
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image reconstructions and FDTD modelling of an 

antenna array for 3D microwave tomography 

 
Master of Science Thesis 
 

 

JOHAN KÖSTER 
 

 

Department of Signals and Systems 

Division of Biomedical Engineering 

CHALMERS UNIVERSITY OF TECHNOLOGY 

Göteborg, Sweden, 2011 

Report No. EX022/2011 



Image reconstructions and FDTD modelling of an antenna array for 3D
microwave tomography
JOHAN KÖSTER

c© JOHAN KÖSTER, 2011.

Technical report no EX022/2011
Department of Signals and Systems
Division of Biomedical Engineering
Chalmers University of Technology
SE-412 96 Göteborg Sweden
Telephone +46-(0)31 772 10 00

Cover: The cover shows the resulting antenna array.

Chalmers Tekniska Högskola
Göteborg, Sweden 2011



Abstract

Image reconstructions and FDTD modelling of an antenna array for
3D microwave tomography
JOHAN KÖSTER
Department of Signals and Systems
Division of Biomedical Engineering
Chalmers University of Technology

Breast cancer is the most common type of cancer for women world-
wide and thus considered to be a great problem. Early detection
improves the chances of successful treatment, however a self diagno-
sis of this type of cancer is quite hard and this is why an accurate
diagnosis method is very interesting. The use of microwave tomo-
graphy is not widespread in the medical field due to lack of clinical
success and an extension from two dimensions to three could be a
solution to this problem. One of the reasons for using microwave
tomography as a mammography tool is that the contrast between
a tumour and healthy tissue is large and the radiation used is not
ionising. Another reason is that the cost is relatively low in compa-
rison to other soft tissue imaging tools such as magnetic resonance
imaging.
Five different types of monopole antennas were modelled using FDTD
and evaluated as well as the placement of the antennas and cables
in respect to each other. Simulations of the resulting antenna array
where performed and matched the measurements well. The recons-
tructions performed with measured data from the developed antenna
array imaged objects well in the vertical direction as well as in the
horizontal direction. The permittivity of a small high contrast ob-
ject was successfully reconstructed as well as of a larger low contrast
object. The reconstruction of the permittivity for two small high
contrast objects was successful and the two objects are detected.
Consistently the conductivity was not well reconstructed for any ob-
ject.

Keywords: 3D microwave tomography, antenna modelling, FDTD,
image reconstruction, mammography
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Chapter 1

Introduction

1.1 Background
Breast cancer is the most common type of cancer for women worldwide and
the risk of fatality can be lowered if the cancer is detected early [1]. The
traditional method of breast cancer screening is to use low doses of X-ray,
however there are alternatives. Microwave tomography research has increa-
sed in popularity as a medical diagnostics imaging tool as the radiation
emitted is not ionising and the overall system is relatively cost effective.
Furthermore the contrast between the tumour and the healthy tissue is
high. The clinical use of microwave tomography is however not widespread
due to lack of clinical success. One way of improving the clinical success
could be to extend the ordinary two-dimensional microwave tomography to
three-dimensions [2].

There have been some attempts to reconstruct three-dimensional objects
with antennas positioned in a single circular plane [3], however the part of
the object that is outside of the plane will not be reconstructed. Instead an
assumption that the properties of the object are constant outside must be
made. Therefore a new antenna array which allows measuring in different
heights will be useful. In Meaney et al. 2009 [4] a two dimensional plane
with antennas is moving up and down allowing for measurements on dif-
ferent heights but there is still no measuring of scattering in the z-direction
only x- and y-direction.

1.1.1 Purpose
The purpose of this thesis is to simulate and construct an antenna array
for three-dimensional microwave tomography. There exist a two dimen-
sional antenna array at the department but this has limitations and to
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1. Introduction

overcome these, the new array must be able to measure real world objects
with width, depth and height. The main purpose of the new antenna array
is to be used in a clinical test and evaluate if the three-dimensional micro-
wave tomography can be used as a mammography tools to detect tumours.
This is however not covered in this thesis.

1.2 Microwave tomography
Microwave tomography is different to computer tomography which uses
non-diffracting sources such as X-rays. The main difference is that mi-
crowave tomography uses diffracting sources i.e. electromagnetic radiation
which is not ionising and is thus safer to use. However the image obtained
is not an illustration in matter of density but rather the imaged objects’
dielectric properties i.e. conductivity, σ, and permittivity, ε. This can be
very useful as Fricke and Morse 1926 [5] discovered that the permittivity
changes at 20 kHz for a cancer tumour.

Tomography

Tomography is an imaging technique in which the object that is to be ima-
ged is not just a projection of the real three dimensional object onto a
two dimensional plane like an ordinary camera. Instead there are several
different slices which can be viewed independently. This is very useful in
medical diagnostics as more information can be given than just an ordi-
nary image of the patient e.g. an examination can occur on a dept that is
interesting from different injuries and diseases [6].

Microwaves

Microwaves are defined as electromagnetic radiation with a frequency range
of 300 MHz up to 300 GHz which is equivalent to a wavelength range of
one meter to one millimetre. In these ranges the radiation is non-ionising
which is preferable when examining human tissue.

Mammography

Mammography is traditionally defined as the imaging technique which uses
low energy X-rays to obtain an image of the human breast showing possible
tumours. However microwave tomography can be used to investigate the
dielectric properties of the human breast at different frequencies which can
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1.2. Microwave tomography

give an idea of the breast contains breast tissue, fat or a malignant or benign
tumour.

1.2.1 Image reconstructions
The image of the dielectric properties is reconstructed from measurement
data obtained from an antenna array placed in a tank with the object that
shall be imaged. The antenna array consists of several different rings of
antennas placed inside an acrylic tank containing a liquid medium e.g. wa-
ter. The antennas have similar construction as a coaxial cable with a metal
wire encapsulated with a dielectric and a conductive layer. The transmit-
ting part of the antenna will be the wire exposed in the outermost part of
the antenna. One antenna sends a signal from a network analyser and all
the other antennas are receiving one at the time and this is repeated for
all antennas so that they have all received and all sent a signal. The net-
work analyser has two ports so a multiplexer is connected in between. The
multiplexer is controlled by a computer which saves all reflection, S11, and
all transmission, S21, coefficients which later are used in the reconstruction
which gives an image of the examined object. The reconstruction proce-
dure is necessary as an image cannot be obtained by direct inversion of the
measured data, instead a cost functional is defined and minimised. This
functional is defined as the difference between the measured electric field
at the antennas and several simulated electric fields with varying dielectric
properties between the antennas. In Chapter 3 the reconstruction of the
dielectric properties is described.

The simulated antennas are modelled with the Finite-Difference Time-
Domain method which is a common numerical method for solving electro-
magnetic problems and this method is described in detail in Chapter 2.
The antennas must have a cable connecting them to the multiplexer and
as the antennas radiate in a radial symmetry they must be bent which is
modelled in five different ways. The bending gives the antennas different
properties and this effect as well as the placement of the antennas in the
tank is covered in Chapter 4. The resulting images and the evaluation of
the reconstruction can be seen in Chapter 5.
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Chapter 2

The FDTD method

The Finite-Difference Time-Domain method is widely used to solve elec-
tromagnetic problems, one of the main reasons is the simplicity of the al-
gorithm. The fact that the algorithm is solved in the time domain which
gives a wide range of frequencies in just one simulation is another.

2.1 Maxwell’s equations
Maxwell’s equations are used when solving electromagnetic problems for
non-complex geometries, otherwise a numerical method is necessary as the
analytical solution will be impossible. Maxwell’s equations on differential
form are stated as follows:

∇ ·D = ρfree (2.1.1)
∇ ·B = 0 (2.1.2)

∇× E = −∂B
∂t

(2.1.3)

∇×H = Je + ∂D
∂t

(2.1.4)

In the reality there is often a dielectric material or a magnetic material
which alters how the electromagnetic wave changes during propagation.
The equations below describe how the material properties are related to
the specific material property.

