;' =)\ =:‘§\\§g}
N

N

£ CHALMERS

UNIVERSITY OF TECHNOLOGY

Johannebergsrallyt

Development of a realistic 3D rally game using open-source tools
and libraries

Bachelor of Science Thesis in Computer Science and Engineering

Sofia Edstrdm, Erik Fagerlind, Erik Lundholm,
Victor Sandell, Joel Severin

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2015

The Authors grants to Chalmers University of Technology the non-exclusive right to
publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet. The Authors warrants that they are the authors to the Work, and
warrants that the Work does not contain text, pictures or other material that violates
copyright law. The Authors shall, when transferring the rights of the Work to a third
party (for example a publisher or a company), acknowledge the third party about this
agreement. If the Authors has signed a copyright agreement with a third party re-
garding the Work, the Authors warrants hereby that they have obtained any necessary
permission from this third party to let Chalmers University of Technology store the
Work electronically and make it accessible on the Internet.

Johannebergsrallyt
Development of a realistic 3D rally game using open-source tools and libraries

Sofia Edstrom,

Erik Fagerlind,

Erik Lundholm,
Victor Sandell,

Joel Severin.

© Sofia Edstréom, June 2015.

© Erik Fagerlind, June 2015.
© Erik Lundholm, June 2015.
© Victor Sandell, June 2015.

© Joel Severin, June 2015.

Examiner: Arne Linde

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

Shows a rendered frame depicting a Ford GT40 parked on the roof of the Matematiska
Vetenskaper-building at Campus Johanneberg, Chalmers University of Technology.
Department of Computer Science and Engineering

Goteborg, Sweden June 2015

Abstract

Independent developers seek success by developing near AAA-grade game using lim-
ited time and development resources. In this thesis, we explore some of the different
aspects these developers face. In a small team, with a short time frame, we developed
a networked rally game in 3D, focusing on real-time computer graphics. We investigate
how in-house developed features and already available open-source software could be
used in achieving this goal, aiming for real-time performance on the mid-end consumer
hardware of today (2015).

It became clear that, given the limited development resources, only a handful of the fea-
tures and graphical effects an AAA-grade game features could be supported. The effects
that were successfully implemented include car enamel reflections, skid marks, parti-
cle systems, bloom, motion blur, shadows and screen-space ambient occlusion (SSAO).
Additionally, a basic platform for rally car physics and networked multi-player support
was developed.

Sammanfattning

Oberoende utvecklare soker framgéang genom att utveckla ndrmast AAA-kvalitativa spel
med begransad tid och utvecklingsresurser. I denna kandidatrapport utforskar vi nagra
av de olika problem dessa utvecklare moter. Med ett litet team och en kort tidsram
utvecklade vi ett natverksbaserat rallyspel i 3D, med fokus pa realtidsdatorgrafik. Vi
undersoker hur egenutvecklade funktioner och redan existerande mjukvara baserad pa
oppen kéllkod kan anvandas for att uppna malet, hela tiden med stravan efter att uppna
realtidsprestanda pa den genomsnittliga konsumenthardvaran idag (2015).

Pa grund av de begriansade utvecklingsresurserna kunde bara en handfull av de funk-
tioner och grafiska effekter som AAA-kvalitativa spel tillhandahaller stodjas. Effekter-
na som framgangsrikt implementerades inkluderar bland andra reflektioner i billack,
bromsspar, partikelsystem, bloom, roérelseoskarpa, skuggor och screen-space ambient
occlusion (SSAO). Dessutom utvecklades en grundlaggande plattform for rallybilsfysik
och nétverksbaserat flerspelarstod.

Contents

(1__Introductionl 1
i PUTPOSE] . . o o o o o e e e 1
(.2 Problem Statement| oo 2
(L3 Tamitations Lo 2
M4 Outlind. 3
2 The Real-Time Computer Graphics Techniques| 4
2.1 Meshes 5
2.2 Graphics Pipeline| oo 6
[2.2.1 Application Stage|o 6
[2.2.2 Geometry Stage| 6
[2.2.3 Rasterization Stage| 7
.24 Shaders|o 7
shading] 8

R4 Textures 8
2.4.1 UV-Mapping] 9
[2.4.2 Normal-Mappingl 9
[2.4.3 Transparency| 10
.44 Pixel Formatl o 10
.45 Render-to-Texturel 10
2.4.6 Results and Discussion| oL 10

2o Skid Markso 11
[2.5.1 Generating Skid Marks| 11
252 Resultl 12
2.5.3 Discussionlo 12

2.6 Particled 13
[2.6.1 Particle Systems| L0 13
262 Resultl 13
2.6.3 Discussionl 14

R7 Reflectiondo 14
[2.7.1 Simulating Reflections| 14

[2.7.2 Environment Mapping| L. 15

[2.7.3 Environment Mapping Techniques|. 15

.74 Result and Discussion| 15

2.8 Shadows oL 16
[2.8.1 Simulating Shadows| L. 16
[2.8.2 Shadow Mapping| 17
2.8.3 Shadow Volumes 17
[2.8.4 Choosing a Shadow Technique| 18
[2.8.5 Implementing Shadow Mapping| 18
2.8.6 Resultsl. 19
.87 Discussionlo 19

2.9 Geometry Bufter| oo 20
2.9.1 Previous Workl 20
292 Resultsl. 21
2.9.3 Discussionlo 22
IO Blooml . . . -« o 22
2.10.1 Methodl 23
2.10.2 Gaussian Blurfo 24
2.10.3 Resultl 25
2.10.4 Discussionlo 26

[2.11 Screen-Space Ambient Occlusion|. 27
2.11.1 Previous Workl 27
RIT2 Resultl 30
2.11.3 Discussionlo 33
212 Motion Blurfo 34
2121 Previous Workl 34
RI22 Resultl 35
2.12.3 Discussionl 37

[3 The Physics and Networking] 38
[3.1 Existing Open-Source Real-Time Dynamic Body Physics Libraries) . . . 39
[3.2 Networking| 39
[3.3 Combining Networking With Physics| 39
(.31 Resultsl. oo 40
.32 Future Workl. oo 42
4__General Results| 43

Chapter 1

Introduction

Historically, 3D game creation has to a great extent been conducted using commercial
development tools, which are often subjects to licensing fees and platform limitations.
However, in recent years, the computer gaming market has been flooded by an ‘in-
die wave’ of independently developed games. Independent developers successfully sell
millions of copies of their games, utilizing digital distribution systems. The time re-
strictions of the independent developers have increased usage of already existing tools
and components. With the narrow financial resources of small game developers, it is
preferable if the tools used are free, without future financial commitments such as a
percentage of the game’s net profit. Open-source software is one solution to the finan-
cial problem, motivating our choice for further investigation of how it can be used in a
game.

1.1 Purpose

The purpose of this bachelor’s thesis is to explore the possibilities and restrictions
that arise during development of a modern 3D rally game, using limited time and
developer resources. Our first priority is achieving high graphical fidelity, targeting
real-time performance on the mid-end consumer hardware of today (2015). Enhancing
the graphical user experience, we also focus on gameplay, implementing real-time car
physics and networked multi-player support. Considering research about the limited
development resources, we narrow our purpose to consistently use open-source software
tools and libraries.

1.2 Problem Statement

Subject to the limitations of
e real-time performance,
e limited development resources, and
e limited budget,
mentioned in Purpose, this thesis seek to answer the following research questions:

o Which techniques provide suitable visual fidelity, taking the aforementioned limi-
tations into account, considering implementation of the following computer graph-
ics effects in a 3D rally game: bump mapping, transparent materials, car enamel
reflections, skid marks, particles (smoke), shadows, lighting (shading), bloom,
screen-space ambient occlusion (SSAO), and motion blur?

o Enhancing the computer graphics effects mentioned above, what is a suitable
solution when physics and networking support is implemented in a 3D rally game,
taking user experience and the aforementioned limitations into account?

» Supporting the above questions, which free and open-source software can be used
for 3D modelling, real-time graphics rendering, and physics simulation support?

1.3 Limitations

To be able to focus on creating a racing game that is as graphically pleasing as possible,
we have restricted the project to the development of a smaller, yet well designed game.
This limitation is the motivation behind modelling a closed track and not an open world
scene. We are also making restrictions regarding the amount of graphical features to
implement, in order to manage within the short time frame. Another common feature
in racing games we chose not to support is computer controlled opponents. Such a
feature would require resources that were better spent implementing graphical features
and effects.

A racing game requires fairly few animations, which leads us to the omission of such
features in our game. A contributing factor to this decision is that realistic animations,
despite not being technically advanced to implement, is a very time consuming task
in terms of creative processes. Thus, we also omit people and animals from the 3D
world, and therefore we automatically avoid any eventual ethical dilemmas if racing
cars accidentally, or on purpose, would harm living creatures.

From the large number of real-time rendering techniques and effects available, we chose
to support bump mapping, transparent materials, car enamel reflections, skid marks,
particles (smoke), shadows, bloom, SSAO, and motion blur. These were the ones we

thought would best enhance the aesthetics of the game. Pre-computed static global illu-
mination (baked lighting), used in most modern AAA-games, is one notable technique
the project time constraints did not allow implementation of.

1.4 Outline

This thesis is organized into four main parts: the introduction, the computer graph-
ics chapter, the physics and networking chapter, and the final chapters about general
results and conclusions. As described in the purpose section of this thesis, the com-
puter graphics chapter is by far the largest and most detailed one. The first part of
it introduces relevant computer graphics concepts, after which some more advanced
rendering techniques used in our game are presented. A brief discussion on the physics
and networking implementation follows. Finally, the thesis is completed with general
results and conclusions.

Chapter 2

The Real-Time Computer Graphics
Techniques

In order to simplify the development process, we elected to model a real-world location
we had immediate access to, and chose Campus Johanneberg of Chalmers University
of Technology. Creating all of the models and textures as a part of the project also
allowed for everything to fit into the same aesthetic theme. Given the thesis’ purpose,
models should appear as realistic as possible, while still being able to be rendered
in real-time. Relevant techniques were compared, evaluated and, in cases where our
timeframe allowed, implemented.

In order to focus on the actual graphical effects, we chose to use an existing rendering
engine, with support for features such as resource loading and scene management. The
most notable actively developed open-source alternatives are Irrlicht, OpenSceneGraph,
and Ogre3D, all of which contain the basic helper features we deemed necessary. How-
ever, Ogre3D was chosen, due to previous experience with it within the group. It also
has a large user base and active community, which is an important aspect when choos-
ing an open-source project. Ogre3D is an object-oriented cross-platform 3D graphics
engine written in C++4, which provided a suitable level of abstraction and flexibility
[1]. Version 1.9 of Ogre3D was chosen, as it was the latest stable release at the time of
implementation.

A unique feature in our game is that some of the graphical effects implemented are
modelled in proportion to the speed of the racing car controlled by the player. In
practice, this means that some of the effects will be more visible or more active the
faster the player is driving. Based on the speed, an effect factor between 0.0 and 1.0
is calculated, and then used to compute the intensity of a certain graphics effect. The
features affected by this factor are the reflections, bloom, SSAO, and motion blur. The
motivation behind the implementation of this feature is that, while still maintaining
a realistic-looking racing game, we want to make the graphical effects as striking and

noticeable as possible. This way, the gaming experience is visually accentuated based
on the player’s driving style during a race.

This chapter explores techniques used for implementation of shading, textures, skid
marks, particles, reflections, and shadows. Finally, the post-processing pipeline is dis-
cussed, enabling the effects bloom, SSAO and motion blur.

2.1 Meshes

In this section, the concept of polygon meshes used in modern 3D games is introduced.
Different stages in constructing these meshes will be described.

A polygon mesh is a list of vertices describing an object in three-dimensional space
[2]. In modern 3D graphics applications, this is performed by listing a set of triangular
faces, each containing three connected vertices. Using triangles exploits the fact that
computation of these primitive shapes are accelerated in modern graphics hardware.

Many programs for generating polygon meshes exists today, among them are Maya,
3ds Max, Blender, SketchUp and MeshLab. Most of them, such as Maya, 3ds Max
and Blender, are multi-purpose programs. In addition to creating meshes, they are
used for lighting, animation and game logic. Most of them are also neither open source
nor free to use, which are properties that were specifically sought. Blender is one
of the more notable exceptions, with roughly the same features as the most complex
commercial products, but fully open source. This complexity has the disadvantage of
a steep learning curve for the user. Therefore, we chose to combine it with the very
accessible, but simple, SketchUp, which is free to use.

