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Abstract

Two-dimensional topological insulators coupled to s-wave superconductors and
external magnetic fields have been predicted to support Majorana edge states.
The stability of these states against electron-electron interactions and spin-orbit
interactions of Rashba and Dresselhaus type are studied using bosonization and
renormalization group analysis.

To extend an earlier model, a local Umklapp interaction, corresponding to
isolated impurities, is first studied. It is shown that the local Umklapp interac-
tion is less relevant than the global Umklapp interaction, and that the Majorana
states are stable against this disorder effect.

The model is then extended to also include Rashba and Dresselhaus spin-
orbit interactions of constant interaction strength. It is shown that the Majorana
states are stable also against the Rashba effect, but may be destabilized by the
Dresselhaus effect. The Luttinger parameter is found to be a function of the
Rashba interaction strength.

The thesis also contains an introduction to the theory of topological insula-
tors, with focus on the field theoretical description and interaction processes.

Keywords: Topological insulators, Quantum spin Hall effect,
Spin-orbit interactions, Majorana fermions
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Chapter 1

Introduction

Thanks to experimental and theoretical advances, topologically ordered states
have become a focus of research in condensed matter physics. These states are
characterized by topological invariants, unlike classical states, which are asso-
ciated with broken symmetries. The quantum Hall states form the archetypal
example of topological states, giving an exactly quantized resistance for a range
of magnetic field strengths. Other examples of topological states are the more
recently discovered topological superconductors and topological insulators, the
latter being the topic of this thesis.

A two-dimensional (2+1 dimensions) topological insulator behaves like an
ordinary, gapped insulator in the bulk, but its topologically protected edge states
set it apart. In contrast, a three-dimensional (3+1) topological insulator is
insulating in the bulk and has topologically protected surface states. This thesis
will focus on the edge states of the two-dimensional topological insulators.

These edge states are helical, which means that the direction of motion de-
pends on the spin. The topological protection enables dissipationless transport
with effective spin currents. The topological insulators could thus be particu-
larly useful in spintronics, but the dissipationless currents make them interesting
in other electronic applications as well.

In 2008, it was shown that two-dimensional topological insulators coupled
to conventional s-wave superconductors and external magnetic fields can sup-
port Majorana bound states along the edge [1, 2]. Such states correspond to
Majorana fermions, which are hypothesized neutral fermions that are their own
antiparticles [3]. Particle physicists have long tried to find evidence for these
particles, but to no avail. There is, however, an increasing promise of discov-
ering them as collective excitations in condensed matter systems [4]. In fact,
signatures of Majorana fermions have recently been detected experimentally
in quantum wires with strong spin-orbit interactions, when coupled to s-wave
superconductors [5, 6, 7, 8]. Yet, it still remains an open question.

The Majorana states are interesting for fundamental reasons, but also be-
cause the the topological protection makes them possible qubits [9]. Developing
an understanding of how such states behave in materials is important in order
to construct useful experiments. In particular, the stability of the Majorana
edge states against interactions and disorder effects must be investigated.

Sela, Altland and Rosch [10] have shown that Majorana states in a two-
dimensional topological insulator system can be protected in the case when
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2 Chapter 1 Introduction

forward, dispersive and Umklapp scattering electron-electron interactions are
present. In this thesis, we extend their model to also consider local Umklapp
effects from isolated impurities and Rashba and Dresselhaus spin-orbit inter-
actions. The model then describes a more realistic system, with disorder and
spin-orbit effects likely to be present in experimental samples. We show that
the Majorana edge states are stable also against such impurities and the Rashba
spin-orbit interaction. The Dresselhaus spin-orbit interaction does, however,
give rise to non-trivial effects and may destabilize the Majorana states.

The structure of the thesis is as follows. In chapter 2 the topological insula-
tors are described in more detail. First the basic concepts of topology in physics
are introduced by means of example, then we turn to the theory of topologi-
cal insulators. Both topological band theory and the relevant field theory are
described.

In chapter 3 we study the local Umklapp interaction using a Jordan-Wigner
transformation as well as bosonization, followed by a renormalization group
(RG) analysis. The results for the Rashba and Dresselhaus interactions are
given in chapter 4. We conclude this thesis in chapter 5, with a summary of the
results and their implications for future experimental work.



Chapter 2

Theory of topological
insulators

In this chapter, topology is introduced in the context of condensed matter
physics and relevant parts of topological insulator theory is described. For more
extensive treatments of topology in physics, see references [11] and [12]. There
are several good review articles introducing topological insulators, of which the
author has found refs. [13, 14, 15] particularly helpful.

2.1 Topology and physics

The simplest example of topology in physics is probably the problem of a particle
constrained to a ring threaded by a magnetic flux Φ , as described in e.g. ref. [11]
and illustrated in fig. 2.1. The geometry requires periodicity with the period
2π. If the coordinate of the particle is measured in terms of an angular variable
φ ∈ [0,2π], then φ can be considered a field defined by the map

φ : S1 → S1, (2.1)

τ 7→ φ (τ) (2.2)

from the unit circle S1 into another circle, where τ ∈ [0,β] is imaginary time.
Such a mapping can be associated with a winding number W , counting the
number of times φ (τ) runs around the unit circle as τ goes from 0 to β, i.e.

Figure 2.1 – Particle on a ring threaded by a magnetic flux Φ.

3



4 Chapter 2 Theory of topological insulators

2πW = φ (β)−φ (0). Obviously, W ∈ Z and cannot be changed by continuously
deforming φ (a loop around the circle is a loop as long as the circle remains a
circle).

The partition function is

Z =

∫
φ(β)−φ(0)=2πW

Dφe−
∫

dτ( 1
2 φ̇

2−iAφ̇), (2.3)

where A = Φ
Φ0

is the vector potential of the magnetic field, and Φ0 is the

magnetic flux quantum. Applying the constraint φ (β) − φ (0) = 2πW to the
second term in the action yields

Stop [φ] = iA

∫ β

0

dφ̇ = iA (φ (β)− φ (0)) = i2πWA (2.4)

and we can separate the partition function into different topological sectors,

Z =
∑
W

e2πiWA

∫
φ(β)−φ(0)=2πW

Dφe−
1
2

∫
dτφ̇

2

. (2.5)

Stop is a topological term, which cannot affect the equations of motion. It does,
however, weight the contribution of different topological sectors in the functional
integration.

In more formal terms (for an introduction, see references [11] or [12]), all
fields with the same winding number are homotopic, meaning that they belong
to an equivalence class of fields that can be continuously deformed into each

other. Here, the homotopy group is π1

(
S1
)

= Z. It is a topological invariant,

encoded in the topological action (as it is ∼ W ∈ Z). Two theories are said
to be topologically equivalent when the topological parts of their actions have
the same homotopy group. From this property follows that the target spaces
of the fields are homeomorphic, meaning that the spaces can be continuously
deformed into each other.

The key message here is that such deformations will not change the topolog-
ical properties of the system. In effect, continuous changes of the Hamiltonians
will preserve certain properties.

2.2 Topological band theory

To get a first conceptual understanding of an topological insulator, let us con-
sider the band theory of the system, rather than the underlying field theory
description. Recall first the band theory of ordinary insulators, semiconductors
and metals. The eigenvalues En (k) form a structure of energy bands. Both in-
sulators and semiconductors have a fully occupied (valence) band and an empty
(conduction) band of higher energy. The size of the band gap (and hence the
likelihood for an electron to jump to the upper band) determines whether the
material is an insulator or a semiconductor. These two states are topologically
equivalent, meaning that the Hamiltonian can be continuously deformed in such
a way that an insulating state turns into a semiconducting one (or vice versa),
without closing the band gap.



2.2 Topological band theory 5

BE

Figure 2.2 – The integer quantum Hall effect. Under a magnetic field B per-
pendicular to the plane and an electric field E across the system, the electrons
in the bulk will be trapped in cyclotron orbits and electrons along the edge will
form protected edge states.

2.2.1 The integer quantum Hall effect

The integer quantum Hall state provides a topologically non-trivial example
of a gapped state. In short, consider a two-dimensional material subject to a
strong, perpendicular magnetic field. The electrons on the surface will move in
cyclotron orbits and become arranged in energy levels called Landau levels (LL).
If N levels are filled, then there is an energy gap ∆E (k) = EN+1 (k)− EN (k)
up to the next level. We can form equivalence classes of Hamiltonians that can
be smoothly varied without closing the gap, i.e. respecting the band structure.
These classes are distinguished by their first Chern class [14]

n =
1

2π

∫
d2kF , (2.6)

where F is the Berry’s curvature F = ∇× A and the Berry’s connection A =
i
∑N
m=1〈um|∇k|um〉. The Chern class is always an integer. It corresponds to the

Berry’s phase picked up by a Bloch state |um〉 transported around the Brillouin
zone, which can be compared with how the winding number corresponds to the
“phase”picked up by the particle on the ring as it is transported around the ring.
The analogy is strengthened by the fact that n is also a topological invariant.

When an electric field is applied across the system, the cyclotron orbits pick
up a drift velocity, which yields a net current. The conductivity is quantized
with

σxy = n
e2

h
. (2.7)

Since n is a topological invariant, the Hall conductivity is robust against smooth
variations of the Hamiltonian [14]. This is what makes the quantization of the
conductivity so precise, up to 1 ppb [16].
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(a) (b)

Figure 2.3 – If the gapless edge state of the quantum Hall system, between
the bulk bands, originally crosses the Fermi energy once (a), the Hamiltonian
can be smoothly varied such that the state crosses the Fermi energy any odd
number of times (b). The number can, however, never become even, so the
difference NR − NL between the number of right and left moving modes is
preserved.

Consider now an interface between a quantum Hall state with n = 1 and an
ordinary insulator with n = 0. The Chern number then changes by ∆n = 1 at
the interface. In order to make the change in the topological invariant possible,
the energy gap must disappear somewhere, giving rise to low energy electronic
states at the interfaces. These states are chiral, meaning that they have a specific
direction, defined by their dispersion relation and the direction of the electric
field, as can be seen in fig. 2.2.

If there is a single such edge state, it will cross the Fermi energy exactly once.
It is, however, possible to smoothly vary the Hamiltonian so that it crosses the
Fermi energy any odd number of times, see fig. 2.3. The difference NR − NL
between the number of right and left moving modes is preserved under such
a variation, as half of the added crossings must happen with positive group
velocities, and half with negative group velocities. Furthermore, the smooth
variation ensures that the new Hamiltonian is homeomorphic to the old one,
which implies that the Chern number is conserved. This is encoded in the
bulk-boundary correspondence [14]

NR −NL = ∆n. (2.8)

2.2.2 Topological insulators

As is clear from (2.7) and (2.8), the Chern number n and the Hall conductivity
σxy are odd under time-reversal, so time-reversal symmetry must be broken,
e.g. by a magnetic field, to allow the topologically protected integer quantum
Hall edge states. Is it possible to find topologically non-trivial gapped states in
a time-reversal symmetric system? Yes, the topological insulators, with n = 0,
turn out to be examples of such states. These are sometimes called quantum
spin Hall (QSH) states, as they utilize spin-orbit interactions. They were first
proposed by Kane and Mele [17], building on work by Haldane [18].
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k
π /α 0 π /α

ǫ F

(a)

k
π /α 0 π /α

ǫ F

(b)

Figure 2.4 – The (a) allowed ungapped and (b) forbidden gapped configura-
tions of a single Kramers’ pair for the edge states. Red and blue lines illustrate
different spins, and the black bands are the bulk states. The gapped version is
forbidden, as the degeneracy at k = 0 is removed.

One important result for time-reversal symmetric systems is Kramers’ the-
orem. It states that all eigenstates of an electron Hamiltonian commuting with
the time-reversal operator T must have at least a twofold degeneracy [19]. To
see this, recall that the anti-unitary time-reversal operator can be expressed as
the product of a unitary operator U and complex conjugation K̂, T = UK̂, and
that T 2 = −1 for spin 1

2 particles. Now, assume that a nondegenerate state
|ξ〉 existed. Then we would have T |ξ〉 = c|ξ〉 for some constant c, and in effect
T 2|ξ〉 = |c|2|ξ〉. This is not allowed as |c|2 6= −1, so by contradiction there must
be another state |ξ′〉 with the same energy, which is related to |ξ〉 through time
reversal [19]. Together the two states form a Kramers’ pair.

This theorem has interesting consequences for the edge states. To see this,
let us study electronic states inside the bulk band gap. In particular, noting
that the Γ and X points in the Brillouin zone (k = 0 and k = ±πα , respectively,
where α is the lattice spacing) transform onto themselves under time reversal,
let us consider states at the Γ point. In the absence of spin-orbit interaction,
these states trivially satisfy Kramers’ theorem, as states with different spins are
automatically degenerate. In contrast, in the case with spin-orbit interactions,
the energy levels of different spins are shifted. Since Kramers’ theorem requires
the states to be degenerate, they must be pairwise connected at k = 0. Band
gaps are thus only allowed when we have an even number of pairs of spin up
and spin down states. Such pairs are known as Kramers’ pairs, as the different
spins are related through time reversal [14]. The possible configurations for one
and two Kramers’ pairs are shown in fig. 2.4 and 2.5, respectively.

