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Abstract
The expression problem is the problem of designing a programming language such
that it has both extensible data types and extensible sets of functions over those data
types. This means that it should be possible to add new functions, new variants to a
data type, and function cases for these new variants, without modification or recom-
pilation of existing code. There exist a number of different approaches to solving
the expression problem, which have different qualities in expressiveness or simplicity.

In this thesis, we have designed a syntax, with an accompanying transformation
into compilable code, that acts as a solution to the expression problem in Haskell.
By designing this syntax, we can make simplifications that would not be possible
for solutions written directly in Haskell. In particular, we can, behind our syntax,
abstract away some syntactic overhead that can be generated by the transformation.

To demonstrate that our designed syntax is feasible and works as an extension to
Haskell, we have implemented the transformation, which transforms code written
using our syntax into code that uses the Haskell library compdata. That library is
an existing solution to the expression problem, and is based on another solution:
Data Types à la Carte. Both of these solutions share many similarities in semantics
with our syntax.

Similarly to compdata and Data Types à la Carte, data types in our syntax are com-
posable; that is, variants of a data type are manually combined to form a type with
a fixed set of possible variants. We introduce a new concept, called categories, with
the purpose of grouping variants and compositions of data types and simplifying the
syntax into one closer to that of regular data types. This means that compositions of
variants can only be formed of variants belonging to the same category, as opposed
to freely being able to combine any variants. Again, similar to compdata and Data
Types à la Carte, functions over composable data types are extended automatically
in our syntax. This means that a function can be used for a variant of the data type
as long as the function has a case defined for the variant. Through the introduction
of categories and the abstractions possible through the transformation, we are able
to conclude that our syntax provides several improvements compared to existing
solutions to the expression problem in Haskell.

Keywords: The expression problem, Haskell, programming language design, pro-
gramming language, composable, extensible, functional programming.
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1
Introduction

Originally formulated by Philip Wadler, the expression problem [1] is a famous dilem-
ma in the domain of programming language design. It concerns the problem of
designing a language such that it has both extensible data types and extensible sets
of functions over those data types. A data type is extensible if new variants of the
data type can be added outside of its original definition, and if the existing functions
over the data type can be extended to handle the new variants. For a set of functions
to be extensible, it should be possible to add new functions over a certain data type
without needing to change the existing code for the data type.

An example often used for the expression problem is a data type representing an
abstract syntax tree of a small expression language, with functions to, for instance,
evaluate such expressions. In this thesis report, we use this example of a recursive
data type of expressions with three variants: constant integers, addition of expres-
sions, and multiplication of expressions.1 To begin with, we also define an evaluation
function that evaluates an expression to an integer value. To have a solution to the
expression problem, it should be possible to add a new variant to the data type, to
extend the function to handle this variant, and to extend the set of functions, all of
this without modifying existing code. For instance, we may want to add a variant
for negation of an expression, and extend the evaluation function to handle that
variant, and also add a new function that writes the expression as a string.

Depending on the design paradigm, most existing programming languages are ex-
tensible only in one direction, either in data types or the set of functions. We will
illustrate this here by showing the example mentioned above in both an object-
oriented and a functional programming language, and we will see that they offer
different directions of extensibility.

Beginning with an object-oriented language, we show the example in Java. Here,
we represent the data type as an interface, and the variants of the data type as
classes that implement the interface. In the expression language example, this is the
interface Expr and the classes Const, Add and Mul. The interface has the evaluation
method eval(), which all of the classes implement. This gives us the following:

1The variants for addition and multiplication are thus recursive, which is why the data type
itself has to be recursive. Recursive data types is an important aspect of the expression problem,
and what we consider in this thesis.

1



1. Introduction

interface Expr {
int eval();

}

class Const implements Expr {
int value;
Const(int v) { value = v; }
public int eval() { return value ; }

}

class Add implements Expr {
Expr e1, e2;
Add(Expr a, Expr b) { e1 = a; e2 = b; }
public int eval() { return e1.eval() + e2.eval(); }

}

class Mul implements Expr {
Expr e1, e2;
Mul(Expr a, Expr b) { e1 = a; e2 = b; }
public int eval() { return e1.eval() * e2.eval(); }

}

Note that the blocks for the classes are only dependent on the the interface, and
are independent from each other. This means that the classes can be compiled
separately. The first direction of extensibility is now to be able to add a new variant,
in this example a variant for negation of an expression. We can easily do so by writing
a new class as follows:

class Neg implements Expr {
Expr e;
Neg(Expr a) { e = a; }
public int eval() { return (-1) * e.eval(); }

}

This is added independently from the other classes, and does hence not require any
modification or recompilation of existing code. On the other hand, if we want to
add a new method, in order to also provide a function asString() to write an
expression as a string, we must modify the interface and all the classes to handle
the new method. Thus, we must edit the existing code, which means that object-
oriented languages typically do not offer a solution to the expression problem.

This thesis will primarily consider another programming paradigm, namely func-
tional programming languages. These tend to be extensible in the opposite direction
to object-oriented languages; that is, they are extensible in the set of functions, but
not in the data types. We will now show the example in the functional programming
language Haskell, since that is the language on which this thesis will focus. First,
we have the data type for Expr, with variants Const, Add and Mul:

2



1. Introduction

module Expr where
data Expr = Const Int | Add Expr Expr | Mul Expr Expr

The basis of a functional program is to apply and compose functions. This means
that we can define several functions over a data type separately from the data type
itself. These functions can be compiled independently of each other, as long as they
have access to the data type Expr. For instance, we can have an eval function and
an asString function written in different modules:

module Eval where
import Expr

eval :: Expr -> Int
eval (Const i) = i
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

module AsString where
import Expr

asString :: Expr -> String
asString (Const i) = show i
asString (Add e1 e2) = "(" ++ asString e1 ++ " + "

++ asString e2 ++ ")"
asString (Mul e1 e2) = "(" ++ asString e1 ++ " * "

++ asString e2 ++ ")"

We can then also later extend the set of functions in a similar way. On the other
hand, if we want to extend the data type to also have a variant for negation, we
must modify the existing data type to be:

data Expr = Const Int | Add Expr Expr | Mul Expr Expr | Neg Expr

Furthermore, we must modify all functions over the data type to handle the new
variant. This means recompilation of existing code, and shows that the expression
problem is typically not solved in functional languages, albeit in a different way from
object-oriented languages.

As noted, what we want is to be able to extend both the data type and the set of
functions in a modular way, without needing to recompile old code. For an even
more modular way of extending a data type, one could aspire to have composable
data types, instead of just extensible. This means that one can freely combine the
variants to form one or more different data types, and thus be able to specify which
variants to include or not, rather than them all being included in the extended
data type. [2, 3] In Figure 1.1, we show these two ways of constructing data types in
flowcharts, to better illustrate the two concepts. In this report, we will use extensible

3



1. Introduction

as an umbrella term for data types or functions that solve the expression problem,
unless it is used as a direct contrast to composable.

Extensible
type

Variant

Variant

Variant

Variant

Variant

(a) Extensible data types

Variant

Variant

Variant

Variant

Variant

Composed
type

Composed
type

(b) Composable data types

Figure 1.1: Flowcharts for how to form data types with different variants in two
ways: with extensible or composable data types. For extensible data types, we have
first a declaration of the extensible data type, which can then be extended with
different variants. For composable data types, we instead first declare the different
variants, which can then be combined into different composed types. Note that in
the second case, we can have different composed types containing just the variants
that we want, while in the first case, the extensible data type always contains all
variants over which it has been extended.

Modularity, be it with extensible or composable data types, has many advantages,
such as the possibility of keeping related things together and unrelated things sep-
arate. Doing so usually means that the code is less prone to contain errors, since
there is typically only one place where one needs to make a change, and one has
more control over what the change affects. This means that one does not need to
consider everything in a project at once. [4, 5] Modularity is also valuable when one
wants to extend a project later. For instance, one could have a compiler that could
then be extended with plugins from other programmers, without them having to
change the original code [6]. In conclusion, a solution to the expression problem
would provide many advantages for modularity in a programming language.

While there exist some proposed solutions to the expression problem in Haskell,
many of them either build on mechanisms not implemented in a Haskell compiler,
or introduce syntactic overhead that offset the benefits of such a solution [2, 5]. The
existing solutions seem to often focus on the underlying implementation to provide
a system for extensible data types that can be used in many different scenarios, and
to be less concerned with the syntax and user-friendliness. Furthermore, by writing
the solutions directly in Haskell, the user-friendliness of the solution is also limited
by the current syntax and existing mechanisms of Haskell. With this background,
this master’s thesis project focuses on designing a user-friendly syntax for a solution
to the expression problem in Haskell.
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1. Introduction

1.1 Purpose and Scope
The overarching purpose of this master’s thesis project is to investigate what would
constitute an elegant syntax for solving the expression problem in Haskell. The
concept of an elegant syntax will be defined in Section 1.2. To fulfill the purpose,
the project is done with the focus on developing a specific syntax, with the following
goals:

• Design an elegant syntax for a solution to the expression problem in Haskell.

• In order to ensure feasibility of the syntax, implement a proof-of-concept lan-
guage extension that transforms code written with the syntax into compilable
Haskell code.

• Evaluate the syntax and implementation based on its expressiveness, that is,
the different scenarios it can and cannot handle.

• Compare the user-friendliness and expressiveness of the syntax to existing
expression problem solutions.

The primary focus is to investigate what constitutes an elegant syntax in a theoret-
ical way. This means that we do not focus as much on specific choices of keywords
and similar, but rather on what is needed overall to provide a syntax that is easy to
use in many different scenarios.

Regarding implementing a transformation to compilable code, the goal is again
theoretical, meaning that we want to show feasibility of the syntax, rather than to
implement a complete language extension ready to be released. Therefore, it is not
a priority to solve minor practical limitations related to the implementation, or to
optimize performance.

Furthermore, the focus is to improve solutions to the expression problem in Haskell
regarding their syntax rather than their expressive power. To focus on the syntax
design, the transformation is implemented so that it transforms code written in our
syntax into code using an existing solution to the expression problem. We refer
to this existing solution as the backend of our project. While this choice may put
some limitations on the design of the syntax as it must be transformed to the chosen
backend, it relieves the need to implement a solution to the expression problem from
the ground up. The choice of backend is further made with care to match the desires
for an elegant syntax as well as possible.

1.2 Aim for the Syntax
Before designing and eventually evaluating a syntax, we must establish what con-
stitutes a good syntax. First, we present here some general conditions that must be
met.
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• A solution to the expression problem: The criteria for a solution are
elegantly stated by Zenger and Odersky [3], and are only slightly rephrased
here:

– Extensibility in both directions: It should be possible to extend
both a data type with more variants and the set of functions over said
data type. Furthermore, it should be possible to extend all functions to
support new data type variants.

– Strong static type safety: It should be impossible to apply a function
to a data type variant it cannot handle.

– No modification or duplication: Existing code should not need to be
modified or duplicated.

– Separate compilation: Compiling data type extensions or new func-
tions should not require any recompilation of the original data type or
existing functions.

– Independent extensibility: It should be possible to combine indepen-
dently developed extensions so that they can be used together.

The first four criteria are from the original definition of the expression problem,
while the fifth criterion was added by Zenger and Odersky. This is a reasonable
addition to capture the nature and purpose of composability, and rejects some
early proposed solutions.

• Extension to Haskell: The syntax should be usable as an extension to
standard Haskell.

• Self sufficiency: A user of the syntax should not need to know about or
directly use components from any underlying backend, but rather just use our
syntax.

• Independent design: The syntax should be designed as independently as
possible of the interface provided by the backend library, to avoid the need to
compromise its elegance due to the specific backend.

Then, we want to establish our specific goals that constitute our view of an elegant
syntax. These are the things that we will consider when making a choice between
alternatives that all meet the above conditions.

• Simplicity: The syntax should not introduce significant syntactic overhead
or complexity compared to standard Haskell data types and functions over
them. The syntax should stay close to that of standard data types, rather
than introducing many new concepts to the user.

• Familiarity: Close to the previous goal, the syntax should also be similar to
Haskell and keep a functional style, so that it feels familiar to a user.
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• Expressiveness: The syntax should, beyond being user-friendly, support
many different scenarios for using composable data types. There may, how-
ever, be a need for compromises between expressiveness and user-friendliness
of the syntax.

1.3 Outline
In the rest of this thesis report, we will first describe related work in Chapter 2, where
we cover several proposed solutions to the expression problem. We also present more
extensive examples of some of these solutions in Appendix C, with accompanying
library modules in Appendix D. This related work forms a basis for inspiration to
our own syntax, both when it comes to concepts we want to imitate and concepts we
want to improve. We then describe our proposed syntax in Chapter 3, with the goal
of showing step by step how an elegant syntax can be made that fulfills the criteria
of the expression problem. We summarize the syntax in Appendix A, where we
present it more formally than described in Chapter 3. In Appendix B, we also show
a more extensive example written in our syntax and how it is transformed, similar
to the examples of related work. Following the description of the syntax design, we
have the transformation into code that uses an existing solution to the expression
problem, which we describe in Chapter 4. Then, in Chapter 5, we discuss several
ideas for future work, for which we have not fully designed a syntax or implemented
a transformation. Finally, we discuss our solution and present our conclusions in
Chapter 6.
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2
Related Work

There exist several proposed solutions to the expression problem. This chapter will
cover a number of these, to provide a basis for our own syntax, both for inspiration
and later for comparison and evaluation. More extensive example programs using
some of these solutions are given in Appendix C, in order to see the syntax in full
programs that also cover a bit more than the examples shown in this chapter.

As this project aims at designing a syntax for Haskell, the focus is on solutions
feasible for use in Haskell. Still, other solutions may be relevant for syntactic in-
spiration and other comparisons. This could also include solutions designed for
object-oriented languages, which could be used in Haskell by using one of several
proposed extensions to Haskell to provide object-oriented features. The aim of such
extensions is much higher than solving the expression problem, and solutions using
them lose the functional style that can be kept better with purely functional ap-
proaches [4]. Therefore, those solutions are not deemed suitable for a backend of this
project, nor in any significant extent for syntactic inspiration. They may, however,
be relevant for giving a broader view of different approaches. For this reason, we
have chosen to include Section 2.6 on object algebras in this chapter.

There are also language-based solutions to the expression problem, which are based
on designing new languages or language features specifically for extensible data
types. An example of this is row typing and extensible records and variants [7].
Many of these solutions require significant extensions to the language, for instance
by changing its core type or class system [5]. We need to in some way relate our
syntax to a solution that is implemented in Haskell, and that can therefore be our
backend, which would not be possible with unimplemented solutions. We briefly
cover one such solution in Section 2.4, as one of two alternative implementations of
Variations on Variants.

Finally, there are solutions that build on existing mechanisms in Haskell. Some of
these provide new syntax, while others simply show how the existing mechanisms
can be used. This means that we can look to these solutions for inspiration both in
syntax and in semantics. Since they are built on existing mechanisms, we will be
able to relate our suggested syntax to such a solution directly, to provide functional
syntax without the need to implement the backend solution ourselves. Thus, those
are the most relevant solutions for choosing a backend for this project and, by
extension, also in syntactic inspiration. Therefore, we cover multiple such solutions
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in this chapter. We discuss two proposed solutions that provide new syntax, Open
Data Types and Open Abstract Types, in Sections 2.7 and 2.8. The solutions that
is directly usable without new syntax are even more relevant, and we cover several
of these in Sections 2.2–2.5, such as Data Types à la Carte and Trees that Grow.

2.1 Running Example
In the following presentations of proposed solutions, we will look at the running
example of the abstract syntax tree of a small expression language, as introduced
in the introduction. This, with small alterations, is a standard example used when
discussing the expression problem. The expression language consists of a data type
that looks like this in regular Haskell syntax:

data Expr = Const Int | Add Expr Expr | Mul Expr Expr

With this data type, one can write an example like the following:

threePlusFive :: Expr
threePlusFive = Add (Const 3) (Const 5)

It should then be possible to extend this data type with a variant for negation,
Neg Expr, and have the possibility to allow further extensions. If the added variant
simply extends the data type Expr, so that it from then on always includes that
variant, we say that Expr is an extensible data type. To instead have a composable
data type, it should be possible to pick among the building blocks Const, Add, Mul
and Neg and combine the desired pieces into a composition. Consequently, variants
of a composable data type can be combined into multiple different compositions.

It should also be possible to write functions over this data type, as well as to extend
said functions for extensions to the data type. In particular, we look at the evaluation
function example:

eval :: Expr -> Int
eval (Const i) = i
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

It should then be possible to extend this with a case for negation, as in:

eval (Neg e) = (-1) * eval e

The extensibility direction of extending the set of functions for a certain data type
must also be considered. This means that we should be able to write, for instance,
a show function asString on the data type as well. This is especially relevant when
looking at object-oriented approaches, since that direction of extensibility is usually
the one not fulfilled in such languages, as noted in Chapter 1. However, this thesis
focuses on functional languages, where it is easy to add new functions, while it is
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difficult to extend a data type. Thus, the emphasis here is not on extending the set
of functions.

Still, we must consider another function for another reason. The eval function above
is an example of a destructive extensible function. This means that the ingoing type
is an extensible type, namely Expr, while the result is a simple, non-extensible type,
in this case an Int. In this way, the function deconstructs a value of type Expr
into an Int, based on the structure of the ingoing value, as seen in the pattern
matching cases. In particular, this ingoing type is the type over which extensions
to the function will be defined. Since the result is an integer, the function does not
need to construct any value of an extensible type. On the other hand, another kind
of extensible functions is transformative extensible functions, where both ingoing
and outgoing values are of extensible types. In that case, the function first pattern
matches on the ingoing value in the same way as a destructive function, but then it
also constructs a value of an extensible type. An example of such a function on the
type Expr is a desugaring function, which removes some defined syntactic sugar from
an expression. In this case, it could remove all negations, returning an expression
without the component Neg. This would look like the following in regular Haskell
syntax:

desug :: Expr -> Expr
desug (Const i) = Const i
desug (Add e1 e2) = Add (desug e1) (desug e2)
desug (Mul e1 e2) = Add (desug e1) (desug e2)
desug (Neg e) = Mul (Const (-1)) (desug e)

In this chapter, we will not show the corresponding desug function in full detail
when describing different proposed solutions to the expression problem, but will
consider how they handle transformative functions. Instead, we show the desug
function in the complete examples in Appendix C.

There is one final kind of extensible functions, namely constructive extensible func-
tions, which construct a value of an extensible type from an input of a regular,
non-extensible type. An example could be a parser function that parses a string
and constructs an Expr. None of the proposed solutions we present in this chapter
cover how this would be done, so we will not consider constructive extensible func-
tions any further in this chapter. On the other hand, in Section 5.2 we will discuss
how such functions could potentially be implemented in our syntax.

Finally, we refer back to the criteria of being a solution to the expression problem
stated in Section 1.2. In addition to supporting extensibility in both directions, as
mentioned in the above example, a solution must do so while fulfilling the other four
criteria. For instance, it should be possible to write all of the parts in the example
above independently in different modules, which can be compiled separately. This
means, for instance, that one should be able to have different variants of Expr, as
well as different extensions to eval, written in different modules.
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2.2 Data Types à la Carte
The idea of Data Types à la Carte, presented by Swierstra [2], is to make a data
type composable by parameterizing the data type so that, at its core, it does not
need specific constructors for its different variants. The variants are instead added
as their own data types, so that they are independent of each other, which is crucial
for being a solution to the expression problem. Furthermore, the solution uses an
existing mechanism that already supports composability, namely type classes, to
define extensible functions.

This section will show how Data Types à la Carte works on the running example
of an expression language, stated in Section 2.1. The example implemented using
this solution is also given in its entirety in Appendix C.1. Data Types à la Carte
separates the composable data types into a recursive part Term, and a signature
functor f1 for the different type constructors:

data Term f = In (f (Term f))

The variants of the data type are now separated from the declaration itself and are
defined as follows, as data types themselves:

data Const a = Const Int
data Op a = Add a a | Mul a a

Note that Add and Mul are still given in the same data type variant. This is a choice
that can be made, so that one can have several variants always contained in the
same building block.

The variants can then be combined to form a coproduct, which here is defined as:

data (f :+: g) e = Inl (f e) | Inr (g e)

Thus, the coproduct is a binary operator that combines the variants in an ordered
way, as opposed to a set.2 Using the coproduct, we can combine Const and Op with
:+: to form our specific instance of the data type Expr:

type Expr = Term (Const :+: Op)

Note the use of Term, that was defined above, which closes the otherwise open
coproduct.3 This difference between open and closed data types could be considered

1As a signature functor, it has the kind f :: * -> *, which means that it needs to be applied
to a type to get a proper type, similar to how Maybe is applied to a type.

2In some languages, such as Racket, we can define a union type to combine several types as
a union set [8]. This is not available in Haskell, so we have to settle with the binary coproduct
operator.

3We can also write an open signature, for instance like type Sig = (Const :+: Op), which
can be used to also make a further composition, like type SigWithNeg = Sig :+: Neg. If the
composition is closed through the use of Term as in Expr, it cannot be used directly in further
compositions.
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unnecessary for a user to have to consider, and could possibly be abstracted away.
The use of the coproduct to combine variants means that it is possible to create
different compositions including just the desired variants, so using Data Types à la
Carte means having data types that are composable.

The types Const and Op, as well as their coproduct, can (and should) be declared
to be functors. This can be done as follows for operations:

instance Functor Op where
fmap f (Add e1 e2) = Add (f e1) (f e2)
fmap f (Mul e1 e2) = Mul (f e1) (f e2)

Similarly, it can be done like the following for the coproduct:

instance (Functor f , Functor g) => Functor (f :+: g) where
fmap f (Inl e1) = Inl (fmap f e1)
fmap f (Inr e2) = Inr (fmap f e2)

Note that the coproduct instance is general and can be used for coproducts of any
functor types. That the types and their coproducts are functors means that we can
fold4 over Expr when writing functions on this data type (and more generally on
any value of type Term f). A fold function is then defined as follows:

foldTerm :: Functor f => (f a -> a) -> Term f -> a
foldTerm f (In t) = f (fmap (foldTerm f) t)

Then, when we want to define an evaluation function, eval, over the data type,
we do so in a modular fashion by defining a type class Eval, with instances for our
variants Const and Op, as well as the coproduct f :+: g. The class function is given
as an algebra, which means that it has the type f Int -> Int. Thus, we define the
class Eval as follows:

class Functor f => Eval f where
evalAlg :: f Int -> Int

Using this together with the fold function foldTerm defined above, we get the eval-
uation function eval as follows:

eval :: Eval f => Term f -> Int
eval = foldTerm evalAlg

When folding over the algebra in eval = foldTerm evalAlg, evalAlg is applied to
every recursive part, like the subexpressions in Add and Mul. The fact that evalAlg
is an algebra, with the type stated above, means that it describes how to handle each
recursion step in the folding using foldTerm, so the instances do not need to specify
the recursive call. This is what we see in the instance for operations Op below, where
the right-hand side is for example e1 + e2, instead of eval e1 + eval e2, as it

4For more explanation of fold, we refer the reader to the HaskellWiki explanation [9].
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would be without an algebra, as in eval in Section 2.1. Hence, we get the following
instances defined for constants and operations:

instance Eval Const where
evalAlg (Const i) = i

instance Eval Op where
evalAlg (Add e1 e2) = e1 + e2
evalAlg (Mul e1 e2) = e1 * e2

It is possible to write the functions without the use of algebras as well, and instead
specify the recursive calls, an approach which is closer to how one usually writes
regular functions. An example of this is given in Appendix C.1.3.

Finally, an instance is also defined for the coproduct, which simply passes the func-
tion on to the left or right part of the coproduct, as follows:

instance (Eval f, Eval g) => Eval (f :+: g) where
evalAlg (Inl a) = evalAlg a
evalAlg (Inr b) = evalAlg b

Note that this instance is to be considered as boilerplate, since it would be the same
for the coproduct for every class corresponding to such a function.

Next, we will consider how to add a new variant to the data type. This is possible
by simply defining the desired data type, and then defining a new composition via
the coproduct that includes this variant, as well as the desired variants from earlier.
For example, we may add negation by defining a data type for negation as follows:

data Neg a = Neg a

Then, we define our extended expression type as:

type ExprWithNeg = Term (Const :+: Op :+: Neg).

To extend a function to also handle the new variant, we simply add a new instance
for the variant to the type class corresponding to the function. Hence, we add the
Neg instance to the class Eval as follows:

instance Eval Neg where
evalAlg (Neg e) = (-1) * e

Note that, since this is an instance of a type class, it is separate from the declaration
of the class itself, and can thus, for example, be written in another module, and be
compiled separately. Still, the instance is dependent on the class declaration, which
has to be in the same module or in an imported module.

Another important thing to note is that ambiguities can arise if one were to write
two extensions to the same function, for the same data type, independently in dif-

14



2. Related Work

ferent modules, and then importing both those modules in a third module. Such
ambiguities are a common problem with having orphan instances [10], that is, in-
stances defined separately from their class and data type for which the instance is
defined. More generally, this is an inherent problem with extending, in this case,
functions in such an automatic way, so that an extension automatically extends the
function for all future uses, as opposed to having an explicit composition step, as
for composed data types.

Furthermore, since the eval function above is general, it can be instantiated to
work on any type of Term f, both Expr and ExprWithNeg. Therefore, writing the
instance for Neg as above is enough to make eval usable for handling negation in
all future use cases.

Writing example expressions using the constructors of the data type directly is quite
cumbersome, even in small examples [2] like the following:

threePlusFive :: Expr
threePlusFive = In (Inr (Add (In (Inl (Const 3)))

(In (Inl (Const 5)))))

However, the insertion of the injections In, Inr and Inl can be mostly automated.
This is solved using smart constructors for the functor signatures and defining how
they relate to each other. For instance, the smart constructor for addition would
have this type:

iAdd :: (Op :<: f) => Term f -> Term f -> Term f

The constraint Op :<: f, called subsumption, means any signature f that supports
the operations addition and multiplication, which in practice means that Op is part
of the coproduct f. Thus, the smart constructor constructs a polymorphic compo-
sition, which means that it can be used to construct values of different concrete
compositions. Furthermore, the type class for the subsumption constraint is used to
define a function inject alongside the subsumption class. This inject function is
used to insert the necessary injections In, Inl and Inr to get the correct type, and
has the following type:

inject :: (g :<: f) => g (Term f) -> Term f

This is then used to define the smart constructors and automate most of the injec-
tions. For iAdd, this is used to define it as follows:

iAdd x y = inject (Add x y)

With smart constructors iConst for constants and iAdd for addition, we can write
the above example like this:
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threePlusFive' :: Expr
threePlusFive' = iConst 3 `iAdd` iConst 5

Although this example now looks elegant, we need to consider how to use it. If we
were to, for instance, evaluate threePlusFive', it would look like this:

evalExample :: Int
evalExample = eval threePlusFive'

This works as expected and evaluates to 8, but only because we have specified the
type of threePlusFive' to be Expr, the fixed closed data type defined above. If
threePlusFive' were written without its type signature, the compiler would not
be able to resolve it due to ambiguities. This is because the compiler must know
the exact composition for the type of the argument in order to choose the evalu-
ation steps. For instance, the type of threePlusFive' above could, if not spec-
ified, be either Term (Const :+: Op) or Term (Op :+: Const), or potentially a
larger composition. The type must be specified to one specific such composition
in order to evaluate the example without ambiguities. Then, the construction of
threePlusFive' through the smart constructors builds it by using the correct com-
bination of injections Inr and Inl depending on the structure of the coproduct type.
Another way to make the structure known, if threePlusFive' was written without
type signature, is to specify it when calling eval on it, as follows:

evalExample :: Int
evalExample = eval (threePlusFive' :: Expr)

The subsumption criterion, :<:, is also used when defining transformative func-
tions, to indicate what needs to be part of the result type. For instance, in the
desug case for negation defined in Section 2.1, Mul (Const (-1)) (desug e), we
see that it uses constants and multiplication in the result. This means that those
need to be part of the result type, which is indicated by including the constraints
Const :<: g and Op :<: g, where Term g is the result type of desug. Further-
more, smart constructors are used in the construction of the resulting expression.
The case for negation would now be defined as follows, in its instance of the type
class Desug corresponding to the desug function:

instance (Functor g, Const :<: g, Op :<: g) => Desug Neg g where
desugAlg (Neg e) = iConst (-1) `iMul` e

For the other variants that are not desugared through the function, we are able to
write a default instance:

instance {-# OVERLAPPABLE #-} (Functor g, a :<: g)
=> Desug a g where

desugAlg a = inject a

Note that this uses inject in the same way as the smart constructors. Using inject
here is possible because the function is written using an algebra, so the default case
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does not have to include the recursive call. This means that it can be written in this
general way and cover both Const and Op, and possible other variants that should
not be desugared. See the full implementation of desug in Appendix C.1.5.

Furthermore, note the use of the pragma {-# OVERLAPPABLE #-}, indicating that
this instance is allowed to overlap other instances of desug. This is needed since
the case for Neg could also match the default case. Having overlapping instances
does not give any errors as long as there is a more specific instance to use where
multiple instances would match. In this case, the instance for Neg would be used
for negation.

In conclusion, writing transformative functions with Data Types à la Carte is not
much more complicated than destructive functions, but it has some added complex-
ity in the need for subsumption constraints. The subsumption criterion is, however,
useful in order to be able to express polymorphism. This means that the result type
of desug is only restricted to contain certain types, not specified with a concrete
closed composition, like Expr. As a result, desug is reusable for different composi-
tions.

One final use case of Data Types à la Carte that we will consider here is pattern
matching. The separation of data type variants into separate data types, which
can then be composed using the coproduct, means that the type of a value is more
complex than when using a regular type. This means that, when pattern matching
in a regular function, one must pattern match on the complete structure, including
the injections from the coproduct. When constructing a value, we can use the smart
constructors to avoid the need for inserting all the injections ourselves, which is not
as simple when deconstructing, as seen in the following example:

evalClosed :: Term (Const :+: Op) -> Int
evalClosed (In (Inl (Const i)) = i
evalClosed (In (Inr (Add e1 e2)) = evalClosed e1 + evalClosed e2
evalClosed (In (Inr (Mul e1 e2)) = evalClosed e2 * evalClosed e2

However, analogous to the previously mentioned inject function for constructing,
Data Types à la Carte provides a function for decomposing: project. This is
defined as follows:

project :: (f :<: g) => Term g -> Maybe (f (Term g))

This uses the Maybe type to, from a value of a coproduct type, return either Nothing
or Just x, where x is a value like Const i depending on the sought type. This can
then be used instead of direct pattern matching.

Lastly, we note that Data Types à la Carte offers extensibility in both directions
in a way that supports separate compilation and does not require any modification
of existing code. The data types are composable, meaning that we can write such
extensions in a non-linear way and freely combine them, fulfilling the criterion of
independent extensibility. Regarding functions, on the other hand, one must note
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that an extension to a function must be written in the same module as, or in a
module importing a module containing, the function declaration, in this case the
corresponding type class declaration, but that is to be expected. The important part
is that it is possible to extend the set of functions, that is, define new functions,
independently. Finally, it has strong static type safety since it is impossible to
apply a function to a data variant to which a corresponding type class instance is
not defined. In conclusion, Data Types à la Carte offers a solution to the expression
problem that fulfills all five criteria given in Section 1.2. Still, it can be improved
upon syntactically to lessen the syntactic overhead.

2.3 compdata

Bahr and Hvitved [11, 12] have expanded and improved upon Data Types à la Carte.
They have implemented a Haskell library, compdata [13], for composable data types,
as an extended implementation of Data Types à la Carte, using closed type families.
This library also provides code generation tools for using Template Haskell to reduce
a lot of the boilerplate code involving derivations and type constructors.

In most cases, the usage of compdata is identical to that of Data Types à la Carte,
so we will not show the full running example in compdata here. In Appendix C.2,
we do, however, show a full example, which includes the running example along
with some other functions.5 In this section, we will only present the differences from
Data Types à la Carte.

An idea brought up by Bahr and Hvitved in their implementation of composable
data types is to use the language extension DeriveFunctor [17] to derive functor
instances for the data type variants automatically, instead of defining them oneself.
For the data type variant for operations, it would be used as follows:

data Op a = Add a a | Mul a a
deriving Functor

This leads to a reduction of boilerplate code. However, this is not specific to
compdata, and could be done, for instance, when using Data Types à la Carte
as well.

As mentioned above, compdata also uses Template Haskell to further reduce the
amount of boilerplate code. This is used to generate the code for smart constructors
at compile time, and can also be used for other derivations, such as to provide
instances for equality checks and show. It is written as follows:

$(derive [makeEqF, makeShowF, smartConstructors]
[''Const, ''Op])

5Bahr and Hvitved also provide some examples in their Haskell library, which in many cases
are similar to our example in Appendix C.2 [14, 15, 16].
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This code, called a splice, means that the three functions makeEqF, makeShowF and
smartConstructors are each used on the signatures Const and Op to generate the
desired code. A similar derivation is made for the class of an extensible function to
generate an instance for the coproduct:

$(derive [liftSum] [''Eval])

This uses liftSum, a function defined in compdata for lifting a type class (which
in this case represents an extensible function) to handle coproducts of functors. In
this particular case, this means that an instance for the coproduct is generated for
the type class Eval.

These derivations through Template Haskell simplify the code compared to the usage
of Data Types à la Carte. Still, the derivations could be considered unnecessary for
the user to write every time, and make the usage of these composable data types
and functions more complicated than using standard Haskell.

Furthermore, Bahr and Hvitved provide some refinement of the subsumption crite-
rion. In particular, this means that compdata allow compound signatures on both
sides of a subsumption constraint, such as f :+: g :<: f :+: g :+: h, while dis-
allowing duplicates such as f :<: f :+: f. They also provide an isomorphism
constraint, given as type f :=: g = (f :<: g, g :<: f), which is useful to check
for signatures which are equal up to order of summands. A final note on both of
these constraint is that they only work for ground types, that is, types without
variables. [12]

In conclusion, compdata is a thorough implementation of Bahr and Hvitved’s im-
provements to Data Types à la Carte, which provides the framework necessary for
most use cases of composable data types. As such, compdata fulfills the criteria
given in Section 1.2 for being a solution to the expression problem in the same way
as Data Types à la Carte. However, the usage of compdata is still complex in parts
for a user and could be further improved.

2.4 Variations on Variants
Morris [5] proposes two implementations of composable data types in a similar man-
ner to Swierstra’s Data Types à la Carte, and Bahr and Hvitved’s compdata, one
using instance chains and one using closed type families. Instance chains have been
proposed as a useful mechanism to implement extensible data types, but they are
not implemented in Haskell. Closed type families, on the other hand, exist in GHC
and capture most of the expressiveness of the instance chain implementation, albeit
in a somewhat more verbose way.

Since instance chains are not implemented in Haskell, we will not cover the solution
based on them in any detail. One can, however, note their usefulness when defining,
for example, a membership check for coproducts in a chain-like manner, where the
next case is only tested if the previous fail:
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class In f g

instance f `In` f
else f `In` (g :+: h) if f `In` g
else f `In` (g :+: h) if f `In` h
else f `In` g fails

Similar instance chains are defined for other type classes. Morris also provides a
type class to denote a difference between types, denoted by the operator (:-:).
Here, the predicate f :-: g = h holds if f is a coproduct that contains g, and h is
what remains when removing g from f.