D = εE (2.1.5)
B = µH (2.1.6)
Je = σE (2.1.7)

5



2. The FDTD method

The permittivity, ε, can be described as the resistance a propagating electric
field meets in an insulator. This is due to the materials ability to be polari-
sed when exposed to an electric field thus minimising the electric field inside
the material. The permeability, µ, is the equivalent of permittivity for a
magnetic field instead of an electric field. The permeability is thus the ma-
terials ability to be magnetised due to a magnetic field. The conductivity,
σ, is the materials ability to conduct a current.

2.2 The Yee lattice
Yee dived Maxwell’s equations in their Cartesian coordinate system com-
ponents [7]. The H- and E-fields are then solved in one grid at the time.
A grid consists of either the H- or E-field component centred in the middle
and are surrounded by four of the opposite components. The field com-
ponents can be illustrated in a figure which is called the Yee cell. Figure
2.2.1 illustrates how the different field components are related to each other.
There is now easy to see that the E- and H-components are separated in
space, however in Yee’s method they are also separated in time. First a
time step must be chosen and thereafter the E-field is computed in space
and time with the H-field data from neighbouring spatial points although
the time point for the H-field is the previous according to the E-field.

∂Hx

∂t
= 1
µ

(
∂Ey
∂z
− ∂Ez

∂y

)
(2.2.1)

∂Hy

∂t
= 1
µ

(
∂Ez
∂x
− ∂Ex

∂z

)
(2.2.2)

∂Hz

∂t
= 1
µ

(
∂Ex
∂y
− ∂Ey

∂x

)
(2.2.3)

∂Ex
∂t

= 1
ε

(
∂Hz

∂y
− ∂Hy

∂z
− σEx

)
(2.2.4)

∂Ey
∂t

= 1
ε

(
∂Hx

∂z
− ∂Hz

∂x
− σEy

)
(2.2.5)

∂Ez
∂t

= 1
ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
(2.2.6)
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2.2. The Yee lattice
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Figure 2.2.1: The Yee cell at index (i,j,k).

The time stepping is showed in Figure 2.2.2 which explains how the
time steps and the spatial steps relate to each other. The FDTD method is
expressed as a continuous method and the function is discretised as central
differences.
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Figure 2.2.2: The FDTD time stepping.

7



2. The FDTD method

2.2.1 Discretisation
The discretisation is performed by first labelling each grid cell according
to the size of the grid cell and then according to the right time step. The
time step is a derived parameter from the simulation time which is chosen
so that the signals can propagate through all the grid cells and die out
in the absorbing boundary. The index of one grid cell can be denoted as
(i, j, k) and the size in all three directions are ∆x, ∆y and ∆z. This gives
a denotation for the function F as

F n
i,j,k = F (i∆x, j∆y, k∆z) (2.2.7)

where n is the nth time step in the iteration process. Now the Equation
2.2.1 can be discretised as

Hx|n+ 1
2

i,j,k −Hx|n−
1
2

i,j,k

∆t = 1
µi,j,k

Ey|ni,j,k+ 1
2
− Ey|ni,j,k− 1

2

∆z −

Ez|ni,j+ 1
2 ,k
− Ez|ni,j− 1

2 ,k

∆y

 (2.2.8)

and the Equations 2.2.2 - 2.2.6 are discretised the same way. The time step,
∆t, must fulfil a certain criteria to make the solution numerical stable [8].

∆t ≤ 1√
1

(∆x)2 + 1
(∆y)2 + 1

(∆z)2

(2.2.9)

If the spatial steps are chosen to be equal, i.e. ∆x = ∆y = ∆z = ∆, then
the time step must be chosen to:

∆t ≤ ∆
c
√

3
(2.2.10)

2.3 Electromagnetic source
In FDTD simulations there is a need for having accurate models for the
physical electromagnetic source. The positions as well as the electromagne-
tic properties are of importance. This section covers the different ways of
modelling the physical aspects of the source.

2.3.1 Hard source
The simplest model of the electromagnetic source is called hard source and
is basically a time varied function at one of the E- or H-components positio-
ned in the FDTD grid [9]. The function used is a sinusoidal wave which is
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2.3. Electromagnetic source

independent of the placement of the function in the spatial domain, however
the time step is used to calculate the source of the wave. In a one dimen-
sional grid at point k the Ez-component is the wave source with frequency
f0 which is valid from n = 0.

Ez
n
k = E0 sin (2πf0n∆t) (2.3.1)

The main disadvantage of this source model is that when the wave propa-
gates thought a material there will be a reflection and a transmission. The
reflection will after a finite number of time steps, ∆t, reach the source point
where the grid cell assigned to the source cannot be changed. This gives a
reflection as the failure to update a point must give a reflection so that the
energy from the wave is not destroyed.

In two- and three-dimensional FDTD simulations the wave is cylindrical
respective spherical thus making the reflection effect less important. This
is because in the one dimensional case the wave propagation are aligned at
one axis and therefore the reflections must be aligned to the same axis.

2.3.2 Resistive voltage source
The resistive voltage source is an extension of the hard source which elimi-
nates the problem with the reflected wave at the source point. The source
is modelled as a coaxial cable with specified impedance connected to the
active antenna which consists of a solid wire with or without insulation.
There is a need of having a model of a resistor to be able to include the
resistance into the voltage source. This is achieved by adding a current
density term JL in Equation 2.1.4. The current density when the source is
aligned in z-direction is given by

JL = IL
∆x∆y (2.3.2)

where
IL = ∆z

RS

∂E
∂t

(2.3.3)

which results in

∇×H = Je + ∂D
∂t

+ IL
∆x∆y + V

RS

(2.3.4)

where the added term V
RS

is representing the voltage source. Now Equation
2.1.5 is used and the time derivative of the electric field is isolated and
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2. The FDTD method

discretised as

Ez|n+1
i,j,k =

1− ∆t∆z
2RSε0∆x∆y

1 + ∆t∆z
2RSε0∆x∆y

Ez|ni,j,k +
 ∆t

ε0

1 + ∆t∆z
2RSε0∆x∆y

 (∇×H)z |
n+1/2
i,j,k

+
 ∆t

RSε0∆x∆y

1 + ∆t∆z
2RSε0∆x∆y

V n+1/2
S

(2.3.5)
where RS is the feed resistance.

2.3.3 Thin wire
The active antennas are modelled as a thin wire, i.e. a fraction of the grid
cell, consisting of a Perfect Electric Conductor (PEC) which corresponds
to an E-field with all tangential components set to zero. In reality the
metal wire is a PEC which is modelled as setting the E-field components
that corresponds to the metal surface to zero. This will give the boundary
condition that no electric field is present on the metal wire’s surface. The
wire carries a current and thus the surrounding H-components are affected.
All the H-components vary by 1/r where r is the distance to the wire and
the axial E-components that are aligned with the antenna are set to zero
[9, 10, 11].

2.4 Absorbing boundary conditions
There is a need for a limitation of the simulated FDTD space as an endless
space is impossible to cover in the simulation. If a wave is propagating to
one of the walls of the simulation space there will be an unwanted reflection
as the central differences cannot be calculated in the end of the simulation
region. That is why an Absorbing Boundary Condition (ABC) needs to
be defined making all the waves that is propagating to the outside of the
computational domain to be eliminated. Another solution is to make the
computational domain significantly larger so that the time the wave is tra-
velling towards the wall is longer than the simulation time. However this
will give an unnecessary large domain hence the memory and the processor
cycles used for the computation will be higher as well as the total simulation
time.