At first, relatively accurate measurements were acquired for the objects that were going
to be rendered. This was done using maps, photos and models. Using SketchUp, the
objects could be drawn efficiently. Figure show a car modelled in SketchUp. The
drawn meshes were then imported into Blender for further work, such as adding textures
and material properties. This method was proven to be effective, and a car could be
relatively accurately modelled in a few hours. The use of materials is visualized in

Figure 2.2

Figure 2.1: Car model drawn in SketchUp. Figure 2.2: Car model with applied materials in
Blender.

2.2 Graphics Pipeline

The graphics pipeline, also referred to as the rendering pipeline, is a concept with the
purpose of rendering a 2D image of a 3D scene onto the screen [3]. This means capturing
the various geometric objects and textures in the scene, including light sources and
other effects that affect them, using a virtual camera, and then drawing the resulting
image onto the screen. This task is performed in three different stages: the application
stage, the geometry stage, and the rasterization stage. The idea of going through these
stages sequentially is called forward rendering. This section will describe these stages,
visualized by Figure 2.3]

Application Rasterizer

Figure 2.3: The three stages of the graphics pipeline.

2.2.1 Application Stage

The first step is called the application stage. This stage is executed on the CPU
(central processing unit) and not on the GPU (graphical processing unit). The graphics
hardware is more locked-down in terms of what developers can program it to do. Thus,
since this stage is executed on the CPU, this stage in the pipeline is where the developers
are given the most freedom. Different parts of a game, such as animation, collision
detection and physics, are aspects of the part of the pipeline that are implemented
and calculated during the application stage. The freedom of implementation in the
application stage allows developers to use algorithms that yield the best performance
and desired result for their applications.

2.2.2 Geometry Stage

The next step in the graphics pipeline is the geometry stage, in which all of the per
vertex operations are performed on the model in the scene and their meshes. What,
how and where objects are supposed to be drawn is also computed in the geometry
stage. One of the aspects that differ from the application stage is that all calculations
are run on the GPU. The GPU is designed to compute a lot of simple calculations
(such as moving a game object using matrix transformations) in a small amount of
time. GPUs are far more efficient than CPUs for the process described, which is the
reason dedicated graphics hardware exists. There are methods to alter and adjust how
these calculations are performed with the use of shaders, which will be discussed further
down in the shader section.

During the geometry stage, several transformations - where objects are moved to the
correct space - are performed. Initially, all objects are located in model space. An
object, such as a car, is transformed from model space into world space, then into view
space and finally projected onto the screen. World space is the space with all of the
models transformed into it, and represents the game world. This is where rotations,
scaling and translations are performed. View space is the scene in relation to the
virtual camera’s perspective. The last transformation needed is the projection from
view space onto the screen. The transformations described are calculated using a model-
view-projection-matrix, which is a multiplicative combination of the model, view, and
projection matrix, transforming coordinates between the aforementioned spaces.

The next step of the geometry stage is screen mapping, which is the process of adjusting
the scene to be rendered to fit the window that it is to be displayed on. When rendering
the scene, it is important that objects outside the scene are not rendered, in order
to avoid unnecessary computation, improving performance. Clipping is a method for
excluding objects that are not in the viewing frame from being rendered.

2.2.3 Rasterization Stage

The third and final stage is the rasterization stage, where the color of each pixel on the
screen is decided. When all geometry calculations are complete, the result needs to be
converted into pixels with the correct color on the screen. A process called rasterization
begins. All the triangles in the scene are traversed in order to determine which pixels
they are covering. Per-pixel shading computations, if any, are executed in this stage,
using the interpolated color data from the vertices. The results of the per-pixel shading
are stored in the color buffer, which stores the colors of each pixel as a combination of
red, green and blue. Another aspect that affects how the scene will look is visibility.
The depth buffer is used to determine if an object is to be rendered or not by comparing
the distance to the virtual camera. If the distance to a pixel that is about to be rendered
is smaller than what is in the depth buffer, the color and current depth at that position
is changed. The color buffer is in the end what is displayed on the screen.

2.2.4 Shaders

A way to alter and make the process of rendering to the screen more flexible is with the
use of shaders. A shader is a small computer program that is executed on the graphics
hardware. There are two basic types of shaders: the vertex shader and the pixel shader
(also known as the fragment shader).

The vertex shader is run once for every vertex. It is possible to adjust the position,
lighting, texture and texture coordinates with the use of the vertex shader. A vertex
shader receives the attributes of a vertex as input and outputs new vertex data that
has been modified by the shader.

The pixel shader is run for each pixel. It is in the pixel shader that the color of the pixel
is determined and output. It is possible to change how a pixel should look in relation
to other pixels, by sampling surrounding pixels using screen coordinates, if the entire
scene is sent into the shader. Thus, it can be used to create post-processing effects. A
pixel shader can also be used for achieving other effects, such as filtering for blurring
or similar.

2.3 Shading

Shading is the process of computing what color each pixel on the screen should have.
This is performed by calculating how light interacts with objects in the scene, which
translates to solving a rendering equation. Kajiya’s rendering equation is an integral
equation, describing the amount of light emitted from a surface in a particular di-
rection, given a function of incoming light and a bidirectional reflectance distribution
function (capturing how light is reflected off the surface) [4]. It is the prevalent physical
model which all realistic rendering algorithms solve. There exists a multiple of differ-
ent shading algorithms for solving this equation, or in the case of real-time rendering,
approximating it. The most noteworthy approximation algorithms with real-time per-
formance are Blinn-Phong, Cook-Torrance, Phong and Lambert. We briefly explain
these methods, and then present our choice, followed by a suggestion of future work in
our game in this area.

The Phong model was proposed by Bui Tuong Phong in 1973 as an efficient approx-
imation of the rendering equation, splitting the solution into three parts: an ambient
part (not hit by direct lightning), a diffuse part (large highlights on dull surfaces) and
a specular part (full reflectance of light) [5]. The Lambert model can be used for mod-
elling the diffuse part, and Cook-Torrence was proposed as a way of taking into account
that different materials reflects wavelengths of the color spectrum in different ways [6].
Blinn-Phong is a variant of the Phong model used for a more computationally efficient
rendering [7].

We choose to use the Phong model since it is simple, efficient and supported in Ogre3D.
In the future, we suggest that some research is devoted to how realistic lighting of
asphalt can be achieved.

2.4 Textures

Different texturing methods are used for adding detail and realism to the 3D models
in our game. Texturing is an umbrella term, covering various techniques of taking a
surface and changing its appearance with color, images, and functions. A simple image
or color attached to a 3D model will not add as much detail as preferred, because there
will be no surface irregularities or specific material characteristics, which would have
been the case if the model was a real world object. Texture mapping is a collection

of techniques which can be utilised in combination to achieve such a result. It is also
possible to manipulate the look of surfaces in real-time, by off-screen rendering to a
texture for usage in image-filters and post-processing effects. The following section will
briefly describe the different methods used for texturing, ending in a section discussing
the results of them.

2.4.1 UV-Mapping

To be able to apply an image to a 3D model, it is necessary to first make a UV-map of
the model [8]. A UV-map, where UV denotes the axes of a 2D-texture, is created by
unfolding the faces of the mesh at its seams onto a flat surface. A texture can be seen in
Figure The map is then used to fit a suitable texture, and to apply the color from
it to the model. The texture shown in Figure applied onto a model is visualized in
Figure 2.5] The unfolding step is also called unwrapping, and can be performed either
manually or automatically, or with a combination of both, in 3D modelling software
such as the open-source tool Blender.

il 'f
1t b ‘” i
Ry

I

(126) arkitekt
Figure 2.4: Image containing a texture. Figure 2.5: Texture applied to house using UV-
mapping.

2.4.2 Normal-Mapping

Texture maps are flat and cannot show any realistic surface details. Therefore, another
method is needed for creating realistic surface geometry, such as cracks and height
differences. Instead of modelling all the irregularities with polygons, which would be
very computationally expensive in real-time, there are ways to mimic uneven surfaces
[3]. Bump mapping is used as a method for simulating the effects of detailed geometry in
meshes without adding actual geometry. A common way to implement bump mapping
is with normal mapping. Normal mapping rearranges the surface normals of the 3D
models face’s, with the normals of a more elaborate model. The new normals are then
used when calculating light and shadows, which makes the model look as if its structure
is more complex than it actually is.

2.4.3 Transparency

The main techniques for achieving transparency in 3D-rendering is image masking,
key mapping and alpha mapping. These are all very similar. A value is assigned to
each pixel, stored in either its color values (image mapping and key mapping), or in
a separate channel (alpha mapping). The value denotes how much of the pixel’s color
values will be blended with what is behind the transparent material.

2.4.4 Pixel Format

Textures are a way to store pixel data as an image. The pixels can be stored in various
formats depending on how the data is supposed to be interpreted by the program using
the texture. An example of how pixel data can be stored is with a 32-bit array of
integers, where 24 bits represent a pixel’s RGB-values (8 bits per color channel), and
the last 8 bits store the alpha channel [9]. Sometimes, the alpha channel is left out,
and a 24-bit array is used instead. In cases when higher precision and larger range
is needed (as in the geometry buffer, discussed in its own section), for example 16-bit
floating-point numbers per channel can be used.

2.4.5 Render-to-Texture

Not only the frame buffer, which stores color data on its way to the display, can be a
target when rendering all, or part, of a 3D scene [I0]. Other possible render targets
are textures, which can be off-screen rendered in real-time, and used in later frames,
just like any offline-rendered texture, in the program. This method is called Render-
to-texture, and is a very important feature in real-time rendering, because it enables
implementation of effects like dynamic real-time reflections, shadows, bloom, motion

blur and SSAO.

In addition to supporting render-to-texture, Ogre3D also supports multiple render tar-
gets (MRTS), enabling rendering to several targets at the same time, depending on how
many targets the GPU supports.

2.4.6 Results and Discussion

Based on the level of realism and detail in relation to the low cost, we decided to use high
resolution photographs as textures for all the buildings in the game. In some cases, such
as textures for rounded meshes, asphalt and other terrain-related surfaces, photographs
could not be utilised for visually pleasing results, and instead artificial textures were
created. Regarding transparency in textures, as seen utilised in Figure [2.6, we chose
alpha mapping, since it is the de-facto format used in modern software and hardware.

10

Figure 2.6: Transparency in windows.

Normal mapping was also implemented, aiming for more accentuated surface irregu-
larities. The alternative to said combination, highly detailed meshes, would not have
been applicable in real-time due to its computational cost. However, for future work,
we propose further polishing of the normal-mapping technique.

2.5 Skid Marks

Skid marks are a key feature in any game where a car is driven, since they provide
visual feedback regarding the traction regarding the player’s car. Visual feedback is an
essential feature in any game. The user needs to be able to identify a certain behavior
in the game with visual or other types of feedback. When a car in our game start sliding
out of control, it produces a trail on the ground. Apart from providing visual feedback,
skid marks also add realism to the game. The trail left under the tires of the car, gives
a clear indication to the player that the car, or rather each specific tire, has started to
lose its traction.

2.5.1 Generating Skid Marks

Billboards can be used to represent the trail that is left behind the car. Billboards
are 2D objects that always face the viewer [11]. All of the billboards are attributed
the same material and properties when created. However, these properties, such as
transparency, width and height can be altered in order to obtain the desired result,
which in this case is skid marks.

Another method for simulating skid marks in a game is using decals. A decal is an
additional layer, or texture, that is created on top of existing textures and meshes,
changing the color. These decals are mapped on a surface of a polygon or shape. The
alpha value of the decal texture is modified to match the surface shape of the object
that it is to be attached to. Alpha mapping the image causes it to be blended onto the

11

surface. This can be used for effects such as blood spatter or a poster on a wall, but
also to create skid marks on the ground.

2.5.2 Result

In this project, billboards were chosen as the method to use for the implementation of
skid marks. This method was chosen since billboards in Ogre3D are well documented
and developed, and implementing skid marks this way is less time consuming than
using decals. The use of billboards yielded a satisfactory result. One modification that
had to be made is that the billboards that are created in this game are not always
facing the viewer. The direction of the billboards is adjusted to the normal of the tire
which it is created under to fit the terrain. Billboards are generated using a billboard
set in Ogre3D [12]. The created billboards’ positions are also determined by what the
billboard set is attached to, which in this case is a wheel.

Billboards are created in short intervals and some optimizations and improvements
are needed to increase the performance and improve how the trail looks. The car’s
speed affects the length of each billboard, in order to optimize the number of billboards
that needs to be created and rendered into the scene. Another factor that affects how
the skid marks look is the traction of each wheel, in regard to how visible a skid mark
billboard appears. Figure[2.7|show how lower traction results in more visible and darker
skid marks. Higher traction on the other hand, as seen in Figure 2.8 means that the
car is sliding less, which in return will make the skid marks less visible. The alpha value
of the material used for the skid marks is altered to achieve the desired result.