The implementation using closed type families works in a similar way and likewise
has a remainder operator :-:, but defines the constraints as type families. See an
implementation of this in Appendix D.3. In Appendix C.3, we also show a complete
example program, which covers how to use the implementation in more detail than
shown here. The differences between the the instance chains and the type families
implementation are limited to how the constraints are defined. In particular, writing
data types and functions is done in the same way in both implementations.

Data types are defined in the same way as in Data Types à la Carte, through one
data type for each variant, which can be combined using a coproduct, and closed
through the use of Term. They are also used in the same way when forming examples,
in pattern matching and similar. This means that the limitations and potential for
improvements are the same here as for Data Types à la Carte regarding the syntax
for data types.

Writing functions, on the other hand, is done differently from Data Types à la
Carte. We will see how this is done with the running example given in Section 2.1,
specifically the eval function. Morris expresses this through a function for each
case:

evalConst (Const i) r = i

evalOp (Add e1 e2) r = r e1 + r e2
evalOp (Mul e1 e2) r = r e1 * r e2

These are then combined using a function that uses the type class In to unwrap the
Term:

cases cs = f where f (In e) = cs e f

The combination to provide an actual evaluation function is then written as follows:

eval1 = cases (evalConst ? evalOp)

The operator ? here is a branching combinator, which combines evalConst and
evalOp into a function for their coproduct.
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This has the inferred type:

eval1 :: (f :-: Const ~ Op) => Term f -> Int

Here, (f :-: Const ~ Op) is an equality constraint [18], which states that the
types f :-: Const and Op need to be the same. This means that Const and Op are
included in the input type.

Note that eval1 is a specific composition of the evaluation function, which only
supports constants and the two operations addition and multiplication. A new
function composition must be defined to provide evaluation for other variants, such
as negation. This is different from the type class approach used by Data Types à la
Carte, where a function can be used for all variants for which the type class has an
instance declaration, which means that, in that case, a new variant can be handled
directly by the same function, after defining its type class instance. Writing the
functions by composing different cases as in this approach gives a slight advantage
in expressive power over the extensible functions in Data Types à la Carte, since one
can easily write different cases for the same variant and then use the case one wants
in the composition. On the other hand, the composition of function cases may be
complex for large compositions.

Transformative functions in Variations on Variants use the subsumption constraint
in a similar way to Data Types à la Carte in the functions for each variant of the
data type. It is also used in the type signature of the combining function, which
also has a constraint using the remainder operator :-:, to indicate what is removed
through the function. In the case of the desug function6, as specified in Section 2.1,
the result type of the function is f :-: Neg, where Term f is the ingoing type,
for instance ExprWithNeg ~ Term (Const :+: Op :+: Neg). This would indicate
that Neg is removed through the function and not included in the return type. The
remainder constraint is useful, but one can achieve a corresponding constraint in
compdata using its isomorphism constraint. One can then write the constraint in
desug as f :=: g :+: Neg, where Term f is the ingoing type and Term g is the
result type.

Variations on Variants, especially the closed type family implementation, is similar
to compdata and likewise requires some explicit type annotations to resolve ambi-
guities, even if not all ambiguities are present in both implementations. A solution
is proposed to include a defaulting mechanism in the compiler similar to the mech-
anism that allows z = show 1 to type despite its ambiguity of the type of 1. [5]
However, it is important to note that this solution does not have as complete an
implementation as the Haskell library for compdata.

Lastly, we note that Variations on Variants offers extensibility in both directions,
since it is possible to add new data type variants as well as new functions over the
data type. It does so without needing any modification or duplication of existing
code. Since we have a separate function for each data type variant, which are then

6See the full implementation of desug using Variations on Variants in Appendix C.3.5.
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combined through the use of cases, it is clear that a function cannot be applied to
a data type variant it cannot handle, which means that the solution offers strong
type safety. Furthermore, extensions can be made in different modules, which can
be compiled separately. The data types can also be combined freely in the same
way as in Data Types à la Carte and compdata. In this solution, the same goes for
the combination of function cases. Therefore, different extension modules can be
written in a non-linear fashion and be combined without problems, meaning that
we also have independent extensibility. In conclusion, Variations on Variants fulfills
all five criteria given in Section 1.2 for being a solution to the expression problem.
Just as with previously shown solutions, there are, however, limitations for practical
use as the syntax is complex.

2.5 Trees that Grow
Najd and Peyton Jones [19] give an approach to solving the expression problem that
focuses on data types being extensible by having an extra data constructor that is
open to being modified when adding new variants. This means that the data types
are combined in a chain-like manner rather than the composition of types based on
building blocks that we saw in Data Types à la Carte and similar approaches. They
also add a similar open field for each data constructor, to be able to extend the
constructors’ fields as well.7

This section will cover how Trees that Grow works on the running example intro-
duced in Section 2.1. A complete example program of this is also given in Ap-
pendix C.4. To have it comparable to other related works, we will not consider
extension of fields, only extension of more variants. Furthermore, a difference be-
tween how we show the example in this section and the other related work is that
here we begin with a data type containing all the variants Const, Add and Mul, and
only consider how to extend this with a variant for negation, Neg. The reason for
this is that Trees that Grow requires more verbose code for adding a new variant
than previous approaches, and is better suited for larger building blocks than just
one variant per block. Hence, this is the data type containing Const, Add and Mul
in this approach, written with one open variant:

data Expr e = Const Int
| Add (Expr e) (Expr e)
| Mul (Expr e) (Expr e)
| ExprExt (X_ExprExt e)

In this data type, we have an extension constructor ExprExt with an extension field
X_ExprExt e. Furthermore, Expr has a type index e, which is called an extension
descriptor. It describes which composition of the data type that is used, for example

7Note that the the possibility to extend the fields of constructors as well as extending the data
type with new variants could be considered unnecessary if the data types are composable. This is
because it would then be possible to just define a new variant that contains the new field, and use
that instead of the previous, not extended variant in compositions where it is wanted.
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a composition containing negation or not. We will see how this is used to form
different compositions of the data type.

The extension field X_ExprExt e is defined through a type family as follows:

type family X_ExprExt e

When defining a specific composition of the data type, this is instantiated to specify
an instance of the extension field to use for this composition. For instance, we can
define a composition of the data type containing only the variants above. This
composition could be written as Expr UD, where UD, standing for “undecorated”, is
its extension descriptor, defined simply through an empty data type data UD. To
instantiate the extension field for the extension constructor, the constructor should
be marked as unusable, since there is no extension. This is done by defining the
instance of the extension field as the uninhabited type Void [20]. This gives the
following instance for the composition Expr UD:

type instance X_ExprExt UD = Void

Writing an example expression using this data type is straightforward and simply
uses the constructors as they are:

threePlusFive :: Expr UD
threePlusFive = Add (Const 3) (Const 5)

Next, we want to extend the data type with a variant for negation of expressions.
This is done through defining a new instance of the extension field X_ExprExt that
specifies the extension we want. The first step is to define the data type for negation,
which will be used in the new composition. Since we want to have recursion over
the full data type, including both expressions and negations, we define Expr to be
the ground type, and write negation as an extension to Expr, using Expr e as its
recursive argument. One may initially think to define it simply as:

data Neg e = Neg (Expr e)

However, if we put this in the extension field for the data type Expr, we cannot
continue chaining extensions from this, since Neg has no open variant. We could
have Neg at the end of the chain, and put other extensions between Expr and Neg.
To keep it more flexible, we would rather want Neg to be an extensible type as well,
so that we can have more extensions chained to it. Therefore, we define Neg as
follows:

data Neg e = Neg (Expr e) | NegExt (X_NegExt e)

As above, the extension field is a type family, written as follows:

type family X_NegExt e

To use this in a composition, we define a new extension descriptor as data WithNeg
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and use that to describe the new composition as Expr WithNeg. We then need to
define type instances for all extension fields. First, we define the extension field of
Expr to include Neg, as follows:

type instance X_ExprExt WithNeg = Neg WithNeg

Then, analogous to Expr UD, we define the type instance for X_NegExt to be Void,
since we have no further extensions:

type instance X_NegExt WithNeg = Void

In this way, we can combine data type variants in a chain-like manner to form
compositions. A composition in this solution can thus be compared to a linked list,
rather than a combination with a binary operator like the coproduct in Data Types
à la Carte and similar.

It is important to note that Expr WithNeg is a different composition from Expr UD,
and that we would need yet another composition to provide further extensions. For
each composition, the type instances for the extension fields must be defined, even
if most of them would be the same as in previous compositions. This is similar to
how it is necessary in Data Types à la Carte and similar solutions to define a new
composition for a new extension, while it is there possible to reuse a coproduct.

To write an example expression that also contains negation, we need to specify
negation as the extension to Expr, as seen in the use of the constructor Neg in the
following example:

threePlusNegFive :: Expr WithNeg
threePlusNegFive = Add (Const 3)

(Expr_Ext (Neg (Const 5)))

This could possibly be simplified through having some kind of smart constructors
similar to those used in Data Types à la Carte in Section 2.2, although this is not
brought up in the paper. Such a smart constructor would then construct a value
with the correct chain of extensions. To implement it, one could write an injection
function using a type class with instances, similar to the subsumption type class
in Section 2.2. However, doing so would require instances for each extensible data
type, in this case Expr and Neg.

To define a function over the data type, we can first write a simple eval function
for the data type Expr, with an extra argument describing how to handle the case
of the extension, as the following:

eval :: (X_ExprExt e -> Int) -> Expr e -> Int
eval _ (Const i) = i
eval f (Add e1 e2) = eval f e1 + eval f e2
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eval f (Mul e1 e2) = eval f e1 * eval f e2
eval f (ExprExt e) = f e

Next, we want to write a function for how to handle the extension of negation in a
similar manner. We do so with yet another extra argument describing how to handle
the recursive call. This should be a function that describes how to handle the com-
plete composition, not just the case of Neg. Therefore, its type is Expr e -> Int,
covering Expr along with any extensions chained to it. This gives us the following
function for evaluation of negation:

evalNeg :: (Expr e -> Int) -> (X_NegExt e -> Int) -> Neg e -> Int
evalNeg g _ (Neg e) = (-1) * g e
evalNeg _ f (NegExt e) = f e

To then evaluate an expression that could contain negation, we define a function
evalWithNeg. This would call eval, with evalNeg as an argument, describing
how to handle the extension to Expr. In turn, evalNeg has evalWithNeg as its
argument for the recursive call, and absurd :: Void -> a as its argument for the
extension, since we have no further extensions. Thus, we have the following function
for evaluating expressions potentially containing negations:

evalWithNeg :: Expr WithNeg -> Int
evalWithNeg e = eval (evalNeg evalWithNeg absurd) e

Note that this function is specific to Expr WithNeg, the data type containing the
original data type and negation, and no further extension, and that another function
would be required to evaluate another composition.

A transformative function is written in a similar manner. It is possible to write the
return type of such a function in a polymorphic manner, just as the input type in
eval above. Hence, we can write a desug function with the following type:

desug :: (X_ExprExt e1 -> Expr e2) -> Expr e1 -> Expr e2

Then, we write a similar function for handling negation, desugNeg, as follows:

desugNeg :: (Expr e1 -> Expr e2)
-> (X_NegExt e1 -> Expr e2) -> Neg e1 -> Expr e2

desugNeg g _ (Neg e) = Mul (Const (-1)) (g e)
desugNeg _ f (NegExt e) = f e

Note that this is not fully composable in the return type, since we use concrete
constructors, as Mul and Const in the case for Neg. In this case, this is no prob-
lem since those belong to Expr, the ground type, so any composition would use
those constructors as such. However, if we want to construct a value of an exten-
sion, we must specify the chain of extensions, like (Expr_Ext (Neg (Const 5))) in
threePlusNegFive above. This means that those constructors are specific to com-
positions with that order of extensions, and Expr_Ext (Neg ...) cannot be used
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when Neg is not the direct extension to Expr. As in the example threePlusNegFive,
this could be simplified if one defined some kind of smart constructors.

The functions desug and desugNeg are then used in a concrete function, specifying
the input to be of type Expr WithNeg and the output to be of type Expr UD:

desugWithNeg :: Expr WithNeg -> Expr UD
desugWithNeg e = desug (desugNeg desugWithNeg absurd) e

The output type is Expr UD since that is the type without negation, while it could
also be given as a polymorphic type like Expr e. The fact that we can give a
polymorphic type here is a difference to approaches like Data Types à la Carte, where
a concrete type is necessary when using the function in order to resolve ambiguities.
Such ambiguities cannot arise here since we do not use smart constructors similar
to those using inject in Data Types à la Carte. Note also the difference between
this desugaring function and the one in Data Types à la Carte, where subsumption
constraints are required to specify what needs to be included in the result type.
Such constraints are not used here, while the result type in desugWithNeg of course
needs to contain the variants used for constructing the result.

In this solution, one can perform pattern matching in regular functions, but like in
the case of Data Types à la Carte, it requires matching on the exact structure of
the data type. In this case, this means matching as in the following:

evalClosed :: Expr WithNeg -> Int
evalClosed (Const i) = i
evalClosed (Add e1 e2) = evalClosed e1 + evalClosed e2
evalClosed (Mul e1 e2) = evalClosed e1 * evalClosed e2
evalClosed (ExprExt (Neg e)) = (-1) * evalClosed e
evalClosed (ExprExt (NegExt e)) = absurd e

Note the structure of the extension part, ExprExt (...), matching both on the
extension constructor of Expr and the inner structure of Neg. This is unpractical in
large compositions. Still, it is useful that pattern matching can be performed at all.

The syntax of Trees that Grow has significant syntactic overhead that could, in some
cases, be abstracted away, such as the definitions of the type families. Semantically,
Trees that Grow makes it possible to write extensible data types and also several
compositions of a data type. One can write a closed data type in a composable
way by choosing which data types and extensions to use when defining the type
instances.

The fact that extensions use specific constructors in each of the data types leads to
some difficulties that are not present with coproduct compositions from Data Types
à la Carte. For instance, while smart constructors as mentioned earlier could be
defined in a similar manner to those in Data Types à la Carte, it would require
a type class instance for each extensible data type, rather than just a few general
instances.
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Furthermore, it is not possible to combine composed types, since a composed type is
a specific composition of the data type, defined by giving type instances for all the
extension fields of the extensible data types. Thus, a composition cannot be used
to build a new composition. An advantage, on the other hand, is that it is possible
to use this approach directly in Haskell, just by using some well-established existing
Haskell extensions such as TypeFamilies.

Regarding the expression problem criteria mentioned in Section 1.2, Trees that Grow
fulfills all of them. Extensibility in both directions is supported, with the possibility
to combine independently developed extensions by making a composition of the data
type with the desired parts. Such extensions can be written without duplication or
modification of existing code, even if the syntax is rather verbose. The composi-
tions are specified for a certain set of data types, which means that functions over
the compositions will only work for the included data types, meaning strong static
type safety. Finally, the different parts can be written in different modules, which
can be compiled separately. Still, there are, as mentioned, limitations in the user
friendliness of this solution.

2.6 Object Algebras
Oliveira and Cook [21] propose object algebras as a solution to the expression prob-
lem in object-oriented languages such as Java or C#. With object algebras, a set of
data type variants is defined as an object algebra interface with each data construc-
tor represented by a function definition.

As object algebras are designed for object-oriented languages, this solution to the
expression problem has limited relevance to this project, as mentioned in the begin-
ning of this chapter. Rather, the purpose of this section is to give a wider image of
the possible approaches to solving the expression problem.

In this section, we will show how the running example from Section 2.1 would be
written using object algebras, in particular, in Java. A complete example program
of this is also given in Appendix C.5. As with Trees that Grow in Section 2.5, we
will combine the variants for Const, Add and Mul as the initial data type, which is
later extended with Neg. An object algebra interface for these three initial variants
would look as follows:

interface ExprAlg<T> {
T const(int i);
T add(T e1, T e2);
T mul(T e1, T e2);

}

Here, each constructor variant is represented by an interface function, which takes
arguments representing the constructor fields of the variant to produce some ob-
ject of the generic type T. This type T represents the result of applying some
function to an expression, similarly to algebras described in Section 2.2, such as
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evalAlg :: t a -> a where a fills the same role. It should not be confused with
smart constructors from the same section, which instead are parameterized based
on a type composition. In other words, T is determined not by a composition of
variants, but by a specific function.

We will see the type T realized when defining a function over the set of data type
variants that ExprAlg represents. This is done by defining a class that implements
the interface ExprAlg for a concrete type in place of T, and this class is then called an
object algebra. A specific object algebra is a representation of an algebraic function
over a set of data type variants. Here, we define an object algebra ExprEval, and
an interface Eval to be used in place of T:

interface Eval {
int eval();

}
class ExprEval implements ExprAlg<Eval> {

public Eval const(int i) { return () -> i; }
public Eval add(Eval e1, Eval e2) {

return () -> e1.eval() + e2.eval();
}
public Eval mul(Eval e1, Eval e2) {

return () -> e1.eval() * e2.eval();
}

}

In this particular case, we do not actually need to use Eval. As Eval is an interface
with a single function that does not take any argument and does not use mutable
state, it would be possible to replace that with the return type, int. However,
since Java does not allow primitive types as generic parameters, we would use the
wrapper type for int: Integer. This gives the following simplified version of the
object algebra:

class ExprEval2 implements ExprAlg<Integer> {
public Integer const(int i) { return i; }
public Integer add(Integer e1, Integer e2) {

return e1 + e2;
}
public Integer mul(Integer e1, Integer e2) {

return e1 * e2;
}

}

When instances of our data type are created, it will be done for some specific object
algebra, essentially evaluating it immediately. However, since code that creates
instances of the data type should not be concerned with the specific type of object
algebra that is used, the function for this should instead accept any object algebra
that implements the necessary object algebra interface. This gives the following way
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to write an example:

<T> T threePlusFive(ExprAlg<T> alg) {
return alg.add(alg.const(3), alg.const(5));

}

Our previous object algebra can then be used with this function to perform an
evaluation like this:

threePlusFive(new ExprEval()).eval()

With the simplified object algebra, the same evaluation can be written like this:

threePlusFive(new ExprEval2())

With this setup to define data types and functions, it is straightforward to intro-
duce new functions by defining a new object algebra. For instance, an asString()
function can be written as follows:

interface AsString {
String asString();

}
class ExprAsString implements ExprAlg<AsString> {

public AsString const(int i) {
return () -> String.valueOf(i);

}
public AsString add(AsString e1, AsString e2) {

return () -> "(" + e1.asString()
+ " + " + e2.asString() + ")";

}
public AsString mul(AsString e1, AsString e2) {

return () -> "(" + e1.asString()
+ " * " + e2.asString() + ")";

}
}

We can then use this object algebra in place of ExprEval to instead produce a string
when creating an expression, as follows:

threePlusFive(new ExprAsString()).asString()

New data type variants can be defined by creating a new object algebra interface.
To add a variant for negation, we write a new object algebra interface NegAlg as
follows:
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interface NegAlg<T> {
T neg(T e);

}

To make it easier for functions such as threePlusFive() to accept an object algebra
that can handle both negations and regular expressions, we could define a new
interface to act as the union of the two:

interface NegExprAlg<T> extends ExprAlg<T>, NegAlg<T> {}

We could also choose to make ExprAlg a subset of NegAlg by having the latter
extend the former, as follows:

interface NegAlg2<T> extends ExprAlg<T> {
T neg(T e);

}

To extend a function over these new variants, we define a new object algebra that
extends the original object algebra and implements the interface for the new data
type variants, as follows:

class NegEval extends ExprEval implements NegAlg2<Eval> {
public Eval neg(Eval e) { return () -> -e.eval(); }

}

While it is straightforward to extend an object algebra over additional data type
variants with this method, it is not as easy to combine independently developed
object algebras. To combine two algebras and create a new object algebra that covers
the data type variants of both, one would need to create an object algebra class to
act as the union. This new object algebra then needs to implement the interfaces
that the union would cover, and dispatching constructor calls to whichever of the
two object algebras that can handle that specific constructor call. For example,
it is possible to define a combinator to combine an object algebra implementing
ExprAlg<T> and an object algebra implementing NegAlg<T> to create an object
algebra that implements NegExprAlg<T> and directs calls to either of the other two
object algebras. However, such a union object algebra would consist of a significant
amount of boilerplate code. A union algebra for NegExprAlg<T> could look like this:

class NegExprUnion<T> implements NegExprAlg<T> {
ExprAlg<T> exprAlg;
NegAlg<T> negAlg;
...
public T const(int i) { return exprAlg.const(i); }
public T add(T e1, T e2) { return exprAlg.add(e1, e2); }
public T mul(T e1, T e2) { return exprAlg.mul(e1, e2); }
public T neg(T e) { return negAlg.neg(e); }

}
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A limitation of using combinator classes is that they have to be designed for specific
object algebra interfaces. For example, NegExprUnion<T> is written specifically for
combining ExprAlg<T> and NegAlg<T> into NegExprAlg<T>, and cannot be used
more generally than that. On the other hand, if we want to combine some algebra
extending ExprAlg<T> with an algebra extending NegAlg<T>, we are able to reuse
the previous union algebra NegExprUnion<T> by having the new union algebra class
extend the previous.

Transformative functions or anything similar are not mentioned in the original paper,
though it is possible to write an object algebra for such a function. We demonstrate
such an object algebra for the desug function in Appendix C.5.5. There, the algebra
for desugaring takes a different algebra for the function that should handle the result
of the desugaring. Although we can create a new algebra that extends this desug
algebra, we cannot write a default case where the data type is preserved, as is possible
for transformative functions in Data Types à la Carte, as seen in Section 2.2.

Going back to the criteria of the expression problem, object algebras fulfill all of
them. We can introduce new data type variants with a new object algebra interface,
and we can extend a function of these variants by extending its object algebra and
implementing this new interface. We can introduce new functions simply by defining
a new object algebra entirely. Strong type safety is ensured as object algebras can
only be used for data type variants defined by interfaces that the object algebra
implements. New data type variants, new functions and their extensions all involve
creating new interfaces or classes, which can always be introduced without modifying
the original interfaces or classes, which let these be compiled separately. Still, while
it is possible to combine independently developed object algebras using combinator
object algebras, it often requires some boilerplate code to do so.

2.7 Open Data Types

Löh and Hinze [4] propose a solution to the expression problem based on open types
that can be extended with more variants; that is, this is a proposed solution for
extensible, but not composable, data types. They do so through a language feature,
by defining new syntax, as opposed to previously mentioned solutions that were
using the syntax of existing Haskell mechanisms. The syntax is rather elegant, but
the semantics have some problems, which we discuss after showing the syntax.

In this section, we show how the running example from Section 2.1 is written in this
syntax. The extensible data types are declared with the use of a keyword open and
a kind signature. For the data type Expr, this looks as follows:

open data Expr :: *

The variants of the data type are separated into their own declarations by simply
writing a type signature for them, as follows:
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Const :: Int -> Expr
Add :: Expr -> Expr -> Expr
Mul :: Expr -> Expr -> Expr

Note the result type in all of these, Expr, which marks these as extensions to the
extensible data type with the same name. The capital letter at the beginning of
the constructor name here creates the distinction between this and a function with
a regular type signature. These three constructor declarations are independent of
each other, so it is possible to write them in different modules. It is, however, not
possible to have multiple variants in the same declaration as was possible in Data
Types à la Carte, in Section 2.2.

Writing an example is done in the same way as with regular Haskell data types:

threePlusFive :: Expr
threePlusFive = Add (Const 3) (Const 5)

Extensible functions are marked similarly with the keyword open, as in the following
for the eval function:

open eval :: Expr -> Int

Equations to this function for each constructor of the extensible data type are written
simply as for regular Haskell functions:

eval (Const i) = i
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

The difference from regular Haskell functions, however, is that these rows are inde-
pendent of each other and can be written in different modules.

Extensions to a data type would be written by simply defining a new constructor
and a new equation for the function. For negation, we would have a constructor Neg
and an equation of the eval function as follows:

Neg :: Expr -> Expr

eval (Neg e) = (-1) * eval e

Then, this syntax is translated to code without extensible data types and functions.
A naive approach of doing this is by combining all modules into a single module
Main, and then collecting all parts of each extensible data type and function and
combining them into regular data types and functions. Löh and Hinze propose some
improvements to this naive approach, but it still describes the general concept of
how the translation is done.

While Löh and Hinze do not discuss transformative extensible functions, the transla-
tion to regular syntax is likely to mean that there would be no difference in writing
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a transformative function compared to a destructive one, since there is no extra
complexity of transformative functions in regular Haskell. An important thing to
note, however, is that the type of the transformative function desug would be:

desug :: Expr -> Expr

This means that there is no distinction between the ingoing and outgoing type here.
In solutions such as Data Types à la Carte, we are able to express different types
using different compositions of variants, and we are also able to express polymorphic
types through type constraints such as subsumption. Variations on Variants can
further express the distinction between ingoing and outgoing type by specifying
removed variants through the remainder constraint, :-:. Here, by using Expr as
both ingoing and outgoing type, we can make no distinction. The only way to make
such a distinction would be to define a new extensible data type, but it would then
not be possible to reuse variants or functions that were defined for the original data
type with the new type. This is a consequence of the data types in this solution
only being extensible, and not composable, which is a significant difference from
previously mentioned solutions. Thus, while this simplifies the syntax of the data
types, it is a significant limitation in the expressiveness of Open Data Types.

Another drawback of Open Data Types is that the process of translating the code
into regular Haskell means that there is no separate compilation. The naive ap-
proach as described earlier is to combine all modules into one module. This means
that everything would have to be recompiled, even with a small change in one mod-
ule of the original code. Löh and Hinze propose a slightly better transformation,
where only the extensible data types and functions are moved to a main module in
the transformation, meaning that one can have separate compilation of everything
except the main module. However, this move often results in mutual dependencies
between the main module and the modules that contained extensible data types [22].

In their paper, Löh and Hinze describe further improvements that can be made to
minimize the recompilation needed [4]. Some recompilation is still needed, so these
improvements are not enough for Open Data Types to fulfill the fourth expression
problem criterion described in Section 1.2. Thus, Open Data Types is not a complete
solution to the expression problem.

While collecting all extensible data types and functions into one module means no
separate compilation, independent extensibility is straightforward. As all extensions
are gathered into one place during the translation, which module an extension orig-
inally came from makes little difference. This in turn leads directly to independent
extensibility, which is why Open Data Types fulfills the fifth expression problem
criterion from Section 1.2.

The first criterion and third criterion are also fulfilled. We see that this is true as
it is possible to extend an extensible data type with new variants by simply adding
a new constructor declaration. We can also introduce a new function over this data
type by declaring an extensible function, and we can also extend this function over
new variants by adding a new case to the function. Any of these steps can be done
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in a new module without changing the source code for any original definitions.

The final criterion from Section 1.2 to discuss is strong static type safety. When
a function extension is missing for some data type variant, the extensible function
will be translated into a non-exhaustive function. With GHC, this will be detected
during compilation. However, GHC will then only issue a warning that a pattern
for the data type variant is missing. As this would not be an error that prevents
compilation of the function with a missing variant, Open Data Types does not have
strong static type safety at this stage. This is not a fundamental problem, as it
would be possible for the translation phase to have its own exhaustiveness check
and give an error if a variant is missing, and thus guarantee strong type safety.
Such a check would, however, be global, rather than on a per-module basis. This is
a necessity from the data types and functions being extensible, and not composable,
a significant drawback to Open Data Types. This means that extensions from all
modules are always contained in the data type or function, and must be considered
in an exhaustiveness check.

Related to this, we can discuss how pattern matching works in general with Open
Data Types. A common problem when separating the data type variants into in-
dependent declarations is that Haskell’s usual first-fit order for pattern matching
is not available. Löh and Hinze propose a workaround for this, namely to instead
use best-fit pattern matching, which means that it would match on more specific
cases before more general ones. This makes it possible to write pattern matching in
regular functions with this syntax just as with regular Haskell.

In conclusion, Löh and Hinze provide a rather elegant syntax, while its semantics
are not fully a solution to the expression problem. Hence, we want to, if anything,
take inspiration from the syntax, but improve the semantics.

2.8 Open Abstract Types
Another solution that provides new syntax is one by Seefried and Chakravarty [6],
called Open Abstract Types. They call this syntax syntactic sugar, because it is
translated into a solution to the expression problem written in regular Haskell that
could be used directly, while using the syntax makes it easier. The syntax is similar
to that of Open Data Types by Löh and Hinze in that it declares the data types
as extensible with a keyword open, but it also defines the data type with some
initial constructors. For the expression data type in the running example defined in
Section 2.1, it would look like the following:

open data Expr = Const Int | Add Expr Expr | Mul Expr Expr

Note that we here keep the three variants of Const, Add and Mul together in an
initial data type, just as with, for instance, Object Algebras in Section 2.6, and
as opposed to separating them as with, for instance, Data Types à la Carte in
Section 2.2. This is because the data type is extensible, so it is extended with new
variants rather than by creating a composition of defined variants. Therefore, this
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initial definition containing the three variants corresponds to the initial composition
of the same variants given in previous sections.

Just as with Open Data Types in Section 2.7, the syntax for using this data type
looks the same as for regular Haskell data types:

threePlusFive :: Expr
threePlusFive = Add (Const 3) (Const 5)

Functions are also written as they would be with regular data types. For the eval-
uation function, it would look like this:

eval :: Expr -> Int
eval (Const i) = i
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

The data type can later be extended in a different module by using the keyword
extend, as in the following for a variant for negation:

extend data Expr = Neg Expr

A restriction put on the data types by Seefried and Chakravarty is that a data type
cannot be extended in the same module in which the data type was defined, and it
also cannot be extended multiple times in the same module. However, once a data
type has been extended, it is possible to add a new equation for the function eval
to also handle the extended part, unlike functions in regular Haskell. This is done
with a syntax like regular Haskell:

eval (Neg e) = (-1) * eval e

The fact that this is written independently of previously defined equations for eval
raises the same problem as in Löh and Hinze’s solution, that regular first-fit pattern
matching cannot be performed. Seefried and Chakavarty avoid this in their paper
by disallowing wildcards altogether, while mentioning that an approach with best-fit
pattern matching could be possible here as well.

The variants over which a function can be extended within a module are also limited
to the variants that are introduced in the same module. In fact, when a new data
type variant is introduced, Open Abstract Types requires all functions over the
data type to be extended to handle the new variant. A function must therefore be
extended over all available variants, even if we do not intend to ever use the function
for some variants. This is related to the fact that the extensible data types in this
solution are not composable, so an extensible data type always allows all possible
variants.

This restriction also ties into independent extensibility, the fifth criterion for being a
solution to the expression problem given in Section 1.2. If an extensible function is
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to be combined with an independently defined data type variant, the function needs
to be extended to support this new variant. The function and variant can only truly
be independent if the extension to the function is defined in a module that combines
the two. In this solution, this is not allowed, since the function extension must be
written in the same module as the variant.

As mentioned, the syntax described above is translated into a solution written in
regular Haskell. This is true not just for the syntax defined by this solution, such
as extensible data types and extensions, but also for some regular components of
Haskell that refer to the extensible data type. This includes functions over the
extensible data type, but also constructors for variants to the extensible data type.

The translated code is in many ways similar to Data Types à la Carte. The initial
extensible data type is translated into a regular data type, and each extension to
the extensible data type is translated into a separate data type. Recall that there
can only be one extension in each module, meaning that for each extensible data
type, there is at most one of these data types per module. Extensible functions
are in turn translated into type classes and instances, with one significant difference
compared to with Data Types à la Carte: When several extensible functions (for
instance eval and asString) are defined in the same module, they are collected
into the same class so that there is at most one of these classes per module. The
transformed code of the original data type and the evaluation function would then
look as follows:

data Expr_0 = Const Int | Add Expr Expr | Mul Expr Expr

class Eval a where
eval :: a -> Int

instance Eval Expr_0 where
eval (Const i) = i
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

Here, the original data type Expr is translated into a data type Expr_0.

An extension to this data type would, as mentioned above, be written in a separate
module. This module would then be translated to contain a data type for all variants
added through that module. For instance, the extension of Neg could be translated
into being a variant of a new data type, Expr_1. The case for negation of the
function eval would then be simply translated into an instance for Expr_1 to the
type class Eval. This gives the following translation:

data Expr_1 = Neg Expr

instance Eval Expr_1 where
eval (Neg e) = (-1) * eval e

If the original module had defined both eval and asString, the class would instead
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look like this:

class Eval a where
eval :: a -> Int
asString :: a -> String

Next is the complete data type Expr that may be made from any variant. The
representation of this complete data type is where Open Abstract Types significantly
diverges from Data Types à la Carte. In order to represent an extensible type that
can accept any data type variant that implements, in this case, eval, we define Expr
as an existential type, as follows:

data Expr = forall a. Eval a => Expr a

As an existential type, Expr is a concrete type, while its constructor can accept any
data type a as long as it fulfills Eval a. This restriction means that only functions
defined through Eval a can be used when unwrapping this data type. The definition
of the data type as above also raises a new problem. By defining the full data type
this way, we are unable to properly make use of any new functions. For instance,
if we were to add a class constraint for another function, AsString to the original
definition of Expr, we would have to rewrite it like the following:

data Expr = forall a. (Eval a, AsString a) => Expr a

This means that we would have broken the criterion of separate compilation stated
in Section 1.2, as the module with Expr would need to be recompiled with the change
of the added function. Instead, we could opt for introducing a new full type with
the added function class, as follows:

data Expr' = forall a. (Eval a, AsString a) => Expr' a

This leads to another problem as we would find that Expr_0, Expr_1 and so on
would still be using Expr and not Expr'. The solution to this problem is a technique
that Seefried and Chakavarty call retrospective superclassing, which is based on an
extension to the work of Läufer [23]. The idea is that, with the version of Expr with
just Eval, we parameterize Expr and Eval with a type that represents all functions
on Expr that should be available in addition to eval. These functions are then made
available through a superclass to Eval. A comparison drawn in the original paper
is considering if the context to Eval were to be parameterized as follows:

class ctx a => Eval ctx a where
eval :: a -> Int

data Expr cxt = forall a. (Eval cxt a) => Expr a

However, it is not actually possible to pass a class or context through parameteri-
zation in Haskell in this manner. Instead, the class is represented through a type,
which gives something more like this:
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class Sat (ctx a) => Eval ctx a where
eval :: a -> Int

data Expr cxt = forall a. (Eval cxt a) => Expr a
data Expr_0 cxt = Const Int | Add (Expr cxt) (Expr cxt)

| Mul (Expr cxt) (Expr cxt)

class Sat a where
dict :: a

This is the fundamental idea for introducing new functions that can be used on
Expr. There is still some more to do to actually fill and make use of the parame-
terization. We will not go through that here, and recommend reading the original
paper. [6] However, we can summarize the important parts: The translation will
insert constraints on the context based on all functions and data type variants that
are available in each specific module. The context type itself is then constructed on
a per-module basis based on the available functions and data type variants.

