
Using OpenAPI 3 Specifications of the
5G Core to Generate Validators in Erlang

Using Open API 3 to generate Erlang code to validate HTTP
requests according to the network specifications

Master’s thesis in Computer science and engineering

DAVIDE DONATO

HEYU QIN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

Using OpenAPI 3 Specifications of the
5G Core to Generate Validators in Erlang

Using Open API 3 to generate Erlang code to validate HTTP
requests according to the network specifications

DAVIDE DONATO
HEYU QIN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

Using OpenAPI 3 Specifications of the 5G Core to Generate Validators in Erlang
Using Open API 3 to generate Erlang code to validate HTTP requests according to
the network specifications
DAVIDE DONATO, HEYU QIN

© DAVIDE DONATO, HEYU QIN, 2019.

Supervisor: John Hughes, Department of Computer Science and Engineering
Advisors: Egon Larsson and Anders Björsson, Ericsson
Examiner: Magnus Myreen, Department of Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Using OpenAPI 3 Specifications of the 5G Core to Generate Validators in Erlang
Using Open API 3 to generate Erlang code to validate HTTP requests according to
the network specifications
DAVIDE DONATO, HEYU QIN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Most of the 5G Core network components are virtualized and designed as REST-
ful APIs, communicating between each other by sending HTTP requests. These
requests are defined in the 3GPP 5G Core official specifications following the Ope-
nAPI 3 format. In this thesis we explore the current status of Erlang code generation
from OpenAPI 3 specifications and its use for validation in Ericsson’s 5G Core sys-
tem. The best candidate tool for the project was OpenAPI Generator, although it
required several fixes to be used. Based on Ericsson’s internal test environment, we
show that it is possible to integrate the generated code for request validation in it.
The integration was successful as it found two bugs in the system, but it highlighted
the lack of support for some advanced features. These shortcomings indicate that
Erlang code generation from OpenAPI 3 is good enough for testing but not for
production.

Keywords: 5G Core, OpenAPI 3, Erlang, code generation, validation, HTTP re-
quests, integration, thesis.

v

Acknowledgements
First we would like to thank our supervisor in Chalmers, Prof. John Hughes, for
his continuous help and guidance. His feedback always inspired us to come up with
better ideas and directed us towards the right way.

We would like to express our sincere gratitude to our advisors in Ericsson, Anders
Björsson and Egon Larsson, who kindly helped us to get familiar with this thesis
topic, generously shared their knowledge about the testing tools and systems, and
enlightened us when we had trouble proceeding the thesis. Many thanks also to
Daniel Karlsson, our manager during this time, for giving us the opportunity to
study and work in Ericsson for this thesis project.

I, Davide Donato, want to dedicate this work in memory of my father Marco, who
gave his everything to let me get where I am now, and in honor of my mother Chiara
and grandmother Delia, who helped me finding the strength to keep going forward.
I also want to thank my family and friends, for always cheering for me: Patrizia,
Francesco, Clara, Vanni, Jacopo, Filippo, Marica, Daniele, Valentina, Viola, Mar-
tina, Antonio, Giovanni, Andrea G, Arianna S, Daniele G, Daniele Z, Federico R,
Francesco C, Luca F, Matteo G, Mattia M, Pietro P, Pietro T, Eleonora F, Elisa
P, Eva P, Filippo M, Giacomo R, Marco Alessandro C, Mattia C, Tobia Z, Alina
D, Nils N, Denis F, Emy P, Alejandro V, Edin T, Ce L, Mengxuan L, Congrui L,
Hua K, Jieer C, Tamami M, Florian W, India L. My old workmates at Intercom
Solutions, who supported me even though that meant me leaving. A special thank
you to Julian and Annika, who welcomed me in Sweden and treated me as part of
the family. Heyu, for putting up with me for two years of working together. Oleksii,
for being a trusted friend always ready to help. And finally, thank you Smaragda
for being always encouraging and believing in me.

Davide Donato, Heyu Qin, Gothenburg, September 2019

vii

Contents

1 Introduction 1
1.1 Research Question . 2
1.2 Limitations . 3
1.3 Contributions . 3

2 Background 5
2.1 5G Core . 5

2.1.1 Service-Based Architecture . 5
2.1.2 Network Functions of 5GC . 6
2.1.3 Example Scenario . 8

2.2 Related work . 9
2.2.1 Code generators . 9
2.2.2 Golang generation from OpenAPI 2 9
2.2.3 Golang generation from OpenAPI 3 10

3 Approach 13

4 Tools 15
4.1 The OpenAPI 3 Specification . 15

4.1.1 Root objects . 15
4.1.2 Examples . 17

4.2 OpenAPI Generator . 21
4.2.1 The generator’s structure . 21
4.2.2 Erlang code generator . 23

5 Details 25
5.1 Analysis of the generator . 25

5.1.1 Testing base functionalities . 25
5.1.2 Initial fixes for the OpenAPI Generator 28

5.1.2.1 First error: export of undefined function 28
5.1.2.2 Second error: syntax errors 29
5.1.2.3 Third error: unbound variables 29

5.1.3 Generator’s reorganized structure 32
5.1.4 Specification validation . 33

5.1.4.1 Regex and ENUMs 33
5.1.4.2 List Parameters . 36
5.1.4.3 Names mismatch . 38

ix

Contents

5.2 Integration in an existing system . 39
5.2.1 Tutorial - Integrating into an existing system 40

5.2.1.1 Our case: integration in GTT 42
5.2.2 Problems with integration and improvements 43

5.2.2.1 Customized body reader 43
5.2.2.2 Callback module . 44

6 Results 47
6.1 Results of the integration . 47
6.2 Discussion . 49
6.3 Limitations . 50

6.3.1 Incomplete specifications . 50
6.3.2 Limited functionality of the generator 50
6.3.3 Generated code’s quality . 52

7 Conclusion 53
7.1 Observations . 54

x

1
Introduction

The 5G Core is the newest core network for broadband internet access, characterized
by a higher data rate but most importantly, a considerably reduced latency. It is
designed by 3GPP, a standard organization which focus on writing the specifications
for telecommunication [1]. Compared to the LTE network core, there have been rad-
ical changes in the core’s design philosophy. The newest system uses a Service Based
Architecture (SBA), where all the network functions are integrated as virtualized
nodes. These nodes are designed as RESTful APIs [38], meaning that the func-
tionalities they provide are accessed through HTTP requests and executed without
any pre-existing context. This design has been adopted as it promotes modularity,
reusability and self-containment of the network functions [33] [13].

There are a lot of intricate communications happening among the core’s nodes. The
components communicate with each other by sending HTTP requests to the paths
defined in each network function’s RESTful API, granting access to their operations
[34]. The paths, the linked HTTP methods, and the operations of the network func-
tions are described in detail through OpenAPI 3, a specification standard specialized
in defining RESTful API.

Maintaining such a complex system comes with a lot of difficulties. Any change
of the specification can potentially require a manual reconfiguration of the whole
system, which is very time-consuming and prone to bugs. That is what makes code
generation so appealing, as it is a reliable and efficient tool for adapting the system
automatically to the newest specifications.

For example, code 1.1 displays an extract from the 3GPP specifications of the
Network-function Repository Function (NRF) [14]. This GET request [15] alone
has 37 different parameters, each with their own distinct definition. The first
parameter ‘target-nf-type’ uses an externally defined schema ‘NFType’ in file
‘TS29510_Nnrf_NFManagement.yaml’, making it difficult for the developers to fol-
low the specifications. This kind of reference is very frequently used, which creates
a chaotic reading experience jumping back and forth between files. To handle the
requests, the developer also needs to manually implement and verify all the param-
eters. Although simple, this task can be very laborious and repetitive. A lot of
parameters might be very similar to each other, with just slight differences. There-
fore, it requires separate but almost identical handling functions which can easily
introduce bugs through their highly repetitive yet different code.

1

1. Introduction

openapi: 3.0.0
info:

version: '1.1.0.alpha-1'
title: 'NRF NFDiscovery Service'

... servers and security information
paths:

/nf-instances:
get:

summary: Search a collection of NF Instances
operationId: SearchNFInstances
tags:

- NF Instances (Store)
parameters:

- name: target-nf-type
in: query
description: Type of the target NF
required: true
schema:

$ref: 'TS29510_Nnrf_NFManagement.yaml#/components/schemas/NFType'
... 35 parameter definitions
- name: If-None-Match

in: header
description: |-

Validator for conditional requests,
as described in IETF RFC 7232, 3.2

schema:
type: string

responses:
... responses definition

Code 1.1: Extract from the 3GPP specifications of the 5G Core’s NRF Discovery.

On the other hand, by using code generation it is possible to greatly reduce both
the amount of work and the risk of bugs, allowing the system developers to focus
on more critical parts such as the logic handlers. To follow this idea, an analysis
of the generated code is required to understand how to integrate it into an existing
system. To ensure that the generated code can be used without problems, its quality
needs to be evaluated. An important part of it is to confirm up to what level the
generated code covers the specification, since OpenAPI 3 provides a very rich and
precise description of the services that might be hard to implement with code.

1.1 Research Question

• What tools are good candidates for generating Erlang code from OpenAPI 3
specifications? Does the generator produce quality code?

• How can the generated code be integrated into an existing system? Can it be
integrated without major changes?

2

1. Introduction

• What coverage of the specifications can be generated by the code generator?
Are there features that can be described by OpenAPI 3.0 but cannot be gen-
erated?

1.2 Limitations

• Ericsson is currently implementing the 5G Core in Erlang, so this project will
only focus on code generation from OpenAPI 3 to Erlang. The code generator
might give different results with other target languages.

• The specifications that are used for generation in this project are mainly from
the 3GPP 5G Core specifications. In particular, we will only consider the
components which have been implemented in the company’s system.

• We will focus on using the generated code for HTTP request validation. It
is the section of the code which is the most dependent on the details of the
specifications and it would be the most convenient part to integrate in an
already existing system.

• For evaluating the correctness of the generated code, we will only apply it
to validate HTTP requests in the system to see if the validation gives the
expected result.

1.3 Contributions

• Currently, the only tool available for code generation in Erlang from OpenAPI
3 is OpenAPI Generator. Even after our work, it is still lacking support
for some widely-used advanced features. The shortcomings make the Erlang
generator too immature for generating complete production-level code, but it
has enough functionalities to be used for testing.

• We confirmed the generated code for validation can be integrated into an ex-
isting system with minimal changes. Integrating generated code for validation
can find issues that are not identified by manually written test cases.

• The Erlang generator has been improved as it now supports features that are
used extensively by the 3GPP 5G Core specifications. Also, our added func-
tionalities, a customized body reader and callback module, make the generated
code flexible for integration in systems with varying requirements.

3

1. Introduction

4

2
Background

2.1 5G Core

The 5G Core (5GC) is the core/backbone network [44] [43] of 5G, the newest cellular
network for broadband access. The 5GC has been redesigned from the previous
generations to be “cloud native”, inheriting many of the technology solutions used
in cloud computing and virtualizing its traditional network elements. For instance,
Network Functions Virtualization technologies [39] are applied in 5GC, which blur
the physical boundaries between traditional network components. This redesign
aims to make the 5GC open and flexible enough to meet the diversity of service and
business requirements of the 5G era [19]. To achieve this, the 5GC Network has
been based on what is called “Service-Based Architecture” (SBA).

2.1.1 Service-Based Architecture

Service-Based Architectures (SBA) provide a modular framework from which com-
mon applications can be deployed using components of varying sources and suppliers
[35]. 3GPP defined an SBA for 5GC Network and it is specified in 3GPP technical
specification 23.501 [2]. Figure 2.1 is the representation of SBA. In this representa-
tion, control-plane functions, shown in the blue box, are authorized to access each
other’s services via Service Based Interfaces (SBI) [5]. This is enabled by one key
Network Function (NF) of SBA called Network Repository Function (NRF). NRF
provides NF service registration and discovery, allowing NFs to identify appropriate
services in one another [12]. This new architecture provides much more flexibility
for adding or modifying services that fulfill the network requirements of the vast
and diverse 5G use cases. It becomes possible for a component to connect to other
components without introducing specific new interfaces or modifying existing ones.

In addition, SBA not only makes 5GC more flexible but also more open, i.e. mak-
ing 5GC Network functionalities available to 3rd parties such as service providers.
This service is provided by the Network Exposure Function (NEF). Exposure of
functionality is a very common concept used for web-services which are offered over
the internet. For this reason, 3GPP decided to use the REST architecture design
paradigm, which describes the design of distributed applications and more specifi-
cally, Application Programming Interfaces (APIs) [34]. Thus, the interface provided

5

2. Background

NSSF

Network slice
selection

Network Exposure
Function (NEF)

REST API Network
Repository Policy control Application

User Data
Management

Authentication
server

Access & Mobility
Management

Session
Management

UE

User Equipment

NG-RAN

Next Generation –
Radio Access

Network

User Plane
Function

Data Network

N1

Service-Based
Architecture

REST API

NRF PCF UDM AF

AUSF AMF SMF

UPF DN

N2

N3

N4

N5Uu

3rd Party
Service 1 Service 2

Figure 2.1: Serviced Based Architecture of the 5G Core network.

by the NEF to 3rd party should be based on RESTful APIs, as shown in figure 2.1.

