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Abstract

This thesis describes the implementation of Robust Design and Design of Experi-
ments methodologies with the FMI Microsoft Excel Add-in (FMIE). FMIE allows
engineers to use Microsoft Excel in collaboration with simulation models created in
other software and exported as FMUs.

A choice of pre- and post processing methods are implemented as Excel macros
for use with the FMIE. Their functionality are demonstrated with a non trivial
parameter optimization of a truck model created with Dymola. The development
of the truck model and integral parameters are explained within this thesis.

The Excel macros are used to find a design point that is sufficiently good in
aspect to two response factors. The stability of this design point with aspect to a
noise factor and small variance of the design factors is determined.

Keywords: Robust Design, Design of Experiments, Modelica, Dymola, Microsoft
Excel, Simulation, FMI, FMU
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1 Introduction
The cost of making changes to a product increases with the time spent in the
development process. If it is discovered that a change has to be made in a full scale
prototype of, for example, a car it most certainly will be both time consuming and
expensive. Early gathering of information about how the product works reduces
the risk of making faulty decisions early in the process that will have to be changed
later. One way to gather this information is through computer models. Many
products can be described by means of dynamic models, and then the use of the
model is often referred to as a simulation or dynamic simulation.

When analysing a model the difficulties of understanding how each parameter
affects the output arises with the models complexity. Optimally one would be able
to describe the product behaviour with a invertible mathematical function, for
complex products it is sadly closer to an exception than a regularity that this is
possible. As a result of this the developer is forced to test the model repeatedly
with different input. Depending on the experiment performed the time this takes
varies, but as a rule of thumb it is more than desired.

As information gathering easily becomes both time consuming and expensive,
methods have been developed to maximize the information gathered while minimiz-
ing the cost of the experiments. This thesis focuses on:

• Applying the methods of Robust Design (RD) and Design of Experiments
(DOE)[10] to simulations performed with the FMI add-in for Excel (FMIE).

• Demonstrate the functionality obtained when implementing RD and DOE
with the FMI add-in for Excel. This is done with a model of a truck performing
a transport task created in Dymola.

The truck model is exported from Dymola using the FMI standard and simulated
with the FMIE. The analysis is divided into two main parts, screening and sensitivity
analysis, both of these two are then divided into the subparts case set up, simulation
and post-processing. Before performing a sensitivity analysis the designer must
decide on a design point, this is often done with the use of optimization. The
subject of optimization is considered too large to be included within this thesis and
is therefore excluded. The design process is displayed in Figure 1.0.1.

Figure 1.0.1: The process of analysis applied within this thesis.
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1.1 Scope and Purpose

The results from this thesis are macros implemented within Microsoft Excel utilizing
RD and DOE theories. The macros acts as a suggestion on how to continue the
development of FMIE. The thesis includes an example as verification of that the
implementation works for one relevant and nontrivial design.

1.2 Delimitations

The chosen DOE and RD methods will be implemented within Microsoft Excel and
written in the Visual Basic for Applications (VBA) language.

The scope of RD and DOE is large and not all methods for product optimization
are well suited for computer simulations. It is therefore important to identify the
“right” methods for this thesis. The DOE and RD methods in this thesis are applied
with computer simulations. They should however be applicable on other types of
experiments as well.

The theories of DOE and RD are a great asset when working with optimization.
Within this thesis the optimization is carried out with the use of manual selection.
For a more mathematical approach to optimization the author recommends the use
of other sources.

The truck model created in Dymola will not be based on any particular existing
truck. It will however strive to use and produce as realistic values as possible.
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2 Modelling and Simulation with
Dymola and FMI

There are many different programming languages and software used for simulations.
Choosing the right tool for the problem in question is important. A suboptimal
simulation software or programming language may make it difficult to obtain good
results. The model created for this thesis was built in Dymola a simulation software
based on the Modelica programming language.

2.1 Modelica

Modelica [1] is a language focused on modelling of multi domain physical systems.
It is owned and developed by the Modelica Association. Being equation based
and acausal the user does not have to define the order variables are calculated
as long as the system is properly defined. The free Modelica Standard Library
already includes a large number of ready to use components for areas as mechanics,
electrical, thermodynamics etc. In addition it is easy to create your own libraries
with custom components.

The Modelica code in Figure 2.1.1a contains the equations needed to describe
the mass-spring system in Figure 2.1.1b.

model massSpring

import SI =

Modelica.SIunits;

constant Real k = 2;

SI.Acceleration a;

SI.Velocity v(start=0);

SI.Distance x(start=0);

constant SI.Mass m = 1;

constant SI.Acceleration g

= 9.81;

equation

a = der(v);

v = der(x);

a*m = m*g-k*x;

end massSpring;

(a) Modelica code of mass-spring system. (b) Mass-spring system

Figure 2.1.1: Mass-spring system

2.2 Dymola

Dymola [2] is a program developed by Dassault Systèmes. The modelling part of Dy-
mola is based on the Modelica Language. Apart from text based modelling Dymola
provides a graphical interface that helps the user create models and displays them
in a pedagogical way. After a model is created Dymola also contains environments
for simulation and illustration of results. A model of the same mass-spring system
as in Figure 2.1.1a is viewed in Figure 2.2.1 but this time created with existing
blocks from the Modelica Standard Library.
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Figure 2.2.1: Dymola model of mass-spring system.

