
PROJECT REPORT

Implementing and optimizing Shor’s algorithm
for native gate sets using Qiskit

Supervisor: David Fitzek

Examiners: Attila Geresdi

Simone Gasparinetti

Group members: Tobias Offermann

Nils Ciroth

Contents

1 Introduction and Motivation 2

2 Shor’s algorithm 2
2.1 Mathematical background . 3
2.2 Quantum circuit of Shor’s algorithm . 3

2.2.1 Quantum Fourier Transformation . 4
2.2.2 Unitary for modular exponentiation 5
2.2.3 Quantum phase estimation . 5

3 Native gate sets 6
3.1 Direct gate translation . 6

3.1.1 Necessary gates . 6
3.1.2 IBM hardware . 6
3.1.3 Chalmers hardware . 7

3.2 Fredkin gate discussion . 7
3.3 Predictions . 8

4 Decomposition of the whole circuit 9
4.1 What is Qiskit and why do we use it? . 9
4.2 Transpile function and evaluation criteria . 10

4.2.1 IBM hardware . 11
4.2.2 Chalmers hardware . 11

5 Results of the circuit transpilation 12
5.1 Results for the IBM hardware . 12
5.2 Results for the Chalmers hardware . 12

6 Conclusion 13

7 Outlook 13

Bibliography 14

1

1 Introduction and Motivation

This project is about the implementation of Shor’s algorithm with Qiskit and its optimization
for different native gate sets. This topic lies at the interface of several different important
branches in quantum computing. Shor’s algorithm is probably the most important quantum
algorithm to date since it is the only known one that grants an exponential speed up for a
specific, practical problem compared to all classical algorithms. Moreover, this algorithm is
still important in current research because once a large-scale application of Shor’s algorithm
is possible almost all of our modern cybersecurity protocols are not safe anymore. This is due
to their reliance on the hardness of the factoring problem. The actual implementation is done
with Qiskit, a quantum programming SDK that gives an impression of how the connection
between the theoretical algorithms and the actual hardware could look like. Every quantum
computer has a different hardware with different coupling maps and different gates. These
come with individual difficulties of implementation and different run times on each device.
Overall, we are going from the theoretical subject of the algorithm itself to programming the
hardware with the question of which gates one should try to implement in the hardware. Or,
to phrase it differently: We are going through different stages of building and programming
a quantum computer.

2 Shor’s algorithm

Shor’s algorithm was found by Peter Shor in 1994 [1]. Its working principle is period finding
using a Fourier transformation. In this light, a quantum speedup is possible by using the
quantum Fourier transformation (QFT) within a phase estimation. We will be explaining
the exact workings of both the algorithm and the quantum parts in the following chapters.

Peter Shor’s current Twitter profile [2]

2

2.1 Mathematical background

The core concept of Shor’s algorithm is the fact that a series of the form

αx “ ax mod N (1)

with arbitrary basis a ă N is periodic in x. This is easily traceable by the maximum of N
different values of α P t0,1,...,N ´ 1u and the fact that each successor is only dependent on
the value of the predecessor, since

αx`1 “ pa ¨ αxq mod N (2)

If the period r is known and even, the factors of N can be found easily:

a0 “ ar mod N “ 1 (3)

ùñ par ´ 1q mod N “ 0 (4)

ùñ c ¨ N “ ar ´ 1 “ pa
r
2 ´ 1qpa

r
2 ` 1q (5)

The GCDs of a
r
2 ´ 1 and a

r
2 ` 1 with N then reveals the factors, assuming one of them is not

a full multiple of N.
Should one of those conditions be not fulfilled, a different basis a can be chosen and the
algorithm can be re-run.

2.2 Quantum circuit of Shor’s algorithm

The actual quantum part of the algorithm is just a single step of it, but still the most
important one since it provides the exponential speed-up. We need to construct a circuit
that returns the order r. For this, we need the unitary of modular exponentiation, which can
be defined by

U |yy “

#

|x ¨ y mod Ny , 0 ď y ď N ´ 1

|yy , N ď y ď 2L ´ 1
, (6)

where L is the number of qubits involved in the unitary. One can show [3] that the states

|usy “
1

?
r

r´1
ÿ

k“0

exp
“

´ 2πi
s

r
k

‰

|xk mod Ny (7)

are eigenstates of U , where

U |usy “ exp
“

2πi
s

r

‰

|usy (8)

is the corresponding eigenvalue equation. Here, s with 0 ď s ď r ´ 1 can be an arbitrary
integer. Since we can find r out of the fraction s{r with the classical continued fractions
algorithm efficiently, it is sufficient to find a circuit that returns the phase s{r of the unitary
U . Here is where phase estimation comes into play, which will be explained later. At this
point, we will just show the complete circuit used for Shor’s algorithm, which is depicted in
figure 2. To further discuss the gates and the optimization of the circuit for different native
gate sets, it is enough to look at the final circuit.