After deciding to use RESTful APIs for 3rd party functionality exposure, 3GPP
also chose to use RESTful APIs over SBI. Therefore, the internal communications
within 5GC Network have the same principles as the functional exposure, allowing
a harmonized and comprehensive technological approach of the complete 5G system
[34]. RESTful APIs nowadays are intending to be designed by OpenAPI Specifi-
cation, which is a specification standard for interface files to describe and visualize
RESTful web services. The newest version of OpenAPI Specification is OpenAPI
3. More information and details will be introduced in Chapter 4. Furthermore, the
development of web-based technologies described through OpenAPI are supported
by development tools, specification tools, code generators, etc.

2.1.2 Network Functions of 5GC

To understand more about the 5GC Network, it is very important to know the NFs
that are related to the core network. Some of them are very similar to their corre-
sponding functions in the previous generations’ core networks. This is because the
network has some basic functions such as: communicating with the User Equipment
(UE), storing its subscriptions and credentials, allowing access to external networks
and services, providing security, and managing the network access and mobility.
Moreover, there are some new functions which are needed for enabling the new
network paradigms such as slicing and service-based networking [11].

6

2. Background

The main 5G NFs are listed below (note that not all functionalities of each function
are presented): [5] [11] [14]

• Access and Mobility Management Function (AMF): supports regis-
tration management, connection management, mobility management, access
authentication and authorization, security context management.

• Network Slice Selection Function (NSSF): supports selection of the Net-
work Slice instances to serve the UE. It also determines the allowed Network
Slice Selection Assistance Information (NSSAI) and determines the AMF set
to be used to serve the UE. NSSF is the one of the new functions that is not
presented in previous core networks.

• Session Management Function (SMF): supports session management ac-
cording to network policy (including session establishment, modification, and
release), UE IP address allocation and management, QoS and policy informa-
tion delivery to RAN via the AMF, and traffic steering configuration for User
Plane Function (UPF) for proper traffic routing.

• User Plane Function (UPF): supports packet routing and forwarding,
packet inspection, and QoS handling. UPFs can be deployed in various con-
figurations and locations, according to the service type.

• Policy Control Function (PCF): supports a policy framework incorpo-
rating network slicing, roaming, and mobility management. It also provides
policy rules to Control Plane functions and accesses subscription information
for policy decisions in UDR.

• Authentication Server Function (AUSF): acts as an authentication server
and stores keys.

• Unified Data Management (UDM): supports generation of Authentica-
tion and Key Agreement (AKA) credentials, user identification handling, and
access authorization. Stores subscribers’ data and profiles.

• Network Exposure function (NEF): supports exposure of capabilities and
events. It works as an API gateway that allows secure provision of informa-
tion from external applications to 3GPP network and provides translation of
internal/external information.

• NF Repository function (NRF): supports service registration and discov-
ery function so that NFs can discover each other and communicate via APIs.
It maintains NF profile and available NF instances. NRF is one of the new
functions that is not presented in previous core network.

• Application Function (AF): supports application influence on traffic rout-
ing, accessing NEF, interaction with policy framework for policy control.

7

2. Background

2.1.3 Example Scenario

This section will depict an example scenario that has a very common pattern of
communication between services within the 5G SBA. This example can also exem-
plify how RESTful principles are used by 3GPP. Note that the given example is
simplified to just give an overview.

Let’s consider a user who wants to use one of the services, e.g. to browse the web.
The involved network functions in this procedure are AMF, SMF, and NRF. AMF
serves as the single-entry point for a UE for all its communications, so when the user
starts his/her equipment, AMF is responsible for assigning a SMF which manages
the user’s session context. Therefore, the AMF needs to discover a suitable and
available SMF for the service. This is where the NRF is needed as the SMF is
obtained via the Service Discovery procedure performed between the AMF and the
NRF [34]. However, for the discovery to be processed successfully, the SMF needs to
be registered with the NRF in advance. These steps mentioned above are illustrated
in figure 2.2.

3GPP TS 23.501 defines the roles of the service consumer and the service producer
[34]. The service consumer is the network function which sends requests for service,
while the service producer is the network function which exposes/provides the re-
quested service. So, in this example, the AMF is the service consumer and the SMF
is the service producer. The three different procedures in this scenario are:

1. Service Registration: the SMF registers its services that will be provided
to NRF.

2. Service Discovery: the AMF sends the request to the NRF for a suitable
and available SMF. In return, the AMF receives the address of the SMF which
was registered in step 1.

3. Session Establishment [34]: the requested session is established on the con-
trol plane level by the AMF via the SMF.

Figure 2.2: Example Scenario of SBA Service Framework.

8

2. Background

2.2 Related work

In this section, we will introduce code generation and the advantages that it brings.
With it, we will also mention the previous attempt of the company on generating Go
code, from both OpenAPI 2 and OpenAPI 3. This is meant mainly as an addition
to motivate both the project itself and some of the choices taken during the project.

2.2.1 Code generators

A code generator is a program which performs a model-to-text transformation that
ensures the automatic transformation of a model into code [42]. The concept of
code generation originated with compilers, but it then diverged into two different
branches: compilers, which produce machine-executable programs from higher level
programming languages, and automatic programmers, which produce user-readable
code from specifications [37].

Code generation gained popularity in software organizations as a tool to speed up
software development. Normally, maintaining a system is a challenging process due
to the indirect connection between system specification and implementation. Also,
some optimizations of the code might be done by taking advantage of some undoc-
umented knowledge about the system, making it very hard to understand the final
code without that additional information. Abstraction of code helps mitigating this
issue, since it allows the developer to focus on structuring a high-level model or
template of the program logic rather than the implementation details. The abstrac-
tion is then given as an input to a code generator, which provides the corresponding
implementation as a result. On top of promoting a more abstract implementation,
code generation further simplifies maintenance of the source code since a change of
specifications would just require regenerating and replacing the code [3].

There are many techniques to generate code, but a popular one is template-based
code generation (TBCG). What makes it appealing is not just the easier development
of code generators themselves, but also its favor towards the “write once, produce
many” principle. Each template is a mixture of a static part, which is left unchanged,
and a dynamic part, which is replaced by the template engine with the information
extracted from the input. The core concept of TBCG is to take advantage of these
dynamic components, iteratively expanding them with the available data into the
final code [42]. This technique is the one adopted in the code generators mentioned
in this thesis.

2.2.2 Golang generation from OpenAPI 2

Before the introduction of OpenAPI 3, Ericsson had already tried to generate Go
code from OpenAPI 2, the previous version of OpenAPI Specification. The most
popular code generators for Go were Swagger Codegen and Go Swagger. However,

9

2. Background

the Swagger Codegen project had very poor performance as it could only generate
a go client which only supported flat models (models that can only represent simple
relationship between data). The main reasons why Swagger Codegen could not work
as expected are as follows [18]:

• Go’s limited type system does not fit well in the model of Swagger Codegen

• Go’s idea of polymorphism does not reconcile very well with a tool that was
designed for languages which support inheritance.

Compared to Swagger Codegen, Go Swagger could provide better performance and
more complete features from the specifications for the code generation, although it
still had some obvious shortcomings. One of the unsupported cases is the encoding
and the decoding of complex types, like lists of unions of lists. Another major
limitation was the lack of some essential properties in OpenAPI 2, meaning manual
implementation was required for specific functionalities. One of these is API with
‘callbacks’, which are widely used by core network components as they allow the
server to act as a client and the client to act as a server. A typical example is a
subscription functionality that would enable, for instance, notifications about events
that a user subscribes for in a service.

2.2.3 Golang generation from OpenAPI 3

With the introduction of OpenAPI 3, 3GPP decided to use it as the interface def-
inition language for designing the SBA of the 5GC network. The new features of
OpenAPI 3 could be applied to describe precisely the complex structures and in-
teractions needed in the Core, which was not fully possible before (e.g. callbacks).
Ericsson tried to work on Golang generation from the new specifications with their
available tools, but there was not enough support for this use as Go Swagger does
not support OpenAPI 3.

After looking into other OpenAPI 3 related projects, Ericsson found a Go command
line tool, named Google Gnostic, which could convert JSON and YAML OpenAPI
specifications from and to equivalent Protocol Buffer representations1. Gnostic’s
Protocol Buffer models could be used to generate code which included data struc-
tures with explicit fields for each of the elements in an OpenAPI description. With
this feature, Gnostic could read OpenAPI descriptions into designated data struc-
tures, report errors, resolve internal dependencies, and write the results into a binary
form that could be used in any language supported by the Protocol Buffer tools.
The generator flow is shown in figure 2.3.

With more research on the generation process, it was revealed that many OpenAPI
features, including the new features, were not fully supported by Gnostic. The gen-
eration still did not cover complex data types and callbacks. The problematic area
is marked in figure 2.3. It is shown that the Surface API-Model and Gnostic Go

1Protocol buffers are Google’s language-neutral, platform-neutral, extensible mechanism for
serializing structured data

10

2. Background

Generator are the components that could not provide all the needed functionali-
ties. There were two options to improve this generation process: patch these two
components to add the missing features (figure 2.4) or make a new Go code gener-
ator which would work as expected and replace the incomplete components with it
(figure 2.5). The first option would require the developers to follow the structure
of these components whenever a new feature was added. The second option did
not have this restriction, but it required a new coupled framework. In the end, the
company chose second option, implementing their own generator to make it capable
of supporting callbacks and other needs.

OpenAPI 3.0

Markup spec

Schema

Generator

OpenAPI3.0

Spec

Json

Gnostic
Compiler

Gnostic

Executable

OpenAPI 3.0

Protobuf

GO code

Surface
API-Model

Gnostic Go
Generator

GO Code
Server/Client

Model

Protobuf

GO code

Not good enough

Nudm API

3gpp Spec

Figure 2.3: Generator flow for Golang code generation with Gnostic

11

2. Background

OpenAPI 3.0

Markup spec

Schema

Generator

OpenAPI3.0

Spec

Json

Gnostic
Compiler

Gnostic

Executable

OpenAPI 3.0

Protobuf

GO code

Surface
API-Model

Gnostic Go
Generator

GO Code
Server/Client

Model

Protobuf

GO code
Nudm API

patch

Figure 2.4: Option 1 to fix the generator

Schema

Generator

OpenAPI3.0

Spec

Json

Gnostic
Compiler

Gnostic

Executable

OpenAPI 3.0

Protobuf

GO code

Ericsson
Go Code generator

GO Code Server/ClientNudm API

OpenAPI 3.0

Markup spec

Figure 2.5: Option 2 to fix the generator

12

3
Approach

The main idea of this project is to select an appropriate code generator that sup-
ports Erlang generation from OpenAPI 3, see whether it is possible to integrate its
generated code into an existing system, and understand which changes are required
to make it work.

For the selection of a generator, we need to make sure that it satisfies a set of
essential requirements, meaning that it should at least be able to generate runnable
code. The next step from there is to analyze the support of OpenAPI 3 for both
the problematic features, such as ENUMs and regular expressions, and advanced
features, such as composed schemas and callbacks. In the case there is no generator
meets all the requirements, we will select the least problematic one and refine it to
fit the needs.

Once the selected generator works as expected, the rest of the project will be about
integrating the generated code into an existing system with minimal changes. For
this project we used GTT, Ericsson’s internal test tool that provides a simulated
network for testing the implementation of the network’s nodes.

The logic inside of GTT follows a standard HTTP server structure, as shown by
the green boxes in figure 3.1, which is based on the Erlang’s web server Cowboy.
The server is configured for each 5G core component with the corresponding paths
defined in the 3GPP specification. Each path has a handler function assigned to
it, which is responsible for collecting the request’s data and passing it to the logic
handler. For example, consider the specification for NRF Network Function Dis-
covery (NFDiscovery). When added to GTT, its server’s router in Cowboy will
redirect the GET requests sent to the path ‘/nf-instances’ to a handling func-
tion ‘nrf_nf_instances_handler’. The handler will collect the data from the
GET request and pass it to its corresponding logic handler.

After analyzing the structure, we realized two things: first, the server and its router
were built according to the company’s needs, so we cannot replace them with a
generic generated server. Second, the logic handler cannot be generated as it de-
pends on what the programmers want to do with the received request. With these
observations, the request handlers become the best place to integrate the generated
code.

13

3. Approach

Figure 3.1: Integration of the generated code into GTT.

While examining the generated code, we considered that the most suitable compo-
nent for integration would be the validation for requests (yellow box in figure 3.1). If
the validation is integrated into the handler, invalid requests can be discarded before
passing data to the logic handler, while valid requests stay unaffected. In this way,
the integration would not influence the existing flow of the system. Furthermore,
the content of validation functions depend exclusively on the specifications and can
have very repetitive code, making them an ideal candidate for code generation.

14

4
Tools

4.1 The OpenAPI 3 Specification

The OpenAPI Specification (OAS) [31] defines a standard, language-agnostic in-
terface for RESTful APIs. It allows both humans and computers to discover and
understand the capabilities of a service without access to its source code or docu-
mentation. When properly defined, a consumer can understand and interact with
the service with a minimal amount of knowledge about the implementation logic.