2.3 FMI Add-In for Excel

The Functional-Mock-up Interface [3] is a standard for exchange of compiled dynamic
models, and is intended to promote model reuse and tool interoperability. Several
tools provide export of Functional Mock-up Units (FMUs), all of which can be used
with the FMI Add-In for Excel (FMIE). FMI provides two different formats for
exchange of models:

• FMI for Model Exchange (FMI-ME). The FMI-ME specification is based on
a continuous-time hybrid Ordinary Differential Equation (ODE) representa-
tion. The FMU-ME provides inputs and outputs and exposes functions for
setting parameters and computing the derivatives of the ODE. FMIE supports
initialization of FMU-MEs.

• FMI for Co-Simulation (FMI-CS). The FMI-CS specification provides a model
representation where both the model and an integrator (ODE solver) are en-
capsulated inside the FMU-CS. Similar to the FMI-ME, the FMUCS provides
inputs and outputs and means to set model parameters. It also provides a
function to integrate the dynamics of the model for a specified time interval.
FMIE supports dynamic simulation and initialization of FMU-CS.

An FMU is a zip archive that contains a platform specific DLL(s) and metadata in
XML files and optionally additionally resource data. The metadata file specifies
general model information such as the name of the model and when it was generated.
It also specifies all the variables and parameters and how they may be used.

The amount of programmes supporting FMU export and import are steady
growing, more information about the programmes and their specific support may be
found on the FMI web page [4]. This thesis will make use of Co-Simulation FMUs
created with Dymola.
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3 Robust Design

When developing a product the choice of design process has large influence on
the end result, especially for complex products where many engineers and com-
panies/suppliers are involved over long time. During development decisions are
made that will influence the performance of the product. As most developers would
like the value of their product to be as high as possible they want to make good
decisions. But how do one decide what is a good decision? What is attractive will
differ from person to person and we cannot rely upon the single designer to know
what is right and make the best decisions by heart. During the history of product
development methods have been developed to quantify our results and eliminate
personal judgement.

It is not sufficient to just maximize the performance and minimize the cost of
the product. The developer must also ensure the quality of the product. Design
parameters often deviate from their nominal values, this may be a result of tolerances
within manufacturing, ageing or change of operating environment. If a products
performance is inconsistent, no matter how high, it will be perceived as quality loss
for the end user.

Robust Design focuses on achieving a consistently high performing product. In
other words, balancing the mean on its target while minimizing the variance. One
of the key tools used with Robust design is the P-diagram, Figure 3.0.1, it is used
to classify the variables within the design into four categories.

• Response factors, f — How performance is measured, product shall be designed
so that this is as close as possible to the requirements on the function.

• Signal factors, m — Input to the product/process from the end user. The
signal factors often differ from time to time and between users.

• Control factors, b — Design parameters, these are changed to influence the
response. It is through the control factors the designer influences the product.
The goal with the development process is to find the correct values.

• Noise factors, z — The reason Robust Design exists. All unknown influence
on the response factors. Examples are: Tolerances, temperature differences,
wear, plastic creep etc.

Figure 3.0.1: A P-diagram, commonly used with robust design methods.
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3.1 Design of Experiments

The characteristics of a system is determined by the laws of nature, but for complex
products it is difficult to intuitively predict its behaviour. Experiments therefore
becomes a important tool when searching for a systems characteristics. As perform-
ing many experiment often becomes time consuming and expensive it is important
to maximize the information gathered with each case. The goal here is to gain
an understanding of if and to what magnitude control factors influence the mean
value and variance. Design of Experiments describes how to select combinations of
control variables to gain comprehensive information with a limited number of cases.

3.1.1 Factorial Designs

Assuming a experiment is performed to determine the influence three settings have
on a system, the settings are either “high” or “low”. Creating a test case for each
setting combination results in 23 cases, Table 3.1.1. This may seem affordable but
as the number if factors grow the number of cases increases rapidly. It may also not
be enough with two levels on each factors. The total number of cases are given by:

k = ln (3.1.1)

After performing the experiment the main effects of each factor may be determined.

Table 3.1.1: A full factorial design set up of a experiment with three control factors,
A, B, C, and two levels, represented by +1 and -1.

A B C Response
-1 -1 -1 r1
+1 -1 -1 r2
+1 +1 -1 r3
-1 +1 -1 r4
-1 -1 +1 r5
+1 -1 +1 r6
+1 +1 +1 r7
-1 +1 +1 r8

Using A as an example the mean response when A is set “low” is subtracted from
the mean response when A is set “high”

Main effect of A =
r2 + r3 + r6 + r7

4
− r1 + r4 + r5 + r8

4
(3.1.2)

A full factorial design gives substantial information on each factor and even their
interactions. But as the number of factors grow larger the advantage of limiting the
experiment to the factors with a larger influence on the systems becomes apparent.
This process is called screening. When screening the cases are limited to a set which
is meant to provide enough information to determine which factors are trivial and
may be removed from forthcoming studies.