Transformative functions with Open Abstract Types leads to the same situation
as with Open Data Types. The functions themselves can easily be defined and
implemented in the syntax as with any other extensible function. However, the
inability to express subsets of a data type through different compositions means
that a desugaring function cannot enforce that the result data type does not contain
certain data type variants, unlike other solutions that use closed composed types,
such as Data Types à la Carte and Variations on Variants. This means that the
type of desug cannot be more specific in that sense than:

desug :: Expr -> Expr

Still, Open Abstract Types fulfills the original four criteria for a solution to the ex-
pression problem. In particular, in comparison to Open Data Types, it has managed
to solve separate compilation, while still offering extensible, rather than composable,
data types. However, as noted earlier, it fails to fulfill independent extensibility,
which is the fifth criterion. Hence, Open Abstract Types has a simple syntax with a
translation to a solution fulfilling the original four criteria for the expression prob-
lem, while it is lacking in the expressive power that comes with composable data
types, and also does not support independent extensibility.

2.9 Compilation
Table 2.1 shows a compilation of the proposed solutions to the expression problem
given in this chapter. All of these are evaluated based whether they fulfill different
criteria or not. The criteria are the five criteria for being a solution to the expres-
sion problem stated in Section 1.2, and two other properties that distinguish the
solutions, namely:

• Automatic extension of data types: When a data type is extended with
a new variant, the variant is immediately included in the data type. It is thus
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not possible to use a version of the data type that contains only some of the
defined variants.

• Automatic extension of functions: An extensible function is extended
automatically, meaning that when an extension is written to a function, it is
part of all uses of the function.

Having data types or functions being extended automatically tends to mean simpler
code, but with less expressive power. For instance, having composable data types,
the opposite of automatically extended data types, gives a significant advantage in
expressiveness in that one can freely choose which data type variants to include
in a composition. The difference in expressive power is, on the other hand, not
as prominent regarding if functions are extended automatically or not. Having
composable functions rather than automatically extended means that one can write
multiple function extensions for the same data type variant, and then choose which
to include in the function composition. This is not as clear a practical advantage as
having composable data types.
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Extensibility in both directions x x x x x x x
Strong static type safety x x x x x –8 x
No modification of duplication x x x x x x x
Separate compilation x x x x x – x
Independent extensibility x x x x x x –
Automatic extension of data types – – – – – x x
Automatic extension of functions x x – – – x x

Table 2.1: Compilation of all proposed solutions presented in this chapter. So-
lutions are evaluated based on the criteria for being a solution to the expression
problem given in Section 1.2, as well as two other properties that can distinguish
the solutions from each other. Note that the two properties are not necessary to
fulfill, and that it is not always obvious whether it is better to fulfill such a property
or not.

8Open Data Types as presented in the paper does not fulfill strong static type safety, but it
could be possible to implement it in the translation process. See the discussion in Section 2.7.
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3
Proposed Syntax

At its core, a syntax for a solution to the expression problem needs syntax for the
following:

• defining data types

• combining or extending the data types

• writing operations on the data types that also can be extended to work on
new combinations or extensions of the data types

Note that we must also be able to extend the set of functions, as a solution to
the expression problem must support extensibility in two directions: the data type
variants and the set of functions. However, since we expect to keep a functional style
in the syntax, the extension of the set of functions will not be the main concern
as direction of extensibility. Recall the difference between functional and object-
oriented approaches presented in Chapter 1.

This chapter will describe the syntax we have designed. The purpose of the syntax
design is to, in a theoretical way, show how a simpler syntax for solving the expression
problem can be designed, as mentioned in Section 1.1. The emphasis is thus not on
the exact syntax regarding, for instance, choices of keywords and symbols. Rather,
we want to show the parts that need to be included.

We will introduce the development of the syntax step by step with the help of the
running example of a small expression language, consisting of constant integers,
addition and multiplication, introduced in Section 2.1. Then, we present the final
syntax in each section by showing it in a table at the end. A complete compilation
of our syntax is done in a table in Appendix A. We also show a complete example
of a program written in our syntax in Appendix B.1.

3.1 Notation
Before going into the actual syntax, we present here the notation that we use to
describe it. This is based on the notational conventions used to describe Haskell
2010 in its language report [24].
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data terminal syntax in typewriter font
pattern non-terminal syntax in italic font
[pattern] optional (i.e. zero or one)
{pattern} zero or more repetitions

pattern1| pattern2 choice

We present the patterns in this chapter in a slightly informal way, to showcase the
overall syntax rather than showing exactly the syntactic components of which they
consist. This is done both by simplifications, to not always show all possible ways of
constructing a syntactic component, and by making distinctions between patterns
that in reality would be syntactically equal. The syntax is presented more formally
in Appendix A.

As an example of a simplification, a type signature can be constructed to be the
type signature of several functions, as in the following:

f, g, h :: Int -> String

Syntactically, this means that the type signature of a function can be written as:

Var {, Var} :: Type

Here, Var is a variable name, that is, a name starting with a lowercase letter, and
Type is simply a type. We make the simplification to just show the possible case for
one single function:

Var :: Type

Another simplification we make here is that we do not provide all details for every
syntactic component that we use, such as Var and Type, but rather explain them
informally. An explanation of such syntactic components is given in Table A.1.
Furthermore, a Var can be qualified with a module name, and is then instead
written as QVar. We have chosen to not present this distinction in this chapter, but
will do so when giving the formal details in Appendix A.

As an example of a distinction we make in some cases, consider the function example
again. We could choose to express the name of the function as FunctionName
instead, to distinguish it from other uses of the syntactic component Var.

3.2 Data Types
To begin formulating a syntax for extensible data types, we first inspect regular data
types to identify the crucial parts. We do this with the running example of a small
expression language that we introduced in Section 2.1:

data Expr = Const Int | Add Expr Expr | Mul Expr Expr
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The first thing to remember is that a data type can have several different constructors
for its different variants, but in the standard syntax it cannot be extended with more
variants without recompiling the whole data type. The data type Expr, along with
any related operations on it, would need to be rewritten and recompiled to add, for
instance, negation of an expression, Neg Expr. The crucial starting point is thus to
decide how to make the data type extensible.

3.2.1 Separation into Pieces and Compositions
Extending a data type with a variant for negation can either be done by a direct
extension to an extensible data type, as is done in Open Data Types (Section 2.7) and
Open Abstract Types (Section 2.8), or through a composition of building blocks,
as is done by solutions like Data Types à la Carte (Section 2.2) and Trees that
Grow (Section 2.5). The second approach, to have composable data types, gives a
significant advantage of having higher expressive power, since it is possible to form
different compositions for different situations. Because of this, we want the data
types in our syntax to be composable.1

To have composable data types, we want to be able to separate the constructors into
their own declarations and later combine them into a composed type, or composition.
We call these parts of a composition data type pieces, or just pieces, which, for now,
can be viewed as single-constructor data types. To begin with, we restrict the pieces
to be non-polymorphic; that is, they are not allowed to contain type variables. This
gives us the first iteration of our syntax, where the first row is just like a regular
non-polymorphic data type with only one data constructor:

PieceDecl: data PieceName = DataConDecl
ComposedType: ( PieceName1 | ... | PieceNamen ) n ≥ 1

Here, a DataConDecl is simply a data constructor with zero or more parameters,
given as DataCon {Type}, for instance Const Int. Note that the parentheses in
the composed type are required. Note also that the first row here is a declaration,
whereas the second is a type. This means that the type could be used, for instance,
directly in a type signature, or in a type declaration as the following:

type ComposedName = ( PieceName1 | ... | PieceNamen ) n ≥ 1

This separation into pieces that are then composed is similar to the idea behind Data
Types à la Carte, compdata and Variations on Variants, Sections 2.2–2.4. As op-
posed to the approach in those solutions, however, we make the composition directly,
without the two-step process they use with the coproduct and then the wrapping
with Term. Thus, we make no distinction between open and closed compositions.

1It is also worth noting that the two solutions presented in Chapter 2 that have automatic
extension of data types both provide their solutions through defining new syntax that is translated
into compilable Haskell code, while none of the solutions based on composable data types do so. As
we aim at designing new syntax, there is a greater research gap in the existing solutions regarding
a syntax for composable data types.
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The direct composition of pieces is also simpler than the linked-list composition in
Trees that Grow (Section 2.5), which is more verbose as variants are linked together
one pair at a time.

As mentioned above, the fact that we compose the pieces explicitly, rather than
having data types that are automatically extended as in the approaches by Löh and
Hinze (Section 2.7) and Seefried and Chakravarty (Section 2.8), means that we get
the ability to freely compose the pieces we want. This gives more control over which
pieces are included in a type.2

The expression language example Expr would then be defined with a data type piece
each for Const, Add and Mul, combined in a composed type (Const | Add | Mul).
The separation into pieces means that we could extend the original data type, Expr,
given by the composition (Const | Add | Mul), by simply declaring the data type
piece we want to add, Neg for negation, and then defining a new composition, like
(Const | Add | Mul | Neg).

3.2.2 Multi-constructor Pieces
To make data type pieces more flexible, we could still want to have multiple con-
structors for one piece, as is done in Data Types à la Carte, if we have parts that
we never want to have separate. For instance, this is useful in lambda calculus,
where one could have lambda abstractions and applications in the same piece, as
they should never be used one without the other. In our expression language exam-
ple, we could choose to treat basic arithmetic operations, such as Add and Mul, as a
whole, by having them in a single piece Op, and thus be able to add them into a com-
posed type just with their unified name. To conclude, we allow multi-constructor
data type pieces, which gives us the following syntax:

PieceDecl: data PieceName = DataConDecl1 | ... | DataConDecln n ≥ 1

This is a an advantage over having a syntax for pieces like the one proposed by
Löh and Hinze, as constructors with a type signature, since we can provide multi-
constructor pieces, something that is not possible in their syntax.

3.2.3 Categories for Pieces and Compositions
For the expression language example, with the extension of negation, we can now
write the pieces and compositions like the following3:

2The syntax for a piece can be further compared to that of Open Data Types (Section 2.7).
In their syntax, data type variants are written as constructors with a type signature, similar to
GADTs (Generalized Algebraix Data Types). Our syntax for pieces is closer to that of regular
data types, which gives higher user friendliness due to its familiarity and that if does not require
type signatures for the pieces. It could be possible to add the other possible syntax as well, but
this is not something we have considered further in this project.

3In this report, we will show code written in our syntax contained in a box like this, to distinguish
it from other code examples. This includes suggestions for our syntax as well as the actual syntax
we have designed.
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data Const = Const Int
data Op = Add <rec> <rec> | Mul <rec> <rec>
type ExprComp = (Const | Op)

data Neg = Neg <rec>
type ExprCompWithNeg = (Const | Op | Neg)

Here, we note the need to be able to make a piece recursive, denoted in the example
with a placeholder <rec> for the recursive data constructors Add, Mul and Neg, since
we have no way of expressing that yet. Data Types à la Carte, and in turn, compdata
and Variations on Variants, solves the need for recursion by using parameterized data
types, to give a parameter to each data type like data Op a = Add a a | Mul a a.
We could opt for constructing data types in this way in our syntax as well. However,
this is not as intuitive for a user as the simple regular data type that we saw in the
beginning of this section, where the recursive constructors are formed simply by us-
ing the name of the data type itself as the recursive parameter, like Add Expr Expr.
We want to mimic this simple syntax, rather than using the arguably less intuitive
syntax of parameterized data types. It could be possible to for the recursive param-
eter allow a parametric syntax as well, so that a user can choose between the two.
We have not considered that possibility further in this project.

In our case, the separation into several data type pieces means that we have to specify
that the recursive parts in, for example Add, can be of any piece of the composed type,
not just a recursion on the piece itself. Furthermore, the data type pieces should
be defined independently of any specific composed type, because we could create
several compositions from the same pieces, like ExprComp and ExprCompWithNeg in
the example above. This means that we cannot use a fixed composed type as the
recursive parameter either, but instead must use a separate name that can refer to
any composed type containing the pieces. To still have a connection between the
data type pieces and the composition, we define a syntax in which every piece and
every composition of pieces belong to a category, more specifically also called a piece
category. We denote this with a special arrow symbol ==> as follows:

PieceDecl: data Category ==> PieceName =
DataConDecl1 | ... | DataConDecln n ≥ 1

ComposedType: Category ==> ( PieceName1|...| PieceNamen ) n ≥ 1

This category is simply a Con (a name starting with an upper-case letter) and is
then used as the name of the recursive part. Note that, while categories are used
as types for these recursive parts, they should not be considered being actual types,
and cannot be used anywhere a type is normally used outside of piece constructors.

In the expression language example, we can have the data type pieces and their
compositions belong to the category ExprCat. This means that we can write the
recursive data constructors like Add ExprCat ExprCat. Hence, we can now write
the pieces and compositions described above like the following:
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data ExprCat ==> Const = Const Int
data ExprCat ==> Op = Add ExprCat ExprCat | Mul ExprCat ExprCat
type ExprComp = ExprCat ==> (Const | Op)

data ExprCat ==> Neg = Neg ExprCat
type ExprCompWithNeg = ExprCat ==> (Const | Op | Neg)

To introduce these categories, we also make a distinction between regular data types
and data type pieces that can be combined into a composed type, because regular
data types should not be a part of any category. Therefore, we mark the pieces
with a keyword, piece, and further on refer to the data constructors of a piece
as piece constructors. We also need to denote that a piece constructor can have a
category as a parameter for the recursive argument, in addition to being able to
have regular Type parameters. This is denoted by a PieceConDecl, which is given
as PieceCon {PieceArg}, where each PieceArg is either a Type or a Category.4 This
gives us the following iteration of the syntax for piece declarations:

PieceDecl: data piece Category ==> PieceName =
PieceConDecl1 | ... | PieceConDecln n ≥ 1

The categories can be viewed as open data types, like the data types declared with
a keyword open in Open Data Types (Section 2.7), which can then be explicitly
closed through the composition of pieces. In that sense, the use of a category in
place of a type is defined to mean a polymorphic composition, that is, some possible
composition of pieces in that category. This is exactly what we want by using a
category as the recursive parameter in the piece constructors.5

Piece categories have further advantages. With them, we have the possibility of
distinguishing separate categories for separate data type pieces, such as statements
and expressions. The concept of categories could possibly also be expanded to
reference other categories, for having data type pieces of one category that contain
pieces of another category, such as statements containing expressions; this will be
discussed in Section 5.6.1.

On the other hand, the use of categories also limits the expressiveness, since we can-
not combine any two pieces belonging to different categories, but only those within
the same category. As previously mentioned, however, the categories give several
advantages. They give a way to specify the recursive parameter with a category,

4In fact, we have defined our syntax so that a Category is parsed just as a Type. This means
that a PieceArg could also be a Type containing a Category, such as Maybe ExprCat. To better
show the use of a category in the syntax here, we make the simplification to define PieceArg to be
Type | Category.

5The specific composition which the category represent in that case is then restricted to be
the same as the composition for the whole data type. For instance, for an addition value of
the composed type ExprComp, the category in Add ExprCat ExprCat would represent the same
composed type ExprComp. For an addition value of a different composed type, the category would
instead represent the other composed type. We cover this more in Section 3.3, as well as possible
ways of relaxing the restriction in Section 5.5.4.
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which gives a more intuitive syntax for recursive piece declarations compared to the
parametric approach in solutions like Data Types à la Carte. Categories also give
the ability to distinguish data type pieces with different categories. This ability can
be compared to how a type system distinguishes terms of different types, something
that also limits the expressiveness, but is still very useful.

3.2.4 Modules and Category Declaration
To make the data types composable, we need to be able to have different pieces
defined in different modules that can be compiled separately. To make sure that the
same category can be used over several modules, it needs to be declared indepen-
dently in one place, and not just indirectly by being used in pieces and compositions.
Hence, we define the simple syntax for a piece category declaration as follows:

PieceCatDecl: piececategory Category

The introduction of piece categories, in particular the category declaration, means
that we cannot combine modules as freely as in solutions like Data Types à la Carte.
In such solutions, it is possible to define, for instance, Const and Neg in two separate
modules, while our syntax has the extra restriction that the two modules must
depend on a module containing the category declaration. This is thus a limitation
in the expressiveness of our approach.

We can also compare this category declaration to the extensible data type decla-
rations in Open Data Types and Open Abstract types, specified with the keyword
open. The pieces defined to belong to a certain category correspond to defining data
type variants in those solutions, which all belong to the extensible data type. The
main difference is our composition, which is used to select a subset of pieces in a
category, instead of using the category as an extensible data type, as Expr is used
in Open Data Types and Open Abstract Types. This means that the data types in
our approach are composable, whereas they are not in those solutions.

3.2.5 Polymorphic Pieces
For our last addition in this section, we note that the pieces we have presented so
far are non-polymorphic; that is, they contain no type variables. We can generalize
our piece declaration to allow polymorphic pieces by writing type variables to the
right of the PieceName, imitating the syntax for polymorphic data types. These
type variables can then be used in place of types for piece constructors just as
with regular data constructors. We would then also need to update the syntax for
composed types to be able to there specify the type variables introduced in the piece
declaration. This gives the following syntax:

PieceDecl: data piece Category ==> PieceName {TypeVar} =
PieceConDecl1 | ... | PieceConDecln n ≥ 1

ComposedType: Category ==> ( PieceRef1| ... | PieceRefn ) n ≥ 1
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A PieceRef is given by PieceName {Type}, where the Types are separated by space.

To see an example of this, we imagine a modified version of Const, which has been
made to accept any parameterized type, rather than just an Int. This could then
be written as follows:

data piece ExprCat ==> ConstP c = ConstP c

This piece can then be instantiated, when using the piece to work for different types,
for instance ConstP Int and ConstP Double. The parameterized type c needs to
be specified in this way when using the piece in a composition. For instance, we can
have a composed type for expressions based on integer constants, ExprInt, which
would then be isomorphic to the previously defined type ExprComp. This would be
defined as follows:

type ExprInt = ExprCat ==> (ConstP Int | Op)

3.2.6 Summary of Syntax for Data Types
We have now presented all of our proposed syntax regarding data types, which we
summarize in Table 3.1.

PieceCatDecl piececategory Category
PieceDecl data piece Category ==> PieceName {TypeVar} =

PieceConDecl1 | ... | PieceConDecln n ≥ 1
ComposedType Category ==> ( PieceRef1|...| PieceRefn ) n ≥ 1

PieceConDecl PieceCon {PieceArg}
PieceArg Type | Category
PieceRef PieceName {Type}

Table 3.1: Our proposed syntax for composable data types, containing declarations
of categories and pieces, and a type for composed types. Some syntactic components
of the three are also specified further.

Finally, we show the full representation of the expression language example in our
syntax. Every declaration here is independent and could thus be compiled separately
if put into different modules, with correct module handling. We present the example
here with the original definition of the data type in one module, Expr, and the
extension of negation in a separate module, Negation. Recall that our choice of
keywords is not important for the purpose of this project, and should thus not be
considered final. What is important is the existence of these syntax declarations
and the purpose that they serve.
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module Expr where

piececategory ExprCat

data piece ExprCat ==> Const = Const Int
data piece ExprCat ==> Op = Add ExprCat ExprCat

| Mul ExprCat ExprCat

type ExprComp = ExprCat ==> (Const | Op)

module Negation where
import Expr

data piece ExprCat ==> Neg = Neg ExprCat

type ExprCompWithNeg = ExprCat ==> (Const | Op | Neg)

3.3 Constructing Values of Composed Types
To be able to use the composable data types introduced in the previous section, we
need a way to construct examples. For instance, we would want to be able to form
examples of an expression like the following written for a regular data type using its
data constructors:

twoMulThreePlusFive :: Expr
twoMulThreePlusFive = Const 2 `Mul` (Const 3 `Add` Const 5)

We want to be able to form examples with composable data types using the piece
constructors just like regular data constructors, as is done with the extensible data
types in Open Data Types (Section 2.7) and Open Abstract Types (Section 2.8).
Thus, we state that the constructors defined in a piece declaration can be used
directly by name to create a value, as in the following example:

constTwo = Const 2

While a regular data type constructor would create a value of the data type, a
data type piece in our syntax is not considered a type of which a piece construc-
tor can create a value. Rather, these piece constructors should create a value of
the extensible data type, which in our syntax is represented by composed types.6
In particular, we say that the constructor creates a value of some composed type
that contains the piece to which the constructor belongs. To make the constructor
usable in a variety of situations, we state this more generally: A piece constructor

6This is different from Data Types à la Carte and similar solutions, where a constructor to a
data type variant does not create a value of a complete composed type, but instead creates a value
of a data type specific to the variant. Instead, smart constructors are used there to create a value
of a composed type.
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can create a value of any composed type that contains the piece to which the con-
structor belongs. For example, Const 2 could be of type ExprCat ==> (Const) or
ExprCat ==> (Const | Op), but not of type ExprCat ==> (Op). Thus, the use
of our piece constructors corresponds to the use of smart constructors defined in
Data Types à la Carte in Section 2.2, and also derived and used in compdata in
Section 2.3. The difference is that we want to use the constructors directly as con-
structors without changing their names, and not use smart constructor functions,
which require different names starting with a lower-case letter.

For the piece constructors with a recursive part, such as Add, the recursive parts
represent the data type that contains the piece. We represent that here by stat-
ing that the type of a recursive part of a constructor is the same composed type
as the type of the composition created by the constructor.7 For example, if we
have two expressions with the respective types e1 :: ExprCat ==> (Const | Op)
and e2 :: ExprCat ==> (Const | Op), then the addition of those has the type
(Add e1 e2) :: ExprCat ==> (Const | Op).

Now, let us return to constTwo. As mentioned above, we can state its type, for
instance, like the following:

constTwo :: ExprCat ==> (Const)
constTwo = Const 2

Next, we consider the larger example twoMulThreePlusFive in our syntax, which
needs to have a type containing the pieces Const and Op, for instance as in the
following:

twoMulThreePlusFive :: ExprCat ==> (Const | Op)
twoMulThreePlusFive = Const 2 `Mul` (Const 3 `Add` Const 5)

The types of both of these examples are correct. Their types are composed types,
and the examples only use constructors belonging to pieces in said composed types.
However, because of the concrete and inflexible composed types in the type signa-
tures, the use of these values becomes limited in a larger context. For instance, if
constTwo were to be used instead of Const 2 in twoMulThreePlusFive, constTwo
cannot have the type ExprCat ==> (Const), but must have a type containing Op
as well, namely ExprCat ==> (Const | Op). We will come back to how this can
be alleviated in Sections 3.5.2 and 5.6.4.

3.4 Introduction to Extensible Functions
The next step of defining a syntax for composable data types is that we need a way
to perform operations over the data types, that is, define and use functions. To have
functions over a composable data type, we need to be able to extend the functions
later to act on compositions with new pieces of the data type. In the related work

7We discuss ways of relaxing this restriction in Section 5.5.4.
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in Chapter 2, we saw two main approaches for doing this: either to have automatic
extension of functions or not. In the first alternative, used for instance by Data
Types à la Carte, we have some kind of declaration of the function, which is extended
by separate cases to handle different variants, all of which automatically extend the
function for all future uses. In the second alternative, used for instance by Variations
on Variants, separate cases are written which are then combined through an explicit
composition.

The first alternative means a generally simpler syntax and also that it is possible
to reuse a function directly for different compositions. On the other hand, it also
means losing the possibility of picking which extensions to constitute the function.
Especially, this can lead to problems when having incompatible, independently de-
veloped extensions. Still, we believe that the benefits of a simpler syntax in this case
weighs more than the drawbacks, and choose to follow the approach by Data Types
à la Carte to have automatic extension of functions. In particular, we likewise take
inspiration from an existing extensible mechanism in Haskell, namely type classes.

To begin formulating our syntax for extensible functions, let us consider our running
example from Section 2.1. If we write an evaluation function over the expression
language that evaluates constants, additions, and multiplications to an Int, we need
to be able to extend it with a new case for negation if we want to evaluate expressions
containing such operations. For a regular, non-composable Haskell data type Expr,
we would have an evaluation like this:

eval :: Expr -> Int
eval (Const i) = i
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2
eval (Neg e) = (-1) * eval e

An extension to handle negation means that we want to write the last row indepen-
dently from the others, so that the old code does not need to be recompiled. To be
able to write the rows of the functions in different modules and compile them inde-
pendently, we need to make sure that they are still connected, so that the compiler
knows that when writing, for instance, eval (Const i) = i, it is referring to the
eval function with type Expr -> Int. Similar to the introduction of the category
declaration in Section 3.2, we see the need for a declaration of a function. This
would define the name and type of a function.

We keep the syntax of this extensible function declaration similar to a regular type
signature since they are much alike. However, it is not strictly a type signature,
because the declaration is required, as opposed to the oftentimes optional type
signature. Furthermore, a more important difference is that the function is an
extensible function, meaning that it must be defined for a composable data type.
Therefore, we use a different symbol in the syntax of the declaration of an extensible

51



3. Proposed Syntax

function 8, but otherwise keep the syntax as a type signature:

CompFunDecl: FunctionName -: Type

The Type here is a function type, which means that it is a type written on the
form Type1 -> ... -> Typen, where n ≥ 1. At least one of the Typek in this must
be a type that can be instantiated to a composed type when calling the function,
because otherwise this would just be the type of a regular, non-extensible function.
As defined in Section 3.2, this is expressed with a category. In the case of the
eval example, this is ExprCat, so the type of eval would be as in the following
declaration:

eval -: ExprCat -> Int

Here, the category serves the same purpose of specifying the argument as in the re-
cursive parameters of the data types, instead of having a polymorphic type variable.
We can compare this to the type signature for the eval function written with Data
Types à la Carte in Section 2.2:

eval :: Eval f => Term f -> Int

The Term f here serves a similar purpose as our category, but is instead specified to
support evaluation through the context Eval, rather than specifying the category of
pieces supported. Note also that what we have written in our syntax is a declaration,
and not a type signature. In fact, as for now, we cannot write an actual type
signature for eval, and it is thus not possible to infer the type of the function. This
is because the category ExprCat represents a polymorphic type variable, that is, any
composition of category ExprCat, and we are not yet able to express this with an
actual type. We will come back to this in Section 3.5.1.

In the evaluation example above, we have an extensible function that takes a value
of some composed type, of a certain category, as its argument and deconstructs
it to a simpler type, in this case an Int. This is thus a destructive extensible
function, as also mentioned in Section 2.1. As such, the function deconstructs a
value, which can be done based on its structure via pattern matching, and that it
does not need to construct any value of a composed type, as do transformative and
constructive extensible functions. This means that destructive extensible functions
are the simplest. Therefore, we introduce the syntax of such functions in this section,
and discuss transformative functions in Section 3.6.4 and constructive functions in
Section 5.2.

8The use of the symbol -: could easily be exchanged for the use of a keyword, such as open in
the proposed solution of Löh and Hinze (Section 2.7). The importance is that it is distinguished
from a regular, non-extensible function. It could also be possible to have the syntax identical to the
syntax of regular functions, as does Open Abstract Types (Section 2.8), and instead only make the
distinction when transforming the code to regular Haskell, depending on the type of the function.
However, since the extensible and non-extensible functions behave differently, it is useful to have
a distinction which is clear to the user.
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For destructive extensible functions, such as eval, we now state the general syntax
for the function declaration:

CompFunDecl (destructive): FunctionName -: Category -> Type

The Type in this declaration could be any type, including a function type if more
arguments are wanted. In fact, it could contain more composed type as arguments
as well, but the function will only concern deconstruction of the first argument,
which is also the argument over which one can define extensions to the function.

This syntax means that we restrict the first argument to always be a category. This
is because we want to make the distinction that this argument is handled in a special
way, namely to be deconstructed via this function, and the only possible position to
put such a distinction is the first. Instead of using a category for the composable
type argument, one could express it with polymorphism through type variables, as
does Data Types à la Carte, but that would not yield the same distinction that it is
a special argument. The use of a category also makes the syntax more intuitive for
a user, similar to the argument for using categories as recursive parameters in the
data types in Section 3.2. Furthermore, the use of the category here also means that
it could be possible to encode a way to ensure that the types used in the function
are actually pieces belonging to said category.

To then define the function, we need to define it for every possible case. In a destruc-
tive extensible function, this means that we need to define a case for every possible
piece constructor that can match the input argument via pattern matching. Piece
constructors that belong to a multi-constructor piece, such as Op with constructors
Add and Mul, do so because they should not be separated. Therefore, we want to
define the extension cases by piece, rather than by constructor, analogously to how
we create the type compositions by piece. Therefore, we define a syntax where we
write an extension for a piece such that it contains pattern-matching cases for all
its constructors. The syntax for this is inspired by that of instance declarations for
type classes, since those have a similar purpose.

CompFunExt: ext FunctionName for PieceRef where
{FunctionName PieceConPat {Pattern} = FunctionDef }

Here, PieceRef is a piece with zero or, in the case of a polymorphic piece, more type
parameters, given as PieceName {Type}, where the Types are separated by space. If
the piece is non-polymorphic, it is thus simply a PieceName. For instance, it could
be Op. Moreover, PieceConPat is a pattern that matches a piece constructor in-
cluding potential parameters, given as PieceCon {Pattern}. In particular, the piece
constructor should be a constructor for a piece belonging to the category specified as
the first argument in the function declaration. For instance, a PieceConPat could be
Add e1 e2. Furthermore, {Pattern} in the extension is zero or more patterns for po-
tential more arguments to the function. Lastly, FunctionDef is the right-hand-side
implementation of the function, such as eval e1 + eval e2.
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Note here the similarity between the components in place in this syntax and the syn-
tax provided by Data Types à la Carte and similar approaches, which are solutions
based on type classes with instances for each data type variant. The keywords are
different, but we can note a similarity in semantics. Furthermore, we have chosen to
represent the functions without the use of algebras, and instead make the recursion
explicit. The syntax would look like this for the evaluation example:

ext eval for Const where
eval (Const i) = i

ext eval for Op where
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

Note here the explicit recursion seen in the equations for the piece Op, for instance
eval e1 + eval e2, as opposed to the syntax with algebras in Data Types à la
Carte as just e1 + e2. The explicit recursion makes the syntax more intuitive and
similar to the syntax shown in the regular Haskell example in the beginning of this
section.

Now, we can summarize our proposed syntax for simple, destructive extensible func-
tions, see Table 3.2. This will be modified in the following sections to handle different
kinds of functions.

CompFunDecl FunctionName -: Category -> Type
CompFunExt ext FunctionName for PieceRef where

{FunctionName PieceConPat {Pattern} = FunctionDef }
PieceRef PieceName {Type}

PieceConPat PieceCon {Pattern}

Table 3.2: Our proposed syntax for simple, destructive extensible functions, con-
taining a declaration and a function extension. This syntax will have additions to
handle more complicated cases in the following sections. Some syntactic components
in the extensions are also specified further.

Last, we show how this fits with the example from Section 3.2.6. We define a new
module for evaluation, Eval, and add the evaluation of negation into the module
Negation, which now also imports Eval. This means recompilation of Negation,
although that could be avoided by simply putting the evaluation of Neg in a new
module as well, but for this example we see them as a joint extension module.
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module Eval where
import Expr

eval -: ExprCat -> Int

ext eval for Const where
eval (Const i) = i

ext eval for Op where
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

module Negation where
import Expr
import Eval

...

ext eval for Neg where
eval (Neg e) = (-1) * eval e

For a simple example, we can use the function right away. Consider the negation of
the expression example from Section 3.3:

negTwoMulThreePlusFive :: ExprCat ==> (Const | Op | Neg)
negTwoMulThreePlusFive =

Neg $ Const 2 `Mul` (Const 3 `Add` Const 5)

To evaluate this, one would simply write:

> eval negTwoMulThreePlusFive
> -16

3.5 Constraints on Composed Types
For regular types, we can represent them with type variables in polymorphic func-
tions. We can then put constraint on those variables by writing a context containing
the desired constraints. For instance, we can write the following to denote that the
type e is an instance of the Show class:

showExpr :: Show e => e -> String

We want to be able to write similar such constraints for our pieces and composed
types. This means that we can use parametric polymorphism for a composed type,
which is useful in order to allow different compositions without needing to specify
them exactly. Note that this is only necessary since we have composable types,
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meaning that we are able to have different compositions, rather than just extensible
types as in Open Data Types and Open Abstract Types (Sections 2.7–2.8), where
the type is the same regardless of how it is used. We will present three different
kinds of such constraints in the following subsections.

3.5.1 Function Constraints
To illustrate the first kind of constraint, we show an example where we want to write
a polymorphic function that calls an extensible function. Consider an extensible
function with a type as in the following declaration:

evalCond -: ExprCat -> Bool -> Int

If we were to define a helper function that calls evalCond, with a specific Bool value,
it might look like this:

evalFalse :: <some composed type to call evalCond on> -> Int
evalFalse a = evalCond a False

In order to call an extensible function on a certain composed type, the function must
be extended over all pieces of the composed type. We express this as a constraint
and allow this to be written in the context of a type signature, in the same way as
regular type constraints. The syntax for the function constraint is defined simply
as follows:

FunctionConstraint: Type with FunctionName

With this, we can use parametric polymorphism in the type of the helper function,
and write it like the following:

evalFalse :: e with evalCond => e -> Int
evalFalse a = evalCond a False

As seen in Section 3.4, we introduce an extensible function with a declaration similar
to a type signature. It was, however, not possible to express the actual inferred type
of the function. With the function constraint, that is now possible. For example,
the type of the extensible function eval can be expressed as:

eval :: e with eval => e -> Int

Note here the similarity to the type of eval in Data Types à la Carte (Section 2.2):
eval :: Eval f => Term f -> Int. Our constraint e with eval corresponds, in
essence, to the constraint Eval f.

3.5.2 Piece Constraints
In Section 3.3, we saw that it was difficult to express the type of, for example,
constTwo = Const 2 in a general way in order to make it reusable in larger examples
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that also contain other pieces. What we want is to express the necessary pieces in
a composed type, while still allowing it to contain more pieces. The need for this is
even more present in functions that in some way create a value of a composed type,
such as transformative extensible functions, where we need to express the necessary
pieces in the result composed type.

Before considering such functions, we look back at the example in Section 3.3. First
we have the constant 2, given with a type signature as:

constTwo :: ExprCat ==> (Const)
constTwo = Const 2

We want to reuse it in the larger example given with a type signature as:

twoMulThreePlusFive :: ExprCat ==> (Const | Op)
twoMulThreePlusFive = constTwo `Mul` (Const 3 `Add` Const 5)

This is not possible when constTwo is specified to have the concrete composed type
ExprCat ==> (Const), since it must have the type ExprCat ==> (Const | Op),
as that is the type to be constructed by Mul. This could be solved by converting
the type of constTwo into ExprCat ==> (Const | Op), a possibility which we will
discuss in Section 5.5.4. Without type conversions, we want to express the type of
constTwo in a more general way, so that it is usable in the larger example, without
specifying the type to contain any more pieces than the Const it has.

To do so, we want to write it with a type variable and a constraint, specifying the
type variable to be any composition containing at least the piece Const. We express
this constraint written in the context of a type, with the following syntax:

PieceConstraint: PieceRef partof Type

Here, a PieceRef is, as before, given as PieceName {Type}, to allow for a polymor-
phic piece.

For constTwo, this gives the following type signature:

constTwo :: Const partof e => e

This is now directly usable in twoMulThreePlusFive, since the type can be in-
stantiated to ExprCat ==> (Const | Op). To make it possible to reuse the larger
example in other examples as well, we can express that too with a polymorphic type,
as follows:

twoMulThreePlusFive :: (Const partof e, Op partof e) => e

In Data Types à la Carte and similar approaches, subsumption corresponds to this
constraint. For instance, constTwo would be written as:
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constTwo :: Const :<: f => Term f
constTwo = iConst 2

As noted in Section 3.3, the use of piece constructors here corresponds to the smart
constructors used in Data Types à la Carte and similar approaches, with the differ-
ence that we keep the constructor syntax Const rather than writing it as a function
iConst or similar.