An OpenAPI document is a JSON [32] object represented through the YAML [4] or
JSON format which conforms to the OAS. These are based on the JSON Schema
Specifications with some modifications aimed to specialize its use towards the de-
scription of RESTful APIs.

4.1.1 Root objects

There are 8 root objects in the OpenAPI 3.0 Specification: ‘openapi’, ‘info’,
‘servers’, ‘paths’, ‘components’, ‘security’, ‘tags’ and ‘externalDocs’.
Among these, only ‘openapi’, ‘info’ and ‘paths’ are required [28]. The content
of each object is predefined by the OAS to standardize and optimize the represen-
tation of RESTful HTTP applications. The section in which programmers have
the most freedom to define their own structures is on the definition of parameters
and contents for both requests and responses. These definitions allow to deeply
customize APIs based on the service’s needs while maintaining a standardized in-
teraction between applications.

openapi
The semantic version number of the OAS. The patch version should not be consid-
ered by tooling, making no distinction between ‘3.0.0’ and ‘3.0.1’.

info
The ‘Info Object’ [22] provides metadata about the API. It requires the definition
of the title and the version of the API, but it can also contain optional information
such as contact information, license, terms of service and a description.

15

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#info-object

4. Tools

servers
An array of ‘Server Objects’ [30] which define the URLs of the target hosts. The
URLs may either be absolute, referring to an external host, or relative, referring to
a host which can be found in the same location of the OAS document. It is also
possible to define in the object additional variables needed by the host such as ports
or default paths.

paths
The ‘Paths Object’ [27] is the heart of the APIs definition as it is where the API’s
functionalities and their relative paths are defined. Each path is described by a
‘Path Item Object’ [26] which lists the available REST ‘Operation Objects’
[24] (HTTP request methods) and describes their individual behavior. OpenAPI
defines a unique operation through a combination of path and HTTP method: this
means that two distinct operations with the same HTTP method under the same
path are not allowed. For each operation it is possible to define the expected param-
eters and their locations, the body of the request, and all the expected responses.
It is also possible to redefine the operation’s host and even mark the presence of
callbacks, which are a collection of ‘Operation Objects’ themselves.

components
The ‘Components Object’ [21] holds a set of reusable objects that can be referenced
through the property ‘$ref’ followed by the object’s path. These references can be
both from the same file or an external file, and they follow the pattern

$ref: '[path/to/file]#/components/<object path>'

If ‘[path/to/file]’ is excluded, then the path will refer to the ‘components’
defined in the same file. The defined objects have no effect on the API unless they
are explicitly referenced from properties outside of the ‘Components Object’.

security
A list of security mechanisms used across the whole API. They can be specialized
at the operation level if needed, which in that case will override the global security
definition only for the single operation. Although it is possible to define multiple
‘Security Requirement Objects’ [29], only one of them needs to be satisfied to
authorize a request.

tags & externalDocs
Components used mainly to add metadata and information to the API. The ‘Tag
Objects’ may also be used to force a parsing order on the parsing tool.

16

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#server-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#pathsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#componentsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#securityRequirementObject

4. Tools

4.1.2 Examples

This section illustrates the main features of OpenAPI 3 used by 3GPP in the 5GC
specifications through three examples. Their purpose is to give an overview of what
specifications might look like and what it is necessary to know when writing your own
specifications. For the scope of this project, it is not necessary to know OpenAPI
3 in detail. However, having an idea of how they are defined might be useful to
understand better some issues described in the following chapters.

To avoid redundancy between examples, we will only highlight the content of the
‘paths’ object, which would be included in the specification of code 4.1. Normally
the schemas are defined under components and then referenced through the ‘$ref’
object. Nevertheless, in the examples, they will be inlined for clarity. For code
generation it is better to avoid inline definitions for complex objects and define
them under ‘components’. This ensures that every object has a unique identifier
and allows the generator to build reusable models more easily in the target language.

openapi: '3.0.0'
info:

version: 1.0.0
title: Example

servers:
- url: http://localhost:8001/

================
paths definition
================
components: # List of reusable user-defined objects

schemas: # Category of the objects
Message: # User defined unique identifier

type: object # Type of the object
properties:

message: # Locally defined unique identifier of the property
type: string
pattern: '^[a-zA-Z0-9]*$'

required: [message] # List of the object's required properties
responses:

'200':
description: Expected response to a valid request
content:

application/json:
schema:

$ref: '#/components/schemas/Message'
DefaultResponse: # Only description is required

description: unexpected error

Code 4.1: The skeleton for our examples of OpenAPI Specifications. It is missing
the definition for the ‘paths’ object, which will be defined separately for each
example.

17

4. Tools

Regex and ENUM values

Code 4.2 describes the path ‘/regex-enum’ which expects a GET request with
two required parameters in query, ‘pin’ and ‘optionParam’. The parameter
‘pin’ is a string which follows the pattern ‘NNN-NN-NNNN’, where ‘N’ is any digit
from 0 to 9. The parameter ‘optionParam’ is also a string but it can only have
‘first’, ‘second’, or ‘third’ as value. After sending a well-formed GET request
to ‘<host>/regex-enum’ we expect either of these two replies: a successful code
’200’ with a ‘Message’ as response body or a default response. We can find the
definitions for Message and the responses in ‘components’ of code 4.1.

In this case we expect values through the ‘parameters’ object, which is an array
of ‘Parameter Object’ [25]. Each of these objects requires the name and the
location of the parameter, which can be any among ‘query’, ‘header’, ‘path’, or
‘cookie’. There are plenty of parameter-specific properties, but the most frequent
ones are whether it is required (it is mandatory and set to true if the location is in
‘path’) and what is the schema for the object’s value.

It is not possible to pass values with complex schemas through path parameters, so
the values are restricted to simpler types such as lists of base types, objects, and
base types. For lists and objects there is the option ‘explode’, which generates
separate parameters for each value of the array or key-value pair of the map. This
behavior is set as default for ‘query’ and ‘cookie’ parameters.

paths:
/regex-enum: # Relative path

get: # Request method
operationId: TestRegexEnum # This GET operation's unique ID
parameters: # Array of expected parameters

- name: pin # Name of the parameter
in: query # Location of the parameter
required: true
schema: # pin is a string that follows a regex pattern

type: string
pattern: '^[0-9]{3}-[0-9]{2}-[0-9]{4}$'

- name: optionParam
in: query
required: true
schema: #optionParam must have one of the listed values

type: string
enum: [first, second, third]

responses: # Expected responses from the current operation
'200':

$ref: '#/components/responses/200'
default:

$ref: '#/components/responses/DefaultResponse'

Code 4.2: An example of request which expects parameters that follow regex
patterns or ENUM values.

18

4. Tools

Callbacks

The ‘callbacks’ object is one of the latest additions to OpenAPI 3. It allows
programmers to define the list of callbacks linked to the current request and specify
which parameters they are related to.

Code 4.3 could represent the requests required for building a subscription service.
After receiving a GET request with the ‘callbackUrl’ parameter, the server can
then send callback requests to the received URI. This kind of interaction can be
described through the ‘callbacks’ property, a list of ‘Callback Objects’ [20]
related to the original request.

The definition of a ‘Callback Object’ is very similar to the one of a ‘Path Item
Object’, but it defines its path differently. A ‘Path Item Object’ has a predefined
explicit path, while a ‘Callback Object’ references a variable containing a URI.
Each ‘Callback Object’ is also characterized by a unique identifier, normally the
name of the event. In code 4.3 we can see that the callback is identified with the
ID ‘onTopicUpdate’ and it uses the expression ‘$request.query.callbackUrl’
as path to reference the query variable ‘callbackUrl’.

paths:
/subscribe:

get:
operationId: TestCallback
parameters:

- name: callbackUrl
in: query
required: true
schema:

type: string
format: uri

responses: # ... same as Regex & Enum Example
callbacks:

onTopicUpdate: # Unique identifier of the callback object
'{$request.query.callbackUrl}': # Received URL

post:
requestBody:

description: subscription payload
content:

application/json:
schema:

type: object
properties:

notification:
type: string

required: [notification]
responses: # ... same as Regex & Enum Example

Code 4.3: Callbacks define the requests that are expected by a received URL for
a callback operation.

19

4. Tools

Complex data types

Code 4.4 highlights another new feature of OpenAPI 3, the support for polymor-
phism and combination of schemas. This is introduced by the keywords ‘oneOf’,
‘anyOf’, and ‘allOf’, which validate the value respectively against exactly one of,
one or more of, or all the subschemas defined or referenced in them [40].

Code 4.4 expects a POST [15] request, so most of the data is passed through the
request body. Generally, the request body’s ‘content’ is described through one or
more ‘Media Type Objects’ [23], where each of them is a mapping of a media type
string to its schema. For example, in code 4.4 ‘application/json’ is mapped to
an inline object schema.

As the media type is ‘application/json’, its schema needs to have a set of label-
value pairings so that a JSON can be formed. Because of this, the “root” schema
must be of type ‘object’. This object is expected to have either (oneOf) a username
or an email AND (allOf) at least (anyOf) a password, a pin, or both. The responses
can be either the same as in code 4.2 or customized with alternative definitions.

paths:
/complex-data:

post:
operationId: TestComplexData
requestBody:

content:
'application/json':

schema:
type: object # We expect a JSON object...
properties: # ... with these properties

username:
type: string

email:
type: string
format: email

password:
type: string
format: password

pin:
type: string
pattern: '^[0-9]{3}-[0-9]{2}-[0-9]{4}$'

allOf: # All of the properties need to be met
- oneOf: # Exactly one property must be met

- required: [username]
- required: [email]

- anyOf: # At least one property must be met
- required: [password]
- required: [pin]

responses:
... same as Regex & Enum Example

Code 4.4: The definition of a request that expects a complex data structure, in
this case an object with several properties and variable requirements.

20

4. Tools

4.2 OpenAPI Generator

The richness of OpenAPI can be used for purposes other than just providing a de-
tailed description of a web API’s functionalities. By taking advantage of its strict
structure, it is possible to build tools that generate documentation and functioning
code from OpenAPI documents. Code generation from OpenAPI Specifications is
quite powerful as it can produce several server components in just a few seconds
without the risk of human error. This shifts the focus on to the design of specifica-
tions rather than fixing the existing implementation.

While there are plenty of code generation tools from OpenAPI specifications [9], we
consider two in particular because of their potential capability of generating Erlang
code: Swagger Codegen [41] and OpenAPI Generator [7]. The first one is an open-
source tool developed and supported by SmartBear, while OpenAPI Generator is a
fork of the project maintained by the community.

Although very similar in structure, OpenAPI Generator has more contributions due
to its community-driven nature, resulting in better and more frequent maintenance.
For this reason, several languages that are not supported by Swagger Codegen for
OpenAPI 3, are supported by OpenAPI Generator. Erlang is one of them, as Swag-
ger Codegen can only generate Erlang code from OpenAPI 2 specifications. This
limits us to use OpenAPI Generator for the rest of the project.

4.2.1 The generator’s structure

Most of the generator’s work is handled by two classes: ‘DefaultGenerator.java’
and ‘DefaultCodegen.java’. The first class is dedicated to managing the global
configuration of the generator, handling the file generation and parsing the input
file with the external library ‘swagger-parser’. The second class processes the
parsed YAML/JSON file so that it can be used for generation.

It is possible to add support for a new language to the code generator by extend-
ing ‘DefaultCodegen’. The subclass should override the encoding functions and
adapt them to the target language’s syntax and conventions. For example, it needs
to make sure that variable names in Erlang start with an uppercase letter. Such
subclasses are classified into clients and servers, ensuring the separation between
the two architectures as required by the RESTful guidelines. Finally, they link the
language-specific templates that are used to generate code.

The template files are written in the logic-less (it does not provide any statement to
build the program’s logic), templating language Mustache [45]. Each file is a combi-
nation of the target language’s code and Mustache tags, where the target language
builds the program’s logic and the tags are expanded using the values provided in a
hash or object. Each template can be used to produce one or multiple files: for ex-
ample, ‘model.mustache’ of the Erlang client is used to create one Erlang module
for each user-defined schema that has been referenced through ‘$ref’ in the input

21

4. Tools

specification.

1 {{#apiInfo}}{{#apis}}{{#operations}}{{#operation}}
2 request_params('{{operationId}}') ->
3 [{{#allParams}}{{^isBodyParam}}
4 '{{baseName}}'{{/isBodyParam}}{{#isBodyParam}}
5 '{{dataType}}'{{/isBodyParam}}{{#hasMore}},{{/hasMore}}
6 {{/allParams}}];
7 {{/operation}}{{/operations}}{{/apis}}{{/apiInfo}}
8 request_params(_) ->
9 error(unknown_operation).

Code 4.5: The generator’s template for creating the ‘request_params’ function.

Code 4.5 is an extract from a template of the Erlang Server generator. To understand
the code, it is necessary to know a few things about mustache’s syntax:

• Variables are accessed by writing the variable name between two or three
curly brackets, depending on whether the value must be escaped or not.
For example, if a parameter is named ‘name>’, ‘{{baseName}}’ will return
‘name>’ while ‘{{{baseName}}}’ will return ‘name>’.

