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1 Abstract

The aim of this master thesis is to develop a working FPGA proto-
type of the MSP430F5172. This report deals with the standard steps
of FPGA recoding. It relates the implementation results to the FPGA
logic primitives and an introduction to such logic primitives is provided
when such a discussion is presented. So the result and the theory are
interconnected throughout the content of the report. It also presents a
discussion on the extensive spectrum of tools involved in the FPGA im-
plementation process from EDIF netlist generation to the final bitstream
generation as well as analysis tools like timing analyzer. An overview of
the principles involved in the implementation process provides a better
understanding of the operation of the tools. In addition many features of
the tools explored during the execution of the thesis is documented that
enables the reader to reduce the learning curve involved in implementing
such a project in the future.

The device utilisation for the MSP430F5172 prototype on the Virtex5
LX110 was about 25%. In spite of such a moderate device utilisation
the runtimes were as high as 3 hours which can give an idea of the com-
plexities involved in the RTL code of modern microprocessors. Issues
faced in the course of the thesis are also presented and discussed. Proce-
dures and principles that can help overcome this issues are also presented.

Finally, the FPGA prototype is subjected to basic functional tests. The
results and code example is also provided.
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2 Introduction

Semiconductor solution for implementing digital logic can be broadly considered in
terms of ASIC and FPGA. ASIC which stands for Application Specific Integrated Cir-
cuit is designed to serve a custom built solution. On the other hand FPGA - Field
Programmable Gate Array are reprogrammable and can be used to implement a vari-
ety of functions. The choice for using an ASIC or FPGA depends on the parameters
required out of the final product. The conventional comparison between ASIC and
FPGA is given in the table 1 as a background for these families.

Table 1: ASIC vs FPGA

Parameter ASIC FPGA
Performance High Medium

Power Consumption Low High
Capacity High Low

NRE High Low
Cost High(in small volumes) Low

Time to market High Low

2.1 FPGA prototyping background

FPGA prototyping is the method of developing a prototype of an ASIC for early view
into the silicon behavior and early software development. With time to market de-
termining the profit earned on a product, it becomes more pressing to have an early
platform to develop new products. In addition FPGA prototypes perform at nearly the
intended device speeds for system verification and bug exploration and fix tests. To
get an idea of the loss of product sales as a function of delay time to market consider
figure 1 as an approximation[1]. FPGA prototypes provide low cost access with high
speed of operation.

On the other hand the disadvantages of FPGA based prototypes are:

• Lack of visibility of internal signals which might hamper the debugging pro-
cess(compared to simulation).

• Extra effort involved in recoding the ASIC RTL to FPGA RTL.

• The analog modules of the design can only be modeled functionally in the FPGA.
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Figure 1: Time To Market (ttm)

FPGA prototyping for initial software development and reducing the probability of
silicon failure has become a standard practice. FPGA prototype allows designers and
verification engineers to test the device months before the final silicon is available. Soft-
ware codes for the prototype device can be developed, compiled and downloaded onto
the FPGA as shown in an example in the results section 12. Hence FPGA prototyping
can be used for a wide variety of crucial functions prior to silicon release.

3 MSP430 introduction

The MSP430 is a 16 bit RISC mixed signal microcontroller designed for ultra low power
operation. The MSP430 can be woken up from low power mode and the clocks can be
active and stable in less than 1µs which enables the CPU to be active in short bursts
of time and spend idle time in low power modes. The MSP430 has a Von-Neumann
architecture with a common address bus (MAB) and a common data bus (MDB). Some
of the features of the MSP430 are discussed in this section.

Startup sequence: System control module is responsible for reset generation. The
MSP430 has three reset signals being generated on startup and these are the brownout
reset (BOR), power on reset (POR) and power up clear (PUC). The conditions for the
generation of these signals are described here [8]:
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A BOR is a device reset. A BOR is only generated by the following events:

• Powering up the device

• A low signal on RST/NMI pin when configured in the reset mode

• A wakeup event from LPMx.5 (LPM3.5 or LPM4.5) modes

• A software BOR event

A POR is always generated when a BOR is generated, but a BOR is not generated by
a POR. The following events trigger a POR:

• A BOR signal

• A SVSH (Supply Voltage Supervisor) and/or SVSM low condition when enabled

• A software POR event

A PUC is always generated when a POR is generated, but a POR is not generated by
a PUC. The following events trigger a PUC:

• A POR signal

• Watchdog timer expiration when watchdog mode only

• Watchdog timer password violation

• A Flash memory password violation

• Power Management Module password violation

Unified Clock System(UCS) and Low Power Mode (LPM) of operation:

The salient feature of the MSP430 family of microcontrollers are the low power modes
of operation. The low power of operation is possible with the use of low frequency
clocks and shutting off parts of the microcontroller in the LPM. The UCS generates
three internal clocks for the MSP430 using upto five external sources. The operating
modes mainly consider the following trade offs.
Ultra low power— Speed and data throughput— Minimization of individual peripheral
current consumption

There are mainly 5 types of low power modes (LPM) as described in the table 2. The
UCS module provides the control over the clocking system of the MSP430 to sustain
LPM. It includes up to five clock sources:
XT1CLK: Low-frequency/high-frequency oscillator that can be used either with low-
frequency 32kHz crystals or external clock sources in the 4 MHz to 32 MHz range.
VLOCLK: Internal very low power, low frequency oscillator with frequency of about
10kHz.
REFOCLK: Internal low-frequency oscillator with 32kHz typical frequency

3



DCOCLK: Internal digitally-controlled oscillator (DCO) that can be stabilized by the
FLL
XT2CLK: Optional high-frequency oscillator similar to XT1CLK.

Three clock signals are available as outputs from the UCS module:
ACLK: Auxiliary clock. The ACLK is software selectable as XT1CLK, REFOCLK,
VLOCLK, DCOCLK, DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is
the DCOCLK frequency divided by 1, 2, 4, 8, 16, or 32 within the FLL block. ACLK
can be divided by 1, 2, 4, 8, 16, or 32. ACLK/n is ACLK divided by 1, 2, 4, 8, 16,
or 32 and is available externally at a pin. ACLK is usually the source for individual
peripheral modules.
MCLK: Master clock. MCLK is software selectable as XT1CLK, REFOCLK, VLO-
CLK, DCOCLK, DCOCLKDIV, and when available, XT2CLK. MCLK can be divided
by 1, 2, 4, 8, 16, or 32. MCLK is used by the CPU and system.
SMCLK: Subsystem master clock. SMCLK is software selectable as XT1CLK, RE-
FOCLK, VLOCLK, DCOCLK, DCOCLKDIV, and when available, XT2CLK. SMCLK
can be used to source faster peripherals to frequencies upto 25 MHz [8].

Depending on the LPM different outputs of the UCS is disabled to reduce power con-
sumption. The clocks that are active/inactive in the different modes of operation are
presented in the table 2.

Table 2: Low Power Modes

Mode Status

Active MCLK,SMCLK active, ACLK active
LPM0 MCLK disabled; ACLK active; SMCLK optionally active
LPM1 MCLK disabled; ACLK active; SMCLK optionally active
LPM2 MCLK,SMCLK disabled; dco enabled if it sources ACLK
LPM3 MCLK,SMCLK disabled; dco enabled if it sources ACLK
LPM4 All clocks disabled

Flash memory: The MSP430 flash memory is classified into main memory and info
memory. Code or data can be loaded into either of these sections. The info flash is
divided into 4 segments A-D. Each segment contains 128bytes. The main memory on
the other hand has a segment size of 512 bytes. The logical value of the flash memory
after erasing is 1. The bits in the flash memory can be programmed from 1 to 0 but
programming from 0 to 1 is not possible and the memory has to be erased for such an
operation. The MSP430 flash memory operation include the read and write operation.
The flash memory has an integrated controller that controls programming and erase
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operations.

Digital IO: The digital I/O features include:

• Independently programmable individual I/Os

• Any combination of input or output

• Individually configurable P1 and P2 interrupts. Some devices may include addi-

tional port interrupts.

• Independent input and output data registers

• Individually configurable pullup or pulldown resistors

The feature of the IO pins can be configured using pxout, pxdir and pxren registers.

The overall operation is reflected in the table 3.

Table 3: Port Configuration

PxDIR PxREN PxOUT IO configuration
0 0 x Input

0 1 0 Input with pulldown resistor

0 1 1 Input with pullup resistor

1 x x Output

In addition the port mapping functionality allows reconfigurable mapping of port func-

tion. The port mapping functionalities include port output of ACLK,MCLK and SM-

CLK as well as timer a, timerb and USCI functionalities. These port mapping are

controlled through registers and can be configured during runtime.

Peripherals: The MSP430 has a wide array of analog and digital integrated periph-

erals. Many peripherals can function independent of the CPU thus reducing the time

the device spends in active mode.

MPY32 Hardware multiplier: The MPY32 supports 8-bit, 16-bit, 24-bit, and 32-

bit operands with unsigned multiply, signed multiply, unsigned multiply-accumulate,

and signed multiply-accumulate operations. This peripheral does not interfere with the

CPU and can be accessed via the DMA.
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Direct Memory Access(DMA) controller: It transfers data between memory lo-
cations across the entire address range without CPU intervention. This enables better
output from the peripherals and more time in LPM.

Watchdog timer: The purpose of a WDT is to perform a system restart in case
of software issues. The system reset is generated if the interval of the WDT runs out.
The WDT is a 32 bit timer that can be used as a watchdog timer or as an interval timer.

Timer: the timer on the MSP430 is a 16 bit timer/counter. The timer supports mul-
tiple capture compares, pwm outputs and interval timings. Timers can also be used as
interrupt generators.

Analog to Digital Converter(ADC): It supports 200ksps 12 bit conversion. The
ADC is based on successive approximation technique (SAR) and have an internal refer-
ence voltage generator of 1.5V or 2.5V. The ADC can sample, convert and store without
CPU intervention.

Digital to Analog Converter (DAC): It is a 12 bit voltage output DAC with
internal or external reference. It can also be configured for 8 bits of operation.

Communication interfaces supported include UART, SPI and I2C.

4 Hardware used and programming flow

The FPGA board along with the programming interface and the software was provided
by Luminary Micro. It has all the components needed to program the FPGA which
include:

• Programming interface - in our case programming through the USB interface.

• CPLDs for interfacing with the FPGA .

• Memory to store the FPGA configuration and programming data.

• Clock crystal for FPGA operation and configuration.
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• Additional connectors for accessing the FPGA ports.

• Power supply and voltage regulator.

The FPGA hardware system consists of a base board and a FPGA board. The FPGA

board has the capability to stack multiple FPGA boards using Samtec connectors. The

FPGA board has a Virtex 5 FPGA, the SRAM , clock crystal and LED indicators for

the state of the FPGA during configuration. The SRAM used to store the configura-

tion data of the FPGA is of size 8Mbytes and is configured to hold two different FPGA

configuration files.

Generally, the base board functionally satisfies the routing of signals using the CPLDs.

The CPLDs are used mainly for multiplexing and signal routing on the falcon board.

CPLDs are non volatile and hence need to programmed only once. CPLD programming

can be achieved by using Verilog RTL which essentially describe the necessary connec-

tions. The resulting jed file is used to program the CPLD. The base board also provides

communication interfaces such as USB,RS232, ethernet, CAN, JTAG and debugging

facilities via chipscope as well as an LCD interface.

Programming: Programming of the FPGA board is through an USB interface to

the PC. The interface on the FPGA side is handled by the FTDI: FT2232C which is

a dual USB to uart/fifo. The programming of the FPGA is done through a SRAM

programmer. The programmer essentially programs the SRAM on the FPGA boards

and later after the FPGA is set into master mode where it reads the configuration data

from the flash memory.

5 Virtex 5 introduction

For this thesis the FPGA used was the Virtex 5 series which is based on 65 nm tech-

nology node
1
. The particulars of the Virtex 5 used is LX110 speed grade -1. However

there are other vendors of FPGA which include Altera, Actel, Lattice and Atmel.

Startup process and configuration: Configuration is the process of implementing

the intended digital function with the help of a bit file
2

on the FPGA. The bit file is

loaded into the internal memory. This memory is volatile and has to be reconfigured

1technology node refers to the size of transitors on a chip, more specifically to the width of the
channel

2which is obtained as a result of synthesis,map, place and route, bit stream generation of the digital
system RTL[register transfer level] files
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after every power up cycle of the FPGA. The bit file for the MSP430 design is about 3

Mbytes.

There are several modes available to load the configuration data into the FPGA via

configuration pins. Mainly there are two modes master and slave. In the master mode

the configuration clock (CCLK) is generated by the FPGA but in the slave mode the

CCLK is generated by the external data source which provides the bit data. In the

serial configuration mode where one configuration bit is loaded every CCLK cycle there

are four methods [14].

• Master

• Slave

• Serial Daisy chain

• Ganged serial

The configuration process follows the sequence shown in figure 2 :

Start Bitstream Loading Finish

321 4 5 6 7 8

Device 
Power 
up

Clear 
config 
memory

Sample 
Mode
pins

Synchro-
nization

Device 
ID 
check

Load 
Config 
data

CRC 
check

Startup 
Sequence

Figure 2: Configuration sequence

1. Detects power-up (Power-On Reset) or PROG being Low.

2. Clears the whole configuration memory.

3. Samples the mode pins to determine the configuration mode. (Master or slave, bit-

serial or parallel etc).

4-7. Loads the configuration data starting with a synchronization word and a check

for the proper device code and ending with a cyclic redundancy check (CRC) of the

complete bitstream.

8. Start-up executes a user-defined sequence of events: releasing the internal reset (or
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preset) of flip-flops, optionally waiting for the DCMs to lock, activating the output

drivers, releasing DONE pin and asserting end of startup[14].

CLB and slices: The CLBs are the logic building blocks of the FPGA. Each CLB

contains two slices. The slices contain four LUTs and four storage elements or flip flops

as well as Muxes and carry logic.

Additionally the slices are further divided based on their function into slicel and slicem.