As another example, consider the following function:

mulTwo expr = expr `Mul` Const 2

This takes an expression and creates a new expression that is the old one multiplied
by two. With a piece constraint, we can now write it as follows:

mulTwo :: (Const partof e, Op partof e) => e -> e
mulTwo expr = expr `Mul` Const 2

Note that both the argument and result value must have the same type variable,
with the same constraint. This is because the argument is part of the result, so it
cannot be free to, for instance, contain pieces not allowed in the result. It is further
restricted by the use of the constructor Mul, which is defined to take two arguments
of the same type and give a result of the same type. The input expr must thus be of
the same type as the result. A more general way to express this would be to specify
the argument type to be a subtype of the result type. This would require both an
addition of a type constraint and a change to alleviate the restriction caused by the
constructors. We have not designed a syntax for this in this project, but we will
discuss the possibility in Sections 5.5.4 and 5.6.4.

One may also wonder if we could replace the type variable with a category name,
and use that name as a form of polymorphic type similarly to how the category
name was used in the piece declaration. Such an approach would be similar to
the extensible data types in Open Data Types (Section 2.7) and Open Abstract
Types (2.8), where the data type is referred to on a type level directly by name.
However, this approach does not remove the need for piece or function constraints.
In particular, using a category as a polymorphic type would not introduce a variable
on which restrictions can be put. Using categories in place of type variables would
mean that there would be no distinction between different compositions of the same
category. As a result, this approach would limit the expressiveness in the same way
as with extensible data types, as seen in the approaches of Open Data Types and
Open Abstract Types.

With this constraint, we can also express the inferred types of piece constructors.
As mentioned in Section 3.3, the constructors do not just construct the pieces them-
selves, but some possible composed type containing the pieces. For the constructors
of the expression language example, their types would be as follows:
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Const :: (Const partof e) => Int -> e
Add :: (Op partof e) => e -> e -> e
Mul :: (Op partof e) => e -> e -> e
Neg :: (Neg partof e) => e -> e

3.5.3 Category Constraints
We now have constraints for expressing necessary extensible functions and pieces for
a polymorphic composed type. The third part of our syntax that could be expressed
as a constraint is the categories, to express that a composed type belongs to a certain
category. Looking back at the example in the previous section, we have the following
function:

mulTwo :: (Const partof e, Op partof e) => e -> e
mulTwo expr = expr `Mul` Const 2

A category constraint could then be used here to express an extra guarantee that the
composition of the pieces Const and Op are defined to belong to a certain category,
namely ExprCat. In fact, such a constraint would then also indicate that the two
pieces belong to the category, as the composition, defined for a certain category,
should only be possible to form with pieces of said category.

We write the constraint as usual in the context of a type, with the following syntax:

CategoryConstraint: Category ==> Type

Note that the Type here is referring to a composition, not a piece.9 In the example,
this constraint would be included as follows:

mulTwo :: (ExprCat ==> e, Const partof e, Op partof e) => e -> e
mulTwo expr = expr `Mul` Const 2

Here, e is a type variable representing a composition, which is restricted through
one category constraint and two piece constraints.

As the pieces are already restricted to a certain category, this constraint is implied
for any type that uses piece constraints. This means that a category constraint here
does not provide anything more than a notation of expected behavior. The situation
is the same when a category constraint is paired with function constraints, since
extensible functions are also defined for a certain category. However, when having
extensible functions that also construct a composed type, a category constraint may
be useful, as we will see in Section 3.6.2.

9While we use the symbol ==> to indicate category belonging both for pieces and for compo-
sitions (see the syntax for the piece declaration and the composed type in Table 3.1), it could be
sensible to differentiate the two via different symbols. With such a differentiation, the use of the
symbol in the category constraint would more clearly indicate a constraint on a composition, not
on a piece.
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3.5.4 Summary of Syntax for Constraints
The syntax for the three constraints we have defined in the above three subsections
is summarized in Table 3.3.

FunctionConstraint Type with FunctionName
PieceConstraint PieceRef partof Type

CategoryConstraint Category ==> Type

Table 3.3: Our proposed syntax for constraints on composable types. These are
to be written in the context of a type.

3.6 Polymorphic Extensible Functions
We have now introduced the possibility of constraints on composed types in regular
functions, by adding them to the context of a type, in particular in a type signature.
We would also like to have such constraints, as well as regular type constraints such
as Show a, in extensible functions. For instance, we want to be able to write a
polymorphic evaluation function, with a type variable for the return type. This
would mean a declaration like the following with a constraint specifying the return
type to be numeric:

evalNum -: (Num e) => ExprCat -> e

This shows that we want to add the possibility of having a context in our function
declaration.

Another example is that we want to be able to write a desugaring function. This
would mean that we want to write extensions like the following, similar to the
instances given for Desug in Data Types à la Carte and compdata:

ext (Const partof a, Op partof a) => desug ...

We do not show the full implementation here since this includes syntax that is
not yet introduced, but we note the need for a possibility of having constraints in
function extensions as well. Having constraints in function declarations is covered
in the next section, and having constraints in extensions is covered in Section 3.6.2.

3.6.1 Polymorphic Function Declarations
For the declaration, we look back at the example of evalNum:

evalNum -: (Num e) => ExprCat -> e

As seen here, we want to have the possibility for constraints written in a context
of a declaration of an extensible function, similar to how constraints are written for
regular functions. This context could contain both regular type constraints, such
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as Num e above, and constraints on composed type, such as Const partof e. This
gives us the following updated syntax for function declarations:

CompFunDecl: FunctionName -: [Context =>] Category -> Type

Next, we want to make sure that such constraints and type variables written in
the function declaration are usable when defining extensions to that function. For
instance, we want to write extensions to evalNum given above. One may then
want to write extensions for a specific numeric type, for instance to evaluate to
an Int, which would allow for ad-hoc polymorphism over the variable e in the
declaration. This means that we want to, in a function extension, specify the type
of a type variable in the function declaration, with some way to relate the two.
This correspondence between the type variable in the declaration and the type
in the extension is done with inspiration from explicit type applications from the
TypeApplications extension [25], by indicating the type in the extension with the
symbol @, as @Type. We will further on refer to this simply as type applications. In
the example, this would look like the following:

ext evalNum @Int for Const where
evalNum (Const i) = i

We could then also define a separate extension for another type, for example Double,
as follows:

ext evalNum @Double for Const where
evalNum (Const i) = fromIntegral i

Then, we can write similar extensions for operations:

ext evalNum @Int for Op where
evalNum (Add e1 e2) = evalNum e1 + evalNum e2
evalNum (Mul e1 e2) = evalNum e1 * evalNum e2

ext evalNum @Double for Op where
evalNum (Add e1 e2) = evalNum e1 + evalNum e2
evalNum (Mul e1 e2) = evalNum e1 * evalNum e2

It would be desirable to write this in a polymorphic manner instead, to only have one
extension for operations, which can then be used no matter the type to which the
constants are evaluated. To do so, we need a constraint in the extension specifying
the return type to be numeric, just as in the declaration. We will come back to this
in the next section.

We could also have several type applications in the same extension, each corre-
sponding to a variable in the declaration. Consider a function with the following
type:
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evalNum2 :: (Num e1, Num e2) => ExprCat -> e1 -> e2

We would then have two type applications in the extensions, like the following:

ext evalNum2 @Double @Int for Const where
...

In concordance with the previous use of explicit type applications, we make them
correspond in order of appearance, meaning that the first type application refers
to the first variable in the declaration, and so on. This means that @Double above
instantiates the variable e1, and @Int instantiates e2.

In general, the syntax for function extensions now looks like the following:

CompFunExt: ext FunctionName {TypeApp} for PieceRef where
{FunctionName PieceConPat {Pattern} = FunctionDef }

Here, each TypeApp is a type application given by @Type and if having multiple,
they are separated by space.

3.6.2 Polymorphic Function Extensions
In the example of evalNum from the previous section, we noted a need for a con-
straint in the extension for Op in order to make it polymorphic in the return type.
We achieve this by allowing contexts in function extensions, and allowing a type
application @Type to contain a type variable, not only an instantiated type like Int.
For the Op extension, this looks like the following:

ext (Num n) => evalNum @n for Op where
evalNum (Add e1 e2) = evalNum e1 + evalNum e2
evalNum (Mul e1 e2) = evalNum e1 * evalNum e2

Here, the variable n refers to the variable e in the declaration:

evalNum -: (Num e) => ExprCat -> e

This means that we are able to, through type applications, relate type variables
written in an extension to type variables in its function declaration.

In general, we can now state our syntax for function extensions as follows:

CompFunExt: ext [Context =>] FunctionName {TypeApp} for PieceRef where
{FunctionName PieceConPat {Pattern} = FunctionDef }

Each TypeApp is given by @Type and, if having multiple, they are separated by
space.
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3.6.3 Updated Function Constraints
Another situation where we want to refer to type variables written in a function
declaration is in the function constraints introduced in Section 3.5.1. For instance,
consider that we want to write a function that uses evalNum defined in Section 3.6.1,
but with a specified result type, for instance Int. As before, we write this with a
function constraint to specify that evalNum can be used on the input argument.
This means that we want a function like the following:

evalNumInt :: (e1 with evalNum) => e1 -> Int
evalNumInt = evalNum

Since evalNum contains a type variable, we need to write an instantiation of the
type variable in the function constraint here. Similar to how it was done in function
extensions, we do this with type applications. This gives the following type:

evalNumInt :: (e1 with evalNum @Int) => e1 -> Int

Now, @Int instantiates the variable e in evalNum.

This means a change of the syntax for the function constraint to also possibly include
a type application, as follows:

FunctionConstraint: Type with FunctionName {@TypeApp}

As before, each TypeApp is given by @Type and if having multiple, they are separated
by space.

In the example above, the Type is a concrete type, Int, while it could also be a type
variable. For instance, we could write a similar function for real numbers as:

evalNumReal :: (e1 with evalNum @n, Real n) => e1 -> n
evalNumReal = evalNum

3.6.4 Transformative Extensible Functions
An important example of where polymorphic function extensions are needed is in
transformative extensible functions, functions that both deconstruct an argument
of a composed type and construct a value of a composed type as its result. This
could be a desugaring function, as presented in Section 2.1, which removes some
syntactic sugar, in this case negation, from an expression. This would be a function
that takes an expression of category ExprCat as input, and returns an expression,
still of category ExprCat, but of a composed type that does not contain the piece
Neg. We specify this result type in the function declaration by use of a type variable
and a category constraint, which gives the following declaration:

desug -: (ExprCat ==> e) => ExprCat -> e
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The input argument is given by the category ExprCat in the same way as in a
destructive extensible function, since that is the argument that is specified to be
pattern matched over and decomposed in the function.10 This is why we do not
express the type of desug as:

desug -: (ExprCat ==> e1, ExprCat ==> e2) => e1 -> e2

However, it could be possible to extend the syntax to allow a user to write the type
like that as well.

To be more specific about the result type, one could want to express it so that it
is the input type without the part that was removed via the desugaring function.
In Variations on Variants (Section 2.4), this is expressed as a type class denoted by
(:-:), while this is not something that is implemented in Data Types à la Carte
nor in compdata. We have not designed a syntax for this in this project, but we will
discuss it in Section 5.6.4.

Note, however, that the ability to be specific about the result type at all, and in
particular to make a distinction between input and output, is only possible with
composable types. With extensible data types, such as in Open Data Types and
Open Abstract Types (Sections 2.7–2.8), the input and output types would be the
same, and cannot be anything other than the extensible data type, Expr. As a result,
those solutions are less expressive, even if they could be considered somewhat simpler
in their syntax.

We continue to how this would be used in the function extension for the case of
negation. An expression containing a negation, Neg expr, would be desugared to
Const (-1) `Mul` expr. This means that the pieces Const and Op must be part of
the result type of the desugaring function. This is indicated by two piece constraints
in the extension, Const partof a and Op partof a. Furthermore, we have a type
variable for the result type in the declaration of desug, which we refer to using a
type application in the extension, as follows:

ext (Const partof a, Op partof a) => desug @a for Neg where
desug (Neg e) = Const (-1) `Mul` (desug e)

The type application @a connects the type variable a here to the variable e in the
declaration.

Similar instances are added for the other pieces, Const and Op, which simply leave
the operation as it is, and recursively call desug in the subexpressions. These also
need piece constraints to indicate that those pieces are contained in the resulting
composed type. Thus, we have the following extensions:

10This means that we specify transformative functions in our syntax to dispatch on the input
rather than the output, similar to destructive functions. One could consider other possibilities,
such as dispatching on the combination of input and output, or on the output alone. Dispatching
on the output is discussed regarding constructive extensible functions in Section 5.2.
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ext (Const partof a) => desug @a for Const where
desug (Const i) = Const i

ext (Op partof a) => desug @a for Op where
desug (Add e1 e2) = Add (desug e1) (desug e2)
desug (Mul e1 e2) = Mul (desug e1) (desug e2)

As mentioned, the type variable a in the extensions, describing piece constraints
for each extension, corresponds to the type variable e in the category constraint in
the declaration. This means that a piece constraint in an extension should only be
fulfilled for one of the intended pieces, that is, a piece in the defined category. In this
way, one could ensure that the result of each extension is in the desired category.
This is the primary situation in which a category constraint could possibly express
something beyond the other two forms of constraints; function constraints and piece
constraints.

As a final note, the desugaring function is just one example of a transformative
extensible function. One could also have a function where the input and output
types are of different categories. For instance, one could have a function like the
following, transforming an expression into a value of a composed type of a new
category called Text:

transform -: (Text ==> a) => Expr -> a

This function would then have extensions in a similar manner as desug above, but
constructing values of a composed type of category Text.

3.6.5 Summary of Syntax for Extensible Functions
With the parts in this section, we have syntax for extensible functions that works
for both destructive and transformative functions, with a possibility to add type
constraints in a context, both in declarations and extensions. We also have an
updated function constraint, which can now handle type variables. We summarize
the proposed syntax for extensible functions and function constraints in Table 3.4.

CompFunDecl FunctionName -: [Context =>] Category -> Type
CompFunExt ext [Context =>] FunctionName {TypeApp} for PieceRef where

{FunctionName PieceConPat {Pattern} = FunctionDef }
Function-

Constraint Type with FunctionName {@TypeApp}
TypeApp @Type
PieceRef PieceName {Type}

PieceConPat PieceCon {Pattern}

Table 3.4: Our final proposed syntax for extensible functions, containing a func-
tion declaration and a function extension. The updated function constraint is also
included. Some syntactic components of the three are also specified.
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Finally, we also present a full example of a transformative function, desug. We
show this in a module Desug that imports the modules Expr and Negation from
Sections 3.2.6 and 3.4.

module Desug where
import Expr
import Negation

-- | Transformative function desug
desug -: (ExprCat ==> e) => ExprCat -> e

-- | Desug extension for constants
ext (Const partof a) => desug @a for Const where

desug (Const i) = Const i

-- | Desug extension for operations
ext (Op partof a) => desug @a for Op where

desug (Add e1 e2) = Add (desug e1) (desug e2)
desug (Mul e1 e2) = Mul (desug e1) (desug e2)

-- | Desug extension for negation
ext (Const partof a, Op partof a) => desug @a for Neg where

desug (Neg e) = Const (-1) `Mul` (desug e)
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We have implemented a proof-of-concept transformation, which transforms code that
uses the syntax that we have formulated in Chapter 3 into code that uses an existing
solution to the expression problem. By targeting an existing solution, we are able
to focus our work on the syntax, without needing to produce an implementation for
composable data types from the ground up. We have chosen to use the compdata
library by Bahr and Hvitved [13], since it provides a thorough implementation of
their improved Data Types à la Carte. Furthermore, the semantics are similar
between our syntax and compdata, which means that the transformation is rather
straightforward in many cases.

Our transformation is primarily syntax-driven, which means that it is decided mostly
based on the syntactic components. This is implemented using a library called
haskell-src-exts [26], which provides parsing and pretty-printing for Haskell code
as well as several extensions. The choice of haskell-src-exts specifically means
that we can easily generate output code that uses Template Haskell and other exten-
sions that are important when using compdata. By extending this parser to handle
our syntax, we can parse code written in our syntax and standard Haskell code to
an abstract syntax tree. Our transformation program then transforms this tree into
a new syntax tree that no longer uses our syntax and is instead built on compdata.
This transformed tree can then be printed, using the pretty-printer, to code that
can be compiled as a regular Haskell program.

While we have a mostly syntax-driven transformation, we also want to detect some
compilation errors at transformation time. In particular, the detection of these errors
requires name resolution. An example is checking that when forming a composed
type, the pieces to be included can be identified, and belong to the same category,
in particular, to the category specified in the declaration of the composed type.
Name resolution is also required to be able to distinguish between regular data
type constructors and constructors belonging to a data type piece. We get name
resolution with the help of a library called haskell-names [27], which is used to
annotate the initial syntax tree with the result of a name resolution. This annotated
syntax tree is then used to check that each piece is in scope and to find out in which
category a piece was declared. With a proper way of handling name resolution,
we can easily and correctly identify references to pieces, categories, and extensible
functions in order to give more accurate error messages if any of these are out of
scope.
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While we can catch some errors already in the transformation phase, errors arising
when compiling the transformed code will refer to the transformed code rather
than the code written in our syntax. This means that error messages arising from
the transformed code are difficult to understand for a user of our syntax, without
knowledge of the transformation or backend. In this project, we have not focused
on alleviating this problem, since the transformation is only meant to be proof-of-
concept.

In addition to the transformation program, and the extension of the two above
mentioned libraries, we have implemented some test cases to check that the trans-
formation works as expected.1

The following sections will describe the transformation from code that uses our
syntax into code that uses standard Haskell and compdata, and will show the corre-
spondence between different syntactic components in the syntax and in the backend.
An example of a transformation of a complete program is given in Appendix B.2.

4.1 Avoiding Name Conflicts

The transformation introduces some new names for variables, classes, and other
symbols that were not present before the transformation. There are also symbols
that are imported from compdata, such as :+: and liftSum. Because of these new
and imported names, conflicts may arise with symbols introduced by a user of our
syntax. It is also possible that a user uses one of these symbols by accident.

It is straightforward to implement techniques to significantly reduce the impacts
of this problem. Names generated by the transformation can be made unusually
long, and to have an identifying name, such as composable_types_recursive_var.
While this is not a fool-proof solution, it makes it unlikely for name conflicts to
occur. To ensure that symbols from compdata do not overlap with other names,
compdata can be imported as a qualified module, so that symbols from compdata
are used for instance as Data.Comp.liftSum.

Both of these techniques cause the generated code to become more verbose. This is
not a concern, since the generated code is not meant to be read by a user. However,
because of the added verbosity, the resulting names from these two techniques will
not be seen in the following sections of this thesis report, to increase the readability
of examples of generated code. The techniques are still implemented in our proof-
of-concept transformation.

1The code for the versions of haskell-src-exts and haskell-names that have been modified
to support our syntax, as well as for the complete transformation and its test suite, is available as
a project on Github, at: https://github.com/kirderf1/composable-types
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4.2 Data Types and Categories
Our syntax for data types consists of three parts: category declarations, piece decla-
rations, and composed types. We will show the transformation of these here, using
the example of the expression language from previous chapters.

Piece categories are only a tool for expressing components in our syntax and to add
compile-time limitations for pieces and composed types. In fact, these categories do
not serve a purpose after the initial transformation to standard Haskell. As a con-
sequence, category declarations such as piececategory ExprCat need only be read
into the transformation phase and then removed from the transformed program. In
the transformation phase, on the other hand, the category is used to perform checks,
such as checking that the category exists when trying to define pieces belonging to
it.

Next, we have the data type pieces, written in our syntax for instance as:

data piece ExprCat ==> Op = Add ExprCat ExprCat
| Mul ExprCat ExprCat

Data type pieces are very similar to regular data types, and we can represent them
as such. To represent the recursive type, the transformed data types get a generic
variable, just as in compdata. Doing so means that a piece is transformed into a
data type with a type constructor with one argument for the generic variable, which
is also used as the recursive parameter. The piece above is then transformed as
follows2:

data Op a = Add a a | Mul a a

The name of the variable a here is arbitrary.

Finally, we have the composed types, like ExprCat ==> (Const | Op). The data
types in compdata are combined through a coproduct, and then closed with a Term.
Since we want to use the composed type directly in our syntax, it corresponds to
the closed type, that is, a Term applied to a coproduct over all the pieces included
in the composition. Hence, the composed type is transformed into the following:

Term (Const :+: Op)

As a composed type in our syntax represents a closed composed type in compdata,
our syntax hides the concept of an open coproduct. We have also chosen to represent
the composed type as a list of pieces, which is transformed into a list formed by

2To distinguish the transformed code from code written in our syntax and other code snippets,
we show the transformed code in this report in a box with a gray background like this.
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coproducts.3 Since the coproduct is a binary operator, we are restricted to represent
the composition like an ordered list rather than an unordered set. As a result,
equality between composed types only holds if they contain the same pieces in the
same order. We will come back to this to consider alternative ways of representing
composed types in Section 5.4.1.

Data type pieces with additional type variables will, in the transformed code, have
their type variables together with the added recursive type variable. To make it easy
to transform piece references, the original type variables will remain as the leftmost
type variables, while the recursive type variable is added at the rightmost end. The
example data piece ExprCat ==> ConstP c = ConstP c from Section 3.2 is then
transformed into:

data ConstP c a = ConstP c

The piece constructor with a variable is here a straightforward transformation into
a data constructor with the same variable. A piece reference specifying the type
variable is similarly transformed to use the data constructor instead of the piece
constructor. Hence, the composed type ExprCat ==> (ConstP Int | Op) is trans-
formed into:

Term (ConstP Int :+: Op)

4.3 Constructors and Using the Data Types
An example expression can be created using our syntax as:

constTwo = Const 2

To specify its type, one can either define it to be of a fixed composed type, like
constTwo :: ExprCat ==> (Const), or a parameterized type using constraints,
like constTwo :: Const partof e => e. The transformation of the composed
type was given in the previous section. Now, we will discuss how to transform the
constructor, Const, which will also cover the transformation of the piece constraint
in the parameterized type.

As mentioned in Section 3.3, we want our constructors to function as the smart
constructors in Data Types à la Carte and compdata, that is, by constructing a
value of some composed type containing the necessary pieces. Thus, we want to use
the smart constructors of compdata when transforming our constructors.

The type of the smart constructor for constants is the following in compdata:
3We have restricted the composition to be represented as a list, rather than in a nested way

like ((PieceName1 | PieceName2) | (PieceName3 | PieceName4)). This nested composition
would still only be a list-like coproduct wrapped in a Term in the transformation. When only
forming the coproduct from a specific composed type, rather than potentially from a combination
of compositions, this is straightforward. However, see the discussion on combining compositions
in Section 5.4.2.
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iConst :: (Const :<: f) => Int -> Term f

The corresponding constructor in our syntax has the following inferred type:

Const :: (Const partof e) => Int -> e

We can see that our piece constraint is closely corresponding to the subsumption
constraint of compdata, as also mentioned in Section 3.5.2. However, it has one
main difference: While the composition in the subsumption is a coproduct, f, which
is closed only in the type as Term f, we have the closed composition directly param-
eterized as e. This means that we cannot directly transform the piece constraint
Const partof e into a subsumption constraint Const :<: f, and consequently not
the constructor Const into a smart constructor iConst. In the next section, we will
see how this can be alleviated, before defining our own smart constructors in Sec-
tion 4.5.

4.4 Parameterized Compositions
The problem indicated in the previous section arises in all cases where we use a type
constraint on a composition, since we parameterize compositions as simply a type
variable, like e, while in compdata, it is wrapped in a Term, like Term f.

One may first try to resolve this simply by detecting type variables for composed
types and, when transforming those, wrap them as Term e from a variable e. This
detection can be made using the constraints on composed types, which indicate
which variables represent compositions. However, doing so changes the meaning
and kind of the type variable e, which is difficult to handle in all possible cases.
This is especially difficult when only one of two linked type variables should be
changed, such as in a type class and an instance.

For instance, consider the following type class and instance written using our syntax:

class Transform a b where
transform :: a -> b

instance Const partof b => Transform Int b where
transform i = ...

Here, we have only one constraint, in the instance declaration. In this example,
we would wrap b into Term b in the transformation of the instance. On the other
hand, consider the following case where we have two constraints, one in the class
declaration and one in the instance:

class (b with eval) => Transform a b where
transform :: a -> b

instance Const partof b => Transform Int b where
transform i = ...
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Now, we only want to wrap one of the variables b in a Term. Transforming b into
Term b in the class declaration means that the meaning and kind of the variable b
is changed there. This means that the variable b in the instance declaration already
corresponds to the Term b in the class, and should thus not be wrapped itself.
Therefore, it is challenging to correctly wrap the variables only where necessary.

Due to this difficulty, we opt for another approach. Instead of changing the type
variables, we leave them be and bridge the gap between the constraints in our syntax
and the ones in compdata through introducing new type classes and instances to
use in the transformed code. For instance, we can write a type class for the piece
constraint as follows, using the class for subsumption and its function inject:

class PartOf f e where
inject' :: f e -> e

instance f :<: g => PartOf f (Term g) where
inject' = inject

This means that we can transform our piece constraint f partof e into PartOf f e,
and use that instead of a constraint using subsumption f :<: g, where e represents
a closed composed type rather than an open coproduct. We will use a similar
approach with another type class in the transformation of functions in Section 4.6.

4.5 Smart Constructors
With the type class PartOf defined in the previous section, we can now define the
smart constructors. These will be generated in the transformation of each piece.
Data Types à la Carte, and in turn compdata, defines smart constructors through
subsumption, like the following for Const:

iConst :: (Const :<: f) => Int -> Term f
iConst i = inject (Const i)

The result type here is Term f, a variable wrapped in a Term. The function inject
is defined in compdata. By using the intermediary class PartOf instead of :<:, we
define the smart constructor instead as the following:

iConst :: (PartOf Const e) => Int -> e
iConst i = inject' (Const i)

This will be generated in the transformation of the piece Const. Now, it is possible to
use this smart constructor for parameterized types without explicitly wrapping them
on the form Term f, although the wrapping in Term is still an implicit requirement
through the class PartOf. We also use the function inject', as defined in the class
PartOf, to serve the same purpose as inject defined in :<:.

As opposed to Const, which takes a constant as its argument, Add takes values of
the recursive composed type, which we specify to be of the same type as the result
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type e. This gives the following smart constructor, generated in the transformation
of the piece Op:

iAdd :: (PartOf Op e) => e -> e -> e
iAdd e1 e2 = inject' (Add e1 e2)

This means that we can now transform an example like the following from Sec-
tion 3.5.2:

twoMulThreePlusFive :: (Const partof e, Op partof e) => e
twoMulThreePlusFive = Const 2 `Mul` (Const 3 `Add` Const 5)

This is transformed into the following, using our smart constructors:

twoMulThreePlusFive :: (PartOf Const e, PartOf Op e) => e
twoMulThreePlusFive = iConst 2 `iMul` (iConst 3 `iAdd` iConst 5)

Note that, since we use compdata, we have the same limitation as that approach
regarding explicit type annotations. This means that, for instance, when evaluating
twoMulThreePlusFive, the compiler would not be able to resolve the evaluation
due to ambiguities.4 To be able to evaluate the example above, one needs to specify
its type to a concrete composition, like ExprCat ==> (Const | Op) in our syntax,
or Term (Const :+: Op) in the transformed code.

4.6 Destructive Functions
As an extensible function in compdata is represented as a type class with instances
for each variant of the data type, we want to transform our syntax for extensible
functions into type classes and instances. We show it here for a destructive extensible
function, eval.

First, we have the function declaration:

eval -: ExprCat -> Int

This defines the type of the extensible function, and acts as the base for any future
extensions for specific pieces. This corresponds to the function classes in compdata,
which looks like the following for the evaluation example given in Section 2.3:

class Functor f => Eval f where
evalAlg :: f Int -> Int

The type variable f here represents a functor such as a coproduct or a specific piece.
In this compdata example, the function is written as an algebra, as seen in the
type signature evalAlg :: f Int -> Int. This means that the recursive value is

4See Section 2.2 for the explanation about such explicit type annotations to resolve ambiguities.
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evaluated at each step to an Int. As stated in Section 3.4, we chose to instead
have functions in our syntax written without algebras. Hence, we need a different
recursive type, namely some composed type. In particular, it could be any composed
type which the extensible function can take as an argument. For Eval, we write this
as follows:

class Eval f where
eval' :: Eval g => f (Term g) -> Int

We then want to use eval' in the actual evaluation function, eval, just as evalAlg
is used in the compdata example. In the class definition for Eval, we assume that the
evaluation function eval can accept any Term g where Eval g is fulfilled. We will
see that this holds as we continue by defining eval. The newly introduced eval'
accepts a value of a coproduct, that is, a type not closed by Term. Meanwhile, eval
is meant to accept a value of a closed composed type. This means that eval can
be implemented as eval' . unTerm, where unTerm is a function in compdata that
simply unwraps a value from a Term. In compdata, eval is defined exactly as such:

eval :: Eval g => Term g -> Int
eval = eval' . unTerm

However, doing so in our transformation would lead to the parameterization problem
discussed in Section 4.4, as the function here is parameterized on the open coproduct
rather than on the closed composed type. Instead, we define eval inside a type class
that acts as an intermediary class:

class Eval_outer t where
eval :: t -> Int

instance Eval g => Eval_outer (Term g) where
eval = eval' . unTerm

By introducing this class and instance, we can use the outer type class Eval_outer
in a constraint and thus not need to change any type variables by wrapping them
in a Term.

The final part to be generated when transforming the declaration of an extensi-
ble function is an instance for the coproduct, as with Data Types à la Carte and
compdata. Just like with compdata, this is derived using Template Haskell, in partic-
ular using liftSum defined in compdata. Thus, a line like the following is generated
for each extensible function declaration:

$(derive [liftSum] [''Eval])

Now, we can conclude that the declaration of an extensible function eval is trans-
formed into:

74



4. Transformation

• the class Eval with its function eval'

• the outer class Eval_outer containing the actual evaluation function eval

• the Template Haskell derivation for the coproduct instance of the class Eval

Next, we have the function extensions for the pieces, written for eval in our syntax
as:

ext eval for Const where
eval (Const i) = i

ext eval for Op where
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

These correspond, as mentioned, to type class instances to the class Eval. This is
then a straightforward transformation into the following:

instance Eval Const where
eval' (Const i) = i

instance Eval Op where
eval' (Add e1 e2) = eval e1 + eval e2
eval' (Mul e1 e2) = eval e1 * eval e2

The function name eval is changed into the class name Eval in the instance head,
along with the name of the piece which takes the place of the variable to the class.
Note also the change from eval into the class function eval' specifically on the
left-hand side of the equations.

4.7 Constraints on Composed Types
The constraints we presented in Section 3.5 are transformed into equivalent regular
type constraints, written in a context. In each of the following sections, we cover
one of those forms of constraints.

4.7.1 Function Constraints
First, we have the function constraint, that a certain function must be supported
by a composed type. An example using this was presented in Section 3.5.1 as:

evalFalse :: e with evalCond => e -> Int

This constraint corresponds in compdata to a class constraint, as follows:
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evalFalse :: EvalCond e => Term e -> Int

However, as discussed in Section 4.4, we avoid a transformation of the type variable
by instead using an intermediary class, which in this case is the outer class for exten-
sible functions introduced in Section 4.6. This gives the following transformation:

evalFalse :: EvalCond_outer e => e -> Int

By using the class EvalCond_outer rather than EvalCond, the type variable does
not need to be wrapped in a Term as it is in compdata.

4.7.2 Piece Constraints
Second, we have the piece constraint, to restrict a composed type to contain certain
pieces, which corresponds to the subsumption constraint in compdata. For instance,
it can be used in the following example from Section 3.5.2:

mulTwo :: (Const partof e, Op partof e) => e -> e

As mentioned in Section 4.4, a piece constraint is transformed into using an interme-
diate class, PartOf, instead of subsumption directly. This means that the example
above is transformed into the following:

mulTwo :: (PartOf Const e, PartOf Op e) => e -> e

Note that the class PartOf, defined in Section 4.4, is not specific to any piece or
composition, unlike other code introduced by the transformation. Rather, the same
class should be used by any piece constraint in any module. To do so, this class and
its instance are defined in a separate library module, and an import statement is
generated in each transformed module to import this library module.

4.7.3 Category Constraints
Third, we have the category constraint, that a composed type is of a certain category.
This does not have any correspondence in the transformed code written in regular
Haskell and compdata. We could give it a counterpart by defining yet another type
class, with instances for each category, and then transform the constraint into a
constraint that the variable should be part of said type class. Then we could use
it to set limitations, for instance, on the result type of a transformative function,
as mentioned in Section 3.6.2. We have not implemented this in this project, so as
of now, a category constraint is simply transformed into an empty context, without
any additional checks in the transformation phase. This means that the current
state of the implementation does not put any restrictions on type variables based on
a category constraint. We discuss the possibility of implementing a more meaningful
transformation of a category constraint in Section 5.1.
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4.8 Polymorphic Extensible Functions and Type
Applications

For polymorphic functions, we may have a context with constraints in a function
declaration, for instance like the following from Section 3.6.1:

evalNum -: (Num e) => ExprCat -> e

There is then both a context and a variable that need to be accounted for in the
transformation. The context is simply added to the two class declarations that cor-
respond to the function. Any type variables are gathered in the order that they first
appear, and these variables then correspond to type variables in the two aforemen-
tioned type classes. In Section 4.6, we introduced a type variable f corresponding
to the ingoing type of the function, such as a piece or a coproduct. This means that
the transformation of evalNum needs both the variable f as before and the variable
e as defined in the declaration. We have defined the transformation to have the
variable for the ingoing type first, which gives the following transformation for the
declaration of evalNum:

class Num e => EvalNum f e where
evalNum' :: (EvalNum g e) => f (Term g) -> e

class Num e => EvalNum_outer t e where
evalNum :: t -> e

instance EvalNum g e => EvalNum_outer (Term g) e where
evalNum = evalNum' . unTerm

$(derive [liftSum] [''EvalNum])

Note that we do not need to make any changes to the Template Haskell derivation of
the coproduct when adding new type variables to the class; this is handled through
the function liftSum.

To then have an extension refer to the type variable written in the declaration,
we took inspiration from type applications, as seen in the following extension to
evalNum:

ext evalNum @Int for Const where
evalNum (Const i) = i

Here, @Int corresponds to e in the declaration. In the transformed code, this ex-
tension becomes:

instance EvalNum Const Int where
evalNum (Const i) = i

The type Int from the type application takes the place of the second variable to the
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type class, corresponding to the variable e in the class definition shown above.