• Boolean variables can be used to write conditional blocks through an opening
and a closing tag. There are two kinds of opening tags: either starting with #
or with ^. In the first case, the content of the block is accessed only if the vari-
able is true, in the second case only if the variable is false. For example, the
mustache commands ‘{{^isBodyParam}}{{baseName}}{{/isBodyParam}}’
will print the variable’s base name only when ‘isBodyParam’ is false, while
by writing ‘{{#isBodyParam}}{{baseName}}{{/isBodyParam}}’ the vari-
able name will be printed only when ‘isBodyParam’ is true.

• Objects and lists also use two opening tags just like booleans, but they be-
have differently. If the opening tag uses #, it will either give access to the
object’s properties or iterate through the list’s items. For example, the tem-
plate ‘{{#allParams}}{{baseName}} {{/allParams}}’ will iterate through
all the items of ‘allParams’ and, for each one of them, write the value of
‘baseName’ followed by a space. If the opening tag uses ^, it will behave like
a Boolean and write the content of the block only if the object doesn’t exist or
the list is empty. For example, ‘{{^operation}}undefined{{/operation}}’
will write ‘undefined’ only if the object ‘operation’ doesn’t exist.

With an idea of how Mustache syntax works, the example of code 4.5 becomes
easy to understand. The template produces a function that pattern matches over
the operation ID and for each case it returns the list of parameter names for the
corresponding operation. The mustache tags on line 1 access the API specifications
object and iterate through all the operations, starting a function case’s definition
for the current value of ‘operationId’. The function’s body is only a list of atoms,
with each atom corresponding to either a data type or a parameter name, depending
on whether the considered parameter is part of the content body or not. Finally,
the tags on line 7 close the tags that have been opened on line 1 and the function

22

4. Tools

definition finishes with a predefined base case.

4.2.2 Erlang code generator

There are three different generators for Erlang code in the OpenAPI Generator:
‘erlang-server’, ‘erlang-client’, and ‘erlang-proper’. Erlang proper is an
Erlang client with property-based testing, but we did not use it because our exam-
ples were either very simple and did not need extensive testing, or too complex and
required the support of GTT. We focused mainly on ‘erlang-server’ and occa-
sionally used ‘erlang-client’ for sending requests when testing the code generated
from simple specifications.

Among the client’s files, the most important ones are:

• ‘model’: used for generating the client’s models. Models are the Erlang
representation of the OpenAPI schemas.

• ‘api’: the template of the functions which are used to send requests. There
are two function definitions for each operation: one with only the required
parameters and one with all the parameters. By default, these requests are
sent to ‘localhost:8001’.

For the server, the relevant files are:

• A set of templates for separating the server’s functionalities, namely ‘server’,
‘router’, ‘handler’, ‘logic_handler’, ‘default_logic_handler’, and
‘auth’.

• ‘openapi’: a template which creates the JSON file processed by the generator.

• ‘api’: it contains all the functions dedicated to request and response valida-
tion. It also extracts and parses the values from requests.

23

4. Tools

Figure 4.6: The original structures of ‘erlang-client’ and ‘erlang-server’.

24

5
Details

5.1 Analysis of the generator

As mentioned previously, the only tool available for Erlang code generation with
OpenAPI 3 is OpenAPI Generator, although its Erlang components are rarely main-
tained. This makes it necessary to analyze the features and limitations of the Ope-
nAPI Generator to confirm whether it is at par with other languages, or needs
revisions. Once we confirm that the generation works for simple specifications, we
will mainly generate from the 5G Core 3GPP specifications to try to find issues
and narrow them down into minimal failing specifications. With this approach sin-
gle issues can be isolated, making it easier to investigate their causes and fix them
when possible. We will consider the generator to be in a good state when it can
successfully generate code from all the needed 5G Core specifications.

5.1.1 Testing base functionalities

We started by checking whether the generator can generate Erlang code successfully
and by learning how to run it. For this purpose, we wrote specifications that only
described very simple requests to see if they are sent and handled correctly by the
client and the server respectively.

The source code is built with ‘mvn clean install’, and that creates the JAR [36]
file ‘openapi-generator-cli.jar’ which is used to generate code. The JAR’s
‘generate’ function requires three options to work: ‘-i’ for the path of the input
YAML file, ‘-g’ for the target language, and ‘-o’ for the output folder. There
are many other options available [8], but the only ones that we used were ‘-c’ for
language-specific configuration and ‘-v’ for debugging.

java -jar </path/to/openapi-generator-cli.jar> generate \
-i <input-file.yaml> \
-g <language> \
-o <output-folder> \
[-c <config.json>] \
[-v]

Code 5.1: The skeleton of the command used for generation.

25

5. Details

Figure 5.2: Rebar3 shells after compiling the generated packages.

In this project we generate code in “two” languages, namely ‘erlang-client’ and
‘erlang-server’. They both produce a rebar package, so we will use ‘rebar3’ to
compile and execute our tests locally. For testing, running ‘rebar3 shell’ in the
package’s root directory is enough since it will download the dependencies, compile
them together with the generated code, and set up an Erlang shell where we can
either run the server or send requests as a client depending on the package.

Once both of the shells are done compiling, it is possible to run the server by calling
the function ‘openapi_server:start/2’ and send new requests from the client’s
module ‘openapi_default_api:request_<operationId>’. The operation’s ID is
obtained from either the combination of the operation’s path and HTTP method
or, if defined, its homonymous YAML field.

% Server, Runs on localhost with port 8001
application:ensure_all_started(openapi).
openapi_server:start(server, #{ip=>{127,0,0,1}, port=>8001, net_opts=>[]}).

%Client, sends two requests (Regex and ENUM example)
%openapi_default_api:request_text_regex_enum(Ctx, Pin, OptionParam).
openapi_default_api:request_test_regex_enum(#{}, "123-45-6789", "first").
openapi_default_api:request_test_regex_enum(#{}, "wrong", "first").

Code 5.3: Commands used to test the generated code from 4.2.

The server side validates the requests to make sure that they follow the specifica-
tions before sending them to the logic handler. If the request is not well-formed, an
error is sent as a response. For instance, ‘415: unsupported media type’ indi-
cates that the content type is different from the expected JSON, while ‘400: bad
request’ denotes that at least one of the parameters does not meet the specifica-
tion’s requirements. Otherwise, if the request is correct, it is accepted and passed to
the logic handler. The logic handler is where the programmer needs to implement
the operation’s behavior, so it’s also where the generator will stop its work. By
default, the generated code returns the error message ‘501: not implemented’

26

5. Details

Figure 5.4: Sending a correct and an incorrect request to the server for code 4.2.
First terminal: log of the server. Second terminal: the client sending requests and
receiving responses.

when handling a request. Therefore, during testing we considered the error code
501 as an indicator of a well-formed request.

The functions for the client in code 5.3 only have the required parameters as argu-
ments. To send the optional requests, the client must add one function argument
to the function’s call, the ‘Optional’ map. With it it is possible to add several
optional values to the request: the parameters defined in the specification that are
not required, configuration variables for the HTTP client library hackney [6], or an
alternative host to send the request to. Its full structure is represented in code 5.5,
together with an example request where the information about to which port to
send the request is given through the ‘Optional’ map.

% Optional :: maps:map()
Optional = #{

params => #{...}, % optional parameters
hackney_opts => [{<name>,<value>}...], % hackney configuration variables
cfg => #{

host => "New target host" ,
% hackney configuration variables, they will
% be added to the other configuration variables
hackney_opts => [{...}],
% authentication settings
auth => #{...}

}
}
% Example of how to use the Optional parameter
openapi_default_api:request_test_regex_enum("123-45-6789", "first",

#{hackney_opts => [{port, "8001"}]}).

Code 5.5: The definition of the parameter ‘Optional’ with all its possible fields.

27

5. Details

5.1.2 Initial fixes for the OpenAPI Generator

Initially, the code generated from most specifications crashed at compile time. There
were mainly three errors causing this problem: an undefined function ‘authorize_api_key/3’
in the server’s logic handler, multiple syntax errors, and undefined variables in the
client’s API, as shown in figure 5.6.

Figure 5.6: First set of errors found, blocking the compiling of the generated code
and preventing further testing.

5.1.2.1 First error: export of undefined function

In ‘logic_handler.mustache’, one of the server’s templates, the definition of the
function ‘authorize_api_key/3’ was added to the generated file only if the list of
the authentication methods was empty or one of the methods was of type ‘apiKey’.
However, the case where the list of authentication methods is not empty but none of
them is of type ‘apiKey’ was not covered. This would result in the function being
exported without a definition. The fix was straightforward, it just required adding
the same conditions used for the function’s definition to the ‘export’ line.

% Original template
% No conditions used
-export([authorize_api_key/3]).

% If not empty and one uses API Key
{{#authMethods}}

{{#isApiKey}}
-export([authorize_api_key/3]).

{{/isApiKey}}
{{/authMethods}}
{{^authMethods}} % If empty
-export([authorize_api_key/3]).
{{/authMethods}}

Code 5.7: Left: original template. Right: template after the fix for the export.

28

5. Details

5.1.2.2 Second error: syntax errors

The second error was caused by the incompatibility between the naming conven-
tion of OpenAPI/YAML and Erlang. In OpenAPI, it is possible (although not
recommended) to name schemas, parameters, and unique IDs with strings that have
digits as initials. However, this will create problems if those same names are used
for variables or functions in Erlang. In the 5G Core specifications there are several
parameter names and operation IDs starting with ‘5G’, so when they appeared in
the generated Erlang code as variable names they would produce syntax errors. A
simple solution was to add a prefix to variables that start with a digit.

@Override
public String toVarName(String name) {

// replaces - with _ and prepends Var_ to avoid numbers as initials
String temp = name.replaceAll("-", "_");
if (Character.isDigit(temp.charAt(0)))

temp = "Var_" + temp;
return sanitizeName(temp);

}

Code 5.8: The function used to convert schema names into variable names in both
‘ErlangClientCodegen.java’ and ‘ErlangServerCodegen.java’.

5.1.2.3 Third error: unbound variables

Before explaining this error, it is necessary to know some details about the sub-
class ‘ErlangClientGenerator.java’ and how it differs from the server genera-
tion. While all the server’s functions have a predetermined name and number of
arguments (arity), the client side needs to generate functions with varying names
and arities. In fact, the client creates one function for each operation from the input
specifications, where the name corresponds to the operation’s ID and the arguments
depend on the number of required parameters. Also, all these functions have two
definitions: a complete one, with all the required parameters and the ‘Optional’
map, and a short one, with only the required parameters.

To export these functions, it is necessary to know their arities. For this purpose, the
client’s generator has been extended with a local class which adds two properties
to the mustache templates: one for the number of required parameters and one
for the required parameters together with the ‘Optional’ map. The problem was
that the request body parameters were always counted as required no matter they
were required or not, as shown in code 5.10. However, they were added as function
arguments in the mustache template only when required (code 5.9).

% Original template
request_{{operationId}}(Ctx

{{#allParams}}{{#required}}, {{paramName}}{{/required}}{{/allParams}}
, Optional) -> ...

Code 5.9: The original template for the client’s arguments

29

5. Details

// Original function in ErlangClientCodegen.java
int lengthRequired(List<CodegenParameter> allParams) {

int l = 0;
for (CodegenParameter o : allParams) {

if (o.required || o.isBodyParam) l++;
}
return l;

}

Code 5.10: The original method for counting the number of required parameters.

There was a reason for the request bodies to be always counted. Even when not
required, the function used the request body variable to build the request. However,
it was not defined as a function’s arguments unless it was required, as shown in code
5.12. This would result in the ‘Unbound Variable’ error of the third terminal in
figure 5.6.
Specification used to identify the issue
paths:

/test-optional-content:
post:

requestBody: # not required
content:

'application/json':
schema:

$ref: '#/.../RequestBody'
...

components:
schemas:

RequestBody:
type: object
properties:

val:
type: string

...

Code 5.11: An extract of the specifications used to test the arity issue.

% Extract from openapi_default_api.erl in the Erlang client
-export([test_optional_content_post/2, test_optional_content_post/3]).
% ...
test_optional_content_post(Ctx) -> test_optional_content_post(#{}).
test_optional_content_post(Ctx, Optional) ->

...
Body1 = OpenapiRequestBody,
...

Code 5.12: The generated client function from code 5.11 uses the unbound variable
‘OpenapiRequestBody’ as request body and it is exported with the wrong arities.

Two changes were needed to solve the issue, one in ‘ErlangClientCodegen.java’
and one in the client’s template ‘api.mustache’. In the java file we split the
counting for arity between two functions, one for the “required only” definition and
one for the “optionals” definition (code 5.13). With these two auxiliary functions,
we can avoid counting optional body parameters in the arity for the “required only”
function, while also maintaining the count for the complete definition.

In the Mustache template we added the body parameters as arguments of the func-
tion’s complete definition, regardless of whether they are required or not. We always
place the body parameters last to maintain the same logical order across the defini-
tions, as seen in code 5.14.