One of the two main types used is analytical absorbing boundary condi-
tions which alters the computational equations in a layer situated on the
outside of the original computational domain. When using this strategy

10



2.4. Absorbing boundary conditions

the plane waves are effectively damped as long as they are propagating per-
pendicular, when not there will be a reflection proportional to the angle of
incidence.

The other major ABC consists of an absorbing material that is effec-
tively damping a perpendicular wave [12]. Berenger introduced the term
Perfect Matched Layer (PML) which is his name for the invented mate-
rial that absorbs all incident waves of all frequencies and polarisations [13].
This was achieved by splitting the H- and E-components in two orthogonal
components inside the absorbing boundary layer and formulating the diffe-
rential equations similar to Equations 2.2.1 - 2.2.6 with material properties
of a dispersion-less medium. Berenger only consider this method for the
two dimensional FDTD grid, so Katz et al. extended the PML to three
dimensions [14].

There is a more developed ABC called Convolutional PML (CPML)
which absorbs outgoing waves even better. The CPML is based on a coor-
dinate space stretch where Ampere’s law is specified in the x-projection as
follows

jωεEx + σEx = 1
sy

∂

∂y
Hz −

1
sz

∂

∂z
Hy (2.4.1)

where si denotes the stretched coordinate metrics which is given by

si = 1 + σi
jωε0

(2.4.2)

where the index i denotes the x-, y- or z-coordinate. The next step is to
transform Equation 2.1.4 into the time domain. There will be a convolution
during the transformation thus the name convolutional PML

ε
∂

∂t
Ex + σEx = sy (t) ∗ ∂

∂y
Hz − sz (t) ∗ ∂

∂z
Hy (2.4.3)

where si (t) is s−1
i after inverse Laplace transform. In this form the CPML

is time continuous so there is a need for a discretisation.
The discretisation is performed by first assuming that

si = κi + σi
αi + jωε0

(2.4.4)

where αi and σi are positive real numbers and κi ≥ 1. Furthermore assu-
ming that si = s−1

i gives the impulse response for si as follows

si (t) = δ (t)
κi
− σ

ε0κ2
i

exp
(
−
(
σi
ε0κi

+ αi
ε0

)
t
)
u (t) = δ (t)

κi
+ ςi (t) (2.4.5)
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2. The FDTD method

where δ (t) is the Dirac delta function and u (t) is the unit step function.
Now si can be inserted into 2.4.3 which gives

εrε0
∂

∂t
Ex + σEx = 1

κy

∂

∂y
Hz −

1
κz

∂

∂z
Hy

+ ςy (t) ∗ ∂

∂y
Hz − ςz (t) ∗ 1

κz

∂

∂z
Hy

(2.4.6)

The discrete impulse response of ςi (t) is defined below as

Zi (m) =
ˆ (m+1)∆t

m∆t
ςi (τ) dτ

= − σi
ε0κ2

i

ˆ (m+1)∆t

m∆t

exp
(
−
(
σi
ε0κi

+ αi
ε0

)
τ
)
dτ

= ai exp
(
−σi
κi

+ α
)
m∆t

ε0

(2.4.7)

where
ai = σi

σkκi + κ2
iαi

[
exp

(
−
(
σi
κi

+ αi

) ∆t

ε0

)
− 1.0

]
(2.4.8)

Now can Equation 2.4.6 be discretised according to the Yee scheme by
inserting Equation 2.4.7 and 2.4.8 as follows

εrε0
Ex|n+1

i+1/2,j,k − Ex|ni+1/2,j,k

∆t + σ
Ex|n+1

i+1/2,j,k − Ex|ni+1/2,j,k

2

=
Hz|n+1/2

i+1/2,j+1/2,k −Hz|n+1/2
i+1/2,j−1/2,k

κy∆y

−
Hy|n+1/2

i+1/2,j,k+1/2 −Hy|n+1/2
i+1/2,j,k−1/2

κz∆z

+
N−1∑
m=0

Z0y (m)
Hz|n−m+1/2

i+1/2,j+1/2,k −Hz|n−m+1/2
i+1/2,j−1/2,k

∆y

−
N−1∑
m=0

Z0z (m)
Hy|n−m+1/2

i+1/2,j,k+1/2 −Hy|n−m+1/2
i+1/2,j,k−1/2

∆z

(2.4.9)

The convolution in Equation 2.4.9 can efficiently be achieved with the re-
cursive convolution method [9, 15, 16].
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Chapter 3

Reconstruction of dielectric
properties

The idea behind the reconstruction is the essential part of the microwave
tomography as the measurements itself do not give any information if there
is a tumour in the examined breast. The measured data must be processed
so that the dielectric properties can be obtained.

3.1 Dielectric properties of human tissues

In microwave tomography the dielectric properties of human tissues are of
interest as the resulting images consist of the reconstructed permittivity and
conductivity. The reason of interest is that the contrast between healthy
tissue and tumours are large and this can be used to discriminating between
healthy tissue and tumours. Secondly, when using a broadband signal the
dispersive response to the microwaves, i.e. the permittivity and conducti-
vity changes with different frequencies, of the human tissue can be used to
detect tumours as there is a different frequency response for tumours and
healthy tissue.

3.1.1 Dispersive response

The human tissues show a dispersive response, i.e. frequency dependence,
when exposed to an electric field. The dispersive response is mainly cause
by the cell membrane in lower frequency ranges and in higher the water
molecules in the tissue cause the dispersive response [17].
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3. Reconstruction of dielectric properties

α-dispersion

The α-dispersion corresponds to the frequency region of <1 kHz where
the permittivity is very high. The mechanism behind the dispersion is the
diffusion of ions in and out through the cell membrane which consists of
a phospholipid bilayer. Each of these phospholipids is aligned with the
hydrophobic lipid against each other, forming a layer in between filled with
proteins. In between these layers are ports allowing ions to move in or out
by preserving an electric potential of 70 mV, due to the small thickness of
the membrane, typically 7 nm, the electric field will be high, typically 10
MV/m. Organelles that resides inside the cell can affect the α-dispersion
by different charges as well as the impedance of the membrane.

β-dispersion

The β-dispersion is situated in a frequency region of 10 kHz - 10 MHz and
is caused by the capacitive charging in the cellular membranes and the
intracellular bodies bounded to the membrane. This is often referred to as
interfacial polarisation.

γ-dispersion

The γ-dispersion occurs in a frequency region of > 100 MHz and is due to
movement of free dipoles, i.e. water molecules. The water molecules that
are bounded show a different frequency response proportional to the water
content in the tissue.

3.1.2 Relaxation process
The dispersive response of the human tissue when applying an electrical
field is not instantaneous so there is a need for a model of how the dielectric
properties vary. A model that includes this was made by Debye and can be
extended with a static conductivity to include ion drifts as follows

ε∗ (ω) = ε∞ + εstatic − ε∞
1 + jωτn

+ σstatic
jωτ

(3.1.1)

In human tissue there is often more than one relaxation frequency and Cole
& Cole formulated a model to compensate for this in [18, 19].

ε∗ (ω) = ε∞ +
∑
n

∆εn
1 + (jωτn) (1−αn) + σstatic

jωε0
(3.1.2)

This model needs parameters that are obtained by measuring and fitting of
the data.
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3.2. Measure procedure

3.2 Measure procedure
The measurements are performed with a vector network analyser of make
and model Agilent E8362 B. This is a two port device which is used to send
a signal on one of the ports and receive on the other one. The signal consist
of a wave that is either transmitted, a, from one port to the other one or
reflected, b, to the first. This process results in a unit less transmission
coefficient which is denoted S21. The first port is also receiving when the
signal has been sent and this gives the reflection coefficient S11. This pro-
cedure is repeated for the second port and then the S12 and S22 coefficients
are achieved. The four different scattering parameters can be denotes as
[20]:

S11 = b1

a1

∣∣∣∣∣
a2=0

; S21 = b2

a1

∣∣∣∣∣
a2=0

(3.2.1)

S12 = b1

a2

∣∣∣∣∣
a1=0

; S22 = b2

a2

∣∣∣∣∣
a1=0

(3.2.2)

where a1, a2, b1 and b2 are the waves described in Figure 3.2.1.

a1

b1

b2

a2

S11 S22

S21

S12

Figure 3.2.1: The scattering parameters for a two port network analyser.