In applications discussed in this report the factors are almost always scalars
rather than switches with as clear states as “high” and “low”.[12]

3.1.2 Space-Filling Algorithms

Monte Carlo Sampling (MCS)

When performing computer simulations the output of two runs with the same input
will be identical (unless the model contains some random element). Reproducing
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results is one of many strengths with computer simulation, but in reality results
vary. The reasons for this are many and the designers goal is to make the products
performance insensitive to unknown variation. If the designer wants to investigate
the effect variations of a certain parameters has on the output it is often a good
assumption to represent the uncertain variation with a normal distribution. The
valuable information extracted from these experiments are not the results from a
single simulation. The questions that need answers are rather of a form similar to
“How does a distribution of the input affect the output”. [9]

When creating the Monte Carlo samples the most common way is to use a
pseudorandom number generator. A drawback with this is that a very large sample
is required to ensure a variance close to the theoretical value. For example, when
simulating a single Gaussian variable, in order to ensure a 99% probability that the
sample variance is within 1% of the correct value, 133 000 samples are required. [8]

Latin Hypercube Sampling

A Monte Carlo Sampling is effective when examining how variations of a parameter
affects the model. But as the input is randomly distributed it is hard to control how
the sample turns out. If a batch of simulations are run in the purpose of searching
for a good parameter setting it is desired to use a sample of test points that covers
the domain of interest in a effective manner. It is entirely possible that nearly
identical values could be generated twice with MCS, which would be considered a
waste of computing power.[7]

Latin hypercube sampling algorithms are constructed in such a way that they
cover parameter ranges evenly. This is done by assuring that the one dimensional
projections of the multidimensional domain are well distributed. Descried with
three stps:[8]

1. The range of each parameter is divided into intervals of equal size.

2. One value is then chosen from each interval.

3. The parameter subsamples is permuted to minimize correlation.

Many different algorithms for creating a Latin hypercube sample exists. The
approach of the algorithm differs with their purpose. Examples are: “LHS method
emphasizing multi dimensional uniformity” by Deutch[7] and an algorithm “to
better enable the simulated variables to have the correct means and variances” by
Huntington [8]. As the algorithms for creating samples become more complex the
resources needed increase. If the quality of the results increase with a more complex
algorithm this may be a cost well worth paying but otherwise simplicity often is to
prefer.

Comparing Sampling Sets

The sets of data points created with the algorithms described above are on some
level random. This makes it reasonable to assume that it is possible to compare
sets of data points created by the same, or different, algorithms. In the end one
of the data sets will be considered “better”. To do this we must first define a way
to numerically compare sets and also what is “better”. One relatively simple and
easy to understand way of doing this is to maximize the minimum point to point
distance in the sets. By doing this the risk of simulating two points that provide
the same information is reduced.

More complicated methods of comparing sample distributions is different forms
of discrepancy. A common used is the star discrepancy[11], D∗, of a sequence of n
points x = {x0, ..., xn} in the s-dimensional cube I = [0, ui). It is defined as

D∗n(x) = sup
P∈Y ∗

∣∣∣∣A (P, x)

n
− λs (P )

∣∣∣∣ (3.1.3)
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Figure 3.1.1: LHS-cube of two design factors.

where λS is the s-dimensional volume, A (P, x) is the number of xn in P and Y ∗ is
the class of all s-dimensional subintervals P of I on the form

P ≡
s∏

i=1

[0, ui) (3.1.4)

The star discrepancy is a potent measure for sample distribution in a multidi-
mensional space but it has the drawback of being computational heavy. It is
therefore suited for comparison between different sampling methods but regularly
not recommended when optimizing a sample during an experiment.

3.2 Post-processing

How data obtained during simulations is presented has grate influence on its
usefulness. It is therefore important that one uses the right methods of data
representation and extracts the maximum amount of information from the data. In
the following sections some methods of post-processing are explained.

3.2.1 Scatter Plot

After receiving the results from a batch simulation a good first choice of action
is to “look” at the distribution, this may give the designer an idea of what other
post-processing methods to use for continuing analysis. A scatter plot is a simple
representation of data points in a graph, Figure 3.2.1. It is very intuitive in one,
two ore three dimensions, versions exists for higher dimensions but this might be
considered to be complicated.
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3.2.2 Pareto Front

When optimizing a function with aspect to more then one variable on can not
assume to always find an optima for all responses at the same control factor settings.
A point is considered pareto optimal if no other point is strictly better in all aspects.
That is, if one wishes to minimize two responses, A and B, a point is considered
pareto optimal if no other point has a lower value of A without increasing B and
vice versa. A pareto front is viewed in Figure 3.2.1.