30

5. Details

Code 5.15 is the result of generating from 5.11 after the fixes. The complete function
definition now includes the request body as argument, and both of the definitions
are exported with the correct arity. One thing to also note is that the ‘Ctx’ variable
has been removed from the generated functions. This is because the variable was
left unused even though it was added to every function. Another detail is that the
request body is considered as missing with the empty list and as existing but empty
with the empty map.

// Fixed counting functions in ErlangClientCodegen.java
int lengthRequired(List<CodegenParameter> allParams) {

int l = 0;
for (CodegenParameter o : allParams) {

if (o.required) l++;
}
return l;

}

int lengthOptional(List<CodegenParameter> allParams) {
int l = 0;
for (CodegenParameter o : allParams) {

if (o.required || o.isBodyParam) l++;
}
return l;

}

Code 5.13: Auxiliary functions for counting the arity. The new ‘lengthRequired’
function does not count optional request bodies.

% Modified template
request_{{operationId}}(Ctx

{{#allParams}}{{^isBodyParam}}
{{#required}}, {{paramName}}{{/required}}

{{/isBodyParam}}{{/allParams}}
{{#bodyParams}}, {{paramName}}{{/bodyParams}}
, Optional) -> ...

Code 5.14: The modified template for the complete function definition.

% Extract from openapi_default_api.erl in the Erlang client after the fix
-export([request_test_optional_content_post/0,

request_test_optional_content_post/2]).
request_test_optional_content_post() ->

request_test_optional_content_post([], #{}).
request_test_optional_content_post(OpenapiRequestBody, Optional) ->

...
Body1 = OpenapiRequestBody,
...

Code 5.15: The generated code after the fixes.

31

5. Details

5.1.3 Generator’s reorganized structure

To avoid some code repetition and have a better organization of the code, we re-
structured the ‘api.mustache’ template in ‘erlang-server’.

Previously, there was no support for callbacks in the Erlang generator, although
they were processed by the generator’s core. To add that support, we added a
separate module that can only validate callback requests rather than extending
‘api.mustache’. In this way, the module can be integrated into a system inde-
pendently. More details will be introduced in later sections. Since the ‘api’ and
‘callbacks’ templates have almost the same code/structure for handling the pa-
rameters, we moved those functions to a separate template, ‘validator.mustache’.

What is left in ‘api.mustache’ and ‘callbacks.mustache’ are the functions for
accessing the information about operations and parameters. These functions use
the same templates but with different opening tags, since the callbacks are stored
separately. Therefore, to avoid repetition, we moved the templates of the functions
in separate files and included them in-between the corresponding opening tags with
‘{{> filename.mustache}}’.

Figure 5.16: The reorganized generator.

32

5. Details

5.1.4 Specification validation

After ensuring that the generated code can compile successfully, next step is to test
whether it validates the requests and responses according to the specifications. We
started with checking simpler cases that used to be problematic (such as regular
expressions and enumerations). Afterwards, we used the 5G Core specifications to
find more complex cases and test them individually.

5.1.4.1 Regex and ENUMs

Regular expressions (regexes) and enumerations (ENUMs) are among the most com-
monly used OpenAPI features. We can observe that in ‘CommonData’, a YAML file
which collects common schemas referenced throughout all the 5G Core specifica-
tions. Among those schemas, 89 out of 196 have either regexes or ENUMs in their
own inline definition, and most of the remaining ones use them through reference.
Therefore, it is necessary to ensure that both regexes and ENUMs are verified cor-
rectly wherever they are in the request and whether they are referenced or not.

To test them, we wrote our own OpenAPI 3 specification that defined regexes and
ENUMs in all the possible locations of a request. After validating the specifications,
we ran the generated code and sent both correct and erroneous values to confirm
that they were validated correctly or find possible bugs. We discovered that:

• Regular expressions were always marked as incorrect, even with correct inputs;

• Referenced ENUM parameters would consider any value as valid.

The bug that caused regular expressions to fail was shown directly by the server’s
log (figure 5.19), as the pattern used to check the input string was surrounded by
two slashes ‘/’. These characters were there because the generator follows the EC-
MAscript standard for marking regular expressions. It requires the pattern to be
surrounded by those delimiters instead of double quotation marks. However, Erlang
does not follow the same standard, so the slashes were considered as part of the pat-
tern string. Overriding the ‘DefaultCodegen’’s function ‘addRegularExpressionDelimiter’
(code 5.17) was enough to fix the problem.

@Override
public String addRegularExpressionDelimiter(String pattern) {

//if (!pattern.matches("^/.*"))
// return "/" + pattern.replaceAll("/", "\\\\/") + "/";
return pattern;

}

Code 5.17: The function in ‘DefaultCodegen’ to override to add (or remove)
language-specific delimiters for regular expressions. The commented code is what
caused the issue.

33

5. Details

/test:
post:

operationId: TestRegex
parameters:

- name: paramA
in: query
required: true
schema:

$ref: '#/components/schemas/Word'
...

components:
schemas:

Word:
type: string
pattern: '^[a-zA-Z]*$'

Code 5.18: The extract from the example case for testing regular expressions.

Figure 5.19: Regular expressions were always failing for parameters. For example,
‘first’ follows the pattern ‘^[a-zA-Z]*$’, but the server marks it as incorrect.

Figure 5.20: By removing the surrounding ‘/’, the request is processed correctly.

34

5. Details

The error for ENUMs was also fairly easy to identify, but its cause was less obvi-
ous. Code 5.21 lists two examples of the specifications for two ENUM parameters.
The only difference between them is that ‘paramA’ has an external reference, while
‘paramB’ does not. However, the referenced schema ‘EnumString’ has the same
content as the inline schema for ‘paramB’. Therefore, we expected these two pa-
rameters to have the same generated code, but it turned out that ‘paramA’ did not
have the details about the type and the list of accepted values.

This happened because schemas are processed differently depending on whether
they are referenced or not. The schemas with inline definitions are considered as
ENUMs themselves, as the properties are attributed directly to them. On the other
hand, parameters with referenced ENUM schemas should not be considered as an
ENUM parameter, but just as a parameter with a referenced schema. This difference
becomes problematic with the template’s implementation, as it would expect both
referenced and inline ENUM schemas to be validated through the ENUM rule (code
5.22). These rules are used in the generated code to validate parameter properties
such as regular expressions and boundaries on list sizes.

% Erlang functions
request_param_info('TestEnum', 'paramA') ->

#{
source => qs_val,
rules => [

required
]

};

request_param_info('TestEnum', 'paramB') ->
#{

source => qs_val,
rules => [

{type, 'binary'},
{enum, ['fst', 'snd', 'trd'] },
required

]
};

Spec for paramA
- name: paramA

in: query
required: true
schema:

$ref: '#/.../EnumString'
enum: [fst, snd, trd]

Spec for paramB
- name: paramB

in: query
required: true
schema:

type: string
enum: [fst, snd, trd]

Code 5.21: The generated code for two ENUM parameters.

validate(Rule = {enum, Values}, Name, Value) ->
try

FormattedValue = erlang:binary_to_existing_atom(Value, utf8),
case lists:member(FormattedValue, Values) of

true -> {ok, FormattedValue};
false -> validation_error(Rule, Name)

end
catch

error:badarg -> validation_error(Rule, Name)
end;

Code 5.22: The case for ENUMs in the validation function.

35

5. Details

The different processing results in the flag ‘isEnum’ being set to false for refer-
enced ENUM schemas. We decided to change how the referenced ENUMs were
handled, so that the parameter could be considered an ENUM. Some changes to
‘DefaultCodegen.java’ were needed to achieve this:

1. setting the ‘isEnum’ flag to true when referencing an ENUM schema;

2. checking the type of the referenced schema when it is processed.

The first point only needed a single statement to set the value of ‘isEnum’ to true.
For the second point, we took advantage of the already existing type checking for the
properties and moved it in a separate function, ‘setPropertyType’. We then used
that function to set the property’s type based on the referenced schema’s type. The
changes are represented by code 5.23, excluding the ‘setPropertyType’ definition,
and they were enough to produce the expected result in code 5.24.

setPropertyType(property, referencedSchema, name); //added
if (referencedSchema.getEnum() != null

&& !referencedSchema.getEnum().isEmpty()) {
List<Object> _enum = referencedSchema.getEnum();

property.isEnum = true; //added

Map<String, Object> allowableValues = new HashMap<String, Object>();
allowableValues.put("values", _enum);
if (allowableValues.size() > 0) {

property.allowableValues = allowableValues;
}

}

Code 5.23: The changes in ‘DefaultCodegen.java’

request_param_info('TestEnum', 'paramA') ->
#{

type => 'binary',
source => 'qs_val',
rules => [

{ enum, ['fst', 'snd', 'trd'] },
required

]
};

Code 5.24: The resulting generated code for ‘paramA’ after the fix.

5.1.4.2 List Parameters

In the 5G Core, NRF Discovery is one of the network functions that has the most
parameters for a single operation. It has 37 different parameters for a single GET
request and many of them are lists whose items have referenced schemas. List
parameters were not supported at all in the original mustache templates. In fact,

36

5. Details

after receiving a list parameter, the server would only use the first element of the
list as value and ignored the rest of the elements in the list.

To improve the implementation, the server needed to:

• add ‘list’ to the parameter type in file ‘validator.mustache’;

• read and concatenate multiple values for a list parameter;

• have a case in the ‘typecheck’ function to validate list parameters.

We defined the type for lists as a pair ‘{list, Type}’, where ‘Type’ is the type
of the list’s elements. We structured it like this to validate the type of both the list
and its elements.

The function ‘get_value’ in ‘validator.mustache’ is used to read the requests
and it can distinguish the cases depending on the parameter’s location (body, query,
header, or binding). To avoid making the reading of other parameters more compli-
cated, we added a separate case only for lists which uses the correct request reader
depending on the list’s location. Then, with a recursive function, we extracted all
the parameters that have the same name from the list and concatenate their values
into a list. Both functions are shown in code 5.25.

% validator.mustache
get_value(Source, Name0, {'list', _}, Req, _BodyReader) ->

{Name, List} = case Source of
'qs_val' ->

{ {{packageName}}_utils:to_qs(Name0),
cowboy_req:parse_qs(Req) };

'header' ->
{ {{packageName}}_utils:to_header(Name0),

cowboy_req:headers(Req) };
'binding' ->

{ {{packageName}}_utils:to_binding(Name0),
cowboy_req:bindings(Req) }

end,
{ {{packageName}}_utils:extract_list(Name, List), Req };

% utils.mustache
extract_list(_Name, []) -> [];
extract_list(Name, List) ->

case lists:keytake(Name, 1, List) of
false -> [];
{_, {_, Value}, List1} -> [Value | extract_list(Name, List1)]

end.

Code 5.25: The added case and new function for reading list parameters.

Once the list is extracted from the request, what is left is to validate it. To do that
we first check whether the value is a list, then map the ‘typecheck’ function with
the paired item’s type in ‘{list, Type}’ to the list of parameters. In this way we
validated both the list type and its elements.

37

5. Details

% validator.mustache
typecheck(Type = {'list', ItemType}, Name, Value, ValidatorState) ->

case is_list(Value) of
true ->

lists:map(fun(Val) ->
typecheck(ItemType, Name, Val, ValidatorState)

end, Value),
ok;

false -> validation_error(Type, Name)
end;

Code 5.26: The added case for validating list parameters.

5.1.4.3 Names mismatch

We went through the 5G core specifications and noticed that not all the schemas
are referenced from ‘components’. Sometimes request bodies are very short and
unique, so they are defined inline rather than with a reusable schema. This causes
issues when the generator processes them into java objects, since they do not
have a unique identifier. What the generator does is to create additional schemas
named ‘inline_object’ whenever a request body has an inline definition, with
an incremental number appended in the case of multiple inline definitions, such as
‘inline_object_2’.

However, the java objects processed from the JSON specifications have their names
camelized [10] to follow the naming standards for java classes, converting names
like ‘inline_object’ into ‘InlineObject’ for example. This difference results
in a mismatch between the schema names in the JSON and the ones used by
the Mustache files (code 5.27), which prevents the data from being validated as
it cannot be associated with any schema. This issue did not happen only with
‘inline_objects’, but also with any schema name that had an underscore in it.

% openapi_api.erl
request_param_info

('RootPost', 'InlineObject') ->
#{

source => body,
rules => [

schema,
required

]
};

openapi.json
"inline_object" : {

"required" : ["val"],
"type" : "object",
"properties" : {

"value" : {
"type" : "string"

}
}

}

Code 5.27: The generated code’s schema name is different from the real schema
name in the JSON, making the validation fail.

After going through the generator’s log information, we found out that the java
objects representing the schemas did not have any reference to the original schema
name, but rather they used only the camelized version. We considered adding a
field ‘schemaName’ to the models, but that would have required changes across the

38

5. Details

whole system and need to be tested for all the available languages. What we did
instead was to use the list of processed models to create a map from model name
to schema name in the ‘validator’ template (code 5.28). This map is then used
to get the correct name before validating the schemas, solving the mismatch issue
(code 5.29).

% openapi_validator.erl
-define(MAP_SCHEMAS, #{

'InlineObject' => 'inline_object',
}).

Code 5.28: The generated map from model name to schema name.