Figure 2.7: Dark skid marks, a result of the car’s tires Figure 2.8: A lighter, more transparent skid mark,
having low traction. which is caused by more traction from the tire.

2.5.3 Discussion

The current skid marks do not take the terrain into account. Different terrain properties
does not affect how the skid marks look. Neither does the terrain contribute to if skid
marks should be created or not. We suggest improvement of these areas as future work.

12

2.6 Particles

Particles can be used for a wide range of graphical effects. These effects include dust
or dirt that flies off a car’s tires when it is braking or losing traction. Particles can also
be used to simulate other effects, such as fire, rain, and explosions. By combining these
various effects, a more realistic graphical outcome can be achieved. This section covers
how particles can be used in a game.

2.6.1 Particle Systems

Particles are created using particle systems, in which all particles are controlled in order
to create a desired effect. All particles created by a particle system are bound to that
system, which means their lifetime is managed entirely within that system [13].

Particles are created by an emitter belonging to a particle system. The emitters’ posi-
tions of a system define the positions where the particles are created. Certain attributes
are given to emitters, such as the emission rate and the size of particles. Initial force can
also be added to particles, in order to make them move away from the source. Gravity
can also be added to make the particles behave more physically accurate. Particles that
are generated from a particle system can sometimes look too similar and some variety
in the emitted particles is often good. By randomizing the properties of particles” when
they are created, this effect can be achieved. The time that the particles are alive, or
the angle at which the particles are launched at, are some of the aspects that can be
altered by randomizing the particle system state management.

Particles are often created with the use of billboards. Only two-dimensional textures
are needed to visualise the appearance of particles. This method is very efficient in
terms of performance. Another method of simulating particles is rendering them as
points or lines on the screen. Particles can also be implemented using vertex shaders
[14].

2.6.2 Result

Particles in our game are created using the Ogre3D particle system. The existing
particle system within Ogre3D provides all of the needed functionality. It was an easy
decision to chose the existing system, considering implementing a particle system can
be difficult and take a long time. The use of particles was only required for one effect,
dust. The car, in combination with the traction of the tires, creates dust or dirt. Thus,
the amount of particles emitted per second is adjusted in proportion to the traction of
the tire that the particles are originating from. The texture used for the dust particles
is an image with different shades of grey with added transparency.

The dust is created when the car loses traction and starts sliding. Dust is produced
under the center of the tires’ positions at varying angles and launched upwards with
gravity affecting them. Figure [2.9| shows added transparency to the particles. Created

13

particles disappear after a short amount of time. The gravitational force is slightly
reduced in order to emulate the effect of air resistance.

Figure 2.9: Dust created beneath the car’s tires that gradually fades away.

2.6.3 Discussion

The use of particles was limited only to dirt and dust. There are other effects, besides
dust, that requires the use of particles, but no such effects were chosen to be added
to the game. Particles that depend on terrain is a feature we suggest as a candidate
for future work. Taking that into account would create a more realistic feeling when
collisions happen. The materials that the car collides with would create metal or sparks
flying off the car.

2.7 Reflections

Reflections are an important component in making a 3D scene looking realistic, and can
contribute substantially to the visual gaming experience. The following section covers
a brief comparison of two different techniques for accomplishing reflections, and a more
detailed description of the chosen method, environment mapping. The decisions taken
are motivated and the result of reflections in our game is presented.

2.7.1 Simulating Reflections

Reflections in 3D games can be achieved with different methods. For reflections on
curved surfaces, two common techniques are environment mapping, or reflection map-
ping, and ray tracing. Environment mapping is a technique that projects the render
target’s distant environment onto its surface using a precomputed texture, sometimes
created in real-time. The environment mapping technique is more efficient than the
more physically correct ray tracing approach, since tracing the path of every light
source to calculate an image can be very computationally expensive, as the level of
detail in the environment increases. Environment mapping on the other hand, is not
as accurate as ray tracing, but provides nice substitution with pleasing visual results.
For calculating reflections on planar surfaces the method differs. Often the reflection
on flat objects is rendered as a copy of an object mirrored in the plane.

14

2.7.2 Environment Mapping

Blinn and Newell first introduced environment maps in 1976, and they have since then
been improved and further developed as progress in graphics hardware techniques has
been made [3]. An environment map can be used when the reflection target does not
reflect itself, and when the environment being reflected is far away. The map can be
precomputed with 3D graphics software, such as Blender, or computed in real-time
using the render-to-texture technique. Environment map reflections are generated by
loading or creating a 2D texture, representing the reflecting object’s surroundings [15].
The normals of the pixels contained within the object’s surfaces is then calculated, and
used with the view vector to compute the reflection vectors. The reflection vectors
are used to calculate an environment map index, which in turn is used to color the
corresponding texture pixel.

2.7.3 Environment Mapping Techniques

The environment maps can be represented with various methods [3]. The two most
common of them is cube mapping and sphere mapping. The first introduced with
support in commercial graphics hardware was sphere mapping. A sphere map is created
using the texture based on the image of the environment as reflected in a perfect sphere.
Since the reflected environment is basically represented by a picture of a sphere, the
reflection is only valid from one single viewpoint. A new map can be calculated when
changing view direction, but can cause visual errors.

The other common approach to environment mapping, cube mapping, was first in-
troduced by N. Greene in 1986, and is the most frequently used method in real-time
rendering. Cube mapping, as opposed to sphere mapping, is independent of the view-
point and does not cause visual artifacts. A cube map is generated by creating textures
of how the environment is projected onto a cube, when placed in the center of a scene
[16]. The reflection is then rendered one time for each side of the cube, with the camera
centered in the cube and a view angle of 90 degrees from the surface.

2.7.4 Result and Discussion

The environment map solution with its superiority in computational efficiency in com-
parison to ray tracing, stored as a cube map, was the approach used in the game to
simulate reflection. The motivation behind the decision of using cube maps was that
it is the most commonly used solution for modern real-time applications. When cre-
ating reflections with an environment map, it is possible to make them dynamic by
constantly recalculating the map as the target of reflection is moving. This can be a
computationally expensive feature compared to having a static pre-computed map, but
since the racing car is a moving object, the reflections can not look realistic if they are
not changing with the car movement. Based on this, and the fact that the car is the
only moving object in the game subject to reflection, we chose the dynamic alternative.

15

The result of the final implementation is presented in Figure 2.10] Additionally, only
one side of the cube is updated per frame, spreading the workload over six frames in
order to increase performance. For future work, we suggest rotating the cube so that
only three sides are visible at all times, possibly doubling performance.

Figure 2.10: Tree reflections in car enamel.

2.8 Shadows

Shadows are one of the most important aspects in creating realistic looking images in
games. They provide information regarding the whereabouts of the objects in a scene
and help the viewer or player get a good visual overview. Shadows helps onlookers
perceive the world around them [I7]. They provide a sense of depth that helps with
interpretation of shapes. Shadows also adds another layer of realism by making the
game world appear more like the real world, as it becomes more lifelike. This section
will describe various ways shadows are implemented in computer games, and specifically,
how they are used in this game. Different techniques for simulating shadows will be
described, such as shadow mapping and shadow volumes, followed by a discussion
comparing the two. The implementation of the technique chosen to be used for this
project, shadow mapping, will be further described.

2.8.1 Simulating Shadows

In order for shadows to improve the visual experience, they often need to be of high
quality and look as realistic as possible. Two techniques for creating highly realistic
shadows are photon mapping and ray-tracing. The techniques generate shadows by

16

simulating individual photons and light rays. The more rays simulated, the better and
more lifelike the shadow will look. However, the downside of these methods is that they
are not feasible in a real-time context since they require an unreasonably large amount
of computational power, and thus time - both of which are crucial components in real
time computing. Therefore, when dealing with real-time rendering, other methods for
creating shadows are used that provide better performance, but with the trade-off that
they appear less realistic. Almost all shadow techniques are based on the most common
techniques, shadow mapping and shadow volumes. This section will look at these two
techniques, and specifically techniques based on shadow mapping.

2.8.2 Shadow Mapping

The concept of shadow mapping was introduced in 1978 by Williams [I8]. It is a widely
used method for simulating shadows in real time computer games. Creating shadows
with this method is performed in two steps. The first step is to create a depth map
from the light source. This depth map is created by rendering the scene from the light
source’s point of view. To store the shadow map, the depth buffer is used. The next
step is to check if a pixel is in shadow or not. This is done by comparing depth values
from the shadow map to the scene being rendered from the viewer’s perspective. The
position of each pixel in the shadow map is compared to the corresponding position in
the image to be rendered from the viewer. If the distance to the light source is greater
than the depth value stored in the shadow map at that position, that particular point
is occluded from the light source, and is thereby in shadow.

The shadows created when using the standard shadow mapping can look somewhat
crude, but various add-on techniques (which are discussed later in this section) can im-
prove the appearance. It is the simplicity of the process (and result) that makes shadow
mapping a very attractive method with regards to performance. Modern hardware can
run shadow mapping algorithms very fast.

One of the downsides of using shadow mapping is that the resolution of the shadow
map determines the quality of the shadow. A shadow map with too low resolution
can result in aliasing artifacts, which are distortions in the pattern. Increasing the
resolution of the generated shadow map decreases the aliasing artifacts, but at the cost
of performance. Another disadvantage of using shadow maps is that they create hard
edges. Both of these issues, as well as solutions to them, are discussed further later in
this section.

2.8.3 Shadow Volumes

Shadow volumes is another method for simulating shadows which was introduced as a
viable option by Heidmann in 1991 [19]. Silhouette edges are the edges created by a 3D
object that is visible from the light source projected onto a 2D-plane. The silhouette
edges are extended to infinity, forming a volume that extends across the entire scene.

17

Some implementations require that a back or front cap is added to create a closed
volume. The first step in using the shadow volumes when rendering the scene is to
first render the scene as if fully covered in shadows. Then for each light source, using
the stencil buffer, a mask is created with holes in it using the depth information stored
in the shadow volumes. These holes represent the locations at which the scene is lit
and thereby not in shadow. The last step is to render the scene once again, but this
time it is rendered fully lit. With help of the stored mask in the stencil buffer, the
portions of the scene to be covered in shadows are not lit. There are several methods
that are used for implementing shadow volumes. The different methods for creation of
the volumes are fairly similar. Although, the step that varies the most regarding the
implementation is the creation of the masks.

2.8.4 Choosing a Shadow Technique

There are multiple factors at play when deciding what shadow technique to select.
The most prevalent are: appearance, performance, and implementation complexity. In
terms of appearance, shadow volumes yields the best results. In comparison, shad-
ows generated using shadow maps can look relatively simple, harder, and less detailed
than shadows generated using shadow volumes. It is the difference in appearance that
makes the use of shadow maps faster in terms of performance. Shadows using shadow
volumes look better, at the cost of computational power and time. The third aspect,
implementation complexity, is a bit different than the previous two. Appearance and
performance are running time related, while implementation complexity is related to
time as a project resource instead of a computer resource. Shadow mapping is easier
and faster to implement than shadow volumes due to how the previously described al-
gorithms behave. This became the most decisive aspect when choosing what technique
to use. Shadow mapping is more suitable for our game, as performance is prioritized
over visual fidelity, along with implementation time being a precious resource.

2.8.5 Implementing Shadow Mapping

The tradeoff with using shadow mapping is the lower visual fidelity, which can be
somewhat mitigated using various build-on techniques, which will be described here.
Another shortcoming is that shadows created using shadow mapping can suffer from
bias issues.

Depending on the angle between the occluding object and the light source, there might
be a risk for encountering surface acne, that is, some parts are shadowed and some
are not. This effect looks bad, but can be solved by adding an offset, a bias, to the
compared depth in the shadow map, thus removing the uncertainty in the comparison
[20].

Another problem that can occur with shadow mapping is that if the camera is closer
to the object casting a shadow than the light source that is causing the shadow, the

18

shadow generated will have very rough edges and be of very poor quality. This is caused
by the limited resolution of the shadow map itself. One way to mitigate this problem, is
implementing a technique called cascaded shadow mapping, which uses multiple shadow

maps [21].

Cascaded shadow mapping yields much better looking shadows, without increasing the
performance cost significantly. The basic idea is to use multiple shadow maps with
different size (and therefore quality of shadows). On top of that, the frustum, which
is the region of the screen that is visible to the camera, is divided into the multiple
parts, depending on the distance to the camera. Objects close to the camera cast a
shadow generated using the the shadow map with the highest resolution and shadows
for objects further away are generated using shadow maps with lower resolutions. This
results in good looking shadows close to the camera and lower quality shadows far away,
degrading with the distance from the camera.

