
Web Operating System for Modern Smartphones

Master of Science Thesis

Henrik Steen
Gustav Tiger

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, June 2011

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and
in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants
that the Work does not contain text, pictures or other material that violates
copyright law.

The Author shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about
this agreement. If the Author has signed a copyright agreement with a
third party regarding the Work, the Author warrants hereby that he/she
has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work elec-
tronically and make it accessible on the Internet.

Web Operating System for Modern Smartphones

Henrik Steen
Gustav Tiger

c© Henrik Steen, June 2011.
c© Gustav Tiger, June 2011.

Examiner: Ulf Assarsson

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, June 2011

Abstract

The immediate purpose of this thesis work is to further develop the possibility
of building a mobile web operating system for smartphones by investigating
key areas of modern smartphones operating systems and, if necessary, de-
velop new Application programming interfaces (APIs) for accessing phone
resources from a web environment. This report is mainly focused on enabling
different kinds of phone calls, messaging services, settings and device infor-
mation, multitasking, and synchronizing phone book data and other virtual
resources.

To this end, the existing functionalities on modern smartphone platforms,
as well as the current web standards, were studied. Then, whether or not
the functionality could be fully or partly covered by the web standards and
how certain functionality could be implemented in a web operating system
environment, were examined. As a result, key development guidelines as well
as additional or extensions of existing APIs were developed.

I

Sammanfattning

Det direkta syftet med detta examensarbete är att vidareutveckla möj-
ligheten att bygga ett webboperativsystem för smartphones genom att un-
dersöka nyckelområden i operativsystem för smartphones och om nödvändigt
utveckla nya API:er för åtkomst till telefonresurser från en webbmiljö. I
den här avhandlingen ligger fokus främst på att möjliggöra olika typer av
röstsamtal, skicka och ta emot meddelanden, ändra systeminställningar, till-
handahålla systeminformation samt synkronisera kontaktuppgifter och andra
virtuella resurser.

För att åstadkomma detta studerades de befintliga funktionerna i oper-
ativsystem för smartphones samt nuvarande webbstandarder. Sedan un-
dersöktes huruvida funktionerna helt eller delvis kan omfattas av webb-
standarder samt hur viss funktionalitet kan implementeras i en webboper-
ativsystemsmiljö. Resultatet blev riktlinjer för utveckling samt nya, eller
utvidgningar av befintliga, API:er för smartphones.

II

Acknowledgements

We would like to thank Opera Software, our project initiator Nicklas Larsson,
and our supervisor Anders Höckersten for their help and support during
this project. We would also like to thank our supervisor and examiner Ulf
Assarsson at Chalmers University of Technology for all his help and his
admirable modus operandi.

In addition to the people above we would also like to express our thanks,
and our gratitude, to the web community, and everyone working for an open
web, for their tireless effort to make the Web a better place.

III

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Objective . 1
1.3 Scope . 2
1.4 Method . 2
1.5 Background . 3

1.5.1 Web technology . 3
1.5.2 The Mobile Web . 4
1.5.3 Scripting . 5
1.5.4 User interaction . 6
1.5.5 Visualization . 7
1.5.6 Positioning . 8
1.5.7 Local storage . 8
1.5.8 Communication . 9
1.5.9 Multithreading . 9
1.5.10 Web applications . 10
1.5.11 Web operating systems and other solutions 10
1.5.12 Smartphones . 17

2 The Phone Book 20
2.1 Previous work . 20

2.1.1 Android . 20
2.1.2 WebOS . 22
2.1.3 W3C Contacts API . 23
2.1.4 PhoneGap . 23

2.2 Analysis . 24
2.2.1 Permissions . 24
2.2.2 Linking . 26

2.3 Result . 27

3 Synchronization 29
3.1 Previous work . 29

IV

3.1.1 webOS . 29
3.1.2 Android . 31
3.1.3 iOS . 31

3.2 Analysis . 32
3.3 Result . 32

4 Messaging 35
4.1 Previous work . 35

4.1.1 webOS . 36
4.1.2 Wholesale Applications Community (WAC) 36
4.1.3 Android . 36
4.1.4 Maemo . 37
4.1.5 The W3C Messaging API 37

4.2 Analysis . 37
4.3 Result . 39

4.3.1 Data types . 40
4.3.2 Service level . 41
4.3.3 Application level . 42
4.3.4 Examples . 43

5 Calls 46
5.1 Previous work . 46

5.1.1 Android . 47
5.1.2 Existing Standards . 47

5.2 Analysis . 48
5.2.1 Incoming calls . 49
5.2.2 Outgoing calls . 50

5.3 Result . 51
5.3.1 Data types . 51
5.3.2 Service level . 51
5.3.3 Application level . 53
5.3.4 Examples . 54

6 Settings 58
6.1 Previous work . 58

6.1.1 Android . 58
6.1.2 webOS . 59

6.2 Analysis . 60
6.3 Result . 60

7 System information 62
7.1 Previous work . 62

7.1.1 iOS . 63
7.1.2 Android . 64

V

7.1.3 Windows Phone 7 . 64
7.1.4 WAC . 64
7.1.5 PhoneGAP . 65
7.1.6 W3C and the System Information API 65

7.2 Analysis . 66
7.3 Result . 67

8 Multitasking and Application handling 68
8.1 Previous work . 68

8.1.1 iOS . 68
8.1.2 Android . 70
8.1.3 Windows Phone 7 . 71
8.1.4 webOS . 72
8.1.5 Maemo . 72

8.2 Analysis . 73
8.3 Result . 74

9 Discussion 76

10 Further Work 78
10.1 Media capture . 78
10.2 Calendar . 79
10.3 Distributing applications . 79
10.4 Managing and browsing the local file system 80

List of Figures 81

Bibliography 82

VI

Web Operating System for Modern Smartphones

Chapter 1

Introduction

1.1 Purpose

The immediate purpose of this thesis is to further develop the possibility of
building a mobile web operating system for smartphones by investigating key
areas of modern smartphones operating systems and, if necessary, develop
new APIs for accessing phone resources from a web environment.

1.2 Objective

The objective of this thesis is to investigate the functionality found in mod-
ern smartphones and study the possibilities of implementing these concepts
using web technologies. If the current web standards are unable to provide
sufficient support, extensions to the existing standards or proposals to new
ones should be developed.

In addition to the phone’s hardware resources there are also several common
virtual resources, such as phone books and calendars in smartphones, which
potentially could be located online or on the device. Either way, the ability
to store resources as online web resources or inside the device’s local memory
needs to be considered in this project.

1

Web Operating System for Modern Smartphones

1.3 Scope

The term smartphone (see Section 1.5.12) is frequently mentioned in this
thesis and denotes a modern mobile device with phone capabilities, usually
more connected and with more advanced features compared to an ordinary
mobile phone.

Hardware requirements or specifications of the phones supposed to run a web
operating system, is not part of this thesis’ scope and no specific hardware
will be mentioned. The general notion that hardware exists and needs to be
in consideration will however be acknowledged.

Regarding the study of web technologies, all studies should be done based
upon publicly available open standards. Since the standardization process
usually span up to a few years [1] and some of the most related features are
mentioned only in new proposed standards that have not yet been accepted,
some of the APIs examined in this report are not yet fully reviewed by the
web community and is not yet to be considered as standards. [1] [2]

The platforms studied in this thesis are either the most commonly used, the
most relevant from the point of view of developing a mobile web applica-
tion, or contain a solution that brings something different and unique to the
table. When investigating operating systems or smartphones, only official
supported features should be considered.

This thesis work only covers investigating different platforms and standards,
and the development of new APIs – no implementation will take place.

1.4 Method

To get a general idea of concepts regarding smartphone usage, the first step is
to study the characteristics, usage and functionality of modern smartphones.
This phase aims to find out how the functionality is used in some of the most
common smartphone operating systems today.

After researching the concept of smartphones, the next step will be to con-
duct a study of the current web standards and get a good overview of what
is possible to implement using them. When doing this, special care has to
be taken to try to understand the web standards’ impact when designing
applications for use on smartphones.

2

Web Operating System for Modern Smartphones

The third stage will be to study the current web operating systems, how
certain problems have been solved and how certain functionality could be
implemented. The last step is to specify and design the APIs needed to
implement the functionality that could not be covered by the previously
researched web standards.

1.5 Background

Recent years of innovation and improvement in web browser technology have
shown the increased potential of web based applications. The available web
standards and APIs have matured and web applications are now capable of
replacing many of the native applications commonly used today [3]. These
web based applications could run in a web browser, either online or when
disconnected from the Internet [4]. This development, as well as the vast
development of mobile devices, opens up for operating systems specially
designed for running web based applications on modern smartphones.

A web operating system is an operating system which applications are writ-
ten using web standards, such as HTML, CSS and JavaScript. Other defi-
nitions require the whole user interface to be written in such languages, but
this is not part of the definition used in this thesis. The goal will ultimately
be that all functionalities covered by modern smartphone applications are
also able to be developed with web technologies. For this to be practical,
open standards must be used as much as possible and new APIs should only
be developed when no open alternative exists.

1.5.1 Web technology

HTML was originally designed as a simple language for sharing documents
and linking documents together using hyperlinks. The HTML 4.01 standard
was released in 1999 [5], but the two organizations WHATWG and W3C
are currently working together in order to develop the next major revision,
HTML5. The new standard introduces a number of new elements and at-
tributes, as well as a number of scripting APIs.

3

Web Operating System for Modern Smartphones

1.5.2 The Mobile Web

In 1996, development on a new web language, called HDML, begun. It
sprung up as a fork to the commonly referenced standard for HTML and
was developed to contain a simplified striped-down version of that standard.
HDML was never standardized, but lead to the development of WML which
was used as markup language in the first edition of WAP. Later editions
of WAP used an XHTML based standard, called XHTML Mobile Profile
(XHTML MP), as markup language. Most of the mobile web languages
were developed as a subset of other, desktop, languages. This is not the goal
of this thesis; the aim here is to add additional features that are not present
in web languages today.

Figure 1.1: An overview of the evolution and branching of mobile web stan-
dards [6] (Image: Mobile Web Standards Evolution Vector, David Höffer,
Wikimedia Commons)

Figure 1.1 shows an overview of some of the markup languages that have been
developed for mobile devices in the past. Most of the languages described
were however not targeted towards modern smartphones, but were meant to
be used in mid-end devices or devices that are now outdated. That means
that, however important the history of the mobile web has been in the past,
not much of the above mentioned languages can be used as a building stone
in this thesis.

4

Web Operating System for Modern Smartphones

1.5.3 Scripting

The most commonly implemented standard for client-side scripting on the
Web is ECMAScript, with famous implementation dialects such as JavaScript,
ActionScript and JScript. The ECMAScript standard defines a versatile
object-oriented and prototype-based scripting language that originally was
meant to be “a Web scripting language, providing a mechanism to enliven
Web pages in browsers and to perform server computation as part of a Web-
based client-server architecture” [7].

ECMAScript is said to be a prototype-based language. This means that
each constructor is a function with a property named prototype, which is
inherited by the objects. In the ECMAScript specification, the relationship
and heritage of prototypes are explained:

“In a class-based object-oriented language, in general, state is
carried by instances, methods are carried by classes, and inher-
itance is only of structure and behavior. In ECMAScript, the
state and methods are carried by objects, and structure, behavior,
and state are all inherited [7].”

During the last decade, the performance of web based scripting has increased
exponentially, which naturally has increased the potential for advanced web
applications [8]. Figure 1.2 describes the vast development and speed in-
crease of web browser based scripting during the last decade.

5

Web Operating System for Modern Smartphones

Figure 1.2: According to a study presented by Google Inc., the performance
increase in web based scripts has increase with a growing rate since 2001. [8]
(Image: Google I/O – Keynote 2009, Google Inc.)

1.5.4 User interaction

Since the release of HTML 4.01, user interaction on the Web has changed
dramatically. AJAX allows web pages to initiate new requests, and interact
with remote servers, without having to reload the page; making it easier to
develop web pages that are more dynamical, faster and easier to use. In
addition to this, the new hardware has made the Web more mobile than
ever before. A study conducted by International Data Corporation (IDC)
in 2009 [9] showed that there were more than 450 million mobile Internet
users worldwide in 2009, and that is a number that is expected to more than
double by the end of 2013.

The work on HTML5 includes many improvements on user interaction, and
makes creating new ways of interacting with the user easier. One new at-
tribute proposed is the contentEditable attribute. It allows user manipu-
lation and editing of the specified part of the document, for example text to
be inserted and removed as if the user was using a native text editor. This

6

Web Operating System for Modern Smartphones

makes development on web based text and document editors easier and more
capable than before. [10] [11]

The new HTML standard also defines simple functionality for drag-and-
drop, something very common on web pages today. This means that it will
be easier to develop web pages with an intuitive user interface. [12]

The Session history and navigation API also contains interesting functional-
ity; it allows manipulations of the web browser’s history and determine what
should happen when the user tells the browser to go back or forward on a
page. [13]

There have been several attempts at creating an open speech recognition API
for the Web, and one of the latest is the HTML Speech XG Speech API. It is
a proposal for communicating, controlling and interacting with a web page
using speech recognition mechanisms. This API is especially interesting for
small, mobile devices where other forms of input could be tedious or take
too long time to use or get accustomed to. According to the proposition,
the human voice could function as input on many different input fields, for
example to conduct searches, fill forms, or click links. [14]

1.5.5 Visualization

CSS is a style sheet language for describing how a web document should
be presented. It is used by defining rules for how a document, or a specific
part of the document, should be styled. With the latest proposed standard,
CSS3, new features such as multiple backgrounds, rounded borders, opacity,
shadows, animations and transitions are introduced. [15]

The HTML5 proposal also improves visualization for the user, for exam-
ple by introducing video and audio playback. The audio and video media
elements introduced in HTML5 will enable plug-in free multimedia in web
browsers. The scripting API provides extensive control to allow, for exam-
ple, seeking and pausing video and audio playback. For the video element it
is also possible to define text tracks where subtitles for different languages
or commentaries from the maker of the video could be displayed. [16]

The canvas element can be used to create applications that utilize native ac-
celeration from the device’s graphic processor. The element can use different
contexts; one for 2D and one for 3D. There is a proposal for an OpenGL
based API standard called Web Graphics Library (WebGL), for the 3D con-
text, that could provide smooth 3D graphics to the browser without the need

7

Web Operating System for Modern Smartphones

for a plug-in. [17] [18]

Another visual feature drafted by W3C is the Web Notifications API. The
API allows for asynchronous alerts to be sent to users outside of a web page,
in order to, for example, show that something on another page has been
updated or a new mail has been received. A notification contains an icon, a
title and a notification body. [19]

1.5.6 Positioning

The Geolocation API contains functionality for finding a person’s, or rather
the device’s, geographical location. This can be done in several ways; the
most obvious way is by using the device’s local GPS system, but IP addresses
and cell tower location can also be used. The Geolocation API can be used
to get longitude and latitude position, as well as some other data, from the
device. [20]

1.5.7 Local storage

As the web applications become more and more advanced, require more data
and faster response times, the need for local storage has grown bigger. Local
storage means that the web browser can save larger amount of data locally
and thus reduce the network load between the client and the web server.
Allowing web applications to store data locally increases the amount of data
that an application can consume, as well as lowering the time needed when
loading a larger amount of data.

There are several solutions that allow local storage, some more advanced
than others.