The measurement described above is however not satisfying as there is
only two ports and thus there can be only two antennas. The solution to
this is connecting a multiplexer with 2:32 ports, namely a Cytec CXM/128-
S-W, which can be controlled by a computer. The antenna array consists
of 32 antennas placed in four different rings each shifted 22.5 degrees with
eighth antennas in each, all of them placed inside a cylinder made of acrylic,
see Figure 3.2.2.

The measurements are made in the frequency domain and the FDTD
method is in the time domain so there is a need for a transformation which is
done by taking the inverse Fourier transform of the coefficients respectively.
The data is already in discrete form so there is no need for discretisation
before the transformation.
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3. Reconstruction of dielectric properties

Figure 3.2.2: A photo of the antenna array.

3.3 The reconstruction algorithm

In this work the reconstruction of the dielectric properties is made in the
same way as in Fhager 2006 [10] with adaption to three dimensions and
convolutional perfect matched layer as absorbing boundary condition in
the FDTD simulator. The software used is the same as described in Fhager
et al. 2010 [21].

The reconstruction is performed by minimising a cost functional that
is given by the measurements compared to several simulated electric fields
with different dielectric properties between source and receiver. When the
difference between the simulation and the measurement are small enough
the minimisation stops and the dielectric properties are updated. This
procedure is repeated for all FDTD grid cell in a predefined reconstruction
region which is preferable slightly larger than the object that is measured.

There is a starting criterion where all of the grid cells are assigned
uniform background properties which will not change if not updated by the
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3.3. The reconstruction algorithm

algorithm. Also there is no reconstruction of the permeability as biological
tissue is often not magnetic.

Calibration of the measurement is important as the cables and the mul-
tiplexer have frequency properties that can introduce disturbances. The
calibration is performed with an electric calibrator with two of the antenna
cables mounted in the array removed and connected to the calibrator. Ho-
wever this will not calibrate the differences in the antennas nor the slightly
difference in the cables so there is a need for another calibration. The se-
cond calibration is performed by measuring on an empty system and that
information is later used in the reconstruction.

In the reconstruction process the simulated electrical field is calibrated
with the measured scattering parameters as

Emeas
cal (f) = Smeasscat (f)

Smeasref (f)E
sim
ref (f) (3.3.1)

where Smeasscat denotes the measured transmission or reflection coefficient for
the antenna pair used in the measurement performed on an object. The re-
ference scattering data, Smeasref , is measured without an object in the antenna
array and the resulting Emeas

cal (f) is now considered as the electric field at
the antenna used as a receiver. Esim

ref (f) denotes the simulated electric field
and is given by the Fourier transform of a Gaussian pulse

Esim
ref (t) = E0 exp

(
−1

2
(t− t1)2

t20

)
sin (ωt) (3.3.2)

with pulse width t0 and t1 = 4t0.
The reconstruction is performed by minimisation of an introduced func-

tional

F (ε,σ) =
T̂

0

M∑
m=1

N∑
n=1

∣∣∣Esim
mn (ε, σ, t)− Emeas

mn (t)
∣∣∣2 dt (3.3.3)

where Emeas
mn (ε, σ, t) is a time varying electric field, from antenna number m

to antenna number n, obtained by taking the inverse Fourier transform of
the calibrated measurement electric field, Emeas

cal (f). The field Esim
mn (ε, σ, t)

is obtained by several different simulations with varying permittivity and
conductivity.

The minimisation is achieved with a conjugate-gradient algorithm where
the gradients are derived by increasing the dielectric properties, i.e. ε + δε
and σ+δσ, and a change in the functional is then derived with perturbation.
Now the functional can be expressed as a Fréchet derivative as

F ′ (ε, σ) = 〈Gε (x) , δε (x)〉+
〈
Gσ/〈σ〉 (x) , δσ (x)

〉
(3.3.4)
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3. Reconstruction of dielectric properties

where the surface integral for the reconstruction domain defines the inner
product as

〈Gi (x) , δi (x)〉 =
˚

V

Gi (x) δi (x) dV (3.3.5)

When formulating the gradients the difference between the simulated and
the measured fields are used as sources in the adjoint Maxwell’s equations.
The two gradients are defined for the two dielectric properties in all grid
cells for a given reconstruction domain as follows

Gε (x) = 2
M∑
m=1

T̂

0

Ẽm (ε, σ,x, t) · ∂tEm (ε, σ,x, t) dt (3.3.6)

Gσ/〈σ〉 (x) = 2 〈σ〉
M∑
m=1

T̂

0

Ẽm (ε, σ,x, t) · Em (ε, σ,x, t) dt (3.3.7)

In both gradients Ẽm (ε, σ,x, t) is the simulated E-field in the reconstruction
domain, and Em (ε, σ,x, t) is calculated from the adjoint Maxwell’s equa-
tions with the difference between the simulated and the measured fields
when antenna m is the source. There is also a scale component, 〈σ〉, that
is compensating for different scaling in the gradients as

〈σ〉 =
(ˆ ∞

0

∣∣∣Êmn (ω)
∣∣∣2 dω)−1

×
ˆ ∞

0

∣∣∣Êmn (ω)
∣∣∣2 ωdω (3.3.8)

here the antenna number m transmits and antenna n receives an electrical
field. Êmn (ω) is the Fourier transformation of this measured time domain
E-field. The reconstruction procedure is severely affected by the choice of
the scaling parameter 〈σ〉.

The meaning of introducing the gradients is to minimise the functional
which is achieved by following the gradient in the negative direction. This is
known as line searching and can be performed in several different ways, here
parabolic interpolation is used. There will be two different gradients for each
FDTD grid cell as there is two different dielectric properties to reconstruct,
however the computation of the gradients involves several different FDTD
simulations with varying permittivity and conductivity in the same grid
cell which is very time consuming. This is repeated until the accuracy is
satisfying [10, 21].
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Chapter 4

Modelling of the antenna array

Dipoles are one of the simplest antenna types. The dipoles can have one of
the poles substituted with a ground plane and is then known as a monopole
[22]. In this thesis monopoles have been used to great extent as they are
easier to model and manufacture. However there is no ground plane in this
setup so the antennas most be modelled in a slightly different way. There
is also an effect of the cables that needs to be taking into account when
modelling the antenna as the cables are made of metal. Furthermore some
of the antennas in the array are aligned in an angle towards the FDTD
grid axes and this effect is also investigated. Finally the FDTD model of
the antenna array is compared to the measured data obtained from the
resulting antenna array.

4.1 Antennas in an infinite large water tank
This simulation was done with water as a lossy medium, the background
relative permittivity is 78 and the background conductivity is set to 0.2
S/m. The reason for having a lossy medium is that the currents running in
the outer conductor is attenuated and these currents are difficult to include
in a model. The antenna is modelled in several different ways to see if the
effect of the cable can be disregarded.