Figure 3.2.1: A 2D-Scatter plot with a pareto front. Green squares are considered
pareto optimal.

3.2.3 Pearson’s Correlation

Pearson’s correlation coefficient[5] for a sample is defined as

rxy =

n∑
i=1

(xi − x̄) (yi − ȳ)

(n− 1) sxsy

sx =

(
n∑

i=1

(xi − x̄)
2

) 1
2

(3.2.1)

where n is the sample size. If y shows tendencies of increasing when x is increasing
the correlation is positive. If y instead shows decreasing tendencies when x is
increasing the correlation is negative. r takes values between -1 and 1. It reaches
its extremes when the sample points are on a straight line, the correlation is then
considered perfect.
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4 Implementation within Microsoft
Excel

Microsoft Excel is a widely used software and most people owning a computer has
at least some experience working with it. While not used for advanced engineering
computations Excel provides a wide range of tools for simpler calculations, organiza-
tion and data presentation. Examples are histograms, filtering and pivot tables. It
is also easy for the user to create nice looking charts with 3D-effects and shadowing.

With FMI Add-in for Excel the possibility arises to combine the easy to use
Excel functionality with more complex models from other software. If the FMU
imported into Excel is well specified it is possible to simulate and work both with
input and output without possessing extensive knowledge of its origin or dynamics.

4.1 Existing functionality, FMI Add-in for Excel

This section describes the functionality in FMIE from which present thesis started
from.

The FMI Add-in for Excel[3] comes with its own tab in the excel ribbon. From here
the user can access functionalities as “Load FMU” and “Simulate”. The add-in
supports simulation of FMUs generated by an FMI-compliant tool such as Dymola,
OPTIMICA Studio by Modelon or SimulationX. After a FMU is loaded a new
sheet called “FMU <name of FMU>” appears in the workbook. The user selects
input and output variables that will be included in the batch simulation. The other
main sheet used is called Experiment sheet and is named “EXP <name of FMU>”.
When created it includes all variables earlier selected by the user in the FMU sheet.
Here the different start and parameters values, input trajectories, simulation time,
etc. defining the batch are entered. Also, the last value of each out data variable
from the simulation results are written back to this sheet. A more complete result
sheet is created if the option is selected with a check box in the ribbon before
simulation.

4.2 Explanation of DOE macros

This section describes the functionality in developed for FMIE during present thesis.

The FMIE has support for batch simulations but the user has to create new
cases and fill in input values by himself. The same goes for the simulation results.
After a batch simulation is done all of the data is presented but it is up to the user
to create a presentation of the data that is suitable for analysis. The macros written
with VBA and presented below are tools to simplify the users handling with input
and output from batch simulations. The general approach is that a new sheet is
created by running a macro.

The FMU used in the following sections is called Furuta.fmu and is an example
FMU included with the FMI Add-in for Excel. Attention should not be directed to-
wards the numericals of the data input our output from the FMU as it is insignificant
to the process.

4.2.1 Screening

The sheet designed for screening experiments is viewed in Figure 4.2.1, it consists
of the following (numbers are found in Figure 4.2.1):

10



1. Options for the sampling. The user selects an algorithm of choice in a drop
down list, at the moment the two available are latin hyper cube and full
factorial sampling. For LHS the number of points is set, this option is
superfluous when running a full factorial design.

2. Information about the sample and sheet, no user input.

• Number of dimensions are a measure of the variable ranges spanning the
sampling room.

• Data generated changes to “yes” after the experiment sheet is updated
with new data. At the moment the value does not change back to “no”
when the data in the experiment sheet is no longer correlates with the
current settings.

• When data is generated its mean correlation is calculated. This is done
by calculating the mean Pearson’s correlation coefficient, Section 3.2.3,
for each indata variable combination. A variables correlation with itself
is not taken into account as it is always equal to one and therefore
redundant information.

3. The indata from the experiment sheet. Here the user finds information about
the indata of interest as well as input for the data generating algorithms. If
the vary is set to “false” the value in the default column is used as input for
every case. The levels option is only used for the full factorial sample.

4. Button that creates the data sample based on sheet options.

Figure 4.2.1: Screening sheet created with excel macro.

4.2.2 Sensitivity analysis

The sheet designed for screening experiments is viewed in Figure 4.2.2, it consists
of the following(numbers are found in Figure 4.2.2):

1. The sensitivity analysis always uses Monte Carlo sampling, the user specifies
the number of data points.

2. Information about the sample and sheet, no user input, see Section 4.2.1.

3. The indata from the experiment sheet. Each indata variable is represented
by its name and useful information from the FMU. After follows user input
options, the sheet will not generate a sample if input needed for the chosen
distribution is absent, superfluous input is ignored.

11



4. Button that creates the data sample based on sheet options

5. Information about the arguments required to create the different kinds of
distributions.

Figure 4.2.2: Sensitivity sheet created with excel macro.