Slicem being a superset of slicel has additional function of a distributed ram and 32 bit

shift register. This section provides an overview of the Virtex 5 resources.

Table 4: Virtex5 CLB resources

device CLB array rowxcolumn number of 6 input LUTs number of flip-flops

xc5vLX110 160x54 69120 69120

Look Up Table (LUT): LUT are used to implement combinational logic in FPGA

by describing logic equations. The look up table of Virtex5 is a 6 independent input

LUT. With two independent outputs O6 and O5. O6 corresponds to the only output of

the LUT when it is a six input based function. But when a five input based function is

implemented both O6 and O5 can be used as independent outputs as long as both the

functions use common inputs. In this case the A1 input of the LUT is tied high. The

6 input LUT is one of the addition in the Virtex 5 logic fabric. The reason for tying

the A1 input high can be seen from the figure 3, the A1 input is a select line for the

mux which selects the output for the O6 line. This is also shown as an example from

a snapshot from FPGA editor in the figure 11. The synthesis tools have the option

of combining such functions (enable advanced LUT combining into LUT6 2 Synplify

Pro) into a dual output LUT.

Multiplexers (mux): Multiplexers are used to select between the input signals

based on the value on the select line. In the MSP430 design multiplexers are used ex-

tensively to select between multiple clock lines. Multiplexer implementation on Virtex5

needs the following resources

• 4:1 multiplexers using one LUT

• 8:1 multiplexers using two LUTs

• 16:1 multiplexers using four LUTs

Each LUT can be configured as a 4:1 multiplexer and the output can be registered

using a flip flop in the same slice. Each slice has two f7mux the f7amux and the f7bmux

9
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A6
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A6

A2

A3

A4

A5

A6

LUT5

LUT5

D

D
D5

D

D6

LUT6

Figure 3: 6 input LUT of Virtex5

which combine the outputs of the 4:1 mux from the LUTs and for a 8:1 mux. Each
slice also has a f8mux element that can combine the output from the 8:1 mux to for
16:1 mux. The example of one such implemented f8mux is shown in the figure 4.

Clocking resources: The Virtex5LX110 has 16 clock regions as shown in the figure
5 where each rectangle on the FPGA fabric represents a different clock region. Each
clock region consists of 20 CLBs, can have a maximum of 10 global clock lines and
spans half a die as shown in figure 5.

Virtex5LX110 has 32 global clock lines which are driven by a global clock buffers(BUFG);
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Figure 4: MUXF8 - 8:1 multiplexer.

each half of the die consists 16 bufgs. The BUFGs are situated in the center of the

FPGA fabric with access to global routing, this is illustrated in yellow in the figure 5.

The global clock lines can drive the clock pin in any of the clock regions of the design.

The BUFG is a subset of operation of the BUFGCTRL. The BUFGMUX which is a

glitch free clock multiplexer is also a subset of operation of the BUFGCTRL. Further

information on the bufgctrl can be found in the Virtex5 data sheet [15]. The bufgmux

has 2 clock inputs(I0,I1),one clock output(O) and one select line(S). The BUFGCE has

an optional clock enable(CE) line to disable the clock . The main derivatives of the

BUFGCTRL primitive are :

Table 5: Global Buffer Primitives

Primitve Ports
BUFG I , O

BUFGCE I, O, CE

BUFGMUX I0, I1, O ,S

In addition for every clock region there are two regional clock buffers(BUFR) and 4

regional clock lines. The BUFRs are capable of :

• Driving three clock regions (one adjacent top and adjacent bottom)

• Clock division

• The CE port can be used to disable the clock output.

Digital clock managers(DCM): The DCMs are part of the clock management

tile(CMT) of the Virtex5. Each CMT has 2 DCMs and one pll. For the Virtex5 LX110

there are 12 DCMs and 6 plls. The DCMs are highlighted in red in the figure 5 and it

can be seen that they are situated close to the clock buffers in the middle of the FPGA
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BUFG

BRAM

Clock 
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Figure 5: Virtex5 resources

fabric. The DCM functions include clock deskew, frequency synthesis, phase shifting
and dynamic reconfiguration. The DCM can be instantiated as DCM base which is a
subset of the DCM adv primitive.

The relevant ports and attributes for this report is listed below:

• CLKIN: Source clock input.

• CLKFB: Clock feedback input provides a feedback to the DCM to delay com-
pensate the clock outputs and align it with the clock input, this is achieved by
essentially a 360 phase shift.

• RST: Reset for the DCM is asynchronous high. Reset must be de-asserted after
the source clock has been present and stable for at least 3 clock cycles.

• CLK0 : Provides the same frequency as the DCMs effective input clock frequency.

12



When CLKFB is connected to CLK0, output is deskewed with respect to CLKIN.

• CLKDV: Provides a clock output that is a fraction of the CLKIN frequency
determined by the CLKDV DIVIDE attribute.

• CLKFX: Provides a clock output that is a function of (M/D)CLKIN frequency. M
is the multiplier specified by CLKFX MULTIPLY attribute and D is the divisor
specified by the CLKFX DIVIDE attribute.

The DCM has DLL and DFS outputs. Along with this there are max speed and
max range attributes. Based on these factors the input, output and feedback clock
frequencies have to be selected. An attempt to explain these limitations is explained in
the figure 6.

1 19 25 32 40 120 140 350 450

B

D

CLKIN in MHz

E

A

C

DLL output only:CLK0,CLKDV

DFS output only:CLKFX

Figure 6: DCM operating range

The configuration for the regions are described:
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Table 6: Output frequency limits

Region clkfx min clkfx max clk0 min clk0 max clkdv min clkdv max
A,B 19 40 19 32 1.19 21.34
D 32 140 32 120 2 80

• Region A: Maximum Range mode with low frequency mode of operation using
DLL outputs only.

• Region B: Maximum Range mode with low frequency mode of operation using
DFS outputs only.

• Region D: Maximum Speed mode with low frequency mode of operation using
DFS output only.

When the DCM is set to maximum speed mode it is optimised to produced high fre-
quency clocks with low jitter. When it is set to maximum range mode it is optimised to
produce low frequency clocks with a wider phase shift range[15]. The figure 6 illustrates
regions A to F. Some of the limitations while using the DCM for our design are:
The input clock frequency is 24 MHz. Hence only regions A,B and D can be used.
This assumption is based on the fact that the input to the DCM is an external 24 Mhz
source. It can also be the case that DCMs can be cascaded to obtain better flexibility,
however cascading of DCM is discouraged by Xilinx unless it is absolutely necessary as
described in the answer database 18181[3].

While using the DCM for clock manipulation the Xilinx directive is to use the CLK0
as a feedback to the CLKFB pin to avoid any skews on the output clock. If CLK0 is
fed back to CLKFB, the CLKFX outputs are phase aligned to CLKIN whenever that
is mathematically possible. Since the CLK0 is a DLL output, only region A with DLL
output can be used.

In case higher frequencies like 140 MHz are necessary , region D needs to be used, which
is a DFS output only (CLKFX output). But in this region the clock feedback cannot
be used as seen from the table 6.

Multiplication and division are performed as a combined mathematical operation. As-
sume FIN = 50 MHz, M = 25, and D = 8. In this case, CLKFX is then 156.25 MHz,
even though FIN x 25 = 1.25 GHz, which is well above the maximum frequency of 550
MHz.
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Block RAMs(BRAM): The Virtex5 block rams store 36kb of data. The BRAMs

are highlighted as columns of white lines in the figure 5. There are two such columns

on each half of the Virtex5 accounting for 128 BRAMs capable of a total of 4Mbits

of memory. There are different aspect ratios for the data and address bus that are

possible right from 36x1,18x2 and so on. The read and write operations are synchronous.

BRAMs are capable of functioning as dual port rams. The two ports are independent

of each other sharing only the stored data on the BRAM. Read and write operations

require one clock edge.

BRAM initialization By default BRAM memory is initialized with all zeros during

device configuration. For the ramb36 primitive the 128 BRAM initialization attributes

range from init 00 to init 7f. The init yy attribute can be decoded using the following

formula

from [(yy + 1)x 256] 1 to (yy)x 256

For example, for the attribute INIT 1F, the conversion is as follows:

yy = conversion hex-encoded to decimal (xx) 1F = 31

from [(31+1) x 256] 1 = 8191 to 31x256 = 7936

For example if we want to program a memory location at address 130; the right init xx

attribute from the above equation has to be used.

The location init 10 corresponds to the address range 128-135. In the initialization

strings the least significant bit is at the rightmost position. The init attribute can be

used either in VHDL,Verilog,ucf , PlanAhead or even FPGA editor. For the implemen-

tation flow in the project, the BRAMs were initialized using scripts in the FPGA editor.

6 ZeBu to FPGA recoding

6.1 ZeBu introduction:

ZeBu is a Virtex4 based ASIC prototyping platform capable of 0.75M ASIC gates(for

the smallest system) from Eve. ZeBu functionality includes hardware debugging, cosim-

ulation and software development. Input for ZeBu includes EDIF netlist produced by

standard synthesis tool like Synplify Pro and XST. The ZeBu compiler takes care of

clock handling and memory handling which are all black boxes in the EDIF netlist

produced by the synthesis tools.
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Memory modeling in ZeBu The memory required for modeling the DUT is realized

either as FPGA BRAM memory or as ZeBu embedded memory.

Small size memories ( from a few bits to 1Kbit) based on Virtex4 distributed ram these

can be inferred by synthesis tools or instantiated by IP core generators. Distributed

RAMs are emulated on LUTs and hence consume FPGA logic, moreover the distributed

RAM are not dense.

Medium sized memories (form 1kb to 500kb) based on Virtex4 BRAM these can be

created by inferring from synthesis tool or ip core model.

Large memories based on on board DRAM and SSRAM memory chips.

ZeBu supports multi port memories from 8 to 32 ports based on Virtex4 FPGA. Medium

size memory models can be synchronous or asynchronous.

Clock handling: For clock handling, the ZeBu separates the clocks into primary and

derived clocks. Primary clocks are the main input clocks to the design. Primary clocks

are declared in the dve file. Derived clocks are obtained from the primary clocks and

refer to divided clocks,gated clocks and multiplexed clocks. The problem of using such

derived clocks in an FPGA design is the resulting skew due to the use of local routing re-

sources. This resulting skew is automatically fixed by using skew adjustment(essentially

delay insertion) from the zCui interface.

Debugging: The debugging feature in ZeBu is provided in terms of static and dy-

namic probes. Dynamic probes provide access to sequential signals during runtime and

do not affect the design and the design does not need a recompilation. Static probes on

the other hand need to be declared in the dve file and addition of a new static probes

indicates a design recompilation.

6.2 Implementation overview

The flow for the FPGA conversion is shown in the figure 7. The implementation process

passes through several phases before the final bit configuration file is generated. Each

stage is explained in brief in the following paragraphs.

Synthesis: It is the procedure of building a EDIF
3

netlist from the input RTL which

might be described in Verilog, VHDL or a mix of the both the hardware description

3Electronic Design Interchange Format is a neutral format to exchange electronic design data. Its
primary use is CAD to CAD data transfer format. It conveys electronic netlists and schematics.[7]
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languages.

NGD build: This process reads the EDIF netlist and creates a Xilinx native generic
description file - NGD. The NGD file contains the details of the design in terms of logic
primitives such as logic gates, rams as well as the design hierarchy present in the input
file. The steps involved in the NGDbuild process include:

• Reading the source netlist

• Reduce all components in the design to NGD primitives

• Check the design by running logical design rule check4

• Write the NGD output file[9]

Input to the NGDbuild is a EDIF netlist file and output is a NGD file.

MAP: The map programs maps the logic design to Xilinx FPGA. The input file to
the map process is a NGD file and the output is a NCD5 which is a physical represen-
tation of the design in terms of Xilinx primitives[9].

Place and route (PAR): PAR places and routes the design. PAR is executed in
placing and routing phases.

Placing The placer places components into sites based on factors such as constraints
in the pcf file, length of connections and routing resources available. Placer writes an
output NCD file.

Routing It performs the interconnection between the placed logic components.The
routing is run through multiple phases where it tries to route the design to meet the de-
sign timing constraints. The router writes a NCD file every time it completes a phase[9].

4performs 6 rule checks to verify that the design meets these rules.For more information refer to
the DRC paragraph on page 46

5native circuit description
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TRCE: TRCE provides a static timing analysis of an FPGA design based on input
timing constraints. It performs two main functions:
Timing verification: checks the compliance of the design with the timing constraints.
Reporting: Lists all the paths that have passes or failed the timing verification. The
TRCE can be run on unplaced design, partially placed design, fully placed design, par-
tially placed and routed design, completely placed and routed design[9]. The input files
for TRCE is NCD file and/or pcf6 file and the output is a twx/twr result file.

Bitgen: Bitgen generates a bitstream to configure the Xilinx device. The bit files
contains the configuration information from the NCD file. The input NCD file contains
information on internal logic and the interconnection. The bit file is downloaded into
the memory cells of the FPGA device which configures the device. Bitgen takes a NCD
file and produces a configuration bitstream file (.bit)[9]. The bit stream generation for
our flow is performed in the FPGA editor. It can also be performed in the PlanAhead
environment.

The overview presented in the above paragraphs are elaborated in the next few chapters.

Clock Block: As discussed earlier in the section 3 the MSP430 has upto 5 clock
sources. Each of these clock sources are emulated using a DCM. The input clock to
the DCM was an external 24Mhz source. For more information on the Virtex5 DCM
please refer to the section on DCM on page 11.

The clock block for the MSP430 design was modeled based on the RTL presented in
appendix A.3. The DCM configuration needs to follow certain guidelines for proper
operation and these are listed here:

• The reset of the DCM can only be released after the input clock is active and
stable. This is achieved by using a counter that counts upto 100 cycles of the
input clock before deasserting the reset pin on all the DCMs.

• The output clock of the DCM must pass through a BUFG before it sources the
clock pin of any of the FPGA primitives.

• Component switching limits must be observed by configuring the DCMs in the
right mode of operation.

• CLK0 output must be fed-back to the CLKFB input through a BUFG to reduce
clock jitter.