• The Web Storage API, a W3C working draft, allows local storage by pro-
viding key value pairs to be saved. The specification does not specify how
much local space that could be used, but instructs implementers to limit
that space in order to not overload the client device. The specifications
also allow automatic deletion of storage areas, if this is preferred by the
user. [21]

• The Indexed Database, or WebSimpleDB, API is close to a real transac-
tional database with indexes, cursors and transactions. [22]

• The File API provides an interface for representing file objects in web ap-
plications, for reading and working with files directly in the web browser. [23] [24]

8

Web Operating System for Modern Smartphones

• Offline Web application is a specification for letting users access web ap-
plications and documents even when connectivity to the Internet is un-
available. The files specified are cached by the browser in order to keep a
local copy to work with offline. [4]

1.5.8 Communication

Since the introduction of AJAX and the XMLHttpRequest (XHR) API there
has been a clear change where web pages have become more dynamic and
interactive. The AJAX APIs allows browser scripts to contact a web server
and get data back without reloading the page, as well as changing and up-
dating a web page asynchronously. This can be used to create dynamic web
pages and allows for more specific requests to be made. [25]

XHR is an easy and asynchronous way of sending messages from a client
browser to a web server, but there are also other ways of communicating on
the Web. The new WebSocket API, for example, which enables a two-way
socket communication between a user’s web browser and a specified server.
It introduces a way for web pages to maintain a bidirectional socket with the
server, and not as XHR, which is used for sending non-persistent requests
and receiving an answer from a server. [26]

The Web Messaging API is a cross-document messaging API for sending
messages between pages on different domains. This communication is, for
security and privacy reasons, prevented in most web browsers today, but the
Web Messaging API aims to introduce a way for web pages to communicate
in a secure manner regardless of their source domain. [27]

Another API worth mentioning in this context is the Video conferencing
and peer-to-peer communication API, a living standard from WHATWG
that enables video-conferencing using web technologies. It contains methods
for recording audio and video stream, as well as connecting to remote peers
and accessing each other’s streams. [28]

1.5.9 Multithreading

Multicore CPUs are dominating the PC market, but most of the smaller
mobile devices are still only using one core. Some mobile phone vendors
have begun releasing smartphones with dual-core processors, but they are

9

Web Operating System for Modern Smartphones

far from common. Most web pages are built to have one single execution
thread for their scripts, but some multithreading solutions are available. [29]

The Web Workers API allows web applications to create background threads
that run in parallel. If multiple workers are created, those will be executed
asynchronously. Creating a new worker is done by passing a script into a
constructor, and the execution begins automatically. The API also provides
basic message passing capabilities. [30]

1.5.10 Web applications

In this paper, a web application is defined as an application, with the purpose
of performing one task or multiple related ones, written using common web
techniques that can run natively in a modern web browser. web operating
systems could also allow web applications to be installed on the device, in
order to give additional functionality and easy access to the application. This
definition does not put any requirements on how advanced an application
must be; an application could be anything from as simple as just showing and
updating a clock to a whole office suite with spreadsheets, presentations and
documents. It is however important that the application must not depend
on any plug-ins or extensions to the browser. This disqualifies Flash and
Java applications from counting as web based applications.

There is a large amount of different web applications available on the Inter-
net today; it can be everything from e-mail applications, office suites and
newspapers to blogs and other social communities.

1.5.11 Web operating systems and other solutions

There are several examples, and several varieties, of web operating systems.
Some define it as an operating system that runs inside a web browser, and
where a web page creates or emulates a complete desktop space inside the
web browser. Another definition defines it as operating systems in the classic
sense but where all applications are written using web technology. This is
the definition used in this thesis.

Several benefits can be derived from using a web based operating system
rather than an ordinary operating system. Some examples of concepts that
make a web operating system for smartphones a rather interesting idea could
be:

10

Web Operating System for Modern Smartphones

• Easy app development – Developers are already familiar with the devel-
opment process and very little has to be added to use the phone’s native
hardware.

• Cross platform applications – Open web standards enables applications to
run on multiple platforms

• Customizable – Built-in applications (such as phone book and SMS appli-
cations) are easy to change and customize on vendors request, or possibly
by the vendors themselves.

• Openness – All applications are written using open web standards and
are more open for other developers to see, compared to the rather closed
environment of traditional operating systems.

• Security – Web applications are by definition sandboxed in the user agent
and do not have direct access to the local file system or hardware.

Google Chrome OS

Google Chrome OS is a web operating system built upon the web browser
Chrome, developed partly as an open sourced project supported by Google
Inc. The operating system features a fully integrated media player to support
the HTML5 video-tag, an integrated flash player, a settings manager, as well
as a built-in PDF-viewer. The operating system does also include a built in
file browser, from where users can upload files from a plugged in camera or
USB device to the Internet through the Google Chrome OS API. [31]

Google Chrome OS also introduces Google Cloud Print, which allows users
to send files to a printer over the Internet. The user does not need to be
connected to the device, or even physically present, as long as the printer is
connected to the Internet, has support for Google Cloud Print, and the user
has clearance to use it. This also means that there is no need for the user to
install any drivers to use the device.

When introducing the new platform, Google emphasized the security of only
running web applications; for example, since all applications can be sand-
boxed, it is not possible for applications get information that leaks from
another application. Sandboxing also means that applications are unable to
modify files without the user’s consent, and only the operating system itself
can access settings such as power configurations or installed applications. [31]

11

Web Operating System for Modern Smartphones

Figure 1.3: A laptop running Chrome OS, planned to be released in the mid-
dle of June 2011. (Photograph: Samsung Chromebook Series 5 Chromebook,
Amazon [32])

PhoneGap

The PhoneGap open-source framework enables developers to use web tech-
nology, such as JavaScript, HTML and CSS, when developing applications
for mobile devices. The framework has been implemented for several dif-
ferent platforms, including iOS, Android, Symbian, webOS and Windows
Phone 7. [33] The support for each platform differ, and in some cases even
the specific version of the underlying operating system makes a difference,
but according to the official list of features, some supported features are: [34]

• Accelerometer - Tap into the device’s motion sensor.
• Camera - Capture a photo using the device’s camera.
• Compass - Obtain the direction that the device is pointing.
• Contacts - Work with the device’s contact database.
• Device - Gather device specific information.
• Events - Hook into native events through JavaScript.
• File - Hook into native file system through JavaScript.
• Geolocation - Make your application location aware.
• Media - Record and play back audio files.
• Network - Quickly check the network state.

12

Web Operating System for Modern Smartphones

• Notification - Visual, audible, and tactile device notifications.
• Storage - Hook into the devices native storage options.

Wholesale Applications Community (WAC)

WAC is the name of the organization, originally started by telecommunica-
tion operators to unify the different mobile platforms and operating systems,
as well as the name of the API they develop to allow development of platform
independent applications for mobile devices. [35]

The API is comparable to PhoneGap and does also use existing web stan-
dards such as HTML, JavaScript, and CSS for application development. The
API also includes parts that, for example, allows accessing contact informa-
tion, calendar events, device status and sensor information. [36]

Besides the API, WAC is also a broader concept which includes users, devel-
opers, telecom operators, and handset manufacturers and OS owners. Oper-
ators can run application stores that enable application developers to charge
their users through the operators existing billing systems by sharing some of
the revenue. [36]

WAC is also supported by a large number of operators, developers, and hand-
set manufactures. Some well-known examples of the more than 70 member
are GSMA, China Mobile, Vodaphone, Ericsson and Huawei. [37]

The WAC 2.0 Specification includes the following modules for developer to
use:

• The deviceapis module – The base object for accessing WAC Device APIs.
• The accelerometer module – API that allows using the device accelerom-

eter sensor.
• The orientation module – API that allows using the device orientation

sensor.
• The camera module – API that enables capturing media through the de-

vice camera.
• The devicestatus module – API that provides access to the device status

information.
• The filesystem module – API that allows accessing the device file system.
• The messaging module – API that allows message sending and retrieval.
• The geolocation module – API that exposes the device location (as speci-

fied in W3C).
• The pim module – API that exposes the different PIM (Personal Informa-

13

Web Operating System for Modern Smartphones

tion Management) functionalities.
• The contact module – API that enables the management of contact infor-

mation.
• The calendar module – API that enables the management of calendar

information.
• The task module – API that enables the management of task information.
• The deviceinteration module – API that enables the interaction with the

end user through different device capabilities.

webOS

“Architecturally, Palm webOS is an embedded Linux operating
system that hosts a custom User Interface (UI) System Man-
ager built on standard browser technology. The System Manager
provides a full range of system user interface features includ-
ing: navigation, application launching and lifecycle management,
event management and notifications, system status, local and
Web searches, and rendering application HTML/CSS/JavaScript
code [38].” – HP/Palm, Overview of HP webOS

WebOS is a mobile operating system for smartphones, developed by HP/Palm.
Most applications, both in the software suite that is included in the operating
system and the third party applications available for installation, is written
using HTML, CSS, and JavaScript. HP/Palm has created two frameworks,
Mojo and Enyo, to help developer create functional web applications with
ability to interact with some of the phones hardware and storage system, as
well as use the same layout rules as all the other applications.

This type of web environment is enough to power most applications, but for
some heavy graphic applications, or applications that need a closer interac-
tion with the device’s hardware, webOS provides C/C++ support together
with OpenGL and SDL. Those applications will be deployed as a plug-in,
using the webOS Plug-In Development Kit (PDK), to the underlying operat-
ing system, which ease the interaction with the rest of the operating system,
and allows the plug-ins to utilize the same JavaScript libraries as the web
applications.

For background applications, also called services, webOS allows usage of
node.js, a framework for building scalable network programs using JavaScript.
By using this kind of non-graphical web frameworks, the services and the
application can run in the same environment and use the same APIs. De-
velopers will only have to learn one environment and interaction between

14

Web Operating System for Modern Smartphones

Figure 1.4: The HP
Pre3 running webOS 2.2,
the next major version
of webOS featuring Enyo
(see Section 1.5.11), is
said to be released in
the summer of 2011.
(Photograph: HP Pre3,
HP [39])

applications and services gets easier to handle.

Mojo Mojo is a framework and SDK for developing applications for we-
bOS. An application written with Mojo will contain one or multiple views, or
pages, called scenes. A scene will be rendered on a stage, which corresponds
to to a tab or a window in a desktop browser. Each scene could consist
of some predefined widgets, buttons, forms, or anything the developer has
chosen to display. It could for example just render an ordinary web site.

The application listens for events given by the Mojo framework – events
that could spring up from the user interacting with the interface, pressing a
button or making a gesture. The framework provides a number of Service
APIs, through which the application can communicate with the underlying
system and hardware. The API does also provide methods for communicat-
ing with remote servers or other applications on the same device, accessing
the calendar and contact information on the device, and so on. [40] [41]

The webOS Service APIs include:

15

Web Operating System for Modern Smartphones

• Accelerometer – Orientation events and accelerometer data access.
• Accounts – Returns information on established user accounts for use with

the HP Synergy feature information manager.
• Alarms – Sets a timer to activate on the device either after a specified

interval or at a specified date and time.
• Application Manager – Invokes default handlers for the common resource

types or basic device operations.
• Audio – Plays or streams audio by using common audio formats.
• Browser – Loads and views the target specified by a URL.
• Calendar – Various methods for accessing or creating Calendar data.
• Camera – Launches the Camera application to take a picture.
• Connection Manager – Gets connection status and subscribes to notifica-

tions of connection status changes.
• Contacts – Various methods for accessing or creating Contacts data.
• Display Manager – Gets events related to the status of the display.
• Document Viewers – Launches the DocViewer application to browse and

view common document file types.
• Download Manager – Uploads and downloads files over HTTP.
• Email – Sends an email, and includes options for pre-populating the email

contents.
• GPS – Gets the current location coordinates and registers for continuous

updates.
• Keys – Gets keypress events from headset and volume buttons.
• Maps – Displays a map based on the various input options.
• Messaging – Sends an IM/SMS/MMS, and includes options for pre-populating

the message contents.
• People Picker – Displays a list of contacts for the user to make a selection.
• Phone – Makes a phone call with or without a pre-populated dial string.
• Photos – Views an image in various common image formats.
• Power Management – Enters Sleep mode after a period of inactivity.
• System Properties – Gets the named system properties, including device

ID.
• System Service – Accesses various system settings, including systemTime.
• System Sounds – Plays audio feedback in response to user interaction. The

sounds play when the message is played, with low latency.
• Video – Plays or streams video by using the common video formats.
• View File – Downloads and/or views a file in various formats or resource

types.

Enyo Enyo is the latest generation of web frameworks for developing web
applications for webOS. The framework uses the same technologies for the
mobile platform as is used on the desktop user agents today. This means

16

Web Operating System for Modern Smartphones

that the same developing and debugging tools used for developing desktop
applications could be used to develop for other devices, such as smartphones
running a web operating system.

The framework is still in development, but devices with the new version of
webOS are scheduled to be released in summer of 2011.

1.5.12 Smartphones

The definition of a smartphone, and the distinction between smartphones
and other devices, such as other high-end mobile phones, mobile navigation
systems, or a small tablet or pocket computer, is difficult. A smartphone
could be defined as a mobile device, with a set of basic features that dis-
tinguish them from other devices; ability to make phone calls, play music,
take photographs with a built in camera, and having a capable web browser
together with the connection capabilities required to fully utilize the web,
are common requirements on modern smartphones. A smartphone should
also include a multitasking operating system and a single or multi-touch
screen for user interaction. This definition excludes some of the high-end
Symbian and BlackBerry devices that lack touch screen user interfaces, but
interaction with such devices is very different from using a touch interface.

Compared to desktop or tablet computers, smartphones are considerably
smaller in size and the hardware capabilities are more limited. Each platform
handles the problems arising with low available memory and a limited battery
supply differently. The latency introduced on wireless connection, and the
fact that most cellular plans does not include a flat data rate, does also
need to be taken into consideration. User input is another difficult task
to handle; a touch interface together with either a small sized hardware
keyboard or none at all. All these attributes need to be considered when
doing development for smartphones.

Applications

One feature that in some way separates low and mid-end mobile phones from
smartphones is how the connectivity can be used to install new third party
applications on the device. First party applications are developed by the
platform provider, while third party applications are developed by a third
party developer. Second party applications are not as common, but could
be described as an application developed by a third party with ties to the

17

Web Operating System for Modern Smartphones

device or platform manufacturer and who have received access to tools or
APIs not normally available to third party developers.

Applications are usually installed on the device, downloaded either through
an application market or directly from the developer. Most platforms do,
besides normal applications, also support background applications, called
services, that do not require a user interface but are able to run in the
background. These services are often used, for example, to fetch e-mails or
synchronize contact information to the local phone book.

Platforms

The three largest smartphone operating systems as of today are Android,
Symbian and iOS, and hundreds of millions of smartphones are sold every
year [42]. Nokia has decided to stop the development on the Symbian plat-
form and start developing smartphones for the Windows Phone 7 platform
instead [43]. The Windows Phone 7 platform is predicted to become one of
the larger platforms for smartphones in a few years [42].

The webOS platform was introduced in Section 1.5.11 and is highly inter-
esting for this thesis, since it solves many of the problems with developing
frameworks and APIs for web applications on smartphones. Another inter-
esting platform, built to be more versatile and therefore has to solve some
problems a bit differently compared to others, is the Maemo or MeeGo plat-
form.

Virtual resources

Besides the ability to communicate with some of the smartphone’s hardware,
the applications also need access to a number of virtual resources. These are
resources that could be stored anywhere, on the device or somewhere online.
For keeping implementation and documentation simple, some kind of APIs
are needed to access and manage such resources. The most common virtual
resources available in modern smartphones are:

• Phone Book – For accessing contact information
• Calendar – For scheduling events and reminders
• Messages – Short Message Service (SMS), Instant messaging (IM), e-mail,

and other messaging services
• Files – Located at flash memory cards, hard drive, cloud storage, and such

18

Web Operating System for Modern Smartphones

• Menu-items – Workspaces, icon placement, widgets, and other menu re-
lated configurations

• Settings – System settings, such as current ringtone, current date and
time, and other preferences

• Installed applications – The current install applications on the device
• Notes – Notes saved by the user
• Clock/Alarm – Wake up alarms, with ability to wake the phone even when

turned off
• Notifications – Alerts to the user about a recently occurred event
• Clipboard – Recently cut or copied information, for pasting or saving.
• Accounts – Account information shared between different applications,

such as Twitter, Facebook, or IM services

Having well defined APIs for each virtual resource, and an enforced permis-
sion system that keeps applications from using the resources without first
getting permission from the user, is a common security benefit, seen in most
smartphone operating systems, and a common way for giving restricted ap-
plications access to shared data.

