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Abstract
In this thesis, different optimization models are formulated to provide a unit commitment schedule and a
bidding strategy on several electricity markets. Both the deterministic and stochastic unit commitment for-
mulations are presented from the perspective of a generation company (GENCO). In the formulation, the
stochasticity is due to the uncertainty in the day-ahead forecasts of the spot market price and wind farm
energy production.

Thus, the main goal of this thesis is to incorporate the uncertainty the GENCO’s wind power production
into the price-based unit commitment scheduling for bidding in the day-ahead spot market. We have used
Lagrangian relaxation, dynamic programming, mixed integer linear programming and stochastic program-
ming for that purpose.

We started with applying our algorithms to the unit commitment of six thermal units. We then added to
those thermal units a wind farm which had a stochastic production output. We tested our algorithms with
different forecast methods and wind penetration (25% and 45% of the GENCO installed production capac-
ity being wind farm power).

As a result, a clear difference is observed between the optimal solutions from the deterministic pro-
gram and from the stochastic program. This indicates that ignoring stochasticity may lead to a non-optimal
schedule in reality, i.e. lower profits for the GENCO.

Finally, tests show that the error levels of the forecasts, in both spot prices and wind farms production,
impact significantly the possible income of the GENCO. Thereby, reducing the error of those forecasts lead
to increased profits. Moreover, our tests seems to show that increasing the wind penetration lead to increased
profits for the GENCO, but this last result still have to be proved.

Index Terms: Deterministic optimization, economic power dispatch, stochastic programming, unit
commitment scheduling in deregulated electricity markets.
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Glossary

• CDF: Cumulative Distribution Function

• PDF: Probability Distribution Function

• LB: Lower Bound

• UB: Upper Bound

• GENCO: Generation Company (Electricity generation)

• Nordic area: Area composed of Norway, Sweden, Finland and Denmark.

• Spot market: Day-ahead electricity exchange

• LP: Linear Programming

• MILP: Mixed Integer Linear Programming

• LR: Lagrangian relaxation

• DynP: Dynamic programming

• PBUC: Price-Based Unit Commitment

• EPD: Economic Power Dispatch

• RDG: Relative Duality Gap
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List of symbols
Indicators

• i: the indicator of the generation unit

• t: the indicator of the time period

• s: the indicator of a given scenario (a given set of realization of the stochastic variables)

Functions

• f and F: objective functions

• h: a constraint function

• L: a Lagrangian function

• q : a dual Lagrangian function

• Cq
i : the quadratic cost function of generator i of the form Cq

i (P) = a(i)+b(i) P+ c(i) P2

• Cl
i: the 3 steps linear cost function of generator i of the form Cl

i (P) =CA(i)+CB1(i) P1 +CB2(i) P2 +

CB3(i) P3

• fc: a backward cumulative objective function

• g: the global objective function in the stochastic programming (First and Second stage)

• fsp: the first stage problem in the stochastic programming

• Q: the optimal solution of the second stage problem in the stochastic programming

• qsp: the expectancy of Q

Constants

• X: a set of feasibility

• T: a matrice

• W: a matrice

• hsp: a vector

• qvect: a vector

• Z: a binary vector

• N: the number of the generation units

• T: the number of scheduling periods

• S: the number of scenarios

• 100(1−α): a confidence percentage in %
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• UN′(x̂): an upper bound for g(x̂)

• LN,H: a lower bound for E[v̂N ]

• λ , µG and µR: Lagrangian multipliers

• α : a step coefficient

• Pmin(i): the minimum power that can be produced by generator i

• Pmax(i): the maximum power that can be produced by generator i

• SU(i): the start up cost of generator i

• SD(i): the shut down cost of generator i

• RU(i): the ramp up rate of generator i

• RD(i): the ramp down rate of generator i

• PB(t): the bilateral contracts for period t

• D̄(t): the expected value of the forecasted load at period t

• R̄(t): the expected value of the forecasted reserve needed by the global system at period t

• M: a number big enough compared to power production (100000 for example)

• MUT(i): the minimum ON time of generator i

• MDT(i): the minimum OFF time of generator i

• a(i): a cost coefficient of the quadratic cost function Cq
i

• b(i): a cost coefficient of the quadratic cost function Cq
i

• c(i): a cost coefficient of the quadratic cost function Cq
i

• CA(i): a cost coefficient of the linear cost function Cl
i

• CB1(i): a cost coefficient of the linear cost function Cl
i

• CB2(i): a cost coefficient of the linear cost function Cl
i

• CB3(i): a cost coefficient of the linear cost function Cl
i

• E1(i): the upper bound of the variable P1 of the linear cost function above

• E2(i): the upper bound of the variables P1 +P2 of the linear cost function above

• I0(i): the status of generator i before the first period of scheduling

• TH(i): the time ON or OFF (T H < 0 if OFF time, T H > 0 if ON time) of generator i before the first
period of scheduling

• P0(i): the power output of generator i before the first period of scheduling

• ρG(t): the expected value of the spot price forecast for period t

• ρR(t): the expected value of the UP regulation price forecast for period t

• ρB(t): the value of the bilateral price for period t

Decision variables

• x: a vector of decision variables (In the case of stochastic programming, it represents the first stage
decision variables)
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• y: a vector of decision variables (In the case of stochastic programming, it represents the second stage
decision variables)

• xR: a vector of decision variables where the integer variable have been rounded.

• PG(i, t): the power produced by generator i at period t

• PR(i, t): the spinning reserve for generator i at period t

• PB(i, t): the power for generator i at period t that is going to be sold to bilateral contract

• I(i, t): the status of the generator i at period t (0 if OFF/1 if ON)

• Xon(i, t): the number of period the generator i has been ON in a row until period t

• Xoff(i, t): the number of period the generator i has been OFF in a row until period t

• Pspot(t): the amount of power that will be bid on the SPOT market for delivery at period t

• xcstrt(i, t) see [9] for description

• ycstrt(i, t) see [9] for description

• zcstrt(i, t) see [9] for description

Second stage decision variables

• P+(i, t,ξ ): the amount of power by which the GENCO increase the scheduled power PG(i, t) of
generator i at period t

• P−(i, t,ξ ): the amount of power by which the GENCO decrease the scheduled power PG(i, t) of
generator i at period t

• w(t,ξ ): the net costs from the regulation market

• v(t,ξ ): the amount of power under regulation (can be positive or negative)

Stochastic variables

• ξ : a possible outcome of the uncertain data for the second stage problem in the stochastic program-
ming

• ρspot(t,ξ ): the spot price at period t

• ρrg
up(t,ξ ): the up regulation price at period t

• ρrg
down(t,ξ ): the down regulation price at period t

• Pwind(t,ξ ): the wind power at period t

• ∆P(t,ξ ): the imbalance of the power system (Generation-Consumption) at period t
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Chapter 1

Introduction

1.1 Background

1.1.1 Electricity generation companies

All the work performed during this thesis has been made from the generation company’s (GENCO) point
of view. A generation company, who need to decide whether or not to buy/sell power from/to the spot and
regulation markets, thus it has to determine the generation schedule of their power plants so that it fulfills
its bilateral contracts while maximizing their own profits.

1.1.2 The deregulation of power system in Sweden [10]

Sweden until 1991 is a special case: the electricity sector was not completely centralized or nationalized,
and tens of companies were generating and/or transporting electricity to their own clients. So there was no
centralized dispatch of generation scheduling. For example, Vattenfall was the main and the most important
one, they also controlled the 400kV and 220kV transmission lines. Due to deregulation, swedish govern-
ment decided in 1991 to create a dedicated company that will be in charge of the national transmission
lines (thus removed from Vattenfall). This company is called Svenska Kraftnat and its main missions are to
manage the national transmission lines and to promote the competition in the electricity market. (see [3])

The Nordpool is created in 1996 between Sweden and Norway. It’s a power exchange that operates on
two types of markets:

• The future market, in which actors can buy or sell base or peak load power from a week to three
years in advance.

• The spot market, in which actors can buy or sell power on an hourly basis for the next day.

Finland joined the Nordpool in 1998 and Denmark completely joined the Nordpool in 2000.
Thus every generation company, distribution/transmission company, and traders can buy and sell energy in
those markets in addition to their own bilateral contracts.

1.1.3 Selling/Buying electricity

Nordpool spot market Elspot

The spot market enables the actors to buy and/or sell energy on an hourly basis for one day ahead. Accord-
ing to the Nordpool spot market website [1]:

”Contracts are made between seller and buyer for delivery in the next day, the price is set and the trade
is settled.

12:00 CET is the time of gate closure for bids with the delivery tomorrow. Elspot feeds the information
into its computer system and the price is calculated based on an advanced algorithm. Simply put, the price

1



2 Chapter 1. Introduction

is set where the curves for sell price and buy price intersect. The price is announced to the market at ap-
proximately 13:00 CET, and after that the trades are settled. From 00:00 CET the next day, contracts are
delivered physically hour by hour according to the contracts entered.

As soon as the noon deadline for participants to submit bids has passed, all purchase and sell orders
are aggregated into two curves for each delivery hour; an aggregate demand curve and an aggregate supply
curve. The system price for each hour is determined by the intersection of the aggregate supply and demand
curves which are representing all bids and offers for the entire Nordic region.” (see figure 1.1)

Figure 1.1: System price settlement [1]

We can notice that there is another type of exchange on the Nordpool called Elbas (We do not use it in
this thesis), which is a balance adjustment market thus covers the period between the end of the spot market
Elspot bidding and the delivery hour.

Regulation market exchange

The regulation market is operated by Svenska Kraftnat [6] and behaves differently from the Nordpool spot
market. On the regulation market, actors can submit selling bids for downward regulation reserve (Capacity
to reduce its energy output) and/or for upward regulation reserve (Capacity to increase its energy output).
But there is no buying bids. It is Svenska Kraftnat who decides to buy the necessary reserve.