3

Figure 2: Full general circuit that performs Shor’s algorithm. [4]

One can see that the circuit consists of two registers, single qubit gates, controlled unitary
operators and a quantum Fourier transformation (QFT). The qubits in the first register are
initialized using Hadamard gates, which is the first type of gates we need. The other parts of
the circuit (namely the unitary and the quantum Fourier transform) and the gates we need
to perform them are discussed in the following. For further reading we suggest reference [4].

2.2.1 Quantum Fourier Transformation

The quantum Fourier transformation can be seen as the quantum version of the classical
discrete Fourier transformation, even though it has a slightly different purpose. It can be
expressed as a unitary multi-qubit operation that applies the transformation

|jy Ñ
1

?
N

N´1
ÿ

m“0

e2πijk{N
|ky (9)

which can be seen as a basis transformation of a basis state |jy to a new basis that is mathem-
atically equivalent to the classical Fourier transform. We can use the binary representation
of a multi-qubit state, defined by

k “ k1 2
n´1

` ... ` kn 2
0 (10)

to write the effect of the QFT in a more intuitive form, namely

|jy Ñ
1

?
N

p|0y ` e2πi¨0.jn |1yqp|0y ` e2πi¨0.jn´1jn |1yq ¨ ... ¨ p|0y ` e2πi¨0.j1...jn |1yq . (11)

It is relatively easy to construct a circuit that performs exactly this operation. We can define
the single qubit gate

Rk “

„

1 0

0 e2πi{2
k

ȷ

(12)

and use its controlled version in the circuit shown in figure 3 to perform the transformation of
relation (11). Therefore, the CRk gate is the second type of gate we need to execute. Besides
this, the QFT only contains Hadamard gates, of which we already know that they will be
needed. The exact mathematical operations involved to show that equation (11) holds and
is performed by the circuit in figure 3 can be found in reference [3].

4

Figure 3: Circuit for the quantum Fourier transform. [4]

2.2.2 Unitary for modular exponentiation

In a last step, we need to decompose the modular exponentiation unitary defined in equa-
tion (6) into known gates before putting all pieces together again. It is quite hard to find
a general decomposition summed up in a circuit, which is why we focus on our example of
factoring 15 with basis a “ 2 here. For this example, the corresponding unitary can be easily
decomposed into multiple Fredkin gates, which can be seen in figure 4. For different numbers

Figure 4: Decomposition of unitary for modular exponentiation of N “ 15 into Fredkin gates.

than 15 and 2 only the amount of Fredkin gates changes or CX gates are added, which makes
Shor’s algorithm in general not much harder to decompose. However, here we will focus on
factoring 15.

2.2.3 Quantum phase estimation

To sum things up, the quantum circuit for Shor’s algorithm is s special form of the phase
estimation for the modular exponentiation unitary defined in equation (6). A general circuit
for phase estimation can be seen in figure 5. One can show that this circuit finds the phase
φ of the eigenvalue expp2πiφq for an arbitrary unitary operator. This is possible because

U |uy “ e2πiφ |uy (13)

5

holds for any unitary operator. As before, the exact mathematical background of why phase
estimation works is not immediately relevant for our case, but can be found in reference [3]
for further reading.

Figure 5: General circuit for phase estimation. One can see that Shor’s algorithms circuit is
a Phase estimation with a special unitary. [4]

3 Native gate sets

Native gate sets are the sets of quantum gates that can be applied by a given hardware. Any
algorithm that is supposed to be ran on a quantum computer has to be translated into that
computer’s native gate set.

3.1 Direct gate translation

The most elementary way to translate any gate set into another is to translate each individual
gate into suitable gates of the target architecture. This however can still be optimised, since
certain steps may not be necessary when applying multiple gates after another. Nevertheless
it is a good starting point and also allows for an elementary study on which gates are tough
to translate. We will be analysing the translation of the necessary gates into the hardware
of IBM and Chalmers.