6physical constraint file
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Figure 7: Flowchart

Virtex5 DCMs have a DLL and a DFS output. The DLL and DFS can operate in

either low or high frequency mode of operation. In addition there are max speed and

max range of operations. Each combination of the above modes of operation present

different limits of operations for the input and output frequency. As an example one

of the clocks of the MSP430 requires a frequency of about 150 MHz. This clock is

used to source the delay shift registers and also in the process of modeling the analog

functionality. With this mode of operation it is not possible to have a feedback on the

DCM and this can be illustrated in the figure 6 and table 6.

In case the DCM are not operating within the limits there are no warnings during

simulation, synthesis or during NGDbuild. But there are warnings in the MAP phase

that indicate that there is a problem with the timing constraint. Even in this case the

problem cant be recognised right away, only after running a timing analysis using the

timing analyzer can the problem be identified as being related to component switching

limit. Hence, if precautions are taken right at the outset, many of these issues can be
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by-passed.

Global signals: VHDL signals are used as interconnect and convey information be-

tween components. the scope of signals in VHDL is described in the following table

Table 7: VHDL signal scope

Declared at Scope Comments
Package Global Can be used globally by including the package declaration

Entity Local to the entity Can be used in any architecture definition inside the entity

Architecture Local to architecture Can be used only inside the current architecture

The MSP430 design requires signals that are accessed deep in the hierarchy of the

design. These signals are mainly clock signals. Declaration of global signals in these

packages eliminates the need to add additional ports on all the modules that require

access to these signals. The RTL code used for usage of global signals are provided in

the appendix A.1 and A.2. It can also be observed the clock signals are made global in

the clock block just by including the packages in the code appendix A.3. After synthesis

the following fan out on the global signals were observed.

Table 8: Global signals fanout

Signal Fan out
zxlsys 236

pgen 41

dcoclk 9

modosc 2

pssclk 3

Based on these results , usage of global signals reduces effort and prevents the possibility

of human error involved in port changes to the design.

Memory: The MSP430 has RAM and flash memory. These ASIC memories are

emulated on the FPGA BRAMs. The aspect ratios of the memories used in the MSP430

are given in the table below along with the number of BRAMs used to realise these

memories.

Syncore IP generator has a graphical user interface that enables the user to customize

Synplify cores. This was the method used to instantiate BRAMs for the RTL. The RTL

thus generated is provided in the appendix A.4. The Verilog file generated can be used
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Table 9: MSP430 memories

ASIC memory memory size(in bits) BRAMs used
ram 16x1024 1

info flash 32x1024 1

main flash 32 x8192 8

to infer the required memory size of the BRAM by just changing ADDRWIDTH pa-

rameter and the bus width can be changed by changing the ADDRWIDTH parameter.

For example the code in appendix A.4 is 32x1024 bit memory component, in case if

the capacity has to be increased to 32x4096 bits ; this can be achieved by changing the

ADDRWIDTH to 12. Thus, in order to change the size of the BRAM does not require

a fresh instantiation using the GUI everytime. A Verilog wrapper has to be written to

interface this segment of code to our actual design. A snapshot of the GUI along with

the options are shown in the figure 8. The implementation of the mainflash is interest-

Figure 8: Syncore memories

ing to look at. It uses 8 BRAM modules . The implementation for the mainflash can
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be explained using the table 10. Each BRAM had 13 bit address input, but the data
bus on each of the 8 BRAMs was just 4 bits wide and 1024 bits deep. So essentially,
this implementation is of eight 4k BRAMs. There are some limitations in customizing
the cores through the interface, the MSP430 ASIC memories require a read operation
on the positive edge and a write operation on the negative edge. This feature was not
provided while instantiating the BRAM.

The flash can also be inferred through RTL, in general the basis for ip and inference is
the same as explained in the paragraph on page 23.

The memory requirement for newer devices of the MSP430 are as high as 1MB. The
Virtex5 has just 128 BRAMs which means that a maximum 4Mb memory can be
achieved(overlooking other practical issues that might arise due to BRAMs scattered
on the FPGA fabric). So, a general case for the maximum achievable size was tried.
For achieving a memory size of 32x32kb the address was 15 bits wide and 32 blocks
of BRAMs were used with each BRAM having one data line connected to it. So, far
the usage of BRAMs has been intuitive. In case of implementation of 32x64kb RAM,
BRAMs need to be cascaded together to achieve this case. These results are generalised
in table 10.

Table 10: BRAM aspect ratios[15]

Port data width Port Address width Memory depth in bits Addr bus
1 15 32768 14:0
2 14 16384 14:1
4 13 8192 14:2
9 12 4096 14:3
18 11 2048 14:4
36 10 1024 14:5

1(cascade) 16 65536 15:0

In case of usage of cascadable block rams, the address width is 16 bits, unlike the
cases observed before. So, from this implementation it can seen that the highest bit
selects between the two cascaded BRAMs as every bit x of the data line connects to
two BRAMs mem mem 0 x and mem mem 1 x. So, when the 16th address line is
low it selects the data bit x to be written to mem mem 0 x and when it is high it is
selected to be written to mem mem 1 x. The Virtex-5 user guide suggests that when
the BRAMs are not cascaded the 16th bit has to be connected high, but the syncore
implementation has this bit grounded and the components are named mem mem 0 n
where n is the number of data bits.

22



In addition to BRAMs, FPGA offers one more type of memory element. The LUT in
the slicem can behave as storage elements, these are however inefficient and not dense
for larger memories.Usage of distributed rams will also lead to higher utilisation of the
FPGA resources.

Manual insertion of buffers: As seen in the section 3 on the MSP430 introduction,
the ucs has upto 5 clock inputs and 3 clock outputs. In addition each of these clock
outputs can be divided to give a fractional frequency output. These multiple clocks
mean that the clock structure for the MSP430 is complex. In an ASIC fabrication the
clock tree can be customised to provide low skew routing. However, in the FPGA due
to limited low skew routing resources some generated clocks might be subjected to large
magnitudes of clock skew. These clock skews may introduce hold violations as discussed
in section 8. In some cases to overcome hold time violations it was necessary to manu-
ally instantiate buffers to boost a clock signal or to delay a data path eventhough this
is not a recommended design practice. One such example is discussed in the paragraph
regarding ifclk on page 55. The output of this clock is a multiplexed clock. Moreover
the fan out of this clock is 3316, to minimise the clock skew a bufg could be inserted
after the mux or even better a bufgmux primitive could be instantiated in place of the
mux.

7 Synthesis

Synthesis tools are used to produce an EDIF netlist from the input RTL files. The ven-
dor specific netlist and constraints are obtained after logical mapping and optimisation
which mainly constitute the synthesis process. The optimisation is covered in section
7.2.

The synthesis tools used for this thesis was Synplify Pro and the versions include
2009.06-SP1-p, 2010.03, 2010.03-sp1, 2010.09-beta. However there are other FPGA
synthesis tools which include Leonardo-Spectrum/Precision RTL from mentor graph-
ics, XST from Xilinx, Quartus from Altera.

7.1 Inferring vs Instantiation

Digital functions in the RTL might need to be mapped to specialised blocks on the
FPGA such as BRAMs, DSP48, SRL. In such cases the user has the option of manually
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instantiating these blocks or inferring them with the help of the synthesis tools. The

difference and similarity between these two approaches is discussed in the following

paragraphs taking the example of IP
7

blocks.

Synplify Premier has DesignWare building block IP which is the IP repository for the

Synplify environment. It consists of IP ranging from basic functions (common arith-

metic and logic functions) to DSP, memory, interface and application specific IP blocks.

You can use the IP blocks in your synthesis by either operator inference or component

instantiation. For example consider the flow of synthesis in Synplify as shown in figure

9. When an addition operation is indicated by a plus sign, the tool through operator

inference selects a synthetic operator
8
. Therefore, operator inference translates the

HDL operator to a matching synthetic operator. This synthetic operator may have

several actual implementation options in the design library which are selected based on

the optimization criteria. A particular implementation can also be forced by using the

implementation option[5]. In the given example a constraint of timing results in carry

look ahead implementation and an area constraint causes a ripple carry implementation

of the adder. In order to make this decision of implementation the tool creates a pre

optimised model for the possible implementations. The timing and area characteristics

serve as basis for implementation selection[5].

Similarly Xilinx has Core generator tools for IP cores[11].

Component instantiation is performed by explicitly instantiating the IP like any other

component. As in the case of operator inference, the tool finds the appropriate syn-

thetic module for the instantiation and chooses from all the associated implementations

of the synthetic module.

7.2 Optimisation by Synplify Pro

In the process of producing the final EDIF netlist from the RTL code the synthesis

tool performs several logic optimisation on the input design. Some of the optimisations

carried out by Synplify Pro are described in the following paragraphs.

Arithmetic Optimization which use expression rearranging for optimization.

7
Intellectual Property

8
Represents the operation which is called for by the HDL operator
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Figure 9: Synthesis Flow [5]

Resource Sharing uses the same computational blocks for similar operations that
do not occur at the same time.

Pin Permutation is used in operations where changing the order of inputs does not
affect the operation.

Retiming is a tool option. This can improve the performance of sequential circuits
without having to modify source code. This is achieved by moving registers in a se-
quential path. A simple example of retiming in shown in the figures 10a and 10b.

Before retiming the slack available for stage1 is much less than the slack available for
stage2, but by rearranging the registers after retiming the extra slack available on stage
2 can be used to accommodate an additional combinatorial logic.

Register Duplication Is automatically carried out by the implementation tool to
reduce delay in high fanout paths. This is carried out even if path meets fanout guide
(the numerical value set under this option for Synplify Pro is for all nets in the design.
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Figure 10: Retiming

The tool uses this as a guide and tries to ensure that all nets have fanouts that are
under this limit [6]).

Advanced LUT combining As discussed in the section about LUT on page 9 each
Virtex5 LUT are capable of two independent outputs provided the functions producing
these outputs have a common input. With this option enabled Synplify Pro combines
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common input functions into compatible LUTs. The figure 11 illustrates an actual
synthesis of such an “LUT6 2”. The lines in blue represent the active connections.
Hence both the O6 and O5 outputs are active. Similarly it can also observed that the
common inputs for both the functions are A3 and A2 only.

Figure 11: Dual output LUT

The synthesis result is presented in the table 11 which gives an overview of LUT utili-
sation for the MSP430f513x design with the advanced LUT combining option enabled.
The total number of LUT used for the design is 16097.

Table 11: LUT utilisation

LUTs realised total number Percentage
6 output LUT 13599 84
5 output LUT 56 1

dual output LUT 2406 15

Generated clock conversion Generated clocks are produced from other clocks in
the design with logic such as division circuit. The fix generated clock option tries to
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use the parent clock as the clock for all the flip flops that use the generated clock and

an enable signal to emulate the behavior of the generated clock.

The requirement for generated clock conversion are:

• The combinational logic must be driven by flip flops.

• The input flip flop cannot have active set or reset.

• All input flip flops must be driven by the same edge of the same clock [6].

Generated clocks include clock division by ripple counter technique. This can be imple-

mented in the PLLs, instead of implementing it on registers. But since the philosophy

of the implementation was as little change as possible, this was not continued.

IOB packing The Virtex5 input and output logic resources have the basic capability

of edge triggered D type flip flop and level sensitive latch. Input/Output Blocks Pack-

ing refers to placing registers in IOB close to the pad. With this option only the first

flip-flop or latch encountered in the path from a pad can be moved into the IOB.

This moves the flip flop or latch closer to the pad, so the pad to setup time decreases

but the delay from IOB to flip flop or latch to the next synchronous element increases.

Thus reduction in the setup time could lead to increased frequency of clock[18]

The need for iob packing is most essential when

• The chip interfaces with another, and you have to minimise the register to output

or register to input delay.

• The design has limited CLB resources thus packing the registers in an iob can

free up some resources.

For the MSP430 design neither of the condition exists but this was enabled as an

experimental case to look at the implementation results. The figure 12 shows the

register on the pin pj3 that has been packed into an ilogic cell.

Gated clock conversion and constraints Clock trees dissipate about 50% of the

dynamic power in a design. So, the use of gated clock can minimise this power dissi-

pation. In gated clocks the clock is selectively enabled or disabled based on the enable
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Figure 12: IOB packing
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signal. However the use of gated clocks in an FPGA design has the following disadvan-

tages:

• Using non dedicated routing for gated clock signals causes routing congestion

• Routing congestions may lead to longer par runtimes

• Use of non dedicated routing for clock signals lead to clock skew which may lead

to possible hold time violations

The conditions necessary for gated clock conversion are

• The gated logic must consist of combinational logic only, a derived clock that is

the output of a register is not converted.

• There has to be only one input to the combinational gated logic which acts as a

base clock.

• Correct logic format- the combinational gate must satisfy the following conditions:

– For at least one set of gating input values, the output for the gated clock

must be constant and not change as the base clock changes.

– For at least one value of the base, changes in the gating input must not

change the value of the output of the gated clock.

With these ideas as a foundation , the following sections provide a discussion of the

problems encountered in the gated clock conversion of MSP430.

Selective inversion and muxed clocks Selective inversion of clock is achieved

by using an xor gate. But the use of an xor gate does not satisfy the correct logic

format specified in the previous paragraph. So the selective clock inversion by the xor

operation cannot be converted to one base clock.

Multiplexed clocks are used when the circuit has to be run at multiple clock frequency.

The figure 13b shows a 2:1 mux which selects between two clock signals. In such cases

a global buffer has to be added at the output of the mux, this is further discussed in

the section manual insertion of buffers.

Further, the output of the mux might pass through a gating logic, in which case the tool

has to recognise a base clock for the gated clock conversion. When a multiplexed clock

is present in the design, the error message for the gated clock conversion is“multiple

declared clocks found” since the synthesis tool cannot interpret that only one of the
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input clocks is switched to the output at a time. The design with multiplexed clock

has to be properly constrained to overcome these issues. The following examples give

an overview of how this is possible[2].

In the first example based on figure 13a the 2:1 mux generates a clock output based on

two exclusive input clocks. The constraints for such a muxed clock is straight forward.