Bilateral contracts

We define the bilateral contracts of a GENCO as the contracts specifying for each hour the amount of en-
ergy that the GENCO has to provide to a specific client.

In this thesis, these are the three opportunities taken into account to enable the generation companies to
reach their objectives (maximizing its benefits).

With the increase in renewable energy production, the uncertainty in the power output increases. In our
case we will only take into account wind farms, but the reasoning in this thesis can be adapted to every
uncertain electricity production plants. So, the GENCO has to engage itself to buy/sell electricity/reserve
on the markets before knowing the electricity prices and its wind farm production. Making an optimal deci-
sion is not obvious, it is why a framework of algorithms and tools has to be developed to help the decision
making process.



1.2. Problem formulation 3

This Master Thesis focuses on the analysis of the electricity portfolio day-ahead problem of a big pro-
ducer. We thus use stochastic programming with a particular attention to the uncertainty in the wind-farms
power production and in the spot prices.

1.2 Problem formulation

The objective of the study is to determine a unit commitment schedule and corresponding bidding strategy
that maximize the profits of the company with respect to the system and unit constraints. The tasks of this
project include:

• Review standard unit commitment algorithms

• Review basics of market operation in Nordic countries

• Data specification concerning the power plants and the system

• Implement an optimization algorithm for deterministic unit commitment

• Implement a model of stochastic optimization algorithm for stochastic unit commitment

• Create annexe programs for statistical inference and Monte Carlo methods

• Use a realistic set of generation units to see the validity, robustness and computational speed of the
optimization algorithm.

1.3 Methodology

The framework of tools used in this project consists of stochastic analysis, optimization and power market
management. The optimization is the main tool of this study. It is a mathematical framework that enables us
to find the best way to use our resources (minimum cost or maximum profits) while respecting the technical
constraints required. The stochasticity of the optimization problem is caused by the uncertainty of electricity
price forecasts and wind farm power forecasts.

1.4 Contribution and limits of the work

The contribution of this work is on the formulation of a two-stage linear stochastic programming model for
incorporating wind power forecasting error in generation scheduling in the Nordic power market.

Its limits are the absence of use of proper risk management methods and utility function in the stochas-
tic optimization algorithms. This create lead to an exposure to extreme but rare event such as very high
electricity spot price.
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Chapter 2

Overview of the optimization methods
for price-based unit commitment

As explained in the introduction, the main mathematical framework we have used in this thesis is optimiza-
tion. This chapter is to provide a basic overview of programming techniques used in this project. The goal
of this chapter is not to provide a detailed description on those subjects. For that, the reader can check the
references in the end.

In the field of optimization we can distinguish two parts. The first one, mathematical modeling aims
at modeling our practical problem as a standardized optimization formulation. Such an optimization is
composed of:

• Decision variables: representing the choice to be made (i.e. in our case, the unit commitment, power
production, power bid on spot market...etc.)

• Objective function: representing the total net cost of making a choice of decision variables

• Constraints: representing values that decision variables can take. For example, a variable can be
restricted to binary values.

The second one, mathematical programming aims at solving the mathematical model so that optimal
solution(s) can be found. To do so, different algorithms are available for different categories of models, e.g.
linear, nonlinear, etc. In the following sessions, we describe the optimization algorithms used in this thesis..

2.1 Lagrangian relaxation

This section has been written using [2]

Lagrangian relaxation enables us to avoid solving difficult constraints directly, (e.g., equality constraint
linking several variables together). Assume the following primal optimization problem:

minimize
x∈Rn

f (x)

subject to h(x)≤ 0

To relax the constraints h(x) ≤ 0 (Assume that it is hard to implement), we introduce a variable λ and
create the relaxed Lagrange formulation where λ ≥ 0 is given:

minimize
x∈Rn

L(x|λ ) = f (x)+λ ·h(x)

This problem is now easier to solve. Assuming that we know the value of λ , we look for the maximum
of the Lagrangian Relaxation function. This is equivalent to the assumption that the constraints not relaxed
are not active in the problem. Thus, we can solve for a corresponding optimal solution x∗:

5



6 Chapter 2. Overview of the optimization methods for price-based unit commitment

dL
dx

=
d f
dx

+λ
dh
dx

= 0 ⇒ x∗ (2.1)

If the solution x∗ obtained is outside the feasible set defined by the non relaxed constraints, then we fix
the value of x∗ corresponding to this constraints and recompute x∗.

According to the relaxation theorem:

∀λ : min{L(x|λ )} ≤ min{L(x|λ ),h(x)≤ 0} ≤ min{ f (x),h(x)≤ 0} (2.2)

So if we find a solution of x∗ and λ ∗ such that L(x∗|λ ∗) = f (x∗), we know that x∗ is a global optimal
solution to the primal problem. Define:

q(λ ) =minimize
x∈Rn

L(x|λ ) = f (x)+λh(x)

= L(x∗|λ )
= f (x∗)+λ ·h(x∗)

(2.3)

This define the dual problem:
q∗ =maximize

λ∈R+
q(λ )

As most of the time it is hard to have an analytical expression of q(λ ), we use the sub gradient method
to find λ ∗ (λ (k) being he value of lambda at iteration k):

λ (k+1) = max(0,λ (k)+αk

[
dq(λ )
dλ )

]
(2.4)

Where αk is the step size, and dq(λ )
dλ = h(x∗)

2.2 Lambda-iteration technique

This section has been written using [11]

The goal of this algorithm is to dispatch the amount of bilateral contracts PB in MWh among all the N
units that are ON (If the unit i is ON then I(i) = 1, if it is OFF then I(i) = 0). The idea of this method is
that the incremental costs of all the ON units are the same and equal to λ . Knowing the cost functions of
the production units for a given amount of energy P, Cq

i (P(i)) = a(i)+b(i)P(i)+c(i)P(i)2, the incremental
cost for unit i is:

dCi

dP(i)
= b(i)+2c(i)P(i) (2.5)

The algorithms main idea is that for all ON units:

dCi

dP(i)
= λ (2.6)

so we compute P(i) as follows:

P(i) =
λ −b(i)

2c(i)
(2.7)

As long as λ ≤ ρG hold, we then change the value of λ until having:

N

∑
i=1

P(i) = PB (2.8)
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As we are dealing with a market environment, we stop updating λ when we reach the spot market price
ρG. This means that it is now better to buy the remaining energy from the spot market to fulfill the bilateral
contract.

At iteration n, λ. is updated by:

λn =
−en−2(λn−2 −λn−1)

en−2 − en−1
+λn−2 (2.9)

Where en = ∑N
i=1 P(i)−PB is the error function. We assume that the error function of λ is a linear function,

and we update Lambda such that this linear function is equal to 0.

The block diagram of the Lambda-iteration technique is shown on figure 2.1.

Start

Set Lambda

Calculate P(i)

Calculate error

Error  � Treshold or 

Lambda � Spot price

Update Lambda

Yes

No

End

Figure 2.1: Lambda iteration algorithm

2.3 Dynamic programming

In this thesis we perform a backward dynamic programming. We define a minimization problem with f (t)
as objective function at hour t and the states I(t) for t ∈ {0, ...,T} as decision variables. In our case we say
that t is a period of 1 hour, and the state I(t) is a binary vector corresponding to the status of our N units at
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hour t. For instance, in the case of N=4, I(1)=[0 1 1 0], It means that unit 1 and 4 are OFF and unit 2 and 3
are ON during hour 1. As each unit has 2 state (ON or OFF), there are in total 2N states at each hour. This
leads to a dimensional problem as N increases.

For simplicity reason let’s consider only one units, thus for every stage t we have 2 possible states([0]
or [1]).

Now we can decompose the dynamic programming algorithm in three phases:

1. Initialization For this first phase, we are at the T − 1 stage of the problem (Because we perform a
backward method, it would have been different if we had perform a forward method).
Now at this stage:

• Assuming the unit is ON at hour t = T −1:

– We compute the value of f (t)+ f (t +1) if unit is ON at hour t +1

– We compute the value of f (t)+ f (t +1) if unit is OFF at hour t +1

– We store the value of the state of the unit at hour T that produces the lower value of f (t)+
f (t +1) as OptimalPath(ON,t)

• Assuming the unit is OFF at hour t = T −1:

– We compute the value of f (t)+ f (t +1) if unit is ON at hour t +1

– We compute the value of f (t)+ f (t +1) if unit is OFF at hour t +1

– We store the value of the state of the unit at hour T that produce the lower value of f (t)+
f (t +1) as OptimalPath(OFF,t)

2. Iterations We now do the same for every stages recursively (i.e. t going from T − 2 to 0) using the
value of f (t)+ f (t +1)+ ...+ f (T ) instead of just f (t)+ f (t +1) to estimate the best path.

3. Termination Given that we know the state of the system just before the scheduling period (Hour 0),
we can now choose the optimal path (That minimize the global objective function) between states
and stages from the information found during the iterations. For that we use the values stored in
OptimalPath, proceeding as follow:

• Knowing the unit is ON at hour 0, according to the OptimalPath(ON,0) if unit is OFF at hour 0)
if the unit should be ON or OFF at hour 1. Similar procedure if the unit is OFF at hour 0.

• We repeat the same procedure until reaching hour T-1 where OptimalPath(OFF or ON,T-1) tell
us if the unit should be ON or OFF at hour T

• We have thus defined the optimal status of the unit at every hour of the scheduling period

The Bellman principle ensures that this algorithm gives the optimal solution to our problem.