19

Web Operating System for Modern Smartphones

Chapter 2

The Phone Book

Contact information is one of the most common virtual resources and much
previous work has been done prior to this thesis. Any given solution must
include functionality for adding new contact information, remove information
and changing previously inserted information. This is the most basic set of
features that are required, but some of the following sections will also discuss
alternative or additional features that are desired when developing phone
book applications for mobile devices using web technologies.

2.1 Previous work

There are a number of different solutions available for accessing phone book
data in a mobile device, and even some for implementing phone book ap-
plications using web technologies; W3C has been working on a draft, as
described in Section 2.1.3, and the webOS platforms includes an extensive
API for managing contact information.

2.1.1 Android

The Android API suite includes the Contact API for managing and integrat-
ing contact information from multiple sources. Besides the common methods
for adding and managing contacts, it also provides methods for aggregating
similar contacts together and presenting the result as one contact. [44]

20

Web Operating System for Modern Smartphones

Figure 2.1: A Contact-object consists of information aggregated from mul-
tiple sources. [44]

Figure 2.1 describes how a Contact-object in the Android API consists of
one or more RawContacts. A RawContact is described as a set of data as-
sociated with a single contact source. The idea is to allow synchronization
with multiple services, for example Google, Exchange, or Facebook accounts,
and let the user merge the RawContacts from each service into one single
Contact-object for each person in their phone book. Instead of having sev-
eral contact objects corresponding to the same person, the information is
collected and presented to the user as one entity for each person. Merging or
aggregating duplicate contacts is also seen on other platforms, for example
Maemo and webOS, and is a common way of simplifying the usage of sorting
and finding contact information in a phone book.

Besides letting the user manually handle merging of contacts, there is also
an automated routine that looks for information (name, address or e-mail,
for example) that is highly similar with other contacts. The routine will, if
found, automatically merge the contacts together. If the user later finds that
the contacts should not be represented as the same contact, the aggregation
is reversible. This is achievable by only linking the RawContacts together;
if the change should need to be reversed, all that is needed is to remove the
link. [44]

21

Web Operating System for Modern Smartphones

2.1.2 WebOS

The webOS Contacts API is built around the Contact-object, stored in a
local database as JSON [45] data objects. The preferred way of creating a
new contact is to create the contact object and pass it as an argument to
the Contacts application. This will open the application with the edit view
of the newly created object.

Schema

The webOS standard library for handling contact information is mainly fo-
cused on the Contact-object. The built in phone book application extends
the functionality by enabling users to link multiple Contact-objects together
in a Person-object container. The container contains all of a person’s email
addresses and phone numbers, even if the information might be fetched from
different services and stored in different Contact-objects. A Contact-object
must be tied to one Person, which means that the phone book application
only has to make a list of all Person-objects to get all contact informa-
tion available. This linking functionality is very similar to the one seen in
Android; an Android RawContact could be compared to a regular Contact-
object in webOS, and an Android Contact-object would then correspond to
a webOS Person-object.

Some information in the Person-object container is however not returned
as a collection of information from multiple sources, but instead as a single
value from the Primary Contact. The Primary Contact is set by the user,
defaulting to the first Contact-object that was tied to the Person-object. This
means that the type of information that is not supposed to differ between
different services is not presented to the user as a list, but as a single value.
Other information, such as street address or phone number, is presented as
a list. [46]

API calls

The webOS API does not allow applications to search and access contact
records that was not created by the application itself. This is for security
reasons and to help to protect a user’s integrity.

If an application needs contact information that was created by another
application, it has to go through the People Picker API. Calling the API

22

Web Operating System for Modern Smartphones

will launch the built in phone book application and let the user manually
choose a person that will be returned to the application. This only allows
the application to select one person to be returned. [47]

2.1.3 W3C Contacts API

W3C is working on a solution to standardize contact handling using a mod-
ern web browser. The W3C Contacts API enables applications to read
contact information, while the W3C Contacts Writer API handles data in-
put. [48] [49]

The Contacts API defines two interfaces; one for a single contact and one to
be used for a group of contacts. The Contacts interface contains the method
find that can be used both as a search function for finding a list of contacts,
or as a get method that returns a Contact-object with a given id. The other
interface, Contact, is a full featured Contact-object container. It contains
all information needed to represent a Contact-object in a phone book. [48]

The APIs take the integrity of data in consideration by specifying a number
of privacy rules for user agents to follow; defining what mechanisms that
are needed before an application may access the user’s address book. A
user must for example give permission before an application may access
information and all permissions that do not expire after each session need to
be revocable by the user. [48]

Mozilla has begun working on an implementation of the Contacts API un-
der the Mozilla Labs initiative. The implementation also contains a few
alterations and extensions on the API, for example for handling contact ag-
gregation. [50]

2.1.4 PhoneGap

PhoneGap provides a small API that allow applications implemented using
web techniques to access contacts information. The API contains methods
for adding new contacts to the phone book, by simply providing all infor-
mation associated with the new contact, and to search the phone book for
already existing contacts. The API follows the W3C draft of fetching and
writing information to the phone book. PhoneGap does however adopt the
attributes it provides to fit the attributes available on the underlying plat-
form. On some platforms, for example, the first two addresses added to a

23

Web Operating System for Modern Smartphones

contact will be stored as a home address and a work address, no matter what
tag the user has added to the two addresses. This could be seen as somewhat
of a simplification, but is necessary in order for the API to be compatible
with all supported platforms. [51]

As with the W3C solutions, there is no way of keeping a revision history, or
merging two Contact-objects into one. [51]

2.2 Analysis

The purpose of this thesis is to, as far as possible, build upon open standards
and add only necessary extensions that are not covered by the standards and
are not moving away developers from using the open solutions. In this case,
the open W3C Contacts and Contacts Writer API is an open draft that
covers all of the daily usage of a phone book application implemented in the
browser. The specification defines an API for gathering contacts information
from multiple sources, both remote and local, into unified phone book, as
well as interfaces for accessing the stored contacts.

The Writer API contains methods for creating, updating and removing con-
tacts from the phone book. One feature missing from this specification,
which has shown to be of value on other platforms (see Section 2.1.1 and
2.1.2), is functionality to link or merge contacts. If the aim is to only pro-
vide this functionality, of managing contacts, in the user agent itself, and
only provide users of the API a way of fetching or adding information, there
is no need for merging to be added in the standard. If the aim however is
to let third party web applications handle the contact management, and the
functionality of contact merging is desirable, an extension of the APIs would
be beneficial to the developer and make synchronization of new contact in-
formation easier.

2.2.1 Permissions

The W3C draft specification states, in the privacy considerations section,
that the user agent implementing the specification must acquire permission
from the user before allowing access to the API but states that such per-
missions could be prearranged for example when installing an application.
It is however arguable if all applications need access to information about
all contacts or if the user should be able to only allowing access to a speci-
fied part of the phone book. This is something that the specification touches

24

Web Operating System for Modern Smartphones

upon, but does not go into detail on. It could, for example, be an application
only handling synchronization of contacts between an external service and
the local user agent. An example of a more detailed solution, which might
not be included in the specification but could be useful for implementers of
the specification to have in mind, is presented below. In this solution, there
are three kinds of permissions, each with its own purpose.

The read-only access gives read access to all contact information stored in
the phone book. This can be used by applications that need access to fetch
information, but do not need to input new information into it. Messaging
applications can, for example, use the API to create an auto completion field
in the messaging text box. This part is fully covered by the W3C Contacts
API.

Synchronization access gives synchronization services access to a specific part
of the contact list. This access includes permission to read and write, but
is limited to contact information that has previously been added by the
service or a domain itself. Each contact, or raw contact, could (internally)
be marked with a source and access to this contact would only be granted to
the same source. Since this part does not handle linking, it is fully covered
by the W3C Contacts and Contacts Writer API.

The last kind of permission includes full read and write access to all contact
information in the phone book. This will be used in order to create a phone
book application, or to create a complete backup of the whole phone book, for
example. This is the permission that enables the new extended API, which
works in the same way as the W3C Contacts and Contacts Writer API but
with some extra functionality. This means that a simple representation of
a phone book, that is only using the basic methods of the W3C standard,
should be able to work satisfactory. A more advanced phone book however,
that requires linking and awareness of sub-contacts could use some of the
methods in the extended API.

Figure 2.2: Overview of related API:s

25

Web Operating System for Modern Smartphones

Figure 2.2 shows how other APIs relate to the Contacts API and how dif-
ferent parts are communicating. A synchronization service could access an
account and its remote contact information, adding or updating previously
added raw contacts to the local phone book through the Contacts API. Ap-
plications using the API could then access real contacts with information
from multiple sources.

2.2.2 Linking

Linking is a way of virtually merging two contacts into one, without destroy-
ing their internal representation or changing any information. The internal
representation could then be used by synchronization services in order to
synchronize only the data that it itself has provided.

Figure 2.3: The process of linking information from three different sources
into one Contact object.

Figure 2.3 describes how contact information from multiple sources can be
linked together into Contact-objects. The resulting Contact-objects are only
retrievable for applications asking either for the read-only access permission,
or the full managing permission. The dotted lines indicate RawContacts (as
described in Section 2.1.1) that are either provided by a remote service or
managed only in the local phone book.

Note that the linked contacts do not contain all available information; the
name S. Holmes in the example above is discarded for being information
already filled by a previous information source (in this case Sherlock Holmes).

26

Web Operating System for Modern Smartphones

This information is said to have higher priority than the new information
and is therefore not included in the final Contact-object. This does not mean
that the information is lost or overwritten.

Android, Windows Phone 7, Maemo, and webOS all uses linking, which
shows there is a direct need for linking on mobile platforms. At least when
using, and synchronizing, multiple accounts.

2.3 Result

This proposed API extends the W3C Contacts API by introducing four
methods: getContacts, setAsPrimary, link and unlink. No new object
types are needed, since both the Contact-object and the RawContact can be
represented with the same object as is used in the W3C proposal.

getContacts The getContacts operation will retrieve all RawContact ob-
jects that a Contact-object consists of.

getContacts(onSuccess, onError, fields)

Where:

• onSuccess([contact]) is the callback function, with the wanted list of
RawContact objects as parameter

• onError(e) is the callback function that is called when an error, e, has
occurred

• fields (Optional) is a list of the fields that should be returned to the
onSuccess callback function

link Link a given RawContact to one or more other RawContacts.

link(onSuccess, onError, [contact])

Where:

• onSuccess(contact) is the callback function that is called when the link
operation has successfully executed and contact is the Contact-object
that now contains information from all the newly linked RawContacts

• onError(e) is the callback function that is called when an error, e, has
occurred

27

Web Operating System for Modern Smartphones

• [contact] is a list of contacts that should be merged with the Contact-
object

Example:

function success(c){
alert("Successfully linked all RawContacts named "Sherlock" into one contact.");

}

function found(rawcontacts){
if(rawcontacts.length > 0){

rawcontacts[0].link(rawcontacts, success, error);
}

}

navigator.service.rawcontacts.find([’id’], found, error, {filter: "Sherlock"});

unlink The unlink operation separates a RawContact from all other Raw-
Contact objects that it is currently linked to.

unlink(onSuccess, onError)

Where:

• onSuccess(contact, rawContact) is the callback function that is called
when the unlink operation has successfully executed and contact is the
Contact-object that is no longer linked to rawContact

• onError(e) is the callback function that is called when an error, e, has
occurred

setAsPrimary Set a RawContact to the primary RawContact on its cur-
rent Contact-object. This means that its information will be prioritized
above information from other RawContacts.

setAsPrimary(onSuccess, onError)

Where:

• onSuccess(contact) is the callback function that is called when the op-
eration has successfully executed and contact is the new representation.

• onError(e) is the callback function that is called when an error, e, has
occurred

28

Web Operating System for Modern Smartphones

Chapter 3

Synchronization

Synchronization is a way of easing the handling of phone book contacts,
calendar events, e-mails, and other such personal data. It also introduces
a possibility for the users to back up data, by synchronizing information to
a remote server. Some algorithms are only capable of fetching information
from one or more sources and save it on the local device. Synchronization
algorithms do, in addition to fetching information, also have the capabilities
of pushing local changes back to the original source and have information on
all clients being automatically updated.

3.1 Previous work

There are different solutions to how synchronization should be handled in a
smartphone environment; some systems give the developers no or little addi-
tional functionality, while some provide a whole architecture with solutions
to problems such as secure account handling, synchronization services and
integration into the standard system.

3.1.1 webOS

In webOS, synchronization is handled by services called Synergy Connectors.
An implementation of a Synergy Connector has the capability of synchroniz-
ing contacts, calendar events, or messages. It uses an Account for accessing
the information on a remote server. The procedure of having a system ac-

29

Web Operating System for Modern Smartphones

count service will allow other services to get access to an account, and the
information it is protecting, without having to compromise passwords or any
other identification credentials. This could be achieved by, for example, pro-
viding an access ticket that only gives access to the information that should
be accessed by the requesting service. The service may then use the other
APIs to manage the respective data types; using the Contacts API for han-
dling contact information, the Calendar API for event scheduling, and the
Message API for synchronizing message data. A brief overview of how this
works is showed in Figure 3.1. [52]

Figure 3.1: An overview of the how an implementation of a Synergy Con-
nector would be able to synchronize calendar events, contacts and messages.

The service will continue to be able to synchronize changes occurring on
the server for as long as it is running. This synchronization from a remote
server to the client is usually done in intervals. The intervals are decided by
the underlying API that, based on the current processor load and network
usage, executes a function registered by the service in order to handle the
synchronization procedure.

As of webOS 2.0, HP/Palm is also opening up their Synergy service to al-

30

Web Operating System for Modern Smartphones

low third-party developers to create connectors for Contacts, Calendars, and
Messages. This means that the user will be able to synchronize related infor-
mation with any external site for which there exists a Synergy connector. [52]

A connector is packaged and distributed as any other application, through
the webOS App Catalog. The Connector is built as a JavaScript service that
creates an account with the Account Manager and stores the data objects.
In order to be able to package it as a regular application it also has to include
an ordinary application; even if the application, in this case, could consist
only of an empty file.

The service inside the connector will register the event handlers, also called
assistants, which will be responsible for acting when the user commits changes,
updates, removes, or adds new information to a contact. It will also have to
implement a trigger callback, which can be called whenever a synchroniza-
tion event has been triggered, either a manual call by the user or a regular
synchronization update. [52]

3.1.2 Android

Android is quite similar to webOS in that both accounts and synchronization
services can be created. These services can then synchronize contacts or other
information.

A service, which is called a SyncAdapter in Android, performs the syn-
chronization in a background thread while an AccountAuthenticator service
handles the account part. [53] [54]

3.1.3 iOS

Synchronization in iOS is built into the operating system and can be used
with M4E, MobileMe, Gmail, Yahoo, AOL, and general POP/IMAP, LDAP,
CalDAV. There are no special methods designed for third party developer
to create new synchronization services, except using the standard APIs for
handling and accessing data.

There is only one address book application available, and other applications
have to go through it in order to access contact information. Each contact
record contains the source from where the information originates. This in-

31

Web Operating System for Modern Smartphones

formation is mainly used for displaying the origin for each contact to the
user. [55]

3.2 Analysis

The webOS platform provides a stable and secure way of handling user sensi-
tive information, such as username and password, for accounts used for syn-
chronizing. Having global secure accounts does also enable multiple services
or applications to share the account. The implementation steps necessary
to keep this information hidden are however quite advanced, and additional
support on the remote server might be necessary for it to be completely
secure. There is also no way for the user to know whether the account infor-
mation is secure or not, since it all depends on the account implementation
for each service. Creating a secure way of handling authentication informa-
tion, that is both easy to implement and easy to use, is no easy task, and not
something suitable for this thesis. Further research is needed for a solution
to be developed. [52]

Having a service register a callback method that is called whenever the device
is ready to synchronize data is an interesting feature, but has to be extended
with more user control. It would be suitable for a synchronization API to
provide additional callback methods, for example to have services register
methods that would be called whenever a calendar event has been added to
the local calendar, so that it would be directly pushed out to the remote
server.