This state of affairs can be described with a Z2 topological invariant ν [20].
When ν = 0 there is an even number of Kramers’ pairs, and when ν = 1 there is
an odd number. A principle similar to the above bulk-boundary correspondence
can now be formed for the number of Kramers’ pairs intersecting the Fermi
energy NK

NK mod 2 = ∆ν, (2.9)
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k
π /α 0 π /α

ǫ F

(a)

k
π /α 0 π /α

ǫ F

(b)

Figure 2.5 – (a) Ungapped and (b) gapped configurations of two Kramers’
pairs for the edge states. Both configurations are allowed. By means of smooth
deformations of the Hamiltonian, the gap in (b) can be made as wide as that
of the bulk insulator, i.e. it is a topologically uninteresting case. Red and blue
lines illustrate different spins, and the black bands are the bulk states.

where ∆ν is the change in ν across an interface between the two materials.
Since the topological invariant must be changed at the interface, the gapless
edge states for odd NK (ν = 1) are topologically protected against smooth
variations of the Hamiltonian [14]. From now on, we will call the state with
ν = 1 a topological insulator and, for simplicity, restrict ourselves to the case
with one Kramer’s pair (NK = 1).

2.3 Field theory for topological insulators

It turns out that it is useful to study the electronic properties of these systems
using quantum field theory, as it allows many powerful theoretical techniques
and provides a natural way to describe excitations. The book by Altland and
Simons [11] is a good introduction to the use of quantum field theory in con-
densed matter physics – the mathematics used is essentially the same as in
particle physics, but the concepts it is used to represent and the overall phi-
losophy are, at times, quite different. The book by Giamarchi [21] is a good
reference for the use of QFT to describe one-dimensional (1+1) systems, such
as the edge of a topological insulator.

In this language, the fermionic annihilation operator ψ (x) written in its
momentum components is

ψσ (x) =
1√
Ω

∑
k

eikxψσ (k) , (2.10)

where σ =↑ , ↓ is a spin index. Since we are interested in low-energy excitations
we can restrict the sum to momenta close to the Fermi momentum ±kF

ψσ (x) ≈ 1√
Ω

 ∑
−Λ<k−kF<Λ

eikxψσ (k) +
∑

−Λ<k+kF<Λ

eikxψσ (k)

 (2.11)
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for some momentum cut-off Λ. We make the conventional choice of coordinate
systems, with k > 0 (left term in the sum above) corresponding to right-movers
and k < 0 (right term) corresponding to left-movers. Symbolically, this is
written

ψσ (x) = ψRσ (x) + ψLσ (x) . (2.12)

The linearized low-energy free field theory for both spin species is [22]

H0 =

∫
dk

2π

[
ψ†R↑vF i∂xψR↑ − ψ

†
L↓vF i∂xψL↓

+ ψ†R↓vF i∂xψR↓ − ψ
†
L↑vF i∂xψL↑

]
, (2.13)

where we immediately see that there is a Kramers’ pair on each line (as spin flips
and i→ −i under time reversal [19]). Now, we said earlier that the topological
insulator contains only one Kramers’ pair. In this language, it is difficult to see
how that would come about. The key is that the edge states are at the boundary
of a two-dimensional (2+1) system, so we can in fact have a holographic system,
with one Kramers’ pair at one edge and the other at the opposite edge [22].

The spin up states move to the right at one edge, and to the left at the other
(vice versa for spin down). We make the conventional choice of geometry with
right-moving spin up electrons and left-moving spin down electrons at the upper
edge, and the opposite at the lower edge. For our purposes, it is enough to only
consider one of the edges, and we choose the upper one. This means that we
have

ψ (x) = ψR↑ (x) + ψL↓ (x) , (2.14)

which has the spinor form

Ψ =

(
ψL↓
ψR↑

)
. (2.15)

This is known as a helical liquid, as the spin is determined by the direction of
the particle1. The free theory of the helical liquid has the Hamiltonian density

H0 = Ψ† (vF i∂xσ
z − µ) Ψ

= ψ†L↓ (vF i∂x − µ)ψL↓ + ψ†R↑ (−vF i∂x − µ)ψR↑, (2.16)

where vF is the Fermi velocity, σa, a = x,y,z denotes the Pauli matrices and
µ is the chemical potential. The next step is to consider interactions in the
topological insulator edge states, and how they are restricted by time-reversal
symmetry.

2.3.1 Allowed interactions

As discussed in the section 2.2.2, time-reversal symmetry is a fundamental prop-
erty of the topological insulator state. Interactions and perturbations that break

1
The helical liquid theory can also be used to describe the states in quantum wires with

strong spin-orbit interactions, when coupled to a s-wave superconductor [23], which is just the
setup used in the recent experiments [5, 6, 7, 8].
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time reversal, such as strong applied magnetic fields, will then act towards de-
stroying the state. Interactions that respect time reversal invariance will thus be
the most important ones in this context. (One can, of course, also consider weak
perturbations of various kinds.) How will the interactions affect the excitations
of the gapless edge states? Can they open up a gap?

We begin by studying time-reversal invariant interactions. Assume that a
perturbation H ′, which satisfies

[
H ′,T

]
= 0, is turned on at t = 0. If m right

movers are excited at this time, can they be scattered back to m left movers
through H ′? To model this, let the final state of m left movers, |Ψ〉, be related
to the initial state of m right movers, |φ〉, through time reversal, i.e. |Ψ〉 = T |φ〉.
With T = K̂U , where K̂ is complex conjugation and U is an unitary operator,
we then have [24]

〈Ψ|H ′|φ〉 = 〈Tφ|H ′|φ〉 = 〈φ|H ′|Tφ〉∗

= 〈H ′φ|Tφ〉∗ = 〈K̂H ′φ|K̂Tφ〉

= 〈K̂H ′φ|U†U |K̂Tφ〉 = 〈TH ′φ|T 2φ〉
= (−1)

m 〈TH ′φ|φ〉 = (−1)
m 〈H ′Tφ|φ〉

= (−1)
m 〈Ψ|H ′|φ〉. (2.17)

Clearly, the matrix element is zero for odd m. In the case of only one
Kramers’ pair, the only degenerate states are already connected by T . Then a
single excitation cannot be scattered by a time reversal symmetric perturbation.
In other words, one-particle backscattering, which tends to be the most relevant
perturbation in normal metals is forbidden in topological insulators. This makes
the edge states more protected – also from localization by disorder – and is
related to their topological protection [17, 22].

However, two particle processes are not forbidden, even when there is only
one Kramers’ pair. They threaten to break the topological insulator state, and
need to be studied further. Wu, Bernevig and Zhang [25] showed that the only
allowed non-chiral interactions are the dispersive and Umklapp interactions,
illustrated in figures 2.6 and 2.7, respectively2. They can be written [10]

Hdispersive = g2ψ
†
L↓ψL↓ψ

†
R↑ψR↑, (2.18)

Hum = guψ
†
L↓∂xψ

†
L↓ψR↑∂xψR↑ + h.c., (2.19)

where h.c. denotes Hermitian conjugate. g2 and gu are the interaction strengths
of the dispersive and Umklapp scattering processes, respectively.

Note that eq. (2.19) is a point-splitted version of the naive Umklapp term,

ψ†L↓ψ
†
L↓ψR↑ψR↑ + h.c., which is forbidden by the exclusion principle. The point

splitting can be considered a regularization of the theory. Another way to treat
fields at arbitrarily close coordinates is through operator product expansions
(OPE:s). We will return to aspects of the regularization later in the thesis.

It should also be noted that the Umklapp process only takes place during
specific conditions. As is clear from the figure 2.7, two particles are moved from

2
However, as we will come to see in chapter 4, the claim that these are the only two allowed

interactions does not hold under all conditions, as one can also have inelastic backscattering
when spin axial symmetry is broken.
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Figure 2.6 – Dispersive scattering, or the g2 scattering channel. Two particles
traveling in opposite directions (having opposite spins) interact and continue
in their respective directions.

Figure 2.7 – Umklapp interaction. Two particles that initially travel in one
direction (have the same spin) interact with each other and the lattice. After
the interaction the two particles travel in the opposite direction (have the
opposite spin) and there has been a transfer of 4kF to or from the lattice.

the vicinity of one Fermi point (k = kF ) to the other one. Each one is changed by
a momentum of 2kF , so a total momentum of 4kF must be transferred to or from
the lattice during the process. By just considering the naive form of the Umklapp
term, ψ†L↓ψ

†
L↓ψR↑ψR↑+h.c., and inserting the expansions of the fields from (2.12)

and (2.11), we see that there will be a factor ei4kF x in the Hamiltonian (2.19),

which oscillates rapidly during the integration Hum =
∫

dxei4kF xHum [21, 25].

The term will tend to zero unless the system is at half-filling3 or kF = 0. In the
later parts of this thesis we will mainly focus on a model for zero momentum
Majorana modes, so the Umklapp interaction will indeed be present.

Even though there are only two allowed non-chiral interactions, they do
allow for a greater variation and richness in physics than can first be expected.
The Umklapp term is used to describe the dynamics within the system and the
interaction with localized impurities. One can also consider more general cases
of disorder, such as annealed and quenched disorder. In those cases the coupling
constant gu in (2.19) is replaced by Gaussian variables gu (x,t) and ϕ (x,t), as

in gu (x,t) eiϕ(x,t). In the case of quenched disorder there is no time dependence
– the disorder is quenched, or frozen in time [25].

In addition, there is the chiral forward scattering. It is illustrated in fig. 2.8

3
In general, for the lattice model we have kF = υπ/α and x = jα, where υ is the filling

fraction and j ∈ Z. For υ = 1/2, exp [i4kF x] ≡ 1, and the rapid phase fluctuation is suppressed
[21].
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Figure 2.8 – Forward scattering, or the g4 scattering channel. Two particles
that travel in the same direction (have the same spin) interact and continue in
the same direction.

and can be written [10]

Hforward =
g4

2

[(
ψ†L↓ψL↓

)2

+
(
ψ†R↑ψR↑

)2
]
, (2.20)

where g4 is the interaction strength of the forward scattering process.
In the limit of small momentum transfer, starting from the general formula

for electron-electron interactions one can show that g4 = 2g2 [21, 26]. The
dispersive and forward scattering terms (2.18) and (2.20) can then be combined
into

Hfw = g2ψ
†
L↓ψL↓ψ

†
R↑ψR↑ +

g4

2

[(
ψ†L↓ψL↓

)2

+
(
ψ†R↑ψR↑

)2
]

(2.21)

= g2

(
Ψ†Ψ

)2

. (2.22)

In appendix A we show explicitly that these interactions satisfy time reversal
invariance.

In addition, one can consider spin-orbit interactions in the helical liquid.
Couplings to other systems are by definition not inside the system, and can be
treated as perturbations (as long as one stays within the regime of validity of
perturbation theory, of course).

2.3.2 Spin-orbit interactions

The general idea of spin-orbit interaction is that a particle traveling through
electromagnetic fields will interact with these through its magnetic moment
(i.e. spin). In the case of the Hydrogen atom, the electron travels through the
Coulomb potential from the atomic nucleus, and the resulting interaction gives
rise to a splitting of its spectrum (the “fine structure”). Such atomic spin-orbit
interactions are also the source of the topological insulator state, but the effects
are much larger than in the case of the Hydrogen atom due to the heavy elements
involved in these materials.

The quantum spin Hall state was first predicted to occur in graphene [17],
being formed from a mirror symmetric atomic spin-orbit interaction. Unfortu-
nately, graphene never really did work as a topological insulator, as its spin-orbit
gap is very small (sub-Kelvin) [27, 28, 29], so another route was taken. However,
it was recently shown that by depositing adatoms on graphene sheets, one can
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reach several orders of magnitude larger gaps (∼ 100 − 1000 K) than in pure
graphene [30, 31], so graphene could yet turn out to become a useful topological
insulator.

Instead, the breakthrough came when Bernevig, Hughes and Zhang [32]
predicted the atomic p-orbitals in HgTe quantum wells to give rise to the QSH
state. The first topological insulator was soon realized in just such a system
[22, 33], and such heterostructures remain the main way to achieve topological
insulators in 2+1 dimensions [30, 34]. Recently, there have been experimental
reports that also the InAs/GaSb quantum wells suggested by Liu et al. [35] can
host the QSH state [36, 37]. In addition, the InAs/GaSb wells are reported to
form good surfaces to superconductors [36, 38], thus being interesting candidates
for the systems hosting Majorana fermions discussed in chapter 1.