Unit commitment dynamic programming in this thesis

We define our minimization problem F with the objective function f for each unit and decision variable
PG(i, t), PR(i, t), PB(i, t) and I(i, t) (see List of symbols). If we assume I(i, t) = 1 ∀(i, t) (all the units are
ON, all the time) then we can compute PG(i, t), PR(i, t), PB(i, t) by using different EPD technique (part 2.2
and part 3.2.3 of the thesis).

We can now perform the dynamic programming for every unit because the objective is split accordingly
and this only requires two states at each stage of the dynamic programming. So in our programming prob-
lem, there are only 2 states (I(i,t)=1 when the unit is ON during hour t, I(i,t)=0 when the unit is OFF during
hour t). It is important, regarding the computation time, to be able to split the global objective function in
independent part corresponding to each unit. That is why when a problem contains coupling constraints we
can use Lagrangian relaxation to form a Lagrangian function that can be decoupled into independent part
of each unit. We perform a backward dynamic programming, which means that we are going to begin our
algorithm from the last stage and go recursively. The hours considered go from 1 to T.
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At hour t, we need to make an assumption on t −1 state to take into account the start-up cost of unit if
needed (Turning ON a unit at period t). At each iteration, we now look at hours t −1, t and t +1, thus we
have 8 cases to deal with (as shown in Figure 2.2):

I(i,t)=1

I(i,t+1)=1

I(i,t+1)=0

I(i,t-1)=1

I(i,t-1)=0

I(i,t)=0

I(i,t+1)=1

I(i,t+1)=0

I(i,t-1)=1

I(i,t-1)=0

Period t-1 Period t Period t+1

Figure 2.2: Possible states of dynamic programming.

For each one of those cases, we compute the cumulative objective function for the optimum path ”until
now from hour T”. For a given unit i and optimum path from hour t to hour T, the cumulative objective
function is defined as:

f ∗c (i, t) = f (i, t)+ f (i, t +1)+ ...+ f (i,T ) (2.10)

We call it f ∗c1 if I(i,t)=1 and f ∗c0 if I(i,t)=0.

Knowing the state of each unit before the first scheduling hour we can then choose the best path. Hour 1
is the first hour where we have to make a decision, the status of the units at hour 0 is supposed to be known.

The flowchart of the dynamic programming can be found on figure 2.3.

2.4 Branch and Bound method

This section has been written using [4]
Branch and Bound method is based on the idea that the general set of solutions can be split into subsets of
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solutions. This method can be used to solve integer linear programming (i.e. LP where the variable are in-
teger variables) in addition to a classic linear programming (For example Simplex algorithm). Considering
the following optimization problem:

maximize
x∈X

f (x) (2.11)

These are the steps of the method:

Initialisation

We first solve the LP problem just like if the variable where not binary variables, the solution is called x∗.
We thus obtain a upper bound UB that is f (x∗). We now rounded x∗ that give the solution xR, and thus
have a lower bound LB that is f (xR). (for example x∗ = 2,45 give xR = 2). We must be careful to keep the
feasibility of xR (i.e. xR ∈ X). The optimal solution will be between LB and UB.

Iterations

We now choose the variable that is the farthest from its rounded-value (We call it x1 = 5,56) and one
constraint to our linear programming problem. We make two cases, one by adding x1 ≤ 5 and the other
by adding x1 ≥ 6. We resolve the two new LP problems, round the solution and compute the LB and UP
for each of them. We keep the best LB. If both rounded solution are feasible, we choose the to keep the
constraints for which the UP is the highest (The maximum value that can be possibly reach is the highest).
We now repeat this step.

Terminations

The iterations terminate when UB=LB.

In the case of mixed integer linear programming (i.e. some variable are integer, some are continuous in
the same LP problem), we only round the integer variables.

2.5 Two-stage stochastic linear programming

This section have been written with the help of [8]

2.5.1 Formulating the problem

Stochastic programming is an approach that enables us to solve optimization problem subject to uncertainty.
It enables us to deal with parameters whose values are unknown at the time a decision should be made (In
our case, such parameters include the spot market price, the wind power production,...etc.).

The basic idea of a two-stage stochastic programming is that the optimal solution given by our program
should not solely depend on a specific future realization of the stochastic parameters. The optimal solution
should only be made on data available at the time of the decision.
Two stage in the title refers to:

• First stage: that is the time of the decision when we still do not know the exact realization of some
parameters (e.g. at time t − 24h, the spot price at time t is unknown but we have to make a unit
commitment scheduling)

• Second stage: that is the time where the unknown parameters take a given value (e.g. at time t, the
spot price at this time t is knows)
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We put the two-stage stochastic linear programming problem in the following form:

minimize
x∈X

{g(x) = fsp(x)+E[Q(x,ξ )]} (2.12)

Where x ∈Rn is the first-stage decision vector, X is a polyhedral set defined by a finite number of linear
constraints, fsp is a linear function and Q(x,ξ ) is the optimal value of the second-stage problem:

minimize
y

qvect
T y

subject to Tx+Wy ≤ hsp
(2.13)

Where y ∈ Rn is the second-stage decision vector and ξ = {qvect ,T,W,hsp} is a random vector that
contain the uncertain data. One specific realization of ξ is called a scenario ξk

So we have to make a decision x before knowing the realization of ξ . The second stage problem can be
seen as the optimal behavior once the uncertain data are revealed. We must be careful in the modeling to
ensure that Q(x,ξ ) =−∞ never happen for all x ∈ X and ξk. Finally, if for some x ∈ X and a scenario ξk the
system Tx+Wy ≤ hsp is infeasible, we usually take Q(x,ξ ) = ∞.

2.5.2 Approximating the solution

As the vector ξ is a continuous vector for which we suppose to know the probability distribution function,
there is an infinite number of scenarios. We thus use Monte Carlo simulation to reduce the scenario set to
a manageable size. Given a sample ξ1, ...,ξN where each ξ j, j ∈ {1, ...,N} are independently identically
distributed of each other and has the same distribution as ξ we can use q̂sp

N (x) to approximate qsp(x) =
E[Q(x,ξ )]:

q̂sp
N (x) =

1
N

N

∑
j=1

Q(x,ξ j) (2.14)

And thus our general problem (2.12) become:

minimize
x∈X

{
ĝN(x) = fsp(x)+

1
N

N

∑
j=1

Q(x,ξ j)

}
(2.15)

This method is known as the sample average approximation method. Once the problem is formulated
as in the formulation (2.15) we can solve it by a classic linear programming technique.

2.5.3 Estimation of the optimum found

As we use Monte Carlo simulation to estimate qsp(x) = E[Q(x,ξ )] (See section 2.5.2), there is no certainty
on the global optimality of the solution x̂ ∈ X obtained by solving the sample average approximation prob-
lem. If v∗ = min

x∈X
g(x) is the optimal solution of the real problem, we have g(x̂) ≥ v∗. We thus want to

measure the quality of this solution based on gap(x̂) = g(x̂)− v∗. But as it is not computable in our case,
we will estimate it with a statistical procedure.
By Monte Carlo sampling we generate N′ independently identically distributed random sample ξ j, j =
1, ...,N′ of ξ and thus have:

ĝN′(x̂) = fsp(x̂)+ q̂sp
N′(x̂) (2.16)

And the sample variance of q̂sp
N′(x̂) is:

σ̂2
N′(x̂) =

1
N′(N′−1)

N′

∑
j=1

[Q(x̂,ξ j)− q̂sp
N′(x̂)]2 (2.17)
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As the computation of Q(x̂,ξ j) is made by only solving the second stage problem, we can use a large
value of N′.
We now define a 100(1−α)% confidence upper bound for g(x̂):

UN′(x̂) = ĝN′(x̂)+ zα σ̂N′(x̂) (2.18)

Where zα = Φ−1(1−α), with Φ(z) the CDF of the normal distribution. Those expressions and bound
come from the Central Limit Theorem.
We now want to give a lower bound to v∗. We define v̂N as the optimal value of the SAA complete problem
(First and second stage) above. As we know, the sample average is an unbiased estimator of the expectation,
thus E[ĝN(x)]=g(x). So for x ∈ X , we have:

g(x) = E[ĝN(x)]≥ E[ inf
x′∈X

ĝN(x′)] = E[v̂N ] (2.19)

Thus v∗ ≥E[v̂N ]. To estimate E[v̂N ] we solve the SAA problem to optimality H times (H problems, each
based on a specific sample of size N that are all independently generated). We note v̂1

N , ..., v̂
H
N the computed

optimal solution for each of these problems. We use the sample average v̄N,H as an unbiased estimator of
E[v̂N ]:

v̄N,H =
1
H

H

∑
j=1

v̂ j
N (2.20)

The variance of v̄N,H is estimated by the sample variance:

σ̂2
N,H =

1
H(H −1)

H

∑
j=1

[v̂ j
N − v̄N,H ]

2 (2.21)

So, the same way we proceed for the upper bound, we define a lower bound for E[v̂N ] by:

LN,H = v̄N,H + tα,ν σ̂N,H (2.22)

Where ν = H − 1and tα,ν is the α-critical value of the t-distribution with ν degrees of freedom. In
application small values of H are sufficient (H=5 or 10).