3.3 Result

The proposed synchronization API consists of a few registration functions for
registration methods that should be called either when the system is ready
for a full scale synchronization, or when an object visible for the service
has been changed. The synchronization function would only have to be a
trigger function, but the others would have to contain information about the
changed data.

An important design question that has to be answered is where a service’s
functions should be registered. This could be done either each time the
service is launched, having each service relaunched on system startup, or
registered internally when a service is installed. In webOS, the function

32

Web Operating System for Modern Smartphones

registration occurs at installation, and since all services is required to be
installed on the device, this is viable even in this solution. This approach
would also not require each service to be initialized each time the device is
turned on, and instead only initialize and call the functions when they are
needed.

Explained below are what functions could be registered with the proposed
synchronization API. The exact registration of the functions, what metadata
is required, and how the registration is handled, is not included in this thesis,
but a further discussion can be found in Section 10.3.

Synchronize trigger The synchronize trigger is a function registered to
be called when the user agent decides that network activity and system
resource usage is low enough and sufficient time has passed since the last
synchronization round. The user agent should provide an interface to change
the approximate time between synchronization, as well as an interface for
manually trigger a call to the synchronization method.

onSynchronize()

Example:

function found(contacts){
// send the contact information to a remote server
for(i in contacts){

if(!contacts.hasOwnProperties(i)) continue;
sendContactToServer(contacts[i]);

}
}
function onSynchronize(){

// get a list of all contacts
Contacts.find(found, onError)

}

Calendar updates This function will be called when a calendar event has
been updated. Since this thesis does not cover a more specific calendar API
(see Section 10.2) no more details will be specified here.

onEventUpdate(newEvent, oldEvent)

Where:

• newEvent is the new event, containing the updated information
• oldEvent is the representation of the old event, before it was updated

33

Web Operating System for Modern Smartphones

Phone Book Update This function will be called when information in
the Phone Book have been updated. Note that for services with access only
to a limited amount of contacts, only changes on contacts visible for the
service will trigger a call to this function.

onContactUpdate(newContact, oldContact)

Where:

• newContact is the new Contact object, containing the updated information
• oldContact is the representation of the old Contact, before it was updated

34

Web Operating System for Modern Smartphones

Chapter 4

Messaging

SMS is still the dominant form of instant messaging on mobile phones today.
A study done by the Nielsen Company has shown that U.S. teens send an
average of over 3 000 texts per month; many teens also say that texting
was one of the main reason for them to purchase a mobile phone in the first
place. [56]

There are several other ways of sending messages, besides SMS, on modern
smartphones – including MMS, XMPP and other types of instant messaging
protocols, most of which originate from desktop computers. These services
are similar to each other, and contain the same basic functionality of sending
short instant text messages. Some of the services have additional function-
ality, such as attachments or support for multiple recipients.

This report will not try to address e-mail under this section since it is not
designed for instant communication.

4.1 Previous work

One common method for allowing third party applications to send instant
messages is by letting applications launch the official messaging application;
possibly with predefined values, such as message body and recipient. It is
also common to support the SMS URI scheme, which allows applications
to use links, such as sms:+15105550101?body=hello%20there, to launch the
standard messaging application. [57].

35

Web Operating System for Modern Smartphones

4.1.1 webOS

The webOS API only provides capabilities to pre-populate fields in the official
messaging application. Unlike iOS and Windows Phone 7, webOS uses the
same API to send all supported types of messages, including SMS, MMS and
IM messages. [58]

Messaging is handled with the Synergy service, which collects messages from
different sources and presents them through a single interface. Developers
can develop new Synergy Connectors to communicate with new messaging
services, which then allow programs to access the messages with the same
API. [52]

4.1.2 WAC

The WAC platform provides a number of ways of handling messages. It
supports sending SMS, MMS and e-mail as well as subscribing to incoming
messages from these services. The services can however not be extended,
as in webOS. WAC also provides extensive methods for searching, filter and
listing messages based on different parameters.

The API is using the same functions to send all types of messages but some
services only support a subset of the attributes. Subscriptions of incoming
messages however use separate functions for each message type. [59]

4.1.3 Android

There are two ways of sending an SMS message using the Android API;
either by creating an Intent and open the standard SMS application with
some pre-defined values, or by calling the SmsManger API. The API has
support for sending text based messages, either as a single message or, if the
message is too long, in multiple parts, as well as pure data based messages
to a specified application port. [60] [61]

In addition to SMS there also exists a full SIP stack in Android. This
makes it easier for developers to create applications that handle VoIP calls,
message services or other things that makes use of SIP. This is however not
comparable to the simple APIs used for sending SMS. [62].

36

Web Operating System for Modern Smartphones

4.1.4 Maemo

The Maemo platform, being based on a standard Linux distribution, pro-
vides message handling through the Telepathy framework. Telepathy is a
framework for managing voice, message, and video communication. It also
supports file transfers, managing contacts, and online status (presence). Just
as webOS Synergy this allows developers to add support for additional mes-
saging services without requiring application developers to explicitly add
support for each service. [63]

Telepathy is built on top of D-Bus (Desktop Bus), which is an inter-process
communication framework, and all components run as separate processes [64] [63].

On top there is the Mission Control, which provides the Account Manager
and the Channel Dispatcher. The Account Manager handles all accounts
the user has set up and can initiate connections. The Channel Dispatcher
is responsible for dispatching applications upon either remote requests from
the different protocols or local requests from other programs, for example to
start a chat with someone. [65]

Each Telepathy Connection Manager handles Connections for one or more
protocols. A Connection is the connection to the protocol and it contains
contacts, avatars and other things. It can also be used to create new channels
for text messaging, calling, file transfers, and so on. Telepathy supports
multiple clients, and lets them use the same Connections and Channels. [63]

4.1.5 The W3C Messaging API

The Messaging API from W3C defines methods for creating and sending
messages of different types, including SMS, MMS and e-mail. The API is
meant to complement the previously defined URI schemes. The API does
not handle receiving of messages.

4.2 Analysis

Since support for the same feature set that is found in other mobile op-
erating systems is required, the Messaging API from W3C and the use of
URI schemes are too limited to be useful. Most of these required features
are listed in Figure 4.1. With webOS and Telepathy, developers can extend

37

Web Operating System for Modern Smartphones

the messaging platform to support new protocols and services and still have
them integrated into the standard APIs. This is an elegant solution and the
separation will enable developers to develop services that handle network
communications, while other third party developers implement messaging
applications that utilizes these services.

• Message
– Text
– Service Type
– Attachments
– Meta information

• Actions
– Send

• Notification
– Incoming messages
– Outgoing messages
– Sent or Error

• Launch applications on incoming/outgoing messages

Figure 4.1: Common features for messaging.

Protocols that want to relay their own messages into the system need to
implement this in a service. This service needs to be able to create native
messages from the protocol’s messages, as well as converting native messages
to the representation used by the protocol. Services should be careful not to
use more of the phones resources (for example battery, CPU, and network
usage) then needed. XEP-0286: XMPP on Mobile Devices [66] discusses the
XMPP protocol from a battery usage perspective, noting for example 3G
radio levels and compression.

38

Web Operating System for Modern Smartphones

Figure 4.2: Message flow.

For applications, it is preferred that sending and receiving messages should
be protocol agnostic. This is to be able to support additional protocols
without rewriting the applications. Translation from the application to the
services and from the services to the application need to go through a single
point. An example of this flow can be seen in Figure 4.2.

All standardized URI schemes, such as the RFC standardized SMS [57],
mailto [67] and XMPP [68], as well as the less standardized URI schemes
(such as MSN/IM and GTalk) have to be supported to make sure existing
web pages and web applications work as expected.

Besides the URI schemes, the Messaging API from W3C also needs to be
supported. However, this API is only for sending messages and is missing,
among many things, support for reading messages and subscriptions. It
is still under development and two vastly different approaches exists – one
that is more similar to the WAC approach and one that is based on URI
schemes. [69] [70].

4.3 Result

The resulting API is divided into two layers, as can be seen in Figure 4.3.
The lower layer (service level) is meant to be used by services to add support
for a messaging protocol. The upper layer (application level) is to be used by

39

Web Operating System for Modern Smartphones

regular applications that create a user interface for sending messages through
the underlying services.

Figure 4.3: Message implementation levels overview.

4.3.1 Data types

Message Different types of messages are abstracted, into this single Mes-
sage structure. It is used both on the application level and on the service
level.

Message(To, From, Type, Content)
To [String]
From String
Type String
Content String
Attachments [File]

Functions

MessageState is an indication of which state the message is in, either
incoming or outgoing.

MessageState = {INCOMING, OUTGOING}

40

Web Operating System for Modern Smartphones

4.3.2 Service level

Files

Services that support attachments should read the Attachments property in
the Message class and send them together with the message. If the service
can not send files, but some are attached, the service should throw an error.

SMS and MMS

The local physical phone hardware will always generate a Message in response
to an incoming MMS or SMS. This is a built in service, which is always
running inside the operating system, and it abstracts away and hides the
complexity of the hardware, and translates it to the application level API
just as any other service would do. Direct access to the phone’s hardware
should not be available to application developers.

SMS messages only support a text length of 160 letters with the 7-bit alpha-
bet, 140 with the 8-bit alphabet and 70 letters using UTF-16. Messages can
however be concatenated into one longer message instead. This should be
done automatically by this service. Although it is possible to extend SMS
and attach files this should not be done by this service. A message with an
attachment should not be sent but instead throw an error. [71]

Create a message This function pushes a newly received message to the
API, and forwards the message to the application in charge of handling it.

createMessage(message)

Where:

• message is the Message object that was received

Handle Message This function is called when an application or the API
wants to know if the service could handle messages of the given type, number
format or protocol.

bool handleMessageType(type)
bool handleMessageRecipient(number)
bool handleMessageProtocol(protocol)

41

Web Operating System for Modern Smartphones

Where:

• type is the type of service that is to check whether it is handled by the
service.

• number is the recipient string (for example a number or a username) to
check whether it is handled by the service.

• protocol is the protocol string (for example xmpp or gtalk) to check
whether it is handled by the service.

Send a Message This function is called when an application wants to
send a message using this service.

onMessage(message, onSuccess, onError)

Where:

• message is the Message object that is to be sent.
• onSuccess is the callback that is to be called when the message is sent.
• onError is the callback that is to be called if the message could not be sent.

This should include a reason for failure; for example if the service cannot
handle attachments, or is lacking the permissions required for sending the
message.

4.3.3 Application level

Register is a function for registering a function for receiving message and
message notifications. The function registered here is called once for each
change of state in the message.

registerMessageListener(
function listener(Message message, MessageState state))}

Where:

• message is the message for which the state just changed.
• state is the state of the message. One of the items in MessageState.

Unregister is a function for unregistering a previously registered function.

unregisterMessageListener(function)

42

Web Operating System for Modern Smartphones

Where:

• function is function that were previously registered with the registerMes-
sageListener function.

Send Message Function for sending a message, or rather pushing the
message to the underlying service. Before sending a message, the user agent
has to prearrange permissions for the application to send messages of the
given type.

sendMessage(recipient, type, content, onSuccess(message), onError(e))}

Where:

• recipient is the recipient of the message.
• type is the type of message that is to be sent.
• content is the message content.
• onSuccess is the callback that is to be called when the message is sent.
• onError is the callback that is to be called if the message could not be

sent. This should include a reason for the failure.

4.3.4 Examples

To further explain the usage, a few examples will be presented. First the
service level will be covered with examples on how a service could handle
sending and receiving messages. There will also be two examples of applica-
tion level usage.

Service level

This example will demonstrate the standard routine for a service that receives
a message from a remote server, and how this message could be forwarded
to the API.

43

Web Operating System for Modern Smartphones

Example 1 Receiving a message
[...]

function onPacket(package) {
if(isCall(package)) {

[...]
} else if(isMessage(package)) {

[...]
var message = new Message(to, from, type, content);
message.To = Myself;
message.From = getRecipient(package);
message.Content = getContent(package);
message.Type = MyType;

createMessage(message);
}
[...]
}

function onMessage(message, onSuccess, onError) {
sendMessage(message.To[i], message.content);
[...]

}

function handleRecipient(
[...]

}

function sendMessage(to, content) {
[...]

}

Application level

The following two examples handle sending and receiving messages using the
API.

Example 2 Sending a message
function onSuccess() {

// Message sent correctly
}

function onError(error) {
// Message not sent

}

sendMessage("+46703283946", "Hello. How are you? Have you"
+ " been alright, through all those lonely lonely lonely lonely"
+ " lonely nights?", onSuccess, onError);

44

Web Operating System for Modern Smartphones

Example 3 Receiving and monitoring messages
function messageListener(message, state) {

if (state === MessageState.INCOMING) {
log("Message from " + message.From + ": " + message.Content);

} else if (state == MessageState.OUTGOING) {
log("Message sent to " + message.To + ": " + message.Content);

}

}

registerMessageListener(messageListener);

45

Web Operating System for Modern Smartphones

Chapter 5

Calls

Making and receiving phone calls is one of the central features in mobile
phones, and something that all smartphones have to be able to do. Call-
ing includes incoming and outgoing calls with audio, and video, streams,
together with other data and events. Besides traditional telephone calls,
calling also includes other types of calls, such as Skype, SIP and other in-
stant messaging services.

5.1 Previous work

The tel URI describes telephone numbers as a string of decimal digits,
which uniquely indicates the network termination point. There are also
other URI schemes for voice communication protocols, including XMPP and
SIP. [72] [68] [73]

The WebOS, iOS and Windows Phone 7 platforms give developers almost
the same functionality with regard to calls. On all three platforms there is
no direct way for developers to create applications that place calls. Instead
there is functionality for opening the default call application with information
already typed in. The user must then confirm, often by pressing the call
button, for the actual call to be initiated. On these platforms there is also
no way to react to incoming or outgoing calls, or retrieve any information
about the cellular network, or even get any information about earlier calls.

WebOS and iOS handle calls by creating a tel URI and launching it with a
special method. In webOS this is done using the Application Manager, either

46

Web Operating System for Modern Smartphones

by using the open method with the tel URI or using the launch method with
the dialer application’s id. [74]

In iOS, developer can use the tel URI as a parameter to the openURL func-
tion in the UIApplication class, which will launch the phone application with
the given phone number already typed in. [75][76]

In Windows Phone 7, third party applications can, through the PhoneCall-
Task class, set the display name and the phone number shown in the standard
phone application, but not handle a call directly. [77]

5.1.1 Android

Calls in Android are initiated by creating an Intent, shown here in Figure 5.1.

Intent callIntent = new Intent(Intent.ACTION_CALL);
callIntent.setData(Uri.parse("tel:123456789"));
startActivity(callIntent);

Figure 5.1: Making a call in Android

This will, if the application has permission, bring up the Phone application
and either call the number directly or show the number, requiring the user
to manually press the call button. [61]

Call information, as well as network information, can be gathered using the
TelephonyManager class. This class also supports subscription to notifica-
tions of incoming telephone calls. [78]

The SIP stack mentioned in Section 4.1.3 is, as specified there, also usable
for implementing applications that should be able to handle SIP-enabled
calls, even though support for VoIP calls may vary across different Android
phones. [62].

5.1.2 Existing Standards

The Video Conferencing and Peer to Peer Communication, a part of the
HTML Living Standard, includes multimedia streams for video and audio,
as well as methods for handling, creating, and displaying these. It also
specifies different network and P2P functions, with the aim of sending and
receiving streamed media between peers. [79].

47

Web Operating System for Modern Smartphones

5.2 Analysis

The characteristics of a Call API would have much in common with the
Messaging API (see Chapter 4); both need notifications of incoming and
outgoing traffic, be able to send and receive calls or messages and have
information and service specific information attached to it.

Instead of text messages, the base of calls is the sound or video streams,
and the Video conferencing and peer to peer communications standard from
WHATWG can be used to add support for these streams. [79]

As with messaging, there are a lot of different services and protocols which
support calls and developers need support for adding new types of commu-
nication protocols.