In the quantum wells, other spin-orbit interactions such as the Rashba and
Dresselhaus effects may also be considerable [39, 40]. For the HgTe quantum
wells, the dominant spin-orbit interaction is the Rashba effect. InAs/GaSb
quantum wells may, on the other hand, have comparable Rashba and Dressel-
haus interaction strengths [40].

These spin-orbit effects are caused by inversion asymmetry of the crystal
and the doping of the semiconductor materials, quite unlike the atomic spin-
orbit interaction of the Hydrogen atom. A quantum well, in contrast, also has
a microscopic potential which depends on the design of the heterostructure and
on externally applied gate voltages. It is thus possible to tune this effect in
experiments. In addition there may exist a momentum-dependent magnetic
field b (p) intrinsic to the semiconductor structure, caused by bulk effects [41].
In order to be allowed by time reversal, b (p) must be odd in p. (As has already
been noted, an external magnetic field B would break time reversal symmetry.)

For a particle with spin vector σ moving through the electric field E and the
b field, a general spin-orbit term can be written (with ~ = c = me = 1) [19, 42]

HSO = C1 (E× p) · σ + C2σ · b (p) (2.23)

where p is the momentum of the electron and σ = (σx, σy, σz) is the “vector” of
the three Pauli matrices. When we have a constant electric field, E = |E|ẑ, the
first term of (2.23) is known as Rashba spin-orbit interaction [39]. Restricting
ourselves to the one-dimensional system of the edge of the topological insulator,
it is quite simply HRashba = −i|E|σy∂x. In field theory language for a helical
liquid, the Rashba Hamiltonian takes the form [42, 43]

HR = αR (x) Ψ† (−i∂xσ
y) Ψ (2.24)

or, in the component fields,

HR = αR (x)
(
ψ†L↓∂xψR↑ − ψ

†
R↑∂xψL↓

)
, (2.25)

where αR (x) is the spatially dependent Rashba interaction strength. This inter-
action is explicitly shown to be time reversal invariant in appendix A. It does,
however, break parity symmetry as the electric field is odd under parity.

The second term of (2.23) is dubbed Dresselhaus spin-orbit interaction. Us-
ing a tight-binding model one can determine the form of b (p). In 2+1 dimen-
sions, the dominating term in the Hamiltonian depends on kxσ

x−kyσ
y [42, 43].
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For the helical liquid we write

HD = βD (x) Ψ† (−i∂xσ
x) Ψ (2.26)

or

HD = −iβD (x)
(
ψ†R↑∂xψL↓ + ψ†L↓∂xψR↑

)
, (2.27)

where βD (x) is the spatially dependent Dresselhaus interaction strength. This
interaction is shown to be time reversal invariant in appendix A.



Chapter 3

Majorana fermions and
local Umklapp interactions

3.1 Introduction

We will here explore a model considered by Sela, Altland and Rosch (SAR) in
ref. [10]. We will attempt to extend it by treating additional interactions, with
inspiration from Wu, Bernevig and Zhang [25]. In particular, a local Umklapp
interaction is treated in this chapter and spin-orbit interactions are treated in
the next chapter.

The SAR model aims to describe a two-dimensional (2+1) topological insu-
lator in the vicinity of an s-wave superconductor and an external magnetic field
B along the edge. It thus consists of a free helical liquid, as in (2.16) and an
additional coupling term in the Hamiltonian density, which can be written

δH = Bψ†L↓ψR↑ + ∆ψL↓ψR↑ + h.c., (3.1)

where ∆ is the strength of the superconductor coupling. Furthermore, we in-
clude forward and Umklapp scattering terms, i.e. (2.21) and (2.19). The full
SAR Hamiltonian is thus

H = H0 +Hfw +Hum + δH. (3.2)

Following SAR [10]. we consider using their method of mapping a field
Hamiltonian to an XYZ spin chain for an extended model, now also including
a local Umklapp interaction. Our results are given below, in section 3.2. As we
shall see, this approach is instructive, but also difficult to exploit for deriving
useful results. To get further we then use the more general approach of bosoniz-
ing the field Hamiltonian and analyzing it by means of renormalization group
methods. This is done in section 3.3.

3.2 Mapping the field theory model to an XYZ spin chain

3.2.1 The SAR model

Sela, Altland and Rosch [10] have shown that the Hamiltonian (3.2) can be
mapped (up to a constant) onto the XYZ spin-chain model, with both staggered

15



16 Chapter 3 Majorana fermions and local Umklapp interactions

and non-staggered magnetic fields, HXY Z =
∑
j Hj , where

Hj =
∑

a=x,y,z

JaS
a
j S

a
j+1 −

[
µ+B (−1)

j
]
Szj . (3.3)

The coupling constants Jx = vF + ∆, Jy = vF −∆ and Jz = g2

4 = g4

2 = gu
are determined using a Jordan-Wigner transformation1

Szj = a†jaj −
1

2
(3.4)

S+
j = a†j (−1)

j
eiπ

∑j−1
l=1 a

†
l al (3.5)

and expanding the lattice fermions aj in terms of the left and right movers,

aj ∼ e
iπ2 xψR↑ (x) + e−i

π
2 xψL↓ (x) . (3.6)

Since this mapping is exact, up to a constant, Sela, Altland and Rosch [10]
were able to explore the phase diagram using known results from spin chain the-
ory. Among other things they showed that the model has a Majorana quantum
phase transition2, i.e. a phase transition at T = 0 which supports Majorana
modes around a critical point [44]. Since the phase diagram is most readily ex-
plained after introducing bosonization, we will save the details for section 3.3.5.

The question now is, can we use this method to extend the model in order
to also describe other interactions and impurity effects? We will consider the
case of a local Umklapp term, existing in only a single bond of the chain. This
corresponds to a localized impurity, affecting electron-electron dynamics around
the site.

3.2.2 Local Umklapp interaction

Following Wu, Bernevig and Zhang [25] we write the Umklapp term at half-
filling in a point-splitted form, using the lattice constant α as the point-splitting.
This gives a regularized theory, using the lattice constant as a UV cut-off. The
Umklapp term takes the form

Hum = −gu
∫

dxψ†R↑ (x)ψ†R↑ (x+ α)ψL↓ (x+ α)ψL↓ (x) + h.c. (3.7)

While this looks distinctly different from the earlier form (2.19), the two
forms are shown to be approximately equivalent using a first-order Taylor ex-
pansion [21]

ψ†R↑ (x+ α) ≈ ψ†R↑ (x) + α∂xψ
†
R↑, (3.8)

1
This relation between the interaction strengths g2, g4 and gu, is introduced by the lat-

tice and unimportant for the structure of the phase diagram [10]. It thus does not need to
correspond to the relation g4 = 2g2 used in eq. (2.22).

2
In general, a quantum phase transition is achieved by varying a physical parameter at

T = 0, resulting in a changed ground state [44]. One example is the destruction of the
superconducting state by a critical magnetic field.
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which yields

ψ†R↑ (x) ∂xψ
†
R↑ (x) ≈ 1

α

[
ψ†R↑ (x)ψ†R↑ (x+ α)− ψ†R↑ (x)ψ†R↑ (x)

]
=

1

α
ψ†R↑ (x)ψ†R↑ (x+ α) . (3.9)

By using this expression and the corresponding one with ψ†R↑ → ψL↓, and
including the 1/α factors in the coupling constant, we do indeed see that (2.19)
and (3.7) capture the same physics. It should be noted that the 1/α factor
is needed to balance the dimensions, as the differential operator also has units
1/length, but that α is constant and does not, unlike the operators, scale under
renormalizations or conformal transformations.

A local Umklapp interaction is acquired by inserting a delta function δ (x) in
the integral (3.7). Call the new coupling constant gL. The Hamiltonian density
we want to try to map onto a spin chain then becomes

Hlocalum = gLψ
†
R↑ (0)ψ†R↑ (α)ψL↓ (α)ψL↓ (0) + h.c. (3.10)

In order to map this onto a spin chain, we now need to invert the lattice
fermion expansion (3.6) in order to express the Ψ fields in terms of lattice
fermions. This is less straight-forward for a fixed position x0 = 0 than when
we integrate over all x, but can be done by approximating the fields as slow,
ψR↑ (x) ≈ ψR↑ (x+ α). Such an approximation essentially means that we have
an effective field theory, which describes the physics at length scales larger than
the lattice spacing3. We have

aj ∼ e
iπ2 xψR↑ (x) + e−i

π
2 xψL↓ (x) , (3.11)

aj+1 ∼ e
iπ2 (x+α)ψR↑ (x+ α) + e−i

π
2 (x+α)ψL↓ (x+ α) . (3.12)

Using units in which α = 1, we write

aj+1 ≈ ie
iπ2 xψR↑ (x)− ie−i

π
2 xψL↓ (x) . (3.13)

Combining (3.11) and (3.13) we get

ψR↑ (x) =
e−i

π
2 x

2

(
aj − iaj+1

)
, (3.14)

ψL↓ (x) =
ei
π
2 x

2

(
aj + iaj+1

)
. (3.15)

Using the above expressions and the inverses of the Jordan-Wigner trans-
formations in (3.4) and (3.5) we are now ready to translate the local Umklapp
Hamiltonian (3.10) into the spin operator language. After a straight-forward
but rather tedious calculation one finds

Hlocalum =
gL
8

[(
S+

0 S
−
2 + S+

2 S
−
0

)(1

2
+ Sz1

)
− Sz1 (Sz0 + Sz2 + 1) + Sz0S

z
2

]
. (3.16)

3
If the local Umklapp has a finite interaction width and cannot be approximately described

by the delta function, it is possible to change the slow field approximation and carry out a
similar analysis to the one described here.
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We find that Hlocalum contains next-nearest neighbour couplings and three-site
interactions, apart from the more familiar types of terms. It is also easy to see
that site j = 1 is in some sense special, as can be expected from a fixed spin
impurity. Now, the question is, can such a model be solved?

As it turns out, it is not clear how to approach this model analytically. Mod-
els with isotropic next-nearest neighbour interaction, such as the Majumdar-
Ghosh and J1–J2 models, have been studied in some detail [45, 46], but local,
anisotropic next-nearest neighbour terms do not seem to be covered in the lit-
erature. The three-point interaction does not make things simpler either.

As an attempt to remove the latter difficulty, we form a mean field theory
by letting Sz1 → γ = 〈Sz1 〉. This approximation gives us

H̃localum =
gL
8

[(
S+

0 S
−
2 + S+

2 S
−
0

)(1

2
+ γ

)
− γ (Sz0 + Sz2 ) + Sz0S

z
2

]
. (3.17)

Again, models of this kind do not seem to have been studied in the literature.
The most promising way to study them may be through numerical studies. One
of the questions involved with such a study is how to treat the other components
of the spin on the first site? Instead of delving into the numerical tricks and
complexities, one may try a “ghost site approach”. The idea of the ghost site
approach is to put the impurity at position j = 1

2 in the lattice, either between
two lattice points or next to the one-dimensional edge. For details on this
approach, see appendix B. Unfortunately, the resulting theory appears at least
as complicated as the original one, making further progress difficult. In the
following, we will instead use a more traditional field theory approach.

3.2.3 Conclusions

In general it seems to be possible to map field theories in 1+1 dimensions onto
spin chain Hamiltonians, using the method of an inverse Jordan-Wigner trans-
formation. It is formally possible to do this also for sites outside the lattice,
although the basis for such a procedure awaits a rigorous proof. However, as
above, one runs the risk of finding a rather unwieldy spin chain Hamiltonian,
unless one does have the luck of Sela, Altland and Rosch [10] to find an already
well-studied model. In our case with the local Umklapp scattering, this method
does not seem practicable.

One can, of course, choose to bosonize the spin chain model and apply
renormalization group analysis methods. It does, however, seem more straight-
forward to instead bosonize the original field theory model and apply the RG
analysis to that theory. This is what is done in the later parts of this chapter.

3.3 Analysis of the field model

3.3.1 Bosonization

In 1 + 1 and fewer dimensions, it is possible to transform fermion fields Ψ
to boson fields φ, and vice versa. We have already seen an example of this
equivalence when we mapped the field model onto lattice spins. The equivalence
is more generally, and perhaps more elegantly, illustrated in the language of
conformal field theory (CFT) [47], in which we can write the fermion fields as
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vertex operators. This procedure, called bosonization, generally gives a simpler
theory, as several fermion interactions can be expressed as free boson fields. For
an introduction to bosonization, please refer to Sénéchal [48], Giamarchi [21] or
Gogolin et al. [49].