We now can give a statistically valid bound (confidence of at least 1−2α) on the true gap(x̂):

ĝap(x̂) =UN′(x̂)−LN,H (2.23)
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Chapter 3

Deterministic price-based unit
commitment scheduling

3.1 PBUC: Without unit coupling constraints

In this model, we assume that all the power produced is sold to the spot market. Bilateral contracts are not
considered and the following constraints for each unit are considered:

• Minimum MDT (Minimum number of periods that the production units must stay OFF when turned
OFF) and MUT (likewise with ON)

• Ramp down and ramp up rates

• Shut-down and start-up costs

• Minimum (Pmin) and maximum power output (Pmax) for each unit

3.1.1 Optimum production of each unit during each period

With the decision variables being ∀(i, t):

• PG(i, t), the energy produced during period t by unit i

• I(i, t), the status of the unit i at period t (0 if OFF, 1 if ON)

And the linked variables being ∀(i, t):

• SD(i, t), the start-up cost of unit i at period t

• SU(i, t), the shut-down cost of unit i at period t

• Xon(i, t) being the number of period the generator i has been ON in a row until period t

• Xoff(i, t) being the number of period the generator i has been OFF in a row until period t

With ∀(i, t): {
SD(i, t) = SD(i) If I(i,t-1)=1 and I(i,t)=0
SD(i, t) = 0 Otherwise{
SU(i, t) = SU(i) If I(i,t-1)=0 and I(i,t)=1
SU(i, t) = 0 Otherwise

And {
Xon(i, t) = 0 If the unit i is Off at period t
Xon(i, t) = Xon(i, t +1)+1 If the unit i is On at period t

15
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{
Xo f f (i, t) = 0 If the unit i is On at period t
Xo f f (i, t) = Xo f f (i, t +1)+1 If the unit i is Off at period t

The objective function that we minimize is:

F =
24

∑
t=1

[
N

∑
i=1

Cq
i (P

G(i, t)) I(i, t)︸ ︷︷ ︸
Generation cost function

+
N

∑
i=1

SU(i, t)︸ ︷︷ ︸
Start up costs

+
N

∑
i=1

SD(i, t)︸ ︷︷ ︸
Shut down costs

−
N

∑
i=1

ρG(t) PG(i, t)︸ ︷︷ ︸
Income from spot market

]

(3.1)

F represents the net cost for the GENCO over a 24 hours period. We can take the summation over all
units out:

F =
T

∑
t=1

N

∑
i=1

f (i, t) (3.2)

where
f (i, t) =Cq

i (P
G(i, t)) I(i, t)+SU(i, t)+SD(i, t)−ρG(t) PG(i, t) (3.3)

Knowing Cq
i (P)=a(i)+b(i) P+c(i) P2 is the generation cost function of unit i.

This objective function f (i, t) is subject to the following constraints:

Pmin(i).I(i, t)≤ PG(i, t)≤ Pmax(i) I(i, t) Generation constraint

PG(i, t)−PG(i, t −1)≤ RU(i) Ramp up rate constraint

PG(i, t −1)−PG(i, t)≤ RD(i) Ramp down rate constraint

(3.4)

In the particular case of RD(i) > Pmin(i), the unit will need at least two periods to completely turn off.
The model does not take care of that implicitly, thus we must take care of it with the help of the constants
MDT (i) and SD(i). A similar procedure must be done to take care of the case UR(i)< Pmin(i) and MUT (i),
SU(i).

The following constraints is taken into account:

If I(i, t +1) = 1 having I(i, t) = 0 is possible only if Xon(i, t +1)≥ MUT (i)
If I(i, t +1) = 0 having I(i, t) = 1 is possible only if Xo f f (i, t +1)≥ MDT (i)

We first found the minimum of the function f ∀i, t:

PG(i, t) =
ρG(t)−b(i)

2 c(i)
(3.5)

Taking into account the constraints (3.4), we correct the value of P(i,t) with the following method:

First step: We create a binary vector Z (Which looks like [1011...]) where:

1. The first binary variable representing Pmin(i)≤ PG(i, t) when equal to 1, the opposite when equal to 0

2. The second binary variable representing PG(i, t)≤ Pmax(i) when equal to 1, the opposite when equal
to 0

3. The third binary variable representing PG(i, t)−PG(i, t − 1) ≤ RU(i) when equal to 1, the opposite
when equal to 0
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4. The fourth binary variable representing PG(i, t −1)−PG(i, t)≤ RD(i) when equal to 1, the opposite
when equal to 0

5. And so on...

Second step: After computation of the optimal PG(i, t) in (3.5), we compute the value of this vector Z
and correct the values of PG through a ”filter” as below:

PG(i, t) = Pmin(i) if Z ∈ A
PG(i, t) = Pmax(i) if Z ∈ B
PG(i, t) = PG(i, t −1)−RD(i) if Z ∈C
PG(i, t) = RU(i)+PG(i, t −1) if Z ∈ D

(3.6)

With A, B, C, D being sets of binary vectors representing possible combinations of conditions.

The constraints on MUT and MDT is managed in the dynamic programming part (see part 2.3) by
deleting the impossible combinations of variable I(i, t). At period t, those constraints are respected by
forcing the value of the optimal path at period t to the only feasible one. For each case, we have the
following table 3.1 (In this table the ”X” represents an impossible case, in the cases columns 10|1 means
I(t −1) = 1, I(t) = 0, I(t +1) = 1 and so on):

Table 3.1: Feasibility of the different combinations of states
Cases Xon(t+1) ≥MUT Xoff(t+1) ≥ MDT Xon(t+1) < MUT Xoff(t+1) < MDT
11|1 Feasible X Feasible X
11|0 X Feasible X NOT Feasible
10|1 Feasible X NOT Feasible X
10|0 X Feasible X Feasible if MDT-Xoff(t+1)=1
01|1 Feasible X Feasible if MUT-Xon(t+1)=1 X
01|0 X Feasible X NOT Feasible
00|1 Feasible X NOT Feasible X
00|0 X Feasible X Feasible

We now add the unit coupling constraints to this model.

3.2 PBUC: With unit coupling constraints

3.2.1 Description

We now add to the first model the following elements in the objective function:

• A possibility of buying power from the spot market

• A possibility of selling UP regulation spinning reserve

The new constraints that couple different units together, for each hour:

• The amount PB(t) of bilateral contract power must be fulfilled

• The sum of the GENCO production must not be greater than the forecasted load

• The sum of the GENCO reserve bids must not be greater than the forecasted reserve

3.2.2 The mathematical formulation

We define the following minimization objective function F for a 24h period:
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F =
24

∑
t=1

[
N

∑
i=1

[Cq
i (P

G(i, t)+PR(i, t))I(i, t)︸ ︷︷ ︸
Generation costs

+ SU(i, t)+SD(i, t)︸ ︷︷ ︸
Start-up and Shut-down costs

−ρR(t) PR(i, t)︸ ︷︷ ︸
Income from reserve market

−ρG(t) (PG(i, t)−PB(i, t))︸ ︷︷ ︸
Income from spot market

− ρB(t) PB(i, t)︸ ︷︷ ︸
Income from bilateral contracts

]]
(3.7)

With the added decision variables, ∀(i, t):

• PR(i, t) being the UP regulation spinning reserve for unit i at period t

• PB(i, t) being the power for unit i at period t that is going to be sold to bilateral contract. (Knowing
that ∑N

i=1 PB(i, t) = PB(t)) PB(i, t) comes from generator production or power buy on spot market or
both.

This objective function is subject to the following constraints:

∀(i, t) : Pmin(i) I(i, t)≤ PG(i, t)≤ Pmax(i) I(i, t) Generation constraint

∀(i, t) : PG(i, t)+PR(i, t)≤ Pmax(i) I(i, t) Generation constraint

∀(i, t) : 0 ≤ PR(i, t)≤ (Pmax(i)−Pmin(i)) I(i, t) Generation constraint

(3.8)

∀(i, t) : [PG(i, t −1)+PR(i, t −1)]− [PG(i, t)+PR(i, t)]≤ RD(i) Ramp down rate constraint (3.9)

∀(i, t) : [PG(i, t)+PR(i, t)]− [PG(i, t −1)+PR(i, t −1)]≤ RU(i) Ramp up rate constraint (3.10)

∀t : ∑all unit i PG(i, t)I(i, t)≤ D̄(t) Energy demand of the global system constraint (3.11)

∀t : ∑all unit i PR(i, t)I(i, t)≤ R̄(t) Reserve demand of the global system constraint (3.12)

∀t : ∑all unit i PB(i, t) = PB(t) Bilateral contracts constraint (3.13)

And the constraints on MUT and MDT (see part 3.1.1):

If I(i,t+1)=1 having I(i,t)=0 is possible only if Xon(i, t +1)≥ MUT (i)
If I(i,t+1)=0 having I(i,t)=1 is possible only if Xo f f (i, t +1)≥ MDT (i)

3.2.3 Solving the model

As previously we use dynamic programming to solve this problem. But this time, because of the unit cou-
pling constraints (3.11), (3.12) we can not solve the problem for each unit. So if we keep only using dynamic
programming, we would have a 2N stages problem. This mean that for a 20 power units’ problem, we would
have approximately 1 million of stages (i.e. possible state of the system) at each period. This would have
some serious computation time issues. We thus want to perform the dynamic programming for each unit as
previously and therefore introduce the Lagrangian relaxation of the coupling constraints.

It is interesting to notice that the constraint (3.13) is a unit coupling constraint but does not affect the
dynamic programming part as we obtain the value of PB(i, t), through an Economic Power Dispatch, before
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the dynamic programming (EPD, see lambda iteration technique 2.2).

By relaxing the constraints (3.11), (3.12) we have the following Lagrangian function:

L =
24

∑
t=1

[
N

∑
i=1

[Cq
i (P

G(i, t)+PR(i, t)) I(i, t)+SU(i, t)+SD(i, t)

−ρR(t) PR(i, t)−ρG(t) (PG(i, t)−PB(i, t))−ρB(t) PB(i, t)]]

+µR(t) (
N

∑
i=1

(PR(i, t)I(i, t))− R̄(t))︸ ︷︷ ︸
Relaxation term 1

+µG(t) (
N

∑
i=1

(PG(i, t)I(i, t))− D̄(t))︸ ︷︷ ︸
Relaxation term 2

(3.14)

As R̄(t) and D̄(t) are constants at every period t, we can remove them from Lagrangian function. How-
ever we must use the global expression for the update of the Lagrangian multipliers (see part 3.2.4).
To reduce the number of state of the dynamic programming we can solve the optimal schedule for each unit
i at period t:

l(i, t) =Ci(PG(i, t)+PR(i, t)) I(i, t)+SU(i, t)+SD(i, t)

−ρR(t) PR(i, t)−ρG(t) (PG(i, t)−PB(i, t))−ρB(t) PB(i, t)

+µR(t) PR(i, t)I(i, t)

+µG(t) PG(i, t)I(i, t)

(3.15)

We work with an iterative algorithm, so it means that for each iteration all the µ are fixed (We will see
later how to update those µ between each iteration).