Since it is expected that various URI schemes should work, support for this
needs to be included in the API. Services such as Skype often have their own
URI scheme, which should also be supported if that service is supported on
the device, meaning that developers have to be able to add additional URI
schemes for supporting their application. [80][81]

Regarding the functionality and information required for placing, handling,
or reacting to a call, the functionality showed in Figure 5.2 is considered
to be the basic functionality an API must provide in order for third party
applications to fill the need of a native phone application.

48

Web Operating System for Modern Smartphones

• Calls
– Voice or Video
– State (Ringing, On Hold, Ended)
– Caller
– Callee
– Duration

• Actions
– Call
– Hang Up or End call
– Hold call
– Resume a previously held call
– Reject call

• Notification
– Incoming call
– Outgoing call
– Call State change

• Service Related
– Service Type
– Cell Tower
– Cell ID
– Carrier

Figure 5.2: Common attributes and features for calling services.

5.2.1 Incoming calls

Incoming calls come in through different services and need to be handled by
the system centrally. An incoming call needs to generate a notification, just
as for messages, but there must also be ways to take an action on the call –
answer it or hang up, for example.

There is also additional information that needs to be present together with
the call. This includes who is calling, what type of call it is, and other
important service specific information.

49

Web Operating System for Modern Smartphones

5.2.2 Outgoing calls

Outgoing calls share most of the requirements for incoming calls. Notifica-
tions and actions are required to work here as well.

Applications should have simple methods for calling different numbers with-
out having to worry about which protocol or service that could handle the
call, without losing control to an unknown implementation.

Figure 5.3: Call implementation levels overview

Figure 5.3 shows how the different implementation levels interact. The ser-
vices handle incoming and outgoing calls directly to the network, which
means that they are responsible for communication and call setup between
the device and a distant server. In a way, the service can be seen as a trans-
lation between the API specification of a call and the individual network
representation. The service handles all the setup that is required to initiate
and handle a call.

The Call Application in Figure 5.3 represents the application interacting
with the user. If the user needs to make a call, the Call Application does an
API call that directs information to the underlying service, the service then
handles the connection and returns information to the application when the
call is ready to be initiated.

50

Web Operating System for Modern Smartphones

5.3 Result

The resulting call API will work as a layer between services and applications,
where services handle network and protocol details, while the applications
handle user interaction and whatever task it is designed to do.

5.3.1 Data types

Call
Call(inputStream, outputStream, hangup, answer, hold, unhold)
Hangup(function onSuccess(), function onError())

getInputStream()
getOutputStream()
setInputStream(stream)
Type
getNumber()

Incoming Call: Call
Answer(function onSuccess(), function onError())

CallState = {RINGING, CALLING, ANSWER, HOLD, UNHOLD, HANGUP}

Where incoming call are denoted as RINGING, while outgoing calls are
denoted as CALLING.

5.3.2 Service level

Services are used to translate low level call handling to the application level.
The functions listed in this Section would only be available to services.

The local physical phone hardware will always generate a normal Call object
on incoming calls. All actions and streams will also work as expected. This
can be thought of as a static service translating from the hardware to the
API and vice versa.

All new types of communication will have to generate their own Call object
based on incoming traffic to their own service.

Incoming call The createCallmethod is not a constructor, but a method
that pushes an incoming Call to the API and forwards it to the application

51

Web Operating System for Modern Smartphones

in charge of handling it.

createCall(call)

Where

• call is the Call object that the service has created based on the received
data.

Handle There are three methods that a service has to implement in order
to tell the API what capabilities the service provides; whether it can handle
a specified number, protocol, or call type.

bool handleCallType(type)
bool handleCallNumber(number)
bool handleCallProtocol(protocol)

Where:

• type is the type of service to be checked if the service could handle.
• number is the recipient string (for example a number or a username) to be

checked if the service is able to handle.
• protocol is the protocol string (for example XMPP or SIP) to be checked

if the service is able to handle.

Outgoing call The onCall method should be implemented by the service
in order to be called when an application wants to make a call. In this
method the service has to add an outputStream to the call parameter, so
that the stream could be utilized by the application.

onCall(call, onSuccess, onError)

Where:

• call is the call to be placed.
• onSuccess is the callback that is to be called when the call is placed.
• onError is the callback that is to be called if the call could not be placed.

This should include a reason for failure. For example if the service cannot
handle video streams, or is lacking the permissions required to place the
call.

52

Web Operating System for Modern Smartphones

Common functions The onHangup, onHold, and onResume functions are
called when an application has requested a change in the state of the call.

onHangup(call, onSuccess, onError)
onHold(call, onSuccess, onError)
onResume(call, onSuccess, onError)

Where:

• call is the call to change the state for.
• onSuccess is the callback that is to be called when the call state is changed.
• onError is the callback that is to be called if the call status could not

be changed. This should include a reason for failure. For example if the
service cannot handle the requested status, or if the application is lacking
the permissions required to place the call.

The updateCall functions can be called by the service if it wants to change
the state of the call. This is usually done when the other end has hung up.

updateCallState(call, CallState)

Where:

• call is the call to update state for.
• CallState is the new state of the call.

5.3.3 Application level

Notifications The registerListener method will let developers register
a function for receiving calls and notifications. The method inserted will be
called once for each state change of the call.

registerListener(function listener(Call call, CallState state))

Place a call The placeCall method is used in order to place a call to a
given number.

placeCall("number", inputStream,
function onSuccess(Call), function onError(e))

placeCall("number", type, inputStream,
function onSuccess(Call), function onError(e))

53

Web Operating System for Modern Smartphones

5.3.4 Examples

This section includes examples of how the API can be used; both how to place
a call, receive a call, or how to implement a simple service for introducing a
new protocol.

Example 4 Placing a Call
navigator.getUserMedia(’audio,video user’, gotStream, noStream);

function gotStream(inputStream) {
call = placeCall("+46730455070", inputStream, answer, error);

}

function noStream() {
// Failed to get stream

}
function answer(call) {

outputStream = call.getOutputStream();
// Phone call is active...
call.hangup()

}

function error(call) {
// An error occured

}

54

Web Operating System for Modern Smartphones

Example 5 Receiving a Call
var activeCalls = {};

function onRinging(call) {
var outputStream = call.getOutPutStream();
// Set speaker to play outputStream

navigator.getUserMedia(’audio,video user’,
function(inputStream) {

call.setInputStream(inputStream);
call.answer();

// Call is active...

call.hangup();
},
function() {

// Could not get stream
}

);
}

function listener(call, state) {
activeCalls[call] = state;
if(state == CallState.RINGING) {

onRinging(call);
} else if(state == CallState.HANGUP) {

delete activeCalls[call];
}

}

call.registerListener(listener);

55

Web Operating System for Modern Smartphones

Example 6 Simple Service
[...]

function onMessage(message) {
if(isCallMessage(message)) {

inputStream = getInputStream(message);
outputStream = getOutputStream(message);

call = new Call(inputStream, outputStream,
onAnswer, onHangup, onHold, onUnhold);

createCall(call);

} else {
[...]

}
[...]
}

function onAnswer(call, onSuccess, onError) {
[...]

}

[...]

56

Web Operating System for Modern Smartphones

Example 7 Simple Service for Receiving Calls
[...]

activeCall = null;

function onCall(call, onSuccess, onError) {
placeProtocolCall(call.getNumber(),

function(stream) {
call.setOutputStream(stream);
activeCall = call;
onSucess();

}, function(error) {
onError(error);

}
);

[...]
}

function onHangup(call, onSuccess, onError) {
hangupProtocolCall(call);
onSuccess();

}

[...]

function onMessage(message) {
if(isCallMessage(message)) {

isHangup(message) {
updateCall(activeCall, CallState.HANGUP);

}
}

[...]
}

[...]

57

Web Operating System for Modern Smartphones

Chapter 6

Settings

Changing settings is a common use case on modern smartphones. It is how-
ever not as common to let third party developer implement the user interface
for it. The DAP Working Group has no plan of developing any APIs for ap-
plication configuration or application specific settings and informs that this
kind of configuration can be accomplished by using localstorage and with
the Widget interface APIs.

The question of a interface for global device settings, such as static IP on
the wireless connection or time zone and presentation format, remains.

6.1 Previous work

Neither iOS nor Windows Phone 7 includes any public API solutions that
enables third party developers to change global settings on the device. iOS
has interfaces for managing volume control, called MPVolumeView [82], but
there is no general solution that spans over multiple settings environments,
as in Android or webOS.

6.1.1 Android

Android includes an extensive API for changing system settings. It is built
as a set of key value pairs, where the key describes what functionality the
value holds [83]. The API is divided into two parts, one containing settings

58

Web Operating System for Modern Smartphones

to which third-party software can gain only read access [84], and one part
containing non-vital settings that third party developers may access and
change [85].

To provide a better overview, the API includes a list of predefined keys that
cover most settings and preferences that the built in applications and services
are using. The read-only API, called Settings.Secure, contains settings for
a global http proxy, if the device is able to install applications from other
sources than Android Market, whether the USB mass storage is enabled,
whether the Wi-Fi should be on or off, a list of Service set identifiers (SSIDs)
for which the user has agreed to connect to, and so on. The settings in this
API can only be modified through the system user interface. [84]

The other part, called Settings.System, contains the preferences that appli-
cations, that have permission from the user, can change or even add new
settings to. Here, the predefined list of settings can contain configuration
options for the air plane mode, Bluetooth timeout, the date and time for-
mat, screen backlight brightness, timeout before the screen turns of when
inactive, click sound effects, vibration on and off, all kinds of volume, Wi-Fi
settings, and so on. [85]

The Settings.System API can also be extended with additional keys and
values by having applications adding keys that are not already defined. These
settings will work as any predefined settings, and will be accessible for all
applications that have permission to use the settings API. [85]

6.1.2 webOS

In webOS settings are handled as services through the com.palm.systemservice
API [86]. The settings are divided into groups, where each group is a service
that an application can pass messages to.

The available services, and what kind of preferences they are holding, are:

• Location/Time information – holds settings for what format date and time
will be presented and the region and time zone.

• Sound/Tones – could be used to change ringtones, volumes or other sound
related settings

• Generic Information – currently holds settings for airplane mode, where
network and phone parts of the device are turned off

• Carrier Information – holds the name and home page of the cellphone
carrier

59

Web Operating System for Modern Smartphones

• Lock/Timeout Preferences – keeps the timeout settings for when the screen
should lock when inactive, if alerts could be shown even if locked, and so
on.

• Browser Preferences – contains a list of available web search services avail-
able, as well as a setting for the default one

As with the Android API, applications can define their own keys on demand,
which enables implementations of similar applications to share settings be-
tween each other without having to specify which kind of application that
can use the information.

6.2 Analysis

The solutions presented in Section 6.1 had much in common. Both have a
very basic and easy to use key-value pair structure for keeping and distribut-
ing system settings to applications. Both are also easily extendible and have
similar ways of handling application permissions.

The way of splitting preferences into different groups depending on the set-
ting characteristics could enable a more extensive way of handling applica-
tions’ access to settings. For example, it would be a useful security feature to
have permissions to not only use the Settings API, but have the user agree
on access to each individual group and not let applications access groups
outside of its responsibility.

6.3 Result

By studying the different solutions and what preferences should be available,
the following groups are proposed:

• Lock timeouts and limitations – time of inactivity until the device should
lock and whether to allow notifications when locked.

• Notifications – settings for what events should generate a notification.
• Sound, volumes, ringtones and vibration settings – for incoming phone

calls, received messages, alarms, and other notifications.
• Carrier information – information about the cell phone carrier.
• Location, date and time settings – for example time and date format and

synchronization settings.

60

Web Operating System for Modern Smartphones

• Network settings – for static IP, gateways, DNS, search intervals, and other
network related settings.

• Screen settings – for example screen resolution and backlight strength.
• Call settings – for example whether to send caller id on outgoing calls, if

data roaming should be enabled, or what PIN code should be used on the
device.

• Bluetooth and related transmission technologies – settings related to Blue-
tooth, IR, RFID, FM radio, or other such technologies that might be
available on the device.

• Browser preferences – various web browser settings for handling local stor-
age, cookies, and so on.

• GPS settings – settings for GPS, or the location server for network posi-
tioning.

Exactly what attributes each category should contain is not specified here
but all examples above should be covered.

Regarding security and permission handling, a user agent should not allow
changing settings without permission from the user. How this is handled
is up to the user agent, but a separate permission for each category would
be preferred. Further discussion regarding permission handling is found in
Section 10.3.

61

Web Operating System for Modern Smartphones

Chapter 7

System information

This section will consider information about the device, operating system and
vital hardware parts and how such information should be accessed. Examples
of such information could be for example current memory usage, the name
and version of the operating system and what capabilities the device has.

Much of this information can already be obtained by using standard meth-
ods, either by standardized scripting APIs, as with current time and date,
or with other Internet standards, for example using the client’s User Agent
to transmit operating system name and version. The W3C Device APIs
and Policy (DAP) Working Group have been working on an API to gather
Systems information and events, as seen in Section 7.1.6. This chapter in-
vestigates whether the W3C standard is sufficient enough for a web based
operating system on smartphones or if another API will have to add addi-
tional functionality.

Note that this section does not handle local file storage or anything else that
could be abstracted out.

7.1 Previous work

Most operating systems for smartphones regard memory information as some-
thing that is supposed to be handled exclusively by the operating system
itself, and does not like to release that information to any other application.
That is why Android and iOS for example, discourage developer from de-
tecting lack of memory, or calculating the amount of available memory on

62

Web Operating System for Modern Smartphones

the device. This is however not something that could be assumed for any
operating system, and that is why this kind of abstraction cannot be done
in this paper.

7.1.1 iOS

The iOS API can be used to retrieve information about the local device by
using the UIDevice class. According to the API it can be seen as a singleton
representation of the device at hand, where applications can get hold of vital
information about the device itself. [87]

The UIDevice class has divided the properties into five different groups.

• Available Features – currently only hold a property to tell whether mul-
titasking is supported on the device or not. The reason for not including
additional features is because of the fact that the developer already knows
what brand of device he is working on, and can make assumption based
on that fact. Such assumptions will not be possible for a more general
API that has to support all possible kind of devices.

• Device and Operating System – contains properties for identifying the
device, such as a unique id, the model name, and what kind of operating
system it is running. Based on this information the application is able to
accommodate its services for the current device.

• Device Orientation – enables applications to find out the device’s physical
orientation, in order to tilt the display to accommodate the user interface
with the user’s view. This category also contains notifications of device
orientation, so that applications can be automatically notified when the
screen needs to be tilted.

• Device Battery State – handles information about the current state and
level of the device’s battery. The state tells the application whether the
device is currently charging, unplugged or fully charged, and the level
shows the current charge on the battery in percentage.

• Proximity Sensor – indicates whether or not the proximity sensor senses
a close object.

This is what Apple has added through their API, but much of the needed
information is naturally retrieved by the choice of using objective-C as base.
Monitoring the system and the network connectivity is something that is
already built into objective-C and that does not require an additional API
from Apple. [88]

63

Web Operating System for Modern Smartphones

7.1.2 Android

The Android API utilizes the Java programming language and, in the same
way as iOS, it can get much system information directly from the language
itself. [89]

As stated in the beginning of this section, the Android API discourages
applications from handling memory information directly, but instead relies
on the operating system itself. The application can however retrieve the
information, using the ActivityManager, as well as tell the system that the
memory level is too low and that the system should consider itself as being
in a low memory situation. Note also that, for debugging purposes, a more
detailed view could be retrieved directly from the kernel. [90]

7.1.3 Windows Phone 7

Since Windows Phone 7 has a memory cap of 90 MB on any application that
runs on a device with less than 256 MB of total memory, it is necessary to
let applications keep track of memory usage. The DeviceExtendedProperties
class keeps properties for both the amount that the application is presently
using, the maximum amount of memory the application has used during its
lifetime, and the total amount of memory on the device. This class can also
be used to get device specific properties such as a unique id, the manufacturer
and name. [33]

7.1.4 WAC

WAC specifies a Device API by having access methods in the Device Status
module fetch information based on pre-specified attributes, listed in the De-
vice Status Vocabulary. The vocabulary groups attributes together in the
following groups:

• Battery – contains attributes for current battery level, and whether the
battery is being charged or not.