The left and right moving fields and densities can be expressed [48, 49]

ΨL↓ =
1√
2πα

ηL↓e
−i
√

4πφL↓(x), (3.18)

ΨR↑ =
1√
2πα

ηR↑e
i
√

4πφR↑(x), (3.19)

ρL↓ =
1√
π
∂xφL↓, (3.20)

ρR↑ =
1√
π
∂xφR↑. (3.21)

In the following calculations, we will set α = 1.
The ηL and ηR are Klein factors. They are included to account for the

anticommuting nature of fermion fields and obey the Clifford algebra4. For
general (not necessarily chiral) spin indices µ,ν ∈ {↑, ↓} the algebra has the
familiar form [48]{

ηLµ, ηLν
}

=
{
ηRµ, ηRν

}
= 2δµν , (3.22){

ηLµ, ηRν
}

= 0. (3.23)

We will find it convenient to introduce the fields5

φ = φL↓ + φR↑, (3.24)

θ = φR↑ − φL↓. (3.25)

Let us now bosonize our full model, including the local Umklapp interaction,
i.e. bosonize eqs. (3.2) and (3.10). The free Hamiltonian (2.16) bosonizes to [48]

H0 = ψ†L↓ (vF i∂x − µ)ψL↓ + ψ†R↑ (−vF i∂x − µ)ψR↑

= vF

[(
∂xφR↑

)2
+
(
∂xφL↓

)2]− µ√
π
∂xφ. (3.26)

For the non-standard terms we have slightly more to do:

Hfw = g2ψ
†
L↓ψL↓ψ

†
R↑ψR↑ +

g4

2

[(
ψ†L↓ψL↓

)2

+
(
ψ†R↑ψR↑

)2
]

= g2ρL↓ρR↑ +
g4

2

(
ρ2
L↓ + ρ2

R↑

)
=
g2

π
∂xφL↓∂xφR↑ +

g4

2π

[(
∂xφL↓

)2
+
(
∂xφR↑

)2]
, (3.27)

4
Technically, this procedure means that we have assumed that the system is in the ther-

modynamic limit. The Klein factors are, in the general case, really operators that change the
fermion number. This has notable effect in systems of finite size L, but in the thermodynamic
limit (L → ∞) a changed fermion number means that kF shifts by order 1

L
→ 0, which can

be neglected. One can then use the η:s [26, 50].
5
φ corresponds to the total field along the edge, and θ is its dual. This basis is sometimes

known as the helical edge basis [51], as it generalizes nicely and allows the separate treatment
of two opposite edges of the topological insulator. In that case one would use φ1 = φL↓ +φR↑
and φ2 = φL↑ + φR↓ etc. [52].
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B
(
ψ†L↓ψR↑ + ψ†R↑ψL↓

)
=

B

2π

(
ηL↓ηR↑e

i
√

4π(φL↓+φR↑) + ηR↑ηL↓e
−i
√

4π(φR↑+φL↓)
)

=
B

2π
ηL↓ηR↑

(
ei
√

4πφ − e−i
√

4πφ
)
, (3.28)

∆
(
ψL↓ψR↑ + ψ†R↑ψ

†
L↓

)
=

∆

2π

(
ηL↓ηR↑e

i
√

4π(φR↑−φL↓) + ηR↑ηL↓e
−i
√

4π(φR↑−φL↓)
)

=
∆

2π
ηL↓ηR↑

(
ei
√

4πθ − e−i
√

4πθ
)
, (3.29)

Hum = −guψ
†
R↑ (x)ψ†R↑ (x+ α)ψL↓ (x+ α)ψL↓ (x) + h.c.

= −gu
[(
ψ†L↓ψR↑

)2

+
(
ψ†R↑ψL↓

)2
]

= − gu

(2π)
2

[
ηL↓ηR↑ηL↓ηR↑e

i
√

4π(2φL↓+2φR↑)

+ ηR↑ηL↓ηR↑ηL↓e
−i
√

4π(2φL↓2φR↑)
]
. (3.30)

The local Umklapp term will behave similarly to the global Umklapp term
above, except for the inclusion of a delta function. Since the delta function is
not related to any field, it will not be affected by the bosonization.

We must now choose a Klein basis which simultaneously diagonalizes all
Klein factors. The two Klein factors we have to consider are C = ηL↓ηR↑ηL↓ηR↑
and D = ηL↓ηR↑. We use the same representation as Sénéchal [48], using Pauli
sigma matrices

ηL↓ = 1⊗ σy, (3.31)

ηR↑ = σx ⊗ σx. (3.32)

and find, in matrix notation, that

C =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


,

(3.33)

D =


0 0 −i 0
0 0 0 +i
−i 0 0 0
0 +i 0 0


.

(3.34)

The two matrices commute, so they can be simultaneously diagonalized. The
eigenvectors of D are simple linear combinations of the eigenvectors of C, and
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can be used to form an unitary transformation U . We find

C ′ = U−1CU =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


,

(3.35)

D′ = U−1DU =


−i 0 0 0
0 +i 0 0
0 0 +i 0
0 0 0 −i


.

(3.36)

and we can pick eigenvalues -1 and −i from the upper left corner, forgetting
about the rest of the Klein space. In effect, this is a gauge choice. We can now
rewrite the terms in eqs. (3.28), (3.29) and (3.30):

B
(
ψ†L↓ψR↑ + ψ†R↑ψL↓

)
=

B

2π
ηL↓ηR↑

(
ei
√

4πφ − e−i
√

4πφ
)

=
B

π
sin
(√

4πφ
)
, (3.37)

∆
(
ψL↓ψR↑ + ψ†R↑ψ

†
L↓

)
=

∆

2π
ηL↓ηR↑

(
ei
√

4πθ − e−i
√

4πθ
)

=
∆

π
sin
(√

4πθ
)
, (3.38)

Hum = − gu

(2π)
2 ηL↓ηR↑ηL↓ηR↑

(
e2i
√

4π(φL↓+φR↑) + e−2i
√

4π(φL↓+φR↑)
)

=
gu

2π2 cos
(√

16πφ
)
. (3.39)

To get the same bosonized Hamiltonian as Sela, Altland and Rosch [10] we
rescale the fields

√
4πφ→

√
4πφ+ π

2 and
√

4πθ →
√

4πθ − π
2 . Introducing the

renormalized velocity v and the Luttinger parameter K

v = vF +
g4

2π
+O

(
g2

2 , g
2
4 , g

2
u,g

2
L

)
, (3.40)

K = 1− g2

2πvF
+O

(
g2

2 , g
2
4 , g

2
u,g

2
L

)
, (3.41)

we can now write the full bosonized Hamiltonian as

H =
v

2

(
1

K
(∂xφ)

2
+K (∂xθ)

2

)
− µ√

π
∂xφ

+
B

π
cos
(√

4πφ
)
− ∆

π
cos
(√

4πθ
)

− gu

2π2 cos
(√

16πφ
)
− gL

2π2 δ (x) cos
(√

16πφ (x)
)
. (3.42)

The parametrizations of v and K in (3.40) and (3.41) hold for small values of
the coupling constants, but the theory (3.42) can be shown to hold for general
interaction strengths [21, 53]. We will thus be able to eplore the properties of
the theory for generic values of the Luttinger parameter K, but will not attempt
to find explicit parametrizations for larger values of the coupling constants.
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3.3.2 Lagrangian formulation

The RG analysis uses the action, so we first need to rewrite the Hamiltonian
density (3.42) as a Lagrangian density. As a first step, note that the quadratic
part of the bosonized Hamiltonian density, H′0 = H0 +Hfw, can be written in
an explicitly canonical form by rescaling the fields

φ→ φ′ =
φ√
K
, (3.43)

θ → θ′ =
√
Kθ, (3.44)

which yields

H′0 =
v

2

[(
∂xφ

′)2 +
(
∂xθ
′)2] . (3.45)

Since φ′ and θ′ are canonically conjugate fields, we can use Hamilton’s equa-
tions to write6

∂xθ
′ = −1

v
∂tφ
′, (3.46)

∂xφ
′ = −1

v
∂tθ
′. (3.47)

These relations make it possible to write the Lagrangian density L0 purely
in the φ′ or θ′ fields. The kinetic Lagrangian is given by the Legendre trans-
formation L0 = Πφ

′∂tφ−H
′
0, or, using the θ′ fields by L0 = Πθ

′∂tθ
′ −H′0. All

interactions terms satisfy Lint = −Hint. We can then write L0 as

L0 =
1

2

[
v−1 (∂tφ′)2 − v (∂xφ′)2] . (3.48)

Finally, since it is convenient to construct the partition function from the
Euclidean action, we now rewrite this Lagrangian in imaginary time, τ = it.
This gives us

L0 = −1

4

[
v−1 (∂τφ′)2 + v

(
∂xφ

′)2] . (3.49)

3.3.3 Partition function

The action S =
∫

dt
∫

dxL also has the Euclidean form SE = −
∫

dτ
∫

dxL,
which is then used to form the partition function

Z =

∫
DφDθe−SE [φ,θ]. (3.50)

We have L = L0 + Lint, where L0 is given by (3.49) and Lint denote the

interaction terms. Let us begin by considering the local Umklapp term, Llocalum ,

6
To see this, identify one term of (3.45) as the x-derivative of the field and the other

term as its conjugate momentum Π. Then, by Hamilton’s equations for a field ϕ, we have
ϕ̇ = ∂H

∂Π
= vΠ. Hence, the time derivative of one field is related to the x-derivative of the

other.
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on its own in the commensurate case, with the other interactions inactive, i.e.
let µ = ∆ = B = gu = 0. We have

Z =

∫
Dφ′ exp

[∫
dτ dx

(
−1

4
v−1 (∂τφ′)2 − 1

4

(
∂xφ

′)2)
−
∫

dτ dxLlocalum

[
φ′
]]
, (3.51)

where Lum = −Hum, with Hum being the last term of (3.42).
Since the local Umklapp interaction acts only at one point in space, at

x = 0, we want to express the partition function in a local form, using space-
independent fields, φ̃′. To do this, we integrate over the fields at all positions
except x = 0, closely following ref. [54]. Z can then be written

Z ∝
∫
Dφ′Dφ̃′e−SE[φ′]δ

(
φ̃′ (τ)− φ′ (τ,0)

)
. (3.52)

We use the relation

δ
(
φ̃′ (τ)− φ′ (τ,0)

)
=

1

2π

∫
dkφ′ (τ) exp

[
ikφ′

(
φ̃′ − φ′ (τ, 0)

)]
(3.53)

to write

Z ∝
∫
Dφ′Dφ̃′Dkφ′ exp

[
−SE

[
φ′
]

+ i

∫
dτkφ′

(
φ̃′ − φ′ (τ, 0)

)]
. (3.54)

The exponential contains integrals of three types

I1 =

∫
dτ dx

(
v−1 (∂τφ′)2 + v

(
∂xφ

′)2) , (3.55)

I2 = i

∫
dτkφ′ φ̃

′ (τ) , (3.56)

I3 = −i
∫

dτkφ′φ
′ (τ, 0) . (3.57)

These can be rewritten using Fourier sums, yielding [54]

I1 =

∫
dτ dx

1

(βL)
2

×

v−1
∑
q,ωn

(
−iωnφ

′
q,ωn

)
ei(qx−ωnτ)

∑
q
′
,ω
′
n

iω′nφ
′?
q
′
,ω
′
n
e−i(q

′
x−ω′nτ)

+v
∑
q,ωn

iqφ′q,ωne
i(qx−ωnτ)

∑
q
′
,ω
′
n

(
−iq′φ′?q′,ω′n

)
e−i(q

′
x−ω′nτ)


=

∫
dτ dx

1

(βL)
2

∑
q,q
′
,ωnω

′
n

(
v−1ωnω

′
nφ
′
q,ωn

φ′?q′,ω′ne
i(q−q′)xei(ω

′
n−ωn)τ

+vqq′φ′q,ωnφ
′?
q
′
,ω
′
n
ei(q−q

′)xei(ω
′
n−ωn)τ

)
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=
1

βL

∑
q,q
′
,ωn,ω

′
n

(
vqq′ + v−1ωnω

′
n

)
φ′q,ωnφ

′?
q
′
,ω
′
n
δq,q′δωnω

′
n

=
1

βL

∑
q,ωn

(
vq2 + v−1ω2

n

)
|φ′|2, (3.58)

I2 = i

∫
dτβ−1

∑
ωnω

′
n

k (ωn) φ̃′
(
ω′n
)
ei(−ωn−ω

′
n)τ

=
i

β

∑
ωn

k (ωn) φ̃′ (−ωn) , (3.59)

I3 = −i
∫

dτβ−1
∑
ωn

k (ωn) e−iωnτ
1

βL

∑
q,ω
′
n

φ′q,ω′ne
i(qx−ω′nτ)

= −i
∫

dτ
1

β2L

∑
q,ωn,ω

′
n

k (ωn)φ′q,ω′ne
−i(ωn+ω

′
n)τeiqx

= − i

βL

∑
q,ωn

k (−ωn)φ′q,ωn . (3.60)

Transforming the φ′ fields back to the φ fields using (3.43) and inserting the
above integrals in (3.54), the partition function can be written

Z ∝ DφDφ̃Dkφ exp

[
− 1

4βL

∑
q,ωn

[(
1

vK
ω2
n +

v

K
q2

)
|φ|2

−4ikφ (−ωn)φ (q,ωn)
]