% openapi_validator.erl
typecheck(Type, Name, Value, ValidatorState) ->

SchemaName = maps:get(Type, ?MAP_SCHEMAS),
Definition =

list_to_binary("#/components/schemas/"
++ {{packageName}}_utils:to_list(SchemaName)),

try
validate_with_schema(Value, Definition, ValidatorState),
% rest of the function ...

Code 5.29: The map used to fetch the correct schema name.

5.2 Integration in an existing system

With all the modifications to the generator, it becomes possible to generate Erlang
code from all the 5G Core specifications. The next step is to understand if it is
possible to integrate the code into a system and how.

The code generated through ‘erlang-client’ did not seem ideal for integration.
It could only provide a set of functions for sending requests, and it did not provide
any consistent form of validation on the provided values. In fact, it used only the
function’s type signature to check whether the values of the arguments were of the
correct type. To represent the schemas as types, it used models which do not support
composed schemas. Because of that, the Erlang files produced from the ‘model’
template would often have empty definitions.

On the other hand, ‘erlang-server’ seemed to be more promising. Even though
the server-related components it generated were all interconnected and not that
useful for an already working system, they could be customized and optimized for
the service’s needs. For instance, the request and response validation of the server
appeared to be reusable. Validation is tightly related to the specifications, so its
generated code can check whether the requests/responses follow their specifications
strictly. Moreover, the validation is an interesting component to generate because
implementing it manually can be very long and repetitive, making it particularly
prone to bugs.

39

5. Details

In the generated code, the request validation is executed through a single exported
function, ‘populate_request’, with three required arguments: the operation’s ID,
the request object, and a state of Jesse Schema Validator [16]. Code 5.30 is an
example of the specification of ‘populate_request’.

• The operation ID is a string either defined in the specifications or, if missing,
obtained by the pairing of path and http method.

• The request object is an instance of ‘cowboy_req’, a type exported by the
HTTP server library Cowboy [17].

• The Jesse Validator State is used to validate more complex schemas. It is ini-
tialized through the function ‘prepare_validator’ in ‘router.mustache’.

The advantage is that the function does not have any dependency on the generated
server components, so it can validate any request in other systems as long as it
has the correct ‘OperationID’ and Jesse State. The same concept applies for the
response validator, as the arguments required by the validating function can be
obtained independently of the system it is in. This allows the reuse of the generated
code for validation and confirms that we can actually integrate it into an existing
system. In this thesis, we will only focus on the request validator.

The following sections will demonstrate how the generated code can be integrated
into an existing system, how we integrated it into Ericsson’s GTT, and how we
improved it to make integration more flexible to various systems.

-spec populate_request(
OperationID :: atom(),
Req :: cowboy_req:req(),
ValidatorState :: jesse_state:state(),
BodyReader :: {{package_name}}_validator:body_reader()
) -> {ok, Model :: #{}, Req :: cowboy_req:req()}

| {error, Name :: atom(), Value :: any(),
Reason :: any(), Req :: cowboy_req:req()}.

Code 5.30: The specification of ‘populate_request’ with the optional parameter
‘BodyReader’ introduced in section 5.2.2.1.

5.2.1 Tutorial - Integrating into an existing system

Ideally, the validation should be a filter for the requests that have been received by
the server. If a request is not valid, it should be discarded immediately. Otherwise,
it should be processed and sent from the handler to the logic handler, which will ex-
ecute the request’s operation. This behaviour is achieved by integrating the request
validation in the handler, right after it receives the request from the router.

Figure 5.31 represents the conceptual integration of the request validator. In the
handler, the requests are validated through the function ‘populate_request’ (code
5.30). This function is identical in both the ‘api’ and the ‘callbacks’ module,
but its related functions are generated differently depending on the operations. It is

40

5. Details

Figure 5.31: Representation of the integration of the generated code into an ex-
isting system.

possible to choose which one to use based on the handler’s needs, but the request’s
elements are ultimately validated through the ‘validator’ module.

The validator needs to have the correct ‘operationID’ when validating each oper-
ation as it is required for fetching the list of request parameters and their structures.
It is not always possible to get this ID automatically, so there might be the need
to assign it manually to the handler’s validator. Also, the Jesse JSON validator
needs to be configured with the system specification’s processed JSON, which can
be done through the function ‘prepare_validator’. With these two elements,
‘populate_request’ is ready to validate any Cowboy request.

The request validator returns either an OK, with ‘Result’ containing all of the
request’s parameters, or an error, with information about the problem for debugging.
Through a case analysis on the result it is possible to change the execution process,
for example, terminating the request handling with an error or calling the logic
handler if everything is correct.

To set up the validation, it is necessary to put the following generated files into the
existing system’s folders:

• ‘api’ and ‘callbacks’ for ‘populate_request’. It is not necessary to have
them both since the choice of which one to use depends on the use case, and
they are independent of each other, but they have the same dependencies.

• ‘validator’ and ‘utils’ since they contain most of the functions for pro-
cessing and validating the requests.

• ‘openapi.json’ is needed to configure the Jesse validator, while ‘router’
is useful as it provides the function ‘prepare_validator’ which initialize a
Jesse state with the correct JSON. However, if the generated code is used
outside of its rebar package, it is necessary to replace ‘get_openapi_path()’
with the absolute path of ‘openapi.json’ (code 5.32). Alternatively, an
instance of ‘jesse_state’ can be initiated manually as long as it points to
the correct JSON file.

41

5. Details

prepare_validator() ->
R = jsx:decode(element(2, file:read_file(get_openapi_path()))),
jesse_state:new(R, [{default_schema_ver,

<<"http://json-schema.org/draft-04/schema#">>}]).

Code 5.32: The definition of ‘prepare_validator’ from the template ‘router’.

handler(Req) ->
OpID = 'OperationID',
Validator = {{packageName}}_router:prepare_validator(),
case {{packageName}}_api:populate_request(OpID, Req, Validator) of

{error, Name, Value, Result, Req1} ->
?DEBUG("Faulty request for ~p.", [OpID]),
report_error(OpID, Name, Value, Result, Req1);

{ok, Result, Req1} ->
?DEBUG("Valid request for ~p.", [OpID]),
%... rest of the function

Code 5.33: An example of case analysis on the validator’s result in a handler.

Code 5.33 is an abstract example of the integration of the validator. In this case
we assume that ‘prepare_validator’ has been modified so that it points to the
correct location of the specifications ‘openapi.json’. We then use that and the
corresponding operation ID to call the function to do a case analysis on its result.
In case of an error, the execution will be interrupted and the error is reported back
to the client with a ‘report_error’ function. Otherwise, it can be processed as
previously implemented with the processed data ‘Result’.

5.2.1.1 Our case: integration in GTT

To put our theory into practice, we generated and integrated code into Ericsson’s
internal test tool GTT, which simulates the Network Core system by running the
core components locally as virtualized nodes. For each of these virtualized nodes
there is a handler, where the requests are processed, and a logic file, where the
operation is executed with the requested information. These files are part of the
components’ structure, so they are related to the system and not specific to one test
case. In fact, by extending their logic handler, we can verify all the communications
happening among the extended components, such as the ones represented in the
example scenario 2.2. For example, when the extended NRF receives a request for
function discovery, it will validate it regardless of whether it is from AMF or any
other component. This makes our integration more meaningful: even though our
implementation is on a test environment, it could be replicated on to the handlers
of the live system to prevent it from handling incorrect requests.

When integrating code for multiple 5G Core components, we could not use the
default configuration for the generator as that would produce modules with the same
name. To avoid this, we took advantage of the ‘-c’ flag to assign unique names
to the generated modules. For example, for AMF Communication we used the
JSON {"packageName": "amf_c", "openAPISpecName": "amf_c"}, prepending

42

5. Details

‘amf_c’ to the name of the generated modules. This allowed us to copy all the
needed files into GTT directly without any name overlapping.

Overall, we generated code from 8 specification files (the list can be found in chapter
6) and integrated it into the components following the structure of code 5.33. In the
case analysis, we simply printed a message when the validation produced a negative
result instead of using a secondary function like in code 5.33. For GTT, having the
process closing without any result was enough to consider the test as failed.

Sometimes, the variable names used in the internal code would be slightly different
from the names in the specifications (for example ‘ctxId’ instead of ‘ctxUserId’),
causing the validation to fail. When that was the case, we would manually rename
the variable in the specifications and regenerate the code. Another problem was as-
signing the correct ‘operationID’ to each handler. To understand which operation
ID to use, we had to manually compare the specifications with the implementation
and the generated code. Once identified, we could connect the correct ID to the
handler and initiate the validation.

Finally, we used the tests of GTT to confirm whether the validation was working.
Every time we integrated code in a new component, we would find relevant tests
that use the component’s operations and ran them locally. Once the tests have
passed, we ran the internal system-wide regression test to confirm that everything
was working correctly.

5.2.2 Problems with integration and improvements

5.2.2.1 Customized body reader

During the integration in GTT, some improvements to the generator became neces-
sary. The generated code, although correct, was not flexible enough as it required
manual changes and lacked some needed functionalities during integration. For
example, the generated code couldn’t adapt to some inconsistencies of the GTT
manual implementation.

An example of that is the different decoding used for maps in different components.
All the request bodies need to be decoded before being used by either the generated
code or GTT. Since in the specifications most of the request bodies are represented
by JSON objects, they need to have objects as schemas in the specifications, which
are ultimately decoded into Erlang maps. By default, the generator decoded the
keys of the maps into atoms, which worked correctly for the first component we
extended as it also used atoms. However, the second component that we extended
decoded the keys into binary strings instead. This small difference was enough to
make the system crash if the validator parsed the request using a different decoding.

Another shortcoming regarding request bodies was the lack of support for more com-
plex media types such as ‘multipart/form-data’. Several components expected
this kind of request body, but the generated code could only read the request body

43

5. Details

if it was an ‘application/json’. Because of this, the validator would either read
only part of the request body, discarding the rest, or produce an error.

To solve both of the problems, we converted ‘populate_request’ into a higher-
order function in which it is possible, although not required, to provide a customized
body reader function (code 5.35). The body reader function expects a request
object and returns the content of the request body together with the processed
request object. This provides much more flexibility in the integration as it becomes
possible to adapt the generated code to the system’s needs, such as changing the
decoding for map keys or making the validator read a request body with media type
‘multipart/form-data’.

% validator.mustache
-type body_reader() :: fun((Req0 :: cowboy_req:req())

-> {ProcessedBody :: any(), Req :: cowboy_req:req()}).

Code 5.34: The type signature for body reader functions.

% api.mustache and callbacks.mustache
-spec populate_request(

OperationID :: {{packageName}}_validator:operation_id(),
Req :: cowboy_req:req(),
ValidatorState :: jesse_state:state(),
BodyReader :: {{packageName}}_validator:body_reader()
) -> {ok, Model :: #{}, Req :: cowboy_req:req()}

| {error, Name :: atom(), Value :: any(),
Reason :: any(), Req :: cowboy_req:req()}.

Code 5.35: The extended definition for ‘populate_request’ with an additional
argument for the body reader function.

5.2.2.2 Callback module

Another feature that was missing during the integration was the support for call-
backs. In GTT, the implementation for UDM had only one request handler, and
that handler was for an AMF Event Exposure callback. Because of that, there was
no way to validate that request with the existing code. This was not because of the
generator’s core implementation, but the poor maintenance of the Erlang templates.

The generator stored the callbacks information into a ‘callbacks’ field for each
operation. There was no clear indication of how to access that information, so we
had to go through the Java classes to understand the right combination of the needed
mustache tags. Eventually, we found the right combination of tags that would allow
us to iterate through all the callbacks, as shown in code 5.36.

{{#apiInfo}}{{#apis}}{{#operations}}{{#operation}}
{{#callbacks}}{{#urls}}{{#requests}}
{{> template_to_import}}
{{/requests}}{{/urls}}{{/callbacks}}
{{/operation}}{{/operations}}{{/apis}}{{/apiInfo}}

Code 5.36: The mustache code to access the callback definitions.

44

5. Details

With this knowledge, we could add support to the Erlang templates. Since we were
only interested validating the callback requests rather than sending them, the only
problem left was how to integrate it. The obvious approach seemed to extend the
‘api.mustache’ by making it not only validate normal requests, but callbacks as
well. Nevertheless, having the validation for all the requests of one component in
a single file is never needed because the callback request is received and validated
in different component(s). For example, in the 5G Core, the AMF Event Exposure
callbacks are sent by AMF, but they are received and validated by either UDM or
SMF.

This was the reason why we made a new Erlang template, ‘callbacks.mustache’.
Having a separate file allows the programmer to integrate the ‘callbacks’ module
independently of the ‘api’ and it makes it clearer to see which requests are expected
by the system. However, because these two templates perform almost the same
tasks, they would have nearly identical code. To avoid such repetition, as mentioned
previously in section 5.1.3, we split the original ‘api.mustache’ into two templates,
‘api’ and ‘validator’. The latter one contains all the functions and definitions
needed by both ‘api’ and ‘callbacks’.