4.1.1 Length and frequency
The length of the antenna is determined by the wanted resonance frequency.
This frequency should preferably be in the range where the measurements
shall be made. The measurement frequency must be in a range where a
suspected tumour has different dielectric properties than the rest of the
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4. Modelling of the antenna array

examined part. This gives that the antennas system should be able to
measure at several different frequencies typically in the range of 300 MHz
to 2 GHz. The antenna length, l, is calculated for a quarter-wave monopole
as

l = λ

4 (4.1.1)

where
λ = vp

fr
(4.1.2)

where fr is the resonance frequency and vp is the phase speed in the medium
surrounding the antenna which is given by

vp = c√
εr

(4.1.3)

where c is the speed of light in vacuum and εr is the relative permittivity for
the surrounding medium [23]. The chosen length was 10 mm and frequency
1.3 GHz for the antenna which can be seen in Figure 4.1.2.

4.1.2 Evaluation of different antennas in water
The reason for modelling the cables is to investigate if the effect can be
neglected as the reconstruction process requires an accurate model of the
antenna array. When the effect of the cable is low the model of the whole
antenna and cable can be simplified to just include the antenna itself which
is an advantage because the simulation domain can be made smaller without
losing accuracy. A smaller domain will decrease the memory and time
consumption which is advantageous. The antennas are simulated in a tank
aligned symmetrically with the x-coordinate axle 80 mm apart and the
end of the cable towards the end of the simulation domain. Outside of
the simulation domain there is a CPML absorbing all outgoing waves so
there is no reflection from a wall, this is covered later on. The antennas
can be simulated without any connector, however in reality there is no
way of measuring without having a cable connecting the antenna with the
measuring equipment. The cables are also used to fixate the antennas in
the array as they are made very stiff.

The antennas radiate the waves in a radial symmetry and are therefore
aligned so that the inner conductors are pointing in z-direction and the
cables are aligned in the xy-plane. This gives that the cables, the outer
conductor, or the inner conductor must be bent in some way. There is
several different ways to bend the outer conductor and this section cover
simulations of five different cases compared to an antenna without any
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4.1. Antennas in an infinite large water tank

connector modelled as illustrated in Figure 4.1.1. These different ways of
bending the conductors are illustrated in Figure 4.1.3 and Figure 4.1.7.
The FDTD model used for the antennas is the thin wire approximation,
described in Section 2.3.3. For simplicity the surrounding H-components
have been left out in the FDTD model illustrations in this chapter.

~

Ez

Ey
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~

x

Wire

E = 0x

E = 0y

E = 0z

Source

x

Figure 4.1.1: The FDTD model of the antenna without any cable.
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S21

A
m

pl
itu

de
[d

B]

Frequency [GHz]

S11

A
m

pl
itu

de
[d

B]

Frequency [GHz]
0 1 2 30 1 2 3

−80

−70

−60

−50

−40

−30

−15

−10

−5

0

Figure 4.1.2: Reflection-, S11, and transmission-coefficient, S21, for the an-
tenna shown in Figure 4.1.1.

In Figure 4.1.2 the best possible antenna with given properties is shown,
however this is without any effect of the cables and the wall of the measuring
tank which in reality will give a different curve. These curves are just for
reference in the evaluation of which method of bending the cables is the best.
The S11 curves have a minimum at a frequency which is called the resonance
frequency, this is the frequency where the antenna is working best as there
is the lowest amount of reflection at said frequency. Monopole antennas
with amplitude below -10 dB at the resonance frequency are considered
a good antenna. In the S21 curves the resonance frequency is where the
curve has a maximum, in the simulation a Gaussian pulse is used and this
gives model errors at low and high frequencies but in the range in between
the simulation is good. This is why there are peaks in the beginning and
the end of the simulated frequency range and these will not show in the
measurements.

Bent inner conductor

The first way of bending the antenna was to only bend the inner conduc-
tor which in the FDTD model corresponds to putting a Perfect Electric
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4.1. Antennas in an infinite large water tank

Conductor cylinder of radius as the cable, i.e. 1.75 mm, under the antenna.
A PEC is modelled by setting the E-components to zero. In Figure 4.1.4
the Ex-components below the antenna is set to zero which then gives a
model of a metallic cylinder of radius 0.5 grid cells. When using a 4 mm
grid cell this corresponds to a metallic cylinder with radius of 2 mm. Du-
ring this simulation the grid cell was however 1 mm, giving the amount of
E-components to set to zero to be higher. This is illustrated in Figure 4.1.5
where an approximation of a cylinder is made by setting E-components to
zero in a quadratic pattern. This pattern is repeated in the x-direction for
the length of the cable.

Figure 4.1.3: The antenna with only the inner conductor bent up.
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Figure 4.1.4: The FDTD model of the antenna shown in Figure 4.1.3 when
using a 4 mm grid cell.
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4. Modelling of the antenna array
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Figure 4.1.5: The FDTD model of the antenna shown in Figure 4.1.3 when
using a 1 mm grid cell.

The reflection and transmission curves for this antenna model are shown
in Figure 4.1.6 as well as the effect of the cable. This effect is calculated as

20 log10

(√
(< (S11, cable − S11, no cable)2 + = (S11, cable − S11, no cable)2

)
(4.1.4)

where S11 cable is the reflection coefficient for the antenna with the cable
and S11no cable is the reflection coefficient for the reference antenna. This is
also calculated in the same way for the transmission coefficients. The cable
effect is not as noticeable in the reflection coefficient as in the transmission
coefficient, where the signal is lower. This gives that the effect of the cable
must still be in the model, but the antenna is still working as intended i.e.
the resonance frequency and the total reflection and transmission is similar.
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4.1. Antennas in an infinite large water tank
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Figure 4.1.6: Reflection-, S11, and transmission-coefficient, S21, and the
cable effect for the antenna shown in Figure 4.1.3.

Bent outer conductor

The second way of bending the antenna was to bend the outer conductor,
this was done in three ways with different length on the part that was bent
i.e. 5, 10 and 15 mm. The FDTD model for these antennas is shown in
Figure 4.1.8 and for simplicity the illustration shows a 4 mm grid cell with
PEC cylinders with radius of 0.5 grid cells.

Figure 4.1.7: The antenna with only the outer conductor bent up.
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Figure 4.1.8: The FDTD model of the antenna shown in Figure 4.1.7.

This model of the antenna and the cable did not give a satisfying result
as the cable effect in the reflection coefficient is too high. Furthermore the
transmission coefficients for the 10 and 15 mm cases do not have a proper
form, see Figure 4.1.9.
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Figure 4.1.9: Reflection-, S11, and transmission-coefficient, S21, and the
cable effect for the antenna shown in Figure 4.1.7.
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4.1. Antennas in an infinite large water tank

Bent inner conductor with dielectric

Another antenna was modelled with a dielectric on the inner conductor. The
dielectric is modelled in the FDTD grid as setting a constant permittivity
and conductivity in the grid cells closest to the inner conductor as illustrated
in Figure 4.1.11. Here only the antenna with bent inner conductor was
investigated as the best result was obtained this way.

Figure 4.1.10: One antenna with dielectric.
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Figure 4.1.11: The FDTD model of the antenna shown in Figure 4.1.10.
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4. Modelling of the antenna array

When using this FDTD model the antenna showed better properties as
the bandwidth is wider. This can be seen in Figure 4.1.12 as the frequency
range where the antenna’s reflection coefficient is low is wider as well as
where the transmission coefficient is high.
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Figure 4.1.12: Reflection-, S11, and transmission-coefficient, S21, and the
cable effect for the antenna shown in Figure 4.1.3.