+
i

β

∑
ωn

kφ (ωn) φ̃ (−ωn)

−
∫

dτLlocalum

[
φ̃
]]
. (3.61)

Z is Gaussian in φ, so we can perform the integration over φ. Note that
we are looking for singular behaviour of the partition function, rather than its
exact values, so constant prefactors can be neglected. We find

Z ∝
∫
Dφ̃Dkφ exp

[
− 1

βL

∑
q,ωn

kφ (−ωn)

(
1

vK
ω2
n +

v

K
q2

)−1

kφ (ωn)

+
i

β

∑
ωn

kφ (ωn) φ̃ (−ωn)−
∫

dτLlocalum

[
φ̃
]]
. (3.62)

Take the q-sum to the continuum limit and perform the resulting integral

I4 =
1

βL

∑
q,ωn

(
1

vK
ω2
n +

v

K
q2

)−1

→ 1

β

∑
ωn

∫
dq

2π

(
1

vK
ω2
n +

v

K
q2

)−1

=
1

β

∑
ωn

1

2|ωn|
. (3.63)
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Inserting this in (3.62) and then performing the Gaussian integral over kφ gives
us

Z ∝
∫
Dφ̃Dkφ exp

[
− 1

β

∑
ωn

kφ (−ωn) kφ (ωn)
K

2|ωn|

+
i

β

∑
ωn

kφ (ωn) φ̃ (−ωn)−
∫

dτLlocalum

[
φ̃
]]

=

∫
Dφ̃ exp

[
− 1

β

∑
ωn

|ωn|
2K
|φ̃|2 −

∫
dτLlocalum

[
φ̃
]]

=

∫
Dφ̃ exp

[
−
∫ Λ

−Λ

dω

2π
|ω| |φ̃ (ω) |2

2K
−
∫

dτLlocalum

[
φ̃
]]
, (3.64)

where, in the last step, we have taken the ωn-sum to its continuum limit. The
entire partition function is now written in terms of the φ̃ field, which lives only
at x = 0, i.e. the position of the impurity. In effect, we now have an entirely
local partition function and are ready to start the RG analysis.

3.3.4 Renormalization group analysis

The renormalization group analysis is based on the idea to consider the systems
at different scales. The theory is said to be renormalizable if, under a scaling
transformation, the structure of the theory is preserved, but the coupling con-
stants are changed. By exploring how the coupling constants change under the
transformation one can quickly reach a conclusion of whether a specific interac-
tion is relevant at the desired scale. In the context of condensed matter physics,
we are primarily interested in long-range phenomena. We therefore use the RG
apparatus to uncover the low-energy behaviour of a system. This is achieved by
decomposing the field into a slow field (with long wave-lengths) and a fast field
(with shorter wavelengths), and then integrating the fast fields away, thereby
producing an effective model for the slow field.

Introductions to the RG procedure can be found in references [11], [21] and
[49]. Unfortunately, these books use different notations and approaches. Here
we will use a momentum shell renormalization using path integrals, such as the
one described in ref. [11]. The current work has also been largely influenced by
the techniques used in ref. [54], where an explicit calculation is given for the
interaction from a point contact connecting two oppositeedges of a topological
insulator.

From now on, in order to simplify the notation, we will drop the tilde on the
local field, writing φ instead of φ̃. We decompose the field into fast and slow
parts, i.e. φ (τ) = φf (τ) + φs (τ), with

φs (τ) =
∑
|ωn|<Λ

b
e−iωnτφωn =

∫ Λ/b

−Λ/b

dω

2π
e−iωτφ (ω) , (3.65)

φf (τ) =
∑

Λ
b <|ωn|<Λ e

−iωnτφωn =

∫
Λ
b <|ωn|<Λ

dω

2π
e−iωτφ (ω) . (3.66)
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The full action is read off from (3.64)

S [φ] =

∫ Λ

−Λ

dω

2π
|ω| |φ (ω) |2

2K
+

∫
dτLlocalum [φ] , (3.67)

where

Slocalum =

∫
dτ

gL

2π2 cos
(√

16πφ
)
. (3.68)

The first term of (3.67) separates into one part for the slow fields, Ss [φs], and
one for the fast fields, Sf

[
φf
]
, so the action can be written

S [φ] = Ss [φs] + Sf
[
φf
]

+ Slocalum

[
φs, φf

]
. (3.69)

As mentioned above, we want to integrate away the fast modes φf to define
an effective action Seff for the slow modes φs. We write

e−Seff [φs] = e−Ss[φs]〈e−S
local
um [φs,φf ]〉f , (3.70)

where 〈A〉f ≡
∫
Dφfe

−Sf [φs,φf ]A. We can assume that gL is small enough to
justify the first-order cumulant approximation (see app. C)

〈e−S
local
um 〉f ≈ e

−〈Slocalum 〉f , (3.71)

which leads to

e−Seff ≈ e−Ss[φs]e−〈S
local
um [φs,φf ]〉f . (3.72)

The average of Slocalum is

〈Slocalum

[
φs,φf

]
〉f

=
gL

2π2

∫
Dφfe

−Sf [φf ]
∫

dτ cos
[√

16π
(
φs (τ) + φf (τ)

)]
=

gL

(2π)
2

∫
Dφfe

−Sf [φf ]
∫

dτ
(
ei
√

16πφsei
√

16πφf + h.c.
)

=
gL

(2π)
2

∫
Dφfe

−Sf [φf ]
∫

dτ
(
ei
√

16πφsei
√

16π
∫
f

dω
2π e

iωτ
φ + h.c.

)
, (3.73)

where we have used the notation
∫
f
≡
∫

Λ
b <|ω|<Λ

. After an inverse Hubbard-

Stratonovich transformation (see app. D for details) we find

〈Slocalum

[
φs,φf

]
〉f = − gL

(2π)
2

∫
dτ

(
ei
√

16πφs

∫
Dφf

× exp

[∫
f

dω

2π

(
i
√

16πeiωτφf (ω)− |ω|
2K
|φf |

2

)]
+ h.c.

)
= − gL

(2π)
2

∫
dτ

(
ei
√

16πφs exp

[
−
∫
f

dω

2π

16π

2

K

|ω|

]
+ h.c.

)
= − gL

2π2

∫
dτ cos

(√
16πφs

)
e−

∫
f

dω 4K
|ω| . (3.74)
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Using
∫
f

dω
|ω| =

∫
Λ
b <|ω|<Λ

dω
|ω| =

∫ Λ
Λ
b

dω
ω = ln b and (3.68) we can finally write

〈Slocalum

[
φs,φf

]
〉f =

gL

2π2

∫
dτ cos

(√
16πφs

)
e−4K ln b

=
gL

2π2

∫
dτ cos

(√
16πφs

)
b−4K

= b−4KSlocalum [φs] . (3.75)

In effect, the effective action Seff can be written

e−Seff ≈ exp
(
−Ss [φs]− b

−4KSlocalum [φs]
)
, (3.76)

i.e. entirely expressed in the slow fields, with a rescaled coupling constant in the
interaction term, where we have seen gL → b−4KgL as Λ→ Λ

b . The next step is
now to rescale ω and τ so that the fields range over the same energy/time scale
as in the unrenormalized action, in order to be able to compare the actions and
find the scaling equation. To do this, we note that the change Λ → Λ̄ = Λ

b is
countered by setting ω → ω̄ = bω and, in effect, τ → τ̄ = τ

b . The fields will
then be rescaled as well. We choose φ̄ (τ̄) = φs (τ), which by (3.65) implies

φ̄ (ω̄) = φ(ω)
b . Applying these rescalings we write the effective action as

Seff [φs] = Ss [φs] + b−4KSlocalum [φs]

=

∫ Λ/b

−Λ/b

dω

2π
|ω| |φs (ω) |2

2K
+ b−4K

∫
dτ

gL

2π2 cos
(√

16πφ (τ)
)

=

∫ Λ

−Λ

dω̄

2πb

|ω̄|
b

b2|φ̄ (ω̄) |2

2K
+ b1−4K

∫
dτ̄

gL

2π2 cos
(√

16πφ̄ (τ̄)
)

=

∫ Λ

−Λ

dω̄

2π
|ω̄| |φ̄ (ω̄) |2

2K
+ b1−4K

∫
dτ̄

gL

2π2 cos
(√

16πφ̄ (τ̄)
)
. (3.77)

The full rescaling of the coupling constant is thus gL → ḡL = gLb
1−4K . After

logarithmic differentiation and denoting l = ln b, this equation becomes the
scaling equation

d�gL (l)

dl
= �gL (l) (1− 4K) (3.78)

subject to the initial condition gL (l = 0) = gL. We see that gL changes with the
strength of other electron-electron interactions. Specifically, it tends to zero for
K > 1

4 and to infinity for K < 1
4 and that the renormalization group eigenvalue

is xL = 1−4K. We say that the local Umklapp interaction is relevant if xL > 0
and irrelevant if xL < 0. The case xL = 0 is known as marginal, and its
behaviour depends on the sign of the coupling constant.

One can also express this classification using the conformal dimension of the
perturbation. To do this, we must first apply the transformation (3.43) to the
φ̄ field in (3.77), in order to have the canonical form of the original action. We
then have

Seff
[
φ̄′
]

=

∫ Λ

−Λ

dω̄

2π
|ω̄| |φ̄

′ (ω̄) |2

2

+ b1−4K
∫

dτ̄
gL

2π2 cos
(√

16πKφ̄′ (τ̄)
)
. (3.79)
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The cosine can be written as a vertex operator, eiβΞ, where β is a constant
and Ξ is a field. If Ξ is spinless, like the combined φ field in (3.24), then the

vertex operator has zero conformal spin and conformal dimension d = β
2

4π . If Ξ
is chiral, e.g. Ξ = φR, then the conformal spin is generally non-zero and the

conformal dimension d = β
2

8π [49].

In the case of our local Umklapp interaction, we have from (3.79) that d =
4K. If D is the number of spatial dimensions + the number of time dimensions,
a perturbation is relevant when d < D and irrelevant when d > D. The case
d = D is the marginal one [49]. This knowledge will allow us to classify operators
more quickly in the remaining parts of the thesis.

3.3.5 Effects on Majorana fermions and the phase diagram

First, let us consider our Hamiltonian (3.2) in the simplifying case µ = g2 =
g4 = gum = 0 (i.e. no interactions and zero chemical potential). We write our
Dirac fermion fields in terms of two Majorana fields

ψL↓ (x) =
1√
2

[iχ1 (x) + χ2 (x)] , (3.80)

ψR↑ (x) =
1√
2

[χ̄1 (x) + iχ̄2 (x)] . (3.81)

The Hamiltonian (3.2) can then be written

H0 + δH =

2∑
j=1

(
χji

vF
2
∂xχj − χ̄ji

vF
2
∂xχ̄j + imjχjχ̄j

)
, (3.82)

where the last term is a Majorana mass term [55], with m1 = ∆ − B and
m2 = ∆+B (∆ is taken to be positive). At |B| = ∆, one mode becomes massless.
That is a sign of a Majorana quantum phase transition7 in a transversal Ising
model [10, 56]. One can also easily see that the spin chain (3.3) gets the form of a
transversal Ising spin chain model with an Szj term [44] at vF = ∆, zero chemical
potential and no interactions, so the spin chain and Majorana representations
do match.

By tuning B or ∆ in real space, we can localize the massless Majorana
mode around some position x0, for which m1 (x0) = 0. One can easily see
that this Majorana zero mode is stable against weak interactions around the
QPT. The term describing interaction between two Majorana fermions can be
written Hint ∼ χ1χ̄1χ2χ̄2 [55]. By treating the gapped (massive) component
as a c-number, χ2χ̄2 → 〈χ2χ̄2〉 one gets a mean-field approximation which only
redefines m1 and shifts the transition point [10].

When one considers generic interaction strengths and chemical potentials,
the phase diagram quickly becomes more complex as well as multi-dimensional.
The full diagram is given in fig. 3.1. For details about this diagram and deriva-
tions, please see [10]. Let us here focus on certain qualitative features.

As one example, at zero chemical potential and B = ∆ = 0, (3.3) becomes
an XXZ spin chain model, with no qualitative differences between different Jz

7
Recall the discussion about quantum phase transitions on page 16.
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values, i.e. different interaction strengths. In fig. 3.1, this XXZ model corre-
sponds to the horizontal red line in the upper figure. The |B| = ∆ transition of
the Ising model connects to this line at Jz = 0, and also extends onto non-zero
interaction strengths, and forms “transition sheets”. This is expected to con-
tinue until the global Umklapp term becomes relevant at K = 1

2 [10] (the global
Umklapp term has conformal dimension d = 4K as the local one, but lives in
both one spatial dimension and time, i.e. D = 2 instead of D = 1). Classically,
such a cosine term will tend to pin the field into one of the minima8, effectively
forming a gap for K < 1

2 [21].