To perform our dynamic programming, we need at each iteration an optimal value PR∗, PG∗ and PB∗

assuming that all the units are ON. To find those optimal values, we perform two different economic power
dispatch (EPD). To find PB∗ we use a lambda iteration technique (see 2.2). For PR∗ and PG∗ we proceed as
follow.

We first want to find the optimal PR∗ at a given iteration when the unit is ON. For that we search for the
minimum of l(i, t) in the direction of PR for all unit i and period t:

∂ l
∂PR (i, t) =µR(t)+b(i)+2c(i)(PG(i, t)+PR(i, t))−ρR(t) = 0 (3.16)

We do the same for PG∗

∂ l
∂PG (i, t) =µG(t)+b(i)+2c(i)(PG(i, t)+PR(i, t))−ρG(t) = 0 (3.17)

Where Cq
i (P) = a(i)+b(i)P+ c(i)P2 is the generation cost function of unit i.

As the system is not perfectly solvable and we are not considering the DOWN regulation market, we ap-
proximate the results in the case of ρR(t)≥ ρG(t) by:

PR∗(i, t) =
ρR(t)−b(i)−µR(t)

2c(i)
−Pmin(i) (3.18)

PG∗(i, t) =
ρG(t)−b(i)−µG(t)

2c(i)
−PR∗(i, t) (3.19)

But the results above are not necessarily respecting the constraints (3.8), (3.9), (3.10). After computing
the theoretical optimal value we set these values to the limit. For that we just give to every constraint a
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binary value equal to 0 if the constraints is not fulfilled. So we have 7 inequality constraints in the equa-
tions (3.8), (3.9), (3.10). That mean theoritically 27 = 128 possible combinations. By eliminating all the im-
possible cases we reduce the number of combinations to 31. We then fix the value of PR∗(i, t) and PG∗(i, t)
depending on the state of the constraints (Similar to the approach in equation (3.6)).

Finding the optimal value PB∗ is a bit more complex as this time the Lagrangian function is linear on PB

direction. So to dispatch the amount of bilateral contracts among the N units, we use Lambda iteration tech-
nique, with the key idea that the incremental cost of any generator must not be greater than the spot market
price. If it is, we had better buy the power on the spot market to fulfill the bilateral contracts requirements.

3.2.4 Updating the Lagrangian multipliers

After iteration of the algorithm, we update the Lagrangian multipliers with the sub-gradient method.

∀t : µR(t) = max( 0 , µR(t)−αR(t) ( ∑
all unit i

PR(i, t)− R̄(t))) (3.20)

∀t : µG(t) = max( 0 , µG(t)−αG(t) ( ∑
all unit i

PG(i, t)− D̄(t))) (3.21)

With the step size αk computed using the following heuristic rule (Suitable in our case):
In the case of αR(t) (idem for αG(t))
If GradR(t)< 0:

αR(t) = 0,002 (3.22)

Else:

αR(t) = 0,01 (3.23)

With:

• GradR(t) = ∑all unit i(PR(i, t)− R̄(t))

• GradG(t) = ∑all unit i(PG(i, t)− D̄(t))

3.2.5 Computation of the relative duality gap

To define if we have to stop the algorithm, we compare at every iteration the relative duality gap (RDG)
with a threshold predefined. The idea is:

”We know that if we find a couple x∗ and λ ∗ such that L(x∗|λ ∗) = f (x∗), x∗ is a global optimal solu-
tion to the primal problem.”

Thus the RDG is a measure of the distance between f (x) and L(x|λ ) at a given couple (x,λ ). When
RDG → 0 the algorithm can be stopped.

The relative duality gap at a given iteration is defined as:

RDG =

∣∣∣∣F(PG,PR,PB, I)−L(PG,PR,PB, I,µR,µG)

L(PG,PR,PB, I,µR,µG)

∣∣∣∣ (3.24)

The flowchart of the algorithm can be found in figure 3.1

3.3 Results

By running the program described in part 3.2 of this thesis on a 24h period, we obtain the following results.
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END
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Figure 3.1: Lagrangian relaxation and Dynamic programming algortihm
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In figure 3.2, we can see the unit commitment schedule (Solid point when the unit is ON, no point when
the unit is OFF) and the spot prices for a 24 h period. We can notice that when the spot price is low, some
units are turned OFF.
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Figure 3.2: Unit commitment schedule

In figure 3.3, we can observe the corresponding sum of energy dispatch. Pr represents the sum of energy
sold to up regulation market and Pg represents the sum of energy planned to be produced. We can notice
that the maximum generation capacity 1200MW is reached when the Spot price reach peaks (period 12 and
16). We can observe the initial condition of production at period 0 and the fact that the algorithm prefer to
sell reserve energy because it is better paid. The constraints (3.12) forces the algorithm not to sell irrealistic
amount of reserve.

To illustrate the convergence of our algorithm, we can see the plot of the relative duality gap (RDG)
in the figure 3.4. We can see that the program does converge in a few number of iterations (approximately
20 iterations). The growing RDG between iteration 0 and 3 represents the calibration of the RDG. It is
important to notice that this does not necessarily represent a convergence to the optimal solution of the
global PBUC problem. It only represents a convergence in our Lagrangian relaxation. As we are using
other optimization technics coupled with Lagrangian, this can not be a perfect proof of optimality. However,
knowing that the dynamic programming always give an optimal solution, we can be quite confident on the
optimality of the solution.

The conclusions of using LR-DynP algorithm to solve PBUC problems are:

• This algorithm is not very efficient in computation time (Computation time ≈ 2s for 45 iterations)

• This algorithm implemented is very problem specific to this PBUC formulation, changing a few
characteristics in the optimization problem and a complete re-design will be needed (Specially in the
EPD part)
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Chapter 4

Stochastic price-based unit commitment

4.1 Description

In this chapter, we introduce the parameter uncertainty into our PBUC formulation. For that we consider
that the spot price ρspot , the wind power production Pwind and system imbalance ∆P (At the system scale,
too much production ∆P > 0 or too much consumption ∆P < 0) are stochastic variables for which we know
the distribution functions. In addition, we add 2 dependent stochastic variables, i.e. the down regulation
price ρrg

down = 0.1ρspot and the up regulation price ρrg
up = 10ρspot .

Using the stochastic programming framework described in section 2.5, we formulate a stochastic PBUC
model to take into account the foregoing uncertainties. As seen in the previous chapter, using LR-DynP
algorithm may have a disadvantage in computational speed. Therefore, we will use a MILP solver from the
Xpress Optimization Suite. In order to use MILP, we have to formulate our stochastic PBUC problem in a
linear form.

4.2 FICOTMXpress Optimization Suite

FICOTMXpress Optimization Suite is a suite of software using Xpress-Optimizer and Xpress-Mosel to solve
optimization problems. Xpress-Optimizer is the optimization engine that can solve the following types of
optimization problems [5]:

• Linear programming LP

• Mixed integer linear programming MILP

• Quadratic programming QP

• Mixed integer quadratic programming MILP

• Quadratically constrained programming QCQP

• Mixed integer quadratically constrained programming MIQCQP

• Convex general non-linear programming NLP

The solver uses simplex and barrier methods, a branch-and-bound algorithm, but also heuristics methods.
Xpress-Mosel is the language used to formulate our problem. As we will see it later, it is very powerful to
solve our problem.

4.3 Assumption on the energy bids

We assume in this thesis that:

• We bid at 0 $/MWh

25
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• We are a price-taker GENCO (Our bids do not impact the electricity market price)

• We act in an electric system where the sum of all the energy bids of the price-taker GENCOs is always
negligible compared to the amount of energy selected by the market

Thus, it is reasonable to assume that all energy bids made on the different markets are accepted.

4.4 Linearizing the problem

In order to be able to use MILP technique, we need to formulate our PBUC formulation in a linear form,
both for the objective function and the constraints. In particular, quadratic cost function of generators need
to be linearized.

4.4.1 Generation costs functions

In our deterministic models, we have used a quadratic generation cost function Cq
i of the form:

∀i : Cq
i (P) = a(i)+b(i)P+ c(i)P2 (4.1)

A linearized form of (4.1) can be expressed as:

∀i : Cl
i (P) =CA(i)+CB1(i)P1 +CB2(i)P2 +CB3(i)P3 (4.2)

with the constraints:

∀(i, t) : Pmin(i)I(i, t)≤ PG1(i, t)≤ E1(i)I(i, t)

∀(i, t) : 0 ≤ PG2(i, t)≤ [E2(i)−E1(i)]I(i, t)

∀(i, t) : 0 ≤ PG3(i, t)≤ [Pmax(i)−E2(i)]I(i, t)

(4.3)

We now have PG = PG1 +PG2 +PG3.