Type applications are also used in function constraints. For example, consider the
following example from Section 3.6.3:

evalNumInt :: (e1 with evalNum @Int) => e1 -> Int
evalNumInt = evalNum

Just as in the transformation of the function extension, the Int from the type
application here will take the place of the second variable to the type class, resulting
in the following:

evalNumInt :: (EvalNum_outer e1 Int) => e1 -> Int
evalNumInt = evalNum

We are also able to write constraints in function extensions. For instance, say that
we have the following declaration for the transformative function desug, defined in
Section 3.6.4:

desug -: (ExprCat ==> e) => ExprCat -> e

We can then have the following extension, where the variable a in the type applica-
tion corresponds to the variable e in the declaration:

ext (Const partof a, Op partof a) => desug @a for Neg where
desug (Neg e) = Const (-1) `Mul` (desug e)

In the transformation, the context here becomes the context for the corresponding
instance, and the type application is transformed into a parameter in the correspond-
ing type class, just as with @Int above. This means that the function extension above
is transformed into:

instance (PartOf Const a, PartOf Op a) => Desug Neg a where
desug' (Neg e) = iConst (-1) `iMul` (desug e)

With this, we have covered the transformation of all the syntactic components
described in Section 3. A complete example of a transformation is given in Ap-
pendix B.2.
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In this chapter, we present various scenarios and potential use cases of composable
data types that are not covered by our syntax and transformation implementation.
We discuss how these could be integrated into our syntax and transformation, and
where potential difficulties may arise.

5.1 Category Constraints
In Section 3.5.3, we presented syntax for a category constraint, which would state
that a polymorphic composition belongs to a certain category. We have not imple-
mented this in the transformation, as mentioned in Section 4.7.3. In this section,
we revisit the constraint, and discuss how it could be fully implemented.

An example using the category constraint is the desug function, given in Sec-
tion 3.6.4 with the following declaration:

desug -: (ExprCat ==> e) => ExprCat -> e

The category constraint ExprCat ==> e is meant to restrict the result type e to
be of category ExprCat. In particular, this is meant to restrict the result types of
extensions defined for this function. As mentioned, this is not an enforcement that
we have implemented in the transformation, and the constraint is currently just
transformed into an empty context.

To implement an actual enforcement for this constraint, it might be possible to
use a similar strategy as for the other constraints, by introducing a type class; see
Section 4.4. Just as the type class PartOf for the piece constraint, we could define
this type class in a library module. The type class could be defined like the following:

class InCat e c

This would indicate that e is of category c. For this to correspond to a category
constraint, the type variable e should represent a closed composed type rather than
an open coproduct, since the constraint is on a composed type. Such a composed
type can only be created for a certain category if all composed pieces belong to said
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category. From this, it would be sensible to relate the category constraint class above
to a constraint indicating that pieces belong to a certain category. We indicate this
with another type class as follows:

class InCat_open (f :: * -> *) c

The kind signature (f :: * -> *) is used since we want this to be defined for
pieces, which have that particular kind. This means that we would define instances
for the pieces defined in a certain category, for example as:

instance InCat_open Const ExprCat

instance InCat_open Op ExprCat

The category ExprCat here would be defined simply as an empty data type, as
follows:

data ExprCat

Furthermore, it would be sensible to have an instance for the coproduct, like the
following:

instance (InCat_open f c, InCat_open g c)
=> InCat_open (f :+: g) c

This indicates that a coproduct belongs to the category if both of its summands do.
To make the connection between InCat and InCat_open, we define an instance of
InCat as follows, indicating that the closed constraint is fulfilled for Term f if the
open constraint is fulfilled for f:

instance InCat_open f c => InCat (Term f) c

Note here the similarity between this and our definition of the intermediary class
PartOf, which has a similar instance connecting PartOf, defined for closed compo-
sitions, to the subsumption class, defined for open coproducts. This instance, the
instance for the coproduct and both type classes would be included in the library
module mentioned above.

The type class InCat would then be used when transforming a category constraint,
which would result in a constraint like (InCat e ExprCat). For instance, the func-
tion desug above would be transformed into the following:
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class (InCat e ExprCat) => Desug f e where
desug' :: (Desug g e) => f (Term g) -> e

class (InCat e ExprCat) => Desug_outer t e where
desug :: t -> e

instance Desug g e => Desug_outer (Term g) e where
desug = desug' . unTerm

$(derive [liftSum] [''Desug])

We also want the category constraint in the declaration of desug to restrict the result
type in the extensions, which are written using piece constraints. For instance, we
have an extension written in our syntax as follows:

ext (Const partof a) => desug @a for Const where
desug (Const i) = Const i

In the transformed code, this would look like:

instance (PartOf Const a) => Desug Const a where
desug' (Const i) = iConst i

This would not compile, since the compiler cannot deduce InCat a ExprCat from
just the piece constraint in the instance. However, this deduction is exactly what we
want, since it should already be true in practice. If a piece within a certain category
is used in a composition, we already require all other pieces, and thus the whole
composed type, to also belong to said category. This is also applicable for function
constraints, as each extensible function already states the category within which it
accepts pieces.

As it is defined so far, a category constraint can only be deduced when all pieces in
the composed type are known, as it is only then that the instances to InCat_open
can be applied. We could consider writing additional instances that state a relation
between the constraints directly, such as the following:

instance (PartOf f a, InCat_open f c) => InCat a c
instance Eval_outer a => InCat a ExprCat

However, these instances are not accepted by a compiler, in part because of the over-
lap between instances. Another approach may be to modify the function constraints
to add the category constraint as a superclass:

class InCat a ExprCat => Eval_outer a where
...

This approach is, however, not immediately applicable to piece constraints, as the
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category depends on the piece used in the constraint rather than the constraint
itself.

In conclusion, we can state that, while deducing a category constraint from a dif-
ferent constraint is difficult to implement, it is still possible to implement just the
introduction of type classes for the category constraint as above without this extra
constraint deduction.

5.2 Constructive Extensible Functions

In the syntax presented in Chapter 3, we provide support for destructive and trans-
formative extensible functions. What we have not covered is constructive extensible
functions, that is, functions that build a composed type from a simple type, and
can be extended over additional pieces similarly to the other kinds of extensible
functions. An example of such a function could be a parser function that builds a
composed type from a String. For instance, it could build an expression of the type
we have in the running example. This would preferably have a function declaration
like the following:

parseExpr -: String -> ExprCat

Unlike destructive and transformative functions, which are extended for variants
of the first argument, constructive functions would be extended for variants of the
return type. With the previous extensible functions, only one extension is used for
each recursion step, which is chosen to match the variant of the composition that
the function takes as its first argument; that is, it chooses an extension based on the
input type. The same approach cannot be used for constructive functions, as there
is no longer a composed type as a first argument that determines the extension to
be used, so the extension would rather be chosen based on the input value.

Without a clear way of choosing an extension to be used, one might instead use all
extensions to then somehow combine their results. One such approach is evaluation
that can fail, such as by producing a result of the Maybe type. When calling the ex-
tensible function, each extension could be evaluated in order, and the first successful
result would be the result for the extensible function. The question is then in which
order the extensions should be evaluated. If constructive extensions are linked to
pieces in the same way as the original extensions are linked to destructive functions,
the order could be made to be the same as the order of pieces in the composed type
that is being constructed. Another alternative is to compose constructive functions
in the same manner that extensible functions are composed in Variations on Vari-
ants in Section 2.4, where the order could be determined by the order of extensions
in the composed function.
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5.3 Inferences
In some aspects, the syntax is more verbose than necessary. For one, the syntax
may require several parts that need to correspond to each other, even if one part
may be inferred by another. The category in the syntax for compositions is one such
example, as it could be inferred from the pieces included in the composition. In this
section, we aim at relaxing some rules to optionally allow a simpler syntax. For some
of these additions, a type-aware transformation would be required to implement the
addition.

5.3.1 Inferring a Category in Compositions
Consider a composed type such as the following:

ExprCat ==> (Const | Op)

The category that is used in these types exists for the user to state the intended
category, which is then used to check that all pieces in the composition belong to
that category. The most important thing, however, is that all the pieces belong
to the same category, not that it is any specific category. If two pieces belong to
different categories, that should be detected even without stating to which category
they are expected to belong. This means that it could be possible to remove the need
for writing an intended category, and have the transformation only check whether
the pieces belong to the same category. By making the intended category optional,
one could write compositions in a simpler manner, as follows:

(Const | Op)

This syntax would be easy to parse correctly, except when writing a composition of a
single piece. There would then be no syntactic distinction between the piece Const
and the composition consisting of just Const, written with an explicit category
as ExprCat ==> Const. There is, however, a semantic difference, since the piece
is open, and the composition is closed, which in the transformation to compdata
means that the latter is wrapped in a Term. This could be resolved by forcing
single-piece compositions to have an intended category, or by letting them having a
certain syntax. For instance, one could use a syntax like the following:

(Const |)

This is inspired by single-item tuples in Python [28], written with a trailing comma,
as in the following example:

singleTuple = 123,

A special syntax would be preferred in order to make the syntax similar for single-
and multi-piece compositions, while having a clear distinction between a piece and
a composition.
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5.3.2 Inferring a Piece in Function Extensions
Just as the type system of Haskell can infer the type of bindings under most cir-
cumstances, it could be possible to infer the piece over which an extensible function
is extended. As an example, consider the following function extension:

ext eval for Const where
eval (Const i) = i

Here, the use of the piece Const could be inferred in the transformation phase from
the pattern with Const. This means that one can make it possible to shorten the
syntax of the extension to:

ext eval where
eval (Const i) = i

Note that this is a suggestion for syntactic sugar, meaning that it would be optional
to include the piece or not. The user should still be able to include the piece to
make the code clearer.

From here, it could also be possible to simplify an extension with a single case into
a single line:

ext eval (Const i) = i

A multi-constructor piece, on the other hand, has several cases in its extension.
This is what the extension for the operations piece, Op, would look like without the
specified piece:

ext eval where
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e2 * eval e2

To have this with a single-line syntax, one would need to write an extension decla-
ration for each of the constructors, as follows:

ext eval (Add e1 e2) = eval e1 + eval e2
ext eval (Mul e1 e2) = eval e1 * eval e2

Since these belong to the same piece, they should belong to the same type class
instance when transformed. This means that these rows are not independent from
each other, and must be kept together. As a result, allowing this syntax makes
the connection between variants that belong to the same piece obscured, and some
confusion may arise. Therefore, the by-piece extension syntax is to be preferred
for multi-constructor pieces. Thus, the possibility to have multi-constructor pieces
limits the simplicity somewhat in this case, while it broadens the expressive power
of pieces.
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5.3.3 Composition Defaulting
As mentioned in the section on Data Types à la Carte, Section 2.2, solutions based
on that have a limitation in that explicit type annotations are needed in some places
to resolve ambiguities arising from the coproduct. This is the case for compdata, our
backend, as well, which means that this is also a limitation of our implementation.

As an example, we can write an expression as follows, with constraints specifying
that the pieces Const and Op are included:

expr :: (Const partof a, Op partof a) => a
expr = Const 1 `Add` (Const 2 `Mult` Const 2)

When we want to evaluate such an expression, we must specify it to have a fixed
composed type, like the following:

evalEx :: Int
evalEx = eval (expr :: ExprCat ==> (Const | Op))

This is because the compiler cannot otherwise deduce whether the composition is
ExprCat ==> (Const | Op) or ExprCat ==> (Op | Const), or some even larger
composition. Consequently, the compiler cannot deduce the internal structure of
the example needed to evaluate it.

A way of resolving such ambiguities is discussed in Variations on Variants (Sec-
tion 2.4). The proposed solution is to include a defaulting mechanism in the com-
piler, similar to the mechanism that allows z = show 1 to type despite the ambiguity
of the type of 1. This is, however, a proposed addition to the compiler, while we
will examine here the possibility of solving this in our transformation phase.

As the ambiguity problem is a limitation of compdata, it could be possible to include
a defaulting mechanism in the transformation, which would infer the composition by
defaulting to one of the possible ways to resolve the constraints on the composition.
To do so, it would require using a type system to identify which constraints are put on
the composition, and then assume the ambiguous type to be the smallest composition
that fulfills all constraints. In the example above, this would infer a composition con-
taining the pieces Const and Op, which could be either ExprCat ==> (Const | Op)
or ExprCat ==> (Op | Const). The order is not relevant in this example, but an
order must be chosen through the defaulting mechanism.

Now, let us consider evalEx again, without the fixed composed type:

evalEx :: Int
evalEx = eval expr

With a defaulting mechanism as described above, this would now be transformed
into the following, given that the order was chosen as ExprCat ==> (Const | Op):
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evalEx :: Int
evalEx = eval (expr :: Term (Const :+: Op))

Inferring a composition in the transformation phase would only work in specific cir-
cumstances, where the behavior of the program is not altered by the presence or
absence of a piece in the composed type. This means that a composed type should
not be inferred in a constructive function, to give one example. Therefore, a restric-
tion has to be made for when the composition can be inferred. This would require a
type-aware transformation, which could deduce where to infer the composition and
insert the type annotation. It is difficult to say how easy it would be to implement
this defaulting mechanism in practice.

5.4 Composition Representation
Composed types currently behave as lists of pieces, which have a direct correspon-
dence in composed types in compdata. For two of these composed types to match,
the order of the pieces must also match. In this section, we consider changing com-
posed types to instead behave as sets, and how this could lay the foundation for a
union operator for composed types.

5.4.1 Equivalence Between Composed Types
As mentioned in Section 4.2, composed types are represented as a list of pieces,
where for two composed types to match, both the pieces and their order need to
match. This means that the following example would give a compile-time error since
the types do not match:

expr :: ExprCat ==> (Const | Op)
eval :: ExprCat ==> (Op | Const) -> Int
evalEx = eval expr

However, the syntax we have presented so far makes no meaningful use of the index-
ing or ordering of pieces provided by representing composed types like this. Piece
constructors are used in the same way regardless of the position of the piece in the
composed type, as long as the piece exists somewhere in the composed type. This
is also true for function extensions, which are written by piece in no given order.
We can compare this to variants of a regular data type, where the order in which
the variants are presented does not affect the behavior of the data type. An idea
is then to change the composed types so that they are considered equal as long as
they contain the same pieces, even if the pieces are ordered differently. Doing so
would remove the type error in the example above.

To achieve this, the transformation of a composed type into a fixed coproduct needs
to order all pieces in a predictable manner. As a predictable order, one may first
think of ordering them alphabetically. For this to work across modules, it would
have to be alphabetically over the full, qualified names of the pieces. This is easy to
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do when each piece reference consists just of a piece name, as in the example above,
but it is not as easy with polymorphic pieces. Piece references for polymorphic
pieces where all applied types are fixed can be sorted by the name of the first type,
followed by the next one, and so on, but that still does not cover all possibilities.
Consider the following parameterized type:

type ExprP a = ExprCat ==> (ConstP () | ConstP a)

When transforming this type, we would sort the pieces by the name of the piece
first. As we then have two ConstP, we would sort those two based on their first type
argument. However, since we do not know which type a is, we cannot reliably tell
if it should be sorted before or after (). Both cases could be true by using different
types for a.

In order to fully handle equality between composed types, we must consider duplicate
pieces in a composition, in addition to ordering of pieces. As of now, this is more of a
theoretical problem, since it is not straightforward why it would be practically useful
to allow duplicate pieces in a composition declaration at all. On the other hand,
handling duplicate pieces will be useful in practice in the next section, where we
discuss the possibility of a union operator to combine composed types, potentially
containing some overlap in pieces.

We have so far not defined how such duplicates are handled. With the transformation
that we have described so far, any duplicates will simply be left as they are, and
remain in the transformed coproduct. These duplicates will there give a run-time
error when using the subsumption constraint for a piece on the left-hand side of the
constraint that exists multiple times in the coproduct on the right-hand side. This
is due to a change to the subsumption constraint in compdata that disallows such
ambiguities. [12]

For our syntax, we have two suggestions on how to explicitly handle duplicate pieces.
First, these duplicates could be removed. However, the choice of which piece to re-
move would make a difference, unless we also sort the pieces as described above,
which would render the positioning of duplicated pieces meaningless. The second
suggestion is to disallow duplicates completely, and give an error during the trans-
formation phase if any duplicates are detected. Either suggestion is difficult with
polymorphic pieces for the same reason as with ordering pieces. In the example with
ExprP above, we cannot tell if a will equate to () or not, and thus not whether they
are duplicates.

Even if we solve the problem of polymorphic pieces, there would be a drawback
to implementing this: By removing the distinction between composed types with
different ordering of pieces, we would also remove the possibility for any syntax
extensions to make use of the order of pieces for something meaningful. In particular,
an order could be useful for constructive functions, as discussed in Section 5.2.

Instead of removing the distinction between compositions based on ordering of
pieces, it could be possible to equate composed types that only differ in ordering
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through using an isomorphism constraint. This constraint is defined in compdata as
type f :=: g = (f :<: g, g :<: f). This only works for ground types, that is,
types with no variables, just as the subsumption constraint. As a result, one needs
to give a fixed type for the constraint to be fulfilled. By introducing a similar con-
straint in our syntax, we could give the possibility to a user for expressing equality
between types that only differ in order of pieces.

5.4.2 Union of Composed Types
With the syntax we presented in Chapter 3, one cannot directly extend a composed
type, but must write a new composed type containing all the desired pieces. In
particular, one must specify all the pieces again, and cannot reuse the old composed
type in any way. For instance, consider the type ExprComp:

type ExprComp = ExprCat ==> (Const | Op)

Next, we want to define a new composed type, which extends this type to also
contain Neg. To do so, we must specify all pieces again as:

type ExprCompWithNeg = ExprCat ==> (Const | Op | Neg)

To make this simpler, we consider the possibility of adding syntactic sugar that can
allow reusing a composed type when defining a new composition, to not have to
specify all pieces again. For the example here, we could do so through defining a
new operator that combines a composed type and a piece, as follows:

type ExprCompWithNeg = ExprComp `extendWith` Neg

This operator behaves similarly to the :+: operator in compdata, but we cannot
transform our operator to use compdata directly, like this:

type ExprCompWithNeg = Term (ExprComp :+: Neg)

This will fail because the type ExprComp is a closed composition, and not an open
composition. Because our syntax lacks a representation of the open coproduct, it is
not possible for a user of our syntax to define the coproduct of ExprComp separately
and use that one instead. Before addressing this problem, we look at a more general
operator that also has this problem.

This general operator is a union type operator that would combine two composed
types. More specifically, it would return a composed type of the union of the pieces
in the two composed types to which it is applied. This means that one could
combine two composed types without having to write all the pieces to be included.
An example of how this could be written is the following, where Combined would
contain the pieces Const, Op and Neg:
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type ExprComp = ExprCat ==> (Const | Op)
type NegComp = ExprCat ==> (Neg)
type Combined = ExprComp +&+ NegComp

If we consider using the :+: operator to combine the two types, we once more
encounter the problem that we cannot use closed composed types in place of co-
products. Our suggestion to solve this problem is to let the transformation look at
the two types that are being combined, figure out which pieces they contain, and
then transform the use of the union operation directly into a composed type that is
built from the same pieces. In the example above, this would mean that, in order to
transform ExprComp +&+ NegComp, the transformation would first look at the type
information for ExprComp, see that it is a composition, and get the list of pieces
Const and Op. The transformation would then look at NegComp to find the piece
Neg. These pieces would then be combined to transform the type into:

type Combined = Term (Const :+: Op :+: Neg)

With this approach, the union operator would behave just as the :+: operator in
regards to the pieces present in the result, but operating on composed types rather
than coproducts. However, since the pieces are obtained from the two composed
types being combined during the transformation, we can only do so for composed
types that are fixed to a specific composition. Because of this, we cannot apply the
union operator to any type that uses type variables, such as in this example:

either :: a -> b -> (a +&+ b)
either = ...

This is a limitation in the expressiveness of our operator compared to coproducts,
but we do not believe that this is a significant drawback. Regardless, we can use
this approach also for the above proposed operator that combines a composed type
and a piece.

Next, we recall the discussion of the problem of duplicates pieces from the previous
section. This problem is relevant for both coproducts and the union operator. To
illustrate it, we consider this slightly modified example:

type ExprComp = ExprCat ==> (Const | Op)
type NegConstComp = ExprCat ==> (Neg | Const)
type Combined = ExprComp +&+ NegConstComp

This combined type will then be transformed into the following:

type Combined = Term (Const :+: Op :+: Neg :+: Const)

Since compdata disallows duplicate pieces, this combination would not be allowed.
While this would be no problem when combining disjoint composed types, combining
composed types with any shared pieces would not be possible. To allow the union
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operator to work for these types as well, and thus be an actual union operator,
we would need to remove any duplicate pieces as described in the previous section.
Thus, we consider doing so, together with sorting of pieces. The type Combined
would then instead be transformed into:

type Combined = Term (Const :+: Neg :+: Op)

5.5 Function Alternatives
With the syntax we have designed, one can write extensible functions for various
kinds of situations. For some kinds of operations, writing them as extensible func-
tions may be excessive. We could then want to provide built-in alternatives to some
of these, which could lead to less repeated code or other simplifications. We explore
some of these alternatives in this section. The important thing to note here is that
these are meant to be simplifications of operations that, to some degree, are already
possible, but over-complicated, in our syntax.

5.5.1 Pattern Matching on Composed Types
Writing extensible functions over a data type is suitable when providing cases for
a growing number of data type pieces. There may be situations where it would be
more suitable to write a function in a simpler way, more like a regular function. This
could be a function that is not meant to be extended, or perhaps that handles new
pieces with a default case. In that case, one could possibly define the function by
writing cases through pattern matching instead of writing function extensions for
each piece. As this would be written as regular functions rather than extensions, it
would not be possible to extend the function later on without recompilation.

As an example, we consider a closed version of the evaluation function, eval, written
as an extensible function as follows:

eval -: ExprCat -> Int
ext eval for Const where

eval (Const i) = i
ext eval for Op where

eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

If the function is meant only for a fixed composition of a few cases, one may instead
want to write the function as a regular, closed function, as follows:

evalClosed :: ExprCat ==> (Const | Op) -> Int
evalClosed (Const i) = i
evalClosed (Add e1 e2) = evalClosed e1 + evalClosed e2
evalClosed (Mul e1 e2) = evalClosed e1 * evalClosed e2
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As long as the composed type is fixed, we can transform these patterns directly
to use In, Inl and Inr depending on where each piece is placed in the composed
type. This would then look like the corresponding closed function in Data Types à
la Carte in Section 2.2, as follows:

evalClosed :: Term (Const :+: Op) -> Int
evalClosed (In (Inl (Const i))) = i
evalClosed (In (Inr (Add e1 e2))) = evalClosed e1 + evalClosed e2
evalClosed (In (Inr (Mul e1 e2))) = evalClosed e1 * evalClosed e2

This is possible as long as the pattern has a fixed composed type that can be
processed during the transformation phase. Knowing the fixed type composition, a
transformation could observe the order of its pieces, from which it can determine the
correct composition of Inl and Inr patterns. To implement this, the transformation
needs to be type-aware, to be able to correctly observe the types of the pieces and
the composition and use that to give the correct patterns in the transformed code.

However, this is not possible for a polymorphic type, which does not have a known
composition of its pieces. For instance, consider the following function:

evalIntClosed :: (Const partof a) => a -> Int
evalIntClosed (Const i) = i
evalIntClosed _ = ...

Here, the transformation cannot determine the correct composition of Inl and
Inr. Instead, it might be possible to transform the function to use projection from
compdata, to then split on the cases Just (Const i) and Nothing.

To do so, we need to modify our intermediary class PartOf to make the projec-
tion function available. We can do this by introducing project' as our version
of project in compdata, just as inject' is our version of inject. This gives the
following type class and instance:

class PartOf f e where
inject' :: f e -> e
project' :: e -> Maybe (f e)

instance f :<: g => PartOf f (Term g) where
inject' = inject
project' = project

To then use this projection function when transforming the evalIntClosed example
above, we could transform the function as follows, using an auxiliary function that
pattern matches over the result of project':
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evalIntClosed :: (PartOf Const a) => a -> Int
evalIntClosed a = evalIntClosed' (project' a)

evalIntClosed' :: (PartOf Const a) => Maybe (Const a) -> Int
evalIntClosed' (Just (Const i)) = i
evalIntClosed' Nothing = ...

This can be further simplified through the use of the ViewPatterns extension in
Haskell. With this, we could instead use view patterns to match against the result
of project' directly, simplifying the transformation and giving the following:

evalIntClosed :: (PartOf Const a) => a -> Int
evalIntClosed (project' -> Just (Const i)) = i
evalIntClosed _ = ...

5.5.2 Derivations on Pieces
For composable data types to be more versatile, it is desirable to be able to use type
class derivations on them. For example, one could want to derive a Show instance.
As the pieces are what correspond to data types in the transformed code, we will
primarily consider putting derivations on those. This would be written as follows:

data piece ExprCat ==> Const = Const Int
deriving Show

Note that this could be done without derivations in our syntax, through defining
an extensible function for a show function, and then use that in an instance of the
Show class. To make it simpler to use, however, it is desirable to be able to write a
derivation statement as above.

In compdata, such a derivation corresponds to a Template Haskell splice like the
following:

$(derive [makeShowF] [''Const])

This derives an instance ShowF f, which is defined in compdata to give rise to an
instance Show (Term f). [29] Derivations of several other instances, such as EqF
and OrdF are defined in a similar manner in compdata, while others may require an
extension to be able to derive them in this way.

Note that to be able to print an expression, one would need to have a Show instance
for all the included pieces. It could be possible to allow a syntax where one could
put a derivation statement on a category or a fixed composed type, which would be
transformed by putting that derivation on every included piece.

However, putting it on a category would restrict the types of pieces that could be
defined in that category. For instance, if we put a derivation of Show on a category,
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it would not be possible to define pieces in that category which have a function type
as a field to any of its constructors, for which a Show instance cannot be derived.
Therefore, it is more suitable to require the derivations to be written on each piece,
and not on a category.

Putting it on a composed type is not sensible either, since we can have different
compositions containing the same piece, and a derivation for a piece would auto-
matically derive the instance in all uses of the piece, including other compositions.
Thus, one has to make sure that there is only one derivation splice, even if multiple
compositions containing the same piece have such a derivation written for them.

5.5.3 Decomposing Multiple Composed Types
The extensible function examples eval and desug given in Sections 3.4 and 3.6.2
each decompose a single composed type, which is what is possible with the syntax
and implementation so far. It could be possible to have extensible functions that
decompose not just one, but multiple composed types. An example could be a
function that in some way combines two expressions. For instance, it could be a
function with a declaration like the following:

combine -: ExprCat -> ExprCat -> Int

This is a destructive function, but one could possibly write a transformative function
in a similar manner. Moreover, this combines values of the same category, ExprCat,
but one could also have other examples that combine values of two different cate-
gories, such as ExprCat and OtherCat.

It is possible to achieve this to some extent in the syntax we have so far by chaining
extensible functions, so that each extension to the first extensible function will have
its own extensible function that handles the second composed type. However, this
is verbose, as seen in the following example:

combine -: ExprCat -> c -> Int

ext (c with combineConst) => combine @c for Const where
combine (Const i) c = combineConst c i

combineConst -: ExprCat -> Int -> Int

ext combineConst for Op where
combineConst (Add e1 e2) i = ...
combineConst (Mul e1 e2) i = ...

The function combine here has an extension for each piece of the first argument to
be decomposed. From this extension, a second extensible function is called, which
handles all the pieces of the second argument to be decomposed. In that way, all
combinations of pieces are covered through multiple extensible functions. Note that
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this is only possible when we can dispatch on the first type first, and then the second,
as opposed to on both of them together.

For a less verbose syntax, we could consider writing an extensible function that can
decompose two arguments in the same extension. This means that we could instead
dispatch on the combination of the two arguments. The declaration for the combine
function could then look like the following instead:

combine -: ExprCat -> ExprCat -> Int

Note the two categories in the type, denoting that those arguments are to be de-
composed through this function. Then, we could write extensions like the following,
combining in this case constants and operations:

ext combine for (Const, Op) where
combine (Const i) (Add e1 e2) = ...
combine (Const i) (Mul e1 e2) = ...

Note here the two pieces in the extension, written as (Const, Op). We would need a
similar such extension for each combination of pieces from the two argument types.
This would thus still require much code for large sets of pieces. The amount of
code could be lessened through an ability to cover more than one piece in a single
extension, that is, to allow polymorphic extensions. We will discuss this possibility
in Section 5.6.2.

This would then be transformed into a class with one variable for each of the ar-
guments to be decomposed. In particular, the function combine above with type
ExprCat -> ExprCat -> Int would be transformed into a class Combine f g, like
the following:

class Combine f g where
combine' :: Combine h i => f (Term h) -> g (Term i) -> Int

From this class, we can point out a significant problem regarding recursive calls.
With a type class written in this manner, it is impossible for an extension to impose
further constraints on h and i. While this difficulty is also present for extensible
functions with a single decomposing argument, it is a more notable problem here.
We see this in the consequence that Term h can only be combined with Term i. If, in
an extension, we were to combine a value of Term h with the result of the constructor
Const, a compiler would be unable to ensure that this combination is possible, as
the extension cannot add the constraint Combine h Const or Const :<: i.

Regardless of this unsolved problem, we move on to look at a different problem,
which involves the coproduct instances for this type class. These instances are
normally generated using liftSum from compdata. However, this only works for
classes operating on a single type, and not those decomposing more than one type.
As a result, an important step to achieve this feature would be to implement an
altered version of liftSum.
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For the function combine above, which decomposes two types, we need to have type
class instances for when either of the arguments is a coproduct. In particular, we
need three instances: one where both are coproducts, and two where one of them is
a coproduct but the other is not. This would probably look like the following:

instance
(Combine f h, Combine f i, Combine g h, Combine g i)
=> Combine (f :+: g) (h :+: i) where

combine' (Inl a) (Inl c) = combine' a c
...

instance {-# OVERLAPPABLE #-}
(Combine f h, Combine g h) => Combine (f :+: g) h where

...

instance {-# OVERLAPPABLE #-}
(Combine f g, Combine f h) => Combine f (g :+: h) where

...

The implementations not shown are analogous to the one for combine' in the first
instance. Note the use of the pragma {-# OVERLAPPABLE #-}, indicating that the
instances are allowed to overlap. In this case, we can see that the instance where
both arguments are coproducts is also covered by the other two instances. Using
the pragma means that this can be resolved without errors, so that the first, more
specific, instance would be used if both arguments are coproducts. For a function
that decomposes even more arguments, the number of instances for the coproduct
would grow exponentially.

In summary, it is possible to some degree to implement functions that decompose
multiple arguments. As mentioned, however, it has a limitation on the kinds of
recursive calls that can be made.

5.5.4 Composition Conversion
Recall the example shown in Sections 3.3 and 3.5.2. We begin with an expression
with a single constant that has been given the concrete type ExprCat ==> (Const),
as follows:

constTwo :: ExprCat ==> (Const)
constTwo = Const 2

We want to reuse this in a larger expression, which also contains operations. This
larger example can then be defined to have the type ExprCat ==> (Const | Op),
and be implemented as the following:

twoMulThreePlusFive :: ExprCat ==> (Const | Op)
twoMulThreePlusFive = constTwo `Mul` (Const 3 `Add` Const 5)
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This is not possible, since the use of the constructor Mul requires both its operands,
as well as the result, to be of the same type. This restriction could be relaxed, which
we will come back to shortly. In this example, the restriction means that it would
require constTwo to have the type ExprCat ==> (Const | Op) as well. Although
this simple example can be resolved using polymorphic types via piece constraints,
as seen in Section 3.5.2, it can be useful to be able to reuse examples with a fixed
composed type in larger examples. To be able to do this, one needs a conversion
from one composed type to another. In particular, it should be possible to convert a
composed type into a composition of which it is a subtype, that is, a type containing,
at least, all the pieces included in the original composed type. In this section, we
discuss how such a conversion could be implemented in our solution, while we discuss
how subtyping could be expressed as a type constraint in Section 5.6.4.

Conversion from a composition to a larger composition could be done either implic-
itly when trying to use a value of one composed type as another type, or explicitly
using some function. Note that there is no implicit type conversion in standard
Haskell, so that approach is not as Haskell-like. However, one kind of implicit
conversion can be implemented within Haskell itself. It could be achieved by imple-
menting smart constructors with more general types, such as the following, written
using constraints from compdata:

iAdd :: (Add :<: f3, f1 :<: f3, f2 :<: f3) =>
Term f1 -> Term f2 -> Term f3

To write such smart constructors with our constraints and intermediary classes,
we need a constraint for stating a composed type as a subtype of another; see
Section 5.6.4. This is to have a constraint matching the subsumption constraint
in the example above where the left-hand side is a coproduct, while our syntax
currently only has a constraint corresponding to a subsumption constraint with a
single data type on the left-hand side. In addition, the additional type variables
would give problems with ambiguous type variables, whose possible solutions are
discussed in Section 5.3.3. With these solved, one could relax the restriction that
the arguments and the result of a constructor must be of the same type. This means
that Mul in twoMulThreePlusFive above would no longer require both operands to
have the same type as the result, so we could write constTwo `Mul` (...) directly
without the typing problem we had above.

Next, we consider the possibility of explicit conversions. An explicit conversion via a
function that converts one composition to a larger one can be written in our syntax.
This would be written as an extensible function, and would require one extension
for each piece. For expressions, it could look like the following:
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convert -: ExprCat -> e

ext (Const partof e) => convert @e for Const where
convert (Const i) = Const i

ext (Op partof e) => convert @e for Op where
convert (Add e1 e2) = Add (convert e1) (convert e2)
convert (Mul e1 e2) = Mul (convert e1) (convert e2)

This function can then be used in twoMulThreePlusFive as follows:

twoMulThreePlusFive :: ExprCat ==> (Const | Op)
twoMulThreePlusFive = (convert constTwo) `Mul`

(Const 3 `Add` Const 5)

We can consider simplifying this for a user, so that they would not need to write such
a conversion function with all its extensions for every category and piece themselves.
A design choice that has to be made here is if the user should still be required to
implement the function themselves, even if we make it simpler to do so, or if the
function should be available to a user directly. The function could be made available
to a user either through generating it in the transformation phase or through having
it in a library module, similar to PartOf. Making a function available in this way
may be unitutive for a user, since understanding how the function works requires
understanding of the backend where it is implemented.

If we choose to generate the function through the transformation, we need to gen-
erate a type class corresponding to the convert function above, like the following:

class Convert f a where
convert' :: (Convert g a) => f (Term g) -> Term a

convert :: (Convert f a) => Term f -> Term a
convert = convert' . unTerm

instance (Const :<: a) => Convert Const a where
convert' (Const c) = iConst c

instance (Op :<: a) => Convert Op a where
convert' (Add e1 e2) = iAdd (convert e1) (convert e2)
convert' (Mul e1 e2) = iAdd (convert e1) (convert e2)

$(derive [liftSum] [''Convert])

Note that this is independent of the category used for the input argument, as long
as we do not insert any category constraints1. As a result, we could write extensions

1How to insert category constraints in the transformed code is not yet implemented. See
Section 5.1 for a discussion on how this could be done.
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to this function regardless of the category. However, we would like the categories to
restrict which pieces are to be used together, so we would want a different conversion
function for each category. To do so, we could generate the class Convert along with
the function convert and the deriving for the coproduct instance when transforming
a category declaration, and then generate the extensions when transforming the
corresponding piece declarations. This means that, with this approach, we can
restrict conversions to be possible only within a category using the different Convert
classes.