At this point, we can form another XXZ model (an “XYX model”), perpen-
dicular to the old one. The new XXZ model corresponds to the diagonal red
line in the upper part of fig. 3.1. This XXZ model supports similar transition
surfaces, specified by ∆ = Jz − vF , which will merge with the old ones [10].

Similarly, we can expect something to happen when the local Umklapp term
becomes relevant at K = 1

4 . However, since the two terms are structurally simi-
lar, we can conclude that the local Umklapp term will only reinforce the gapping
effect of the global one. The one qualitative difference is that it may change the
slope of the second transition surface for K < 1

4 , shifting the transition points
somewhat. This is a minor effect, of much less qualitative importance than the
actual transition. In effect, for µ = 0, the local Umklapp interaction does not
yield any new physics.

At µ 6= 0 the picture gets even more involved, but the result is eventually
the same. The main difference to the phase diagram is that it becomes harder
to open up gaps. Specifically, to create an excitation gap in the helical liquid
(or e.g. a quantum wire subject to Rashba interaction) with finite µ, a finite
threshold magnetic field is required. The first XXZ line at B = ∆ = 0 opens
up and becomes a surface in the ∆ = 0 plane, as can be seen in the lower part
of fig. 3.1. The width of the surface decreases with increasing interactions, as
lower threshold fields are required [10].

The other XXZ line also changes character, as it becomes a three-dimensional
tubular structure that also merges with the surface in the ∆ = 0 plane. Inside
the tube K < 1

2 , but it remains an ungapped Luttinger liquid even though we
previously noted that the global Umklapp term (for the zero modes) becomes
relevant at K = 1

2 . The fact that µ 6= 0 means that we have a different type
of quantum phase transition (commensurate-incommensurate, C-IC, instead of
Kosterlitz-Thouless, KT), hence this change. The exterior of the tube hasK = 1

2
everywhere except for a singular line bordering the strongly interacting phase.
This line has K = 1

4 . In effect, the global Umklapp term becomes relevant at
this line, and continues to be relevant for stronger interactions. The Majorana
transition surfaces touch this line [10, 57].

The local Umklapp term becomes relevant at the same value of the Luttinger
parameter K as the global Umklapp term. It will thus reinforce the gap caused
by the global Umklapp interaction, but not provide any qualitative differences.

8
The field pinning also drives a magnetization in the plane, along an axis determined by the

sign of gum. For gum > 0, the magnetization is along the x axis with order parameter Nx =

Ψ
†
σ
x
Ψ ∼ cos

√
4πφ, while the magnetization along the y axis, Ny = Ψ

†
σ
y
Ψ ∼ sin

√
4πφ→ 0

for strong interactions [25]. In effect, the interacting system distinguishes between the x and
y axes, whereas the non-interacting system does not.
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Figure 3.1 – Phase diagram for the SAR model [10], used with the authors’
permission. The top figure is the phase diagram of the XYZ model at µ =
0. At the thick red lines, the model is reduced to XXZ spin chains. The
blue surfaces are Ising transition surfaces, with Majorana modes. The phase
diagram supports a few Néel ordered (antiferromagnetic) phases, denoted a(n)
where a = x,y,z denotes the magnetization axis and n the degeneracy. These
phases are associated with gaps, dominated by different perturbations. The
bottom figure shows the case for µ 6= 0, where the XXZ lines have expanded
into surfaces and a tubular structure. The inset figure is the phase diagram of
the XXZ model at ∆ = B = 0.

3.3.6 Conclusions

For general field theories and interaction terms in 1+1 dimensions, the method
of bosonization seems more useful than that of mapping the theory to a spin
chain model. The calculations certainly are not trivial, but the procedure of
bosonization and RG analysis is well-known and general. In contrast, to have
the spin chain method working well one needs to have the luck of stumbling on
a recognizable theory.

We also conclude that the local Umklapp is less relevant than the global
one, and that it does not have any noteworthy effect on the phase diagram. In
effect, the helical liquid and the Majorana states are stable also in the presence
of localized impurities.



Chapter 4

Spin-orbit interactions

In this chapter, we will investigate the effects of Rashba and Dresselhaus spin-
orbit interactions. While these interactions do give rise to new terms in the
Hamiltonian, we show that the Rashba spin-orbit interactions do not affect the
Majorana transitions of the SAR model [10] or the stability of the Majorana
fermions. The Dresselhaus spin-orbit interaction, however, may destabilize the
Majorana fermions and needs further study.

4.1 Rashba spin-orbit interaction

Väyrynen and Ojanen [58] recently presented a neat way to diagonalizeH0+HR,
from (2.16) and (2.25), for constant Rashba interaction strength, αR (x) = αR.
Let µ = 0 and

Ψ→ Ψ′ = e−iσ
x
θα/2Ψ (4.1)

be a rotation of the original spinor, choosing the angle θα such that cos θα =
vF /vα and sin θα = αR/vα. This is simply a polar coordinate system with

radius vα =

√
v2
F + α2

R and angle θα, used to parametrize the two-dimensional
parameter space spanned by vF and αR. The new fields are linear combinations
of the old fields, and we denote them by Ψ′ = (ψ−, ψ+)

T
. In this parametrization

the Hamiltonian takes the form

H0 +HR = vα

∫
dxΨ′†

(
−i∂xσ

z
′)

Ψ′, (4.2)

which has just the form ofH0 in eq. (2.16). The prime on the z is just there to re-
mind us that the rotation has taken us into a new coordinate system,

(
x′, y′, z′

)
.

So H0 +HR becomes diagonal, but how do the interactions transform under this
Rashba rotation? Actually, all terms except for the Umklapp interaction trans-
form surprisingly simply. To see this, denote the rotation matrix by

s = e−iσ
x
θα/2. (4.3)
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For the combined forward and dispersive scattering terms from eq. (2.3.1) we
have, for g4 = 2g2

1

Hfw =
(

Ψ†Ψ
)2

=
(

Ψ′†ss−1Ψ′
)2

=
(

Ψ′†Ψ′
)2

. (4.4)

The structure of the term is not changed, and hence the conformal dimension
is unchanged. This term will then have the same effect as before.

When H0 + HR + Hfw is bosonized, we get a theory that looks as before,
but the Fermi velocity vF is replaced by vα. This has the effect that parameters
v and K in equations (3.40) and (3.41) get the new values

v′ ≈ vα +
g2

2π
, (4.5)

K ′ ≈ 1− g2

2πvα
. (4.6)

K ′ can also be written

K ′ ≈ 1− g2

2π

sin θα
αR

, (4.7)

i.e. the new Luttinger parameter K ′ depends explicitly both on the strength of
the electron-electron interaction and on the Rashba interaction strength. The
latter parameter is tunable in experiments, so the Rashba spin-orbit interaction
allows for a direct control of the Luttinger parameter.

To continue with the other interactions, we first write δH = ∆H∆ + BHB
and use (3.1) to implicitly define H∆ and HB . Under a Rashba rotation, we
have for the perturbation from the magnetic field

HB = Ψ†σxΨ

= Ψ′†sσxs−1Ψ′

= Ψ′†σx
′

Ψ′ (4.8)

and for the perturbation from the superconductor

H∆ = ψL↓ψR↑ + ψ†R↑ψ
†
L↓

=

(
cos

θα
2
ψ− + i sin

θα
2
ψ+

)(
cos

θα
2
ψ+ + i sin

θα
2
ψ−

)
+

(
cos

θα
2
ψ†+ − i sin

θα
2
ψ†−

)(
cos

θα
2
ψ†− − i sin

θα
2
ψ†+

)
, (4.9)

where we have used that [19]

e−iσ
x
θα/2 = cos

θα
2

(
1 0
0 1

)
− i sin

θα
2

(
0 1
1 0

)
. (4.10)

1
As noted on page 12, we do indeed have g4 = 2g2 for low energies [21].
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By expanding the parantheses and using the exclusion principle, we find

H∆ = cos2 θα
2
ψ−ψ+ + i sin

θα
2

cos
θα
2

(ψ−ψ− + ψ+ψ+)− sin2 θα
2
ψ+ψ−

+ cos2 θα
2
ψ†+ψ

†
− − i sin

θα
2

cos
θα
2

(
ψ†+ψ

†
+ + ψ†−ψ

†
−

)
− sin2 θα

2
ψ†−ψ

†
+

= cos2 θα
2

(
ψ−ψ+ + ψ†+ψ

†
−

)
− sin2 θα

2

(
ψ+ψ− + ψ†−ψ

†
+

)
= ψ−ψ+ + ψ†+ψ

†
−. (4.11)

The forms of these perturbations and their conformal dimensions are thus
also preserved. However, terms of the Umklapp type (both global and local)
transform less trivially. It is enough to treat only the global Umklapp, as the
local one yields the same result multiplied by a delta function δ (x). For the
global Umklapp of (2.19) we find

Hum = gu

(
ψ†R↑∂xψ

†
R↑ψL↓∂xψL↓ + ψ†L↓∂xψ

†
L↓ψR↑∂xψR↑

)
= gu

[(
cos4 θα

2
+ sin4 θα

2

)(
ψ†+∂xψ

†
+ψ−∂xψ− + ψ†−∂xψ

†
−ψ+∂xψ+

)
+ i sin

θα
2

cos3 θα
2

(
ψ†+∂xψ

†
+ψ−∂xψ+ + ψ†+∂xψ

†
+ψ+∂xψ−

− ψ†+∂xψ
†
−ψ−∂xψ− − ψ

†
−∂xψ

†
+ψ−∂xψ− + ψ†−∂xψ

†
−ψ−∂xψ+

+ ψ†−∂xψ
†
−ψ−∂xψ+ − ψ

†
−∂xψ

†
+ψ+∂xψ+ − ψ

†
+∂xψ

†
−ψ+∂xψ+

)
+ i sin3 θα

2
cos

θα
2

(
ψ†+∂xψ

†
−ψ+∂xψ+ + ψ†−∂xψ

†
+ψ+∂xψ+

− ψ†−∂xψ
†
−ψ−∂xψ+ + ψ†−∂xψ

†
−ψ+∂xψ− + ψ†−∂xψ

†
+ψ−∂xψ−

+ ψ†+∂xψ
†
−ψ−∂xψ− − ψ

†
+∂xψ

†
+ψ+∂xψ− − ψ

†
+∂xψ

†
+ψ−∂xψ+

)
+

1

2
sin2 θα

(
ψ†+∂xψ

†
−ψ−∂xψ+ + ψ†+∂xψ

†
−ψ+∂xψ−

+ ψ†−∂xψ
†
+ψ−∂xψ+ + ψ†−∂xψ

†
+ψ+∂xψ−

− ψ†+∂xψ
†
+ψ+∂xψ+ − ψ

†
−∂xψ

†
−ψ−∂xψ−

)]
. (4.12)

This expression is not only long, it is also quite interesting. (Fortunately, it is
also Hermitian and time-reversal symmetric.) In particular, it contains terms of

three types. First, the terms with coefficient cos4 θα
2 + sin4 θα

2 look like ordinary
Umklapp terms (in the new basis). Indeed, the whole expression reduces to these
terms when the rotation angle θα is zero or a multiple of π. There are also terms
with even numbers of right and left movers, with coefficient 1

2 sin2 θα and terms

with odd numbers of right and left movers, with coefficients i sin θα
2 cos3 θα

2 or

i sin3 θα
2 cos θα2 .

The terms with coefficient 1
2 sin2 θα all have conformal dimension d = 2+2K.

They will thus be irrelevant for all positive K (repulsive interactions). We show
this using the method of operator product expansions (OPE:s) in conformal field
theory (CFT) [47]. In terms of complex coordinates z = vτ−ix and z̄ = vτ+ix,
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a vertex operator of some field Ξ is

Va (z, z̄) =: eiaΞ(z, z̄) :, (4.13)

where the colons denote normal ordering. The vertex operators satisfy the
following two OPE:s [47]

∂Ξ (z)Va (w, w̄) ∼ Va (w, w̄)

z − w
, (4.14)

Va (z, z̄)V−a (w, w̄) ∼ |z − w|−2a
2
/gπ + . . . , (4.15)

where g = 4 if Ξ has zero conformal spin and g = 8 for a chiral field Ξ 2.
Consider e.g. the term ψ†+∂xψ

†
−ψ−∂xψ+. We bosonize it using analogues of

the bosonization relations (3.18) and (3.19). Note that, in general, the prefactors
in (3.18) and (3.19) can be dropped if we normal order the vertex operators [47].
Applying the transformation (3.43) and using the OPE (4.15), we find

ψ†+∂xψ
†
−ψ−∂xψ+ ∼: ei

√
4πφ+ :: ∂xe

−i
√

4πφ− :: ei
√

4πφ− :: ∂xe
−i
√

4πφ+ :

∼: ei
√

4πφ+ :: ∂xφ+e
−i
√

4πφ+ :: ∂xφ−e
−i
√

4πφ− :: ei
√

4πφ− :

∼: ei
√

4πKφ
′
+ :: ∂xφ

′
+e
−i
√

4πKφ
′
+ :: ∂xφ

′
−e
−i
√

4πKφ
′
− :: ei

√
4πKφ

′
− :

∼ ε−2 4πK
8π : ∂xφ+ :: ∂xφ− : ε−2 4πK

8π

= ε−2K : ∂xφ+ :: ∂xφ− : (4.16)

where ε is the point splitting distance, which has dimension length. This term
has conformal dimension d = 2 + 2K, as each of the differential operators has
dimension one. The same holds for the other terms with the same coefficients.