The following constraints can be used for it.

create clock [get ports {CLKin1}]
-name clk1

create clock [get ports {CLKin2}]
-name clk2

set clock groups

-exclusive

-group clk1

-group clk2

However, in the MSP430 design the clock signals at the input of the mux may not be

mutually exclusive. In this case the example of the linked clock mux as shown in figure

13b can be used. For this case the following constraints might be used to indicate to

the tool that the output of the mux are exclusive to each other i.e one only clock is

switched in at a time.

create clock [get ports {CLKin1}]
-name clk1

create clock [get ports {CLKin2}]
-name clk2

create generated clock [get pins{CLKout}]
-name clkout1

-source [get ports {CLKin1}]
create generated clock [get pins{CLKout}]
-name clkout2

-add

-source [get ports {CLKin2}]
set clock groups

-exclusive

-group clkout1

-group clkout2

This example creates two clock groups on the output of the mux with each clock group

corresponding to the input clocks, this is done with the -add directive. So here the
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output clocks are defined as exclusive and false path relations of the output clocks with
the input clocks and its relation with other timegroups need not be manually specified.

MUX

CLKin2

CLKin1

Sel

CLKout

Register

Data

(a) Muxclk with exclusive inputs

MUX

CLKin2

CLKin1

Sel

CLKout

RegisterA

Data

RegisterB

Data

(b) Muxclk with non-exclusive inputs

Figure 13: Muxed Clocks

A physical implication of muxed clock is the presence of glitches when the clocks are
switched from one clock source to another. This is overcome in the MSP430 design by
using these rules during the switching of the clocks

• The current clock cycle continues until the next rising edge.
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• The clock remains high until the next rising edge of the new clock.

• The new clock source is selected and it continues operation[8].

For more information please refer to the user guide of the MSP430F5xx family[8].

Describing base clock: The output clock at an xor gate or a muxed clock have to
be defined as a base clock for further gated clock conversion in the design. The method
that was initially used in the design was defining the base clock after every selective
inversion and muxed clock conversion.

Locking pins with xc loc constraint: The Virtex5 has 1760 IO pins but only few
of these pins are available on the falcon board. So, in order to have all the port pins of
the MSP430 the IO pins have to be locked to accessible FPGA pins.

This IO locking can be performed either in the RTL code or in the ucf input file to the
PlanAhead environment. In the RTL the IO pin lock can be achieved using the xc loc
attribute. The possibility of locking the IO pins in the PlanAhead tool is discussed in
the next chapter.

Control sets In an FPGA control set refers to each unique combination of clock, clock
enable and synchronous set/reset signals. Only registers that use common control sets
can be packed into the same slice. This observation is significant because the Virtex5
has 4 registers in a slice. Hence, registers not sharing the same control set might lead
to poor device utilization density. The MSP430 has 1653 unique control sets, so for the
implementation of future devices if there are issues with density of device utilisation the
unique control sets can be minimised by using the syn reduce controlset size constraint.

The above directive moves some or all of the control inputs of the register to the data
input. By default the tool chooses right number of control sets based on qor, resource
available and target technology.

However, for our current design there are many slices where there are 100% register
utilization as shown in the figure 14. The figure illustrates the flip flop utilisation per
CLB. Red indicates utilisation between 80 to 100% and the yellow squares indicate
60-80 percent utilisation. Moreover, the device utilisation is 24%, so no congestion for
resources should exist. Hence this is not a demanding constraint.
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Figure 14: Flip Flop utilisation per CLB

Synthesis output files: At the end of the synthesis cycle, Synplify Pro provides us

with a EDIF netlist, a ucf constraint file along with an RTL and technology view. The

RTL view provides a high-level (components not mapped to FPGA LUTs, registers

or FPGA specific resources) technology independent view after the compilation of the

RTL. The RTL view has the advantage of representing the RTL code as it is in terms of

non FPGA primitives. This enables the designer to have a visual hierarchical overview

of the design while debugging. On the other hand technology view provides a low level,

technology specific view of the design after synthesis. The technology view has the

RTL mapped to FPGA building blocks. The usefulness of this view is discussed in

the probes section of the FPGA editor on page 52. The figure 15a and 15b shows the

example of a counter in a RTL view and technology view respectively. The RTL shows

the counter as a high level component but in the technology view it is mapped to fast

lookahead carry logic of the FPGA.

Synthesis issues Some synthesis issues were faced during the RTL synthesis on Vir-

tex5, but surprisingly this was absent during Virtex4 synthesis. The synthesis of the
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(a) RTL view

(b) Technology view

Figure 15: Synplify Pro schematics
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design never completed with gated and generated clock conversion enabled. There was
however no problem when the design was synthesized without constraints. However,
this workaround was not feasible. In addition, the synthesis did not complete with the
design as one entity as a result the design was split into two existing partitions the
dig-top and the toplevel , this is also depicted in the figure 7.

Synopsys were able to reproduce this issue and this was a result of a runtime bug. The
root cause was identified as an infinite loop in incremental timing update of the Xilinx
Virtex5 mapper9. The software bug was fixed in the map520rcp1branch of the Xilinx
mapper[4]. The bug fix was finally integrated in to the 2010.09 beta release of the
Synplify Pro tool.

To overcome this issue the design was partitioned into top level and dig-top for the
synthesis to complete. The idea was to later combine the EDIF netlists in the Xilinx
environmnet before the map stage.

7.3 EDIF netlist combining

Since the dig-top does not have any external port and it is combined into the top level,
the automatic IO insertion had to be disabled. In the absence of this option pads are
created for the interface between dig-top and top level and results in the following error
messages.

In case of input ios being present the resulting error message is
ERROR:NGDBuild:455 - logical net ’p1 set ifg 2v s[6]’ has multiple driver(s): pin
PAD on block p1 set ifg 2v s[6] with type PAD, pin Q on block u 5v wakeup logic/
u wakeup logic P16/WKUP/DTC0/TI LACTHC UDP3/q with type LDC

In case of output ios being present the error message is
ERROR:NGDBuild:809 - output pad net ’p1 clr idet 2v s[6]’ has an illegal load: pin
I1 on block u 5v wakeup logic/u wakeup logic P16/WKUP/LAN1/Q RNO with type
LUT2

When an EDIF netlist is used as a submodule of another design, the following conditions
must be met

9Incremental timing update is an iterative analysis during the mapping phase. Based on this
information the tool is trying different kinds of optimizations on a RTL design. The static timing
analyzer will take the result of that analysis and use this for different reports.
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• In case the ports of the sub-module are directly connected to the top module, the

ibufs/obufs can be used in the sub module

• But in case if the ports of the submodule are not directly connected to the top-

level the ibufs/obufs must not be inserted in the top module.[6]

8 Timing Constraints

Timing constraints are essential to convey to the synthesis and implementation tools

the requirement of the design in terms of frequency of operation of various clocks. The

tools take these constraints as guidelines and try to generate a resulting implementa-

tion that complies with the input timing constraints. The timing constraints for the

Synplify Pro tool are in the form of sdc file format and for Xilinx tools in the form of ucf

and pcf file formats. In addition the implementation tools provide us with timing check

features that can be used to verify if the implemented design meets the constraints.

These tools and principles used in timing analysis is discussed in this section.

Static timing analysis: The timing analysis tool from Xilinx has the following

features

• Static timing analysis on FPGA designs

• Timing analysis post map, post place or post route of FPGA design

• It performs setup and hold checks. It also checks for component switching limits

• It reports the delay along a given path or paths and reports the slack based on

the specific timing requirements.

The timing analysis is done based on the user constraints provided by the user. But

the constraints written by Synplify are too many and this causes ISE to issue a wan-

ing about the number of constraints which would result in a long runtime. Hence the

constraints from Synplify had to be consolidated into fewer common constraints. Espe-

cially the false path constraints.Grouping of constraints are achieved using the timegrp

constraint explained further in this chapter.

The main constraints that need to be specified for an FPGA design are input paths,

synchronous element to synchronous element constraint path, path specific exceptions,

output paths and clocks.

Input timing constraints cover paths from the external pin of the FPGA device to the

internal register that captures the data . This is achieved using the offset in constraint

37



[12]. The MSP430 prototype has all its clocks generated by the DCM, hence the main

constraints of the design were at the interface of the dig-top hierarchy. So, the input

data at the ports are not directly related to the input clock on the FPGA interface.

Register to register consraints cover the synchronous data path between the internal

registers. This is achieved using the period constraint which:

• Defines timing requirements of the clock domain

• Analyze paths within a single clock domain

• Analyze paths between related clock domains

Path specific exceptions can be conveyed using the false path10 and the multicycle

path11 constraints. Output paths cover the data path from registers inside FPGA to

external pin of the FPGA.

The constraint is achieved by using the following main syntax for Xilinx

• tig: tig(timing ignore) constraint is used to false path all paths going through a

specific net to be ignored for timing analyses and optimization.

• timegrp: it is a grouping constraint and is used extensively for consolidation of

tig constraints from Synplify Pro.

• tnm and tnm net are also grouping constraints ; these constraints are used identify

elements that make up a group which can be used in a time spec constraint.

• timespec is a timing constraint and is used in combination with the ts attribute

to define the period of a timing group

• ts identifier is used with the timespec for timing specification of an already defined

timing group.

• the period constraint is a synthesis and timing constraint and is used to define

internal clocks in a design and their period and optionally duty cycle

.

When a timing analysis is performed on an FPGA design the main checks carried out

for each of the register to register paths defined in the constraints are

• Intrinsic clock to out delays of the registers

• Routing and logic delay

10are paths that are not valid like paths between asynchronous clocks or paths that are not timing
critical

11paths between registers that take more than one clock cycle to stabilise
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• Instrinsic setup and hold delay of the registers

• Clock skew between source and destination registers

• Component switching limits if the clocks are generated by clock modifying blocks.[12]

The following paragraphs describe the main register to register timing checks which

verify setup and hold time compliance. Since one of the main issues in realizing this

design was achieving timing closure
12

a basic explanation of the setup and hold time

concepts are provided.

Setup time is the minimum time before the clock edge in which the data must be stable

in order for the data to be propagated reliably. The figure 16 shows a basic figure of a

setup violation. when the data is delayed more than the clock edge, the data can miss

the clock edge and hence the data is not propagated over the destination register. The

figure 18 shows that setup check is carried out over successive clock edges of the skewed

clocks. Hence a setup violation can be fixed by lowering the frequency of operation.

Source
Register

Destination
Register

2ns

1ns

Data

Clock A Clock B

Figure 16: Setup violation

Hold time is the minimum time after the clock edge during which the data must be

stable for reliable operation of the design. The figure 17 shows a possible hold violation

scenario. The clock is delayed much more than the data. If the delay is large enough,

12implementing a design with no timing violations

39



when clka propagates the data on the source register, this new data can reach the

destination register at the same clock edge from which it was launched from the source

register thus overwriting the old data that had to be propagated through the destination

register. The figure 18 shows that the hold time check is carried out on the same edge

of the skewed clocks a and b, thus this means that the hold time checks are independent

of the frequency of operation of the circuit. Hence, changing the frequency of operation

would not fix hold time violations. So, care must be taken to avoid significant clock

skews in the design.

Source
Register

Destination
Register

1ns

2ns

Data

Clock A Clock B

Figure 17: Hold violation

Finally figure 18 shows the clocks skewed clocks a and b. It also illustrates the clock

edges used for setup and hold time checks.With this basis for setup and hold time anal-

ysis, a deeper look into how the timing analysis tools actually carry out these checks

can be considered.

The slack for setup path is calculated using the following equation

slack = (requirement− (datapath− clockpathskew + uncertainty)) (1)

Data path delay usually includes the following components.
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Figure 18: Clock edges for timing checks

• Tcko which is a sequential delay from flip flop clock clk to xq/yq output(clock to
out)

• Tilo which is combinatorial delays from the input of the LUT to the its output

• Tas setup time for address inputs with respect to clk.

• Along with these factors, the net delay introduced by routing is also accounted
for.

Clock skew is calculated as the difference between clock path delay from the destination
register to the source register. Clock path skew can be caused by one or both the clocks
using local routing or one or both clocks being gated.
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Clock uncertainity includes the following

�
(TSJ2 + TIJ2) + DJ

2
+ PE (2)

TSJ is the total system jitter
TIJ is the total input jitter
DJ is the discrete jitter
PE is the phase error

The slack for hold path is calculated similarly using the equation

slack = (requirement− (clockpathskew + uncertainity − datapath)) (3)

From the equation it can be seen that as the data path delay increases the possibility
for hold violation decreases. In general, due to the dominant routing delays present on
an FPGA hold violations should not exist.

Constraint translation and consolidation: The constraints for the MSP430 de-
sign was taken from the ASIC design constraints. The task was to find the relevant
constraints and apply them to the appropriate components on the FPGA. As men-
tioned earlier the constraints provided by Synplify were large close to 150 constraints
and when this was passed through to Xilinx ise 11 there were issues with the number
of constraints and hence they had to be consolidated. Consolidation was most essential
while dealing with the false paths.

False path constraints are essential since it makes the task easier for the timing analysis
tool to ignore these paths, in addition the map and par engine do not need to spend time
and resources on trying to fix timing violations present on these paths. For comparison
a pie chart of false paths and valid paths are shown in figure 19. From the figure it can
seen that false paths are 9% of all the path analyzed by the tool, but looking at the
magnitude of the number of paths the tool is dealing with makes this more significant.
the timing analysis for the MSP430 analyses close to 55 billion paths. In addition the
hold time violations in the false path groups have a magnitude as high as 6ns. Not
accounting for all the false paths will result in additional runtime.
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Figure 19: Timing path analyzed

9 Mapping and Place & route with PlanAhead

The PlanAhead tool is a design analysis,implementation and visualisation tool. PlanA-

head can be used right from the synthesis to the post par timing analysis and bitgen.

However, for our flow the PlanAhead is only introduced at the map and other post map

processes. The main advantages of PlanAhead as discovered in the execution of the

project are.