2.8.6 Results

Shadow mapping was chosen to simulate shadows in our game, the result can be seen
in Figure 2.11] The reason behind choosing shadow mapping was made in regards to
it being easier to implement, while retaining the satisfactory quality needed, at a lower
performance cost compared to shadow volumes. An implementation of cascaded shadow
mapping was undertaken, but later suspended due to the project time constraints.

Figure 2.11: A wall and trees casting shadows onto the ground.

2.8.7 Discussion

Even though cascaded shadow mapping was never implemented, the shadows currently
in the game are of satisfactory quality. Implementing cascaded shadow mapping would
not only make the shadows look better, but also likely help with performance. However,
the current shadow maps is not an issue in terms of performance. Thus, the current
shadow implementation is considered viable for the current world size in the game.

19

2.9 Geometry Buffer

Using a geometry buffer (also known as a G-buffer) might improve rendering perfor-
mance and is essential for many post-processing effects that our game use, most im-
portantly SSAO, which is discussed in its own chapter. Firstly, the previous work in
the area is presented, and then our implementation is discussed. Finally, thoughts for
improvement of our implementation are expressed. The geometry buffer will be the
basis for the next following chapters that explain various post-processing effects that
are applied to the (almost) final render of the original scene.

2.9.1 Previous Work

When using forward rendering, all fragments are shaded as they are drawn, which
essentially leads to a mapping of their final color into a texture. Drawing the scene
multiple times, each time accounting for one light source, the scene colors are additively
accumulated one light at a time. Instead, the fragment’s properties may be drawn
into a texture [22][23]. By associating each drawn pixel by the occupying fragment’s
material properties, normal and other relevant information, and then applying the
shading calculations in a second pass, only fragment parts that are visible in the final
render need to be shaded. The technique is known as deferred shading. Figure [2.12]
shows an example texture with normals to the geometry in our game.

Figure 2.12: A normal texture of the scene, used for deferred rendering. The colors used for
representation have no actual meaning as colors, instead they encode normal coordinates.

While deferred shading might improve performance, there are some implementation
issues. Some of these are addressed by split techniques such as inferred lighting and
light pre-pass rendering [24]. The main systematic problem with deferred rendering
and light pre-pass rendering lies in their inability to handle transparency gracefully;
when drawing transparent objects in the scene, rendering has to resort to forward
rendering as a post-pass after drawing and shading all opaque objects in the scene. Also,
with deferred shading, the in modern hardware commonly used anti-aliasing technique
MSAA does not work properly. The problem is circumvented by the split techniques,

20

as with them, the scene is drawn three times, where the last pass makes use of such
anti-aliasing in a correct manner. With inferred lighting, the lighting draw pass may
also be performed at a lower resolution, yielding better performance but more artifacts.

Which rendering technique is the best one is a controversial topic and also depends
on the type of scene rendered. Two factors that are often mentioned are bandwidth
and number of light sources. As deferred shading produces more data than what can
be stored in a single texture on modern hardware, a MRT is used. The MRT allows
multiple textures as targets for a single draw command. On earlier hardware, MRT
support was not always available, and if it were, storing multiple textures for a G-
buffer required high memory usage, compared to what was available for that hardware
generation [24]. Van de Hoef and Zalmstra made some actual performance tests on
modern hardware, which in all test cases show that deferred shading is faster than light
pre-pass [25]. For few light sources and few vertices, forward rendering is significantly
faster than the other algorithms. For more vertices and/or more lights, deferred shading
is twice as fast. The only case in which inferred lighting is faster than deferred shading,
is in scenes with many vertices and many light sources (300+). It should be noted that
the difference measured is marginal at even than many number of lights, and that these
lights cannot affect shadow casting in the scene.

2.9.2 Results

As the game is set in an outdoor environment without many more lights than the sun,
the player’s car lights and possibly other players’ car lights, deferred shading seems to
be the best fit when considering performance. However, an implementation proved to
be non-straight forward in Ogre3D 1.9, as it is designed to support the fixed-function
graphics pipeline for maximal compatibility with old hardware. Some effort was put into
investigating how lighting for deferred shading could be implemented, but as shadows
(otherwise handled by Ogre3D) had to be accounted for in the implementation too, the
progress in this direction was abandoned, given the time constraints we had.

In order to support other post-processing techniques, such as SSAO and to some degree
bloom, rendering of fragment information other than color still needs to be performed.
The current solution uses forward rendering for lighting calculations, as managed by
Ogre3D. The scene is then drawn in a separate pass, where geometry information is
output into an MRT with two textures. Table lists the attributes stored in our
game. The first texture stores the world-space normal represented on the pixel, while
the second texture stores world-space position and the emissive intensity of the object.
The format and interpretation of these components are discussed where they are used,
in the sections about SSAO and bloom, respectively.

Notably, the textures used in an MRT must have the same pixel format on most hard-
ware [26]. In our current implementation, we use the 16-bit floating-point 4-vector
format FLOAT16_RGBA for both textures. Lower resolutions produce significant ar-

21

Table 2.1: Geometry buffer storage allocation in our game.
r g b a
MRT 1 | position.x position.y position.z emissive
MRT 2 | normal.xz normal.y mnormal.z (empty)

tifacts all over the screen with the current SSAO implementation. Another limitation
is that Ogre3D 1.9 hide the depth buffer as an abstraction. Therefore, it is not possible
to access a texture of it on hardware that support such depth-buffer textures, without
manipulation of the Ogre3D source code. As the other attributes would still need to be
draw into an MRT, we chose to include the position there too. We motivate this choice
by the project time constraints and hardware compatibility.

2.9.3 Discussion

We think the next logical step in the development of the game is implementing deferred
shading properly. Given some more time, it could greatly improve performance and
open up the opportunity of having many light sources in the scene, for example on
the car. Also, if new post-processing effects that need more data stored in the geome-
try buffer are developed, lowering the pixel-format resolution/range in order to reduce
memory-bandwidth usage is an important performance improvement worth further in-
vestigation.

2.10 Bloom

In the human eye, as well as in photographs taken by a camera, intense light sources
seems to be surrounded by a blurry glow known as bloom [27]. There is also a sparkling
effect known as flare. The umbrella term for these phenomena is glare. Even though
glare is mostly visible at night, it can be seen around really bright objects in daylight
too. Car lights are an excellent example of that, which motivates proper handling of
bloom in our rally game. Here, we present our findings about how the bloom effect
could be included in the rendering process, in order to enhance the perceived realism
and thus improve the gaming experience. There is no rational decision behind only sup-
porting bloom, but not flare, other than the project’s time constraints. Our subjective
judgement decided, and bloom was slightly preferred visually.

The color buffers on modern hardware have a limited range in what brightness values
can be represented, which in turn is correlated to how bright pixels modern monitor
technology is capable of producing. Not even the brightest white (full brightness for the
red, green and blue components that make up a pixel) is able to induce noticeable bloom
in the human eye. When lighting calculations produce pixel color values brighter than
what can be possibly stored in the color buffer, the value is clamped to the maximum
value that can be represented.

22

Adding bloom with software for an already rendered scene with saturated brightnesses,
as a post-processing effect, is a procedure in which the brightest parts of the scene
are identified and extracted, in order to add an artificial bloom halo [27]. The naive
technique is to assume that the brightest parts in the scene were clamped as a result of
being too bright, and then blindly apply a uniform amount of bloom to them. An im-
provement to the aforementioned technique, is masking out the parts that are assumed
to be glowing beforehand, and then only applying bloom to them [2§]. Masked bloom
is also commonly referred to as glow, as it gives the game artist more control to specify
exactly which parts should be glowing at all times. However, the pre-determined nature
of this technique may also be a drawback, as the bloom no longer is truly dynamic.

A solution to the problem of saturated brightness, is sacrificing memory and memory
bandwidth, storing brightness values with a higher range, still maintaining the same
precision [29]. The range of brightness values that can be represented is known as the
dynamic range of the image format. Rendering pipelines which can handle the larger-
than-usual brightness range are commonly referred to as having a high dynamic range
(HDR). The benefit of implementing such a pipeline would be that a technique known
as tone mapping could be applied post-rendering. Tone mapping greatly enhances
how a scene is quantized to the low dynamic range format displayed on the monitor,
mimicking the human eye in its process [30]. The quantization process involves an
analysis of local and global brightness levels of the whole scene when it has finished
rendering, implying that the scene must have been rendered to a HDR pixel format
first.

2.10.1 Method

Regardless of method used for bloom identification and extraction, the limited bright-
ness range modern monitors are afflicted with imply that in order to show bloom to the
user it has to be simulated. It should be noted that users might also prefer simulated
bloom on saturated brightness, as glare produced by partially over-bright monitors
might cause discomfort [31]. This section covers a description of how simulated bloom
might be synthesized for display on a medium with only a limited brightness range,
such as today’s monitors.

To summarize the whole process: after the brightest parts in the image have been
identified and extracted, the selection is blurred and then added back to the scene
again, brightening it even further. This way, the pixels that otherwise would have been
saturated in brightness, also smear some of their light intensity on nearby pixels. This
simulates what occurs in the human eye, being similar to the light halo seen around
bright objects. In our method, however, we are not considering the relative brightnesses
in the scene. The human vision’s ability to better differentiate between darker colors
than lighter ones [32] alleviates the problem, as our game is set in a uniformly daylight-
lit environment.

23

When the brightest pixels have been selected by rendering them into a render-target
texture, they are blurred in software, combining and spreading them out over a larger
area. On the rasterized image, blurring is achieved by, for each texel (texture pixel) in
the texture, combining its color with the average color of all neighbouring texels within a
certain radius. We focus on two suitable algorithms that can be efficiently implemented
targeting the GPU, allowing real-time performance: box blur and Gaussian blur.

Box blur combines (interpolates) the color of each texel with its neighbors, weighting
each contributing pixel equally with respect to how much it influences the final result.
Using box blur with a small radius yields a small and non-natural looking blur, while
using it with a larger radius yields an even more non-natural looking result with a very
strong blurriness.

Gaussian blur produces a blur more natural than box blur, comparable with what can
be found in nature. Applying box blur with a small radius repeatedly, incrementally
building the blur, approximates Gaussian blur with high accuracy in just a few iterations
[33]. However, the interpolation might be performed in just one pass, exploiting the fact
that the interpolation weights for Gaussian blur can be pre-computed independently of
the scene’s colors.

Having a blur filter was important for other effects than bloom in the game, such as
SSAO and motion blur. An important detail that had to be accounted for was that
the filter had to adapt dynamically to the current effect factor. In order to meet the
time constraints of the project, one filter solution that could be used everywhere was
developed. The choice of using Gaussian blur was motivated by its high quality and
the easy integration of the effect factor it allows for. A discussion on how the Gaussian
blur filter might be implemented follows. In particular, the effect factor requirement as
well as the general real-time constraints of the project is considered.

2.10.2 Gaussian Blur

In detail, the first step of Gaussian blur is taking a texel and its neighbours, and passing
their coordinates (with the currently active texel as origin) to a Gaussian function [3].
The Gaussian function is the density function of the normal distribution, which is used
to determine a weight matrix for the sampled texels. The weights are used to decide
how much the current texel is going to be affected by the color of its neighbours. In the
next step the texel values in the sample are multiplied by its corresponding weights.
Lastly, the average of the neighbour products replaces the current texels value. The
result will be one blurred texel, which because of the normal distributed weights will be
more affected by texels close to it than the ones farther away. For a completely blurred
texture, this method is applied for all the texels in it.

However, the Gaussian function will produce a non-zero result for all the neighbouring
texels, independent on how far away from the origin texel they are located. This means
that to blur merely one texel, the weighted average of all the texels in the entire texture

24

is calculated. Since the weights far away from the origin will be very close to zero, this
will result in a lot of unnecessary computations considering the visibility of the blurring
effect. It is therefore beneficial to decide on a sample radius, and thus leave out all the
weights too close to zero. Another aspect of this method is the conversion of the
Gaussian continuous values to the discrete ones needed for the weight matrix. When
converting the values, the sum of them will not equal 1, and therefore brightness in the
texture will be lost during blurring. This is not important when the blur is used for
the purpose of creating bloom, but it is important when used in other contexts, such as
SSAO and motion blur later on. To account for this loss, the values can be normalized
by dividing the values in the weight matrix by the total sum of the weights.

A very useful characteristic of the Gaussian filter is that it is separable [28]. This implies
that a two dimensional Gaussian blur will produce equal results as calculating two sep-
arate one dimensional blurs. The one dimensional filtering requires less computational
power, which is desirable in real-time rendering.

2.10.3 Result

This section present the result of implementation and optimization of bloom in our
game, taking the effect factor into account. As was previously mentioned when the
method was established, our final implementation uses masked bloom together with a
vertical-horizontal separated Gaussian blur kernel.