As an aside, we can here note the importance of the bosonization procedure
and the transformation (3.43). In a purely fermionic language we would not see
that the conformal dimension depends on the Luttinger parameter K. If one
would rewrite

ψ†+∂xψ
†
−ψ−∂xψ+ = ψ†+∂xψ+∂x

(
ψ†−ψ−

)
− ψ†+∂xψ+ψ

†
−∂xψ−, (4.17)

all factors would seem to have the form of kinetic energies (ψ∂xψ) or the deriva-

tive of an electron density (∂x(ψ†ψ)), both with the conformal dimension 2. The
total dimension of the term would then be 4, which is the case of the theory
without interactions (K = 1). Indeed, the interacting fermionic theory is always
compared to the free theory, whereas we in the bosonization scheme compare
the interaction terms to a continuum of “free” theories defined by K.

Now we turn to the terms with odd numbers of right and left movers. We
first note what they represent: two particles interact and one of them change
direction. While the full process is elastic, with a momentum transfer of 2kF to
or from the lattice, the backscattering part is inelastic. We will call the process
inelastic one-particle backscattering. This process should be active when there
is disorder, or one of the participating states is at k = 0, such that rapid phase
oscillations are suppressed [59].

2
C.f. the discussion on page 28.
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Figure 4.1 – Inelastic backscattering. Two incoming particles traveling in
opposite directions (having opposite spins) interact, and one of the particles
change direction (spin).

The difference to the restrictions of interactions we considered in section 2.3.1
(and to what was considered in ref. [25]) is that the electric field of the Rashba
interaction breaks axial spin symmetry. If that symmetry is broken, the Sz

component is no longer conserved, and terms of this type may be generated by
means of an SU(2) transformation, such as the Rasha rotation s above. Schmidt
et al. [59] recently found the same process using a momentum-dependent SU(2)
transformation. The process was in fact noted already by Kane and Mele [17],
but seems to have been mostly neglected (or forgotten) since then [60].

The terms for this process have conformal dimension d = K+2 [60, 61]. The

easiest way to see this is to take e.g. the term ψ†+∂xψ
†
+ψ+∂xψ− and remove the

derivative on the ψ−, as it is not needed for regularization. We then have

ψ†+∂xψ
†
+ψ+∂xψ− = ψ†+ψ−∂xψ

†
+ψ+

= ψ†+ψ−∂x

(
ψ†+ψ+

)
+ ψ†+ψ−ψ

†
+∂xψ+

= ψ†+ψ−∂xρ+

∼ ei
√

4πφ+ei
√

4πφ−∂2
xxφ+

∼ ei
√

4πKφ
′
+ei
√

4πKφ
′
−∂2

xxφ
′
+, (4.18)

where ρ+ = ψ†+ψ+ is the density of the + electrons, and we have applied the
transformation (3.43). The term has indeed the conformal dimension d = K+2,

as the vertex operator ei
√

4πKφ
′
+ has conformal dimension K/2 and ∂2

xxφ+ has
dimension 2. The same result holds for the other terms of this type.

These terms are then irrelevant for all positive K (repulsive interactions).
Similarly to the terms with coefficient 1

2 sin2 θ then, they will not affect the
relevant parts of the phase diagram or the Majorana transitions at all.

4.2 Dresselhaus spin-orbit interaction

If we include also the Dresselhaus spin-orbit interaction from (2.26) with con-
stant interaction strength βD, we get the three-dimensional parameter space
spanned by vF , αR and βD. The method used before for the Rashba spin-
orbit interaction here generalizes to a spherical coordinate system, with the new

radius vβ =

√
v2
F + α2

R + β2
D and the additional angle θβ , chosen such that

cos θβ = βD/vβ and sin θβ = vα/vβ .
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To diagonalize H0 +HR +HD (with µ = 0), we can use the aggregate of the
Rashba rotation (with rotation matrix s), followed by a rotation with matrix

t = e−iσ
y
′
θβ/a, (4.19)

where

a =
2θβ

θβ − π
2

. (4.20)

Again, the prime denotes that we are in the Rashba-rotated coordinate system,(
x′, y′, z′

)
. The new spinor is Ψ̃′ = tΨ′ = tsΨ, and we denote its components

by Ψ̃′ =
(
ψ̃−, ψ̃+

)T
. It is clear that the forward and dispersive interactions of

eq. (2.22) retain their structure as

Hfw = g2Ψ†Ψ = g2Ψ̃′†tss−1t−1Ψ̃′

= g2Ψ̃′†Ψ̃′. (4.21)

This implies yet another set of values for the renormalized velocity and the
Luttinger parameter. The new values are

v′′ ≈ vβ + g2

2π , (4.22)

K ′′ ≈ 1− g2

2πvβ
= 1− g2

2παR
sin θα sin θβ . (4.23)

In the Rashba case, the Umklapp interaction gave rise to 32 terms in total,
which could be combined into 24 terms. In this case, the additional rotation
gives an unmanageable“worst case”number of 32·16 = 512 terms. However, the
combined rotation is just an SU(2) transformation, which does not give rise to
any other kinds of terms than those already included [59]. The perturbation from
the superconductor also does not yield any new effects, as it is form-invariant,

H∆ = ψL↓ψR↑ + ψ†R↑ψ
†
L↓ = ψ̃−ψ̃+ + ψ̃+

†
ψ̃−
†
. (4.24)

The magnetic field, however, rotates also into the z′′ direction:

HB = Ψ†σxΨ = Ψ̃′†tsσxs−1t−1Ψ̃′ = Ψ̃′†tσxt−1Ψ̃′

= Ψ̃′†
(

cos θβ sin θβ
sin θβ − cos θβ

)
Ψ̃′,

= Ψ̃′†
[
cos
(
θβ
)
σz
′′

+ sin
(
θβ
)
σx
′′]

Ψ̃′, (4.25)

where the double prime denotes the new coordinate system,
(
x′′, y′′, z′′

)
.

The two field components are equally relevant, with conformal dimension K,
but have different physical effects. The z′′ component is in the direction of the
spin quantization and will destroy the quantum spin Hall state (and hence the
Majorana states) much more efficiently than planar magnetic fields do [22, 33].
While the magnitude of this effect of course depends on the spin-orbit interaction
strengths, we can ask whether we can define a field in the xy plane such that it
does not rotate into a z′′ component. The answer is yes, but it is not fully clear
yet how this field would affect the phase diagram of the SAR model.
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To study this case, let the field B =
(
Bx, By

)
be perpendicular to the resul-

tant spin-orbit field, BSO = (βD, αR), formed by the Dresselhaus and Rashba
fields. By rotating around an axis in the direction of B, we can diagonalize
H0 +HR +HD, while leaving B invariant. If the rotation matrix is given by

u = exp

−iσ · (Bxx̂+By ŷ
)
θSO

2
√
B2
x +B2

y


,

(4.26)

the angle θSO must satisfy

tan θSO =
αR
vF

√
1 +

β2
D

α2
R

. (4.27)

The addition of a y component of the magnetic field is, however, a non-
trivial extension of the SAR model. In the spin-chain language of section 3.2, it
acquires the form

ByΨ†σyΨ ∼ By
∑
j

(−1)
j (
Sxj S

x
j+1 + Syj S

y
j+1

)
. (4.28)

When added to (3.3) it acts as a dimerization of the XYZ spin-chain. The
resulting theory can be mapped to theory considered by Arlego et al. [62] in
two cases, when Bx = 0 or when Jz = µ = 0 and By = vF − ∆. The first
case is not very interesting, as we will need an x component whenever we have
the Rashba interaction present, which we expect to be the case in the relevant
materials. In the second case, the Hamiltonian (3.3) takes the form

Hj = (vF + ∆)Sxj S
x
j+1 + (vF −∆)Syj S

y
j+1

+ (−1)
j

(vF −∆)
(
Sxj S

x
j+1 + Syj S

y
j+1

)
−BxS

z
j (4.29)

after a rotation by π around the x axis at every second spin site. This spin-chain
theory has an Ising transition at

Bx = ±

√
1− 2∆

vF
, (4.30)

where it hosts Majorana modes [62]. The Majoranas are thus stable in the
limit of no interactions, but the effect of non-zero Jz, i.e. with electron-electron
interactions present, is not currently known.

To conclude, we see that the the Dresselhaus spin-orbit interaction may
destabilize the Majorana fermions if we take the magnetic field to be along
the x axis, as it rotates into a z component. More work is required to fully
understand the case of a magnetic field with components along both x̂ and ŷ
when electron-electron interactions are present.
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Chapter 5

Conclusions

We have extended the model considered by Sela, Altland and Rosch in ref.
[10], to also include local Umklapp interactions from localized impurities and
the Rashba and Dresselhaus spin-orbit interactions. We have shown that the
Majorana states present in a system formed by a topological insulator coupled to
a s-wave superconductor and an external magnetic field along the edge are stable
against localized impurities and Rashba spin-orbit interaction. This stability
means that the states would be quite robust in realistic experimental HgTe
quantum well systems, which are likely to contain disorder and be subject to
Rashba spin-orbit interactions, no matter if they are designed just to detect these
states or if they are designed to use them, possibly for quantum computation.

In contrast, for the InAs/GaSb quantum well systems, we also expect the
Dresselhaus spin-orbit interaction to be present. In that case the Majorana
states may become destabilized. This effect can be avoided, in the case of no
electron-electron interactions, if the magnetic field is placed in the plane of the
topological insulator. More work is needed, however, to also treat the case when
electron-electron interactions are present.

In addition, we have shown that the Luttinger parameter can be controlled
via the Rashba interaction strength. This provides additional control in experi-
ments, and makes it possible to access different parts of the phase diagram more
readily.

These results do bode well for possible future detection of Majorana fermions
in topological insulator systems, but it remains to be seen in which systems
the Majorana fermions are first discovered. Given the considerable amount of
research into the matter [4] and the recently discovered signatures of Majorana
states [5, 6, 7, 8], we have certainly come a long way since Majorana’s original
prediction in 1937 [3]. Their existence is indeed starting to seem a foregone
conclusion, yet it remains to be seen. These are interesting times.

39
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Appendix A

Time reversal in detail

Under time reversal, both spin and momentum are flipped. In addition, for a
spin-half system one of the spin states acquires a minus sign [19]. Choosing the
left mover to be the state picking up the minus sign, we have the transformations

T−1ψR↑T = ψL↓,

T−1ψL↓T = −ψR↑. (A.1)

Recalling that the time reversal operator T can be written T = UK̂, where
U is a unitary matrix and K̂ is complex conjugation [19], we now calculate

ψ†L↓ =
(
T−1ψR↑T

)†
= T †ψ†R↑T

−1†

= K̂†U†ψ†R↑U
−1†K̂−1†

= K̂†U−1ψR↑ † UK̂
−1†. (A.2)

What is K̂†? To answer this, let a be a c-number and consider(
K̂a
)†

= a∗K̂†,(
K̂a
)†

=
(
a∗K̂

)†
= K̂†a, (A.3)

i.e. a∗K̂† = K̂†a. But this is just the definition of K̂ so K̂† = K̂. Obviously,
we also have K̂−1 = K̂ and thus (A.2) becomes

ψ†L↓ = K̂U−1ψ†R↑UK̂

= T−1ψ†R↑T. (A.4)

Similarly, we get ψ†R↑ = −T−1ψ†L↓T . To summarize, the fields transform as

ψL↓ → −ψR↑,
ψR↑ → ψ†L↓,

ψ†L↓ → −ψ†R↑,
ψ†R↑ → ψ†L↓,

(A.5)
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under time reversal.
Let us now explicitly study the time reversal symmetry of the interactions.