In order to have the function in a library module, we need to make it more general,
to remove the uses of concrete pieces. This means that we want to write an instance
of type class Convert f a that uses a polymorphic piece as the first variable, f,
instead of specifying it to be a concrete piece. This instance should then be used
for all conversions. To do so, we can take inspiration from the implementation of
desug in the compdata library [16]. There, we have a general instance of the type
class Desug, used for every piece that should not be desugared, such as Const and
Op. This is written as follows:

instance {-# OVERLAPPABLE #-} (f :<: g) => Desug f g where
desugAlg = inject

Note the variable f in place of the input argument instead of a concrete piece. This
instance uses inject as a way to return the input with the appropriate composed
type. However, desug in compdata is written using an algebra, meaning that the
instance above only specifies how the function handles that specific step of the
recursion, and the recursion is then carried out through a folding function, as follows:

desug :: (Functor f, Desug f g) => Term f -> Term g
desug = cata desugAlg

The function cata is a function in compdata which is equivalent to the function
foldTerm from Data Types à la Carte. In order to use cata ourselves, all pieces must
have functor instances to be able to fold over the result of each recursion step. We
could then want to leave it to the user to implement or derive functor instances for all
pieces in order to use the convert function on them. However, that is not possible,
since the type variable over which a functor instance can be defined is only introduced
in the transformation phase. Instead, since that variable is always introduced by
the transformation and in the correct place to define a functor instance, we could
define functor instances for the pieces as part of the transformation. This can be
done by deriving them using the DeriveFunctor extension [17], as follows:

data Op a = Add a a | Mul a a
deriving Functor

With the pieces declared as functors, we can use cata. If we were to follow the
example of desug, we would declare a class with an algebra function, and an in-
stance just like the one shown above. Unlike desug, however, we expect all pieces
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to be injected. In fact, the subsumption criterion can be used with a coproduct on
the left-hand side as well, thanks to improvements done with compdata [12]. As a
consequence of these two observations, the conversion class does not need a coprod-
uct instance, as any such coproduct could be injected directly through the inject
instance. In fact, for the same reason, we do not even need a class at all. We can use
inject as the algebra function to be passed into cata and get the convert function
simply as:

convert :: (Functor f, f :<: g) => Term f -> Term g
convert = cata inject

If this function were available directly for a user of our syntax, it would be possible
to write an explicit conversion just as above:

twoMulThreePlusFive :: ExprCat ==> (Const | Op)
twoMulThreePlusFive = (convert constTwo) `Mul`

(Const 3 `Add` Const 5)

To write similar conversions without stating concrete types for both functions, one
would want some kind of constraint indicating that one composed type is a subtype
of, and thus can be converted into, another composed type. To do so, we need to
introduce an intermediary class for the new constraint for the same reason that we
needed to introduce PartOf in Section 4.4. We return to this in Section 5.6.4.

Instead of making this library function immediately available to a user, we could
define syntax for writing a function convert in our syntax similar to the library
function. We have no suggestion of this, but it would result in a usage similar
to the explicit conversion in twoMulThreePlusFive. Recall that we also have the
possibility of making the conversion implicit, which would require an insertion of
convert at the necessary places in the transformation phase.

5.6 Polymorphism in New Ways
Polymorphism is a key concept in Haskell for expressing limitations through types.
While our syntax already supports some polymorphism, there are additional situ-
ations when polymorphism might be used. We present some of these ideas in this
section.

5.6.1 Categories Depending on Categories
When representing an abstract syntax tree of a full language, one can expect it to
consist of different data types that in some way are dependent on each other. Let
us consider a Haskell-like language with declarations and expressions. We begin
with the expression data type used in the running example of this report, and add
declarations that bind an expression to a name:
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data Expr = Const Int | Add Expr Expr | Mul Expr Expr
data Decl = Bind String Expr

To this with composable types in our syntax, we could do it as follows:

piececategory ExprCat
data piece ExprCat ==> Const = Const Int
data piece ExprCat ==> Op = Add ExprCat ExprCat

| Mul ExprCat ExprCat

piececategory DeclCat
data piece DeclCat ==> Bind = Bind String ExprComp

type ExprComp = ExprCat ==> (Const | Op)
type DeclComp = DeclCat ==> (Bind)

We write the expression type in the same way as always, but when writing the dec-
laration type, we refer to a fixed composed type for expressions, namely ExprComp.
In order to let us use different expression compositions, we could try to parameterize
the Bind piece, like the following:

piececategory DeclCat
data piece DeclCat ==> (ExprCat ==> e) => Bind e = Bind String e

type DeclComp = DeclCat ==> (Bind ExprComp)

This would be possible in our current syntax.2

If we were to continue to add declaration variants that use expressions, we might
consider having a way of declaring the expression composition for the declaration
composition as a whole, instead of attaching it to every individual piece as we just did
with Bind. However, this is not necessary in order to express one-way dependencies
between types, as we saw with these expressions and declarations.

Instead, let us consider the case of two extensible data types that are codependent.
We use the expression data type again and consider a new variant: do blocks, which
we define similar to do blocks in Haskell. Each do block is a list of statements,
where each statement is either an assignment of an expression to a name, or just an
expression. With regular data types, we define this example as follows:

data Expr = Const Int | Add Expr Expr | Mul Expr Expr | Do [Stmt]
data Stmt = Assign String Expr | SExpr Expr

If we were to write this with composable data types in our syntax in the same way
as in the declaration example, we would get the following:

2Note the use of a category constraint. While the category constraint has not been fully imple-
mented and is not technically needed here, it shows what sort of type e is expected to be.
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piececategory ExprCat
data piece ExprCat ==> Const = Const Int
data piece ExprCat ==> Op = Add ExprCat ExprCat

| Mul ExprCat ExprCat
data piece ExprCat ==> (StmtCat ==> s) => Do s = Do [s]

piececategory StmtCat
data piece StmtCat ==> (ExprCat ==> e)

=> Assign e = Assign String e
data piece StmtCat ==> (ExprCat ==> e) => SExpr e = SExpr e

type ExprComp = ExprCat ==> (Const | Op | Do StmtComp)
type StmtComp = StmtCat ==> (Assign Exprcomp | SExpr ExprComp)

The two last rows would then be transformed into:

type ExprComp = Term (Const :+: Op :+: Do StmtComp)
type StmtComp = Term (Assign ExprComp :+: SExpr ExprComp)

This leads to a compilation error, as Haskell does not permit cycles in type synonyms.
Hence, we would need some other way of achieving this effect. A way of solving this
may be by closing the recursion with a new data type similar to Term. Recall the
definition of Term, given in Section 2.2:

data Term f = In (f (Term f))

Here, f is an open composition, which has the kind f :: * -> *. This is then
used to fix the recursive type through applying f to the closed composition Term f.
If we instead try to express two codependently recursive types, we will instead
have two open compositions, f and g, that each needs to be applied to two closed
compositions. This means that f and g would have the kind f, g :: * -> * -> *.
If we let the last type that gets applied to f be the closed composition corresponding
to f, we get the following modification of Term:

data Term2 f g = In2 (f (Term2 g f) (Term2 f g))

With this, we need to adapt the signature of a number of different parts used in the
above example. For example, the transformation of pieces now needs a type variable
for each extensible data type among the codependent types. This means that any
dependencies between extensible types must be known from the start when defining
pieces in order for this approach to work. We will return to this limitation later in
this section.

Adapting the piece definitions, the transformation of the pieces above would now
be:
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data Const s e = Const Int
data Op s e = Add e e | Mul e e
data Do s e = Do [s]

data Assign e s = Assign String e
data SExpr e s = SExpr e

All transformed pieces now have type variables to match the two closed compositions,
with e being the type for expressions and s being the type for statements. We ensure
that the last type variable refers to the composition to which the piece is expected
to belong.

To then combine these pieces, we also need a new coproduct operator that accepts
one more type variable than the original coproduct. We can define it as follows:

data (f :++: g) d e = Inl2 (f d e)
| Inr2 (g d e)

With Term2, :++: and the pieces with extra type variables, the two closed compo-
sitions can now be represented in the transformed code as:

type ExprComp = Term2 (Const :++: Op :++: Do)
(Assign :++: SExpr)

type StmtComp = Term2 (Assign :++: SExpr)
(Const :++: Op :++: Do)

The number of type variables and their placements will vary depending on how many
different types are involved and how they depend on each other. We can therefore
not define a single new version of Term that is suited for every possibility. What we
can do is to let the dependency between types be declared in some form, from which
the transformation generates suitable data types and constraints. The closest thing
we have to representing an extensible data type or a family of composed types is the
category. Thus, we may consider declaring relations between different categories as
part of the category declaration, which can then be transformed into data types and
constraints adapted for the specific category, such as what we saw with Term2 and
:++:.

With a syntax and system for this, we may also extend it for one-directional de-
pendencies described earlier, where the dependency on expressions for the declara-
tion data type now is defined for the composition, rather than an individual piece.
Through defining a version of Term for declarations that depend on expressions, we
would get something like this:
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data DeclTerm f g = DeclIn (f (Term g) (DeclTerm f g))

type ExprComp = Term (Const :+: Op)
type DeclComp = DeclTerm (Bind) (Const :+: Op)

As noted earlier, this approach only works as long as it is known from the start
which dependencies an extensible type has to other types. We see this with the type
variables in transformed pieces, as well as in the need for different versions of Term
and :+:. The consequence is that any new piece cannot introduce new dependencies
of this kind, and any new dependency has to be introduced by changing the definition
of the category. This would require recompilation of any pieces and functions, and
is a noteworthy limitation with this approach. A different approach that solves this
might be possible using closed type families instead of additional type variables, but
this is not a possibility we have explored further.

5.6.2 Piece Polymorphism in Function Extensions

When writing function extensions, we must write an extension for each piece. It
would be desirable to instead be able to cover several pieces in the same extension.
In particular, this could be used for a default case that would be used if there is no
specific extension for a certain piece. This is possible with, for instance, compdata,
as seen in the following default instance of the desug function:

-- | Default instance of Desug
instance {-# OVERLAPPABLE #-} (f :<: g) => Desug f g where

desugAlg = inject

This simply calls the function inject, which returns the input with the appropriate
composed type. Note the variable f, where we would usually have a concrete type
such as Const. This instance would then be used for all variants that should not
be desugared, while the variants to be desugared would have their own specific
instances, like one for Neg. The full example of desug written in compdata is given
in Appendix C.2.

We want to achieve a similar thing in our syntax, to allow type variables instead of
explicit pieces in functions extensions, and thus have the ability for default cases.
In Section 5.5.4, we saw another example where this would be useful, namely to be
able to write a composition conversion function in our syntax. In this section, we
take a closer look at the desug function. In our syntax, it would have the following
declaration:

desug -: (ExprCat ==> e) => ExprCat -> e

To write a default extension, like the instance given with compdata above, one would
write a type variable in the place of a piece as follows:
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ext (p partof a) desug @a for p where ...

Note the type variable p in place of a piece. This would mean a function extension
that can be used for any piece that is part of the composition a. As before, we also
use a type application for the variable a representing the composition, so that it
corresponds to the variable e in the declaration.

To be able to transform this, we look again at the example in compdata. The default
instance and the instance for Neg are written as follows:

-- | Default instance of Desug
instance {-# OVERLAPPABLE #-} (f :<: g) => Desug f g where

desugAlg = inject

-- | Desug instance for negation
instance (Const :<: g, Op :<: g)

=> Desug Neg g where
desugAlg (Neg e) = iConst (-1) `iMul` e

One can easily see that negation can also match the default case. Thus, we have over-
lapping instances, made possible by the use of the pragma {-# OVERLAPPABLE #-}.
The compiler is then able to deduce which instance to use when several overlaps,
since one is more specific than the other. As a result, the second, more specific,
instance is used when handling negation.

Another thing to note here is that the use of inject as the default instance for
multiple pieces is made possible since the function is written using an algebra. This
means that the recursion is not specified in each step, but rather handled through
folding over the algebra. Thus, inject can be used both for desug (Const i) =
iConst i and desug (Add e1 e2) = iAdd e1 e2. Furthermore, such folding is
possible as long as all pieces are functors. In compdata, the functor instances are
derived through the extension DeriveFunctor. For us to have a similar default case
using inject or similar, we need to make sure that the pieces are functors. We could
do this similarly and include such derivation statements in the transformation.

On the other hand, it is possible to achieve the same effect without an algebra as
well, by handling the recursion manually through fmap. This means that we can
write a default instance as the following:

-- Default instance
instance {-# OVERLAPPABLE #-} (Functor f, f :<: v)

=> Desug f v where
desug' = inject . fmap desug

Piece polymorphism in our syntax would involve inserting {-# OVERLAPPABLE #-}
in the transformation where suitable, as well as handling the variable for pieces
in extensions and piece constraints. Still, much of what is done with the piece
argument in these examples cannot be done directly within our syntax, and would
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require introducing counterparts in our syntax or other solutions. For instance, it
would require some part that would be transformed into using the inject function.
It may be possible to not introduce any counterpart function in the syntax, and
instead, in the transformation, infer where an injection is needed and insert it.
Furthermore, the Functor class and fmap function cannot be used directly, as the
type variable f in the above example is not present in our syntax, nor does it have
an exact equivalent. In conclusion, the transformed code of a polymorphic extension
is straightforward, while how to implement it in our syntax is not.

5.6.3 Remainder Constraints
In our syntax, desug has the following type signature:

desug -: (ExprCat ==> e) => ExprCat -> e

We could want to be able to express the composed types here more precisely, to
express that the function removes some parts of the type. For instance, we could
write a specific desug function that is specified to transform expressions containing
negations into expressions without negations. Then, we want to express that the
result type is the same as the ingoing type, except that it does not contain Neg.

In Variations on Variants, this is expressed with a type operator :-:, giving desug
the constraint f :-: Neg ~ g, where Term f is the ingoing type and Term g is the
result type (see Appendix C.3). More precisely, this denotes that the ingoing type
and the result type have exactly the same pieces, except the Neg in the ingoing type.
Allowing a similar constraint in our syntax could then mean that we can write a
desug function with a more specific type signature, as in the following:

desugNeg :: (e1 with desug @e2, e1 :-: Neg ~ e2) => e1 -> e2
desugNeg = desug

This would restrict the function desug so that it cannot contain extensions returning
something that includes Neg when used with desugNeg. In this example, we have
chosen to keep the syntax of the remainder operator :-:, while it could be changed
to another symbol in our syntax. In fact, it is important to note that this constraint
in our syntax should be on closed composed types, rather than open coproducts as
the constraints in compdata and Variations on Variants.

While this may be useful for specific pieces in the case of desugNeg, it cannot
automatically treat all desugared pieces in this manner. If we introduced a new
piece that should be desugared, we would need to modify the type signature of
desugNeg or write a new version in order to treat it in the same way as Neg.

Moving on to how this constraint can be transformed in our syntax, we note that this
constraint is not readily available in compdata. However, it could be expressed with
an analogous constraint using an isomorphism constraint and a coproduct. With
those, one can express the type of a desugaring function that explicitly removes Neg
as in the following, written using compdata:
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desugNeg :: (Desug f g, f :=: g :+: Neg) => Term f -> Term g
desugNeg = desug

Note that this, just as with the :-: constraint, restricts the argument and re-
sult types to contain the same pieces, except for Neg. However, since the exten-
sion for negation requires Const and Op to be part of the result type Term g,
they are required to be included in the argument type Term f as well. Thus,
the function desugNeg above cannot, for instance, be used as a function of type
Term (Const :+: Neg) -> Term (Const :+: Op). This can be relaxed through
exchanging the isomorphism constraint for a subsumption constraint, as in the fol-
lowing:

desugNeg :: (Desug f g, f :<: g :+: Neg) => Term f -> Term g
desugNeg = desug

Now, it is possible to use pieces in g that do not appear in f.

As a final note, this approach does not work directly in our syntax, due to the way
our composed types are parameterized, as described in Section 4.4. As the con-
straint f :<: g :+: Neg specifically uses a coproduct, we would want to introduce
a new intermediary class and use that to replace the constraint in the transformed
code. Doing so might be enough to create a remainder constraint with our parame-
terization of composed types.

5.6.4 Subtype Constraints
While a remainder constraint discussed in the previous section indicates pieces to
be removed, it could be useful to have a more general way of expressing a composed
type as being a subset of another composed type. This would be a generalization of
the piece constraint to express a composed type as contained in another composed
type, rather than a piece as part of a composed type.

For instance, consider the mulTwo example from Section 3.5.2:

mulTwo :: (Const partof e, Op partof e) => e -> e
mulTwo expr = expr `Mul` Const 2

Instead of writing the type as above, forcing the ingoing and outgoing types to be
equal, it could be possible to express the ingoing type as being a subtype of the
result. The ingoing and outgoing types are restricted to be the same because of how
the constructors are defined. In the example above, Mul restricts the result to be
of the same type as the two operands. This means that the result must have the
same type as the argument expr. This restriction could possibly be alleviated by
composition conversion, described in Section 5.5.4, which could be used to convert
one composed type to another. In this section, we assume that one can perform
composition conversion in some way, either explicitly or implicitly, and instead focus
on how to rewrite the type signature to indicate a subtype relation between input
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and output. This means that we can, assuming explicit conversion, implement the
function as:

mulTwo expr = (convert expr) `Mul` Const 2

This would then simply be translated into:

mulTwo expr = (convert expr) `iMul` iConst 2

The function convert here is described in Section 5.5.4 as a function converting a
composed type to another.

Returning to the type signature, we want to write it like the following:

mulTwo :: (e1 subtypeof e2, Const partof e2, Op partof e2)
=> e1 -> e2

This would indicate that all the pieces in the argument type e1 are also included in
the result type e2. In particular, this constraint could be used as a constraint for
when a conversion between types is possible.

In the transformation, a subtype constraint corresponds to subsumption, just as
the piece constraint. This is because compdata allows coproducts on the left-hand
side of a subsumption constraint as well as on the right-hand side [12]. This will
be fulfilled if all summands on the left-hand side are part of the coproduct on the
right-hand side.

With this, one could want to generalize our piece constraint to also handle composed
types on the left-hand side. This is, however, not directly possible, since we hide the
open coproduct from the user, and instead write constraints on the closed composed
type. This means that there is a difference in kind between a piece and a composed
type, and thus also between a piece constraint and a subtype constraint. Therefore,
we need a second constraint for subtyping in our syntax and transformation, while
it can be implemented using subsumption just as the piece constraint.

In the transformed code, this constraint could be written using a type class similar
to PartOf. This needs a new version of inject, converting a composed type to
another composed type, rather than the types being open coproducts. Hence, the
new inject function would behave as the convert function in Section 5.5.4, so we
can write the class as follows:

class SubtypeOf e1 e2 where
inject'' :: e1 -> e2

instance (Functor f, f :<: g)
=> SubtypeOf (Term f) (Term g) where

inject'' = cata inject

This would be implemented in a library module just as PartOf. The function
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convert used above would then simply be this inject''. With this, we can trans-
form the type signature of mulTwo above into the following:

mulTwo :: (SubtypeOf e1 e2, PartOf Const e2, PartOf Op e2)
=> e1 -> e2
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In this chapter, we look back at aspects of our syntax from three main perspectives.
First, we refer back to the conditions given in Section 1.2 to confirm that our syntax
fulfills all of them. Second, we will see how our solution compares to the related
work with regard to the two additional properties covered in Table 2.1 in Section 2.9
that give an overarching picture of how the syntax is structured. Third, we discuss
some important aspects of our syntax in further detail and see how they relate to
the goals stated for our syntax in Section 1.2.

6.1 Fulfillment of General Conditions
In this section, we cover the conditions given in Section 1.2 and see that our syntax
fulfills all of them.

• A solution to the expression problem:

– Extensibility in both directions: A data type can be extended by
defining a new piece and form a new composition that includes it. It is
also possible to add a new case for it to an extensible function. The set
of functions is extended simply by defining a new function.

– Strong static type safety: A function in our syntax can only be applied
to data type variants that it can handle, since that is the case in the
corresponding type classes in the transformation, just as it is fulfilled by
our backend, compdata.

– No modification or duplication: All extensions are possible with-
out modification or duplication. The introduction of categories may give
some minor duplication from the restrictions of pieces belonging to dif-
ferent categories, or not being able to reuse composed types in new com-
positions. This is to be expected, and the ability to separate pieces and
compositions in different categories is one of the reasons to introduce
categories in the first place.

– Separate compilation: A piece declaration is only dependent on the
category it uses, so defining a new data type variant through a piece dec-
laration does not require any recompilation of existing code. Likewise,
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extensions to a function depend only on the declaration and are inde-
pendent from each other, and can thus be compiled separately without
recompilation of previous extensions. Last, functions over an extensible
data type are independent of each other and can be compiled separately.

– Independent extensibility: Piece declarations can be written indepen-
dently in different modules and combined in yet another module, with
the only restriction that the piece declaration modules must depend on
a module containing the category declaration. Likewise, with a function
declaration in a base module, extensions to the function can be written
in different modules and combined later.

• Extension to Haskell: Our syntax is usable as an extension to standard
Haskell through our transformation implementation, which transforms code
written in our syntax into compilable code written with standard Haskell and
compdata.

• Self-sufficiency: A user of our syntax does not need to know about or use
any components from our backend, compdata. At the same time, error mes-
sages arising from the transformed code can be difficult to understand without
knowledge of the transformation or compdata. This is, however, not a result
from the syntax itself, but from the proof-of-concept implementation of the
transformation.

• Independent design: The syntax is designed independently from compdata.
This means that, while we have taken inspiration from concepts of compdata
alongside other solutions, the syntax design is not dependent on the fact that
we use compdata as our backend.

6.2 Properties Regarding Automatic Extension
We also check how our solution compares to the related work regarding the additional
two properties presented in Table 2.1 in Section 2.9:

• Automatic extension of data types: Our syntax does not have automatic
extension of data types. Instead, we have composable data types; that is, one
can form many different composed types from a set of pieces.

• Automatic extension of functions: Functions are extended automatically
in our syntax. This means that an extensible function is usable directly for all
variants over which it has an extension.

6.2.1 Lack of Automatic Extension of Data Types
As mentioned, our syntax does not have automatic extension of data types, but
instead composable data types. Thus, we can form several compositions from the
same set of pieces. For instance, we can form different compositions from the pieces
Const, Op and Neg like the following:
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type ExprComp = ExprCat ==> (Const | Op)
type ExprCompWithNeg = ExprCat ==> (Const | Op | Neg)

This means that we can, for instance, write functions specifying exactly the pieces for
which they are intended to work. We can do so either via using fixed composed types,
or parameterized types using type constraints, as seen in the following examples:

desugSimple :: ExprCompWithNeg -> ExprComp
desugSimple = desug

mulTwo :: (Const partof e, Op partof e) => e -> e
mulTwo expr = expr `Mul` Const 2

Having automatic extension of data types, as do Open Data Types and Open Ab-
stract Types (Sections 2.7–2.8), would lead to a simpler and less verbose code, since
one does not need to form different compositions. On the other hand, having auto-
matic extension of data types causes an important limitation in expressiveness. The
expressive power of being able to restrict functions to only handle a specific set of
pieces is only possible through having different compositions of a data type, that is,
having composable types.

Another complexity with composable types is that it requires the use of smart con-
structors to form the correct composition in different situations. In our syntax,
we hide this complexity, and let the user use the piece constructors as smart con-
structors, rather than constructors of the pieces themselves. Similarly, we propose
simplifying pattern matching in regular functions over pieces in a similar manner
in Section 5.5.1. Therefore, the internal structure of the composition is not to be
considered a limitation of our syntax.

As opposed to Data Types à la Carte and the other solutions presented in Chapter 2
also having composable types, we have categories as the first step. This means that
all pieces depend on a category, and thus we must have a module containing the
category declaration as the base for piece declarations, either written in the same
module or in modules importing the base module. In Figure 6.1, we present the
structure for constructing composable data types in our syntax as a flowchart. Data
Types à la Carte and similar could then be seen as a similar graph but without the
category step. On the other hand, Open Data Types and Open Abstract Types can
be seen as a similar graph but without the compositions, as our categories serve as
their declarations of open data types. Compare to the graphs in Figure 1.1, which
show these two approaches: extensible and composable data types.

In total, our structure for constructing composable data types is the same as in Trees
that Grow (Section 2.5). In that solution, there is also a declaration of the data
type in the definition of the ground type, and then a composition is formed through
defining type instances for that specific composition. There are, however, drawbacks
to Trees that Grow compared to our solution, especially in user-friendliness. As
mentioned in Section 2.5, Trees that Grow handles the extensibility of data types
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Category

Piece

Composed
type

Composed
typePiece

Piece

Piece
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Figure 6.1: A flowchart showing the parts of our syntax required to construct an
extensible data type. A category is declared, which can be used for many different
pieces, which can then be used together in different combinations in composed types.

through a constructor inside the data type, while Data Types à la Carte handles it
outside the data type, using coproducts. The conclusion was that this means that
Trees that Grow is more complex to use than Data Types à la Carte in this regard.
Our solution works like Data Types à la Carte, and handles extensibility outside the
data type using the composed type. Hence, our syntax is simpler to use than Trees
that Grow in this regard.

6.2.2 Automatic Extension of Functions
In contrast to the extension of data types, our syntax provides automatic extension
of functions. This means that a function in our syntax consists of two parts: the
declaration and the extensions. The extensions are then directly usable in all future
uses of the function, without having to specify which extensions to include. We
illustrate this in a flowchart in Figure 6.2. Note the lack of compositions from the
extensions.

Function
declaration

Extension

Extension

Extension

Extension

Extension

Figure 6.2: A flowchart of the construction of extensible functions in our syntax.
First, a function is declared. This can then be extended through writing extensions
for different pieces. Note that there is no need for any composition of the extensions;
they are automatically extending the function for all future uses.
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This is the same as with Data Types à la Carte and compdata, which provide a
similar structure based on type classes and instances. On the other hand, one can
have composable functions, as do Variations on Variants (Section 2.4) and Trees
that Grow (Section 2.5). The flowchart for those would then first have the function
cases and then different compositions, similar to composable data types.

Automatic extension in this case means a generally simpler syntax, since we do
not need to differentiate combinations of function extensions, but can use them all
together. Moreover, this is not a significant limitation of expressiveness either, since
we specify a fixed composed type when calling the function, which then indicates
the extensions that will be used. Thus, it is more the case that all extensions are
available, and then a call to the function will use the extensions specified by the
composed type. Furthermore, static type safety ensures that the function is only
applied to variants which it can handle. The other situation where the expressiveness
is limited is if one were to define multiple different function cases for the same variant.
This is possible through composable functions, while with extensible functions, it
can instead be done through defining a new function instead that has the new case.
As a result, this does not limit the expressiveness to a significant extent either.

6.2.3 Choice of Backend
Our choice of having composable data types and automatic extension of functions is
the same as for Data Types à la Carte and compdata, Sections 2.2–2.3. This means
that the flowcharts given in Figures 6.1 and 6.2 would look mostly the same for
those solutions, with one main difference: the category. While we require a category
as the base for the pieces, data types for the variants can be written independently
in those solutions.

With these similarities, the choice of compdata as our backend is sensible, since
the similarities simplify the transformation. With the syntax we have designed,
the correspondence is direct except for the categories, so there would be no reason
to have a different backend. Still, we must consider whether there are possible
improvements to our syntax that would make another backend more suitable.

One aspect discussed in Section 5.6.3 is to have a remainder constraint in our syntax,
that is, express that a composition contains the same pieces as another composition
minus a specified piece. Such a constraint is readily available in Variants on Vari-
ants. However, since it is possible to achieve a similar result with an isomorphism
constraint and a coproduct, we do not view this as a sufficient argument for any
change of backend.

6.3 Goals for the Syntax
In the following subsections, we discuss different aspects of our syntax and how
they relate to the goals we presented in Section 1.2: simplicity, familiarity, and
expressiveness.
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6.3.1 Categories
Our main difference from Data Types à la Carte and compdata is the concept of
categories. We first introduced categories with the goal of making the syntax more
simple and familiar by making data type pieces more similar to regular data types.
The idea is to use the category to represent the regular data type, and then use it
in place of the recursive parameter. Categories can also be used for grouping pieces
under one purpose or functionality. Furthermore, we have noted that categories
correspond to the automatically extended data types seen in Open Data Types and
Open Abstract Types (Sections 2.7– 2.8), where new variants can be added to the so
called open data type without modifying the original definition. However, categories
are still not actual types, and cannot be used as such outside of piece constructors.

In this section, we want to discuss to what extent categories fulfill the goals stated
in Section 1.2. The syntax of having categories as recursive parameters is similar
to the intuitive syntax of regular data types, which has the data type itself as the
recursive parameter. This is more intuitive than the parameterization of data types
where a type variable is used as the recursive parameter, as in Data Types à la Carte
and similar. As a result, the syntax for piece constructors is more familiar since it
is more similar to that of regular data types. On the other hand, the left-hand side
of piece declarations introduces the new concept of categories in an unfamiliar way.
Compare our syntax to that of regular data types and the parameterized syntax of
Data Types à la Carte in the following:

-- Data type piece in our syntax
data piece ExprCat ==> Add = Add ExprCat ExprCat

-- Regular Haskell data type
data Expr = ... | Add Expr Expr

-- Data type in Data Types à la Carte
data Add e = Add e e

The first thing to note is that the syntax that uses categories is more verbose than
the backend counterpart, in particular in the non-familiar left-hand side. However,
the exact syntax for piece declarations could be adjusted to make this problem less
apparent. We can also note that while we hide the type variable for the recursive
parameter present in the backend, we do so by introducing a new concept. Hence,
we cannot clearly state that this is a simplification.

A problem with using categories in place of type variables is that categories can
easily be mistaken for regular concrete types, which are different from the recursive
parameter that the category represents. It is then possible that a user needs to
understand the concepts of parameterization or polymorphism to understand how
the recursion in a piece works in practice, with or without the category replacement.
We can, however, say that our syntax with categories helps to separate data type
pieces from regular data types. This makes pieces more distinct while also limiting
their use as they cannot be used directly as regular data types.
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The other feature to discuss about categories is the possibility of grouping pieces.
Just as with the distinction of pieces from regular data types, this is a limitation in
use, since pieces from different categories cannot be used in the same composition.
Organizing pieces into categories serves to limit what one can do with a piece, so
that composed types and functions are limited to only accept pieces of a specific
category. Thus, this is only an organizational feature that introduces limitations
in use. This does not mean that the feature has no value. It can be compared to
a type system, which limits the expressiveness by distinguishing terms of different
types, a limitation that is useful in practice. What this means for categories is that
we cannot fully judge if it is useful to group pieces in this way, without observing
more practical examples that use our syntax.

Still, there is one potential use case for categories where they may be particularly
useful. When expressing more complicated recursion schemes between several dif-
ferent data types, which we discuss in Section 5.6.1, categories serve as the ideal
container for expressing how these recursions are structured. This possibility exists
because of how categories symbolise the extensible data types.

In conclusion, changes to or exclusion of the design of categories may be relevant if
this work is continued. We have not fully explored the concept of categories. While
there exist some problems with their current use, there is also some potential for
refining how they are used in piece declarations, and we also described a potential
new use case.

6.3.2 Hiding the Concept of Coproducts
Another of our design choices that differentiates our syntax from that of compdata
is how we leave out the concept of the coproduct. Whereas compdata has individual
parameterized data types, open coproducts of data types and closed composed types,
our syntax has data type pieces that are composed directly into composed types.
When we consider coproducts as a stepping stone between the individual types and
the complete composed type, avoiding it in our syntax serves as a simplification. It
does so not only by simplifying composed types by combining all pieces in one step,
but also by limiting parameterization to be done on the entire composed type, rather
than on the coproduct that is frequently seen in compdata. In our syntax, one can
thus use the composed type directly in constraints such as a piece constraint.

However, using the composed type for parameterization comes at the cost of some
expressiveness. Although various type constraints in compdata that use coproducts
were easily reused in our syntax using intermediate classes, combining compositions
is more difficult. With compdata, two coproducts can be combined without a chal-
lenge, although with the caveat that any duplicate types are not removed. This
cannot be done as easily with closed composed types due to how they must be col-
lected in the transformation phase. We have a suggestion on how composed types
can be combined in Section 5.4.2, but it still has some limitations in expressiveness
compared to coproducts. Nevertheless, hiding the concept of coproducts seems to
be a generally good choice.
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6.3.3 Using the Piece Constructors
The piece constructors in our syntax behave as smart constructors from Data Types
à la Carte and similar in that they can construct values of different composed types
in a polymorphic manner. It is thus important for a user to remember that the
constructors do not construct values of the pieces themselves, but of composed types
containing the pieces. This concept may be counterintuitive if one sees the pieces
as data types. However, if one considers them to be variants of the data types, as
we want, they work similarly to constructors for variants of a regular data type.

Another comparison that can be made is with the constructors of Trees that Grow.
Constructors in that solution must be used with the same structure as how the
data type is extended, for instance as Expr_Ext (Neg (...))). Thus, our syntax
is simpler in this regard, but it could be possible to simplify the constructors in
Trees that Grow via smart constructors or a transformation from simplified syntax
into that solution.

Similarly, we want the piece constructors to be used as deconstructors in pattern
matching in regular functions, a goal discussed in Section 5.5.1. This would then
mean as intuitive a syntax for pattern matching in regular functions as for regular
data types. Without that addition, our syntax has no intuitive syntax for decon-
struction in regular functions, while it can be performed in extensible functions.

6.3.4 Single- or Multi-variant Pieces
While our syntax divides an extensible data type into pieces, each individual piece
can define several variants as piece constructors. There are benefits and drawbacks
to grouping constructors under fewer pieces, rather than defining one constructor
per piece.

The clear benefit of writing pieces that have multiple constructors is that one ends up
with fewer pieces in total. Consequences to this are that compositions will be smaller,
fewer piece constraints might be needed, and one overall gets fewer extensions and
piece declarations. Grouping of piece constructors also serves an organizational
purpose, where groups of constructors are made inseparable by belonging to the
same piece. In particular, this is useful in examples like having lambda abstractions
and applications in the same piece, where it should not be possible to use one without
the other.

On the other hand, with function extensions, our discussion in Section 5.3.2 becomes
relevant. There, we discussed how the syntax for extensible functions could be
simplified. For an extension to eval for Const, we proposed the following simplified
syntax:

ext eval (Const i) = i

This syntax makes extensions very similar to cases for regular functions. Although
this syntax could be allowed for pieces with multiple constructors, we have the
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problem of how the syntax is perceived. An extension for such a piece should be
transformed into a single instance, with all cases inside. We would then need to
require that all one-line extensions to the same piece lie in the same module, so that
the transformation can move these under the same instance. This is not expressed
properly by the syntax, unlike our original extension syntax, where these cases are
grouped under the piece in question.

This consequence is related to another observation. With pieces that have multiple
constructors, there is a clear distinction between the pieces themselves and their
constructors. On the other hand, if all pieces had only one constructor each, then
pieces and piece constructors could be seen as the same concept and symbol, which
may open up different approaches to expressing this syntax. A great example of
this is to exclude the piece name from the piece declaration. Then we could have a
syntax like the following:

piececategory ExprCat

data piece ExprCat = Const Int
data piece ExprCat = Add ExprCat ExprCat
data piece ExprCat = Mul ExprCat ExprCat

type ExprComp = ExprCat ==> (Const | Add | Mul)

This syntax would be possible if we did not have a distinction between pieces and
piece constructors, and would essentially bring our syntax closer to regular data
types and to the syntax in Open Data Types and Open Abstract Types.