To begin with, results from the game with the blur identification method based on
the assumption that bright pixels probably was calculated as even brighter, but later
saturated to fit into the dynamic range of the texture pixel format. Figure shows
the problem where objects with bright colors that should not cause bloom erroneously
have been bloomed. Only the car lights should have been bloomed, not the whole car
body or the banner.

JOHANNEBERGSRALLY

Figure 2.13: Naive bloom identification leads to undesirable bloom progression.

Figure [2.14] shows bloom applied to the scene based on the masked bloom identification
method, featuring a correctly applied halo around the lights. Notice how the car body
does not cast any bloom on the surrounding pixels. The magnitude of the bloom is

25

based on the current effect factor. Finally, Figure shows how bloom is applied to
the sky, causing the brightest clouds to brighten up even further. The sky also bleed

some of its color to the surroundings.

Figure 2.14: Only the car’s light receive the bloom effect. The magnitude depends on the current
effect factor. The left car drives faster and therefore have a higher effect factor, increasing the
bloom’s spread.

Figure 2.15: Bloom in the sky.

2.10.4 Discussion

Given the time we had to implement and test the bloom, we think the bloom works
well. There are no noticable bugs, but the bloom identification could be improved.
With more time to invest in development, we propose a full HDR graphics pipeline as
the next step, considering the opportunities it unlocks in other areas too, such as tone

mapping.

26

2.11 Screen-Space Ambient Occlusion

The approaches used in order to approximate the rendering equation so far do not pro-
vide full global illumination, where light that has illuminated one surface bounces off
and illuminates other surfaces as well. The solution used has been to evaluate whether
a particular part of an object is lit by a light, and then illuminate it accordingly, disre-
garding the appearance of neighboring geometry that should have been influenced by
light bouncing off the surface in real life. Ambient-occlusion techniques seek to account
for nearby occluders, obscuring incoming light, dampening the effect of ambient lighting
as modelled by the Phong model. In order to increase the perceived photorealism in the
game, ambient occlusion was added to the rendering engine. The following discussion
will focus on real-time friendly alternatives that approximate the ambient occlusion.
Finally, our choice, combining several of the techniques, is presented and motivated.

2.11.1 Previous Work

Approximating ambient lighting and ambient occlusion is not only used for real-time
purposes. It is also used in order to speed up off-line rendering such as ray tracing,
path tracing and similar techniques [34]. These techniques still use rays for finding the
amount of occlusion but omit color calculations in the occlusion-finding pass. However,
even just finding occlusion values for every point in the rendered part of the scene,
including shooting rays to geometry outside the camera’s view, becomes too computa-
tionally heavy for real-time applications. The limits of real-time on today’s consumer
hardware makes inclusion of geometry that cannot be seen directly by the camera im-
practical, hampering photorealistic accuracy.

The screen-space variant of ambient occlusion, SSAQO, refers to a specific class of algo-
rithms that only use the (almost) final render of the scene, darkening the edges around
small holes, creases and objects located in near proximity to each other. One of the
first recognized algorithms, Crytek SSAQO, uses the depth buffer in its hunt for nearby
occluders [35]. This is an improvement of an earlier method, instead using surface nor-
mals projected into screen space for crease detection [36]. By comparing the depth of
each pixel in the render with the depth of pixels representing nearby points, the amount
of ambient occlusion is determined. To keep the number of samples within the limits of
acceptable real-time performance, Crytek SSAO samples pixels representing randomly
selected points bounded by a sphere, centered around the pixel to be shadowed.

Even though sample-point positions are statically randomized inside the sphere, the
low sample count and the fact that the depth buffer is usable only for some of these
points creates banding artifacts (stepwise changes in color, rather than smooth color
gradients). As sampled points not in direct view of the camera are not rendered into
the depth buffer, the number of valid samples might become extremely low in some
cases, yielding artifacts. Likewise, extremely sharp viewing angles also produce arti-
facts, as the sample points (in world space) all correspond to the same pixel in view

27

space. To mitigate the effect of both the banding and extreme condition pixels, the
sample points are moved in a random fashion dependent on the pixel’s position in the
render. The random movement is done with a small kernel, usually 4z4 in size, yielding
high-frequency ripples in the formed occlusion texture. The noise is then reduced by
averaging (blurring) the occlusion values with its neighbors, at least such that the 44
noise is smoothed out. The simple box filter, or even Gaussian blur, might be used for
that purpose.

A cross-bilateral filter may also be used in order to reduce the low-frequency noise
significantly, while still keeping the crease edges sharp; an example being Gaussian
blur with screen-space pixel distance as the first weight parameter, combined with
camera-space scene depth as the second weight parameter [37]. Even though not truly
separable into horizontal and vertical passes, like Gaussian blur is, approximating the
result with two separate blur passes in each direction works well for the aforementioned
filter configuration.

Improving upon Crytek SSAO, the sphere may be replaced with a normal-oriented
hemisphere, such that the amount of occlusion is calculated purely based on occluders on
the front-facing side of the (surface) triangle. Since geometry behind the opaque surface
should not contribute to any ambient occlusion, this method more closely captures the
ambient occlusion model. However, the surface normal is needed in order orient the
hemisphere in the right direction. Storing and reading the surface normal might in
turn be taxing on performance. We have not found who the original inventor of this
technique is, but it is described in detail by John Chapman [38], and also part of the
Ogre3D SSAO Demo [39].

Taking the normal-oriented hemisphere method further, Horizon-Based Ambient Oc-
clusion (HBAO) treats the depth buffer as a continuous height-field and ray-marches,
along the randomized sample direction, in order to find the most occluding piece of
geometry [40]. Each time the ray hits geometry, the trajectory is adjusted to approach
the surface normal, in order to establish a highest point of horizon. The angle between
the highest point of horizon and the surface plane determines the rate of occlusion. In
order to reduce over-occlusion, a cause of banding artefacts, the surface plane is lifted
from the true surface by a certain bias distance [37]. Additionally, the individual sam-
ples’ contribution are weighted by their distance r from the original pixel, for enhanced
smoothness. A radial attenuation function

alr) =1—12 (2.1)

is used for the falloff calculation. A similar approach is taken by the volumetric ambient
occlusion technique, where the definition of occlusion is changed to better match the
assumed geometric volume that occluded parts of a scene often are accessible through,
in real-world conditions [41]. The assumptions are based on a fuzzy logic classification
scheme.

28

Finally, ending the discussion on suitable real-time screen-space ambient occlusion tech-
niques, volume-based ambient occlusion and summed-area table ambient occlusion is
mentioned. Volume-based ambient occlusion ray-marches in a pre-computed 3D tex-
ture for occlusion estimation of a particular area, covering surface detail more precisely
[42]. Summed-area table (SAT) ambient occlusion relies on a pre-process stage of the
geometry buffer, using the GPU to calculate a SAT representation of the surface [43].
In order to store the accumulated values, a pixel format with high precision and range
is needed. The benefit of the method is that only the four corner pixels of a rectangle
covering the area need to be sampled. Additionally, no blurring pass is needed, as the
summed area table generation not only smoothes out noise, but also ensures no band-
ing artefacts occur as otherwise associated with the low sampling frequency of previous
methods.

When the most suitable general method of achieving SSAO have been selected, there are
a few additional implementation details that can be changed in order to increase either
performance or visual fidelity. Before an introduction of the quality-enhancing tech-
niques available, some methods of reducing memory bandwidth are presented. Whether
these methods successfully increase performance is highly dependent on limiting factors
in the hardware and scene being rendered. During evaluation, it is worth critically keep-
ing in mind that modern hardware excel at reading memory from consecutive memory
locations, utilising cache prefetching. Also, seemingly reading a single attribute from
a texture texel might in the background correspond to reading the all attributes, dis-
carding the ones not requested, due to hardware constraints.

Complicating the analysis even further, pixel shaders (threads) run in parallel on the
GPU, shading a number of pixels at the same time [44]. But, their parallel nature is
entirely dependent on all conditional branches (e.g. if-statements) all taking the same
path. Diverging branches lead to suspension of one of the branches while the other is
executed, downgrading the execution scheme to a serial one. It is probable that nearby
pixels are shaded at the same time in the same warp, where a warp refers to a collection
of threads executing simultaneously. Thus, taking decisions in a shader (e.g. exiting
early) is probably only beneficial for large areas in the render where the same decision
is taken. Different hardware behave differently in this regard.

Instead of storing each pixel’s world-space position as a 3-vector in the geometry buffer,
it is possible to reconstruct it from the pixel’s normalized depth, position relative to
the screen boundaries and camera properties [45]. The camera position, orientation,
field-of-view, near- and far clipping planes (used to clip the render distance within a
far and near interval) of the current frame all need to be accounted for. The technique
uses an expensive [44] trigonometric function for determining the position, but may in
some implementations save enough bandwidth to be worth the effort of implementation.
Instead of reconstructing the position fully to a 3-vector, referencing it to the camera
position and orientation, it is possible to keep the obtained value normalized and in
screen space. The obtained value represents more than a single position; it represents

29

the range of camera-space positions the pixel had captured at the time of rasterization.
Having a relationship between camera-space and screen-space position admits pixel-by-
pixel traversal of the depth texture. If the neighboring samples all correspond to the
same pixel, there is not enough information to decide whether the pixel is occluded.
The SSAO shader is in this circumstance allowed to exit early, possibly increasing
performance.

As an alternative to storing surface normals as 3-vectors, the per-pixel normals may be
approximated using camera-space positions and dFdx/dFdy instructions, as described
in [37]. The dFdx/dFdy instructions correspond to the partial derivative of any shader
variable (in this case camera-space position), with respect to either the horizontal or
vertical view-space coordinate [46]. Using the pure face normal, instead of an averaged
one for the whole triangle, gives more correct results in many cases, exploiting the
fact that ambient occlusion occurs at sharp edges. For correctly modelled geometry,
where triangle edges coincide with sharp edges, the pure triangle normal is a better
representation than the normal used for interpolation, which is an average of the whole
triangle’s face normal. However, as the distance from the edge increases, the more
incorrect the reconstructed normal might be.

Yet another possibility is exploiting temporal and spatial coherence for recently drawn
geometry [47], leading to Temporal SSAO (TSSAO), described by Mattausch et al.[4§]
By reusing the ambient occlusion map from the previous frame, only re-projecting it
with regards to the current camera position and orientation, a dynamic solution where
not every part of the scene needs SSAO-recalculations is created.

Being limited to the parts of the scene that is visible, the frame buffer might be ex-
tended in order to allow for increased information storage. One way of achieving that is
rendering the scene with different depths, a technique known as depth peeling [49]. For
each depth layer, the scene is drawn with decreased depth culling. Another possible
way to include more information at the edges of the screen, is (maybe not surprisingly)
increasing the viewport size. Rendering the SSAO at half resolution, still performing
the blur passes at full resolution, can sometimes provide nearly four times shorter frame
times. While flat surfaces with no ambient occlusion are not affected, the appearance
of high-frequency geometry degrade visually. Applying a second full-resolution pass,
targeting only areas of the render which need further refinement, as described by Bavoil
and Sainz[49], is a middle-way in terms of performance and quality.

2.11.2 Result

Deciding between Crytek SSAO, normal-oriented hemisphere SSAO, HBAO, volume-
based SSAO and SAT-based SSAO, we made our choice primarily based on the per-
formance and aesthetics, as reported in detail by previous research, referred to in the
previous section. Volume-based SSAO was discarded as too demanding on memory for
the visual fidelity we desired. SAT-based SSAO had the benefit replacing a high num-

30

ber of samples with a few static ones. However, the number of samples per shadowed
pixel we are constrained with on today’s hardware (16 in our case) roughly amounts
to the static number of samples SAT-based SSAO uses. With a requirement of storing
occlusion data in a larger data-type format, there is no gain in performance, and thus,
SAT-based SSAO was discarded as a technique of the future. Conversely, while Crytek
SSAQ is fast, it does not meet our visual quality standards.

With the choice left to HBAO and normal-oriented hemisphere SSAO, we note that both
meet our performance and visual standards, where we prefer HBAO slightly. Both tech-
niques can be configured to look very different based on hemisphere radius. The fact
that two techniques look different does not necessarily mean that one is better than the
other. We resorted to the main project goals and noted that HBAO had a more com-
plicated implementation, while the complexity of a normal-oriented hemisphere SSAO
implementation paired well with our prior experience and time constraints. Addition-
ally, we use the distance-falloff weighting from HBAO, in order to smoothly transition
between occluded and unoccluded areas.