The rest of the functions in ‘api’ and ‘callbacks’ are either responsible for start-
ing the validation or describing the operations and their parameters. For example,
the function ‘request_param_info’ returns the information about a parameter
(location, type, properties...) given the operation ID and the parameter name.
Although the access tags to the processed data are different, the structure of the
function definition is the same in both files. To avoid this repetition, we moved the
mustache definitions into an external template, which are included through the tag
‘{{> template}}’ (code 5.36).

With this new module, it becomes possible to integrate the validation for callbacks
alongside or independently of the normal requests. By using the same function
names, the implementation is very similar in both cases, with the only difference
being the module used by the functions. An example of integrating a callback
request validation is shown in code 5.37.

udm_handler_amf_event(Req) ->
OpID = 'OperationID',
% Callback from AMF Event Exposure (amf_ee)
Validator = amf_ee_router:prepare_validator(),
case amf_ee_callbacks:populate_request(OpID, Req, Validator) of

{error, Name, Value, Result, Req1} ->
?DEBUG("Faulty request for ~p.", [OpID]),
report_error(OpID, Name, Value, Result, Req1);

{ok, Result, Req1} ->
?DEBUG("Valid request for ~p.", [OpID]),
%... rest of the function

Code 5.37: An example of integration of callbacks validation.

45

5. Details

46

6
Results

With the integrated validators we were able to locate bugs and implementation in-
consistencies in the system. Even though the generator struggles with some features,
it is still able to generate functional components that can be useful for commercial-
level systems. In fact, it resulted to be more effective to generate small functional
components rather than fully-functioning server systems, since more advanced ap-
plications require major optimization and customization of the server components.

6.1 Results of the integration

To check whether our request validator could successfully validate the requests sent
among components, we ran the integrated components in GTT. However, the system
of the 5G Core in Ericsson was not fully implemented. Thus, we integrated the
request validator only in the components with a more complete implementation and
adequate test cases. The chosen components, the related OpenAPI 3 specifications,
and the results of running the tests in GTT after integration are listed below (the
specifications are from 3GPP 5G Core December 2018 release):

Components Specifications Results

AMF TS29518_Namf_Communication.yaml
TS29518_Namf_EventExplosure.yaml

Passed
Passed

AUSF TS29509_Nausf_UEAuthentication.yaml Failed

NRF TS29510_Nnrf_NFDiscovery.yaml
TS29510_Nnrf_NFManagement.yaml

Passed
Failed

NSSF TS29531_Nnssf_NSSelection.yaml Passed
PCF TS29507_Npcf_AMPolicyControl.yaml Passed
SMF TS29502_Nsmf_PDUSession.yaml Passed
UDM Callback from AMF EventExposure Passed

As shown in the table above, the test cases of the AUSF and the NRF failed. In other
words, the integrated request validator managed to find issues in the communications
between these two components. With the help of the testing tool, we discovered the
invalid requests in the test cases which are not consistent with the specifications.

47

6. Results

The issue with AUSF is that the value assigned to the ‘ResStar’ schema in the PUT
request for path ‘/ue-authentications/ctxid/5g-aka-confirmation’ does not
match the length defined in the specification. The ‘ResStar’ schema is referenced
in the request body and its specification is shown in 6.1. It says that the value of
‘ResStar’ should be a string consisting of 32 characters which can be any digit
between ‘0’ and ‘9’ and any letter between ‘a’ and ‘f’, either lower case or
capitalized. However, the validator found out that the system assigned as value of
‘ResStar’ a string with only 16 characters.

ResStar:
type: string
pattern: '[A-Fa-f0-9]{32}'

Code 6.1: The schema of ResStar.

The issue in the NRF’s ‘NFManagement’ was a bit less obvious to identify. The in-
valid request was a POST request under path ‘/subscriptions’ which required to
have the object schema ‘SubscriptionData’ as request body. One of its properties,
‘subscrCond’, is defined as follows:

subscrCond:
oneOf:

- $ref: '#/components/schemas/NfInstanceIdCond'
- $ref: '#/components/schemas/NfTypeCond'
- $ref: '#/components/schemas/ServiceNameCond'
- $ref: '#/components/schemas/AmfCond'
- $ref: '#/components/schemas/GuamiListCond'
- $ref: '#/components/schemas/NetworkSliceCond'
- $ref: '#/components/schemas/NfGroupCond'

This property is a composed schema that selects only one of the listed schemas
under the keyword ‘oneOf’. To see the issue more clearly, we printed the value of
the request in the test case, and the value for the ‘subscrCond’ schema was written
as:

<<"subscrCond">> => #[<<"nfTypeCond">> => #[<<"nfType">> => <<"SMF">>]]

Apparently, the selected schema for ‘subscrCond’ is ‘NfTypeCond’. ‘NfTypeCond’
is an object with only one ENUM property, ‘nfType’, which is assigned the value
‘SMF’ in this case. The expected value for ‘subscrCond’ is a direct mapping from
the property name to its final referenced schema:

<<"subscrCond">> => #[<<"nfType">> => <<"SMF">>]

By comparing the expected and actual structure, we can see that the problem is
an additional mapping from ‘subscrCond’ to ‘nfTypeCond’. The implementation
for the NRF and the test cases do not follow the correct way of representing the
‘oneOf’ feature.

48

6. Results

6.2 Discussion

Following the idea of integrating the request validator in the existing system, we
can draw the conclusion that it is not only possible, but also very quick and easy
to both integrate the generated code and upgrade it when there are changes in the
specifications. Thanks to the high modularity of the request validator, we simply
need to regenerate the needed files and replace them in the system without major
modifications. Moreover, the integration requires very little changes on the overall
system, and it does not require knowledge about the system’s details.

By integrating it into the internal testing tool, GTT, we could target the invalid
requests promptly. The two issues we found were caused by different errors and
located in different areas of the request. The first error occurred because the test
cases have not been entirely updated according to the specifications. In fact, the
implementation of ‘ResStar’ is not completely wrong, but follows the outdated
specifications of the 4G Core Network. Without a careful inspection of every single
attribute, it is not easy to notice this kind of problem.

For the second error, the extra mapping is added because of the ‘oneOf’ keyword,
which introduces the concept of polymorphism in OpenAPI. Since this concept can-
not be directly translated into Erlang code, the developers are free to represent it in
their preferred ways. In this case, the chosen approach was to add a mapping when
a new schema is introduced. That is why the property ‘nfTypeCond’ is mapped
to the ‘NfTypeCond’ schema, as it is one of the possibilities for ‘subscrCond’.
However, this does not match the expected JSON specifications, since the value of
‘subscrCond’ becomes the composition of two objects rather than a single object,
and it is inconsistent with the rest of the system. These issues are very difficult
to avoid as there are no strict rules for decoding OpenAPI concepts, which makes
manually writing code sensitive to inconsistencies and bugs.

These two errors represent why it is difficult to maintain such a large system. Up-
dates are laborious to perform manually, and the code’s consistency and correctness
is not guaranteed when just using the specifications as a guideline for implementa-
tion. Since not all the specifications can be directly translated into the target lan-
guage, some implementation is done according to the programmer’s understanding
of the specifications and the characteristics of the language. Although the imple-
mentation might pass the test, it may contain errors that are not easily noticeable.
In a large project where multiple people contribute to the source code, these cases
can create inconsistencies that lower the code’s quality and maintainability in the
long run.

These observations, combined with our results, display the potential of code genera-
tion for validation. Its strictness can assist in checking whether the implementation
is built consistently and accordingly to the specifications. The issues can be discov-
ered accurately and effortlessly, potentially reducing the time invested in searching
bugs. So, the developers can shift the focus to fixing the issues, increasing the
efficiency of maintaining the system. This approach does not only help with check-

49

6. Results

ing the system’s code, but the tests as well, reducing the risk of having test cases
returning false positive or false negative results.

6.3 Limitations

There are three main types of limitations in this thesis project: the specifications for
the 5G Core are not fully completed and some of the files have incorrect definitions
according to the OpenAPI 3 format; the generator cannot have full generation from
the specifications and some modifications are based on this project’s needs; the
integration and effectiveness of the request validation is strongly dependent on the
generated code’s quality.

6.3.1 Incomplete specifications

The OpenAPI 3 specifications for 5G Core have not been updated to their final
version, so there are issues in some files. The most frequent problem we came
across during the project is the repeated definition of ‘operationId’ for distinct
operations in the same file. According to the specifications, ‘operationId’ is an
optional string property used to uniquely identify an operation. Therefore, repeated
operation IDs invalidate the specification and prevent the generator from generating
any code. The easiest way to work around this problem is to remove all the explicit
‘operationId’ definitions, as they will be composed automatically by combining
the operation’s path and method.

Not entirely correct specifications can be a big problem, as they might require man-
ual changes before being used. These changes might introduce further errors into the
specifications, resulting in incorrect code and potentially breaking the entire system.
Nevertheless, we don’t need to worry too much about it as they are under constant
maintenance from 3GPP. The specifications used in this project for generation are
from the 2018 December release, but since then 3GPP has already released the
March and June versions. The June release has quite big improvements compared
to the December release and solves the issue for the repeated ‘operationId’.

6.3.2 Limited functionality of the generator

The OpenAPI Generator has been modified during this project to make it cover most
of the use cases for the 5G Core specifications. However, it still has the following
limitations:

• OpenAPI 3 allows to mark some properties as ‘readOnly’ and ‘writeOnly’.
The ‘readOnly’ properties should only appear in the responses but not in the
requests, while the ‘writeOnly’ properties should be included in the requests
but not in the responses. However, the Erlang generated code cannot distin-

50

6. Results

guish between the two cases as it uses the Jesse schema validator, which checks
only the structure of schemas unaware of whether it is used as a request or as a
response body. This became problematic when running the request validator
for NRF in GTT: request with required properties that had ‘readOnly’ were
seen as invalid because they did not have those properties, even though they
were supposed to have them.

• Our fix for the ENUM problem is not completely correct. Through a dis-
cussion with one of the maintainers of the project we determined that our
modifications create a new property every time the same ENUM schema is
referenced rather than creating it once and referencing it. This is inconsistent
with the idea of referenced schemas used to implement the generator. Further-
more, even though it passes all the generator’s tests, it has been reported to
affect negatively the generated code for some cases for other languages. The
current Erlang implementation cannot function without this change because
of the Jesse dependency and its need to have parsed inputs. The alternative
would be to use models for validation, but they lack support for a lot of ad-
vanced features (composed schemas in particular) which would result in worse
validation overall than the one currently available.

• Normally, it is just preferred to define an ‘operationID’ for each callback.
However, that becomes necessary if there are multiple operations with the
same HTTP method defined under the same callback key, as that would result
in duplicated operation IDs. For example, if two callbacks with expressions
‘request.query.callbackEvent1’ and ‘request.query.callbackEvent2’
are defined under the same callback key ‘onEvent’, and they both have a
GET operation, they will produce the same operation ID ‘OnEventGet’. This
happens because the expression used as callback path is not considered for the
generation of ‘operationID’.

• The generator has very limited support for the composed schemas as well as
their nested version. The client’s generator cannot generate equivalent code
for composed schemas at all when their properties are defined inline. In addi-
tion, generating code from specifications with nested composed schemas (i.e. a
‘oneOf’ defined inside of an ‘anyOf’) throws a ‘NullPointerException’ in
most cases and stops the generation. We had to write a workaround to make
it work for this project.

• In some specific cases, the generator used by the generator cannot resolve
some external schema references. The problem appears when a referenced re-
quest body references a schema defined in another file: the parser will not
be able to extract the schema definition from the external file; thus, it will
maintain in the processed JSON the path to the external file, which will
not work for validation. This problem is caused by the imported library
‘io.swagger.v3.parser.core.models.SwaggerParseResult’. Since this is
not part of the OpenAPI Generator project we cannot do anything other than
manually modifying the JSON file, but we have reported the error to the
developers.

51

6. Results

6.3.3 Generated code’s quality

As we pointed out in the discussion, our results showcase the power of using the
generated code as a request validator, since we can ensure a better check for the
requests in the system easily. On the other hand, the strong dependency between
the quality of validation and the generated code might raise a problem.

Before proceeding with the integration, it is necessary to make sure that the Erlang
code is correct. If the generated validator returns false positives or false negatives,
it can mislead the programmer into “fixing” something that already works correctly.
It also necessary to verify whether the code covers most of the use cases needed by
the system. If the generated code requires too many manual modifications to fix
issues or add features, that would remove the purpose of code generation.

The goal of getting fully correct Erlang code from the generator is not easy to
achieve. Erlang, not being as popular as other languages, is subject to very little
maintenance. This makes the generator more likely to have bugs and not support
the newest added features, as fewer people test and improve it. In fact, the Erlang
templates have been almost unchanged since their last Swagger Codegen commit
on December 2017. They would need an even more extensive rework than the ones
that we have performed to be at par of other supported languages.

52

7
Conclusion

In this paper we found and analyzed a suitable tool for generating Erlang from the
OpenAPI 3 specifications of the 5G Core, OpenAPI Generator, with the purpose
of generating components to integrate into the Ericsson’s 5G Core implementation.
Even though the tool can generate successfully most of the features described in the
specifications, it is not mature enough to provide full support.

