cs
.

The objective function E(T) is defined as follows

E(T) =
∑

(p,q)∈K
((p− Tq) · np)2 (B.1)

where, np is the normal of point p.

B.2.2 Multiway registration
Multiway registration is a process used to find transformations, {Ti} which for a set
of point clouds, {Pi} such that the transformed point clouds {TiPi} are aligned in
a common space. Multiway registration is achieved via the pose graph optimization
and implemented using the functions in Open3D [19]. Pose graph optimization is a
two step process in which one first constructs a pose graph and then optimizes.

A pose graph is just a list consisting of nodes and edges. Every node consinsts
of a point cloud P and a pose (transformation) matrix T, which transforms P into
the common global space. By default, the space of the first point cloud P0 from the
input point cloud set is used as the common global space and T0 is set as an iden-
tity matrix. The concept of multiway registration assumes that neighboring nodes
will have a large overlap and hence, can be registered using the point-to-plane ICP
algorithm. The objective of the edge is to connect two different nodes that have
overlap between them. Each edge consists of a pose matrix Ti,j which can align a
source point cloud Pi to a target point cloud Pj.

The alogirthm then begins to construct a pose graph by comparing all the points
clouds with every other point cloud, the registration process between two point
clouds is called as pairwise registration. From [5] one finds that pairwise registra-
tion is error-prone and false positives outnumber true positives. To overcome this
problem, they suggest partitioning the pose graph edges into two types. The first
type of edge is called odometry edge, which denotes a connection between tempo-
rally close, neighboring nodes. The second type of edge is called loop closure edge,
which denotes connectiong between any non-neighboring nodes. Further, a local
and global registration algorithm is used for finding the transformation matrix for
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odometry edges and loop closure edges respectively. After running the entire pro-
cess, the end result is a fused point cloud in a common global space. This fused
point cloud then be further processed as required and finally annotated using [26].
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C
Appendix 3: Intel Realsense L515

Operating Modes

Operating models/streaming profiles supported by the Depth Sensor of L515:

No. Stream Resolution FPS Format
1a Confidence 1024x768 30Hz RAW8
1b Confidence 640x480 30Hz RAW8
1c Confidence 320x240 30Hz RAW8
2a Infrared 1024x768 30Hz Y8
2b Infrared 640x480 30Hz Y8
2c Infrared 320x240 30Hz Y8
3a Depth 1024x768 30Hz Z16
3b Depth 640x480 30Hz Z16
3c Depth 320x240 30Hz Z16

Table C.1: Stream Profiles supported by the L515 Depth Sensor

Operating models/streaming profiles supported by the Motion Module of L515:

No. Stream Resolution FPS Format
1a Accel N/A 400Hz MOTION_XYZ32F
1b Accel N/A 200Hz MOTION_XYZ32F
1c Accel N/A 100Hz MOTION_XYZ32F
2a Gyro N/A 400Hz MOTION_XYZ32F
2b Gyro N/A 200Hz MOTION_XYZ32F
2c Gyro N/A 100Hz MOTION_XYZ32F

Table C.2: Stream Profiles supported by the Motion Module
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Operating models/streaming profiles supported by the RGB Camera of L515:

No. Stream Resolution FPS Format
1 Color 1920x1080 30Hz RGB8
2 Color 1920x1080 30Hz Y16
3 Color 1920x1080 30Hz BGRA8
4 Color 1920x1080 30Hz RGBA8
5 Color 1920x1080 30Hz BGR8
6 Color 1920x1080 30Hz YUYV
7 Color 1920x1080 15Hz RGB8
8 Color 1920x1080 15Hz Y16
9 Color 1920x1080 15Hz BGRA8
10 Color 1920x1080 15Hz RGBA8
11 Color 1920x1080 15Hz BGR8
12 Color 1920x1080 15Hz YUYV
13 Color 1920x1080 6Hz RGB8
14 Color 1920x1080 6Hz Y16
15 Color 1920x1080 6Hz BGRA8
16 Color 1920x1080 6Hz RGBA8
17 Color 1920x1080 6Hz BGR8
18 Color 1920x1080 6Hz YUYV
19 Color 1280x720 60Hz RGB8
20 Color 1280x720 60Hz Y16
21 Color 1280x720 60Hz BGRA8
22 Color 1280x720 60Hz RGBA8
23 Color 1280x720 60Hz BGR8
24 Color 1280x720 60Hz YUYV
25 Color 1280x720 30Hz RGB8
26 Color 1280x720 30Hz Y16
27 Color 1280x720 30Hz BGRA8
28 Color 1280x720 30Hz RGBA8
29 Color 1280x720 30Hz BGR8
30 Color 1280x720 30Hz YUYV
31 Color 1280x720 15Hz RGB8
32 Color 1280x720 15Hz Y16
33 Color 1280x720 15Hz BGRA8

No. Stream Resolution FPS Format
34 Color 1280x720 15Hz RGBA8
35 Color 1280x720 15Hz BGR8
36 Color 1280x720 15Hz YUYV
37 Color 1280x720 6Hz RGB8
38 Color 1280x720 6Hz Y16
39 Color 1280x720 6Hz BGRA8
40 Color 1280x720 6Hz RGBA8
41 Color 1280x720 6Hz BGR8
42 Color 1280x720 6Hz YUYV
43 Color 960x540 60Hz Y16
44 Color 960x540 60Hz BGRA8
45 Color 960x540 60Hz RGBA8
46 Color 960x540 60Hz BGR8
47 Color 960x540 60Hz YUYV
48 Color 960x540 30Hz RGB8
49 Color 960x540 30Hz Y16
50 Color 960x540 30Hz BGRA8
51 Color 960x540 30Hz RGBA8
52 Color 960x540 30Hz BGR8
53 Color 960x540 30Hz YUYV
54 Color 960x540 15Hz RGB8
55 Color 960x540 15Hz Y16
56 Color 960x540 15Hz BGRA8
57 Color 960x540 15Hz RGBA8
58 Color 960x540 15Hz BGR8
59 Color 960x540 15Hz YUYV
60 Color 960x540 6Hz RGB8
61 Color 960x540 6Hz Y16
62 Color 960x540 6Hz BGRA8
63 Color 960x540 6Hz RGBA8
64 Color 960x540 6Hz BGR8
65 Color 960x540 6Hz YUYV

Table C.3: Stream Profiles supported by the RGB Camera
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