• Multiple design implementation strategies; this enables the designer to achieve

timing closure quickly. The multiple stratergies can be run simultaneously on a

multi-core processor further reducing the turnaround time

• Predictable and reproducable implementation with the use of pblocks and parti-

tions

• Integrated environment with features for io planning, floor planning, static timing

analysis, drc checks and wasso analysis that aid in detection of design problems

at an early stage.

• Chipscope integration for debug capability.

• Time-ahead static timing analysis and TRCE post map or post par timing anal-
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ysis.

• Visual analysis of the device which aids in the floorplanning procedure.

STA with PlanAhead and TRCE analysis: PlanAhead has two different timing

engines TRCE and timeahead. The TRCE is used to perform a timing analysis at the

end of map or par. The timeahead on the other hand does not model the routing but

the timeahead is useful for floorplanning and timing estimation. The accuracy of the

timeahead report improves with the newer devices, this early timing analysis can be

used to guide the floorplanning. Estimation can be done with an estimate of intercon-

nects or no interconnects. When no estimation is used the result is just based on logic

delay. This may help in finding logic that has least amount of slack for routing delays.

The estimated interconnect mode provides timing results that are accurate to within

20 to 30%[16]

The analysis from TRCE can be used to find the path of the logic and take corrective

measures. All the logic elements in a path are selected when a corresponding timing

analysis is chosen on the TRCE report. If the implementation result after par is present

the path is also highlighted in the device view. In addition the schematic view can be

used to view the corresponding path in terms of a register view as shown in the figures

21a and 21b.

Design preservation for predictable and reproducable implementation: Us-

ing design preservation enables the designer to reduce the number of implementation

iterations in the final stages of the project. This is based on the principle of hierarchical

design where the design is separated into a natural hierarchy of logic modules. While

logic design with no hierarchy have the seeming advantage of better logic optimisation

due to the absence of boundaries. Hierarchical design has the advantages of breaking

the design into manageable logic blocks and also allows for preservation of results when

one of the partitions achieve timing closure. Thus the design is broken into blocks

called partitions. These partitions create an isolation from the rest of the design thus

enabling the tools to export a successfully implemented partition and “cut and paste”

the implemented result at the next rerun of the design implementation provided no

changes have been made to the design within the partition.Thus preserving successful

implementations of partitions and promoting them for successive runs has a consider-

able impact on the design runtimes. The MSP430 design also has a hierarchical design

flow as shown in figure 20, but experiments with partitions were not carried out since

it required guidelines like registering of outputs across partitions which were not con-

sidered in the MSP430 RTL.
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Figure 20: Hierarchical map of the design

IO planning: IO planner is the pin planning environment for PlanAhead. The IO
pins can be locked by a drag and drop approach. They can also be locked by manually
entering the site location. In addition to this IO planner is also capable of assigning
iostandard, drive strength, slew type and pull type.

When using the IO planning environment for locking clock inputs on the IO pins, care
has to be taken to ensure that the clock signal is assigned to the dedicated clock pins
of the FPGA. Morever if using a single ended clock input instead of a differential input
the p side of the differential IO pair has to be used for example use IO L1P xx instead
of IO L1N xx for a single ended clock input. If these rules are not followed the placer
issues the following error

“ERROR:Place:645 - A clock IOB clock component is not placed at an optimal clock
IOB site. The clock IOB component zxlm is placed at site J4. The clock IO site can
use the fast path between the IO and the Clock buffer/GCLK if the IOB is placed in
the master Clock IOB Site. If this sub optimal condition is acceptable for this design,
you may use the CLOCK DEDICATED ROUTE constraint in the .ucf file to demote
this message to a WARNING and allow your design to continue. However, the use of
this override is highly discouraged as it may lead to very poor timing results.”

As the message explains design is not using a dedicated clock site to drive a global
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clock buffer. These clock capable ios have a direct path to global routing which reduces

routing delay. The error message can be demoted using the following constraint in the

ucf file

NET zxlm CLOCK DEDICATED ROUTE = FALSE;

The data signals can be placed on any available user io, though generally for an efficient

floorplanning it would be beneficial to have have a datapath that flows from the left to

the right side of the FPGA.

Floor planning: Is used to guide the placement of modules during the implemen-

tation on the FPGA. Floorplanning might help reduce the routing delay component

of the critical path. But if the critical path is dominated by logic delay, then synthe-

sis constraints like source replication should be considered. Care must be taken while

floorplanning as poor constraints would result in the degradation of the qor13.

In addition floorplanning might also be used in a post par scenario when there are hold

time violations that persist. In this case the total delay in the data path can be looked

at. Normally for a FPGA the ratio between logic delay14 to the delay introduced by

the route delay15 is 40:60 or 50:50. If there exists a hold violation where the logic delay

contributes to the majority then such paths can be manually placed such that a higher

percentage of routing delay is introduced. Surely, in such cases the impact of such

modification to other parts of the logic have to be taken into account. This approach

is a last resort in case the timing violations persist and must be taken up to achieve

timing closure in the final steps.

DRC check: The design rule check carried out by the PlanAhead can be classified

into logical and physical design rule check.

Logical DRC This is carried out in the following steps[9]

• Block check: this verifies that the terminal element in the hierarchy is an NGD

primitive. It also checks that the user defined parameters are legal. any failure

results in an error.

• Net check: this check determines the number of output pins (drivers) and input

pins(loads) on each signal in the device. If a signal does not have at least one

13Quality of Results
14Delay introduced by logic operation from blocks such as LUT,CLB,memory blocks
15Delay introduced by the interconnect in terms of routing and fanout
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driver and one load a warning is generated. If a signal has multiple drivers an
error is generated.

• Pad check: this verifies that each signal connected to the pad obeys the following
rules.

– If the pad is input type it can only be connected to the following buffers,
clock buffers, pull up, pull down, keeper and bscan.

– If the pad is output the signal attached to it can only be connected to a single
primitive of the following buffer, 3-state, bscan, pullup, pulldown, keeper.

– If the pad is bidirectional it must obey the rules for input and output pads,
the signal attached to it must be declared as bidirectional.

– If a signal is connected to the pad has a connection to a top level pin, the
top level symbol must have the same type as the pad pin.

– A signal connected to multiple pads results in a warning.

• Clock buffer check: Verifies that the output of clock buffer connects to inverter,flip
flops,latch primitive clock inputs or other clock buffer inputs. non compliance
results in a warning.

• Name check: verifies the uniqueness of the NGD primitives, the rules for name
check are

– Pin names must be unique, violation leads to error.

– Instance name must be unique in a branch of hierarchy, violation results in
warning
Signal names must be unique in a hierarchy branch, violation results in a
warning.

– Global signals must be unique, violation results in warning.

• Primitive pin check: Verifies that certain pins on the primitives are connected to
signals. Such as select line on a mux.

Physical drc The physical drc checks for physical errors and logic errors in the design.
Physical drc is run after map, PAR and before bitgen. The steps involved in a physical
DRC check are:

• Net check: similar to net check of logical drc.

• Block check: Checks placed and unplaced components and reports problems with
pin connection, logic or configuration.

• Chip check: Performs checks at the chip level for nets and components such as
placement rules.
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Runtime and PAR effort: PlanAhead has a preset of design goals and strategies16

that enable the user to choose the right tradeoffs for implementation of the synthesized
EDIF. However the user can also create a custom strategy to suit his needs.

For the implementation of the MSP430F5172 , the design strategy used high effort and
a normal extra effort for both map and place and route. The difference between the
effort levels of the router are as follows:

• Standard: Gives a fast run time with lowest routing effort. Appropriate for a less
complex design.

• Medium : Gives a slower run time with some routing optimization.

• High: Gives the best routing results, but will incur the longest run time. Appro-
priate for a more complex design.

Similarly the extra effort level for the router is as follows, the extra effort puts in
additional runtime to meet the specified design constraints.

• None: No extra effort level is applied.

• Normal: Runs until timing constraints are met unless they are found to be im-
possible to meet. This option focuses on meeting timing constraints.

• Continue on Impossible: Continues working to improve timing until no more
progress is made, even if timing constraints are impossible. This option focuses
on getting close to meeting timing constraints.[10]

The reason for using such a “severe” effort is due to the synthesis issues of Synplify
Pro discussed on page 34. The implementation tool was able to produce a timing clean
netlist even without clock gating conversion enabled.

Result visualisation: One of the advantages of using PlanAhead instead of Xilinx
ISE for the map and PAR processes was the visual interface and overview it provided
during the execution of the processes. To give an example post PAR PlanAhead gen-
erates a timing report which details the paths of the user defined timing groups and
gives us detailed information of paths analyzed and timing violations if any. The user
can choose to view these paths as a schematic on the FPGA fabric. The figure 21 gives
us such an example.

16Design Goal and strategies contain predetermined set of process properties that have been selected
to achieve a particular goal like Power optimization,Area Reduction,Minimum runtime,Timing Perfor-
mance and Balanced.Design Goals and Strategy enable the user to guide the implementation tool to
achieve optimal results based on the user choice listed in the previous line. Design strategy are saved
in a datafile with .xds extension.Custom design strategies can be specified by the user[17]
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(a) FPGA fabric view

(b) schematic view

Figure 21: PlanAhead schematic views
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Figure 21a gives us the representation of the placement of logic on the FPGA, this view

helps us visualise the routing resources involved in the datapath under observation.

Whereas figure 21b gives us the schematic of the logic actually implemented in terms

of the FPGA primitives.

10 Debugging with FPGA editor

The FPGA editor is a GUI for editing and viewing the NCD file17. The FPGA editor

is a power tool and gives access to the basic logic and routing fabric of the FPGA.

Undoubtedly such a power tool has extensive features and capabilities since it taps into

the very last levels of FPGA implementation, this also makes it more complex also

taking into account that it is not documented extensively. The most useful functions

for this project have been. The same functions are discussed in this section and relevant

results are also presented.

• Debugging internal FPGA signals with probes

• Manual routing and unrouting data and clock lines.

• Deleting or unplacing components.

• Changing configuration of LUTs, pull states of pads as well as level sensitivity of

logic.

• Usage of scripts that enabling automation of the design

• Other functions include

– Place and route critical components before running the automatic par

– Finish PAR if the routing program does not completely route your design

– View and change the nets connected to the capture units of an ILA core in

your design

– Use the ILA command to write a .cdc file.

Possibility to change attributes of FPGA resources: This possibility provides

extended flexibility to the user. The FPGA editor not only allows for the modification

of the attributes of the components but also creation of new components. This is done

in the block window18 as shown in the figure 22.

17Native circuit description is an output after map and after place and route.It contains logic of the
design mapped to components such as CLB and iobs.

18this window is displayed when you double click on a logic block
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LUT and flip flops have attributes associated with it in the form of check boxes as
shown in 22c. So in order to change the attributes, the user just needs to change the
check boxes in the edit mode. Some of the attributes associated with the CLB are as
follows

• The logic element can be a ff/latch

• Initial values may be ‘0’ or ‘1’

• Default value after set and reset may be ‘1’ or ‘0’

• Each CLB has muxes to route the output, clicking on the triangle enables he user
to select from the inputs.

• It is also possible write a new LUT equation for the output. A typical LUT
equation looks like A5 ∗ (A2 ∗ (∼ A1 + A4))). The representation for the logic
symbols in the FPGA editor are as described in table 12

Table 12: FPGA editor logic operation

symbol logical gate
∼ not
+ or
∗ and
@ xor

Selective attribute modification is explained in the section taking the example of a DCM.

Selective manual unrouting: To manually unroute a wire from a component or
net pin, just select and click delete or select unroute. If one needs to unroute all the
wires connected a component, unplacing the component achieves this objective as well
as removing the component from the site.

This approach was particularly useful when increasing the frequency of one of the in-
ternally generated clocks. As seen in digital clock manager paragraph on page 11. The
input clock frequency is limited when the DCM operates in max speed high frequency
mode, in such cases the DLL mode output of CLK0 cannot be used and the feedback
mode is also not possible. In such cases the whole flow from synthesis to par and route
can be run taking about 3 hours to complete or the same objective can be achieved
using the FPGA editor in a couple of minutes. To achieve this the following actions
need to be carried out
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• The feedback attribute of the DCM has to be changed to no feedback mode

• The routing from the CLK0 output to the BUFG to the CLKFB has to be un-
routed

• The multiplication factor has to be changed for the required frequency, care must
be taken since there are no component switching limits check that is carried out.

These steps are illustrated with the help of the figures 22a,22b and 22c.

Probes for low level debugging: Probes are extremely useful for debugging in-
ternal signals in the design. Probes can access any signal in the FPGA except signals
that are internally routed in a slice. The selected signal is routed to an unused pin on
the FPGA. The probes give access to real time behavior of the signals in their actual
operating environment.

Using the probes is a good workaround for debugging the FPGA without having to go
through the learning curve involved in chipscope. Unlike chipscope it does not require
additional hardware. however the disadvantages of this method of debugging is that it
is hard to access bus signals and multiple triggers are also hard to access. The manual
effort involved in creating probes for buses which are 32 bits wide or of similar magni-
tude can be circumvented to some extent by the use of scripts which are discussed in
the scripts paragraph on page 54.

Probes are very useful for debugging the design. But the inconvenience in finding the
necessary net for debugging is that the nets are renamed during the whole process of
synthesis,mapping and PAR. It is very common to find logic optimised and nets re-
named to names like n 551 s, n 2145 and so on. By using the synthesis directive of
syn keep19 we can preserve the net and the net name for easy debugging. But the use
of this synthesis directive would require resynthesis, re map and re PAR. Thus, defeat-
ing the quick turnaround advantage of using probes. Moreover, the logic implemented
in a LUT is displayed as A5 + (A2 ∗ ( A1 + A4))) which is not a very intuitive way to
visualise a logic equation. The RTL and technology view from Synplify Pro can help
overcome these obstacles. As shown in figure 15b the implemented logic on LUTs is
still depicted as logic gates thus enabling the designer to go through the datapath in
a very intuitive manner. In addition the crossprobing 20 functionality of the Synplify
Pro enables us to view the corresponding logic generating abstract nets like n 3145 and
also view their RTL code. Thus, the interlink between the different tools are essential

19keeps the specified intact during optimization and synthesis
20process of selecting an object in view and having the object or corresponding logic automatically

highlighted in other views like RTL,technology view or RTL code.
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(a) Unroute clk0 output (b) Unroute bufg output and delete bufg component

(c) Change attributes of DCM

Figure 22: Manual editing with FPGA editor
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throughout the debugging process involved in this flow.