For noise-reduction filtering, our already developed Gaussian-blur shader solution was
chosen. Again, the choice was based on the project time constraints. While a cross-
bilateral filter, combining Gaussian blur and screen-space depth, could have produces
a smoother result, the results with just Gaussian blur look good enough for us. This
concludes the broad method we used for ambient occlusion approximation. A screenshot
from our game is presented in Figure where the results of SSAO is visible as
shadowing around the back tires and along the rear axle. There is also some occlusion
between rear lights and spoiler. The crease along the wall to the right is also occluding
itself. Figure [2.17] shows how the SSAO affects the bonnet of another of our car types.

Figure 2.16: Our normal-oriented hemisphere SSAO implementation. Occlusion is seen as shad-
ows around the crease created when the car and wall intersects with the ground.

31

Figure 2.17: Ambient occlusion present on the bonnet of the right car, where it covers three of
the sides around the striped middle sheet of metal.

We tried the method where the normal is reconstructed by dFdx/dFdy of the world-
space position (again, dFdx/dFdy calculates the partial derivative in screen-space). The
dFdx/dFdy instructions exploit how neighboring pixels are calculated in the same warp,
making them a fast replacement for reading the normal from a texture. As the normal
was stored in its own texture, previously only used by the SSAO shader, the geometry
buffer could be reduced to one texture. In practice, no measurable performance gain
resulted from this change. Even though only the position texture was read from in the
shader, compared to the previous shader that read both the position and the normal
texture, the major bottleneck lies in the repeated position reads each occlusion sample
contributes with. It was further revealed that removing one texture from the geometry
buffer did not lower the frame time, contrary to what was previously thought. For
the actual shadows, the dFdx/dFdy-method did not change the appearance or qual-
ity. However, on flat walls, there were some subtle disturbances visible only when the
camera was moving. For future development, when the geometry buffer becomes full,

these disturbances might be acceptable or even possible to remove. Until then, the
dFdx/dFdy-method was removed.

The method of reconstructing position from depth and camera configuration was not
chosen. Firstly, some tests revealed that the exit early-strategy did not work well:
Ogre3D’s normal-oriented hemisphere SSAO demo was modified to show areas where
the shader would exit early. Some thin lines were observed, but considering how nearby
pixels’ fragment shader threads are scheduled together into a warp as described earlier,
concern was raised whether there was any performance gain to be found at all. The
SSAO solution was implemented based on these observations. Afterwards, the exper-
iment was repeated, and it was revealed that the background resulted in early shader
exit. As the scene had no skydome (a dome placed around the game world to represent
the sky), the depth of the sky would correspond to the camera’s far clipping plane,
causing the early exit. However, our game has a skydome not placed far enough to
trigger early exit. Instead, we tried masking away the skydome manually from the ge-
ometry buffer, but it ruined the bloom and motion blur effects. Considering the project
time constraints, investing further research into a better masking solution could not be
motivated.

32

Finishing the discussion on position reconstruction from a single depth value, the cur-
rent layout of the geometry buffer need to be considered (Table . Shrinking position
from three to one element, there are still five elements that need to be stored. Given
hardware constraints, two textures with four elements each are still needed, leaving
three slots empty instead of one. Trying to shrink the number of slots per texture to
three is also without merit: such pixel formats (PF_FLOAT16_RGB) are unavailable
on some of our target hardware. If they are available, it is possible that the hardware
pads the data with an extra element anyway, in order to adapt the pixel-format to the
internal memory width that is a power of two.

Table 2.2: The current layout of the geometry buffer.
r g b a
MRT 1 | position.x position.y position.z emissive
MRT 2 | normal.x normal.y normal.z (empty)

Given that the camera often moves forward in a rally game, essentially diving deeper
into the scene, TSSAO seems like a good candidate for implementation. Reprojecting
the SSAO texture from the last frame will often become an upscale in our case. A fast
moving car imply that the upscaling happens quickly. The implementation by Mat-
tausch et al. indicate that this might work badly for the visual fidelity we seek, as the
rate of convergence need to be set high in this case. For a rally game, maybe the dy-
namic refinement pass method proposed by Bavoil and Sainz work better. Considering
the project time constraints, we did not feel confident enough to try, a venture possibly
ending in a badly looking SSAO with horrible performance.

2.11.3 Discussion

We investigated the possible options in the field of real-time ambient occlusion al-
gorithms, and came to the conclusion that normal-oriented hemisphere SSAO with
radial falloff weighting and Gaussian blur was the best solution for our project. The
technique was implemented with good results. Implementation was not problem-free
though. Most of the problems encountered were based on flawed assumptions about
how random entities in the code behaved. As support for future work, these problems
are discussed in detail below. Finally, we note that suggestions for future work have
already been made, with the most notable one being adoption of HBAO.

In order to generate the high-frequency banding artefact-reducing noise, a simple func-
tion of the screen-space position was used as a pseudo-random generator. However, the
probability distribution of this function was not uniform, leading to slightly more occlu-
sion on the left side of every object. When generating the static random-vectors inside
the hemisphere, this phenomenon was also observed. Sometimes, especially when using
few samples (16 in our case), the random values were noticeably bad. We found that
trial-and-error worked well when obtaining random-vectors: they should ideally repre-
sent a Monte-carlo integration of the hemisphere volume, meaning that there should

33

be a good balance between the vectors. Also, having too short vectors or having two
vectors that are too close to each other is a waste of performance, as they will reference
the texel to be occluded or the same texel repeatedly.

2.12 Motion Blur

In order to enhance the tunnel vision that humans experience when moving fast, such
as when driving a rally car, motion blur was added to the game. The implementation
focused on conveying the tunnel vision effect in real-time, rather than being accurate.
Perfect motion blur would account for scene appearance between frames, but given
that keeping the frame rate high enough even for the display frequency of around
60 Hz is troublesome, such intermediate computations cannot be justified for real-
time applications. The solution available is interpolation between current and previous
frame. This section explores some of the most popular interpolation techniques. Finally,
our choice of technique, and the results we obtained in our game is presented.

2.12.1 Previous Work

Potmesil and Chakravarty noted that motion blur was caused by object movement dur-
ing the exposure time in a camera, as well as the camera shutter’s movement during
start and stop of an exposure [50]. They chose the first cause of motion blur, object
movement, and created a model for it. We note that the human eye, which we want to
model to some degree, behaves similar to a camera but does not have any shutter that
can cause motion blur. Potmesil and Chakravarty used ray tracing software for ren-
dering scenes with different parameters. While not a real-time approach, there are still
some interesting points in their research that can be applied to real-time applications.
Firstly, they link motion blur to the velocity, not only of objects, but also the camera.
They also show that moving objects with motion blur look like a blurred extrusion of
an object. Lastly, they show that if the rendering is split into multiple exposures, the
blur is still there, but without extrusion. Instead of looking extruded, the object looks
duplicated.

Rosado noted that motion blur not only increases realism in games, it also help in
hiding lag when the frame rate is low [51]. However, adding motion blur might in itself
slow down rendering. Some research suggest that motion blur does not enhance the
player experience in a high speed racing game [52]. Some users might also find the
effect distracting. While our game is a rally game, with lower speeds on squiggling
roads, the research might still apply. Other prior research in the ergonomics of scene
blurring include the depth of field effect added to a virtual environment by Hillaire et
al [53]. The depth of field effect is similar to motion blur but does vary with depth
instead of velocity, rendering objects out of focus as blurred. It was found that some
users described the blur as more fun, realistic and/or even addicting, while others found
it annoying, discomforting or even a cause of headache.

34

Instead of blending the last frame with the current one, essentially applying a time
variant low-pass filter of each pixel’s individual color, other properties of what object
is drawn at the pixel may be used to indirectly interpolate between frames. Using the
per-pixel velocity, calculated as a difference between current and last frame world-space
position, blurring of the current frame can be performed with individual blur strength
on each pixel [51]. The important detail with this technique is that the last frame only
indirectly participates in the final result, through the calculation of pixel velocity. The
blur is calculated only in the current frame, by averaging in the pixel velocity direction.
Instead of storing positions, the pixel depth of the current and previous scene can be
used in conjunction with an inverse of its corresponding camera projection matrix, in
order to reconstruct position and finally velocity. This is the same technique already
investigated in the SSAO chapter, but this time applied in another context.

Not every object is in favor of motion blur. For example, the player’s car might be left
sharp by masking away motion blur for it, while the rest of the scene is blurred [54].
This technique is used in the car racing game Split/Second, published by Disney Inter-
active Studios. Our observations of motion blur in the racing game Burnout Paradise,
published by Electronic Arts, suggest that the motion blur is also adapted to where on
the screen it appears. As the camera always follows the car, this resembles a velocity
weighted depth of field effect.

2.12.2 Result

Motion blur was deemed the least important among the graphical effects we support
in our game. As a consequence, it also received the least development time. The first
iteration used what was already available: the current and the last scene. A linear
blend was performed between them based on the effect factor. Realizing that objects
in the scene that were approaching the viewer looked duplicated rather than extruded,
due to the lack of color integration between frames, we tried to keep the inner parts
of surfaces smooth. Intuitively, instead of extruding objects and blurring them (the
result of motion blur), we let the human eye perform the extrusion and blurring but
enhanced it with some extra retained motion around object edges. The edge detection
is already performed implicitly in the SSAO-shader, when the occlusion is calculated.
Instead of throwing away the result, it is combined with the current effect factor and
passed together with the amount of occlusion to the Gaussian blur pass. This required
almost no development effort, reusing code we already had.

The edge-detection solution mentioned is presented in Figure [2.18 Note how the large
wall to the right is clear while its borders are moving, but also how the thin trees
look duplicated due to heavy edge detection in that area. No velocity calculations are
performed for producing these scenes, just simple alpha blending weighted by how near
an edge the painted object part is. Note that the skid marks in front of the car are
not related to the current drive, the camera is traveling into the scene contrary to what
they suggest.

35

S
» &l AWE
T VIR

Figure 2.18: Edge detection enhancement applied to simple motion blur.

There are some cases in which the car or objects in front of it becomes blurred too,
where Figure stands as an example. In order to remove the blur from these areas,
a radial falloff factor was introduced, as shown in Figure In our game, the car is
always centered on screen (the screenshots presented have been cropped to the area of
interest). Exploiting this fact, the radial falloff is computed as the square of the distance
to the middle of the screen. The falloff factor was trivial to implement, compared to
a masking solution that could exclude exactly the screen area occupied by the player’s
car. The asphalt under the car will still look blurry when driving fast in the game, but
that aspect cannot be captured in print.

Figure 2.19: Edge detection-based motion blur sometimes become too aggressive.

36

Figure 2.20: Radial falloff applied to the motion blur.

Respecting users who do not want to have motion blur enabled for one or another
reason, the effect was made possible opt in and out from. Considering that turning on
or off enhanced tunnel vision could affect gameplay, the effect was made easily available
for toggle by a button on the keyboard. If disabling the effect would have been hard
for the average user, technically skilled users could have used this to their advantage,
possibly creating a scenario similar to cheating.

2.12.3 Discussion

It is already mentioned that the motion blur technique we chose was a result of limited
development time. While the result look good, it does not have the visual fidelity
of a comparable real-time solution that use world-space velocity and blurring. This
motivates implementation of such a solution as a suggestion for future work. Maybe
the method of edge detection can be combined with world-space velocity blurring. What
would result from such solution is outside what we can imagine, maybe the techniques
are too different to work well together. If the world-space velocity solution is built on
top of the existing one, it becomes trivial to test what the results would be.

37

Chapter 3

The Physics and Networking

In order to support the gameplay, a solution of car physics was needed. Physics sim-
ulations are driven by time, which will become an important topic of the discussion
to follow. The kind of simulation used for real-time car physics is split into discrete
steps, which all record a snapshot of the simulated world’s state. The type of simula-
tion suitable for our project is built on rigid body dynamics, corresponding to simple
non-deformable shapes that can receive forces and collide with each other. Keeping the
simulation entities simple not only lays the foundation for a fast simulation, support-
ing our real-time goal, it also simplifies the implementation, keeping our development
efforts within the project time frame.

To support multi-player physics in our game, players are allowed to interact with each
other in a networked client-server model. (Using a peer-to-peer model was discarded
as too time consuming to implement.) Interaction is not limited to seeing each other
with the correct car model and color, spinning wheels and skid marks, it also includes
proper handling of collisions between players’ cars. For correct (non-relativistic) physics
simulation results, every part of the simulation must use the same clock as a reference
when transitioning from one world snapshot to another. The reason for this is that
the different parts of the simulation cannot run independently from each other, as
all parts of the simulation could possibly collide, in extreme cases even at the same
time and place. Since correct time management is essential to a physics simulation,
multi-client solutions present challenges as every client has its own clock that cannot
be synchronized to the other clients’ clocks instantaneously, due to network latency. In
order to deliver a smooth real-time experience to end users, this tight coupling between
physics and networking requires a unitized solution.