6.3.5 Distinction in Function Syntax
Extensible functions in our syntax are similar to the extensible functions written as
type classes in Data Types à la Carte and compdata. However, our syntax has an
advantage in familiarity, since it is closer to the syntax of regular functions than it
would be with the type class approach. Especially our declaration of an extensible
function is closer in syntax to a regular type signature. Still, our function exten-
sions are more similar to instance declarations than to regular function equations.
However, the proposed simplification mentioned in the previous section, and in Sec-
tion 5.3.2, would make the syntax more similar to regular functions. The following
example would then be possible if one kept Add and Mul in separate pieces:

eval -: ExprCat -> Int
ext eval (Const i) = i
ext eval (Add e1 e2) = eval e1 + eval e2
ext eval (Mul e1 e2) = eval e2 * eval e2

This is very similar to the syntax of Open Data Types (Section 2.7). They have
the keyword open to distinguish the function declaration from a type signature for
a regular function, while we use the symbol -:. They keep the syntax for the exten-
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sions identical to regular functions, which would be possible for our implementation
as well, provided that the transformation keeps track of which functions are declared
extensible and transforms only those.

We can further compare this syntax to that of Open Abstract Types (Section 2.8),
a solution that omits the need for any specific keywords in the functions completely.
Again, this could be possible with our syntax via a more rigorous transformation.
However, by having the syntax identical to that for non-extensible functions, there
may arise some confusion for a user when the distinction is not clear. If functions for
regular data types and composable data types worked in the same way, with the same
possibilities and limitations, this would not be a problem. However, they do not.
Regular functions must be written together, with pattern matching working from
top to bottom. Extensible functions can have their cases separate, meaning that
there is no top-to-bottom order. Those functions must then either have some other
disambiguation between extensions such as best-fit pattern matching, or disallow
wildcards and overlapping extensions altogether. Therefore, it is useful to provide
a distinction in the syntax for the functions as well, not just the data types. If
it were possible to provide the same expressiveness for extensible data types and
functions as for regular ones, one could use the same syntax and let all data types
be extensible, or have the possibility to be extensible.

Another aspect to consider in the syntax of extensible functions is that we restrict
the first argument to being a category in destructive and transformative functions.
This is to signal that the first argument should be handled in a special way, namely,
to be deconstructed through the function. This gives a more intuitive syntax for
destructive functions, as it is similar to regular functions. It is, on the other hand,
less intuitive in transformative functions, where it means that we do not have as
intuitive a difference between input and output. It is useful to provide a distinction
between the input and output types as they are not necessarily the same, but it
is unintuitive to represent one of them with a category and the other with a type
variable and constraint, as in the following example:

desug -: (ExprCat ==> e) => ExprCat -> e

In Sections 5.6.3 and 5.6.4, we discussed additions to our syntax which could make
it easier to distinguish input and output types, while still connecting them through
for instance a subtype constraint.

6.3.6 Explicit Recursion Rather than Algebras
We choose to represent extensible functions with explicit recursion rather than with
algebras. Hence, an extension to eval for addition looks like the following in our
syntax:

ext eval for Op where
eval (Add e1 e2) = eval e1 + eval e2

On the other hand, it is written as the following in Data Types à la Carte, using an
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algebra that is folded over:

instance Eval Op where
evalAlg (Add e1 e2) = e1 + e2

The choice to not represent extensible functions with algebras is based on several
aspects. First, explicitly stating the recursion is closer to the syntax of regular
functions. In our syntax, the user is also expected to write a function simply as a
declaration and extensions, while we insert the parts relating to the type class and
the type class function in the transformation. In Data Types à la Carte, we have a
function that folds over the algebra function given in the type class, as follows:

eval :: Eval f => Term f -> Int
eval = foldTerm evalAlg

This, along with the type class and its function, would be generated in our trans-
formation, rather than written by a user. As a result, the place where a fold would
naturally be written in the transformed code would not be present in the code writ-
ten in our syntax. Hence, it would be less suitable, and less flexible, to implicitly
use algebras in our syntax.

Since we hide the parameterization of pieces, we also hide the fact that they are
functors over which we can perform a fold. Thus, it would be counterintuitive for a
user to be expected to write function extensions using algebras.

6.3.7 Type Applications
The final part of our syntax for extensible functions to discuss is the type applica-
tions. Since we do not represent the functions as type classes in our syntax, we need
another way to represent type variables that is not simply as variables to the type
class. We recall here the example of evalNum given in Section 3.6.1, an evaluation
function with a polymorphic result type. In the type class approach, which is also
used in our backend, an instance to evalNum is represented as follows:

instance EvalNum Const Int where

Here, Const is the argument over which the function is extended, and Int is the
result type. The first argument is distinguished in our syntax as being the argument
over which the function is extended, and specifically the argument to be decomposed
through the function. This is done in the function declaration by being written
as a category, and here in the extension as the piece written after the keyword
for. On the other hand, the instantiations of type variables from the declarations
are represented with type applications. This is done with inspiration from type
applications used in different contexts of Haskell, because there are similarities in
how they refer to a type from a type signature (in our case the declaration of an
extensible function) in order of appearance. With type applications, the extension
is written as follows in our syntax:
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ext evalNum @Int for Const where

This row alone may feel less intuitive and more complex, but one must consider that
we cannot write it as the type class instance above without representing functions
as type classes. A syntax closer to the type class instance above is the following:

ext evalNum for Const Int where

This is less intuitive, since it may seem like Int is an argument to Const. One could
alleviate this by having our syntax even more similar to type classes by removing
the keyword for, as follows:

ext evalNum Const Int where

In this case, Const Int does not look as much as an application, but more as two
type parameters to a type class. However, we have chosen to have a syntax that is not
as similar to type classes, because we do not represent extensible functions as type
classes directly. Instead, we want a syntax more close to that of regular functions,
something that is even more present in the syntax for the function declaration. As a
result, we argue that taking inspiration from explicit type applications is reasonable
in our syntax.

6.4 Conclusion
To conclude this thesis report, we cover our main contributions with this project.

We looked at a number of approaches to solving the expression problem, and, in an
attempt to compare them, formulated the property of automatically extended. We
used this term to describe the sufficiency of declaring individual parts of a whole,
as opposed to composition, where individual parts need to be explicitly combined.

The main contribution of our syntax is the concept of categories. We want to
combine the benefits of the two main alternatives of solving the expression problem:
composable data types and automatically extended data types. With categories, we
have a way of doing so. This means that we are able to construct a syntax with, to
some extent, both the expressive power of composable data types, and the familiarity
and simplicity of automatically extended data types. Another solution offering this
combination is Trees that Grow. That solution is, however, fundamentally different
in how composed types are formed, along with in how extensibility of functions is
handled. Introducing categories comes with some limitations as well, and we have
not developed the concept completely. We have also discussed categories as a mean
to express and support more complex recursive data types.

Another main difference between our syntax and that of Data Types à la Carte is
that we hide the concept of the coproduct, and thus the difference between open
and closed composed types. This means that composed types are always closed in
our syntax, and we are able to write constraints on such closed compositions.

120



6. Discussion

We have also introduced a declaration for extensible functions, which is simpler
and closer to regular functions than what is needed for introducing such a function
as a type class. Furthermore, some adaptions would make the syntax for function
extensions closer to regular functions in that we could allow single-line extensions
for single-variant pieces.

Through these main contributions, we have achieved a syntax design with several
improvements compared to existing solutions to the expression problem in Haskell.
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A
Resulting Syntax

In Table A.1, we present the syntax presented in this report in a more formal way
than in Chapter 3. This means that we remove most of the simplifications mentioned
in Section 3.1. However, we still show only one possible way to construct many
syntactic components. For example, piece constructors can be written in a piece
declaration in more ways than as in Add Expr Expr, for instance through infix or
record syntax, while we only show the first alternative. Furthermore, these syntax
rules are written from a user perspective, meaning that we show what would be
accepted by the parser rather than actual parsing rules.1

The table is separated into five categories. First, we have Declaration, which con-
tains the parts of our syntax that are defined in a syntactic component for top-level
declarations, a syntactic component also containing other declarations from regular
Haskell. Second, we have Type, which is correspondingly the part of our syntax which
is defined as a Type. Third, we have Constraint, which includes our constraints on
composed types. Fourth, we have Miscellaneous specifying parts of our syntax com-
ponents further. This includes syntactic components we have added ourselves, and
some that are standard Haskell to which we have added more alternatives covering
our syntax. In particular, Asst used in Context has more standard Haskell compo-
nents, which we do not present here. Last, Explained symbols explains informally
the standard Haskell components that we have used, but not modified.

1The interested reader can see how the parsing rules are actually implemented in our Github
project at https://github.com/kirderf1/composable-types.
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Declaration
PieceCatDecl piececategory Con

PieceDecl data piece QCon ==> Con = PieceConDecls
CompFunDecl Var -: [Context =>] QCon -> Type
CompFunExt ext [Context =>] QVar {TypeApp} for PieceRef

where InstanceDecls
Type
ComposedType QCon ==> ( CompList )
Constraint

Constraint Var with QVar {TypeApp}
PieceRef partof Var
QCon ==> Var

Miscellaneous
PieceConDecls PieceConDecl {| PieceConDecl}
PieceConDecl Con {PieceConArg}
PieceConArg Type

QCon
Context Asst

( Asst { , Asst } )
( )

Asst Constraint
( Asst )
...

TypeApp @ Type
PieceRef QCon {Type}

CompList PieceRef {| PieceRef }
Explained symbols

Type A type, such as Int, a type variable or a composed type
Con A constructor name (a name starting with an uppercase letter)

QCon A constructor name optionally qualified with a module
Var A variable name (a name starting with a lowercase letter)

QVar A variable name optionally qualified with a module
InstanceDecls A list of binding declarations as seen in Haskell instances

Table A.1: The complete syntax we have designed in this project.
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B
Example of our Syntax and

Transformation

This chapter shows a complete example program written using our syntax. It also
contains the transformation of the example program, which is usable with compdata.
This program is based on the running example presented in Section 2.1. It contains
the data type for expressions, initially with constants, addition and multiplication,
and then extended with negation. Furthermore, it contains two different destruc-
tive functions: eval for evaluation to an integer value, and asString for writing
an expression as a string. The program also contains an example of a transforma-
tive function, namely the desugaring function, desug, that removes negation from
expressions. Finally, it contains a main module for combining the previous parts,
which includes writing examples and performing operations on those examples.

B.1 Syntax
This section covers the different modules for expressions, evaluation, writing as
string, negation, desugaring, and finally a testing module. In all of these, note
the language pragma ComposableTypes, which we use to distinguish modules that
are written in our syntax and should be transformed. Recall also, as mentioned in
Section 1.1, that the emphasis is not on the exact syntax regarding, for instance,
choices of keywords.

B.1.1 Expressions
For expressions, we define a category ExprCat, which is used to define the pieces
Const and Op, and the composed type ExprComp. Note that, similar to the example
written with Data Types à la Carte in Section 2.2, we have the variants Add and
Mul kept together in the same piece, Op.

{-# LANGUAGE ComposableTypes #-}

module Expr where

-- | Data type for expression language
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-- | Category ExprCat
piececategory ExprCat

-- | Data type variants for Const, Add and Mul, contained in the
-- two pieces Const and Op
data piece ExprCat ==> Const = Const Int

data piece ExprCat ==> Op = Add ExprCat ExprCat
| Mul ExprCat ExprCat

-- | Composed type ExprComp
type ExprComp = ExprCat ==> (Const | Op)

B.1.2 Evaluation
Evaluation, eval, is a simple destructive function. Thus, the declaration is written
using the category ExprCat, and we have an extension for each piece.

{-# LANGUAGE ComposableTypes #-}

module Eval where

import Expr

-- | Evaluation function
eval -: ExprCat -> Int

-- | Eval extension for constants
ext eval for Const where

eval (Const i) = i

-- | Eval extension for operations
ext eval for Op where

eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2

B.1.3 Expressions as Strings
The asString function is written analogous to eval.

{-# LANGUAGE ComposableTypes #-}

module AsString where

import Expr

IV



B. Example of our Syntax and Transformation

-- | AsString function
asString -: ExprCat -> String

-- | AsString extension for constants
ext asString for Const where

asString (Const i) = show i

-- | AsString extension for operations
ext asString for Op where

asString (Add e1 e2) = "(" ++ asString e1 ++ " + "
++ asString e2 ++ ")"

asString (Mul e1 e2) = "(" ++ asString e1 ++ " * "
++ asString e2 ++ ")"

B.1.4 Negation
The module for negation contains the piece Neg, along with function extensions for
eval and asString. Note that this module is dependent on the module Expr, since
we are using the category ExprCat. On the other hand, it is independent from the
pieces defined in the module Expr, so it would be easy to write the category in a
separate module, to have the two modules, one with Const and Op, and one with
Neg, written independently from each other.

{-# LANGUAGE ComposableTypes #-}

module Negation where

import Expr
import Eval
import AsString

-- | Data type piece for negation
data piece ExprCat ==> Neg = Neg ExprCat

-- | Eval extension for negation
ext eval for Neg where

eval (Neg e) = (-1) * eval e

-- | AsString extension for negation
ext asString for Neg where

asString (Neg e) = "(-" ++ asString e ++ ")"

B.1.5 Desugaring
The next module contains a desugaring function, desug, which is a transformative
function. As such, it decomposes a value of a composed type, in this case some ex-
pression, and constructs a value, also of a composed type, in this case an expression
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without negation. We express this return type with a type variable and a category
constraint in the declaration. Piece constraints are then used in the function ex-
tensions to indicate which pieces are included in the result. The case for negation
is included directly in this module, as opposed to in a separate module as for the
previous functions, since that is the relevant part of the desug function.

{-# LANGUAGE ComposableTypes #-}

module Desug where

import Expr
import Negation

-- | Transformative function desug
desug -: (ExprCat ==> e) => ExprCat -> e

-- | Desug extension for constants
ext (Const partof a) => desug @a for Const where

desug (Const i) = Const i

-- | Desug extension for operations
ext (Op partof a) => desug @a for Op where

desug (Add e1 e2) = Add (desug e1) (desug e2)
desug (Mul e1 e2) = Mul (desug e1) (desug e2)

-- | Desug extension for negation
ext (Const partof a, Op partof a) => desug @a for Neg where

desug (Neg e) = Const (-1) `Mul` (desug e)

B.1.6 Main Module
Lastly, we have a main module, containing examples written using the constructors
of the pieces. These are also used with the defined functions. Note that the type
annotations of the examples are necessary to call the functions on them, for the same
reason as in Data Types à la Carte and compdata; see Section 2.2. Likewise, the
result type of desug threePlusNegFive must be specified in order to call asString
with it.

{-# LANGUAGE ComposableTypes #-}

module Main where

import Expr
import Eval
import AsString
import Negation
import Desug
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-- | Examples of type ExprComp, containing constants, addition and
-- multiplication
threePlusFive :: (Const partof e, Op partof e) => e
threePlusFive = Add (Const 3) (Const 5)

twoMulThreePlusFive :: ExprComp
twoMulThreePlusFive = Mul (Const 2) threePlusFive

-- | Composed type ExprCompWithNeg, also containing negation
type ExprCompWithNeg = ExprCat ==> (Const | Op | Neg)

-- | Example with negation
threePlusNegFive :: ExprCompWithNeg
threePlusNegFive = Const 3 `Add` (Neg (Const 5))

-- | Evaluation examples
evalAddMul = eval twoMulThreePlusFive

evalAddNeg = eval threePlusNegFive

-- | AsString example
asStringAddNeg = asString threePlusNegFive

-- | Desugar example
desugAddNeg = asString (desug threePlusNegFive :: ExprComp)

-- | Main, printing results of above examples
main :: IO ()
main = do

putStrLn "Evaluation examples:"
print evalAddMul
print evalAddNeg
putStrLn "AsString example:"
putStrLn asStringAddNeg
putStrLn "Desugar example:"
putStrLn desugAddNeg

B.2 Transformation

In this section, we present the transformation of the example in the previous section.
In all of these, we include some language pragmas which may be needed for code
using compdata.

VII



B. Example of our Syntax and Transformation

B.2.1 Expressions

The following module contains the transformation of the module Expr. As men-
tioned in Section 4.2, a category declaration does not correspond to anything in the
transformed code. Each piece is transformed into a regular data type with a type
variable a instead of the category, which is used for recursion. For each piece, a smart
constructor is also derived, which uses our library class PartOf for the constraint
in the type signature, corresponding to subsumption. Finally, the composition of
pieces is transformed into a coproduct that is closed by Term.

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}

module Expr where

import Data.Comp
import Data.Comp.Derive
import ComposableTypes

data Const a = Const Int

iConst :: PartOf Const e => Int -> e
iConst e1 = inject' (Const e1)

data Op a = Add a a | Mul a a

iAdd :: PartOf Op e => e -> e -> e
iAdd e1 e2 = inject' (Add e1 e2)

iMul :: PartOf Op e => e -> e -> e
iMul e1 e2 = inject' (Mul e1 e2)

type ExprComp = Term (Const :+: Op)

B.2.2 Evaluation

The evaluation function eval is transformed into a type class Eval, with instances
for all extensions to the function. An instance of this class for the coproduct is
derived using Template Haskell, via liftSum in compdata. The actual function eval
is wrapped in another type class, Eval_outer, to facilitate the use of constraints on
composed types, as described in Section 4.4 and 4.6.
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{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}

module Eval where

import Data.Comp
import Data.Comp.Derive
import ComposableTypes
import Expr

class Eval f where
eval' :: (Eval g) => f (Term g) -> Int

$(derive [liftSum][''Eval])

class Eval_outer t where
eval :: t -> Int

instance Eval g => Eval_outer (Term g) where
eval = eval' . unTerm

instance Eval Const where
eval' (Const i) = i

instance Eval Op where
eval' (Add e1 e2) = eval e1 + eval e2
eval' (Mul e1 e2) = eval e1 * eval e2

B.2.3 Expressions as Strings
The module for converting an expression to a string, AsString, is transformed in a
similar manner to Eval in the previous section.

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}

module AsString where

IX



B. Example of our Syntax and Transformation

import Data.Comp
import Data.Comp.Derive
import ComposableTypes
import Expr

class AsString f where
asString' :: (AsString g) => f (Term g) -> String

$(derive [liftSum] [''AsString])

class AsString_outer t where
asString :: t -> String

instance AsString g => AsString_outer (Term g) where
asString = asString' . unTerm

instance AsString Const where
asString' (Const i) = show i

instance AsString Op where
asString' (Add e1 e2) = "(" ++ asString e1 ++ " + "

++ asString e2 ++ ")"
asString' (Mul e1 e2) = "(" ++ asString e1 ++ " * "

++ asString e2 ++ ")"

B.2.4 Negation
The module for negation of an expressions contains nothing new regarding trans-
forming its code.

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}

module Negation where

import Data.Comp
import Data.Comp.Derive
import ComposableTypes
import Expr
import Eval
import AsString

data Neg a = Neg a
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iNeg :: PartOf Neg e => e -> e
iNeg e1 = inject' (Neg e1)

instance Eval Neg where
eval' (Neg e) = (-1) * eval e

instance AsString Neg where
asString' (Neg e) = "(-" ++ asString e ++ ")"

B.2.5 Desugaring
The function desug is a transformative function, and therefore, the module for
it contains some new aspects compared to previous modules. First, the category
constraint in the function declaration is transformed into an empty context. Second,
the piece constraints in the extensions are transformed into constraints using PartOf.
Finally, the use of constructors in the function equations are transformed into using
the smart constructors that were generated for each piece.

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}

module Desug where

import Data.Comp
import Data.Comp.Derive
import ComposableTypes
import Expr
import Negation

class () => Desug f e where
desug' :: (Desug g e) => f (Term g) -> e

$(derive [liftSum] [''Desug])

class Desug_outer t e where
desug :: t -> e

instance Desug g e => Desug_outer (Term g) e where
desug = desug' . unTerm

instance (PartOf Const a) => Desug Const a where
desug' (Const i) = iConst i
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instance (PartOf Op a) => Desug Op a where
desug' (Add e1 e2) = iAdd (desug e1) (desug e2)
desug' (Mul e1 e2) = iMul (desug e1) (desug e2)

instance (PartOf Const a, PartOf Op a) => Desug Neg a where
desug' (Neg e) = iConst (-1) `iMul` (desug e)

B.2.6 Main Module
The content of the main module is transformed as described in the previous sections
in this chapter.

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}

module Main where

import Data.Comp
import Data.Comp.Derive
import ComposableTypes
import Expr
import Eval
import AsString
import Negation
import Desug

threePlusFive :: (PartOf Const e, PartOf Op e) => e
threePlusFive = iAdd (iConst 3) (iConst 5)

twoMulThreePlusFive :: ExprComp
twoMulThreePlusFive = iMul (iConst 2) threePlusFive

type ExprCompWithNeg = Term (Const :+: Op :+: Neg)

threePlusNegFive :: ExprCompWithNeg
threePlusNegFive = iConst 3 `iAdd` (iNeg (iConst 5))

evalAddMul = eval twoMulThreePlusFive

evalAddNeg = eval threePlusNegFive

asStringAddNeg = asString threePlusNegFive
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desugAddNeg = asString (desug threePlusNegFive :: ExprComp)

main :: IO ()
main = do

putStrLn "Evaluation examples:"
print evalAddMul
print evalAddNeg
putStrLn "AsString example:"
putStrLn asStringAddNeg
putStrLn "Desugar example:"
putStrLn desugAddNeg
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C
Full Programs in Different

Approaches

In this chapter, we show full programs written using some of the approaches pre-
sented in Chapter 2. The approaches showcased here are all except Open Data
Types and Open Abstract Types; each of those includes new syntax that needs to
be transformed in some way, which means that a transformation program is needed
to be able to compile and run an example with that syntax. As a result, we are not
able to present fully working programs for those here.

The programs we have written each have a library module when necessary, to provide
necessary definitions such as the coproduct. These are given in Appendix D, so that
we can focus on the syntax of using the solutions in this chapter. The programs here
include the data type for expressions with the extension of negation, two destructive
functions (eval and asString), and one transformative function (desug). They also
contain a main module that combines the previous parts through writing examples of
the data type and performing operations on those examples. This example program
is the same as the program given in Appendix B, where it is written using the syntax
that we have designed.

C.1 Data Types à la Carte
This section covers Data Types à la Carte [2] that was introduced in Section 2.2.
To be able to use this, one needs the library module DTalC given in Section D.1.

C.1.1 Expressions
Using the library module in Section D.1, we can define the data type for expressions.
This is done by defining a data type for each of the variants: one for constants and
another one for operations, containing both addition and multiplication. For each
of these, functor instances and smart constructors are also defined.

{-# LANGUAGE TypeOperators, FlexibleContexts #-}

module ExprDTalC where
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import DTalC

-- | Data type for expression language

-- | Data type variants for Const, Add and Mul
data Const a = Const Int

data Op a = Add a a | Mul a a

-- | Composed type Expr
type Expr = Term (Const :+: Op)

-- | Functors
instance Functor Const where

fmap f (Const i) = Const i

instance Functor Op where
fmap f (Add e1 e2) = Add (f e1) (f e2)
fmap f (Mul e1 e2) = Mul (f e1) (f e2)

-- | Smart constructors
iConst :: (Const :<: f) => Int -> Term f
iConst i = inject (Const i)

iAdd :: (Op :<: f) => Term f -> Term f -> Term f
iAdd e1 e2 = inject (Add e1 e2)

iMul :: (Op :<: f) => Term f -> Term f -> Term f
iMul e1 e2 = inject (Mul e1 e2)

C.1.2 Evaluation
Next, we have the implementation of the evaluation function, which is done through
a type class Eval. The function is written using an algebra, which means that
evaluation is carried out via the function foldTerm defined in the module DTalC.

{-# LANGUAGE TypeOperators #-}

module EvalDTalC where

import DTalC
import ExprDTalC

-- | Eval function using an algebra
class Functor f => Eval f where

evalAlg :: f Int -> Int
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-- | Fold using evalAlg
eval :: Eval f => Term f -> Int
eval = foldTerm evalAlg

-- | Eval instance for constants
instance Eval Const where

evalAlg (Const i) = i

-- | Eval instance for operations
instance Eval Op where

evalAlg (Add e1 e2) = e1 + e2
evalAlg (Mul e1 e2) = e1 * e2

-- | Eval instance for coproduct
instance (Eval f, Eval g) => Eval (f :+: g) where

evalAlg (Inl a) = evalAlg a
evalAlg (Inr b) = evalAlg b

C.1.3 Expressions as Strings
It is also possible to write an extensible function with Data Types à la Carte without
an algebra. This is how the function asString is written in the following module.

{-# LANGUAGE TypeOperators #-}

module AsStringDTalC where

import DTalC
import ExprDTalC

-- | AsString function, written without an algebra
class AsString f where

asString' :: AsString g => f (Term g) -> String

-- | Unpack a Term and call asString'
asString :: AsString f => Term f -> String
asString (In t) = asString' t

-- | AsString instance for constants
instance AsString Const where

asString' (Const i) = show i

-- | AsString instance for operations
instance AsString Op where

asString' (Add e1 e2) = "(" ++ asString e1 ++ " + "
++ asString e2 ++ ")"
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asString' (Mul e1 e2) = "(" ++ asString e1 ++ " * "
++ asString e2 ++ ")"

-- | AsString instance for coproduct
instance (AsString f, AsString g) => AsString (f :+: g) where

asString' (Inl a) = asString' a
asString' (Inr b) = asString' b

C.1.4 Negation
Next, we want to extend the data type with a variant for negation. In the following
module, we define the data type for negation, as well as instances for eval and
asString. Note that this module can be written independently of the module
ExprDTalC. The data types can later be combined in a composition in a different
module, which depends on both ExprDTalC and NegationDTalC.

{-# LANGUAGE TypeOperators, FlexibleContexts #-}

module NegationDTalC where

import DTalC
import EvalDTalC
import AsStringDTalC

-- | Data type for negation
data Neg a = Neg a

-- | Functor
instance Functor Neg where

fmap f (Neg e) = Neg (f e)

-- | Smart constructor
iNeg :: (Neg :<: f) => Term f -> Term f
iNeg e = inject (Neg e)

-- | Eval instance for negation
instance Eval Neg where

evalAlg (Neg e) = (-1) * e

-- | AsString instance for negation
instance AsString Neg where

asString' (Neg e) = "(-" ++ asString e ++ ")"

C.1.5 Desugaring
The following module contains the definition of the transformative desugaring func-
tion, again written using an algebra. This contains the case for negation directly,
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since that is the relevant part of this function. The cases for the original data type
defined in Expr are covered by a default case that just calls the function inject.1

{-# LANGUAGE TypeOperators, UndecidableInstances, FlexibleInstances,
MultiParamTypeClasses #-}

module DesugDTalC where

import DTalC
import ExprDTalC
import NegationDTalC

-- | Transformative function desug using algebra
class (Functor f, Functor g) => Desug f g where

desugAlg :: f (Term g) -> (Term g)

-- | Fold using desugAlg
desug :: (Desug f g, Functor f) => Term f -> Term g
desug = foldTerm desugAlg

-- | Default instance of Desug
instance {-# OVERLAPPABLE #-}

(Functor f, Functor g, f :<: g)
=> Desug f g where

desugAlg = inject

-- | Desug instance for negation
instance (Functor g, Const :<: g, Op :<: g) => Desug Neg g where

desugAlg (Neg e) = iConst (-1) `iMul` e

instance (Desug f h, Desug g h) => Desug (f :+: g) h where
desugAlg (Inl a) = desugAlg a
desugAlg (Inr b) = desugAlg b

C.1.6 Main Module
Finally, we have a module to combine the previous modules, in which we write
examples and perform operations on those examples. First, we have two examples
containing the parts in the original data type Expr, namely constants, addition and
multiplication. The first of these is written with constraints and type variables, and
the second with the fixed composed type Expr. Then, we define a new composed
type, ExprWithNeg, that also contains negation, which is used in a third example.
These examples are used in different functions, to either evaluate, convert to a string,
or desugar the examples. Lastly, a main function is provided to print the results of
running the functions.

1Note that having a default case like this is not possible in our syntax, although we discuss the
possibility of adding a way to do so in Section 5.6.2.
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{-# LANGUAGE TypeOperators, FlexibleContexts #-}

module Main where

import DTalC
import ExprDTalC
import EvalDTalC
import AsStringDTalC
import NegationDTalC
import DesugDTalC

-- | Examples of type Expr, containing constants, addition and
-- multiplication
threePlusFive :: (Const :<: f, Op :<: f) => Term f
threePlusFive = iAdd (iConst 3) (iConst 5)

twoMulThreePlusFive :: Expr
twoMulThreePlusFive = iMul (iConst 2) threePlusFive

-- | Composed type ExprWithNeg, also containing negation
type ExprWithNeg = Term (Const :+: Op :+: Neg)

-- | Example with negation
threePlusNegFive :: ExprWithNeg
threePlusNegFive = iConst 3 `iAdd` (iNeg (iConst 5))

-- | Evaluation examples
evalAddMul = eval twoMulThreePlusFive
evalAddNeg = eval threePlusNegFive

-- | AsString example
asStringAddNeg = asString threePlusNegFive

-- | Desugar example
desugAddNeg = asString (desug threePlusNegFive :: Expr)

-- | Main, printing results of above examples
main :: IO ()
main = do

putStrLn "Evaluation examples:"
print evalAddMul
print evalAddNeg
putStrLn "AsString example:"
putStrLn asStringAddNeg
putStrLn "Desugar example:"
putStrLn desugAddNeg
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C.2 compdata
This section covers a program written using compdata [13, 11, 12] that was intro-
duced in Section 2.3. Since it is a Haskell library [13], we use that directly. Still,
we present the crucial parts of the library in Section D.2, so that it is possible to
understand the program here without referring to the complete Haskell library.

C.2.1 Expressions
First, we begin with a module containing the data type for expressions, with vari-
ants for constants, addition and multiplication. The notable differences from Data
Types à la Carte, presented in the previous section, is that here, functor instances
are derived using derive Functor, and smart constructors (and more) are derived
through Template Haskell. The derivation of functor instances is of course some-
thing that could be done already in the Data Types à la Carte example, using the
same language extension as here.

{-# LANGUAGE TemplateHaskell, TypeOperators, FlexibleContexts,
DeriveFunctor #-}

module ExprCompdata where

import Data.Comp hiding (Const)
import Data.Comp.Derive

-- | Data type for expression language

-- | Data type variants for Const, Add and Mul
data Const a = Const Int

deriving Functor

data Op a = Add a a | Mul a a
deriving Functor

-- | Composed type Expr
type Expr = Term (Const :+: Op)

-- | Derivation of smart constructors etc using Template Haskell
$(derive [makeEqF, makeShowF, smartConstructors]

[''Const, ''Op])

C.2.2 Evaluation
Next, we have the evaluation function for all the data type variants that were defined
in the module ExprCompdata, which is defined in a separate module. This function
is implemented using an algebra, just like in the previous section. The notable
difference is again the use of Template Haskell, which is used here to derive an
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instance for the coproduct. Some other small differences are the uses of Alg and
cata, which are defined in the compdata library. Alg f Int is simply a way to
represent an algebra f Int -> Int, and cata is compdata’s version of Data Types
à la Carte’s foldTerm.

{-# LANGUAGE TemplateHaskell #-}

module EvalCompdata where

import ExprCompdata

import Data.Comp hiding (Const)
import Data.Comp.Derive

-- | Term evaluation algebra
class Eval f where

evalAlg :: Alg f Int

-- | Lift the evaluation algebra to a catamorphism
eval :: (Functor f, Eval f) => Term f -> Int
eval = cata evalAlg

-- | Eval instance for constants
instance Eval Const where

evalAlg (Const i) = i

-- | Eval instance for operations
instance Eval Op where

evalAlg (Add e1 e2) = e1 + e2
evalAlg (Mul e1 e2) = e1 * e2

-- | Derive Eval instance for coproduct using Template Haskell
$(derive [liftSum] [''Eval])

C.2.3 Expressions as Strings
Then, we have the function asString, again implemented without an algebra. This
is almost identical to the Data Types à la Carte implementation, except once again
for the derivation of the coproduct instance using Template Haskell. Furthermore,
the compdata function unTerm is used in asString instead of matching on the
structure of a Term, since that is hidden in compdata.

{-# LANGUAGE TemplateHaskell #-}

module AsStringCompdata where

import ExprCompdata
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import Data.Comp hiding (Const)
import Data.Comp.Derive

-- | Function asString, written without an algebra
class AsString f where

asString' :: AsString g => f (Term g) -> String

-- | Unpack the Term and call asString'
asString :: (AsString f) => Term f -> String
asString = asString' . unTerm

-- | AsString instance for constants
instance AsString Const where

asString' (Const i) = show i

-- | AsString instance for operations
instance AsString Op where

asString' (Add e1 e2) = "(" ++ asString e1 ++ " + "
++ asString e2 ++ ")"

asString' (Mul e1 e2) = "(" ++ asString e1 ++ " * "
++ asString e2 ++ ")"

-- | Derive AsString instance for coproduct using Template Haskell
$(derive [liftSum] [''AsString])

C.2.4 Negation
The module for negation in straightforward. The data type variant is written in the
same way as the previous variants in the module Expr, and the instances for Eval
and AsString are the same as before.

{-# LANGUAGE TemplateHaskell, FlexibleContexts, DeriveFunctor #-}

module NegationCompdata where

import EvalCompdata
import AsStringCompdata

import Data.Comp
import Data.Comp.Derive

-- | Data type for negation
data Neg a = Neg a

deriving Functor

-- | Derivation of smart constructor etc using Template Haskell
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$(derive [makeEqF, makeShowF, smartConstructors]
[''Neg])

-- | Eval instance for negation
instance Eval Neg where

evalAlg (Neg e) = (-1) * e

-- | AsString instance for negation
instance AsString Neg where

asString' (Neg e) = "(-" ++ asString e ++ ")"

C.2.5 Desugaring
The desugaring function is again written using an algebra and is very similar to how
it is written using Data Types à la Carte. The differences are the same as discussed
for the Eval example.

{-# LANGUAGE TemplateHaskell, TypeOperators, MultiParamTypeClasses,
FlexibleInstances, FlexibleContexts, UndecidableInstances #-}

module DesugCompdata where

import ExprCompdata
import NegationCompdata

import Data.Comp hiding (Const)
import Data.Comp.Derive

-- | Transformative function desug using algebra
class Desug f g where

desugAlg :: Alg f (Term g)

-- | Lift the desugaring algebra to a catamorphism
desug :: (Functor f, Desug f g) => Term f -> Term g
desug = cata desugAlg

-- | Default instance of Desug
instance {-# OVERLAPPABLE #-} (f :<: g) => Desug f g where

desugAlg = inject

-- | Desug instance for negation
instance (Const :<: g, Op :<: g)

=> Desug Neg g where
desugAlg (Neg e) = iConst (-1) `iMul` e

-- | Derive Desug instance for coproduct using Template Haskell
$(derive [liftSum] [''Desug])
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C.2.6 Main Module
The main module for the example in compdata is identical to the one in the Data
Types à la Carte example.