Net delay investigation: This investigation is useful to find the actual delay on
the net after PAR. This is the information used to plot the histogram of the ifclk in the
figure 27. The net delay can also be used to autoroute the design based on the users
constraint for individual nets.

For the example where the ifclk uses local routing, the design might need a more
predictable routing to achieve timing closure. In such cases the FPGA editor can be
used to minimise the local routing deviation. By choosing the appropriate net(in this
case ifclk) unroute the whole network, and later from the properties window set the
maximum delay of the net to 2ns. Then use the autoroute functionality let the FPGA
editor find a more suitable routing to satisfy this constraint. The result is again shown
in the histogram 27 which displays a much smaller deviation. But it also need to be
considered that the FPGA utilisation for this design was just 24% hence there might
be more routing resources that are available to satisfy the constraint on the net. Also
looking at figure ?? it can be seen this constraint of 2ns is indeed a tight constraint and
the tool tries to make use of as many long lines21 as possible to achieve this constraint.
In case of design with more congestion and device utilisation a significant improvement
might not be achieved. The result from this experiment is shown in figure 27.

Scripts: Scripts are a powerful feature of the FPGA editor that enable the user to
replicate his actions automatically. An example script is given in the appendix B. The
script feature of the FPGA editor is very easy and intuitive to use. The tool records
the actions of the user and outputs these to a script file, which can later be modified
by the user to suit his needs. This approach does not require a steep learning curve or
prior knowledge of scripting but does provide significant reduction in effort and time
involved in repetitive actions.

Routing resources: Since there has been considerable discussion about routing re-
sources in this report, this paragraph attempts to provide an overview of the routing
resources of the FPGA along with some snapshots of the resources on a Virtex 5 FPGA
in figure 23. The documentation regarding FPGA routing resources are very sparse,
the information here is taken from the FPGA editor user guide[13].

• Local lines: Usually span across multiple CLBs; typically they go between switch
boxes. Local lines do not directly connect to site pins, such as direct connects,

21for more information refer to the paragraph on routing resources

54



and they do not span across the entire length of the device, such as long lines.

The figure 23c shows local line routing in grey.

• Long Lines : A long line connects to a primary global net or to any secondary

global net. Each CLB has four dedicated long lines. Long lines carry signals

across the entire length or width of the chip with minimal delay and negligible

skew. The figure 23b shows a long line in purple.

• Pin wires : Are directly tied to the pin of a site such as CLBS and these are

illustrated in green in the figure 23c.

Timing path crossprobing in FPGA editor: Just like the Synplify Pro and

PlanAhead schematic representation of logic, the FPGA editor also enables the user to

view the implemented design on the FPGA. But the difference here being that the view

on the FPGA editor gives the actual view of the FPGA fabric complete with switch

boxes (the bigger white blank rectangles)22, routing resources (in red) and CLBs (in

blue) as they occur on the FPGA as shown in figure 21a. Just like the PlanAhead al-

lows the crossprobing between timing report and schematic, the FPGA editor provides

a similar functionality but this view as shown in figure 24 has the addition of the details

of routing resources that is absent in the PlanAhead view as in figure 21a.

Resource utilisation: For completeness, a graph of the resource utilisation is pro-

vided in the figure 25 which shows the LUT utilisation is about 24%.

11 Other issues faced

Apart from all the issues and solutions discussed in the previous pages this section

provides an overview of the other issues faced during the execution of the project.

Buffering for high fanout clocks like ifclk: The ifclk with a fanout of about 3300

is the output of a mux. Such high fanout clock nets must use a global routing resource.

For this particular example instead of using a BUFG after the mux, the BUFGMUX

primitive can be used. Such clock selection is quite common in the MSP430 RTL. But

due to the limited global resources available not all the clock muxes can be replaced

by BUFG primitives. On the other hand if the clock can be restricted to 3 adjacent

22collection of transistors located between CLB blocks that enables the connection of two intercon-
nect lines
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(a) Device view of Virtex5 for
routing resources.

(b) Zoom view of long line routing resource

(c) Zoom view of local lines and pin wires

Figure 23: Virtex5 routing resources.
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(a) FPGA fabric view

(b) Corresponding timing report

Figure 24: FPGA editor schematic views

clock regions the output of these clock mux can be routed through a regional clock

buffer(BUFR). The following figure shows the routing of the ifclk on the FPGA.

The figure ?? does suggest a sense of uniformity when using the global resources over the

local resources. This is confirmed by calculating the average and standard deviation

values for the net delays using each of the above types of resources. The standard

deviation for the global, local and constrained local routing are 0.167, 0.919 and 0.606.

Hence even running a constrained local routing does give us a better standard deviation

compared to unconstrained local routing, but this is still not as good as using global

routing resources.The following histogram in figure 27 the variation of the route delay

of the ifclk.
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Figure 25: Resource Utilisation

From the histogram it can be seen that the use of global is essential to have uniform

clock net delay. For this design there were about 30-40 setup errors when the ifclk used

local routing. But another reason for opting for global routing for nets with high fanout

is to avoid congestion. By using the global routing resources the local routing resources

are freed up for less critical nets.

PUC and POR not being deactivated: After going through the flow and obtain-

ing a timing clean netlist and the bitgen flow was cleared. The device had to be checked

for JTAG access. The following paragraphs describe the issues faced while getting the

JTAG access to work.

The first issue was getting the device out of reset. Probe feature of the FPGA editor

discussed on page 52 was most useful at this stage of the project. This enabled us to

access the signals quickly thus saving us a lot of time.

The first issue that was identified as the cause was that the TEST pin is supposed to

be low else the activity on the RESET pin is not reflected on the POR. Additionally it

can also be observed from the figure 28 that when the TEST pin is high the previous

state of the POR is latched. A missing latch in the top level description prevented this

behavior. After this issue was rectified the POR behavior was as desired.
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(a) ifclk local routing (b) ifclk global routing

(c) ifclk with autoroute from
FPGA editor

Figure 26: ifclk routing resources.
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Figure 27: ifclk net delay with global and local routing

Locked IOs prevented JTAG access The above solution provided the right func-

tionality for the reset signal, but JTAG access was not yet established. On further

debugging using probes it was discovered that the JTAG tck signal was not getting

past the port logic. The root cause for this issue was an initial value of ’1’ on a register

60



POR

RSTNMI_SBWTDIO

TEST_VPP_
SBWTCK

Figure 28: Latching of POR with TEST signal.

that caused the device low power mode signal to be activated which in turn locked the

IO ports and did not propagate the changes on the pins. After changing the initial

values JTAG access was finally achieved.

Memory access As discussed in the section 3 the behavior of the MSP430 flash

memory is:

• Flash initial value is all ones.

• Only a one can be programmed to zero and not the other way around

So to check if the previous memory contents were indeed all ones a simple AND opera-

tion is performed between the read data and the data being written. Since the BRAM

of the Virtex are synchronous memories, incorrect data was being written when the

same clock edge was used for both read and write operation. Thus the read had to

performed on the positive edge of the read clock and write on the negative edge of the

write clock. This problem was overcome by manually changing the edge sensitivity of

the BRAMs on the FPGA editor as discussed on page 51.

12 Results with functional test of the FPGA pro-
totype

In order to test the functionality of the MSP430 prototype the FPGA was put to some

basic tests. The tests and their results are discussed in the following sections.
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Maximum frequency of one of the peripheral: This test was done to test the

maximum frequency of operation for one of the modules of the MSP430. This particular

peripheral was selected because for ZeBu the maximum frequency of operation was 32

MHz. Whereas after tests it was seen that for the FPGA prototype the maximum

frequency of operation was 125 Mhz. The method was verifying this was the phase

difference of two output waveforms as shown in figure 29.

Figure 29: Maximum frequency of operation

The phase difference between the two waveforms correspond to the minimum period

the module can operate at. For our prototype this is 8 ns or about 124 Mhz. This

limitation was just posed by the maximum frequency of operation of the DCM under

low frequency and maximum range of operation as described in the DCM section on

page 11 and in the figure 6. However, the frequency can be increased by cascading

DCMs. This was not tested.

Low power mode test: The test carried out for the low power modes was just to

test the emulation of low power modes. That is mainly to verify that the clocks are

switching off. As described in section 3 and in table 2. All the low power modes were

tested for disabling of the clocks. The colour legend for the figures 30 and 31 are as

shown in the table.

The code template used is shown in appendix D. The device after configuration is put

into one of the low power modes and the device is woken out of LPM by an interrupt

on the P1.4 [low to high transition]. Every interrupt toggles the output on pin P1.1

which is the shown as signal in purple in the figures 30.

The first example shows the configuration for low power mode 1 as seen in table 2 in

LPM1 the SMCLK can be optionally active and this is the configuration chosen. When
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Table 13: Colour legend

Colour Clock
Light Blue MCLK

Dark Blue SMCLK

Green ACLK

Purple Port 1.4 interrupt

the device is in LPM1 the MCLK is disabled, SMCLK is always active and ACLK is

active by default.

Figure 30: Low power mode 1

The next example the device is put in low power mode 4. In LPM4 all the clocks are

disabled as shown in the figure 31. It can also be noted that every time p1.1 toggles

it means there has been an interrupt on the p1.4 to wake the device out of low power

mode. For more information on digital IO of the MSP430 refer to the paragraph on

the same on page 5.
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Figure 31: Low power mode 4

Low power modes of the MSP430 are based on the fact that reducing clock activity
reduces dynamic power consumption. Since total power consumption of a circuit is a
sum of static23, dynamic24 and leakage power25 consumption; reducing dynamic power
consumption brings down the total power consumption of the MSP430.

The clocks MCLK and SMCLK were observed on pins p3.4 and p3.2 respectively.
There are also dedicated pins for the MCLK,SMCLK and ACLK on the pj port of
the MSP430F5172 but since the pj port was used for JTAG access, the ACLK was ob-
served using the probe of the FPGA editor, where the ACLK was routed to an unused
io port as discussed on page 52.

The tests that were carried out not only tested the low power modes but also the port
functionality of the MSP430F5172 prototype. In addition the tests also confirmed the
proper functioning of the emulated flash on the FPGA BRAMs.

23due to subthreshold currents, even though the transitors are“off”
24due to charging and discharging of capacitors driven by gates in the circuit
25due to direct path between Vcc and ground,ex:when both nmos and pmos are conducting in a

cmos circuit.
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These tests were carried out using the emulator function of the IAR embedded soft-
ware26. JTAG access was used to communicate with the device.

13 Conclusion

From the tests carried out in the section 12 it can be seen that the FPGA prototype is
functionally verified. However, more extensive tests have to be carried out to establish
the limitations of such a prototype.

The work carried out during the duration of the thesis indicate that the modern ASIC
designs are growing more and more complex with concepts like power and clock gating
being used extensively. It has also shown that FPGA implementation tools still need
to keep up with such growing design techniques, but however quickly implementation
tools evolve to adapt to these growing design techniques there are still possibilities of
tool bugs as discussed on page 34. On the other hand, results have shown that newer
tools do have algorithms that enable timing closure even for FPGA designs where gated
clock conversion has not been enabled, though at the cost of extra runtime. This also
questions the “traditional” view that gated clock conversion in FPGA prototypes of
ASIC is one of the most important steps.

Future work in this project would include memory expansion for the FPGA in terms
of interfacing with an external memory to accommodate the higher memory require-
ments of future MSP430 families. A trial with partitions that enable runtime reduction,
however it has to considered what level of effort has to be put in by the designer to
achieve a significant runtime reduction. Gated clock conversion could be tried even for
multiplexed clocks with the principles introduced in page 32.

Appendix A FPGA RTL code samples

A.1 Package declaration for global signals

—————————————————————————
– Title : Package declaration for the MSP430F5172 FPGA prototype
– Description: Package declaration for delivering global signals mainly clock signals

26Development tool for embedded systems.