4.2.3 Creating results

Not all experiments demand the same methods of presentation, the design of the
Post-processing sheet, Figure 4.2.3, is supposed to help the user customize the
post-process according to the experiments needs. When created it contains four
areas (numbers are found in Figure 4.2.3)

1. Information stating the related experiment and number of cases simulated.

2. The outdata. Basic information and statistical information about each vari-
able.

3. A button used to add new methods of post-processing to the sheet. When
pressed the form displayed in Figure 4.2.4 appears. From here the user may
select and add desired methods to the sheet. After OK is pressed the Post-
processing sheet changes to include selected methods, Figure 4.2.5. If the
added methods require input is is inserted by the user.

4. A button that creates a new sheets containing the post processing methods
chosen by the user.

Figure 4.2.3: Post-processing sheet created with excel macro.
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Figure 4.2.4: Form used to add post-processing methods.

Figure 4.2.5: Post-processing sheet with chosen methods.

4.2.4 Presenting Results

When the Create Results button in Figure 4.2.5 is pressed a result sheet, Figure 4.2.6,
is created. It contains each of the post-processing methods chosen in the post sheet,
Figure 4.2.5.

13



Figure 4.2.6: Result sheet displaying data as chosen in Figure 4.2.5.

5 Analysis of a transport problem

Trucks are one of the more common means of transportation when moving goods
from A to B. Optimizing the transportation there are more than one response factor
of interest. In this example the response factors are transportation time and fuel
efficiency. A low transportation time and high fuel efficiency are desired, however
the variables are most likely dependent on the same parameters. It may therefore
not be possible to find a design point that is simultaneously optimal in both aspects.
At the same time the design is sought to be robust.

This example will look at how driver behaviour affects the response factors
above. More specific the control factors are gear shift strategy and maximum
used acceleration pedal stroke, section 5.1.2. Some correlations may seem more
obvious than others. For example it may be intuitive to say that a higher used
acceleration pedal stroke decreases time spent to transport the goods, less intuitive
is the effect it has on the fuel efficiency. The design point is also to be examined for
stability with the aspect to a noise factor: wind condition. After the experiments
are done the goal is to have a determined design point that is stable while satisfying
both design aspects as well as possible.

The drivers behaviour is not actually decided in a development process, but the
chosen control factors represents what could be automated/recommended to the
driver through control of the vehicle. Gear shift pattern can be directly designed, if
automated transmissions are used. Driver could be guided to a certain maximum
accelerator pedal position, by means of active force feedback pedal.
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5.1 Model description

The simulation model was created with Dymola. Most of the classes used to build
the model was either a part of the Modelica Standard Library or written explicitly
for this model. The exception is the design of the gearing strategy applied by the
artificial driver, which was taken from the Vehicle Dynamics Library developed by
Modelon AB. The model does not describe any particular truck, it was developed
with the sole purpose to demonstrate the functionality of FMI for Excel and newly
created macros. Hence there is no need to validate the model as such, but all
parameters are set as realistic as possible, why the simulation results are assumed
to be possible for some possible truck and driver.

The model used in the experiment consists of three major parts, truck, driver
and road, Figure 5.1.1. A schematic view of the truck and driver components are
presented in Figure 5.1.2 and Figure 5.1.4.

The drivers task is to set the truck and engine speed on target. As input it gets
the target speed and the trucks momentary speed as well as the trucks engine speed.
This information is used to derive a strategy for acceleration, braking and gearing.

The truck gets its input from the driver and returns the its current state as
output, it is also affected by the inclination of the road. The key parts of the model
will be described in this chapter, the report will not include a complete model
description as it is considered of little use to the reader.

Figure 5.1.1: The Dymola model at top level, the three main components and a clock
component. The clock is only there too keep track of the time within simulation and
is not crucial for model function.
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5.1.1 Truck Model

The truck model is a one dimensional model with translational movement. It consists
of five parts: engine, transmission, driveline, chassis and a fuel tank, Figure 5.1.2.
All the parts are independent of each other except from a few input/output variables.
This makes it easy to replace single parts of the model if necessary.

Figure 5.1.2: The truck model created in Dymola.

Engine

The engine is based on a engine map from an information booklet about the Volvo
FM trucks. It has a maximum output of 1700Nm present within the range of
1150− 1550rpm. The output torque is an interpolation between two curves, one for
maximum and one for minimum input from the accelerator pedal according to

T (ω,ApedPos) = (1−ApedPos)× g (ω) +ApedPos× f (ω)

0 ≤ ApedPos ≤ 1
(5.1.1)

where ApedPos is the accelerator input and ω is the engine speed (rpm). f and g
are functions for the output torque at maximum and minimum accelerator input
respectively. The engine map is illustrated in Figure 5.1.3. The fuel consumption
rate [g/s] is interpolated from a table and dependent on current output torque and
engine speed. Total amount of fuel consumed [g] is stored within the fuel tank
component.
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Figure 5.1.3: Engine map. The blue and red curves represents the engine torque
output at ApedPos=1 and ApedPos=0 respectively.