The project goals dictates that while gameplay should work well, our attention should
be focused on the computer graphics area. Therefore, an existing physics library was
chosen and integrated into the project. What follows is a discussion on such libraries,
with emphasis on real-time alternatives that are open-source, taking our other project
goals into consideration. After a presentation of the available physics libraries, the

38

different alternatives for network management is presented. Finally, our choice is pre-
sented together with the results obtained.

3.1 Existing Open-Source Real-Time Dynamic Body
Physics Libraries

IBM lists the most commonly used open-source 3D physics engines as: Bullet,
Chrono::Engine, Dynamo, Moby, Newton Game Dynamics, Open Dynamics Engine,
OpenTissue and Tokamak [55]. Being able to simulate a car is within the basic set of
features offered by all of these engines. Some of these libraries have demos with car
simulation, while other even include a car component in the core API [56], providing a
customized interface for steering, throttle, breaking, speedometer reading etc. One of
the libraries that has such a component is Bullet [57].

3.2 Networking

Targeting consumer hardware, the only networking solution of interest is the de-facto
communication system users’ computers are connected to: the Internet. Assuming
that our application needs to communicate over the Internet, the API used in modern
operating systems to achieve that is BSD-sockets [58]. As modelled by BSD-sockets,
data is transferred between computers in indivisible chunks known as packets. When
packets are delivered over the Internet, they can arrive out-of-order, or even not arrive
at all. There are two major transfer protocols that might aid developers in this regard:

TCP and UDP.

TCP keeps a session open to the remote computer, reordering packets so that they
arrive in-order as seen by the application. TCP also issues a re-transmit request to
the remote computer if any packet becomes lost, still maintaining the in-order packet
delivery guarantee. Lastly, TCP provides congestion control, trying not to flood the
network with more packets than it can handle, as that only leads to many lost packets
and delays. UDP, on the other hand, provides none of these features. What UDP
provides is low overhead and real-time performance, especially since there is no stall in
incoming data to the application when a packet becomes lost. However, the developer
needs to ensure graceful application behavior for lost or out-of-order packets, as well as
provide congestion control.

3.3 Combining Networking With Physics

Combining networking with physics introduces the problem of unsynchronized clocks
and latency to the simulation [59]. Due to the non-deterministic nature of a physics
simulation, the only option for reliable results in real-time is either running it on only
one client, or on a server. One aspect of this choice is trust: the machine running the

39

simulation could potentially run modified code for cheating or spread malicious code to
the other clients. These problems would still be present if the simulation would be put
on a trusted server, but the server could at least try to provide an extra layer of security.
However, running the simulation on a server not only adds latency between different
clients and cars, it also adds latency between the player’s client and the simulation of
the player’s own car. Furthermore, it requires that the server is fast enough to handle
not only all clients’ connections, but also the physics simulation itself. Finally, if the
game should support offline single-player mode, the physics simulation needs to be
adapted so that it is able to run on the client as well.

The simulation also needs to run on all clients, at least partially, if any kind of predictive
reasoning about the future should be performed. Prediction can be used to momen-
tarily fill in simulation results in the graphical representation of the game, before the
results from the server actually arrive [59]. Prediction can greatly enhance the player
experience, as it conceals the low update rate from the server caused by congestion. For
non-deterministic simulations, such as the one we are faced with, the simulation needs
to be rewound and corrected when the true result arrives, should it differ from the pre-
dicted one. Another potential problem with prediction is keeping the local prediction
model synchronized with the server at all times. The floating-point numbers used in
the real-time physics libraries of today has to be carefully accounted for in this regard,
as their behavior may differ when deployed to different hardware platforms. Prediction
can also be used on the server to reason about what the player is doing, reducing the
effects of input latency.

Finally, if players should be able to race against each other, the time of when a race
starts needs to be synchronized. By keeping the simulation on the server, all the cars
can start at the same time and there is no ambiguity in which car won a race, due
to unsynchronized clocks between clients and clock drift [59]. The car racing game
Burnout Paradise, published by Electronic Arts, instead uses a clock-synchronization
scheme in its peer-to-peer physics model, in order to synchronize clocks as accurately as
possible. It should be noted that true clock synchronization is not possible to achieve
over the Internet, due to its non-deterministic latency. Thus, there can be multiple
clients claiming they won a race in Burnout Paradise. The game tries to solve this
conflict by local timing of races, which is much more accurate but still not entirely
fair, considering clock inaccuracies (read jitter, and to some degree, drift). Cheating is
always possible, but this scheme makes it very easy by simple data tampering, compared
to a cheating robot that has to honor game dynamics when a validating server is used.

3.3.1 Results

We chose Bullet as physics library, due to its active development, large user base, and
the car simulation component and demo it had. Many of the other libraries have plenty,
or all, of these qualities, and might have performed as good as (or even better than)
Bullet did. In retrospect, we would have made a different choice. While Bullet had

40

good documentation explaining the general concepts, the API documentation was non-
existent. Also, the car simulation component was littered with memory corruption
bugs. Both of these shortcomings led to many development hours spent deep within
Bullet’s source code.

While the car simulation component provided by Bullet was accurate, it was not user-
friendly: when the car tires lost traction of the road due to drifting, the car went into
an uncontrolled spin. We solved this by implementation of an automatic drift control
system, which corrects the steering so that the front wheels always are referenced to
the velocity direction. At first, the system worked too well, at the expense of gameplay.
Some low-pass filtering of the steering direction referencing were added to the system,
in order to allow users to drift, but still not lose control of the car completely.

For networking, considering the project time constraints and that physics and network-
ing was prioritized lower than the already big area of computer graphics, we chose a
hybrid solution. The player’s car is simulated locally on the client, but its state is also
announced via a server to other connected clients. Apart from managing user sessions
and hiding the other player’s identity, the server broadcasts incoming player state to all
other connected players. Filtering of old packets that have arrived out-of-order is not
only done on clients, but also on the server, possibly reducing bandwidth usage. Both
the client and server use raw BSD-sockets for communication with the network, sending
and receiving UDP packets asynchronously. The data synchronized over the network
is car position, orientation, velocity, model/color and wheel traction. The position and
velocity is used for client-side prediction of position, and calculation of wheel rotation.

The main reason for choosing the hybrid solution was that network latency was assumed
to become much more apparent for the player’s own car, rather than for other players’
cars. By keeping the player’s car model local, we could focus on one simulation, omitting
much of the state synchronization between server and client that would otherwise be
needed to provide a smooth and stable real-time experience for the user. Single-player
offline mode was also made available by this method, without any extra development
effort. One problem with client-local physics is that fair multi-player races cannot be
hosted, and therefore we decided to only support local racing, with simple timekeeping
triggered by driving through start and goal checkpoints.

It was our original intention to disable collision between cars, but, apart from some
issues where one car can push another through walls, it worked well enough that we
kept it enabled. Figure shows such player interaction.

41

Figure 3.1: Multi-player interaction in our game.

3.3.2 Future Work

Even though the simulation works relatively well, we suggest that the physics simulation
should be moved to the server in the future. The main advantages with a server-side
simulation is proper handling of car collisions, and the possibility of hosting fair multi-
player races.

42

Chapter 4

General Results

A racing track, which sets the theme of the game, was modelled using the open-source
3D modelling tool Blender. The racing track, a closed circuit within the Johanneberg
Campus, allows players to race around the track and record their time. A multi-player
solution was also developed, enabling players to interact with others.

Having a car that handles well and is affected by gravity and other forces in a realistic
manner improved gameplay. Using the open-source physics library Bullet allowed for
the car to behave more realistically and physically accurate. However, an even more
user-friendly solution was developed, as the accuracy from Bullet was proven to harm
gameplay. Adding a physics library to the game also allowed for easy integration of col-
lision detection and response, enabling players to crash into each other’s cars, improving
the quality of the multi-player support.

Using the open-source Ogre3D as a graphics framework did provide a range of features
that aided the development process, including mesh loading support, particle systems,
shadows and custom materials. A number of visual quality-enhancing post-processing
effects were developed, improving the overall gameplay experience.

43

Chapter 5

Conclusion

The purpose of this thesis was to investigate limitations and possibilities in creating
a visually appealing multi-player racing game with focus on computer graphics, using
open-source tools and libraries. A wide range of graphical effects were considered and
examined further. This resulted in a combination of graphical effects that seemingly
improve the appearance of the game. Modelling the world, cars, and textures, as well
as using open-source tools and free software, enables the game to eventually become a
commercially viable product.

Deciding to use Ogre3D as the graphics engine was proven to be a valuable decision.
Using it allowed for increased freedom, compared to similar alternatives, contributing
to the success. Considering Ogre3D is open-source also allowed for the final product to
fit the original purpose.

Development of a more advanced gameplay model is one of the aspects we recommend
for future work. Also, many of the graphical effects can be developed further. A proper
implementation the geometry buffer unlocks development of many future improvements,
such as deferred shading in HDR, allowing a tone mapping implementation. Other
proposed improvements include support for HBAO, flare, cascaded shadow maps, world-
space velocity blurred motion-blur, and a faster car enamel reflection solution.

Even though the game is not a finished product, we think that the result is a success in
regards to creating a graphically pleasing multi-player racing game, using limited devel-
opment resources and money. The possibility of using open-source tools and libraries
for such a task was also confirmed.

44

Acknowledgements

We want to thank our supervisors Ulf Assarsson and Erik Sintorn for their invaluable
help during the whole process. We also want to thank everyone in the open-source
community for their contributions to Ogre3D, Bullet, Blender, and all the other projects
we used. Finally, we want to thank our friend David Gardtman for his ideas about
gameplay and graphics in the beginning of the project.

45

Bibliography

[1]

2

Ogre3D, “About.” http://www.ogre3d.org/about, 2015. [Accessed: 01- Jun-
2015].

B. G. Baumgart, “A polyhedron representation for computer vision,” in Proceedings
of the May 19-22, 1975, national computer conference and exposition, pp. 589-596,
ACM, 1975.

T. Akenine-Moller, E. Haines, and N. Hoffman, Real-time rendering. CRC Press,
2008.

J. T. Kajiya, “The rendering equation,” SIGGRAPH Comput. Graph., vol. 20,
pp. 143-150, Aug. 1986.

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM,
vol. 18, pp. 311-317, June 1975.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,”
SIGGRAPH Comput. Graph., vol. 15, pp. 307-316, Aug. 1981.

J. F. Blinn, “Models of light reflection for computer synthesized pictures,” SIG-
GRAPH Comput. Graph., vol. 11, pp. 192-198, July 1977.

B.-D.-N. to Pro, “Blender 3d: Noob to pro/uv map basics.” http://en.
wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/UV_Map Basics, 2015. [Ac-
cessed: 18- May- 2015].

Ogre3D-Manual, “Pixel formats” http://www.ogre3d.org/docs/manual/
manual_67.html#Pixel-Formats, 2012. [Accessed: 14- Apr- 2015].

G. Junker, Pro OGRE 3D Programming. Apress, 2006.

T. McReynolds and D. Blythe, Advanced graphics programming using OpenGL.
Elsevier, 2005.

Ogre3D-Wiki, “The use of sprites in a 3d environment.” http://www.ogre3d.org/
tikiwiki/tiki-index.php?page=-billboard, 2011. [Accessed: 27- May- 2015].

46

http://www.ogre3d.org/about
http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/UV_Map_Basics
http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/UV_Map_Basics
http://www.ogre3d.org/docs/manual/manual_67.html#Pixel-Formats
http://www.ogre3d.org/docs/manual/manual_67.html#Pixel-Formats
http://www.ogre3d.org/tikiwiki/tiki-index.php?page=-billboard
http://www.ogre3d.org/tikiwiki/tiki-index.php?page=-billboard

[13]

[14]

[15]

[16]

[17]

[18]

[22]

[23]

[24]

[25]

[20]

W. T. Reeves, “Particle systems—a technique for modeling a class of fuzzy
objects,” ACM Trans. Graph., vol. 2, pp. 91-108, Apr. 1983.

S. Le Grand, “Compendium of vertex shader tricks,” Direct3d ShaderX: Vertex
and Pizel Shader Tips and Tricks, pp. 228-231, 2002.

J. Blinn and M. Newell, “Texture and reflection in computer generated images,”
Communications of the ACM, vol. 19, pp. 542-547, October 1976.

N. Greene, “Environment mapping and other applications of world projections,”
EEE Computer Graphics and Applications, vol. 6, pp. 21-29, November 1986.

L. Wanger, “The effect of shadow quality on the perception of spatial relation-
ships in computer generated imagery,” in Proceedings of the 1992 Symposium on
Interactive 3D Graphics, 13D '92; (New York, NY, USA), pp. 39-42, ACM, 1992.