3.1.1 Necessary gates

The gates we will need to be able to compute in order to perform our specific case of Shor’s
algorithm are the Hadamard gate, the CROT gate and the Fredkin gate.

3.1.2 IBM hardware

The gate set that is available on IBM hardware is consisting out of the gates CX, RZ, SX
and X, where SX is the square root of the X gate. Fundamental translations into these gates
are depicted in the following figures 6 for the Hadamard gate, 7 for the CROT gate and 8
for the Fredkin gate.

6

Figure 6: Hadamard gate in IBM native gate set.

Figure 7: CROT gate in IBM native gate set. The angles of the first and second RZ gate are
´ θ

2
and θ

2
respectively to translate to a CROT with an angle of θ.

Figure 8: Fredkin gate in IBM native gate set.

3.1.3 Chalmers hardware

The Chalmers hardware has a different native gate set, it is given by iSWAP, CZ, RZ, RX(˘π
2
)

and RY(˘π
2
). The translation of relevant gates except for the Fredkin gate has already been

done [5], the Hadamard gate can be constructed with a depth of 2, the CROT gate with 3.
The translation for the Fredkin gate can be achieved only with a very long depth of 23.

3.2 Fredkin gate discussion

From both decompositions it becomes clear that a decomposition into individual gates is
usually only connected to a small factor of 2 or 3 for 1- and 2-qubit-gates, but for the 3-qubit
Fredkin gate, the number of gates seems to be much higher. The reason for this is that there
are only 1- and 2-qubit gates in both hardware gate sets, but they need to be linked in a way
that a 3-qubit gate can be represented. With a 3-qubit gate, for example by adding a Toffoli

7

gate as current research efforts at Chalmers try to achieve [5], the translation of the Fredkin
gate with CX and one Toffoli gate would have a length of 3 and looks as shown in figure 9.

Figure 9: Fredkin gate decomposition using a Toffoli gate and CX gates.

Additionally, the given gates seem to be quite sub-optimal to translate the Fredkin gate, since
the theoretical limit would be a 6 gate long translation [6]. A sensible 7 gate long translation
would be given by introducing the CSX gate, a controlled SX gate, the translation were to
look as depicted in figure 10.

Figure 10: Representation of the Fredkin gate with depth of 7, using CSX gates (V) and CX
gates. Taken from [6].

3.3 Predictions

Before tackling the whole circuit in the following chapters, we can predict that the Chalmers
hardware will yield a longer circuit depth due to the bigger length of the Fredkin gate
translation. Additionally, we can assume that the circuit depth will further increase as soon
as the actual connectivities of the hardware is taken into account. The architecture with a
denser connectivity map should be expected to have a less impactful increase due to this.

8

4 Decomposition of the whole circuit

As seen before, it is generally possible to find a translation from the theoretical universal gate
sets to the native gate sets of a certain hardware by hand. However, this translation is far
from being the optimal. Especially when multiple gates are used it is possible to drastically
simplify certain gate combinations to reduce the number of gates that need to be performed
(and therefore the run time of our algorithm). As an example one could look at the relation
HH “ I, which means that any two adjacent Hadamard gates can be simplified to the
identity matrix. It is obvious that the application of two Hadamard gates on a qubit takes
longer than not applying a gate at all. This is where the ”optimization” part of our work
becomes important again. We need to find the optimal circuit for our example of factoring
15 with Shor’s algorithm, not just a direct translation. Or to rephrase it in a mathematical
way: We need to decompose the unitary matrix for Shor’s algorithm into the most efficient
number of native gates. Matrix decomposition is a NP problem [7], which is why it is almost
impossible to find any appropriate solution by hand. Because of that we make use of the
computer (namely the Qiskit environment) for the implementation of our circuit of relatively
small size, for bigger circuits, this method will also take exponentially more time.