We begin by checking how eq. (2.21) transforms under time reversal:

Hfw = g2ψ
†
L↓ψL↓ψ

†
R↑ψR↑ +

g4

2

[(
ψ†L↓ψL↓

)2

+
(
ψ†R↑ψR↑

)2
]

→ g2

(
−ψ†R↑

) (
−ψR↑

)
ψ†L↓ψL↓

+
g4

2

[((
−ψ†R↑

) (
−ψR↑

))2

+
(
ψ†L↓ψL↓

)2
]

= Hfw. (A.6)

Similarly, for the Umklapp term of eq. (2.19):

Hum = gu

[
ψ†L↓∂xψ

†
L↓ψR↑∂xψR↑ + ψ†R↑∂xψ

†
R↑ψL↓∂xψL↓

]
→ gu

[
−ψ†R↑∂x

(
−ψ†R↑

)
ψL↓∂xψL↓

+ ψ†L↓∂xψ
†
L↓
(
−ψR↑

)
∂x
(
−ψR↑

)]
= Hum. (A.7)

We also have the Rashba Hamiltonian of eq. (2.25) (assuming αR (x) ∈ R):

HR = αR (x)
(
ψ†L↓∂xψR↑ − ψ

†
R↑∂xψL↓

)
→ αR (x)

[
−ψ†R↑∂xψL↓ − ψ

†
L↓∂x

(
−ψR↑

)]
= HR, (A.8)

and finally the Dresselhaus Hamiltonian of eq. (2.27) (assuming βD (x) ∈ R):

HD = −iβD (x)
(
ψ†R↑∂xψL↓ + ψ†L↓∂xψR↑

)
→ +iβD (x)

[
−ψ†L↓∂xψR↑ − ψ

†
R↑ψL↓

]
= HD. (A.9)

These are the four time-reversal invariant interactions in our model. The
couplings to external magnetic fields and superconductors in eq. (3.1) obviously
break the time reversal symmetry of the system (the external field is fixed no
matter the sign of the momentum of the electrons, and so is the directions into
and out of the nearby superconductor). Explicitly we get

δH = B
(
ψ†L↓ψR↑ + ψ†R↑ψL↓

)
+ ∆

(
ψL↓ψR↑ + ψ†R↑ψ

†
L↓

)
→ B

[
−ψ†R↑ψL↓ + ψ†L↓

(
−ψR↑

)]
+ ∆

[
−ψR↑ψL↓ + ψ†L↓

(
−ψ†R↑

)]
= −δH, (A.10)

which is the expected result.



Appendix B

Ghost site approach to the
local Umklapp interaction

The idea here is to put the local Umklapp interaction treated in section 3.2.2
on a ghost site inbetween two sites in the main lattice, in order to see if the
impurity then separates from the bulk spin chain Hamiltonian. If the idea of
an impurity squeezed into the space between two lattice points seems hard to
accept, think of it as an external impurity physically situated next to our 1D
lattice, as in fig. B.1. Either way, we number this “ghost” site j = 1

2
1.

As in eqs. (3.11) and (3.13), we approximate the fields as slow, i.e. we
assume ψR↑

(
x+ α

2

)
≈ ψR↑ (x) and ψL↓

(
x+ α

2

)
≈ ψL↓ (x). The expansions for

the lattice fermions become

aj ∼ e
iπ2 xψR↑ (x) + e−i

π
2 xψL↓ (x) , (B.1)

aj+ 1
2
∼ ei

π
2 (x+α

2 )ψR↑

(
x+

α

2

)
+ e−i

π
2 (x+α

2 )
(
x+

α

2

)
(B.2)

Setting set the lattice spacing α = 1 we have

aj+ 1
2
≈ ei

π
2 xei

π
4 ψR↑ (x) + e−i

π
2 xe−i

π
4 ψL↓ (x) . (B.3)

1
In order to keep the structure of the Hamiltonian for the free theory and the other in-

teractions, we must use the same numbering scheme for the ordinary sites as before. The
other conceivable idea, to number the ordinary sites by j = 0,2,4,6,... and let the impurity be
located at j = 1, will fail in the inverse Jordan-Wigner transformation to follow.

Figure B.1 – Sketch of the ghost site as located next to the main lattice chain.
The gL term is only active in the links to sites j = 0 and j = 1.
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The fields can then be expressed as

ψL↓ (x) ∼ 1√
2
ei
π
2 x
(
e−i

π
4 aj + iaj+ 1

2

)
, (B.4)

ψR↑ (x) ∼ 1√
2
e−i

π
2 x
(
ei
π
4 aj − iaj+ 1

2

)
(B.5)

and the local Umklapp interaction (3.10),

Hlocalum = gL

[
ψ†R↑ (0)ψ†R↑

(α
2

)
ψL↓

(α
2

)
ψL↓ (0)

+ ψ†L↓ (0)ψ†L↓

(α
2

)
ψR↑

(α
2

)
ψR↑ (0)

]
, (B.6)

can be rewritten in terms of the lattice fermions. It becomes

Hlocalum =
igL
4

[
−
√

2a†0a
†
1
2

a1a0 + 2ia†0a
†
1
2

a1a 1
2

−
√

2a†0a
†
1a 1

2
a0 + 2ia†0a

†
1a1a0 −

√
2a†0a

†
1a1a 1

2

+ 2ia†1
2

a†1a 1
2
a0 −

√
2a†1

2

a†1a1a0

]
. (B.7)

Now it is time to determine the form of the inverse Jordan-Wigner trans-
formation. To the best of my knowledge, applications of the Jordan-Wigner
technology to half-integer sites have not been discussed in the literature. To
what extent the procedure I suggest here is mathematically well-defined and
unambiguous, requires further study. However, the important thing seems to be
that there is a unique path traversing all sites, in order to define the operator
string that appears in the Jordan-Wigner transformation [21]. Here, it is easy
to define the path by the consecutive steps j = 0, 12 ,1,2,3, . . . .

We will use the following Jordan-Wigner transformations:

Szj = a†jaj −
1

2
, j = 0,

1

2
,1,2, . . . , (B.8)

S+
j = a†j (−1)

j
e
iπ

∑j−1
l=0 a

†
l al+iπθ(j−1)a

†
1
2

a 1
2 , j = 0,1,2, . . . , (B.9)

S+
1
2

= ia†1
2

eiπa
†
0a0 , (B.10)

where θ is the step function. The inverse transformations then become

a†jaj = Szj +
1

2
, j = 0,

1

2
,1,2, . . . , (B.11)

a†j = (−1)
j
S+
j e
−iπ

∑j−1
l=0 a

†
l al−iπθ(j−1)a

†
1
2

a 1
2 , j = 0,1,2,..., (B.12)

a†1
2

= −iS+
1
2
e−iπa

†
0a0 . (B.13)
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The local Umklapp term in the Hamiltonian can now be written

Hlocalum =
gL
4

[
Sz0

(√
2S+

1
2
S−1 −

√
2S+

1 S
−
1
2

)
+

√
2

2

(
S+

1
2
S−1 − S

+
1 S
−
1
2

)
+ Sz1

2

(
2S+

0 S
−
1 + 2S+

1 S
−
0

)
+
(
S+

0 S
−
1 + S+

1 S
−
0

)
+ Sz1

(√
2S+

0 S
−
1
2
−
√

2S+
1
2
S−0

)
+

√
2

2

(
S+

0 S
−
1
2
− S+

1
2
S−0

)
− Sz0S

z
1 − S

z
0 − S

z
1

]
. (B.14)

This Hamiltonian is Hermitian, but unfortunately it looks quite complicated
to work with. In fact, there seems to be no attempt in the literature, neither
analytical or numerical, to treat this type of spin chain model.
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Appendix C

The cumulant expansion

To prove the formula

〈eΩ〉 = e〈Ω〉+
1
2 (〈Ω2〉−〈Ω〉2)+... (C.1)

first recall a few definitions from probability theory. These definitions can be
found in any good book on the subject, e.g. ref. [63].

Def. 1. The r:th moment, µr is the expectation value of the real-valued random
variable Xr with probability density function fX (x) (note the difference between
the random variable X and its realization x), i.e.

µr ≡ 〈X
r〉 ≡

∫ ∞
−∞

xrfX (x) dx, r = 0,1,2, . . . (C.2)

Def. 2. The moment-generating function is defined by

MX (t) ≡ 〈etX〉, t ∈ R. (C.3)

The moment-generating function gets its name from the fact that we can ex-
pand the exponential around t = 0, and then find any moment by differentiation
with respect to t. Unfortunately, this expansion is not well-defined for all ran-
dom distributions. One can, however, always form the characteristic function.
If the probability density function fX (x) exists, the characteristic function is
simply its Fourier transform1.

Def. 3. The characteristic function is defined by

ϕX (t) ≡ 〈eitX〉 =

∫ ∞
−∞

eitxfX (x) dx. (C.4)

If the moment-generating function exists, then it can be related to the char-
acteristic function by ϕX (−it) = MX (t). The Taylor expansion (around t = 0)
of the characteristic function is

ϕX (t) = 1 +

∞∑
k=1

(it)
k

k!
µk. (C.5)

1
Note that one can define the characteristic function even for probability distributions

without probability density functions, but we will not discuss such cases here.
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Def. 4. The cumulant-generating function is defined as the logarithm of the
characteristic function:

κX (t) ≡ logϕX (t) . (C.6)

Def. 5. The cumulants χk (k = 1,2,3, . . . ) are defined through the expansion
of κX as follows:

κX (t) ≡
∞∑
k=1

(it)
k

k!
χk. (C.7)

To calculate the cumulants in terms of the moments, the idea is to calculate
the logarithm of the expansion of the characteristic function, and to compare
it with the expansion of the cumulant-generating function. First, recall the
expansion of the logarithm:

log (z) =

∞∑
k=1

(−1)
k+1 (z − 1)

k

k
. (C.8)

Using this expansion, we find

κX (t) = log
[
〈eitX〉

]
=

∞∑
k=1

(−1)
k+1 1

k

[
〈eitX〉 − 1

]k
=

∞∑
k=1

(−1)
k+1 1

k
(−1)

k
[
1− 〈eitX〉

]k
= −

∞∑
k=1

1

k
[1− ϕX (t)]

k

= −
∞∑
k=1

1

k

− ∞∑
j=1

(it)
j

j!

µk. (C.9)

By computing the first set of terms one easily finds

χ1 = 〈x〉,
χ2 = 〈x2〉 − 〈x〉2,
χ3 = 〈x3〉 − 3〈x2〉〈x〉+ 2〈x〉3

. . . (C.10)

Finally, we use the above to calculate the average 〈eΩ〉:

〈eΩ〉 = ϕΩ (−i) = elogϕΩ(−i) = eκΩ(−i)

= exp

( ∞∑
k=1

1

k!
χk

)
= e〈Ω〉+

1
2 (〈Ω2〉−〈Ω〉2)+... (C.11)

Q.E.D.



Appendix D

The Hubbard-Stratonovich
transformation

The following step in (3.74),

− gL

(2π)
2

∫
dτ

(
ei
√

16πφs

∫
Dφf

× exp

[∫
f

dω

2π

(
i
√

16πeiωτφf (ω)− |ω|
2K
|φf |

2

)]
+ h.c.

)
= − gL

(2π)
2

∫
dτ

(
ei
√

16πφs exp

[
−
∫
f

dω

2π

16π

2

K

|ω|

]
+ h.c.

)
, (D.1)

deserves a closer derivation. First, to clean up the expression we remove the
prefactors and the integration over τ , as the crucial step is found in the functional
integration. We have∫

Dφf exp

[∫
f

dω

2π

(
i
√

16πeiωτφf (ω)− |ω|
2K
|φf |

2

)]
= exp

[
−
∫
f

dω

2π

16π

2

K

|ω|

]
. (D.2)

This step can be considered an inverse Hubbard-Stratonovich transformation.
The general form of the H-S transformation is [11]:

exp [−ρmVmnρn] =

∫
Dq exp

[
−1

4
qmV

−1
mnqn − iqmρm

]
(D.3)

for a general bilinear form ρmVmnρn, where V is a positive definite matrix and q
is some auxiliary field (often a physical, non-microscopic quantity). Identifying

ρωVωω′ρω′ =

∫
f

dω

2π
16π

K

2|ω|
, (D.4)
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we see that there must be a delta function δωω′ in V , so V will be non-singular
and invertible. In particular, we can choose

Vωω′ =
K

2|ω|
δωω′ ,

⇒ V −1

ωω
′ =

2|ω|
K

δωω′

ρw =
√

16πe−iωτ ,

q = φf .

With these choices we have

ρωVωω′ρω′ =

∫
f

dω

2π

∫
f

dω′

2π
δωω′

16πK

2|ω|
eiτ(ω−ω

′)

=

∫
f

dω

2π

16πK

2|ω|
, (D.5)

−1

4
φf,ωV

−1

ωω
′φf,ω′ = −1

4

∫
f

dω

2π

∫
f

dω′

2π
φ?f (ω)

2|ω
K
δωω′φf

(
ω′
)

= −
∫
f

dω

2π

|ω|
2K

φ?f (ω)φf (ω)

= −
∫
f

dω

2π

|ω|
2K
|φf |

2 (D.6)

and

−iφf,ωρω = −i
∫
f

dω

2π
φ?f (ω)

√
16πe−iωτ

= +i

∫
f

dω

2π
φ?f (−ω))

√
16πeiωτ

= i
√

16π

∫
f

dω

2π
eiωτφf (ω) . (D.7)

Inserting these equations in (D.3) we get just (D.2). Thus (3.74) holds. Q.E.D.
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