L. Williams, “Casting curved shadows on curved surfaces,” SIGGRAPH Comput.
Graph., vol. 12, pp. 270-274, Aug. 1978.

T. Heidmann, “Real shadows, real time,” Iris Universe, vol. 18, pp. 28-31, 1991.

C. Schiiler, “Eliminating surface acne with gradient shadow mapping,” ShaderX/:
Advanced Rendering Techniques (edited by W. Engel), pp. 289-297, 2005.

R. Dimitrov, “Cascaded shadow maps.” http://developer.download.nvidia.
com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_
maps . pdf, 2007. [Accessed: 27- Apr- 2015].

M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt, “The triangle pro-
cessor and normal vector shader: A vlsi system for high performance graphics,”
SIGGRAPH Comput. Graph., vol. 22, pp. 21-30, June 1988.

T. Saito and T. Takahashi, “Comprehensible rendering of 3-d shapes,” SIGGRAPH
Comput. Graph., vol. 24, pp. 197-206, Sept. 1990.

S. Kircher and A. Lawrance, “Inferred lighting: Fast dynamic lighting and shadows
for opaque and translucent objects,” in Proceedings of the 2009 ACM SIGGRAPH
Symposium on Video Games, Sandbox '09, (New York, NY, USA), pp. 39-45,
ACM, 2009.

M. van de Hoef and B. Zalmstra, “Comparison of multiple rendering techniques,”
http://www.marries.nl/wp-content/uploads/2011/02/Comparison-of-
multiple-rendering-techniques-by-Marries-van-de-Hoef-and-Bas-
Zalmstra.pdf, 2010. [Accessed: 01- Jun- 2015].

Ogre3D-Manual, “Ogre3d manual: Material techniques.” http://www.ogre3d.
org/docs/manual/manual_30.html#compositor_ 005ftexture, 2012. [Accessed:
18- May- 2015].

47

http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://www.marries.nl/wp-content/uploads/2011/02/Comparison-of-multiple-rendering-techniques-by-Marries-van-de-Hoef-and-Bas-Zalmstra.pdf
http://www.marries.nl/wp-content/uploads/2011/02/Comparison-of-multiple-rendering-techniques-by-Marries-van-de-Hoef-and-Bas-Zalmstra.pdf
http://www.marries.nl/wp-content/uploads/2011/02/Comparison-of-multiple-rendering-techniques-by-Marries-van-de-Hoef-and-Bas-Zalmstra.pdf
http://www.ogre3d.org/docs/manual/manual_30.html#compositor_005ftexture
http://www.ogre3d.org/docs/manual/manual_30.html#compositor_005ftexture

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

G. Spencer, P. Shirley, K. Zimmerman, and D. P. Greenberg, “Physically-based
glare effects for digital images,” in Proceedings of the 22Nd Annual Conference on
Computer Graphics and Interactive Techniques, SSIGGRAPH 95, (New York, NY,
USA), pp. 325-334, ACM, 1995.

W.-m. W. Hwu, GPU Computing Gems Emerald FEdition. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1st ed., 2011.

A. O. Akytiz, “High dynamic range imaging pipeline on the gpu,” Journal of Real-
Time Image Processing, pp. 1-15, 2012.

P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone map-
ping operators using a high dynamic range display,” ACM Trans. Graph., vol. 24,
pp. 640-648, July 2005.

L. Bellia, A. Cesarano, G. F. Iuliano, and G. Spada, “Daylight glare: a review of
discomfort indexes” http://www.fedoa.unina.it/1312/1/Bellia_paper.pdf,
2008. [Accessed: 2015-06-02].

A. Majumder and S. Irani, “Contrast enhancement of images using human contrast
sensitivity,” in Proceedings of the 3rd Symposium on Applied Perception in Graphics
and Visualization, APGV ’06, (New York, NY, USA), pp. 69-76, ACM, 2006.

P. Kovesi, “Fast almost-gaussian filtering,” in Proceedings of the 2010 International
Conference on Digital Image Computing: Techniques and Applications, DICTA 10,
(Washington, DC, USA), pp. 121-125, IEEE Computer Society, 2010.

S. Zhukov, A. Iones, and G. Kronin, “An ambient light illumination model,” in
Rendering Techniques “98 (G. Drettakis and N. Max, eds.), Eurographics, pp. 45—
55, Springer Vienna, 1998.

M. Mittring, “Finding next gen: Cryengine 2,” in ACM SIGGRAPH 2007 Courses,
SIGGRAPH ’07, (New York, NY, USA), pp. 97-121, ACM, 2007.

M. Fox and S. Compton, “Ambient occlusive crease shading.” Game Developer
Magazine, March 2008.

ACM SIGGRAPH 2008 Talks: Image-space horizon-based ambient occlusion, (New
York, NY, USA), ACM, 2008.

J. Chapman, “Ssao tutorial.” http://john-chapman-graphics.blogspot.se/
2013/01/ssao-tutorial.html, 2013. [Accessed: 01- Jun- 2015].

Ogre3D-Demos, “Normal-oriented hemisphere ssao shader implementation in
ogre3d demos.” https://bitbucket.org/sinbad/ogre/src/default/Samples/
Media/materials/scripts/SSAO/HemisphereMCFP.glsl, 2012. [Accessed: 01-
Jun- 2015].

48

http://www.fedoa.unina.it/1312/1/Bellia_paper.pdf
http://john-chapman-graphics.blogspot.se/2013/01/ssao-tutorial.html
http://john-chapman-graphics.blogspot.se/2013/01/ssao-tutorial.html
https://bitbucket.org/sinbad/ogre/src/default/Samples/Media/materials/scripts/SSAO/HemisphereMCFP.glsl
https://bitbucket.org/sinbad/ogre/src/default/Samples/Media/materials/scripts/SSAO/HemisphereMCFP.glsl

[40]

[41]

[42]

[43]

[44]

[46]

[47]

[50]

[51]

L. Bavoil, M. Sainz, and R. Dimitrov, “Image-space horizon-based ambient occlu-
sion,” in ACM SIGGRAPH 2008 Talks, SIGGRAPH ’08, (New York, NY, USA),
pp. 22:1-22:1, ACM, 2008.

L. Szirmay-Kalos, T. Umenhoffer, B. Toth, L. Szecsi, and M. Casasayas, “Volu-
metric ambient occlusion,” Computer Graphics and Applications, IEEE, vol. PP,
no. 99, pp. 1-1, 2009.

G. Papaioannou, M. Menexi, and C. Papadopoulos, “Real-time volume-based am-
bient occlusion,” Visualization and Computer Graphics, IEEE Transactions on,
vol. 16, pp. 752-762, Sept 2010.

M. Slomp, T. Tamaki, and K. Kaneda, “Screen-space ambient occlusion through
summed-area tables,” in Networking and Computing (ICNC), 2010 First Interna-
tional Conference on, pp. 1-8, Nov 2010.

Nvidia, “Cuda c¢ programming guide.” http://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html#maximize-instruction-throughput, 2015.
[Accessed: 01- Jun- 2015].

Ogre3D-Demos, “Crytek ssao shader implementation in ogre3d demos.”
https://bitbucket.org/sinbad/ogre/src/default/Samples/Media/
materials/scripts/SSAO0/CrytekFP.glsl, 2012. [Accessed: 18- May- 2015].

OpenGl-Standard, “Opengl glsl standard reference manual: dfdx, dfdy.” https:
//www.opengl.org/sdk/docs/man/html/dFdx.xhtml, 2015. [Accessed: 01- Jun-
2015].

D. Nehab, P. V. Sander, J. Lawrence, N. Tatarchuk, and J. R. Isidoro, “Acceler-
ating real-time shading with reverse reprojection caching,” in Proceedings of the
22Nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware,
GH 07, (Aire-la-Ville, Switzerland, Switzerland), pp. 25-35, Eurographics Associ-
ation, 2007.

O. Mattausch, D. Scherzer, and M. Wimmer, “High-quality screen-space ambi-
ent occlusion using temporal coherence,” in Computer Graphics Forum, vol. 29,
pp. 2492-2503, Wiley Online Library, 2010.

L. Bavoil and M. Sainz, “Multi-layer dual-resolution screen-space ambient occlu-
sion,” in SIGGRAPH 2009: Talks, p. 45, ACM, 2009.

M. Potmesil and I. Chakravarty, “Modeling motion blur in computer-generated
images,” SIGGRAPH Comput. Graph., vol. 17, pp. 389-399, July 1983.

G. Rosado, “Motion blur as a post-processing effect,” GPU gems, vol. 3, pp. 575—
581, 2007.

49

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#maximize-instruction-throughput
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#maximize-instruction-throughput
https://bitbucket.org/sinbad/ogre/src/default/Samples/Media/materials/scripts/SSAO/CrytekFP.glsl
https://bitbucket.org/sinbad/ogre/src/default/Samples/Media/materials/scripts/SSAO/CrytekFP.glsl
https://www.opengl.org/sdk/docs/man/html/dFdx.xhtml
https://www.opengl.org/sdk/docs/man/html/dFdx.xhtml

[52]

[53]

[54]

[55]

[57]

[58]

[59]

L. Sharan, Z. H. Neo, K. Mitchell, and J. K. Hodgins, “Simulated motion blur
does not improve player experience in racing game,” in Proceedings of Motion on
Games, MIG 13, (New York, NY, USA), pp. 149:149-149:154, ACM, 2013.

S. Hillaire, A. Lécuyer, R. Cozot, and G. Casiez, “Depth-of-field blur effects for
first-person navigation in virtual environments,” in Proceedings of the 2007 ACM
Symposium on Virtual Reality Software and Technology, VRST ’07, (New York,
NY, USA), pp. 203-206, ACM, 2007.

M. Ritchie, G. Modern, and K. Mitchell, “Split second motion blur,” in ACM
SIGGRAPH 2010 Talks, SSIGGRAPH '10, (New York, NY, USA), pp. 17:1-17:1,
ACM, 2010.

T. M. Jones, “Open source physics engines.” http://www.ibm.com/
developerworks/library/os-physicsengines/os-physicsengines-pdf.pdf,
2015. [Accessed: 01- Jun- 2015].

A. Boeing and T. Braunl, “Evaluation of real-time physics simulation systems,”
in Proceedings of the 5th International Conference on Computer Graphics and
Interactive Techniques in Australia and Southeast Asia, GRAPHITE 07, (New
York, NY, USA), pp. 281-288, ACM, 2007.

E. Coumans, “Bullet 2.83 physics sdk manual” https://github.com/
bulletphysics/bullet3/raw/master/docs/Bullet User_Manual.pdf, 2015.
[Accessed: 01- Jun- 2015].

J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach (6th
Edition). Pearson, 6th ed., 2012.

A. Steed, “Introduction to networked graphics,” in SIGGRAPH Asia 2011 Courses,
SA '11, (New York, NY, USA), pp. 12:1-12:159, ACM, 2011.

20

http://www.ibm.com/developerworks/library/os-physicsengines/os-physicsengines-pdf.pdf
http://www.ibm.com/developerworks/library/os-physicsengines/os-physicsengines-pdf.pdf
https://github.com/bulletphysics/bullet3/raw/master/docs/Bullet_User_Manual.pdf
https://github.com/bulletphysics/bullet3/raw/master/docs/Bullet_User_Manual.pdf

	Introduction
	Purpose
	Problem Statement
	Limitations
	Outline

	The Real-Time Computer Graphics Techniques
	Meshes
	Graphics Pipeline
	Application Stage
	Geometry Stage
	Rasterization Stage
	Shaders

	Shading
	Textures
	UV-Mapping
	Normal-Mapping
	Transparency
	Pixel Format
	Render-to-Texture
	Results and Discussion

	Skid Marks
	Generating Skid Marks
	Result
	Discussion

	Particles
	Particle Systems
	Result
	Discussion

	Reflections
	Simulating Reflections
	Environment Mapping
	Environment Mapping Techniques
	Result and Discussion

	Shadows
	Simulating Shadows
	Shadow Mapping
	Shadow Volumes
	Choosing a Shadow Technique
	Implementing Shadow Mapping
	Results
	Discussion

	Geometry Buffer
	Previous Work
	Results
	Discussion

	Bloom
	Method
	Gaussian Blur
	Result
	Discussion

	Screen-Space Ambient Occlusion
	Previous Work
	Result
	Discussion

	Motion Blur
	Previous Work
	Result
	Discussion

	The Physics and Networking
	Existing Open-Source Real-Time Dynamic Body Physics Libraries
	Networking
	Combining Networking With Physics
	Results
	Future Work

	General Results
	Conclusion