4.1 What is Qiskit and why do we use it?

Qiskit is an open-source software development kit (SDK) that allows the circuit-based im-
plementation of quantum gates and algorithms. It is developed by IBM Research with the
original purpose to allow an easy development of quantum programs on the IBM cloud
quantum computers. This is also one of the reasons why we used the IBM hardware to
optimize our circuit. Qiskit uses Python as programming language, which means that it can
be imported to a normal Python file and all the functions it provides can be used with the
Python syntax. An example of how to create a basic circuit in Qiskit is shown in figure 11.
After importing all the necessary libraries in the first line, a qubit register and a classical
register is created. The function QuantumCircuit() takes both registers as an input and
creates a variable that has the quantum circuit datatype. This variable represents the blank
circuit. To add gates to the circuit, one just calls the function representing the specific gate
on the quantum circuit variable. The input op the gate function depends on the type of
gate. The single-qubit RX-gate used in this circuit takes the rotation angle and the qubit
it acts on as an input, while the following CX-gates needs the control and target qubit as
input. The last parts of the circuits are measurements performed on both registers. This
example also shows that Qiskit provides examples for visualizing circuits. There are more
types of functions that do not serve the sole purpose of creating a circuit. Especially the
transpile() function, which will be discussed in the following section, is essential for any
optimization processes.

9

Figure 11: Example of a program in Qiskit that creates a quantum circuit, adds gates to the
circuit and draws this circuit as output.

4.2 Transpile function and evaluation criteria

The transpile() function is a function included in Qiskit that allows to input a quantum
circuit and get a circuit transpiled to a specific hardware as an output. It allows the imple-
metation of a certain native gate set as well as a coupling map, which both have a big impact
on the circuit. Moreover, we can set an optimization level between 0 (no optimization) and 3
(full optimization). This optimization level determines how good the optimization described
in the previous section is. Level 0 is just translating, while level 3 is our standard choice for
optimizing. The output of this function is probabilistic, which means that all numbers that
are presented in the following are just to demonstrate the order of magnitude or rough factor
of change when enabling different optimization options. For our analysis of the optimized
circuits, we will use two criteria to evaluate how good the optimization was. First, we will
look at the circuit depth. It is defined by the length of the longest path from the input (or
from a preparation) to the output (or a measurement gate). Intuitively, it makes sense that
a deeper circuit corresponds to a longer run time, to that we are interested in decreasing the
circuit depth. Second, we will also look at the number of two qubit operations. It is always
easier to perform single qubit operations, because if you have more qubits they might have
to be swapped before the gate can be applied. Therefore, the circuit depth is not enough
to make statements about the runtime and fidelity of a program. A longer circuit could be
easier to perform if the number of two qubit operations is significantly lower. However, it is
not so easy to reduce both the circuit depth and the number of two qubit operations to a
single, weighted number that quantifies the performance of a circuit.

10

4.2.1 IBM hardware

For the IBM device we used IBM Nairobi as reference device. The native gates for this
device are explained above. This device is a 7-qubit quantum computer. The corresponding
coupling map is shown in figure 12. Since our circuit only needs 6 qubits and this hardware
provides 7, we will be using the qubit numbers 0 to 5 to encode the core algorithm. The
additional qubit is, however, available to the optimiser in order to find more efficient routings.

Figure 12: Coupling map of the IBM Nairobi quantum computer.

4.2.2 Chalmers hardware

For the upcoming quantum computer at Chalmers we used a 9-qubit fake backend. The nat-
ive gate sets can be found above as well, the coupling map is depicted in figure 13. Analogous
to the IBM hardware, we will be initially encoding the problem on qubits 0 to 5, with the
other qubits also being available to the optimiser.

Figure 13: Fake coupling map of the upcoming Chalmers quantum computer.

11

5 Results of the circuit transpilation

In this chapter, we will show exemplary data for the circuit depth and number of two qubit
gates for both hardware and different optimization levels are presented.

5.1 Results for the IBM hardware

As expected, we can see that the consideration of the coupling map increases both evaluation
numbers significantly. Moreover, the fully optimized circuit decreases all evaluation numbers.
Especially in the case with coupling map the reduction of two qubit operations is quite high,
which is a result of the optimization of multiple swap gates.

Table 1: Results of the transpiled circuit for the IBM hardware.

No optimization Full optimization
Circuit depth 2qb gates Circuit depth 2qb gates

Just native gates 362 167 308 165
Native gates and coupling map 486 386 576 359

5.2 Results for the Chalmers hardware

For the Chalmers hardware, we can make the same observations as for the IBM hardwere in
terms of the influence of the coupling map and optimization level. We can see that in general
the numbers in all categories are higher than for the IBM hardware, which means that the
IBM hardware is better for factoring 15 with our 6-qubit version of Shor’s algorithm The
coupling maps do not seem to play as big of a role in creating a difference in circuit depth
and 2-qubit gate count between the two architectures, which is most likely due to both maps
being sufficient for the scale of the problem.