Transmission and End Gear

The gear box has eight gears with the ratios according Table B.0.1. An end gear
with ratio 4 was placed after the transmission.

Table 5.1.1: Ratios of each gear.

Gear 1 2 3 4 5 6 7 8
Ratio 10.18 7.16 5.04 3.75 2.72 1.91 1.35 1

Chassis

The interaction between the truck and its surroundings takes place within the
chassis component. The torque on the driveline is transformed to driving forces.
Resistance due to road inclination and air are also taken into account. The braking
signal from the driver component is here connected to the wheels.

Wind

The air resistance is calculated according the following formula

Fair = ρACd
v2

2
(5.1.2)

with ρ is the air density, A is the front area and Cd is the drag coefficient of the
truck. To emulate different wind conditions the wind speed is changes according

vrel = vtruck − vair (5.1.3)

it is important to notice that the formula in equation (5.1.2) does not take the force
direction into account as the air velocity is squared. The air resistance must thus
be directed in the right direction with the modification

Fair =
vrel
|vrel|

ρACd
v2rel
2

(5.1.4)
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5.1.2 Driver Model

The components deciding the driver behaviour is a acceleration/brake regulator
and a gear selector, Figure 5.1.4. The gear selector is based on components from
the Vehicle Dynamics Library developed by Modelon AB[6].

Figure 5.1.4: The driver model created in Dymola.

Accelerator and Brake

If the trucks momentary speed is slower than the target speed the driver component
is supposed to increase the speed with the accelerator petal, vice versa if the truck
moves too fast the brake is applied. This is done by the use of a PI-regulator and a
couple of help functions that limits the output to appropriate values and prevents
simulation chattering in the transition between accelerator and brake.

Limitation of the Acceleration Pedal

The output to the accelerator pedal from the PI-regulator controlling its behaviour,
u, ranges from zero to one. To control the maximal allowed input to the accelerator
pedal a limiter is placed between the regulator and the acceleration pedal. The
output of the limiter, y, is according to

y =

{
u if u < ApedMaxPos

ApedMaxPos if u ≥ ApedMaxPos
(5.1.5)

where ApedMaxPos is the value of the limiter.
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Gearing strategy

The truck is at any moment considered to be in one of the three following modes:
accelerating, retarding or cruising. The gearing strategy of the truck is different for
each of the three modes. For each mode an interval in engine speed exists where
the gear is kept constant. If the engine speed exceeds or falls below this interval the
gear is changed. Obviously the gear does not change above eight or below one. The
engine speeds where the gears are changed is presented in Table 5.1.2. The values
of the intervals are multiplied by a constant, α, representing the drivers gearing
aggression. The intervals may be moved up or down by changing the value of α
with default value one.

Table 5.1.2: Engine speeds for gear shift within different driving modes.

Mode Gear down Gear up
Accelerating α3000 α5000
Retarding α3500 α4500
Cruising α1800 α2500

5.1.3 Road Model

During the simulation the trucks position changes in one direction. A road profile
is included in the model where each position along the transportation direction has
a given set speed and inclination, Figure 5.1.5 and Figure 5.1.6. The set speed is
input to the driver and the inclination affects the trucks equation of motion. The
Road used in these experiments was 520km long and the target velocity took values
between 3 and 25m/s to represent driving both in towns and on highways.

Figure 5.1.5: The set speed as a function of distanced travelled.

Figure 5.1.6: The altitude of the road as a function of distanced travelled.

5.2 Screening

The FMU was Loaded in Microsoft Excel with the use of FMI for Excel plug-in.
The variables chosen for the following experiments are viewed in Table 5.2.1. An
experiment sheet was created and from here a screening is performed in the variable
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space to search for a design point with appropriate output. This was done by
creating a Screening set-up sheet and filling in the desired variable limits. The
values chosen for this run are viewed in Table 5.2.2, the variable airVelocity is
constant zero, it will be used later in the process. A LHS algorithm created 500
data points in the two dimensions and the result was automatically filled into the
experiment sheet. The simulations was run from the experiment sheet with the

Table 5.2.1: Variables included in the experiment.

Variable Status Usage
aggression input & output design factor
apedLim input & output design factor
endTime output response factor

fuelConsumption output response factor
airVelocity input & output noise factor

Table 5.2.2: Input variable ranges

Variable Min Max
aggression 0.75 1.25
apedLim 0.5 1

simulate FMU button on the FMI ribbon.
With the batch simulation finished, the result was analysed. A Post-processing

sheet was created and suitable methods of result presentation were chosen. For this
screening a pareto front, Section 3.2.2, and a 2D-scatter plot, Section 3.2.1, was
chosen. For both figures endTime and fuelConsumption was chosen as x- and y-axis
respectively. The options to include a table and input values with the pareto front
were set as true. The results was created with the create results button.

The scatter plot, Figure 5.2.1, is a representation of all results from the batch
simulation. For a lot of results the time it took for the truck to complete its travel
are near the same. This is believed to be because the settings of the control factors
are good enough for the truck to tightly follow the speed limits. As the design factor
settings become worse the truck does not manage to keep up with the set speed
limits of the road and the time used by the truck increases. Figures displaying
how variations within a single design factor influences the results are found in
Appendix A.