This means that the antenna is working well over a wider frequency range
which is a wanted property in reality as well as in the simulation. The effect
of the cable and the effect of the dielectric is in this model not that interes-
ting as the resonance frequency is shifted up in frequency. This can easily
be compensated for by making the antenna slightly longer. The antenna
model is however disregarded later on as the dielectric is not modelled well
compared to the real antenna. The reason for this is that the grid cells
cannot be made small enough to model the thickness of the dielectric as
memory and time limitations occurs.
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4.2. Modelling of the measuring tank

4.2 Modelling of the measuring tank
All simulations have been done with two antennas symmetrically placed
in a water cylinder in open air with a relaxation process modelled with
the Debye Equation 3.1.1. The different properties for the materials are
shown in Table 4.1. The conductivity is increased in the simulated water to
investigate if the edge reflections can be suppressed without increasing the
tank size to much. There is trade off in the size of the tank and the increased
conductivity as a too large size of the tank will increase the computation
time and too large conductivity will suppress all signals. The increased
conductivity is achieved by changing the σstatic in the Debye Equation 3.1.1.

Air Water
ε∞ 1.0 4.85
εstatic 1.01 78.9
τ 8.0e-12 9e-12

Table 4.1: The Debye properties of air and water.

4.2.1 Edge effects
One of the reasons for modelling the edge of the tank is to see if the walls
must be modelled or if the simulation domain can be shrunk and thereby
the memory and time consumption will be less. The other reason for in-
vestigating the edge effect is to see if a reflection going from the antenna
towards the wall will cause a high enough signal to disturb the measure-
ments. These reflections are not wanted as there is no useful information
outside the measurement domain i.e. the only signals of interest are the
signals reflected by an object in the measurement domain. The given re-
flection will depend on the object’s dielectric properties which will alter the
electromagnetic wave given by the transmitting antenna. The edge effects
is calculated as follows

20 log10

(√
(< (S11,110 − S11,220)2 + = (S11,110 − S11,220)2

)
(4.2.1)

where S11,110 are the reflection coefficient for a tank where the active antenna
is placed 110 mm from the wall and S11,220 is the reflection coefficient for a
tank with the active antenna 220 mm from the wall. The reason for that the
distance is 220 mm is that the tank size used for comparison must be larger,
however the tank must be of a limited size. The edge effect when using water
and water with increased conductivity in the tank is shown in Figure 4.2.1.
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4. Modelling of the antenna array

The simulations and measurements for two tanks with the antennas 20 mm
and 55 mm from the wall are shown in the same figure. This gives an idea
of how well the simulations and measurements is consistent and here the
trend is right but the disturbance from the wall is higher in the measured
data. The reason for not including any measurements from the larger tanks
is that no big enough tank was available for the measurements.
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Figure 4.2.1: The edge effect for the reflection coefficient, S11.

The transmitted signal is also investigated as the wall reflection could
interfere with the wave the receiving antenna should receive through the
measurement domain. For an antenna the transmitted signal is always
lower than the reflected which makes the reflection investigation more im-
portant. The edge effect is calculated the same way as above except that
the transmission coefficients, S21, are used instead:

20 log10

(√
(< (S21,110 − S21,220)2 + = (S21,110 − S21,220)2

)
(4.2.2)

The edge effect for water and for water with increased conductivity is shown
in Figure 4.2.2. Here the measurements and simulation of the smaller tank
is more consistent in both trend and value.
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Figure 4.2.2: The edge effect for the transmission coefficient, S21.

When σstatic = 1 S/m the edge effect can be neglected for a tank with
antennas placed 110 mm from the wall as the edge reflection is below the
noise floor of -80 dB. This is a limitation in the measurement equipment and
all signals below this level will be considered as noise and do not contribute
to the measurements.

4.3 Modelling of the whole antenna array

This section covers the simulations of the complete antenna array where
the FDTD grid size is set to 4 mm due to memory limitations. The tank is
modelled as a water cylinder placed in open air and all the antennas have
bent inner conductor which is located in circular pattern with a radius of
71 mm. The whole tank must be modelled even though effect from the
edges can be neglected when using a saline solution as liquid medium. This
is because the metal cables are disturbing the signals and not allowing to
shrink the simulation domain.
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4. Modelling of the antenna array

4.3.1 FDTD grid coordinate axes

The FDTD grid has three coordinate axes and a placement of an antenna in
any of these three directions is straightforward. When an antenna is placed
in an angle towards the axes the antenna must be modelled differently. This
is achieved by modelling many PEC cylinders with only one or two grid cells
aligned according to the coordinate axes. In Figure 4.3.1 and Figure 4.3.2
this is illustrated for the different rings of antennas. In the first antenna
ring there is eight antennas with four placed aligned with the x- and y-axle
and four rotated 45 ◦ from the respective axes. The above antenna ring is
rotated by 22.5 ◦ in relation to the below. This means that for this ring all
the antennas are placed in an angle of 22.5 ◦ towards the coordinate grid
axes. In Figure 4.3.3 and Figure 4.3.4 an illustration of the layout is shown.
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Figure 4.3.1: The FDTDmodel of one antenna rotated 45 degrees in relation
to the FDTD coordinate axes.
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Figure 4.3.2: The FDTD model of one antenna rotated 22.5 degrees in
relation to the FDTD coordinate axes.

Figure 4.3.3: The layout in the xy-plane of how the antennas are placed in
respect to each other when four is following the axes and four is placed in
a 45 ◦ angle.
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Figure 4.3.4: The layout in the xy-plane of how the antennas are placed
in respect to each other when all eight is placed in a 22.5 ◦ angle to the
coordinate axes.

The differences in the reflection- and transmission coefficient when an
antenna is transmitting to an antenna placed across the measurement do-
main for the rotated FDTD model is investigated as a rotation may affect
the properties of the antenna. The rotational effect is calculated as

20 log10

(√
(< (S11 − S11 rot)2 + = (S11 − S11, rot)2

)
(4.3.1)

where S11 is the reflection coefficient for the antenna placed aligned to the
FDTD grid axis and S11, rot is the reflection coefficient for the rotated an-
tenna. The rotational effect for the transmission coefficient is calculated in
the same way when the receiving antenna is placed on the opposite site of
the reconstruction domain. In Figure 4.3.5 and Figure 4.3.6 the rotational
effect is showing and the effect is below -80 dB for the transmission coeffi-
cient. However the antenna rotated 45 ◦ suffers from a noticeable effect in
the reflection coefficient for frequencies above 1 GHz.
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Figure 4.3.5: The rotational effect for the reflection coefficient, S11.
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Figure 4.3.6: The rotational effect for the transmission coefficient, S21.
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4.3.2 Measurement compared to simulation

In this simulation the whole tank is used with all antennas placed as illus-
trated in Figure 4.3.3 and Figure 4.3.4. The liquid in the tank is water with
added salt given a permittivity and conductivity as shown in Figure 4.3.7
and Figure 4.3.8. The antenna used in this simulation and measurement
is the antenna with bent inner conductor with and without dielectric, see
Figure 4.3.9. The reason for just including these two antennas is that the
FDTD model was best in these two cases. The reflection and transmission
curves for these two cases can be seen in Figure 4.3.10 and Figure 4.3.11.
In water, there will be a high contrast between having the dielectric and
not as the permittivity for the dielectric is εstatic = 2.1 and the water has
a permittivity of εstatic = 78.0 and the contrast between the dielectric and
the water is C = 2.1 : 78 = 1 : 37. In air the effect of the dielectric is not
as noticeable as the contrast in permittivity between the dielectric and the
air is C = 2.1 : 1.
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Figure 4.3.7: The measured and simulated permittivity for the liquid me-
dium.
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4.3. Modelling of the whole antenna array
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Figure 4.3.9: The antenna with cable and connector used during the mea-
surements.
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Figure 4.3.10: The measurement and simulation of the reflection- and
transmission-coefficient for the first antenna with dielectric in the array.

In this simulation the antennas with dielectric was used and the grid
cell size was set to 4 mm. The result was not successful in modelling of
the reflection curve, the transmission curve was however much better. The
reason for this is that the dielectric is harder to model and not even with
a refinement of the FDTD grid cells by a 10th was enough. The antenna
with the dielectric was not used even thou the properties of the antennas
was better, the noise floor is higher up in frequency and the bandwidth is
wider, as seen in Figure 4.3.10.