65



–Date :2010 july 9
—————————————————————————

library IEEE;
use IEEE.std logic 1164.all;

package zxlsys glb is
signal zxl clkh,zxl clkm,zxl clkidel : std logic;
end package zxlsys glb;

library IEEE;
use IEEE.std logic 1164.all;

package clkinj glb is
signal refo clk,vlo clk,modosc clk,dco clk,pssclk clk,lfxt clk,pgen clk: std logic;
end package clkinj glb;

A.2 Clock injection modules using global signals

—————————————————————————
– Title : Clock injection module for the MSP430F5172 FPGA prototype
– Description: Entity declaration to instantiate the global clock signals without adding
ports on the modules.
–Date :2010 july 9
—————————————————————————

library IEEE;
use IEEE.std logic 1164.all;
use work.clkinj glb.all;

entity clkinj is
port (refo,vlo,modosc,dco,pssclk,lfxt,pgen1:out std logic
);
end entity;

architecture arch clkinj of clkinj is
begin
refo <=refo clk;
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vlo <=vlo clk;
modosc <=modosc clk;
dco<=dco clk;
pssclk<=pssclk clk;
lfxt<=lfxt clk;
pgen<=pgen clk;

end arch clkinj;

—————————————————————————
– Title : Clock injection module MSP430F5172 FPGA prototype
– Description: Entity declaration to instantiate the global clock signals without adding
ports on the modules.
–Date :2010 july 9
—————————————————————————

library IEEE;
use IEEE.std logic 1164.all;
use work.zxlsys glb.all;
library unisim;
use unisim.vcomponents.all;

entity zxlsys is
port (
clkh :out std logic;
clkm:out std logic;
clkidel : out std logic
);
end entity;

architecture arch zxlsys of zxlsys is

begin

clkh <= zxl clkh;
clkm <= zxl clkm;
clkidel <= zxl clkidel;

end arch zxlsys;
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A.3 Clock generation module

—————————————————————————
– Title : Clock generator for the MSP430F5172 FPGA prototype
– Description: Generates clocks of required frequencies based on a 24mHz clock input.
DCM components used for clock manipulation.
–Date :2010 july 9
—————————————————————————
library IEEE;
use IEEE.std logic 1164.all;
use work.zxlsys glb.all;
use work.clkinj glb.all;
library unisim;
use unisim.vcomponents.all;
library Synplify;

entity clock block is
port (
CLK PAD : in std logic;
CLKFX OUT pgen : OUT STD LOGIC;
CLKFX OUT dco : OUT STD LOGIC;
CLKFX OUT lfxt : OUT STD LOGIC;
CLKFX OUT vlo : OUT STD LOGIC;
CLKFX OUT modclk : OUT STD LOGIC;
CLKFX OUT ref : OUT STD LOGIC;
CLKFX OUT pssclk : OUT STD LOGIC;
CLKFX OUT zxlsys : OUT STD LOGIC;
CLKOUT zxlmh: out std logic;
config rst1: out std logic;
clk out :out std logic

);

end clock block;

architecture STRUCT of clock block is

signal CLK,CLK90 tmp,CLK tmp90, CLK int, CLK USB,clk0 USB,CLKFX OUT tmp,CLK tmp
: std logic;
signal CLKFX OUT pgentmp,CLKFX OUT dcotmp,CLKFX OUT lfxttmp,CLKFX OUT vlotmp,
CLKFX OUT modclktmp,CLKFX OUT reftmp,CLKFX OUT pssclktmp,CLKFX OUT zxlsystmp
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: std logic;

SIGNAL CLK PGEN,CLK0 PGEN,CLK DCO,CLK0 DCO,–CLK LFXT,CLK0 LFXT,CLK VLO,CLK0 VLO,CLK REF,CLK0 REF,

CLK MODCLK,CLK0 MODCLK,CLK PSSCLK,CLK0 PSSCLK,CLK ZXLSYS,CLK0 ZXLSYS

: STD LOGIC;

SIGNAL CLKDIV OUT LFXT,CLKDIV OUT REF,CLKDIV OUT tmp,CLKDIV OUT VLO,CLKFX OUT REF1,CLKFX OUT PGEN1,CLKFX OUT PSSCLK1,CLKFX OUT MODCLK1,CLK0 DCM1,CLK DCM1,CLKFX OUT DCM1TMP,

CLK0 DCM2,CLK DCM2,CLKFX OUT DCM2TMP,clkfx out DCM11,LOCKED PSSCLK,LOCKED LFXT,RST INT,LOCKED MODCLK,RST INT1,LOCKED MODCLKtmp,LOCKED pssCLKtmp:std logic;

signal config rst : std logic := ’1’;

signal config rst bor : std logic := ’1’;

signal rst DLL,rst int1 tmp,CLKFX OUT ZXLSYS1,CLKFX OUT zxlsys2,clkfx out zxlsys3,zxl lock

: STD LOGIC ;

SIGNAL CLKFX OUT VLO1,CLKFX OUT DCO1 : STD LOGIC;

component BUF

port (

I : in std logic;

O : out std logic);

end component;

component BUFG

port (

I : in std logic; O : out std logic);

end component;

component DCM BASE is

generic (CLK FEEDBACK : STRING;

CLKDV DIVIDE : REAL ;

CLKFX DIVIDE : INTEGER;

CLKFX MULTIPLY : INTEGER;

DLL FREQUENCY MODE:STRING;

DFS FREQUENCY MODE:STRING;

CLKIN PERIOD: REAL;

DCM PERFORMANCE MODE : STRING);

port (
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CLKFB : in std logic;

CLKIN : in std logic;

RST : in std logic;

CLK0 : out std logic;

CLK90 : out std logic;

CLK180 : out std logic;

CLK270 : out std logic;

CLK2X : out std logic;

CLK2X180 : out std logic;

CLKDV : out std logic;

CLKFX : out std logic;

CLKFX180 : out std logic;

LOCKED : out std logic );

end component;

signal logic 0 : std logic;

attribute syn noprune : boolean;

attribute syn black box : boolean;

attribute syn noprune of STRUCT : architecture is true;

attribute syn noprune of DCM BASE : component is true;

attribute syn black box of DCM BASE : component is true;

component bufg is

port (O :out std logic; I : in std logic);

end component;

attribute syn noprune : boolean;

attribute syn noprune of bufg: component is true;

begin

logic 0 <= ’0’;

zxl clkh <= CLK PSSCLK; –clk int

zxl clkm <=CLK PSSCLK; –clk int

zxl clkidel <=clkfx out zxlsys3;

refo clk <= CLK PSSCLK;–clkfx out ref1;

vlo clk <= CLKFX OUT PSSCLK1;–clkfx out vlo1;

modosc clk <= clkfx out modclk1;
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dco clk <= CLKFX OUT DCO1;
pssclk clk <= clkfx out pssclk1;
lfxt clk <= clkfx out DCM11;
pgen clk<=clkfx out pgen1;

CLK int <= CLK PAD;

USB : DCM BASE generic map (
CLKDV DIVIDE => 2.0, – Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
CLKFX DIVIDE => 1, – Can be any interger from 1 to 32
CLKFX MULTIPLY => 4, – Can be any Integer from 2 to 32
CLK FEEDBACK => ”2X”, – Specify clock feedback of NONE or 1X
DLL FREQUENCY MODE => ”HIGH”,
DFS FREQUENCY MODE => ”LOW”,
CLKIN PERIOD => 41.667,
DCM PERFORMANCE MODE => ”MAX SPEED”) – LOW, HIGH, or HIGH SER
frequency mode for DLL

port map (
CLKFB => CLK USB,
–CLK90 => CLK90 tmp,
CLKIN => CLK int,

RST => config rst,
CLK0 => open,
CLKFX => CLKFX OUT tmp,

LOCKED => open,
CLK90 => open,
CLK180 => open,
clk270 => open,
CLK2X =>clk0 USB,
CLK2X180 => open ,
CLKDV => open,
CLKFX180 => open
);

PGEN : DCM BASE generic map (
CLKDV DIVIDE => 2.0, – Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
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CLKFX DIVIDE => 2, – Can be any interger from 1 to 32

CLKFX MULTIPLY => 11,

CLK FEEDBACK => ”none”,

DLL FREQUENCY MODE => ”LOW”,

DFS FREQUENCY MODE => ”LOW”,

CLKIN PERIOD => 41.667,

DCM PERFORMANCE MODE => ”MAX Speed”)

port map (

CLKFB =>open,

CLK0 => open,

CLKIN => CLK int,

RST => config rst,

CLKFX => CLKFX OUT pgentmp,

CLK90 => open,

CLK180 => open,

clk270 => open,

CLK2X =>open,

CLK2X180 => open ,

CLKDV => open,

CLKFX180 => open

);

DCO : DCM BASE generic map (

CLKDV DIVIDE => 2.0, – Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5

CLKFX DIVIDE => 4, – Can be any interger from 1 to 32

CLKFX MULTIPLY => 2,

CLK FEEDBACK => ”1X”,

DLL FREQUENCY MODE => ”LOW”,

DFS FREQUENCY MODE => ”LOW”,

CLKIN PERIOD => 41.667,

DCM PERFORMANCE MODE => ”MAX RANGE”)

port map (

CLKFB =>CLK DCO,

CLK0 => CLK0 DCO,

CLKIN => CLK int,

RST => config rst,

CLKFX => open,–CLKFX OUT dcotmp,

CLK90 => open,

CLK180 => open,

clk270 => open,

CLK2X =>open,

CLK2X180 => open ,
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CLKDV => CLKFX OUT dcotmp,–open,

CLKFX180 => open

);

MODCLK : DCM BASE generic map (

CLKDV DIVIDE => 5.0, – Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5

CLKFX DIVIDE => 24, – Can be any interger from 1 to 32

CLKFX MULTIPLY => 5,

CLK FEEDBACK => ”1X”,

DLL FREQUENCY MODE => ”LOW”,

DFS FREQUENCY MODE => ”LOW”,

CLKIN PERIOD => 41.667,

DCM PERFORMANCE MODE => ”MAX RANGE”)

port map (

CLKFB =>CLK MODCLK,

CLK0 => CLK0 MODCLK,

CLKIN => CLK int,

RST => config rst,

CLKFX => open,

–DRDY => DRDY out,

–DO => DO out,

LOCKED => LOCKED MODCLKtmp,

CLK90 => open,

CLK180 => open,

clk270 => open,

CLK2X =>open,

CLK2X180 => open ,

CLKDV => CLKFX OUT modclktmp,

CLKFX180 => open

);

PSSCLK : DCM BASE generic map (

CLKDV DIVIDE => 16.0, – Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5

CLKFX DIVIDE => 4, – Can be any interger from 1 to 32

CLKFX MULTIPLY => 2,

CLK FEEDBACK => ”1X”,

DLL FREQUENCY MODE => ”LOW”,
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DFS FREQUENCY MODE => ”LOW”,

CLKIN PERIOD => 41.667,

DCM PERFORMANCE MODE => ”MAX RANGE”)

port map (

CLKFB =>CLK PSSCLK,

CLK0 => CLK0 PSSCLK,

CLKIN => clk int,

RST => config rst,–RST INT,

CLKFX => open,–CLKFX OUT pssclktmp,

–DRDY => DRDY out,

–DO => DO out,

LOCKED => LOCKED PSSCLKtmp,

CLK90 => open,

CLK180 => open,

clk270 => open,

CLK2X =>open,

CLK2X180 => open ,

CLKDV =>CLKFX OUT pssclktmp,–open,

CLKFX180 => open

);

ZXLSYS Inter : DCM BASE generic map (

CLKDV DIVIDE => 2.0, – Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5

CLKFX DIVIDE => 2, – Can be any interger from 1 to 32

CLKFX MULTIPLY => 11,

CLK FEEDBACK => ”NONE”,

DLL FREQUENCY MODE => ”LOW”,

CLKIN PERIOD => 41.667,

DCM PERFORMANCE MODE => ”MAX SPEED”)

port map (

CLKFB =>open,–CLK ZXLSYS,

CLK0 => open,–CLK0 ZXLSYS,

CLKIN => CLK int,

RST => config rst,

CLKFX => CLKFX OUT zxlsystmp,

CLK90 => open,

CLK180 => open,

clk270 => open,

CLK2X =>open,

CLK2X180 => open ,

CLKDV => open,
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CLKFX180 => open,

–DRDY => DRDY out,

–DO => DO out,

LOCKED => zxl lock

);

U13 : BUFG port map (I => CLKFX OUT zxlsystmp, O => CLKFX OUT zxlsys3);

LFXT : DCM BASE generic map (

CLKDV DIVIDE => 16.0, – Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5

CLKFX DIVIDE => 4, – Can be any interger from 1 to 32

CLKFX MULTIPLY => 2,

CLK FEEDBACK => ”1X”,

DLL FREQUENCY MODE => ”LOW”,

DFS FREQUENCY MODE => ”LOW”,

CLKIN PERIOD => 41.667,

DCM PERFORMANCE MODE => ”MAX RANGE”)

port map (

CLKFB =>CLK DCM1,

CLK0 => CLK0 DCM1,

CLKIN => clk int,

RST => config rst,

CLKFX => open,–CLKFX OUT pssclktmp,

–DRDY => DRDY out,

–DO => DO out,

LOCKED => LOCKED LFXT,

CLK90 => open,

CLK180 => open,

clk270 => open,

CLK2X =>open,

CLK2X180 => open ,

CLKDV =>CLKFX OUT DCM1tmp,

CLKFX180 => open

);

clkdiv out vlo <= clkdiv out ref;
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process(clk int)

variable count1 : integer := 0;

begin

if rising edge(clk int) then

if (count1<10) then

count1 := count1 +1;

else

config rst<=’0’;

end if;

end if;

end process;

process(clk int)

variable count2 : integer := 0;

begin

if rising edge(clk int) then

if (count2<72) then

count2 := count2 +1;

else

config rst bor<=’0’;

end if;

end if;

end process;

U3 : BUFG port map (I => clk0 USB, O => CLK USB);

U4 : BUFG port map (I => CLKFX OUT tmp, O => CLK tmp);

U6 : BUFG port map (I => CLKFX OUT pgentmp, O => CLKFX OUT pgen1);

U7 : BUFG port map (I => CLKFX OUT dcotmp, O => CLKFX OUT DCO1);

U10 : BUFG port map (I => CLKFX OUT MODCLKtmp, O => CLKFX OUT modclk1);

U12 : BUFG port map (I => CLKFX OUT pssclktmp, O => CLKFX OUT pssclk1);

U15 : BUFG port map (I => CLK0 DCO, O => CLK DCO);

U18 : BUFG port map (I => CLK0 MODCLK, O => CLK MODCLK);

U20 : BUFG port map (I => clk0 PSSCLK, O => CLK PSSCLK);

U22 : BUFG port map (I => clkdiv out vlo, O => clkfx out vlo1);

U24 : BUFG port map (I => clkdiv out ref, O => clkfx out ref1);

U25 : BUFG port map (I => clk0 DCM1, O => CLK DCM1);

U26 : BUFG port map (I => clkFX OUT DCM1TMP, O => CLKFX OUT DCM11);

U29 : BUF port map (I => locked modclktmp, O => locked modclk);
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U30 : BUF port map (I => locked pssclktmp, O => locked pssclk);

CLKFX OUT PSSCLK <= CLKFX OUT PSSCLK1;

CLKFX OUT PGEN <= CLKFX OUT PGEN1;

CLKFX OUT MODCLK <= CLKFX OUT MODCLK1;

CLKFX OUT ZXLSYS <= clkfx out zxlsys3;

CLKFX OUT DCO <= CLKFX OUT DCO1;

CLKFX OUT VLO <= CLKFX OUT PSSCLK1;–CLKFX OUT VLO1;

CLKFX OUT REF <= CLK PSSCLK;–CLKFX OUT REF1;

CLKFX OUT lfxt <= CLKFX OUT DCM11;

CLKOUT zxlmh <= CLK PSSCLK;

config rst1 <= config rst bor;

clk out <= clk int;

end architecture STRUCT;

A.4 BRAM instantiation

—————————————————————————

– Title : BRAM emulation of flash for MSP430F5172 prototype

– Description: Verilog file generated for memory of 32x1024 bits.memory depth can be

changed by modifying the addrwidth parameter. data width can be changed by modi-

fying the datawidth parameter.Virtex5 LX110 has a maximum of 128 BRAMs. verily

wrapper should be written to instantiate this memory.