We started the project by focusing on fixing various bugs and adding the features
needed by the 5G Core to the generator to produce correct and runnable code. By
analyzing the structure and the needs of the internal system in Ericsson, we consid-
ered the HTTP request validator as the best candidate for integrating the generated
code. Some additional changes were needed to make the generated code more flexi-
ble for integration and to add some additional features. Ultimately, the integration
required surprisingly minor changes to the system, and its high modularity made it
easy to adapt to the system upgrade.

The validator successfully identified some bugs in the test cases of GTT, the internal
test tool, which we used as another way to evaluate the quality of the generated code.
By running the tests, we could confirm whether the requests were processed correctly
or, when the tests failed, if it was a false positive or not. This validation can not only
be applied to this specific system in Ericsson, but also to any other existing HTTP
based systems due to the high modularity of the validator. Our case of using the
generated code is also just a simple example of all the possible use cases. There are
many other ways to take advantage of the power of code generation from OpenAPI
3. The next step related to our project would be validating the HTTP responses
instead of just the requests. Moreover, we can even try to generate a complete
component of 5GC, but in this case further studies on the generator are needed to
make sure it is fully capable of supporting a business-level project.

It is worth mentioning that we did not measure the performance of the integration.
There are a lot of variables affecting the execution time of the tests which make it
impossible to have consistent and precise measurements. By reasoning on the current
code, we believe that adding the request validation might bring a considerable delay
for the handlers as, for complex components, some of the generated functions might
have hundreds of cases of pattern matching. An analysis of the impact on the
system’s performance and how to make it more efficient would be a good future
research to work on.

53

7. Conclusion

7.1 Observations

By studying how to integrate those components we learned more deeply about code
generation and templating in general. We got to learn about the templating language
Mustache, allowing us to write templates based on the system’s needs. Through the
project, OpenAPI 3 was not only very good for designing complex systems such as
the 5G Core, but also a reliable input for code generation due to its strict structure.
However, its application is limited to RESTful-based systems.

The available generators are still too immature to produce a full system: some
advanced features are not supported at all, while others depend on the target lan-
guage’s support. That is why it becomes important to analyze whether the needed
features are supported. These features depend on the system, where certain features
might be essential for some while superfluous for others. For instance, in Erlang the
‘oneOf’ attribute is validated correctly by the server, yet the generator can not
generate functioning code for it in the client. Since the focus of our project was on
validation at the server-side, this unsupported case did not prevent us from using
code generation. However, this limitation could make it unusable for other projects.

Finally, the successful integration of the validation on the server might raise a ques-
tion: why integrating only the validation instead of using the generated code as
the basis for the implementation of the entire server? The reason why we are not
doing this is not just because we already have a functioning server, but more impor-
tantly because the current state of the generator does not provide enough support
for generating a fully functioning server/client.

Even if the generated code covered all the specifications correctly, it would still be
impossible to generate the entire system automatically. Since OpenAPI 3 describes
RESTful APIs, the handling of the requests in the server always needs to be im-
plemented manually. Also, for more complex applications such as the 5G Core,
the generated server would still require major optimization (such as parallelization)
since it uses a very simple and generic structure which covers only base functionali-
ties. In this project, we instead showed how that same code can be used to improve
an already existing system.

54

Bibliography

[1] 3GPP. About 3gpp. https://www.3gpp.org/about-3gpp.

[2] Jari Arkko. Service-based architecture in 5g.
https://www.ericsson.com/en/blog/2017/9/service-based-
architecture-in-5g.

[3] Robert Balzer. A 15 year perspective on automatic programming. IEEE
Transactions on Software Engineering, SE-11(11):1257–1268, 1985.

[4] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t markup
language (yaml™) version 1.1. yaml. org, Tech. Rep, page 23, 2005.

[5] GABRIEL Brown. Service-based architecture for 5g core networks. A Heavy
Reading white paper produced for Huawei Technologies Co. Ltd., 1:2018, 2017.
https://www.huawei.com/en/press-events/news/2017/11/HeavyReading-
WhitePaper-5G-Core-Network.

[6] Benoit Chesneau. hackney - http client library in erlang.
https://github.com/benoitc/hackney.

[7] GitHub contributors. Openapi generator.
http://openapi-generator.tech/openapi-generator/.

[8] GitHub contributors. Openapi generator’s options.
https://github.com/OpenAPITools/openapi-generator#3---usage.

[9] GitHub contributors. Openapi tools. https://openapi.tools/.

[10] Wiktionary contributors. Camelcase.
https://en.wiktionary.org/wiki/CamelCase#English.

[11] Marcin Dryjanski. 5g core network functions. https:
//www.grandmetric.com/2018/03/02/5g-core-network-functions/.

[12] Maria Düsing. Your quick guide to network functions in 5g core.
https://www.ericsson.com/en/blog/2019/2/your-quick-guide-to-
network-functions-in-5g-core.

[13] GSNFV ETSI. Network functions virtualisation (nfv); use cases. V1,
1:2013–10, 2013. https://www.etsi.org/deliver/etsi_gs/NFV/001_099/
001/01.01.01_60/gs_NFV001v010101p.pdf.

55

https://www.3gpp.org/about-3gpp
https://www.ericsson.com/en/blog/2017/9/service-based-architecture-in-5g
https://www.ericsson.com/en/blog/2017/9/service-based-architecture-in-5g
https://www.huawei.com/en/press-events/news/2017/11/HeavyReading-WhitePaper-5G-Core-Network
https://www.huawei.com/en/press-events/news/2017/11/HeavyReading-WhitePaper-5G-Core-Network
https://github.com/benoitc/hackney
http://openapi-generator.tech/openapi-generator/
https://github.com/OpenAPITools/openapi-generator#3---usage
https://openapi.tools/
https://en.wiktionary.org/wiki/CamelCase#English
https://www.grandmetric.com/2018/03/02/5g-core-network-functions/
https://www.grandmetric.com/2018/03/02/5g-core-network-functions/
https://www.ericsson.com/en/blog/2019/2/your-quick-guide-to-network-functions-in-5g-core
https://www.ericsson.com/en/blog/2019/2/your-quick-guide-to-network-functions-in-5g-core
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf

Bibliography

[14] EventHelix. 5g service-based architecture (sba). https://medium.com/5g-
nr/5g-service-based-architecture-sba-47900b0ded0a.

[15] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter,
Paul Leach, and Tim Berners-Lee. Hypertext transfer protocol–http/1.1.
Technical report, The World Wide Web Consortium, 1999.
https://www.rfc-editor.org/rfc/pdfrfc/rfc2616.txt.pdf.

[16] GitHub contributors For-GET. Jesse: a json schema validator.
https://github.com/for-GET/jesse.

[17] GitHub contributors For-GET. Nine nines.
https://github.com/ninenines/cowboy.

[18] go swagger. Golang implementation of swagger 2.0.
https://github.com/go-swagger/go-swagger.

[19] GSMA. Road to 5g: Introduction and migration.
https://www.gsma.com/futurenetworks/wp-content/uploads/2018/04/
Road-to-5G-Introduction-and-Migration_FINAL.pdf.

[20] OpenAPI Initiative. Openapi callback object.
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md#callbackObject.

[21] OpenAPI Initiative. Openapi components object.
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md#componentsObject.

[22] OpenAPI Initiative. Openapi info object.
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md#infoObject.

[23] OpenAPI Initiative. Openapi media type object.
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md#mediaTypeObject.

[24] OpenAPI Initiative. Openapi operation object.
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md#operationObject.

[25] OpenAPI Initiative. Openapi parameter object.
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md#parameterObject.

[26] OpenAPI Initiative. Openapi path item object.
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md#pathItemObject.

[27] OpenAPI Initiative. Openapi paths object.
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md#callbackObject.

56

https://medium.com/5g-nr/5g-service-based-architecture-sba-47900b0ded0a
https://medium.com/5g-nr/5g-service-based-architecture-sba-47900b0ded0a
https://www.rfc-editor.org/rfc/pdfrfc/rfc2616.txt.pdf
https://github.com/for-GET/jesse
https://github.com/ninenines/cowboy
https://github.com/go-swagger/go-swagger
https://www.gsma.com/futurenetworks/wp-content/uploads/2018/04/Road-to-5G-Introduction-and-Migration_FINAL.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2018/04/Road-to-5G-Introduction-and-Migration_FINAL.pdf
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#callbackObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#callbackObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#componentsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#componentsObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#infoObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#infoObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#mediaTypeObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#mediaTypeObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#operationObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#operationObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#parameterObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#parameterObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#pathItemObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#pathItemObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#callbackObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#callbackObject

Bibliography

[28] OpenAPI Initiative. Openapi root objects.
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md#oasObject.

[29] OpenAPI Initiative. Openapi security requirement object.
https://github.com/OAI/OpenAPI-Specification/blob/master/
versions/3.0.0.md#securityRequirementObject.

[30] OpenAPI Initiative. Openapi server object.
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md#serverObject.

[31] OpenAPI Initiative. Openapi specification.
https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md.

[32] ECMA International. The json data interchange syntax. http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf.

[33] Frank Mademann. The 5g system architecture. Journal of ICT
Standardization, 6(1):77–86, 2018.
https://doi.org/10.13052/jicts2245-800X.615.

[34] Georg Mayer. Restful apis for the 5g service based architecture. Journal of
ICT Standardization, 6(1):101–116, 2018.
https://doi.org/10.13052/jicts2245-800X.617.

[35] Metaswitch. What is the 5g service-based architecture (sba)?
https://www.metaswitch.com/knowledge-center/reference/what-is-
the-5g-service-based-architecture-sba.

[36] Oracle. Lesson: Packaging programs in jar files. https:
//docs.oracle.com/javase/tutorial/deployment/jar/index.html.

[37] Charles Rich and Richard C. Waters. Automatic programming: Myths and
prospects. Computer, 21(8):40–51, 1988.

[38] Alex Rodriguez. Restful web services: The basics. IBM developerWorks, 33:18,
2008. http://www.gregbulla.com/TechStuff/Docs/ws-restful-pdf.pdf.

[39] SDxCentral. What is a virtual network function or vnf?
https://www.sdxcentral.com/networking/nfv/definitions/virtual-
network-function/.

[40] SmartBear. Openapi 3 - oneof, anyof, allof, not.
https://swagger.io/docs/specification/data-models/oneof-anyof-
allof-not/.

[41] Swagger and SmartBear. Swagger codegen.
https://swagger.io/tools/swagger-codegen/.

[42] Eugene Syriani, Lechanceux Luhunu, and Houari Sahraoui. Systematic

57

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#oasObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#oasObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#securityRequirementObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#securityRequirementObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#serverObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#serverObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://doi.org/10.13052/jicts2245-800X.615
https://doi.org/10.13052/jicts2245-800X.617
https://www.metaswitch.com/knowledge-center/reference/what-is-the-5g-service-based-architecture-sba
https://www.metaswitch.com/knowledge-center/reference/what-is-the-5g-service-based-architecture-sba
https://docs.oracle.com/javase/tutorial/deployment/jar/index.html
https://docs.oracle.com/javase/tutorial/deployment/jar/index.html
http://www.gregbulla.com/TechStuff/Docs/ws-restful-pdf.pdf
https://www.sdxcentral.com/networking/nfv/definitions/virtual-network-function/
https://www.sdxcentral.com/networking/nfv/definitions/virtual-network-function/
https://swagger.io/docs/specification/data-models/oneof-anyof-allof-not/
https://swagger.io/docs/specification/data-models/oneof-anyof-allof-not/
https://swagger.io/tools/swagger-codegen/

Bibliography

mapping study of template-based code generation. Computer Languages,
Systems & Structures, 52:43 – 62, 2018.

[43] Techopedia. Backbone network.
https://www.techopedia.com/definition/3158/backbone.

[44] Techopedia. Core network.
https://www.techopedia.com/definition/6641/core-network.

[45] Chris Wanstrath. Mustache: logic-less templates, 2009.
https://mustache.github.io/.

58

https://www.techopedia.com/definition/3158/backbone
https://www.techopedia.com/definition/6641/core-network
https://mustache.github.io/

	Introduction
	Research Question
	Limitations
	Contributions

	Background
	5G Core
	Service-Based Architecture
	Network Functions of 5GC
	Example Scenario

	Related work
	Code generators
	Golang generation from OpenAPI 2
	Golang generation from OpenAPI 3

	Approach
	Tools
	The OpenAPI 3 Specification
	Root objects
	Examples

	OpenAPI Generator
	The generator's structure
	Erlang code generator

	Details
	Analysis of the generator
	Testing base functionalities
	Initial fixes for the OpenAPI Generator
	First error: export of undefined function
	Second error: syntax errors
	Third error: unbound variables

	Generator's reorganized structure
	Specification validation
	Regex and ENUMs
	List Parameters
	Names mismatch

	Integration in an existing system
	Tutorial - Integrating into an existing system
	Our case: integration in GTT

	Problems with integration and improvements
	Customized body reader
	Callback module

	Results
	Results of the integration
	Discussion
	Limitations
	Incomplete specifications
	Limited functionality of the generator
	Generated code's quality

	Conclusion
	Observations