38



4.4. Summary of antenna modelling
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Figure 4.3.11: The measurement and simulation of the reflection- and
transmission-coefficient for the first antenna without dielectric in the ar-
ray.

The simulation without the dielectric on the inner conductor was done
with a grid cell size of 4 mm and the result was more successful as both
the reflection and the transmission curves are very similar to the measured
ones. However at a frequency of 1.5 GHz the simulated reflection curve
differs from the measured which gives a large model error. This can be
avoided by using a lower frequency interval during the reconstruction. This
is the dashed red curve shown in Figure 4.3.11.

4.4 Summary of antenna modelling
The chosen length on the inner conductor was 20 mm allowing for fine
adjustment of the resonance frequency around 1.3 GHz for the antenna. The
best model of the cables is the one shown in Figure 4.1.3 as the cable effect
seen in Figure 4.1.6 is lowest both in the reflection-, S11, and transmission-
coefficient, S21. This gives that the type of antenna is just the coaxial cable
with the inner conductor bent upwards as active antenna.

The simulations shows that the edge effect can be neglected if the
conductivity is increased for a tank with the antenna placed 110 mm from
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4. Modelling of the antenna array

the edge. This is due to the limited measurement capacity of the network
analyser which has a noise floor of -80 dB. All signals below this level will
be considered as noise and do not contribute to the measurements. The
reason the edge effect is decreasing with increased conductivity is that the
electric field gets damped due to currents induced in the water. However
the whole tank must be modelled in the FDTD simulations as the cables
are disturbing the signals.

The antennas is placed in four rings of eight antennas where every other
ring is rotated by 22.5 ◦ and positioned 40 mm apart in z-direction. The
tank size was determined to be 382 mm as inner diameter due to the fact
that there was an acrylic cylinder of this size available. The antenna cables
were then decided to be 120 mm which gives a measurement domain of 142
mm in diameter.

40



Chapter 5

Reconstructed images

The measurements are performed by placing an object in the tank with the
antenna array. Only one of the antennas emits at a time and the others
acts as receivers. This step is repeated until all antennas have emitted their
signal and afterwards the reconstruction can be done. Before doing the
reconstruction a measurement of an empty antenna system must be done,
this is used as a reference to compensate for the slightly differences in the
cables and connectors.

5.1 Homogeneous objects in water
The measurements with the tank filled with water were done with the an-
tennas with bent inner conductor and with no dielectric surrounding the
outer antenna tip, see Figure 4.1.3. Three measurements with different ob-
jects were done. In the first measurement an acrylic cylinder with radius of
7.5 mm was emerged vertical in the middle of the tank leaving a part of it
above the water surface. The second measurement was performed with two
acrylic cylinders with same dimensions as above. One of them was placed
19 mm from the first antenna and the other one was placed 19 mm from
the fifth antenna leaving a distance of 50 mm in between. The third mea-
surement was done with a plastic cup of average radius of 65 mm filled with
pure ethanol submerge partially in the tank with 80 mm below the surface.
In table 5.1 the different permittivity and conductivity for all objects is
shown.

The reconstruction domain was then set to a radius of 44 mm leaving
an offset to the antennas as the total measurement domain has a radius of
71 mm. The reason for having a smaller reconstruction domain is mainly
that the antennas will interfere in the FDTD simulation if they are to
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5. Reconstructed images

close and also that the reconstruction time is lowered. The reconstruction
domain is limited in negative z-direction 64 mm below the lowest antenna
ring as no information will be acquired as the scattering in this direction
is low. In positive z-direction the water surface limits the reconstruction
domain as there will be a high contrast in permittivity between the air
and the water in the tank. During the first and the second reconstruction
a Gaussian pulse with centre frequency 700 MHz and bandwidth of 500
MHz which corresponds the dashed red line in Figure 4.3.11. In the third
reconstruction a pulse with centre frequency and bandwidth of 150 MHz
was used.

Acrylic cylinder Ethanol
ε∞ 2.7 4.5
εstatic 3.0 26.77
τ 8.0e-12 1.4e-12

Table 5.1: The Debye properties of the acrylic cylinder and pure ethanol.

5.1.1 One small object

The reconstruction of a small acrylic cylinder is shown below. In Figure
5.1.1 the full reconstruction domain is illustrated with two slices crossing
in the objects centre. This representation of data gives an overview of
the object and in Figure 5.1.2 and Figure 5.1.3 a 2D representation of
several xy-planes shows the object form. These xy-planes are shown for six
different z-heights where the first placed 32 mm under the first antenna ring
and the last just under the water surface. The reconstructed measurement
data shows good similarity to the reconstruction of simulated data for the
permittivity, however there are a lot of artefacts in the reconstruction of
measured data for the conductivity. This is shown even for simulated data
which suffer from a ringing artefact with higher conductivity surrounding
the object. The imaging in the vertical direction is good both for the
conductivity and the permittivity, however when imaging directly below
the water surface the imaged object is larger and the contrast lower. The
permittivity of the measured object is consider successfully imaged even if
the contrast between the object and the background is lower that for the
modelled permittivity. The low contrast is a limitation that is caused by the
reconstruction algorithm when using a high conductivity liquid medium.
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5.1. Homogeneous objects in water
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(a) The modelled εr.
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(b) Reconstructed εr for simu-
lated data.
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(c) Reconstructed εr for mea-
sured data.
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(d) The modelled σ.
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(e) Reconstructed σ for simula-
ted data.
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(f) Reconstructed σ for measu-
red data.

Figure 5.1.1: The 3D representation of the model used and the reconstruc-
tions of measured and simulated data.
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(a) The modelled εr.
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(b) Reconstructed εr for simulated data.
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(c) Reconstructed εr for measured data.

Figure 5.1.2: The 2D representation in different z-heights of the reconstruc-
tions of measured and simulated data.
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5. Reconstructed images

 

 

Z = 32 [mm]
Y

[m
m

]

X [mm]
40 80 0

0.3
0.7
1.1

40

80
 

 

Z = 72 [mm]

Y
[m

m
]

X [mm]
40 80 0

0.3
0.7
1.1

40

80
 

 

Z = 112 [mm]

Y
[m

m
]

X [mm]
40 80 0

0.3
0.7
1.1

40

80
 

 

Z = 132 [mm]

Y
[m

m
]

X [mm]
40 80 0

0.3
0.7
1.1

40

80
 

 

Z = 156 [mm]

Y
[m

m
]

X [mm]
40 80 0

0.3
0.7
1.1

40

80
 

 

Z = 180 [mm]

Y
[m

m
]

X [mm]
40 80 0

0.3
0.7
1.1

40

80

(a) The modelled σ.
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(b) Reconstructed σ for simulated data.
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(c) Reconstructed σ for measured data.

Figure 5.1.3: The 2D representation in different z-heights of the reconstruc-
tions of measured and simulated data.

5.1.2 Two small objects
The reconstruction of two small acrylic cylinders is shown below, for the
reconstruction of simulated data a 12 mm larger reconstruction domain
radius is used when reconstructing the conductivity. This is because the
reconstruction algorithm is not able to do a single iteration before it fails
and in this case it fails on the 8th iteration. In both the reconstruction of
simulated and measured data there are artefacts. For the permittivity it
is however possible to see the two objects both for the simulated data and
the measured. The reconstructed conductivity suffers from artefacts and
the object is not well reconstructed. There are also several small circular
artefacts that are caused by the antennas in the FDTD model, this is clearly
seen in Figure 5.1.6b and Figure 5.1.6c. The reconstructed permittivity for
the measured data is better in this case as the contrast is higher. The
reason for this is because the objects are closer to the antennas and the
signal reflected from the object is higher.
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5.1. Homogeneous objects in water

 

 

Modelled εstatic

Z
[m

m
]

Y [mm] X [mm]0
45

90 10
20
30
40
50
60
70

0
45

900

90

180

(a) The modelled εr.
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(b) Reconstructed εr for simu-
lated data.
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(c) Reconstructed εr for mea-
sured data.
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(d) The modelled σ.
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(e) Reconstructed σ for simula-
ted data.
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(f) Reconstructed σ for measu-
red data.