• CellularHardware – tells whether cellular hardware is available or not.
• CellularNetwork – contains current signal strength, roaming capability,

and type of operator of the cellular network in use.
• Device – contains information about the device, such as model number,

version and vendor.

64

Web Operating System for Modern Smartphones

• Display – equivalent to the non-standardized Screen Object and contains
screen information for the device.

• MemoryUnit – tells the total memory size, as well as the amount of free
built in and/or removable memory on the device.

• OperatingSystem – contains information about the operating system: lan-
guage, version, vendor, et c.

• WebRuntime – represent the current web runtime, with information about
the available WAC version.

• WiFiHardware – tells whether the device can be used to connect to Wi-Fi
networks.

• WiFiNetwork – contains signal strength, network status and SSID of the
current Wi-Fi connection.

7.1.5 PhoneGAP

The PhoneGap framework actually includes an API for getting system in-
formation, even if the API is very limited. The framework documentation
mention properties for getting the device’s name, unique id, platform, oper-
ating system version, and version of the PhoneGap API available.

The idea behind the PhoneGap information API is that the developer will
only support known devices that are known to have the features required to
run a specific application. This makes developing for a pre-specified platform,
for example iOS, quite easy, since all iOS devices have very similar hardware
features. Problems will however arise when developing a multi-platform
application, where availability of some hardware component might not be
certain and the device has to manually check for it. That is not possible
with the PhoneGap solution. [91]

7.1.6 W3C and the System Information API

The System Information API divides all properties and information into a
number of different areas, all with restricted access level that each application
has to receive permission from the user in order to access, based on the
characteristics of the properties. The standard is still only a draft, but in
the latest public version, dated February 2nd 2010, the different areas are
described in Figure 7.1, which also gives a clear overview on what information
each group contains. [92]

The early work of the System Information API did also include battery

65

Web Operating System for Modern Smartphones

status properties, but these have been moved to the Battery Status Event
Specification. The specifications do not only include methods for fetching
battery information, but also introduce a way of setting an event listener
that will receive continues updates of battery level and charging status. [93]

Figure 7.1: An overview of the System Information API [92]

7.2 Analysis

The handling of system information on current smartphone devices are all
limited or simplified by assumptions made by the targeted platform. In
the case of Windows Phone 7, there is no way for applications to ask the
device if a GPS chip is available or not. The developer can however assume
that a GPS is always present on a Windows Phone 7 device, since that is
one of the requirements made by Microsoft when selling a license. Some
simplifications can be drawn when developing applications for Android and
iOS as well. These kinds of solutions are however only viable for platform
dependent development. When developing the same applications for multiple
platforms, it quickly becomes infeasible to handle pre-defined rules about
each platform. [33]

The only solutions studied in this paper that do not rely on presumptions
made according to the operating system are WAC and the W3C proposed
standard. When comparing the two, they both have quite similar properties

66

Web Operating System for Modern Smartphones

and work in the same way. Note that the W3C proposal does not state how
to access the device, but only provides information about the device and its
parts.

7.3 Result

The WAC API and the W3C proposed standard complement each other well.
An operating system providing support for both of these would cover all
necessary properties for application development in modern smartphones. It
would provide a fully usable interface for developing web applications that
covers everything from system monitoring to accessing information about
input and output devices.

67

Web Operating System for Modern Smartphones

Chapter 8

Multitasking and Application
handling

According to Maximiliano Firtman’s definition [33] a device needs, among
other things, a multitasking operating system in order to be categorized
as a smartphone. Other definitions might have a different opinion, but it
is clear that multitasking is one of the most important features in modern
smartphones and all operating systems studied in this paper have, if not full
then at least some, multitasking capabilities.

8.1 Previous work

There are different kinds of multitasking, and almost all vendors have come
up with different solutions to balance the battery life, functionality and user
friendliness in their operating system. Applications can be minimized, and
the user can switch between them, or a process might be running completely
in the background where they might always be able to get some processor
power. Some operating systems have an automated system for shutting down
applications when processing power and memory is starting to get low. [94]

8.1.1 iOS

As of iOS version 4.0, having an application running in the background is no
longer limited to first party developers. The developers do however need to

68

Web Operating System for Modern Smartphones

work through specially designed APIs to achieve this functionality, and even
then the background applications have restrictions that limit their access to
the phone’s resources.

The applications that need support for accessing resources while running in
the background have to register to some of the available services to handle
the multi-threading for them. [75] If all an application needs is to finish
its current task, like downloading a file, the application can register the
task with the Task Completion service and the task could finish even if the
application is put to the background. When the task has completed, the
application will receive a notification to display to the user.

If all an application needs is to finish its current task, e.g. downloading a
file, the application can register the task with the Task Completion service
and the task could finish even if the application is put to the background.
When the task has completed, the application will receive a notification to
display to the user.

Another service, called Background audio, allows applications to continue
playing audio when put to the background. This service is commonly used
to implement an Internet radio or a music player that needs to be able to
play audio even when the user has switched application.

For applications that need to handle incoming network messages, to imple-
ment a messaging service, like Skype or GTalk, they may use the service
called Messaging service. Here, developers can register a message handler
that will receive new incoming messages of a certain type and notify the user
accordingly. It is also possible to enable a timed event to occur even in a
background application by calling the service Push Notification. The service
will alert the application when the timer has run out and execute the timed
routine.

The last background service available for applications is the Background
Location Service, which enables applications to track the user’s movement
by enabling the GPS even for programs running in the background. [75]

By having such restricted background access, the operating system does
not need to implement a full featured thread scheduler and can save both
computation power and battery life, but still give the user the feeling of a
multitasking operating system.

As of iOS 4 the operating system also includes an application switcher where
users can bring up a list of hibernated applications and let the user browse
between them. There is however no native API for letting developers cre-

69

Web Operating System for Modern Smartphones

ate their own application switcher, manage installed applications or list the
services running on the device. [95]

8.1.2 Android

Android has a different approach when it comes to multitasking and switch-
ing between applications. The idea is that the user does not have to know
whether an application has turned off or is still left in the memory; the op-
erating system will handle that automatically. That is also why the Android
operating system does not include an application switcher that lets the user
switch between open applications.

Multitasking in Android basically works by having the operating system not
turning off applications when the user switches to a new application. In-
stead, it leaves the hibernated application in the memory, until the memory
is needed by another application. By letting the applications stay in mem-
ory, the applications will be much faster to start up again. Android gives
developers the ability to register its applications as services, giving the ap-
plication access to actually execute code while running in the background.
Since Android 1.5, services that run in the background are limited to using
5-10 percent of the total CPU. This increases both the availability of the
operating system but also the battery life of the device. [94]

To free up memory, as more and more applications are left in memory, An-
droid implements an Out of Memory (OOM) killer. The routine works by
having two memory thresholds. When the first threshold is met, the back-
ground processes are notified and asked to save their state in the persistent
storage. When the applications have saved their state, they return back to
the OOM routine which, when the second threshold has been reached, starts
to turn off the non-critical applications whose state has been reported as
saved. Since all applications save their state, they will be able to return to
the same state as before when launched the next time. This means that
the only thing differentiating between an application that has been turned
of and an application that is still running is the time it takes to launch the
application. [96]

API

The Android API for interacting with running applications and services, the
ActivityManager API, separates applications and services by defining sepa-

70

Web Operating System for Modern Smartphones

rate namespaces and separate methods for each of them. The API provides
methods for fetching a list of running applications or services or, if the ap-
plication has got permission from the user, shut down a specified application
by terminating its processes. It is also possible to get a separate list for
applications that are in an error state, or a list of the most recently started
applications that include applications that are no longer running.

The API can be used not only for listing running applications, but also to
fetch more specific information about each running process; for example the
process’ PID, its memory usage and how long it has been running for. An
application that is in an error state contains a little bit more information,
such as the error message and a stack trace.

8.1.3 Windows Phone 7

Multitasking and having applications working in the background is, in Win-
dows Phone 7, limited to selected third party and first party applications
only. Regular applications are limited to receiving and sending notifications
which means that there is, for example, no way for those applications to con-
tinue playing music when running in the background. The application can
use the received notifications in order to; for example, change the icon tile
to display the information dynamically. Microsoft had said that they have
plans of extending the multitasking capabilities for third party applications,
as well as introducing ways of switching between open applications, but has
yet to define how. That is also why their API cannot be studied in more
detail in this thesis.

When a new application is launched, the old application will get a notification
asking it to save its current state in the device’s memory and hibernate. The
procedure is similar to the solutions in iOS and Android where applications
can be turned off by the operating system to free up used memory blocks.
Saving the state of each application will enable applications to resume in the
same state as when the operating system turned them off.

Windows Phone 7 does not include any native APIs for application manage-
ment; this is only supposed to be handled by the operating system or first
party applications.

71

Web Operating System for Modern Smartphones

8.1.4 webOS

The webOS approach to multitasking is also a bit different. Here the user
has full control over which applications that are running and may turn them
off at any time. The user interface consists of cards, which is basically a
rectangular screenshot of the application that the user may flick through.
To turn off an application, the user simply grabs the application’s card and
throws it off the screen. [97]

Open web applications that are running in the background are limited to
only accessing operations that are considered to use a moderate amount of
memory and CPU to keep the battery from draining too fast. Constant
data requests, or accelerometer access, are examples of prohibited usage.
Applications using the PDK are also a bit more restricted when running in
the background and may no longer allocate more memory or use the graphic
APIs.

Applications that are turned off by the user are typically completely shut
down by the operating system, but the user also has the possibility of letting
the application stay alive even after it has been terminated. This is done by
putting the application icon in the webOS Dashboard, making it a Dashboard
Application that, if implemented to support it, may run as a service even
after it has been turned off. [97]

If the user has too many application cards open, and the operating system
runs out of memory, the user will be prompted with a warning and forced to
turn off applications in order to be able to continue using the device. This
leaves the user in full control over which applications that should continue
to run, and which should be shut down. However, there is no indication of
how much memory each application is allocating and the user might close
low memory applications unnecessarily, before finding an application that
has allocated a larger amount of memory. [94]

8.1.5 Maemo

Multitasking in the Maemo operating system is more similar to personal
computer’s operating systems and is one of the few, or possibly the only,
operating system for smartphones to implement real memory swapping as
well as a desktop like interface for application switching. It also includes full
multi-task capabilities for minimized applications, enabling all applications
to continue to run even when the user has minimized them or opened some

72

Web Operating System for Modern Smartphones

other application. The applications receive notifications, stageActive and
stageDeactive, when minimized or activated so they can optimize the CPU
and memory usage accordingly.

The application switcher is displayed whenever the user presses the menu
button. From here the user can choose a minimized application to open or
press the menu button again to display the application launcher, with a list
of installed applications.

8.2 Analysis

As seen in the previous sections, there are a wide variety of solutions to mul-
titasking on different smartphone platforms. The problem whether to mini-
mize or close applications could be solved in different ways and is something
that should be up to the platform to decide; it could be seen as a question
that depends too much on memory capacity of the device and the implemen-
tation goals of the vendor for it to be answered in this thesis. Guidelines
and general tips on what kinds of simplifications that could be made when
exclusively working with web based applications however, could fit the scope,
as well as a small proposal on which services should be provided in order for
the applications to work in the background and optimize memory usage.

Something common with all solutions, previously mentioned in this chapter,
is that an API for getting information about installed and running applica-
tions is practical to allow applications to handle listing, switching, launching,
closing, installing, and removal of applications. The question in this case
however, is whether the operating system should allow such tasks to be car-
ried out by web applications at all, or if this is something that is best handled
in the operating system itself. Web pages are normally sandboxed inside the
web browser and not aware of any other open applications or tabs. Intro-
ducing such a feature would break this fundamental security feature that the
Web is built on today [98]

Installing applications, such as extensions and add-ons, is something com-
mon in modern desktop browsers and even some mobile browsers, today and
the installation schema should be very similar. By comparing the instal-
lation procedures of installing applications on smartphones with installing
extensions in browsers, it can quickly be concluded that the cases are very
similar. This means that installing applications could very well adopt a
similar behavior to how extensions are currently handled today.

73

Web Operating System for Modern Smartphones

Removing extensions is another question, since removing an application or
extension means exposing installed application data to other applications,
which could be a serious problem of integrity. Browsers have dealt with
this problem by not allowing extensions to list or remove other extensions
and most smartphones only allow the built in applications to handle such
tasks. [33]

Since web based scripts are running in a sandboxed environment, there is
currently no API for handling application switching or list any running ap-
plications, with the current web standards, at least not by the definition of
an application used in this thesis. It is possible for applications to get infor-
mation about what is happening, for example if an application has lost focus
and been minimized or if it is about to be shut down. But having applica-
tions fetching information about other running applications is a question of
integrity and in order to find a definite answer, further studies are needed
and the question is unfortunately not something that could be answered in
this thesis. This means that a safe way of proceeding with this could be
possible.

8.3 Result

Multitasking is required in modern smartphones, and everybody is doing it
to some degree. To maintain full compatibility with current web applications
the operating system needs, at least regarding this topic, to function as a
standard web browser.

Since compatibility with existing web applications is wanted, all scripts in the
application need to continue to run even while the application is not active.
This does not mean that full priority needs to be given to the background
applications. A smaller subset of the full performance should be sufficient,
just as is done in webOS. [97]

It is not necessary to render anything for the applications that are not visible.
If a thumbnail of the application is needed, one can be taken when the
application is going out of view. [97]

Web applications that supports being able to be automatically terminated
by the operating system, and then resumed in the same state, can be created
today by using onLoad and onUnload/onBeforeUnload events. Applications
can receive updates for when they are being started or shut down. Since
support for pre-existing web applications is wanted, it is hard to implement

74

Web Operating System for Modern Smartphones

the solutions that Android, Windows Phone 7, and iOS have implemented.
The solution in webOS however, is reasonable.

Swapping out memory to the hard drive, as has been done in desktop oper-
ating systems for many years, is a solution that has proven to work well in
Maemo. Moving the memory swapping up the chain, into the web browser,
would probably mean that some heuristics could be applied to make it more
effective. [33]

75

Web Operating System for Modern Smartphones

Chapter 9

Discussion

The smartphone market is growing, and together with continuous improve-
ments of desktop web applications the need for further development of an
open mobile web is growing. Using open web standards means that the re-
sulting application could be platform independent, and the same application
can be deployed on several markets directly at launch.

During this thesis work, some of the most common fields of smartphone usage
have been studied and even if all areas in this thesis is not to be considered
as fully solved, this thesis has aimed to get a step closer to a mobile web.
How different problems should be solved, and what solution is preferable, is
often a matter of opinion and the solutions presented in this thesis are only
to be considered as proposals.

The proposals described have been designed based upon common usage on
multiple platforms, both mobile and not, in order for them to be fully com-
patible with how developers are expected to work with similar APIs and
what kind of functionality that should be included.

There has been much previous work done in this field, and much have hap-
pened even during the thesis period; the Enyo framework was only a concept
and an internal framework in the beginning of the year but is now available
in a preview version in the webOS Early Access program for developers.

Frameworks such as Mojo and Enyo are however not to be considered fully
open standards, and have therefore only been used as guidelines or concepts
in this thesis. The Device APIs and Policy (DAP) Working Group has
however published a number of drafts with promises for the future.

76

Web Operating System for Modern Smartphones

A few things that were meant to be a part of this thesis have been excluded
for various reasons. One such area is sound and video streaming, and the
APIs are needed to fully implement a media player as a web application. This
is an area that has already received a large amount of the web community’s
focus and, even with the problems with the media codecs [99], the media
playing elements discussed in Section 1.5.5, have shown potential for the
future. [100]

77

Web Operating System for Modern Smartphones

Chapter 10

Further Work

In this thesis, some of the tasks commonly used in smartphones have been
discovered to be able to utilize many of the common web techniques, even if
they in some cases have needed an extended API. There is however much left
to study before any attempts on launching an operating system only capable
of running web applications. Some things where not covered at all in this
study, and some where only partly studied.