According to the quadratic cost function, the coefficients of the linear cost function in (4.2) and (4.3)
can be determined by:

∀i : E1(i) =
[Pmax(i)−Pmin(i)]

3
+Pmin(i)

∀i : E2(i) = 2
[Pmax(i)−Pmin(i)]

3
+Pmin(i)

(4.4)

∀i : CB1(i) =
[Cq

i (E1(i))−Cq
i (Pmin(i))]

E1(i)−Pmin(i)
(4.5)

∀i : CB2(i) =
[Cq

i (E2(i))−Cq
i (E1(i))]

E2(i)−E1(i)
(4.6)

∀i : CB3(i) =
[Cq

i (Pmax(i))−Cq
i (E2(i))]

Pmax(i)−E2(i)
(4.7)

∀i : CA(i) =Cq
i (Pmin(i))−CB1(i)Pmin(i) (4.8)
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4.4.2 Particular case of linearizing a non-linear constraint

Most of the time, non-linear constraints can be formulated into several linear constraints. In our case, we
have non-linear constraints involving the product of a binary decision variable b and a real continuous
decision variable r in an inequality constraint (see constraints (4.43), (4.45), (4.47), (4.50), (4.52) and
(4.54)):

p ≤ b r (4.9)

If we suppose that the decision variable p has some upper bound U , then the non-linear inequality (4.9)
is equivalent to the two linear inequalities (4.10) and (4.11):

p ≤ r (4.10)

p ≤ b U (4.11)

4.5 Mathematical formulation

In the following part of this section, for the initial conditions we have ∀(i,ξ ):


I(i,0) = I0(i)

PG(i,0) = P0(i)
P+(i,0,ξ ) = 0
P−(i,0,ξ ) = 0


4.5.1 First-stage formulation

The main first stage decision variables are ∀(i, t):

I(i, t)
PG(i, t)
PG1(i, t)
PG2(i, t)
PG3(i, t)
Pspot(t)


The auxiliary first stage decision variables are ∀(i, t):xcstrt(i, t)

ycstrt(i, t)
zcstrt(i, t)


The auxiliary variables do not have physical meanings, but are introduced for the linear formulation of the
program.

We define the following objective function F for a 24 h period:

F =
24

∑
t=1

[
N

∑
i=1

[ f (i, t)]︸ ︷︷ ︸
Costs of the first stage decision

+ E[Q(x,ξ )]︸ ︷︷ ︸
Expectancy of the optimal solution of the second stage problem

(4.12)

With

f (i, t) = I(i, t)∗CA(i)+CB1(i)PG1(i, t)+CB2(i)PG2(i, t)+CB3(i)PG3(i, t)︸ ︷︷ ︸
Generation costs of the first stage decision

+SU(i)(I(i, t)− xcstrt(i, t))︸ ︷︷ ︸
Start up costs

+SD(i)(I(i, t −1)− xcstrt(i, t))︸ ︷︷ ︸
Shut down costs

(4.13)

This objective function will be minimized and is subject to the following constraints [9]:
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Binary constraints
∀(i, t) : xcstrt(i, t) ∈ {0,1} (4.14)

∀(i, t) : ycstrt(i, t) ∈ {0,1} (4.15)

∀(i, t) : zcstrt(i, t) ∈ {0,1} (4.16)

∀(i, t) : I(i, t) ∈ {0,1} (4.17)

Free variables
∀(t) : Pspot(t) ∈ R (4.18)

Unit generation constraints on PG

∀(i, t) : Pmin(i)I(i, t)≤ PG1(i, t)≤ E1(i) I(i, t) (4.19)

∀(i, t) : 0 ≤ PG2(i, t)≤ [E2(i)−E1(i)] I(i, t) (4.20)

∀(i, t) : 0 ≤ PG3(i, t)≤ [Pmax(i)−E2(i)] I(i, t) (4.21)

∀(i, t) : PG(i, t) = PG1(i, t)+PG2(i, t)+PG3(i, t) (4.22)

Unit start-up and shut-down constraints

∀(i, t) : xcstrt(i, t)≤ I(i, t) (4.23)

∀(i, t) : xcstrt(i, t)≤ I(i, t −1) (4.24)

∀(i, t) : xcstrt(i, t)≥ I(i, t)+ I(i, t −1)−1 (4.25)

Minimum ON and OFF time constraints

∀t ∈ [1, ...,MUT (i)−T H(i)],MUT (i)> T H(i)> 0 : I(i, t) = 1 (4.26)

∀t ∈ [2, ...,T −1],


I(i, t)− I(i, t −1)≤ I(i, t +1)
I(i, t)− I(i, t −1)≤ I(i, t +2)

...
I(i, t)− I(i, t −1)≤ I(i,min{t +MUT −1,T})

(4.27)

∀t ∈ [1, ...,MDT (i)+T H(i)],MDT (i)< T H(i)< 0 : I(i, t) = 1 (4.28)

∀t ∈ [2, ...,T −1],


I(i, t −1)− I(i, t)≤ 1− I(i, t +1)
I(i, t −1)− I(i, t)≤ 1− I(i, t +2)

...
I(i, t −1)− I(i, t)≤ 1− I(i,min{t +MUT −1,T})

(4.29)

Ramp rate constraints

∀(i, t) : 1− (I(i, t)− I(i, t −1))≤ M(1− ycstrt(i, t))} (4.30)

∀(i, t) : 1− (I(i, t −1)− I(i, t))≤ M(1− zcstrt(i, t))} (4.31)
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∀(i, t,ξ ) : PG(i, t −1)−PG(i, t)≤ max{Pmin(i),DR(i)} (4.32)

∀(i, t,ξ ) : PG(i, t)−PG(i, t −1)≤ max{Pmin(i),UR(i)} (4.33)

∀(i, t,ξ ) : PG(i, t)−PG(i, t −1)≤ Mycstrt(i, t)+UR(i)} (4.34)

∀(i, t,ξ ) : PG(i, t −1)−PG(i, t)≤ Mzcstrt(i, t)+DR(i)} (4.35)

4.5.2 Second-stage formulation

For a given set of first stage variables and a possible realization ξ , the main second stage decision variables
are ∀(i, t): 

P+(i, t,ξ )
P+

1 (i, t,ξ )
P+

2 (i, t,ξ )
P+

3 (i, t,ξ )
P−(i, t,ξ )
P−

1 (i, t,ξ )
P−

2 (i, t,ξ )
P−

3 (i, t,ξ )


And the auxiliary second-stage decision variables are ∀(i, t):(

v(t,ξ )
w(t,ξ )

)
If at the period t for a possible outcome ξ , the amount of power bids on the spot market Pspot(t) is dif-

ferent from the actual production available Pwind(t,ξ )+∑N
i=1[P

G(i, t)]−PB(t), the corrective actions must
enable the GENCO to fulfill the commitment made on the Spot market. There are two possibilities to fill the
gap between the commitment on the Spot market and the actual production available (See constraint (4.64)):

• Reschedule the GENCO’s units internally with the help of P−(i, t,ξ ) and P+(i, t,ξ ), ∀(i, t,ξ ).

• Purchase balancing power from the regulation market. ∀(t,ξ ), v(t,ξ ) represents the power that will
be balanced by the regulation marker (v(t,ξ )< 0 if the GENCO under produces and v(t,ξ )> 0 if the
GENCO over produces)

In the case we resort to the regulation market, the costs of the recourse action are described as follows:

• In the case of over production of the GENCO, the amount of surplus is sold to the regulation market
at the price ρ+(t,ξ )≤ ρspot(t,ξ ), where ρ+(t,ξ ) is defined in the constraints (4.60) and (4.61)

• In the case of under production of the GENCO, the amount of deficit is bought from the regulation
market at the price ρ−(t,ξ ) ≥ ρspot(t,ξ ), where ρ−(t,ξ ) are defined in the constraints (4.62) and
(4.63)



30 Chapter 4. Stochastic price-based unit commitment

The net imbalance costs from the regulation market is thus (E being the expectation):

∀t : E[ρ−(t,ξ )(v(t,ξ ))+−ρ+(t,ξ )(−v(t,ξ ))+] = E[Costregulation(t,ξ )] (4.36)

with:

∀(t,ξ ) : (v(t,ξ ))+ =

{
v(t,ξ ) if v(t,ξ )≥ 0
0 else.

(4.37)

So for a possible scenario ξ ,

∀(t,ξ ) : Costregulation(t,ξ ) =
{

ρ−(t,ξ )v(t,ξ ) if v(t,ξ )≥ 0
ρ+(t,ξ )v(t,ξ ) if v(t,ξ )< 0

(4.38)

As ∀(t,ξ ), ρ−(t,ξ )≥ ρ+(t,ξ ), (4.38) can be formulated as a simple optimization problem ∀(t,ξ ) :

Costregulation(t,ξ ) =minimize
w(t,ξ )∈R

w(t,ξ )

subject to w(t,ξ )≥ ρ−(t,ξ )v(t,ξ )
w(t,ξ )≥ ρ+(t,ξ )v(t,ξ )

This leads to the constraints (4.65) and (4.66) later.