{-# LANGUAGE TypeOperators, FlexibleContexts #-}

module Main where

import ExprCompdata
import EvalCompdata
import AsStringCompdata
import NegationCompdata
import DesugCompdata

import Data.Comp hiding (Const)

-- | Examples of type Expr, containing constants, addition and
-- multiplication
threePlusFive :: (Const :<: f, Op :<: f) => Term f
threePlusFive = iAdd (iConst 3) (iConst 5)

twoMulThreePlusFive :: Expr
twoMulThreePlusFive = iMul (iConst 2) threePlusFive

-- | Composed type ExprWithNeg, also containing negation
type ExprWithNeg = Term (Const :+: Op :+: Neg)

-- | Example with negation
threePlusNegFive :: ExprWithNeg
threePlusNegFive = iConst 3 `iAdd` (iNeg (iConst 5))

-- | Evaluation examples
evalAddMul = eval twoMulThreePlusFive

evalAddNeg = eval threePlusNegFive

-- | AsString example
asStringAddNeg = asString threePlusNegFive

-- | Desugar example
desugAddNeg = asString (desug threePlusNegFive :: Expr)

-- | Main, printing results of above examples
main :: IO ()
main = do

putStrLn "Evaluation examples:"
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print evalAddMul
print evalAddNeg
putStrLn "AsString example:"
putStrLn asStringAddNeg
putStrLn "Desugar example:"
putStrLn desugAddNeg

C.3 Variations on Variants
Variations on Variants [5], presented in Section 2.4, describes two solutions to the
expression problem. One is based on instance chains, a mechanism not implemented
in a Haskell compiler, and the other is based on closed type families. The second one
is possible to implement in existing Haskell, albeit with the need for many language
extensions, so that is what this program will use. The implementation of this is
given in the library module VariationsOnVariants in Section D.3. In this section,
we show how to use the library module for the example program.

C.3.1 Expressions
This module shows the definition of the data type for expressions, containing con-
stants, addition and multiplication, along with functor instances and smart con-
structors. This is done in the same way as in Data Types à la Carte.

{-# LANGUAGE TypeOperators, FlexibleContexts #-}

module ExprVariations where

import VariationsOnVariants

-- | Data type for expression language

-- | Data type variations for Const, Add and Mul
data Const e = Const Int
data Op e = Add e e | Mul e e

-- | Composed type Expr
type Expr = Term (Const :+: Op)

-- | Functors
instance Functor Const

where fmap _ (Const i) = Const i

instance Functor Op
where fmap f (Add e1 e2) = Add (f e1) (f e2)

fmap f (Mul e1 e2) = Mul (f e1) (f e2)
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-- | Smart constructors
iConst :: Const :<: f => Int -> Term f
iConst i = inject (Const i)

iAdd :: Op :<: f => Term f -> Term f -> Term f
iAdd e1 e2 = inject (Add e1 e2)

iMul :: Op :<: f => Term f -> Term f -> Term f
iMul e1 e2 = inject (Mul e1 e2)

C.3.2 Evaluation

Next, we have the module for the evaluation function. Instead of defining this
through type classes as in previously showcased approaches, it is done by defining
a case for each data type variant, and then combine them with a function called
cases. Each of these has an extra argument for handling the recursive case. For
instance, evalOp has an argument of type e -> Int, which is a function describing
how to evaluate the inner part e of Op e. In the case for constants, there is no
recursion, so the type of that argument is irrelevant.

Note that the combination using cases means that the function eval only works for
the cases it is defined for, and a new version must be defined to handle more cases.
This is similar to how the closed type Term (Const :+: Op) only can contain those
data type variants, while a new closed type must be defined to handle other ones.
It is, on the other hand, different from the type class approach, which can handle
new variants directly, with only a new instance declaration for the variant.

module EvalVariations where

import VariationsOnVariants
import ExprVariations

-- | Evaluation of constants
evalConst :: Const e -> r -> Int
evalConst (Const i) r = i

-- | Evaluation of operations Add and Mul
evalOp :: Op e -> (e -> Int) -> Int
evalOp (Add e1 e2) r = r e1 + r e2
evalOp (Mul e1 e2) r = r e1 * r e2

-- | Evaluation function that can evaluate expressions containing
-- constants and operations
eval :: Expr -> Int
eval = cases (evalConst ? evalOp)

XXVII



C. Full Programs in Different Approaches

C.3.3 Expressions as Strings
The module for the asString function is analogous to the one for evaluation, since
none of these are defined through algebras, which was the difference shown in the
previous examples.

module AsStringVariations where

import VariationsOnVariants
import ExprVariations

-- | asString of constants
asStringConst :: Const e -> r -> String
asStringConst (Const i) r = show i

-- | asString of operations
asStringOp :: Op e -> (e -> String) -> String
asStringOp (Add e1 e2) r = "(" ++ r e1 ++ " + " ++ r e2 ++ ")"
asStringOp (Mul e1 e2) r = "(" ++ r e1 ++ " * " ++ r e2 ++ ")"

-- | asString function that can handle expressions containing
-- constants and operations
asString :: Expr -> String
asString = cases (asStringConst ? asStringOp)

C.3.4 Negation
The module for negation is straightforward to implement in a similar manner to
how the other data type variants and function cases were defined. Note that this is
independent from the module ExprVariations, so it does not contain any composed
type nor any version of the functions handling more cases.

{-# LANGUAGE TypeOperators, FlexibleContexts #-}

module NegationVariations where

import VariationsOnVariants
import EvalVariations
import AsStringVariations

-- | Data type for negation
data Neg e = Neg e

-- | Functor
instance Functor Neg where

fmap f (Neg e) = Neg (f e)
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-- | Smart constructor
iNeg :: Neg :<: f => Term f -> Term f
iNeg x = inject (Neg x)

-- | Evaluation of negation
evalNeg :: Neg e -> (e -> Int) -> Int
evalNeg (Neg e) r = (-1) * r e

-- | asString of negation
asStringNeg :: Neg e -> (e -> String) -> String
asStringNeg (Neg e) r = "(-" ++ r e ++ ")"

C.3.5 Desugaring
The module for desugaring contains two variants of the desug function. The first
describes how to handle negation, and the second is the default case, where noth-
ing should be desugared. The type signature for the case of negation, desugNeg,
is similar to that in Data Types à la Carte, with the exception of the argument
e -> Term f, for handling recursive expressions. Note the constraints that Const
and Op are part of the result type. When it comes to the type signature for the de-
fault case, desugDef, the only necessary constraint is that the type in the resulting
Term is a functor, and otherwise the type signature is simple with a general type
g e for the variant to be handled.

On the other hand, the type signature for the combining function desug is more
complicated. This is because, apart from the constraints in desugNeg and desugDef,
it has constraints specifying the subtraction of types that is made. This means that
this can actually express that the result type is the result of removing some part
(that is, the part that is to be desugared away, in this case Neg) of the ingoing type.

{-# LANGUAGE TypeOperators, TypeFamilies, FlexibleContexts #-}

module DesugVariations where

import VariationsOnVariants
import ExprVariations
import NegationVariations

-- | Desugaring of negation
desugNeg :: (Const :<: g, Op :<: g)

=> Neg e -> (e -> Term g) -> Term g
desugNeg (Neg e) r = iMul (iConst (-1)) (r e)

-- | Default case for desugaring where there is nothing to desugar
desugDef :: Functor g => g e -> (e -> Term g) -> Term g
desugDef e r = In (fmap r e)
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-- | Desugaring function that removes negation and leaves
-- the rest as it is
desug :: (f :-: Neg ~ g, Without f Neg (Minus f Neg)

, Op :<: g, Const :<: g, Functor g)
=> Term f -> Term g

desug = cases (desugNeg ? desugDef)

C.3.6 Main Module
Last, we have the main module. Apart from the examples seen in previous such
modules, we also have to define the versions of the functions that also handle nega-
tion, that is, the evalWithNeg and asStringWithNeg. Then, it is also necessary to
make sure to use the correct version of the function when using them, based on the
types included in the argument.

{-# LANGUAGE TypeOperators, FlexibleContexts #-}

module Main where

import VariationsOnVariants
import ExprVariations
import NegationVariations
import EvalVariations
import AsStringVariations
import DesugVariations

-- | Examples of type Expr, containing constants, addition and
-- multiplication
threePlusFive :: (Const :<: f, Op :<: f) => Term f
threePlusFive = iAdd (iConst 3) (iConst 5)

twoMulThreePlusFive :: Expr
twoMulThreePlusFive = iMul (iConst 2) threePlusFive

-- | Composed type ExprWithNeg, also containing negation
type ExprWithNeg = Term (Const :+: Op :+: Neg)

-- | Evaluation function also considering negation
evalWithNeg :: ExprWithNeg -> Int
evalWithNeg = cases (evalNeg ? (evalConst ? evalOp))

-- | Function asString also considering negation
asStringWithNeg :: ExprWithNeg -> String
asStringWithNeg = cases (asStringNeg ? (asStringConst ? asStringOp))
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-- | Example with negation
threePlusNegFive :: ExprWithNeg
threePlusNegFive = iConst 3 `iAdd` (iNeg (iConst 5))

-- | Evaluation examples
evalAddMul = eval twoMulThreePlusFive

evalAddNeg = evalWithNeg threePlusNegFive

-- | AsString example
asStringAddNeg = asStringWithNeg threePlusNegFive

-- | Desugar example
desugAddNeg = asString (desug threePlusNegFive :: Expr)

-- | Main, printing results of above examples
main :: IO ()
main = do

putStrLn "Evaluation examples:"
print evalAddMul
print evalAddNeg
putStrLn "AsString example:"
putStrLn asStringAddNeg
putStrLn "Desugar example:"
putStrLn desugAddNeg

C.4 Trees that Grow
Trees that Grow [19], as introduced in Section 2.5, is possible directly in Haskell and
does not require an extra library or implementation. Therefore, we do not need a
module for an implementation of Trees that Grow with the necessary definitions as
in the previous examples. Instead, we can directly write the example program. In
the following modules, we will show how to extend a data type with a new variant,
but we will not consider extensions in the fields of the existing variants.

C.4.1 Expressions
The following module contains the expression data type Expr, with variants for
Const, Add and Mul, as well as an open constructor for extending the data type,
ExprExt. The open constructor has an extension field X_ExprExt, which is defined
through a type family.

The module also contains an undecorated composition of Expr that has no exten-
sions, represented by Expr UD, where UD is simply an empty data type. For the
extension field of the open constructor, X_ExprExt, we define a type instance for UD
as Void, since there is no extension to the data type.
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{-# LANGUAGE TypeFamilies #-}

module ExprTrees where

import Data.Void

-- | Data type for expression language

-- | The data type, with extensible fields and
-- one extensible variant
data Expr e = Const Int

| Add (Expr e) (Expr e)
| Mul (Expr e) (Expr e)
| ExprExt (X_ExprExt e)

-- | The extension fields is defined through a type family
type family X_ExprExt e

-- | Undecorated composition of Expr, i.e. with no extension

data UD

-- | The type instance is Void since there is no extension
type instance X_ExprExt UD = Void

C.4.2 Evaluation
The general evaluation function is written with an extra argument that tells how to
handle an extension. The argument for this is passed along in the recursive calls,
but otherwise the function is very similar to a standard, non-extensible function.
To evaluate an undecorated expression, we have the function evalUD, which just
passes absurd :: Void -> a as the way to handle the extension, since the type of
the undecorated expression has no extensions.

module EvalTrees where

import ExprTrees
import Data.Void

-- | Evaluation function for Expr
eval :: (X_ExprExt e -> Int) -> Expr e -> Int
eval _ (Const i) = i
eval f (Add e1 e2) = eval f e1 + eval f e2
eval f (Mul e1 e2) = eval f e1 * eval f e2
eval f (ExprExt e) = f e
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-- | Evaluation of the undecorated composition of Expr
evalUD :: Expr UD -> Int
evalUD = eval absurd

C.4.3 Expressions as Strings
The asString function is written analogously to the evaluation function.

module AsStringTrees where

import ExprTrees
import Data.Void

-- | Function asString for Expr
asString :: (X_ExprExt e -> String) -> Expr e -> String
asString _ (Const i) = show i
asString f (Add e1 e2) = "(" ++ asString f e1 ++ " + "

++ asString f e2 ++ ")"
asString f (Mul e1 e2) = "(" ++ asString f e1 ++ " * "

++ asString f e2 ++ ")"
asString f (ExprExt e) = f e

-- | asString of the undecorated composition of Expr
asStringUD :: Expr UD -> String
asStringUD = asString absurd

C.4.4 Negation
To add negation, we want to add it in a way such that it can later be extended with
more variants. This gives the definition of the extensible data type Neg e, which
contains variants for negation as Neg and more possible extensions as NegExt. As
usual, the extension field to the open constructor is a type family.

We also define a pattern synonym that can be used instead of having to write the
full structure of the composition in which Neg is an extension to Expr. Hence,
we can write NegP e instead of ExprExt (Neg e). Note that this is specific for
compositions where Neg is a direct extension to Expr, and we cannot use it for
compositions where we have another extension in between the two.

Lastly in this module, we define the eval and asString functions for Neg. This
is done through an extensible function similar to eval and asString in previous
modules, but this function has an additional argument for how to handle the re-
cursive call. The recursive call should use a function that describes how to handle
the complete composition, not just the case of Neg. Therefore, the type for this
is Expr e -> Int in the evaluation function, since that covers Expr along with its
extensions.
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{-# LANGUAGE TypeFamilies, PatternSynonyms #-}

module NegationTrees where

import ExprTrees
import EvalTrees
import AsStringTrees

-- | Data type for Neg, containing Neg for negation, and is also
-- extensible in variants.
data Neg e = Neg (Expr e) | NegExt (X_NegExt e)

-- | The extension field of Neg is defined through a type family
type family X_NegExt e

-- | Useful pattern synonym
pattern NegP :: (X_ExprExt e ~ Neg e) => Expr e -> Expr e
pattern NegP e <- ExprExt (Neg e)

where NegP e = ExprExt (Neg e)

-- | Evaluation of Neg
evalNeg :: (Expr e -> Int) -> (X_NegExt e -> Int) -> Neg e -> Int
evalNeg g _ (Neg e) = (-1) * g e
evalNeg _ f (NegExt e) = f e

-- | asString of Neg
asStringNeg :: (Expr e -> String) -> (X_NegExt e -> String)

-> Neg e -> String
asStringNeg g _ (Neg e) = "(-" ++ g e ++ ")"
asStringNeg _ f (NegExt e) = f e

C.4.5 Desugaring
The transformative desugaring function is defined similarly to eval and asString.
For the general case, no change is to be made to Const, Add and Mul, other than
passing on the argument for how to desugar an extension. The result type is,
however, given as a polymorphic type Expr e2, that is, some composition with
Expr as its base.

The desugaring function for Neg, desugNeg, is similar to the corresponding functions
evalNeg and asStringNeg, but with the return type Expr e2. In this case, we
construct the result using constructors Mul and Const from Expr. Note that this
works since the constructors are in the base type Expr, while another structure
would be needed for constructors in extensions to specify the chain of extensions.
This means that we would need some kind of smart constructors to have the function
be fully composable in the return type.
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{-# LANGUAGE TypeFamilies #-}

module DesugTrees where

import ExprTrees
import NegationTrees
import Data.Void

-- | Desugaring function for Expr
desug :: (X_ExprExt e1 -> Expr e2) -> Expr e1 -> Expr e2
desug _ (Const i) = Const i
desug f (Add e1 e2) = Add (desug f e1) (desug f e2)
desug f (Mul e1 e2) = Mul (desug f e1) (desug f e2)
desug f (ExprExt e) = f e

-- | Desugaring of the undecorated composition of Expr
desugUD :: Expr UD -> Expr UD
desugUD = desug absurd

-- | Desugaring of Neg
desugNeg :: (Expr e1 -> Expr e2)

-> (X_NegExt e1 -> Expr e2) -> Neg e1 -> Expr e2
desugNeg g _ (Neg e) = Mul (Const (-1)) (g e)
desugNeg _ f (NegExt e) = f e

C.4.6 Main Module
The main module here contains, as before, examples of constructing values of the
data type, as well as functions for evaluating, writing as a string and desugaring
such examples.

It also contains the composition of Expr and Neg. This is given with the extension
descriptor WithNeg, by defining the type instances for the extension fields of Epxr
and Neg. Neg is defined as the extension to Expr, with no further extensions. Along
with this, we also have the functions for this concrete composition, evalWithNeg,
asStringWithNeg and desugWithNeg. Note that desugWithNeg also specifies the
result type to a concrete composition, Expr UD, although this is not strictly nec-
essary. These, or, where suitable, the corresponding functions for the undecorated
composition, evalUD and asStringUD, are the functions we use on the example
expressions. The use of these composed functions is similar to in Variations on
Variants.

{-# LANGUAGE TypeFamilies #-}

module Main where

import ExprTrees
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import EvalTrees
import AsStringTrees
import NegationTrees
import DesugTrees
import Data.Void

-- | Examples of type Expr, containing constants, addition and
-- multiplication
threePlusFive :: Expr e
threePlusFive = Add (Const 3) (Const 5)

twoMulThreePlusFive :: Expr UD
twoMulThreePlusFive = Mul (Const 2) threePlusFive

-- | Composition of Expr and Neg

data WithNeg

-- | Type instance for the original Expr type, now containing
-- Neg as its extension variant
type instance X_ExprExt WithNeg = Neg WithNeg

-- | Type instance for the composition of Neg that is not extended
type instance X_NegExt WithNeg = Void

-- | Evaluation of the composition of Expr where it is extended
-- with Neg, where Neg has no extensions
evalWithNeg :: Expr WithNeg -> Int
evalWithNeg e = eval (evalNeg evalWithNeg absurd) e

-- | asString of the composition of Expr where it is extended
-- with Neg, where Neg has no extensions
asStringWithNeg :: Expr WithNeg -> String
asStringWithNeg e = asString (asStringNeg asStringWithNeg absurd) e

-- | Desugaring of the composition of Expr where it is extended
-- with Neg, where Neg has no extensions
desugWithNeg :: Expr WithNeg -> Expr UD
desugWithNeg e = desug (desugNeg desugWithNeg absurd) e

-- | Example with negation
threePlusNegFive :: Expr WithNeg
threePlusNegFive = Const 3 `Add` (NegP (Const 5))

-- | Evaluation examples
evalAddMul = evalUD twoMulThreePlusFive
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evalAddNeg = evalWithNeg threePlusNegFive

-- | AsString example
asStringAddNeg = asStringWithNeg threePlusNegFive

-- | Desugar example
desugAddNeg = asStringUD (desugWithNeg threePlusNegFive)

-- | Main, printing results of above examples
main :: IO ()
main = do

putStrLn "Evaluation examples:"
print evalAddMul
print evalAddNeg
putStrLn "AsString example:"
putStrLn asStringAddNeg
putStrLn "Desugar example:"
putStrLn desugAddNeg

C.5 Object Algebras

This section will cover how the example program is written with object algebras [21],
introduced in Section 2.6. In contrast to the other related work, this is a solution
for object-oriented languages, and the example program here is written in Java.
It is possible to use object algebras directly in Java, so we do not need a ground
implementation, but can go directly into the example.

C.5.1 Expressions

The data type for expressions with constants, addition and multiplication corre-
sponds to an object algebra interface in this solution. This has a generic type T,
which represents the result type of applying a function to an expression. This is the
result type for the interface functions, which each corresponds to a variant of the
data type for expressions.

// Object algebra interface for expressions
interface ExprAlg<T> {

T cons(int i);
T add(T e1, T e2);
T mul(T e1, T e2);

}
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C.5.2 Evaluation
In this approach, functions are represented as object algebras. Here, we show an
object algebra for evaluation of expressions. This implements the object algebra
interface with a concrete type in place of T. In this case, it is Eval, defined as an
interface with a function int eval().

// Interface for the evaluation function
interface Eval {

int eval();
}

// Object algebra for evaluation of expressions
class ExprEval implements ExprAlg<Eval> {

public Eval cons(int i) { return () -> i; }
public Eval add(Eval e1, Eval e2) {

return () -> first.eval() + second.eval();
}
public Eval mul(Eval e1, Eval e2) {

return () -> first.eval() * second.eval();
}

}

C.5.3 Expressions as Strings
As mentioned in Section 2.6, it is possible to write an object algebra in a simpler
way, without the use of an interface such as Eval, when the interface has a single
function taking no arguments and not using mutable state. We present the function
asString in this way. This means that we use the return type String in place of
the generic type T in the object algebra.

// Object algebra for asString of expressions
class ExprAsString implements ExprAlg<String> {

public String cons(int i) { return String.valueOf(i); }
public String add(String e1, String e2) {

return "(" + e1 + " + " + e2 + ")";
}
public String mul(String first, String second) {

return "(" + e1 + " * " + e2 + ")";
}

}

C.5.4 Negation
Now, we want to extend the data type with a variant for negation. This is done by
writing an object algebra interface corresponding to the variant. This could either
extend the previous interface ExprAlg, or be used together with ExprAlg in a second
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interface that extends both. Here, we present it as extending ExprAlg. We also need
to define how to use the functions eval and asString on negations. This is done
by defining an object algebra for each, NegEval and NegAsString. These extend
the previous object algebras for expressions, ExprEval or ExprAsString.

// Object algebra interface for negation, extending interface for
// expressions
interface NegAlg<T> extends ExprAlg<T> {

T neg (T e);
}

// Object algebra for evaluation of negation, extending the OA
// for eval of expressions
class NegEval extends ExprEval implements NegAlg<Eval> {

public Eval neg(Eval e) {return () -> -e.eval();}
}

// Object algebra for asString of negation, extending the OA
// for asString of expressions
class NegAsString extends ExprAsString implements NegAlg<String> {

public String neg(String e) {return "(-" + e + ")";}
}

C.5.5 Desugaring
A transformative function, for instance a desugaring function, is written as an object
algebra with a generic type T in the object algebra interface, like ExprAlg<T>, instead
of a concrete type like Eval or String in the above destructive function examples.
Furthermore, the object algebra of the transformative function has a constructor
with an object algebra as a parameter, which corresponds to the result type. This
parameter has the type ExprAlg<T>. For instance, the constructor can be called
with an object algebra new ExprAsString(), which has the type ExprAlg<String>,
indicating that the result of desugaring should be written as a String.

The desugaring function is here implemented as one object algebra for the original
object algebra interface ExprAlg, and one for the extension for negation NegAlg,
where the second extends the first one.

// Object algebra for desug of expressions
class ExprDesug<T> implements ExprAlg<T> {

ExprAlg<T> alg;
public ExprDesug(ExprAlg<T> alg) {

this.alg = alg;
}
public T cons(int i) { return alg.cons(i); }
public T add(T e1, T e2) {

return alg.add(e1, e2);
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}
public T mul(T e1, T e2) {

return alg.mul(e1, e2);
}

}

// Object algebra for desug of negation
class NegDesug<T> extends ExprDesug<T> implements NegAlg<T> {

public NegDesug(ExprAlg<T> alg) {
super(alg);

}
public T neg(T e) {

return alg.mul(alg.cons(-1), e);
}

}

C.5.6 Main Module
Constructing examples of an object algebra is written as a function, which takes an
object algebra, for instance of type ExprAlg<T>, and returns an object of type T.
The result object is the result of calling the interface functions (such as cons and
add corresponding to data type variants) on the object algebra.

To then, for instance, evaluate such an example, we create an instance of an object
algebra, like new ExprEval() and gives that as a parameter to the function cor-
responding to the example to be evaluated, like twoMulThreePlusFive. Since the
evaluation object algebra here is written using the interface Eval, we must also apply
its function eval() to the resulting object to complete the evaluation. In the case
of AsString, where we have defined the object algebra with the return type String
directly, we can simply call, for instance, threePlusNegFive(New NegAsString()).

Finally, for desugaring an example, note that the constructor NegDesug needs both a
generic type and a parameter for the result object algebra, meaning that we construct
it as new NegDesug<String>(new ExprAsString())). However, since the generic
type can be inferred, we do not need to specify it and can simplify the construction
to new NegDesug<>(new ExprAsString())).

class Test {

// Examples of expressions
<T> T threePlusFive(ExprAlg<T> alg) {

return alg.add(alg.cons(3), alg.cons(5));
}

<T> T twoMulThreePlusFive(ExprAlg<T> alg) {
return alg.mul(alg.cons(2), threePlusFive(alg));

}
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<T> T threePlusNegFive(NegAlg<T> alg) {
return alg.add(alg.cons(3), alg.neg(alg.cons(5)));

}

// Main, printing results of examples
public static void main(String args[]) {

Test t = new Test();
t.print();

}

// Helper printer function
void print() {

System.out.println("Evaluation examples:");
System.out.println(twoMulThreePlusFive(

new ExprEval()).eval());
System.out.println(threePlusNegFive(new NegEval()).eval());
System.out.println("AsString example:");
System.out.println(threePlusNegFive(new NegAsString()));
System.out.println("Desug example:");
System.out.println(threePlusNegFive(

new NegDesug<>(new ExprAsString())));
}

}
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D
Library Modules for Related Work

Examples

In this chapter, we present implementations of some of the solutions to the expression
problem not possible to use directly. This means that these form library modules
for some of the example programs given in Appendix C, to make those compilable.
The exception to compilability is compdata, where we present only a portion of the
implementation available in the Haskell library.

D.1 Data Types à la Carte
This is a module with the implementation of Data Types à la Carte, containing
definitions of the coproduct, injection and other symbols. Most of it should be
familiar from Section 2.2.

{-# LANGUAGE TypeOperators, UndecidableInstances, FlexibleInstances,
MultiParamTypeClasses #-}

module DTalC where

-- | Parameterization of a data type using Term
data Term f = In (f (Term f))

-- | Coproduct
data (f :+: g) e = Inl (f e) | Inr (g e)
infixr :+:

instance (Functor f , Functor g) => Functor (f :+: g) where
fmap f (Inl e1) = Inl (fmap f e1)
fmap f (Inr e2) = Inr (fmap f e2)

-- | Fold for Terms
foldTerm :: Functor f => (f a -> a) -> Term f -> a
foldTerm f (In t) = f (fmap (foldTerm f) t)
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-- | Subsumption and injection
class (Functor sub, Functor sup) => sub :<: sup where

inj :: sub a -> sup a

instance Functor f => f :<: f where
inj = id

instance (Functor f , Functor g) => f :<: (f :+: g) where
inj = Inl

instance {-# OVERLAPPABLE #-}
(Functor f , Functor g, Functor h, f :<: g)
=> f :<: (h :+: g) where

inj = Inr . inj

inject :: (g :<: f) => g (Term f) -> Term f
inject = In . inj

D.2 compdata
Here we include important snippets of code from the compdata library. While it con-
tains the same symbols as those in Section 2.2 and 2.3, some have been generalized
beyond the simpler definitions that we used when describing Data Types à la Carte.
We have still chosen to exclude portions of code. For example, we do not present
code for any of the functions used with Template Haskell that were mentioned in
this thesis. Parts of the implementation of the subsumption constraint have also
been excluded. To see the complete source code of compdata, it is recommended to
look at the source code repository for that library [13].

-- | A form of generalization of Term by compdata
data Cxt :: * -> (* -> *) -> * -> * where

Term :: f (Cxt h f a) -> Cxt h f a
Hole :: a -> Cxt Hole f a

data Hole
data NoHole

-- | A Term as corresponding to Data types à la Carte
type Term f = Cxt NoHole f ()

-- | A helper function for unwrapping a Term
unTerm :: Cxt NoHole f a -> f (Cxt NoHole f a)
{-# INLINE unTerm #-}
unTerm (Term t) = t

infixr 6 :+:
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-- | The coproduct definition
data (f :+: g) e = Inl (f e)

| Inr (g e)

instance (Functor f, Functor g) => Functor (f :+: g) where
fmap f (Inl e) = Inl (fmap f e)
fmap f (Inr e) = Inr (fmap f e)

infixl 5 :<:
infixl 5 :=:

-- | Subsumption criterion, which uses
-- closed type families to search for f in g
type f :<: g = (Subsume (ComprEmb (Elem f g)) f g)

type f :=: g = (f :<: g, g :<: f)

data Emb = Found Pos | NotFound | Ambiguous
data Pos = Here | Le Pos | Ri Pos | Sum Pos Pos
data Proxy a = P

-- | Class that uses the result e
-- for a search of f in g to implement inject and project
class Subsume (e :: Emb) (f :: * -> *) (g :: * -> *) where

inj' :: Proxy e -> f a -> g a
prj' :: Proxy e -> g a -> Maybe (f a)

-- Instances to Subsume that unpack the result
-- will not be shown here, nor will we show
-- the type families ComprEmb or Elem that produce this result.
-- If you want to know how these work,
-- you should look at the source code repository for compdata.

inj :: forall f g a . (f :<: g) => f a -> g a
inj = inj' (P :: Proxy (ComprEmb (Elem f g)))

proj :: forall f g a . (f :<: g) => g a -> Maybe (f a)
proj = prj' (P :: Proxy (ComprEmb (Elem f g)))

-- | This definition of injection is slightly simplified
-- from what can be found in compdata source code
inject :: (g :<: f) => g (Cxt h f a) -> Cxt h f a
inject = Term . inj
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-- | This definition of projection is slightly simplified
-- from what can be found in compdata source code
project :: (g :<: f) => Cxt h f a -> Maybe (g (Cxt h f a))
project (Hole _) = Nothing
project (Term t) = proj t

-- | A type representing an algebra function
type Alg f a = f a -> a

-- | Catamorphism for applying an algebraic function onto a Term
cata :: forall f a . (Functor f) => Alg f a -> Term f -> a
{-# NOINLINE [1] cata #-}
cata f = run

where run :: Term f -> a
run = f . fmap run . unTerm

D.3 Variations on Variants
This section contains a module of the closed type families implementation of Varia-
tions on Variants. The definitions of Term and the coproduct are familiar from pre-
viously mentioned solutions. Then, for membership test, injection and remainder,
we have implementations of proof-searches that are used to define the operations.
Note that remainder (:-:), meaning that it gives the part remaining after removing
a type from a composed type, is introduced in this implementation, while it is not
present in Data Types à la Carte or compdata.

What is more important than the details of this implementation is how it is used.
This is why the last definition in this module, cases, is important to note, because
that is what is used when defining functions.

{-# LANGUAGE TypeFamilies, UndecidableInstances, ExplicitForAll,
TypeOperators, ScopedTypeVariables, ConstraintKinds,
FlexibleContexts, FlexibleInstances, MultiParamTypeClasses #-}

module VariationsOnVariants where

-- | Term, the fixed point recursive knot
data Term e = In (e (Term e))

-- | Coproduct
data (f :+: g) e = Inl (f e) | Inr (g e)
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-- | Functor instance for the coproduct
instance (Functor f , Functor g) => Functor (f :+: g) where

fmap f (Inl e1) = Inl (fmap f e1)
fmap f (Inr e2) = Inr (fmap f e2)

-- | Branching operator
-- Given functions for f and g respectively,
-- return function for their coproduct
(<?>) :: (f e -> a) -> (g e -> a) -> (f :+: g) e -> a
(f <?> g) (Inl x) = f x
(f <?> g) (Inr x) = g x

-- | Auxillary empty data types
data Yep
data Nope

-- | Membership test
type family IsIn f g where

IsIn f f = Yep
IsIn (f :+: f') (g :+: g') = Or (Or (IsIn (f :+: f') g)

(IsIn (f :+: f') g'))
(And (IsIn f (g :+: g'))

(IsIn f' (g :+: g')))
IsIn f (g :+: h) = Or (IsIn f g) (IsIn f h)
IsIn f g = Nope

-- | Auxillary type family for disjunction
type family Or b c where

Or Nope Nope = Nope
Or b c = Yep

-- | Auxillary type family for conjunction
type family And b c where

And Yep Yep = Yep
And b c = Nope

-- | More auxillary empty data types
data Refl
data L x
data R x

-- | Proof search for type-level witness for subsumption
type family Into f g where
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Into f f = Refl
Into f (g :+: h) = Ifi (Into f g) (IsIn f h)

(Into f h) (IsIn f g)
Into f g = Nope

-- | Auxillary witnesess
type family Ifi lp inr rp inl where

Ifi Nope inr Nope inl = Nope
Ifi Nope inr rp Nope = R rp
Ifi lp Nope rp inl = L lp
Ifi lp inr rp inl = Nope

-- | Injection, using witness p of the proof that f is summand of g
class Inj f g p where

injp :: p -> f e -> g e

instance Inj f f Refl where
injp _ = id

instance Inj f g p => Inj f (g :+: h) (L p) where
injp (_ :: L p) = Inl . injp (undefined :: p)

instance Inj f h p => Inj f (g :+: h) (R p) where
injp (_ :: R p) = Inr . injp (undefined :: p)

-- | Injection function, hiding the type-level witness Into
inj :: forall f g e. (Inj f g (Into f g)) => f e -> g e
inj = injp (undefined :: Into f g)

-- | Auxillary function to simplify injection
inject :: (Inj f e (Into f e)) => f (Term e) -> Term e
inject = In . inj

-- | More auxillary data types
data Onl (h :: * -> *)
data Onr (h :: * -> *)
data Le (g :: * -> *) p
data Ri (f :: * -> *) p
data Found (f :: * -> *)

-- | Proof search for witness for subtracting types in coproducts
type family Minus f g where

Minus f f = Nope
Minus (f :+: g) f = Onl g
Minus (f :+: g) g = Onr f
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Minus (f :+: g) h = Ifm g (Minus f h) (IsIn f g)
f (Minus g h) (IsIn f h)

Minus f g = Found f

-- | Auxillary witnesses
type family Ifm g lp inr f rp inl where

Ifm g Nope inr f Nope inl = Nope
Ifm g Nope inr f rp Nope = Ri f rp
Ifm g lp Nope f rp inl = Le g lp

-- | Extract the type from a proof search done with Minus
type family OutOf p where

OutOf (Onl x) = x
OutOf (Onr x) = x
OutOf (Le f p) = OutOf p :+: f
OutOf (Ri f p) = f :+: OutOf p

-- | Branching operator, using witness p of the proof that g
-- can be removed from f
class Without f g p where

(??) :: (g e -> r) -> (OutOf p e -> r) -> p -> f e -> r

instance Without (f :+: g) f (Onl g) where
(m ?? n) _ = m <?> n

instance Without (f :+: g) g (Onr f) where
(m ?? n) _ = n <?> m

instance Without f h p => Without (f :+: g) h (Le g p) where
(m ?? n) (_ :: Le g p) = (m ?? (n . Inl)) (undefined :: p)

<?> (n . Inr)

instance Without g h p => Without (f :+: g) h (Ri f p) where
(m ?? n) (_ :: Ri f p) = (n . Inl)

<?> (m ?? (n . Inr)) (undefined :: p)

-- | Wrapper branching operator, hiding the Minus witness
(?) :: forall f g e r. Without f g (Minus f g) => (g e -> r)

-> (OutOf (Minus f g) e -> r) -> f e -> r
m ? n = (m ?? n) (undefined :: Minus f g)

-- | Shorthands for subtraction and subsumption
type f :-: g = OutOf (Minus f g)
type f :<: g = Inj f g (Into f g)
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-- | cases, used to evaluate using different function variants
-- e.g. cases (evalConst ? evalOp)
cases :: (e (Term e) -> (Term e -> t) -> t) -> Term e -> t
cases cs = f where f (In e) = cs e f
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