In this chapter, some areas where future studies are needed will briefly be
presented; what has been done in the past, and what needs to be done in
the future?

10.1 Media capture

The W3C DAP Working Group has published a specification for providing
file access to media capture devices. The specifications do however not cover
streaming those media, and instead only provides the media as a file. This
could be sufficient for an ordinary camera application, but without providing
access to the stream itself it would never have the same functionalities as a
native application.

There has been work in standardizing access to a device’s audiovisual parts.
The <device> element, for example, was introduced for allowing stream-
ing access to video cameras and microphones on mobile devices, but is no
longer included in the HTML 5 draft. Instead, the getUserMedia method
was introduced, with a clear focus on video and audio streaming. [28] [101]

78

Web Operating System for Modern Smartphones

10.2 Calendar

It is fairly common today to use a mobile device as an alarm clock or event
scheduler. On phones and other devices, people expect to be notified of
occurring events even when the phone is turned off. This is currently not
possible in any open standards, and even though it might not be a neces-
sity for most users, it still is a feature that is commonly used on modern
smartphones, and thus needs to be investigated further.

Accessing calendar events is fundamentally related to contact information
(see Chapter 2) and other similar virtual resources (see Section 1.5.12); it
is related when it comes to required methods, such as adding, altering, re-
moving and retrieving items, as well as the synchronization procedures and
security and permissions requirements.

The W3C DAP Working Group has begun working on a calendar API. A
notable difference between calendar events and phone book information is
that there is no need for merging events together, since calendar items in
different calendars are commonly displayed separated.

10.3 Distributing applications

Some interesting development areas that have not been covered in this thesis
are problems related to packaging, updating, distributing, and installing web
applications on mobile devices.

There are some market places that specialize in distributing web based ap-
plications. Google has a Chrome Web Store for its desktop browser, Apple
has a category for it in their App Store for iOS devices, and Opera has Opera
Widgets for web based widgets.

The problem of permissions has been partly covered in this thesis; how pack-
aging and a well formed installation process can handle a web application’s
permissions to access certain APIs. Instead of having one permission request
for each action that is performed, as is common when visiting web pages,
an application installation process with knowledge of what APIs the appli-
cation will access can utilize this information and only prompt the user with
one request. This procedure is currently in use in several platforms, such as
Android and Chrome Web Store. [102]

79

Web Operating System for Modern Smartphones

Section 3.3 contains an additional example how metadata could be used
during the installation process; how applications or services could register
trigger methods or event handlers when being installed.

10.4 Managing and browsing the local file system

Due to fundamental sandboxing of web based scripts, there is no way to ac-
cess the local file system. The File and FileReader APIs enables applications
to access selected files on the local file system, but the selection is handled by
the user agent. Through the FileWriter API, web applications also have the
ability to save files to the local file system, even though this API is currently
not widely implemented. [23] [24]

This solution, together with the local storage solutions presented in Section
1.5.7, could be proven to be sufficient but would require more investigations
when regarding mobile devices.

80

Web Operating System for Modern Smartphones

List of Figures

1.1 An overview of the evolution and branching of mobile web
standards [6] (Image: Mobile Web Standards Evolution Vec-
tor, David Höffer, Wikimedia Commons) 4

1.2 According to a study presented by Google Inc., the perfor-
mance increase in web based scripts has increase with a grow-
ing rate since 2001. [8] (Image: Google I/O – Keynote 2009,
Google Inc.) . 6

1.3 A laptop running Chrome OS, planned to be released in the
middle of June 2011. (Photograph: Samsung Chromebook
Series 5 Chromebook, Amazon [32]) 12

1.4 The HP Pre3 running webOS 2.2, the next major version of
webOS featuring Enyo (see Section 1.5.11), is said to be re-
leased in the summer of 2011. (Photograph: HP Pre3, HP [39]) 15

2.1 A Contact-object consists of information aggregated from mul-
tiple sources. [44] . 21

2.2 Overview of related API:s . 25
2.3 The process of linking information from three different sources

into one Contact object. 26

3.1 An overview of the how an implementation of a Synergy Con-
nector would be able to synchronize calendar events, contacts
and messages. 30

4.1 Common features for messaging. 38
4.2 Message flow. 39
4.3 Message implementation levels overview. 40

5.1 Making a call in Android . 47
5.2 Common attributes and features for calling services. 49
5.3 Call implementation levels overview 50

7.1 An overview of the System Information API [92] 66

81

Web Operating System for Modern Smartphones

Bibliography

[1] Rigo Wenning. W3c web standardization. http://www.w3.org/Talks/
2009/01-rw-brux-ssoku/ (2011-05-09), 2009. 2

[2] Ian Jacobs. World wide web consortium process document. http:
//www.w3.org/Consortium/Process-20010719/process.html (2011-05-
09), 2001. 2

[3] Dean Hachamovitch. Native html5: First ie10 platform
preview. http://blogs.msdn.com/b/ie/archive/2011/04/12/
native-html5-first-ie10-platform-preview-available-for-download.
aspx (2011-04-13), Apr 2011. 3

[4] W3C. Offline web applications. http://www.w3.org/TR/
offline-webapps/ (2011-05-09), 2008. 3, 9

[5] W3C. HTML 4.01 Specification – W3C Recommendation 24 December
1999. ECMAScript Language Specification, 1999. 3

[6] David Höffer. Mobile web standards evolution vector. http:
//en.wikipedia.org/wiki/File:Mobile_Web_Standards_Evolution_
Vector.svg (2011-05-03), July 2007. 4, 81

[7] Ecma International. ECMAScript Language Specification. EC-
MAScript Language Specification, 2009. 5

[8] Vic Gundotra. Google’s html 5 work: What’s next? Google I/O –
Keynote 2009, May 2009. 5, 6, 81

[9] IDC. Number of mobile devices accessing the internet expected to
surpass one billion by 2013. IDC Press Release, Dec 2009. 6

[10] W3C. HTML Living Standard – User interaction. http://www.w3.org/

82

http://www.w3.org/Talks/2009/01-rw-brux-ssoku/
http://www.w3.org/Talks/2009/01-rw-brux-ssoku/
http://www.w3.org/Consortium/Process-20010719/process.html
http://www.w3.org/Consortium/Process-20010719/process.html
http://blogs.msdn.com/b/ie/archive/2011/04/12/native-html5-first-ie10-platform-preview-available-for-download.aspx
http://blogs.msdn.com/b/ie/archive/2011/04/12/native-html5-first-ie10-platform-preview-available-for-download.aspx
http://blogs.msdn.com/b/ie/archive/2011/04/12/native-html5-first-ie10-platform-preview-available-for-download.aspx
http://www.w3.org/TR/offline-webapps/
http://www.w3.org/TR/offline-webapps/
http://en.wikipedia.org/wiki/File:Mobile_Web_Standards_Evolution_Vector.svg
http://en.wikipedia.org/wiki/File:Mobile_Web_Standards_Evolution_Vector.svg
http://en.wikipedia.org/wiki/File:Mobile_Web_Standards_Evolution_Vector.svg
http://www.w3.org/TR/html5/editing.html#editing
http://www.w3.org/TR/html5/editing.html#editing

Web Operating System for Modern Smartphones

TR/html5/editing.html#editing (2011-05-06), 2011. 7

[11] Mark Pilgrim. The road to html 5: contenteditable. The WHATWG
Blog, Mar 2009. 7

[12] W3C. Drag and drop. HTML5 – Editor’s Draft 10 May 2011, 2011. 7

[13] W3C. Session history and navigation. HTML5 – Editor’s Draft 10
May 2011, 2011. 7

[14] W3C. Html speech xg speech api proposal. HTML5 – Editor’s Draft
10 May 2011, 2011. 7

[15] W3C. Introduction to css3. http://www.w3.org/TR/css3-roadmap/
(2011-05-02), 2011. 7

[16] W3C. HTML Living Standard – the video element. http://www.w3.
org/TR/html5/video.html (2011-05-06), 2011. 7

[17] W3C. Html canvas 2d context. http://dev.w3.org/html5/2dcontext/
(2011-05-02), 2011. 8

[18] Khronos Group. Webgl - opengl es 2.0 for the web. http://www.
khronos.org/webgl/ (2011-05-02), 2011. 8

[19] W3C. Web notifications. http://dev.w3.org/2006/webapi/
WebNotifications/publish/Notifications.html (2011-05-02), 2011. 8

[20] Andrei Popescu. Geolocation API Specification. Geolocation API
Specification - W3C Candidate Recommendation 07 September 2010,
Sep 2010. 8

[21] W3C. HTML Living Standard – web storage. http://www.w3.org/TR/
webstorage/ (2011-05-06), 2011. 8

[22] Nikunj Mehta, Jonas Sicking, Eliot Graff, Andrei Popescu, and Jeremy
Orlow. Indexed database api. http://www.w3.org/TR/IndexedDB/
(2011-05-18), 2011. 8

[23] Arun Ranganathan and Jonas Sicking. File api. http://www.w3.org/
TR/FileAPI/ (2011-05-18), 2010. 8, 80

[24] Eric Uhrhane. File api. http://www.w3.org/TR/file-writer-api/
(2011-05-18), 2011. 8, 80

83

http://www.w3.org/TR/html5/editing.html#editing
http://www.w3.org/TR/html5/editing.html#editing
http://www.w3.org/TR/css3-roadmap/
http://www.w3.org/TR/html5/video.html
http://www.w3.org/TR/html5/video.html
http://dev.w3.org/html5/2dcontext/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://dev.w3.org/2006/webapi/WebNotifications/publish/Notifications.html
http://dev.w3.org/2006/webapi/WebNotifications/publish/Notifications.html
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/IndexedDB/
http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/file-writer-api/

Web Operating System for Modern Smartphones

[25] Anne van Kesteren. Xmlhttprequest – w3c candidate recommendation
3 august 2010. http://www.w3.org/TR/XMLHttpRequest/ (2011-05-18),
2010. 9

[26] Anne van Kesteren. The websocket api – editor’s draft 12 may 2011.
http://dev.w3.org/html5/websockets/ (2011-05-18), 2011. 9

[27] Ian Hickson. Html5 web messaging – editor’s draft 12 may 2011. http:
//dev.w3.org/html5/postmsg/ (2011-05-18), 2011. 9

[28] Ian Hickson. Video conferencing and peer-to-peer communication.
http://www.whatwg.org/specs/web-apps/current-work/complete/
video-conferencing-and-peer-to-peer-communication.html (2011-
05-19), 2011. 9, 78

[29] Stuart Robinson. Multi-core processors to penetrate 45 percent of
smartphones by 2015. StrategyAnalytics, Jan 2011. 10

[30] Ian Hickson. Web Workers. Web Workers - W3C Working Draft 10
March 2011, Mar 2011. 10

[31] Google Inc. Google chrome os. http://www.google.com/chromebook
(2011-05-12), May 2011. 11

[32] Amazon. Amazon – samsung series 5 3g chromebook. http://www.
amazon.com/gp/product/B004Z6NWAU (2011-05-04), 2011. 12, 81

[33] Maximiliano Firtman. Programming the Mobile Web. O’Reilly Media,
Inc., first edition, 2010. 12, 64, 66, 68, 74, 75

[34] The PhoneGap project. PhoneGap – supported features. http://www.
phonegap.com/features (2011-05-13), 2011. 12

[35] WAC Application Services Ltd. WAC – About WAC. http://www.
wacapps.net/web/portal/about (2011-05-23), 2011. 13

[36] WAC Application Services Ltd. WAC – FAQ. http://www.wacapps.
net/web/portal/faq (2011-05-23), 2011. 13

[37] WAC Application Services Ltd. WAC – Membership. http://www.
wacapps.net/web/portal/membership (2011-05-23), 2011. 13

[38] HP. Application framework and OS. https://wiki.mozilla.org/Labs/
Contacts/ContentAPI (2011-03-20), 2011. 14

84

http://www.w3.org/TR/XMLHttpRequest/
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/postmsg/
http://dev.w3.org/html5/postmsg/
http://www.whatwg.org/specs/web-apps/current-work/complete/video-conferencing-and-peer-to-peer-communication.html
http://www.whatwg.org/specs/web-apps/current-work/complete/video-conferencing-and-peer-to-peer-communication.html
http://www.google.com/chromebook
http://www.amazon.com/gp/product/B004Z6NWAU
http://www.amazon.com/gp/product/B004Z6NWAU
http://www.phonegap.com/features
http://www.phonegap.com/features
http://www.wacapps.net/web/portal/about
http://www.wacapps.net/web/portal/about
http://www.wacapps.net/web/portal/faq
http://www.wacapps.net/web/portal/faq
http://www.wacapps.net/web/portal/membership
http://www.wacapps.net/web/portal/membership
https://wiki.mozilla.org/Labs/Contacts/ContentAPI
https://wiki.mozilla.org/Labs/Contacts/ContentAPI

Web Operating System for Modern Smartphones

[39] HP. Hp pre3. http://www.palm.com/Pre3 (2011-05-04), 2011. 15, 81

[40] HP. Developing Mojo applications. https://developer.palm.com/
content/api/dev-guide/mojo.html (2011-05-12), 2011. 15

[41] HP. webOS Service APIs. https://developer.palm.com/content/api/
reference/services.html (2011-05-12), 2011. 15

[42] IDC. Worldwide smartphone market to grow by nearly 50 percent in
2011. IDC Press Release, Mars 2011. 18

[43] Nathan Olivarez-Giles. Nokia to cut 7,000 jobs, stop developing sym-
bian operating system. Los Aneles Times, April 2011. 18

[44] Google Inc. Using the Contacts API. http://developer.android.com/
resources/articles/contacts.html (2011-05-09), 2010. 20, 21, 81

[45] D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627 (Informational), July 2006. 22

[46] HP. Contacts. https://developer.palm.com/content/api/reference/
data-types/contacts.html (2011-04-15), 2011. 22

[47] HP. People Picker. https://developer.palm.com/content/api/
reference/services/people-picker.html (2011-04-15), 2011. 23

[48] Richard Tibbett. Contacts API. Contacts API - W3C Working Draft
09 December 2010, 2010. 23

[49] Richard Tibbett. Contacts API. Contacts Writer API - W3C Editor’s
Draft 04 October 2010, 2010. 23

[50] Michael Hanson. Labs/Contacts/ContentAPI. https://wiki.mozilla.
org/Labs/Contacts/ContentAPI (2011-03-20), 2010. 23

[51] The PhoneGap project. PhoneGap Documentation – Contacts. http:
//docs.phonegap.com/phonegap_contacts_contacts.md.html (2011-05-
04), 2011. 24

[52] HP. Developing Synergy Connectors. https://developer.palm.com/
content/api/dev-guide/synergy/overview.html (2011-04-15), 2011.
30, 31, 32, 36

[53] Google Inc. Android SyncAdapter. http://developer.android.