The pareto front, Figure 5.2.2, consists only of points from a small area of the
scatter plot, this has made the shape of the graphs very different. As all the points
in the pareto front, Figure 5.2.2 and Appendix B, are optimal in some aspect, and
the scope of this thesis does not include a mathematical approach to optimization
the choice of point along the front is up to the designer. In this experiment case
132 was chosen from the set for future analysis, it is located in within the cluster
marked in Figure 5.2.2.
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Figure 5.2.1: Screening 2D-scatter Plot. endTime is given in seconds and fuelCon-
sumption in kg.

Figure 5.2.2: The pareto front of Figure 5.2.1. The data of all cases are viewed in
Appendix B.

5.3 Sensitivity analysis

The simulations run in the sensitivity analysis may be run from the same experiment
sheet as the screening, but this may be unsuitable as it comes with the loss of data
and traceability backwards through the product development process. It is therefore
recommended to create a new experiment sheet to use during the sensitivity analysis.

First thing done was to fill the input data from case 132 into the default column
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(E19xE20) of the experiment sheet. Second, a set-up sheet for the analysis was
created with Create sensitivity sheet. The data created for the sensitivity analysis
is pseudo random and created according a chosen distribution. The intention, and
often the case, is that the distribution of the noise is known when performing this
analysis. During this experiment the distribution was not known, it was thus up to
the writer to make adequate assumptions.

5.3.1 Evaluation of Robustness Within the Control Factors

Before analysing the noise factor a run was performed where the effect small changes
in the design parameter has on the model was determined. This may represent the
effect of for example end user variations or manufacturing tolerances. To accomplish
this a set of input data were created where the design parameter values ranges
from -10% to +10% of the values from case 132, previous run. The scatter plot
of the results are created in a similar manner as previous plots and is viewed in
Figure 5.3.1. The points does not stray far from the original output of case 132. It
is therefore possible to say that the model is robust with aspect to small changes
of the control factors. By performing this analysis the possibility to look at how

Figure 5.3.1: A scatter plot of simulations in the area around case 132. Design
parameter values ranges from -10% to +10% of the values from case 132. The
scatter plot from Figure 5.2.1 is in the upper right corner.

the design parameters affect the responses close to the design point arises. This is
done with Pearson’s correlation coefficient, Section 3.2.3. The coefficients retrieved
during the simulations is presented in Table 5.3.1.

From the correlation coefficients it is possible to conclude that the relationship
between apedLim and endTime is almost linear and that the aggression correlates
to fuelConsumption the most.

Table 5.3.1: Pearson’s correlation coefficients in the area around case 132.

aggression apedLim endTime fuelConsumption
aggression 1 0,017887132 -0,060239787 0,515192618
apedLim 0,017887132 1 -0,98245167 0,0912536
endTime -0,060239787 -0,98245167 1 -0,171797984

fuelConsumption 0,515192618 0,0912536 -0,171797984 1
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5.3.2 Analysis of Robustness due to Wind Conditions

To analyse the effect the wind has on the response factors an other sensitivity sheet
was created from an experiment sheet. With constant design factor values from
case 132 the noise factor airVelocity was varied. The wind velocity was here amused
to be normal distributed with a mean value of 0 and a standard deviation of 4m/s.
The distribution was created with the generate data button and was then simulated
from the experiment sheet.

Statistical data of the output distribution was obtained just by creating a
post sheet. The data is displayed in Table 5.3.2 and it is clear that the wind
distribution had almost no affect on endTime. However the min and max value of
fuelConsumption differs a lot, about 60kg of fuel. A scatter plot of how airVelocity
affects fuelConsumption was created, Figure 5.3.2. In the plot the relationship
between airVelocity and fuelConsumption looks to be of second order which could
be supported by equation 5.1.2.

Table 5.3.2: Statistical data of how the wind velocity distribution affects the response
factors.

Response factor Min Max Average St.dev
endTime 48794 48832 48801 5.04

fuelConsumption 115.147 174.89 137.81 10.29

Figure 5.3.2: A scatter plot showing how the wind velocity affects the fuel consump-
tion.

5.4 Results from the Analysis

From the screening a design point was identified, case 132, values in Table 5.4.1. It
was determined in the sensitivity analysis that the design point is robust for small
changes in the control factors. When taking the wind conditions into account the
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design point still managed to deliver robust results of the endTime response factor
but fuelConsumption was heavily affected. As the mean fuel consumed of the truck
during the wind experiments is close to the value of case 132 it could be argued
that the wind speed does not have a huge influence on the fuel consumption for the
average case.