–Date :2010 july 9

—————————————————————————

‘timescale 1ns/100ps

module flash1k

(

PortACLK

,PortAAddr

,PortBClk

,PortBDataIn
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,PortBAddr

,PortADataOut

)/* synthesis syn noprune=1 */;

parameter DATAWIDTH = 32;
parameter ADDRWIDTH = 10;
parameter MEMDEPTH = 2**(ADDRWIDTH);

parameter SPRAM = 0;
parameter READ MODE A = 1;
parameter READ WRITE A = 2;
parameter ENABLE WR PORTA = 0;

parameter REGISTER RD ADDR PORTA = 0;

parameter REGISTER OUTPUT PORTA = 1;
parameter ENABLE OUTPUT REG PORTA = 0;
parameter RESET OUTPUT REG PORTA = 0;

parameter READ MODE B = 1;
parameter READ WRITE B = 3;
parameter ENABLE WR PORTB = 0;

parameter REGISTER RD ADDR PORTB = 0;

parameter REGISTER OUTPUT PORTB = 0;
parameter ENABLE OUTPUT REG PORTB = 0;
parameter RESET OUTPUT REG PORTB = 0;

input PortACLK;
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input [ADDRWIDTH-1:0] PortAAddr;

input PortBClk;
input [DATAWIDTH-1:0] PortBDataIn;
input [ADDRWIDTH-1:0] PortBAddr;

output [DATAWIDTH-1:0] PortADataOut;

wire PortACLK;
wire [ADDRWIDTH-1:0] PortAAddr;
wire [DATAWIDTH-1:0] PortADataIn;

wire [DATAWIDTH-1:0] PortADataOut;

wire PortAWriteEnable;
wire PortAReadEnable;
wire PortAReset;

wire PortBClk;
wire [DATAWIDTH-1:0] PortBDataIn;
wire PortBWriteEnable;
wire [ADDRWIDTH-1:0] PortBAddr;

wire [DATAWIDTH-1:0] PortBDataOut;

wire PortBReadEnable;
wire PortBReset;

Syncore ram
#(
.SPRAM(SPRAM)
,.READ MODE A(READ MODE A)
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,.READ MODE B(READ MODE B)
,.READ WRITE A(READ WRITE A)
,.READ WRITE B(READ WRITE B)
,.DATAWIDTH(DATAWIDTH)
,.ADDRWIDTH(ADDRWIDTH)
,.ENABLE WR PORTA(ENABLE WR PORTA)
,.REGISTER RD ADDR PORTA(REGISTER RD ADDR PORTA)
,.REGISTER OUTPUT PORTA(REGISTER OUTPUT PORTA)
,.ENABLE OUTPUT REG PORTA(ENABLE OUTPUT REG PORTA)
,.RESET OUTPUT REG PORTA(RESET OUTPUT REG PORTA)
,.ENABLE WR PORTB(ENABLE WR PORTB)
,.REGISTER RD ADDR PORTB(REGISTER RD ADDR PORTB)
,.REGISTER OUTPUT PORTB(REGISTER OUTPUT PORTB)
,.ENABLE OUTPUT REG PORTB(ENABLE OUTPUT REG PORTB)
,.RESET OUTPUT REG PORTB(RESET OUTPUT REG PORTB)
)
U3(
.PortClk(PortBClk, PortACLK)
,.PortReset(PortBReset, PortAReset)
,.PortWriteEnable(PortBWriteEnable, PortAWriteEnable)
,.PortReadEnable(PortBReadEnable, PortAReadEnable)
,.PortDataIn(PortBDataIn, PortADataIn)
,.PortAddr(PortBAddr, PortAAddr)
,.PortDataOut(PortBDataOut, PortADataOut)
);
endmodule

Appendix B FPGA editor sample scripts

B.1 Probes scripts

—————————————————————————
– Title : script file for probes
– Description: The script file can be used as a template to route internal signals to
unused io pins on the FPGA for probing internal signals of the design.
–Date :2010 july 9
—————————————————————————

post probes
probe add u dig top/u flash mem/N 176 0 i -targetpins AV41 -noroute
probe route u dig top/u flash mem/N 176 0 i
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probe add u dig top/u flash mem/N 177 0 i -targetpins AU42 -noroute

probe route u dig top/u flash mem/N 177 0 i

probe add u dig top/u flash mem/N 178 0 i -targetpins AU41 -noroute

probe route u dig top/u flash mem/N 178 0 i

probe add u dig top/u flash mem/N 179 0 i -targetpins AT41 -noroute

probe route u dig top/u flash mem/N 179 0 i

probe add u dig top/u flash mem/N 180 0 i -targetpins AT42 -noroute

probe route u dig top/u flash mem/N 180 0 i

probe add u dig top/u flash mem/N 181 0 i -targetpins AR42 -noroute

probe route u dig top/u flash mem/N 181 0 i

probe add u dig top/u flash mem/N 182 0 i -targetpins AP41 -noroute

probe route u dig top/u flash mem/N 182 0 i

probe add u dig top/u flash mem/N 183 0 i -targetpins AP42 -noroute

probe route u dig top/u flash mem/N 183 0 i

probe add u dig top/u flash mem/N 184 0 i -targetpins AN41 -noroute

probe route u dig top/u flash mem/N 184 0 i

probe add u dig top/u flash mem/N 185 0 i -targetpins AM41 -noroute

probe route u dig top/u flash mem/N 185 0 i

probe add u dig top/u flash mem/N 186 0 i -targetpins AM42 -noroute

probe route u dig top/u flash mem/N 186 0 i

probe add u dig top/u flash mem/N 187 0 i -targetpins AL42 -noroute

probe route u dig top/u flash mem/N 187 0 i

probe add u dig top/u flash mem/N 188 0 i -targetpins AK42 -noroute

probe route u dig top/u flash mem/N 188 0 i

probe add u dig top/u flash mem/N 189 0 i -targetpins AL41 -noroute

probe route u dig top/u flash mem/N 189 0 i

probe add u dig top/u flash mem/N 190 0 i -targetpins AL40 -noroute

probe route u dig top/u flash mem/N 190 0 i

probe add u dig top/u flash mem/N 191 0 i -targetpins AK40 -noroute

probe route u dig top/u flash mem/N 191 0 i

probe add u dig top/u flash mem/N 192 0 i -targetpins AC39 -noroute

probe route u dig top/u flash mem/N 192 0 i

probe add u dig top/u flash mem/N 193 0 i -targetpins AC40 -noroute

probe route u dig top/u flash mem/N 193 0 i

probe add u dig top/u flash mem/N 194 0 i -targetpins AD40 -noroute

probe route u dig top/u flash mem/N 194 0 i

probe add u dig top/u flash mem/N 195 0 i -targetpins AE40 -noroute

probe route u dig top/u flash mem/N 195 0 i

probe add u dig top/u flash mem/N 196 0 i -targetpins AH41 -noroute

probe route u dig top/u flash mem/N 196 0 i

probe add u dig top/u flash mem/N 197 0 i -targetpins Ag42 -noroute

probe route u dig top/u flash mem/N 197 0 i

probe add u dig top/u flash mem/N 198 0 i -targetpins Ag41 -noroute
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probe route u dig top/u flash mem/N 198 0 i
probe add u dig top/u flash mem/N 199 0 i -targetpins Af40 -noroute
probe route u dig top/u flash mem/N 199 0 i
probe add u dig top/u flash mem/N 200 0 i -targetpins Af42 -noroute
probe route u dig top/u flash mem/N 200 0 i
probe add u dig top/u flash mem/N 201 0 i -targetpins Af41 -noroute
probe route u dig top/u flash mem/N 201 0 i
probe add u dig top/u flash mem/N 202 0 i -targetpins Ad41 -noroute
probe route u dig top/u flash mem/N 202 0 i
probe add u dig top/u flash mem/N 203 0 i -targetpins Ae42 -noroute
probe route u dig top/u flash mem/N 203 0 i
probe add u dig top/u flash mem/N 204 0 i -targetpins Ad42 -noroute
probe route u dig top/u flash mem/N 204 0 i
probe add u dig top/u flash mem/N 205 0 i -targetpins Ac41 -noroute
probe route u dig top/u flash mem/N 205 0 i
probe add u dig top/u flash mem/N 206 0 i -targetpins Ab42 -noroute
probe route u dig top/u flash mem/N 206 0 i
probe add u dig top/u flash mem/N 207 0 i -targetpins Ab41 -noroute
probe route u dig top/u flash mem/N 207 0 i
end

Appendix C BRAM initialisation script

—————————————————————————
– Title : BRAM memory initialization script. for configuring device id into the info
flash memory.
– Description: The script file is used to initialize the device id into the info flash mem-
ory and also emulates the ”all ones” initial condition of flash. the same template can
be used to configure other memories in the FPGA.
–Date :2010 july 9
—————————————————————————

unselect -all
select comp ’u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0’
unselect -all
select comp ’u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0’
post block
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 00
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 01
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
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setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 02
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 03
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 04
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 05
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 06
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 07
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 08
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 09
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 0A
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 0B
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 0C
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 0D
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 0E
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 0F
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 10
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00008030FFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 11
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 12
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 13
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 14
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 15
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 16
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 17
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“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 18
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 19
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 1A
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 1B
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 1C
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 1D
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 1E
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 1F
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 20
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 21
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 22
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 23
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 24
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 25
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 26
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 27
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 28
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 29
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 2A
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 2B
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 2C
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
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setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 2D
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 2E
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 2F
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 30
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 31
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 32
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 33
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 34
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 35
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 36
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 37
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 38
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 39
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 3A
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 3B
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 3C
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 3D
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 3E
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 3F
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 40
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 41
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 42

85



“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 43
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 44
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 45
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 46
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 47
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 48
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 49
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 4A
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 4B
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 4C
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 4D
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 4E
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 4F
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 50
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 51
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 52
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 53
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 54
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 55
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 56
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 57
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
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setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 58
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 59
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 5A
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 5B
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 5C
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 5D
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 5E
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 5F
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 60
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 61
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 62
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 63
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 64
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 65
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 66
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 67
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 68
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 69
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 6A
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 6B
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 6C
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 6D
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“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 6E
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 6F
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 70
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 71
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 72
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 73
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 74
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 75
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 76
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 77
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 78
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 79
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 7A
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 7B
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 7C
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 7D
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 7E
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”
setattr comp u dig top/u flash mem/infoflash/u9/U3/mem mem 0 0 INIT 7F
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”

end
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Appendix D FPGA prototype test sample code

—————————————————————————
– Title : low power mode test code template for MSP430F5172 prototype
– Description: The code configures the device in port1 interrupt mode specifically on
pin p1.4 and p1.1 is toggled
every time an interrupt occurs on p1.4. the port 1 interrupt is used to remove the
device out of low power mode.
–Date :2010 july 9
—————————————————————————

#include ”MSP430F5172.h”

void main(void)

volatile unsigned int i;
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
UCSCTL4 = SELA1 +SELA0;
P3DIR = BIT4+BIT2; //set direction
P3SEL = BIT2+BIT4; // Set P3.2,3.4 as clk outputs
P1DIR —= 0x01; // Set P1.0 to output direction
P1REN —= 0x10; // Enable P1.4 internal resistance
P1OUT —= 0x10; // Set P1.4 as pull-Up resistance
P1IE —= 0x10; // P1.4 interrupt enabled
P1IES —= 0x10; // P1.4 Hi/Lo edge
P1IFG &= 0x10; // P1.4 IFG cleared

while(1) //infinite loop

bis SR register(LPM1 bits + GIE); // Enter LPM4 w/interrupt
for (i = 200; i >0; i–); // Delay

// Port 1 interrupt service routine
#pragma vector=PORT1 VECTOR
interrupt void Port 1(void)

bic SR register on exit(LPM1 bits + GIE);
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P1OUT =̂ 0x01; // P1.0 = toggle

P1IFG &= 0x010; // P1.4 IFG cleared

90



References

[1] Altera. Asic prototyping with stratix seies fpga.

[2] Altera. Timing analysis of internally generated clocks in timequest. Technical
report, 2009.

[3] Xilinx AR18181. http://www.xilinx.com/support/answers/18181.htm, august
2007.

[4] Synopsys. Virtex 5 synthesis issue. synopsys case id 8000395645.

[5] Synopsys. Designware Building Block IP User Guide, June 2009.

[6] Synplicity. Synplify Pro-User Guide and Tutorial, February 2001.

[7] Elgris Technologies. www.elgris.com/content/edif overview.html.

[8] Texas Instruments. msp430f5xx family user guide, july 2010.

[9] Xilinx. Development system reference guide, 12.1 edition.

[10] Xilinx. http://www.xilinx.com/itp/xilinx10/isehelp/pp-db-place-and-route-
properties.htm.

[11] Xilinx. Advanced Xilinx FPGA Design with ISE, 2002.

[12] Xilinx. Xilinx constraint user guide, December 2008.

[13] Xilinx. FPGA Editor user guide, august 2009.

[14] Xilinx. Virtex 5 FPGA configuration guide, august 2009.

[15] Xilinx. Virtex 5 user guide, November 2009.

[16] Xilinx. Design and analysis with Planahead - Fpga days, 2010.

[17] Xilinx. http://63.241.181.135/itp/xilinx10/isehelp/
ise c design strategies.htm, January 2010.

[18] Xilinx. www.xilinx.com/itp/xilinx10/isehelp/
pce p registers in job.htm, January 2010.

91