Table 2: Results of the transpiled circuit for the fake Chalmers hardware.

No optimization Full optimization
Circuit depth 2qb gates Circuit depth 2qb gates

Just native gates 786 165 370 165
Native gates and coupling map 4853 699 694 303

12

6 Conclusion

In summary, we found an implementation of Shor’s algorithm in Qiskit and used different
optimization approaches to tailor this algorithm for the IBM and the Chalmers hardware.
First, we searched for translations of the theoretical gates into the native gate sets of the
corresponding hardware. We found out that native 3-qubit gates could drastically improve
the performance in our algorithms. Moreover, we analyzed the transpiled circuit in terms
of circuit depth and number of two-qubit operations and found out that the IBM hardware
is more suitable for factoring 15. In addition to that, we observed that the density of the
coupling map as well as the implementation of a coupling map itself has a strong impact on
our evaluation parameters.

7 Outlook

We have found 3 main ways to improve the performance of a given hardware, either by im-
proving the connectivity map, by adding gates to the native gate set that make the hardware
better at translating common gates shorter and by introducing 3-qubit-gates like a Toffoli
gate which significantly reduces the required depth to translate 3-qubit gates, up to a level
where potentially much lower fidelities of the 3-qubit-gate would result in a higher overall
fidelity since it saves so many steps. Especially for scaled architectures it will be important
to take great care in optimising the connectivity map, since more and more swaps would
otherwise be necessary. Significant research efforts are spent in all of these directions, so a
good improvement not only in raw hardware, but also in compilation potential is expected
to be observable in the mid-term future.

13

References

1. Shor, P. Algorithms for quantum computation: discrete logarithms and factoring
in Proceedings 35th Annual Symposium on Foundations of Computer Science (1994),
124–134. doi:10.1109/SFCS.1994.365700 (cit. on p. 2).

2. Peter Shor’s Twitter Profile. https://twitter.com/PeterShor1 (cit. on p. 2).

3. Ferrini, G., Kockum, A. F., Garćıa-Álvarez, L. & Vikst̊al, P.
Advanced Quantum Algorithms (cit. on pp. 3, 4, 6).

4. Nielsen, M. A. & Chuang, I. L.
Quantum Computation and Quantum Information: 10th Anniversary Edition 10th.
isbn: 1107002176 (Cambridge University Press, USA, 2011) (cit. on pp. 4–6).

5. Chalmers internal Private communication through David Fitzek about unpublished
work within the research groups of Chalmers (cit. on pp. 7, 8).

6. Yu, N. & Ying, M. Optimal simulation of three-qubit gates 2013.
arXiv: 1301.3727 [quant-ph] (cit. on p. 8).

7. Çivril, A. & Magdon-Ismail, M.
On selecting a maximum volume sub-matrix of a matrix and related problems.
Theoretical Computer Science 410, 4801–4811. issn: 0304-3975.
doi:https://doi.org/10.1016/j.tcs.2009.06.018.
https://www.sciencedirect.com/science/article/pii/S0304397509004101 (2009)
(cit. on p. 9).

14

https://doi.org/10.1109/SFCS.1994.365700
https://twitter.com/PeterShor1
https://arxiv.org/abs/1301.3727
https://doi.org/https://doi.org/10.1016/j.tcs.2009.06.018
https://www.sciencedirect.com/science/article/pii/S0304397509004101

	Introduction and Motivation
	Shor's algorithm
	Mathematical background
	Quantum circuit of Shor's algorithm
	Quantum Fourier Transformation
	Unitary for modular exponentiation
	Quantum phase estimation

	Native gate sets
	Direct gate translation
	Necessary gates
	IBM hardware
	Chalmers hardware

	Fredkin gate discussion
	Predictions

	Decomposition of the whole circuit
	What is Qiskit and why do we use it?
	Transpile function and evaluation criteria
	IBM hardware
	Chalmers hardware

	Results of the circuit transpilation
	Results for the IBM hardware
	Results for the Chalmers hardware

	Conclusion
	Outlook
	Bibliography