Table 5.4.1: Factor values of case 132

Case aggression apedLim endTime fuelConsumption
132 0.8948 0.7605 48800.1 136.698
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6 Recommendations for FutureWork
Solving an engineering problem with Excel as the main software leads to the
discovery of both great features and lack of functionality present in more specialised
engineering software. Excels is very interactive when working with pure numbers or
simpler graphs but as the methods of presentation become more demanding Excel
lags behind some other alternatives. A striking example of this is when creating a
macro automating the creation of graphs. When a graph has a single set purpose it
is easily created with Excel, but as it is a demanding procedure to change the graph
when its done the importance of doing it right the first time becomes apparent.
Doing this with a macro requires the that programmer has taken a numerous of
possibilities and situations into account. If the end users wishes deviates from what
the programmer had in mind and he/she has to make changes of his/her own some
of the benefits of having pre written macros disappears. As macros are used in
situations when manually creating a graph is not an option for example due to more
complex algorithms they are still needed, but it is important to be aware of that
the result may not be completely satisfying for a large amount of the end users.

It is nearly impossible to create a set of functions that satisfies all end users. But
once the interface and work flow has been established it is easy to compliment the
existing toolbox with additions. Recommendations are therefore to first evaluate
and establish the interface and only after deciding on a design for the interface
focus on function development.

When developing the toolbox remember to feature the strengths of Excel. The
FMI standard gives users the fantastic opportunity to compliment their models with
the interface of Excel. If the toolbox can communicate this feeling on the end user
the product is definitively a success. On the other hand, if the end user experiences
that the work could have been done easier with an other software he/she might not
feel satisfied.

One of the biggest advantages with Excel is that it is widely known through the
computer world and has a large user basis. The toolbox may be used as a way to
give users not experienced with more complex software a chance to still make use
of their powers. This leads to the dilemma that a user experienced with complexer
software may be dissatisfied according above. It is therefore important to inform
the end user by whom the functions are intended to be used.

When analysing a pareto front it may be useful to get a visual representation
of the indata associated with the points in the pareto front. At the moment of
writing, the macros explained in Chapter 4 are not able to produce such a plot. An
example is provided in Figure 6.0.1. There it is possible to discover how the points
of the pareto front form a few clusters. This plot may help the user to find suitable
design point, as a data point in the middle of a cluster should have a higher chance
of meeting the requirements of stability.

The existing macros functionality is not far from creating a plot of the type
displayed in Figure 6.0.1 as it already produces (and outputs) all data needed. It is
therefore recommended that this functionality is to be implemented if development
continues.
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Figure 6.0.1: A scatter plot of the points in the pareto front created in Section 5.2
with the control factors on the axes (Data table found in Appendix B). The design
point chosen in Section 5.2 (case 132) is displayed as a red circle. The end points
of the pareto fronts are displayed as red triangles.
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A Additional Plots

Figure A.0.1: Scatter plot of how the limitation of the accelerator pedal affects the
end time. Data consists of complete set from the screening analysis performed in
Section 5.2.

Figure A.0.2: Scatter plot of how the limitation of the accelerator pedal affects
the fuel consumption. Data consists of complete set from the screening analysis
performed in Section 5.2.
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Figure A.0.3: Scatter plot of how the aggression affects the end time. Data consists
of complete set from the screening analysis performed in Section 5.2.

Figure A.0.4: Scatter plot of how the aggression affects the end time. Data consists
of complete set from the screening analysis performed in Section 5.2.

B Pareto Data
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Table B.0.1: Data of the points in Figure 5.2.2

Case aggression apedLim endTime fuelConsumption
267 0,977639961 0,995507752 48790,5 146,789
340 0,985214406 0,982549297 48790,7 146,788
474 0,972920806 0,979315082 48790,7 145,079
392 0,857645733 0,978837064 48790,9 136,751
89 0,859174126 0,94917094 48791,4 136,747
248 0,841779148 0,951874007 48791,4 136,747
483 0,847942304 0,94379966 48791,5 136,746
259 0,837568195 0,934192544 48791,6 136,743
119 0,898418513 0,878549802 48793,6 136,743
221 0,835980399 0,848206846 48793,7 136,726
190 0,846685384 0,820306511 48795,1 136,717
347 0,855595297 0,803624546 48796,1 136,71
271 0,843396339 0,792440253 48796,9 136,705
328 0,865511025 0,776508115 48799 136,703
132 0,894799061 0,760466908 48800,1 136,698
133 0,860900089 0,7546613 48800,8 136,692
203 0,848057713 0,741620081 48800,9 136,678
280 0,818881991 0,744750225 48801,6 136,386
285 0,863462599 0,547830403 48878,2 136,385
245 0,895678421 0,543810626 48881,7 136,372
273 0,881451799 0,537824654 48889 136,354
305 0,925917668 0,532027762 48892,9 136,345
44 0,938601043 0,522200441 48902,7 136,34
195 0,871540793 0,526457374 48903,6 136,318
255 0,838582262 0,527975393 48905,3 136,316
293 0,840628645 0,520604169 48915,1 136,288
102 0,856802348 0,517251576 48917,3 136,273
21 0,861099824 0,511050866 48924,6 136,273
161 0,849490479 0,510291266 48926,9 136,26
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