The second stage objective function:

Q(x,ξ ) =
T

∑
t=1

[ w(t,ξ )︸ ︷︷ ︸
Net costs from regulation market

− ρspot(t,ξ )Pspot(t)︸ ︷︷ ︸
Income from SPOT market

+
N

∑
i=1

[CB1(i)P+
1 (i, t,ξ )+CB2(i)P+

2 (i, t,ξ )+CB3(i)P+
3 (i, t,ξ )︸ ︷︷ ︸

Costs of increasing the power production

−(CB1(i)P−
1 (i, t,ξ )+CB2(i)P−

2 (i, t,ξ )+CB3(i)P−
3 (i, t,ξ )︸ ︷︷ ︸

Income from reduction of the power production

]]]

(4.39)

This objective function is subject to the following constraints:
Free variables

∀(t,ξ ) : w(t,ξ ) ∈ R (4.40)

∀(t,ξ ) : v(t,ξ ) ∈ R (4.41)

Constraints on internal up-regulation P+

∀(i, t,ξ ) : 0 ≤ P+
1 (i, t,ξ )≤ E1(i)−PG1(i, t) (4.42)

∀(i, t,ξ ) : P+
1 (i, t,ξ )≤ MI(i, t) (4.43)

∀(i, t,ξ ) : 0 ≤ P+
2 (i, t,ξ )≤ [E2(i)−E1(i)−PG2(i, t)] (4.44)

∀(i, t,ξ ) : P+
2 (i, t,ξ )≤ MI(i, t) (4.45)

∀(i, t,ξ ) : 0 ≤ P+
3 (i, t,ξ )≤ [Pmax(i)−E2(i)−PG3(i, t)] (4.46)

∀(i, t,ξ ) : P+
3 (i, t,ξ )≤ MI(i, t) (4.47)

∀(i, t,ξ ) : P+(i, t,s) = P+
1 (i, t,ξ )+P+

2 (i, t,ξ )+P+
3 (i, t,ξ ) (4.48)
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Constraints on internal down-regulation P−

∀(i, t,ξ ) : 0 ≤ P−
1 (i, t,ξ )≤ PG1(i, t) (4.49)

∀(i, t,ξ ) : P−
1 (i, t,ξ )≤ MI(i, t) (4.50)

∀(i, t,ξ ) : 0 ≤ P−
2 (i, t,ξ )≤ PG2(i, t) (4.51)

∀(i, t,ξ ) : P−
2 (i, t,ξ )≤ MI(i, t) (4.52)

∀(i, t,ξ ) : 0 ≤ P−
3 (i, t,ξ )≤ PG3(i, t) (4.53)

∀(i, t,ξ ) : P−
3 (i, t,ξ )≤ MI(i, t) (4.54)

∀(i, t,ξ ) : P−(i, t,s) = P−
1 (i, t,ξ )+P−

2 (i, t,ξ )+P−
3 (i, t,ξ ) (4.55)

Ramp rate constraints ( [9])

∀(i, t,ξ ) : PG(i, t −1)+P+(i, t −1,ξ )−P−(i, t −1,ξ )− (PG(i, t)+P+(i, t,ξ )−P−(i, t,ξ ))
≤ max{Pmin(i),DR(i)}

(4.56)

∀(i, t,ξ ) : PG(i, t)+P+(i, t,ξ )−P−(i, t,ξ )− (PG(i, t −1)+P+(i, t −1,ξ )−P−(i, t −1,ξ ))
≤ max{Pmin(i),UR(i)}

(4.57)

∀(i, t,ξ ) : PG(i, t)+P+(i, t,ξ )−P−(i, t,ξ )− (PG(i, t −1)+P+(i, t −1,ξ )−P−(i, t −1,ξ ))
≤ My(i, t)+UR(i)}

(4.58)

∀(i, t,ξ ) : PG(i, t −1)+P+(i, t −1,ξ )−P−(i, t −1,ξ )− (PG(i, t)+P+(i, t,ξ )−P−(i, t,ξ ))
≤ Mz(i, t)+DR(i)}

(4.59)

GENCO production imbalance cases
We define:

∀(t,ξ | ∆P(t,ξ )> 0) : ρ+(t,ξ ) = ρrg
down(t,ξ ) (4.60)

∀(t,ξ | ∆P(t,ξ )≤ 0) : ρ+(t,s) = ρspot(t,ξ ) (4.61)

∀(t,ξ | ∆P(t,ξ )> 0) : ρ−(t,ξ ) = ρspot(t,ξ ) (4.62)

∀(t,ξ | ∆P(t,ξ )≤ 0) : ρ−(t,ξ ) = ρrg
up(t,ξ ) (4.63)

Regulation constraints

∀(t,ξ ) : v(t,ξ )+
N

∑
i=1

[P+(i, t,ξ )−P−(i, t,ξ )] = Pspot(t)+PB(t)−
N

∑
i=1

[PG(i, t)]−Pwind(t,ξ ) (4.64)

∀(t,ξ ) : w(t,ξ )≥ ρ−(t,ξ ).v(t,ξ ) (4.65)

∀(t,ξ ) : w(t,ξ )≥ ρ+(t,ξ ).v(t,ξ ) (4.66)
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4.6 Sample Average approximation of the objective function

By using the Sample Average Approximation technique describe in 2.5.2 with S scenarios, we thus obtain
the following objective function:

F =
24

∑
t=1

[
N

∑
i=1

[ f (i, t)]︸ ︷︷ ︸
Costs of the first stage decision

+
1
S

S

∑
s=1

[ w(t,s)︸ ︷︷ ︸
Net costs from regulation market

− ρspot(t,s)Pspot(t)︸ ︷︷ ︸
Income from SPOT market

+
N

∑
i=1

[CB1(i)P+
1 (i, t,s)+CB2(i)P+

2 (i, t,s)+CB3(i)P+
3 (i, t,s)︸ ︷︷ ︸

Costs of increasing the power production

−(CB1(i)P−
1 (i, t,s)+CB2(i)P−

2 (i, t,s)+CB3(i)P−
3 (i, t,s)︸ ︷︷ ︸

Income from reduction of the power production

]]]

(4.67)

With

f (i, t) = I(i, t)∗CA(i)+CB1(i)PG1(i, t)+CB2(i)PG2(i, t)+CB3(i)PG3(i, t)︸ ︷︷ ︸
Generation costs of the first stage decision

+SU(i)(I(i, t)− xcstrt(i, t))︸ ︷︷ ︸
Start up costs

+SD(i)(I(i, t −1)− xcstrt(i, t))︸ ︷︷ ︸
Shut down costs

(4.68)

This is the final objective function to be solved by using the MILP solver in Xpress.

4.7 Case study: 6 thermal generation units and a wind farm

4.7.1 Scenario generation of the stochastic variables scenarios

The Sample Average Approximation technique needs a set of scenarios for its random variable

ρspot(t,ξ )
Pwind(t,ξ )
∆P(t,ξ )


We thus simulate realizations of those variables as we know their distribution functions.

• ∆P(t,ξ ) is simulated as a normal distributed random variable with 0 mean and 1 standard deviation.
The value of the standard deviation does not really matter as we will just have interest in the sign of
the variable.

• ρspot(t,ξ ) is simulated normally distributed with an expected value depending on the time period (see
Table A.2) and a fixed standard deviation. The stochasticity in the Spot prices is not our main focus
in this thesis.

• Pwind(t,ξ ) is simulated normally distributed with an expected value and a standard deviation depend-
ing on the time period. We choose to study two cases of wind power system’s penetration:

– 25% of the power installed. So 400MW of wind farm in a total of 1600MW generation capacity.

– 45% of the power installed. So 981MW of wind farm in a total of 2181MW generation capacity.

In figure 4.1, we can see the performance of two different wind farms production forecasts with two
methods of error measurement (NMAE and NRMSE).

Concerning the wind farm production forecasts scenarios, we will perform different simulations, func-
tion of the assumption on the percentage of error we assume to be realist on those forecasts. We will thus
generate 2 sets of wind farm production forecasts scenarios: a forecast with the NRMSE error of the Persis-
tence model (Worst case) and a one with the NRMSE error of the advanced model (Best case). We use the
NRMSE error as it is analog to the standard deviation, and represents thus a better assumption than using
the NMAE error. Moreover we use the forecast error from 12 hours ahead, as we have to bid on the Spot
market a midday the day before delivery.
By plotting several scenarios together we obtain the following curves:
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Figure 4.1: Precision of different wind farms production forecasts [7]

• figure 4.2: an example of the Spot-price scenarios

• figure 4.3: the wind farm production forecasts scenarios with NRMSE error % of Persistence forecast
model

• figure 4.4: the wind farm production forecasts scenarios with NRMSE error % of advanced model

4.7.2 The unit commitment schedule and economic power dispatch results

First case study: Effect of wind penetration level

In the case study we compare two cases with different wind penetrations (25% and 45%).

25% wind penetration case
Figure 4.5 shows the unit commitment schedule where the solid point indicates the units that should be ON
at a given period of the next day. We can see here that the uncertainty in the wind power production forces
more units than in the deterministic case (see figure (3.2)) to be ON to potentially compensate an over or
under production of the wind farms (The stochasticity of the spot price is also important). We notice that
the loss of profits due to the use of regulation forces the company to have more power units ON to operate
a potential internal rescheduling (Most of the time cheaper than the regulation market).

The sum of the production planned is shown in figure 4.6. We notice that this planned generation is
relatively low. This come from the fact that internal rescheduling in our model is not penalized. Thus
producing X MWh cost the same if we plan directly X MWh or if we plan X

2 MWh day ahead and reschedule
by adding another X

2 MWh just before the delivery.
The energy bids that are accepted in the spot market is also provided in figure 4.7. We notice that we bid

more energy than the planned amount of energy available (We just subtract the bilateral contracts energy
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Figure 4.2: Spot price scenarios

engagement to the sum of the planned production). The algorithm is kind of anticipating the wind power
production and the possibility of internal rescheduling (Option that is not more expensive than scheduling
day-ahead in our case). We obtain the figure 4.8 by adding the realization of wind power to the planned
amount of energy available. The difference between this new curve and the energy bids curve give the
amount of energy that has to be rescheduled internally or paid to the regulation market.

For a given scenario, we observe the following curve of energy rescheduled and reserve required from
regulation market in figure 4.9 to match with the engagement of the GENCO on the SPOT market and
its bilateral contracts. When the energy rescheduled is positive it means that the GENCO underproduced
regarding its engagement. On the opposite, when the value is negative, it means that the GENCO overpro-
duced and could not sold it all. When the rescheduling capacity is not enough to enable the GENCO to meet
its engagement, the remaining energy imbalance is managed by the regulation. It is important to notice that
it will always be cheaper to reschedule inside the GENCO’s generation facilities if there is unbalance in its
engagement. However, when the imbalance is too big, and all the units of the GENCO are on their limits
(Ramp up or down rate for example) after the rescheduling, the remaining imbalance has to come from the
regulation market (The most expensive solution as long as the regulation price is not equal to the spot price).