Figure 5.1.4: The 3D representation of the model used and the reconstruc-
tions of measured and simulated data.
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(a) The modelled εr.
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(b) Reconstructed εr for simulated data.
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(c) Reconstructed εr for measured data.

Figure 5.1.5: The 2D representation in different z-heights of the reconstruc-
tions of measured and simulated data.
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5. Reconstructed images
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(a) The modelled σ.
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(b) Reconstructed σ for simulated data.
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(c) Reconstructed σ for measured data.

Figure 5.1.6: The 2D representation in different z-heights of the reconstruc-
tions of measured and simulated data.

5.1.3 One large object
The reconstruction of one large object has a 12 mm larger reconstruction
domain radius when reconstructing the conductivity for measured data and
again the algorithm is not able to achieve 10 iterations so instead the 9th
is shown. For the larger object a lower frequency is used to increase the
accuracy for the reconstructions. This is because the object is bigger and
the wavelength that best detects the object is then higher. If the same pulse
as above is used the reconstructions will suffer from an artefact making a
hole in the object, this is shown in Figure 5.1.10 and Figure 5.1.11 so ins-
tead a pulse with centre frequency and bandwidth of 150 MHZ is used. In
this case the image of the simulated data shows a better result than for
the measured. The conductivity for the measured data is not well recons-
tructed and for the permittivity the contrast is not constant in the object.
For the reconstruction of simulated data the image of the conductivity is
slightly larger and hollow but for the permittivity the object is successfully
reconstructed, however the contrast is lower in vertical endpoints of the
object.
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5.1. Homogeneous objects in water
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(a) The modelled εr.
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(b) Reconstructed εr for simu-
lated data.
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(c) Reconstructed εr for mea-
sured data.
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(d) The modelled σ.
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(e) Reconstructed σ for simula-
ted data.
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(f) Reconstructed σ for measu-
red data.

Figure 5.1.7: The 3D representation of the model used and the reconstruc-
tions of measured and simulated data.
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(a) The modelled εr.
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(b) Reconstructed εr for simulated data.
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(c) Reconstructed εr for measured data.

Figure 5.1.8: The 2D representation in different z-heights of the reconstruc-
tions of measured and simulated data.
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5. Reconstructed images
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(a) The modelled σ.
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(b) Reconstructed σ for simulated data.
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(c) Reconstructed σ for measured data.

Figure 5.1.9: The 2D representation in different z-heights of the reconstruc-
tions of measured and simulated data.

When the pulse with centre frequency 700 MHz and bandwidth 500
MHz was used the reconstructed object became hollow. The contrast of
the object is however better reconstructed for the measured data for both
the permittivity and the conductivity as well as the conductivity for the
simulated data.
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5.1. Homogeneous objects in water
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(a) The modelled εr.
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(b) Reconstructed εr for simulated data.
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(c) Reconstructed εr for measured data.

Figure 5.1.10: The 2D representation in different z-heights of the recons-
tructions of measured and simulated data.
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(a) The modelled σ.
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(b) Reconstructed σ for simulated data.
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(c) Reconstructed σ for measured data.

Figure 5.1.11: The 2D representation in different z-heights of the recons-
tructions of measured and simulated data.
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5. Reconstructed images

5.1.4 Evaluation of measurements
The result was evaluated in two different ways, the first way was to only
plot the functional value versus the amount of iterations made. In this way
it is easy to see if the algorithm has converged, the result will not be better
with more iterations. During the reconstruction of the conductivity for the
simulated data of the two acrylic cylinders the reconstruction algorithm fai-
led on the 9th iteration and during the reconstruction of the conductivity
for the measured data of the cup of ethanol the algorithm failed at the 8th
iteration. This is why there are gaps in the graphs below. The most impor-
tant to see in Figure 5.1.12 is when there is a drop in the functional value,
this is however not a good method of comparing different reconstructed ob-
jects as there is no information of how good the result is. Instead another
way of evaluation is to formulate a relative error for the permittivity

δ (εstatic) =
˝

V
|εrec (x)− εtrue (x)| dV˝
V
|εtrue (x)− εback| dV

(5.1.1)

and for the conductivity

δ (σ) =
˝

V
|σrec (x)− σtrue (x)| dV˝
V
|σtrue (x)− σback| dV

(5.1.2)

where V is the volume of the reconstruction domain, εback is the permittivity
for the background and σback is the conductivity for the background. This
evaluation is better to compare how well the reconstruction represents the
measured object. These relative errors are plotted in Figure 5.1.13 were the
relative error for the cup of ethanol is low and the relative error for the two
cylinders are lower than for the case with only one cylinder. This compare
well with the image obtained as the reconstructed values are better even
though the shape is better for the case with only one cylinder. This is
mainly due to that the objects are closer to the antennas in the case with
two cylinders. Determined both by visual inspection of the image and the
magnitude of relative error the reconstructed image of the conductivity is
consistently not successful for any object.
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5.1. Homogeneous objects in water
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Figure 5.1.12: The functional for the three measurements.
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5. Reconstructed images
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Figure 5.1.13: The relative error for the three measurements.
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Chapter 6

Conclusion

In this thesis two different antennas were used during the measurements,
one with dielectric on the inner conductor and one without. The reflection
coefficient for the antenna with the dielectric was not successfully modelled
and this is mainly due to that the FDTD grid cell cannot be small enough
to model the dielectric. The dielectric has a thickness of 1.35 mm and a
refinement of the grid cells to 0.4 mm did not solve the problem. Another
refinement of the grid cell is not possible as the memory and time consump-
tion will be far too high. These limitations of the FDTD grid size could
be changed by refinement of the grid cells close to the antennas as the re-
flection is more effected of the medium and the change in medium close to
the antenna. The antenna with dielectric showed better properties as the
bandwidth is wider and the reflection is lower at the resonance frequency
so further development of the FDTD simulator could increase the overall
performance.

The antenna without dielectric used in this thesis shows good results
when using a FDTD grid cell of 4 mm. Both the reflection coefficients
and the transmission coefficients are satisfyingly modelled when a Gaussian
pulse with centre frequency of 700 MHz and bandwidth of 500 MHz are
used as a source in the transmitting antenna. This model was used in the
reconstruction of a homogeneous acrylic cylinder of radius 7.5 mm when salt
water was used as s liquid medium in the tank and gives a satisfying image
of the permittivity, however the image of the conductivity is not accurate.

The same model was also used to reconstruct a measurement of two
acrylic cylinders with a radius of 7.5 mm with also promising result for
the permittivity but not for the conductivity. The third measurement was
performed on a cup of ethanol which gave a good result for the permittivity
when a pulse with centre frequency 150 MHz and bandwidth 150 MHz was
used, however the conductivity was not well reconstructed.
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6. Conclusion

The prototype was intentionally made for clinical microwave tomogra-
phy and proper clinical testing still resides in the future. The reconstruc-
tions of the permittivity are well made for both small and large cylindrical
objects and can therefore be expected to detect tumours in a breast. A
suggested test is to develop a phantom of a breast with a tumour with si-
milar dielectric properties as a real one. Finally, the conclusion that the
descried imaging system array can be used for clinical use in competition
to traditional X-ray imaging cannot be made.
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