85

http://www.palm.com/Pre3
https://developer.palm.com/content/api/dev-guide/mojo.html
https://developer.palm.com/content/api/dev-guide/mojo.html
https://developer.palm.com/content/api/reference/services.html
https://developer.palm.com/content/api/reference/services.html
http://developer.android.com/resources/articles/contacts.html
http://developer.android.com/resources/articles/contacts.html
https://developer.palm.com/content/api/reference/data-types/contacts.html
https://developer.palm.com/content/api/reference/data-types/contacts.html
https://developer.palm.com/content/api/reference/services/people-picker.html
https://developer.palm.com/content/api/reference/services/people-picker.html
https://wiki.mozilla.org/Labs/Contacts/ContentAPI
https://wiki.mozilla.org/Labs/Contacts/ContentAPI
http://docs.phonegap.com/phonegap_contacts_contacts.md.html
http://docs.phonegap.com/phonegap_contacts_contacts.md.html
https://developer.palm.com/content/api/dev-guide/synergy/overview.html
https://developer.palm.com/content/api/dev-guide/synergy/overview.html
http://developer.android.com/reference/android/content/AbstractThreadedSyncAdapter.html
http://developer.android.com/reference/android/content/AbstractThreadedSyncAdapter.html

Web Operating System for Modern Smartphones

com/reference/android/content/AbstractThreadedSyncAdapter.html
(2011-05-17), 2010. 31

[54] Google Inc. Android AccountAuthenticator. http:
//developer.android.com/reference/android/accounts/
AbstractAccountAuthenticator.html (2011-05-17), 2010. 31

[55] Apple Inc. iOS Developer Library – Address Book Programming Guide
for iOS. http://developer.apple.com/library/ios/documentation/
ContactData/Conceptual/AddressBookProgrammingGuideforiPhone/
(2011-05-13), 2010. 32

[56] The Nielsen Company. U.S. Teen Mobile Report: Call-
ing Yesterday, Texting Today, Using Apps Tomor-
row. http://blog.nielsen.com/nielsenwire/online_mobile/
u-s-teen-mobile-report-calling-yesterday-texting-today-using-apps-tomorrow/
(2011-05-24), October 2010. 35

[57] E. Wilde and A. Vaha-Sipila. URI Scheme for Global System for Mobile
Communications (GSM) Short Message Service (SMS). RFC 5724
(Proposed Standard), January 2010. 35, 39

[58] HP. webOS Service API – Messaging. https://developer.palm.com/
content/api/reference/services/messaging.html (2011-05-09), 2011.
36

[59] WAC Application Services Ltd. WAC 2.0 – The messaging mod-
ule. http://specs.wacapps.net/2.0/feb2011/deviceapis/messaging.
html (2011-05-10), Jan 2011. Proposed Release Version (PRV). 36

[60] Google Inc. Android SmsManager. http://developer.android.com/
reference/android/telephony/SmsManager.html (2011-05-09), 2010. 36

[61] Google Inc. Android Intent. http://developer.android.com/
reference/android/content/Intent.html (2011-05-04), 2010. 36, 47

[62] Google Inc. Session Initiation Protocol. http://developer.android.
com/guide/topics/network/sip.html (2011-05-23), 2010. 36, 47

[63] Murray Cumming Danielle Madeley. Telepathy Developer’s Manual.
http://telepathy.freedesktop.org/doc/book/ (2011-05-04), 2009. 37

[64] Ross Burton. IBM developerWorks – connect desktop apps using
D-BUS. http://www.ibm.com/developerworks/linux/library/l-dbus/

86

http://developer.android.com/reference/android/content/AbstractThreadedSyncAdapter.html
http://developer.android.com/reference/android/content/AbstractThreadedSyncAdapter.html
http://developer.android.com/reference/android/accounts/AbstractAccountAuthenticator.html
http://developer.android.com/reference/android/accounts/AbstractAccountAuthenticator.html
http://developer.android.com/reference/android/accounts/AbstractAccountAuthenticator.html
http://developer.apple.com/library/ios/documentation/ContactData/Conceptual/AddressBookProgrammingGuideforiPhone/
http://developer.apple.com/library/ios/documentation/ContactData/Conceptual/AddressBookProgrammingGuideforiPhone/
http://blog.nielsen.com/nielsenwire/online_mobile/u-s-teen-mobile-report-calling-yesterday-texting-today-using-apps-tomorrow/
http://blog.nielsen.com/nielsenwire/online_mobile/u-s-teen-mobile-report-calling-yesterday-texting-today-using-apps-tomorrow/
https://developer.palm.com/content/api/reference/services/messaging.html
https://developer.palm.com/content/api/reference/services/messaging.html
http://specs.wacapps.net/2.0/feb2011/deviceapis/messaging.html
http://specs.wacapps.net/2.0/feb2011/deviceapis/messaging.html
http://developer.android.com/reference/android/telephony/SmsManager.html
http://developer.android.com/reference/android/telephony/SmsManager.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/guide/topics/network/sip.html
http://developer.android.com/guide/topics/network/sip.html
http://telepathy.freedesktop.org/doc/book/
http://www.ibm.com/developerworks/linux/library/l-dbus/index.html
http://www.ibm.com/developerworks/linux/library/l-dbus/index.html

Web Operating System for Modern Smartphones

index.html (2011-05-04), 2004. 37

[65] Sumana Harihareswara. Telepathy, Empathy and Mission Control 5
in GNOME 2.28. The GNOME Journal, Nov 2009. 37

[66] Dave Cridland. XEP-0286: XMPP on Mobile Devices. http://xmpp.
org/extensions/xep-0286.html (2011-05-12), 2010. 38

[67] P. Hoffman, L. Masinter, and J. Zawinski. The mailto URL scheme.
RFC 2368 (Proposed Standard), July 1998. Obsoleted by RFC 6068.
39

[68] P. Saint-Andre. Internationalized Resource Identifiers (IRIs) and Uni-
form Resource Identifiers (URIs) for the Extensible Messaging and
Presence Protocol (XMPP). RFC 5122 (Proposed Standard), Febru-
ary 2008. 39, 46

[69] Suresh Chitturi, Daniel Coloma, Max Froumentin, Maria Angeles
Oteo, Niklas Widell, and Anssi Kostiainen. The Messaging API. The
Messaging API - W3C Working Draft 20 January 2011, 2011. 39

[70] Dominique Hazaël-Massieux, Suresh Chitturi, Max Froumentin
Maria Angeles Oteo, and Niklas Widell. The Messaging API. The
Messaging API -W3C Editor’s Draft 05 May 2011, 2011. 39

[71] European Telecommunications Standards Institute (ETSI). ETSI
TS 123 038 - Digital cellular telecommunications system (Phase
2+); Universal Mobile Telecommunications System (UMTS); LTE;
Alphabets and language-specific information. http://pda.etsi.org/
exchangefolder/ts_123038v100000p.pdf (2011-05-24), March 2011. 41

[72] H. Schulzrinne. The tel URI for Telephone Numbers. RFC 3966 (Pro-
posed Standard), December 2004. Updated by RFC 5341. 46

[73] G. Camarillo. The Internet Assigned Number Authority (IANA) Uni-
form Resource Identifier (URI) Parameter Registry for the Session Ini-
tiation Protocol (SIP). RFC 3969 (Best Current Practice), December
2004. Updated by RFC 5727. 46

[74] HP. webOS Service API – Phone. https://developer.palm.com/
content/api/reference/services/phone.html (2011-05-02), 2011. 47

[75] Apple Inc. iOS Developer Library – UIApplication. http:
//developer.apple.com/library/ios/DOCUMENTATION/UIKit/

87

http://www.ibm.com/developerworks/linux/library/l-dbus/index.html
http://www.ibm.com/developerworks/linux/library/l-dbus/index.html
http://xmpp.org/extensions/xep-0286.html
http://xmpp.org/extensions/xep-0286.html
http://pda.etsi.org/exchangefolder/ts_123038v100000p.pdf
http://pda.etsi.org/exchangefolder/ts_123038v100000p.pdf
https://developer.palm.com/content/api/reference/services/phone.html
https://developer.palm.com/content/api/reference/services/phone.html
http://developer.apple.com/library/ios/DOCUMENTATION/UIKit/Reference/UIApplication_Class/Reference/Reference.html
http://developer.apple.com/library/ios/DOCUMENTATION/UIKit/Reference/UIApplication_Class/Reference/Reference.html
http://developer.apple.com/library/ios/DOCUMENTATION/UIKit/Reference/UIApplication_Class/Reference/Reference.html

Web Operating System for Modern Smartphones

Reference/UIApplication_Class/Reference/Reference.html (2011-05-
03), 2010. 47, 69

[76] Apple Inc. iOS Developer Library – Apple URL Scheme Refer-
ence – Phone Links. http://developer.apple.com/library/ios/
featuredarticles/iPhoneURLScheme_Reference/Articles/PhoneLinks.
html (2011-05-03), 2010. 47

[77] Microsoft. Windows Phone Development – PhoneCallTask.
http://msdn.microsoft.com/en-us/library/microsoft.phone.tasks.
phonecalltask(v=VS.92).aspx (2011-05-02), 2011. 47

[78] Google Inc. Android telephonymanager. http://developer.android.
com/reference/android/telephony/TelephonyManager.html (2011-05-
03), 2010. 47

[79] HTML Living Standard – Video conferencing and
peer-to-peer communication. http://www.whatwg.
org/specs/web-apps/current-work/multipage/dnd.html#
video-conferencing-and-peer-to-peer-communication (2011-05-
02), 2011. 47, 48

[80] Skype Limited. The Skype Public API. http://developer.skype.com/
accessories (2011-05-03), 2011. 48

[81] W3C. The Application Launcher API. http://dev.w3.org/2009/dap/
app-launcher/ (2011-05-02), 2011. 48

[82] Apple Inc. Mpvolumeview class reference. http://developer.
apple.com/library/ios/documentation/MediaPlayer/Reference/
MPVolumeView_Class/Reference/Reference.html (2011-04-15), 2010.
58

[83] Google Inc. Android settings. http://developer.android.com/
reference/android/provider/Settings.html (2011-04-15), 2010. 58

[84] Google Inc. Android settings.secure. http://developer.android.com/
reference/android/provider/Settings.Secure.html (2011-04-15),
2010. 59

[85] Google Inc. Android settings.system. http://developer.android.com/
reference/android/provider/Settings.System.html (2011-04-15),
2010. 59

88

http://developer.apple.com/library/ios/DOCUMENTATION/UIKit/Reference/UIApplication_Class/Reference/Reference.html
http://developer.apple.com/library/ios/DOCUMENTATION/UIKit/Reference/UIApplication_Class/Reference/Reference.html
http://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/Articles/PhoneLinks.html
http://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/Articles/PhoneLinks.html
http://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/Articles/PhoneLinks.html
http://msdn.microsoft.com/en-us/library/microsoft.phone.tasks.phonecalltask(v=VS.92).aspx
http://msdn.microsoft.com/en-us/library/microsoft.phone.tasks.phonecalltask(v=VS.92).aspx
http://developer.android.com/reference/android/telephony/TelephonyManager.html
http://developer.android.com/reference/android/telephony/TelephonyManager.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html#video-conferencing-and-peer-to-peer-communication
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html#video-conferencing-and-peer-to-peer-communication
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html#video-conferencing-and-peer-to-peer-communication
http://developer.skype.com/accessories
http://developer.skype.com/accessories
http://dev.w3.org/2009/dap/app-launcher/
http://dev.w3.org/2009/dap/app-launcher/
http://developer.apple.com/library/ios/documentation/MediaPlayer/Reference/MPVolumeView_Class/Reference/Reference.html
http://developer.apple.com/library/ios/documentation/MediaPlayer/Reference/MPVolumeView_Class/Reference/Reference.html
http://developer.apple.com/library/ios/documentation/MediaPlayer/Reference/MPVolumeView_Class/Reference/Reference.html
http://developer.android.com/reference/android/provider/Settings.html
http://developer.android.com/reference/android/provider/Settings.html
http://developer.android.com/reference/android/provider/Settings.Secure.html
http://developer.android.com/reference/android/provider/Settings.Secure.html
http://developer.android.com/reference/android/provider/Settings.System.html
http://developer.android.com/reference/android/provider/Settings.System.html

Web Operating System for Modern Smartphones

[86] HP. webOS Service API – System Services. https://developer.
palm.com/content/api/reference/services/system-services.html
(2011-04-15), 2011. 59

[87] Apple Inc. iOS Developer Library – UIDevice Class Ref-
erence. http://developer.apple.com/library/ios/documentation/
uikit/reference/UIDevice_Class/Reference/UIDevice.html (2011-05-
03), 2010. 63

[88] iPhoneHacks. Apple tells developers to remove ‘free memory’ feature
from iphone apps but.. iPhoneHacks, Aug 2009. 63

[89] Google Inc. Android android.os. http://developer.android.com/
reference/android/os/package-summary.html (2011-04-03), 2010. 64

[90] Google Inc. Android activitymanager. http://developer.android.
com/reference/android/app/ActivityManager.MemoryInfo.html (2011-
04-03), 2010. 64

[91] The PhoneGap project. PhoneGap Documentation – De-
vice. http://docs.phonegap.com/phonegap_device_device.md.html#
device.version (2011-05-04), 2011. 65

[92] Dzung Tran and Max Froumentin. The System Information API. The
System Information API - W3CWorking Draft 02 February 2010, 2010.
65, 66, 81

[93] Anssi Kostiainen. Battery Status Event Specification. Battery Status
Event Specification - W3C Working Draft 26 April 2011, 2011. 66

[94] Matt Buchanan. How multitasking works on a phone. Gizmodo, Apr
2010. 68, 70, 72

[95] Jason Kincaid. Bump now lets you swap app recommendations with
a tap. TechCrunch, Jan 2011. 70

[96] Jonathan Corbet Jonathan Corbet, Jake Edge. Kernel development.
LWN, Feb 2009. 70

[97] Mitch Allen. Palm R© webOSTM. O’Reilly Media, Inc., first edition,
2009. 72, 74

[98] Michal Zalewski. Same-origin policy. Browser Security Handbook, Mar
2011. 73

89

https://developer.palm.com/content/api/reference/services/system-services.html
https://developer.palm.com/content/api/reference/services/system-services.html
http://developer.apple.com/library/ios/documentation/uikit/reference/UIDevice_Class/Reference/UIDevice.html
http://developer.apple.com/library/ios/documentation/uikit/reference/UIDevice_Class/Reference/UIDevice.html
http://developer.android.com/reference/android/os/package-summary.html
http://developer.android.com/reference/android/os/package-summary.html
http://developer.android.com/reference/android/app/ActivityManager.MemoryInfo.html
http://developer.android.com/reference/android/app/ActivityManager.MemoryInfo.html
http://docs.phonegap.com/phonegap_device_device.md.html#device.version
http://docs.phonegap.com/phonegap_device_device.md.html#device.version

Web Operating System for Modern Smartphones

[99] Fabian Topfstedt Roland Ehle. Why we won’t enjoy html5’s video tag.
Gruppe, May 2009. 77

[100] Tom Leadbetter. The video element. HTML5 Doctor, Jun 2009. 77

[101] Rich Tibbett. Native webcam support and orientation events
– technology preview. http://my.opera.com/core/blog/2011/03/23/
webcam-orientation-preview (2011-05-20), Mar 2011. 78

[102] Google Inc. Repeated requests for permission are annoying. http:
//code.google.com/chrome/apps/docs/index.html (2011-05-20), 2011.
79

90

http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://my.opera.com/core/blog/2011/03/23/webcam-orientation-preview
http://code.google.com/chrome/apps/docs/index.html
http://code.google.com/chrome/apps/docs/index.html

	Introduction
	Purpose
	Objective
	Scope
	Method
	Background
	Web technology
	The Mobile Web
	Scripting
	User interaction
	Visualization
	Positioning
	Local storage
	Communication
	Multithreading
	Web applications
	Web operating systems and other solutions
	smartphone

	The Phone Book
	Previous work
	android
	webos
	w3c Contacts api
	phonegap

	Analysis
	Permissions
	Linking

	Result

	Synchronization
	Previous work
	webos
	android
	ios

	Analysis
	Result

	Messaging
	Previous work
	webos
	wac
	android
	maemo
	The w3c Messaging api

	Analysis
	Result
	Data types
	Service level
	Application level
	Examples

	Calls
	Previous work
	android
	Existing Standards

	Analysis
	Incoming calls
	Outgoing calls

	Result
	Data types
	Service level
	Application level
	Examples

	Settings
	Previous work
	Android
	webos

	Analysis
	Result

	System information
	Previous work
	iOS
	Android
	Windows Phone 7
	WAC
	PhoneGAP
	W3C and the System Information API

	Analysis
	Result

	Multitasking and Application handling
	Previous work
	iOS
	Android
	Windows Phone 7
	webos
	maemo

	Analysis
	Result

	Discussion
	Further Work
	Media capture
	Calendar
	Distributing applications
	Managing and browsing the local file system

	List of Figures
	Bibliography