45% wind penetration case

Figure 4.10 shows the unit commitment schedule. We notice that there is more unit ON than in the 25%
wind penetration case. This is due to the fact that a bigger part of the production facilities are subject to
uncertainty.

The energy bids that are accepted in the spot market is also provide in figure 4.12. We obtain the
figure 4.13 by adding a random realization of wind power to the planned amount of energy available. The
difference between this new curve and the energy bids curve give the amount of energy that has to be
rescheduled internally or paid to the regulation market.

For a given scenario, we observe the following curve of energy rescheduled and reserve required from
regulation market in figure 4.14 to match with the engagement of the GENCO on the SPOT market and its
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Figure 4.3: Wind farms production scenarios with NRMSE error % of a persistence forecast method

bilateral contracts. We notice here that, due to the fact that a bigger part of the GENCO’s facilities is sub-
ject to uncertainty (45% against 25% previously), more energy than previously is subject to the regulation
market. This last point is also explained by the fact that the total installed production capacity is bigger in
the 45% case than in the 25% case.

We can also notice on Table 4.1 that using wind-power in the generation facilities of the GENCO seems
to be beneficial for the GENCO. Indeed by increasing the installed capacity by ≈ 36,3% with wind farm,
we increase the net profits by ≈ 113,3%. This result can be explain by the fact that wind power in our
model does not have any generation costs. Nevertheless, the absence of fuel costs seems to compensate the
extra costs liked to the uncertainty of renewable energy power plants.

Table 4.1: Objective function values
Wind penetration in the GENCO’s system Wind power forecast model Net profits (without bilateral incomes)
25% (i.e. 400MW in a total of 1600MW) Advanced 79139,2 $
45% (i.e. 981MW in a total of 2181MW) Advanced 168841 $

Second case study: Effect of forecast model used on the GENCO’s profits

On Table 4.2, we can see the impact of the quality of the forecast on the potential income of the GENCO.
Using the most advanced forecast method enable the GENCO to increase its potential profits of ≈ 5,6%
compare to using a basic one.

Table 4.2: Objective function values
Wind penetration in the GENCO’s system Wind power forecast model Net profits (without bilateral incomes)
25% (i.e. 400MW in a total of 1600MW) Persistence 74972,1 $
25% (i.e. 400MW in a total of 1600MW) Advanced 79139,2 $
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Figure 4.4: Wind farms production scenarios with NRMSE error % of an advanced model forecast method

4.7.3 Performance of the stochastic algorithm

We can test a stochastic model on its computation time and the quality of the solution it provides.

Effect of the number of scenarios on the solution quality and on the computation speed

Here we plot the estimated gap ĝap(x̂) (This gap is in $ and can be compared with the daily net profits of
the GENCO in the 25% wind penetration and advanced forecast case) defined in 2.5.3. As shown in figure
4.15, by increasing the number of scenarios we clearly increase the confidence in our solution. However, as
shown in figure 4.16, the computation time increases drastically as the number of scenario increases.



4.7. Case study: 6 thermal generation units and a wind farm 37

0 5 10 15 20 25

0

2

4

6

24 hours scheduling period

U
ni

ts
Unit commitment schedule

Figure 4.5: Stochastic unit commitment schedule for 25% of wind penetration
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Figure 4.6: Sum of the production planned for the day ahead for 25% of wind penetration
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Figure 4.7: Energy bids on the spot market for 25% of wind penetration 1/2
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Figure 4.8: Energy bids on the spot market for 25% of wind penetration 2/2
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Figure 4.9: Energy rescheduled in a given scenario for 25% of wind penetration
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Figure 4.10: Stochastic unit commitment schedule for 45% of wind penetration
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Figure 4.11: Sum of the production planned for the day ahead for 45% of wind penetration
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Figure 4.12: Energy bids on the spot market for 45% of wind penetration 1/2
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Figure 4.13: Energy bids on the spot market for 45% of wind penetration 2/2
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Figure 4.14: Energy rescheduled in a given scenario for 45% of wind penetration
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Figure 4.15: Estimated gap

Figure 4.16: Computation time



Chapter 5

Conclusions and future work

5.1 Summaries of the work

In this thesis we have performed different PBUCs and focused on:

• Deterministic PBUC:

– Taking into account the possibility of bidding on the up regulation market (Arbitrage)

• Stochastic PBUC:

– Taking into account the uncertainty in wind farm production forecasts

– Taking into account the uncertainty in spot prices forecasts

– Taking into account the uncertainty in the power system imbalance

In the deterministic part of this thesis, we use a formal Lagrangian relaxation technique coupled with a
dynamic programming and EPD. This way of solving our optimization problem is very problem specific.
In other words, the algorithm cannot be readily used to solve a general problem.

In the stochastic part of this thesis, we use two-stage stochastic programming coupled with mixed inte-
ger linear programming, Monte Carlo and statistical methods. The uncertainty in wind farms forecasts and
spot market prices bring optimal units commitment plans way different from the deterministic program-
ming ones. It thus seems that, in our programming, stochasticity is necessary to have a theoretical optimal
solution the nearest of the real problem optimal solution.

5.2 Conclusions

In this thesis, we have analyzed several cases:

Value of reducing forecasting error

We use the standard deviation of the forecasts (The wind farms production forecasts in our test) to represent
the forecasting error. The standard deviation of the forecasts impacts significantly the possible income of the
GENCO. Thereby, enhancing the error level of those forecasts by using an advanced wind power forecast
model instead of a persistence one, lead to increased profits of nearly 5,6% in our example.

Low and high wind power penetration level

Increasing the percentage of wind farm in the GENCO’s production facilities seems to lead to increased
profits, even if it increases the costs linked to the uncertainty brought by the wind farm production (reg-
ulation costs, when the GENCO can not match its engagement). Indeed, in our example, by increasing
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the installed production capacity by ≈ 36,3% with wind farm, we increase the net profits by ≈ 113,3%.
However more studies are needed on this point to confirm our results.

Monte Carlo simulation sample size

For our Monte Carlo simulation, a minimum of 15 scenarios are necessary to have a good accuracy. The
computational time starts to be non negligible for more than 45 scenarios.

5.3 Future work

The first thing that should be developed is to create a program of scenarios selection in order to reduce the
number of scenarios needed to have a good quality solution. Indeed in our case we only use 6 units but if
we decide to perform a bigger unit commitment scheduling, the computation time become non-negligible,
we can not just increase the number of scenarios until reaching the desired confidence.

The second thing that should be done is to introduce the bidding strategy in our stochastic program.
Indeed in our program we assume that all the energy bids we made on the markets are selected, whereas
most of the time the probability of not being selected is an important factor. Moreover, we assume that the
spot price is independent of our bidding strategies. However, in most of the electricity markets, the spot
price depends on the behavior of the market participants. Thus, it is important to take into account bidding
on both reserve and spot market. For that purpose, game theory will be useful.

Finally, risk management can be introduced. Indeed maximizing profits in our case comes with an
amount of risks linked to the uncertainty in the spot and regulation prices and in the wind power produc-
tion. For that using value at risk calculation and hedging risk through future market seem necessary.
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Appendix A

Data tables

Table A.1: Feasibility of the different combination of states
Description Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

a ($) 118,82 118,11 218,34 142,73 176,06 313,91
b ($/MWh) 27,896 24,664 18,1 10,694 10,662 7,612
c ($/MWh2) 0,0143 0,0126 0,0081 0,0046 0,0014 0,0020

RD 50 50 75 100 175 200
RU 50 50 75 100 175 200
P0 0 0 0 200 350 320
I0 0 0 0 1 1 1

Pmax 50 50 150 200 350 400
Pmin 5 10 10 20 140 100
SU 0 0 50 50 500 800
SD 0 0 50 50 500 800

MUT 1 1 5 8 8 8
MDT -1 -1 -5 -8 -5 -5
TH -1 -1 -5 8 10 10

Table A.2: Expected value of the spot prices forecast
Period Expected value of the forecasted Spot prices $

1 15,74
2 11,7
3 5,99
4 4
5 7
6 18,08
7 17,98
8 20,29
9 22,6
10 25
11 28,25
12 28,4
13 26,01
14 27,32
15 28
16 33,34
17 32,12
18 28,75
19 28,51
20 25,45
21 20,45
22 12,59
23 10
24 4,5
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Table A.3: Amount of bilateral contracts
Period Amount of bilateral contracts MWh

1 300
2 223
3 114,17
4 76,24
5 133,42
6 344,6
7 342,69
8 386,72
9 430,75

10 476,49
11 538,44
12 541,3
13 495,74
14 520,71
15 533,67
16 635,45
17 612,2
18 547,97
19 543,39
20 485,07
21 389,77
22 239,96
23 190,6
24 76,24

Table A.4: Expected value of the forecast of the global consumption
Period Expected value of the forecast of the global consumtion MWh

1 1000
2 1743,33
3 1380,56
4 1254,13
5 1444,73
6 2148,67
7 2142,31
8 2289,07
9 2435,83
10 2588,31
11 2794,79
12 2804,32
13 2652,48
14 2735,71
15 2778,91
16 3118,17
17 3040,66
18 2826,56
19 2811,31
20 2616,9
21 2299,24
22 1799,87
23 1635,32
24 1254,13
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Table A.5: Expected value of the forecast of the needed reserve capacity
Period Expected value of the forecast of the needed reserve capacity MWh

1 90
2 156,9
3 124,25
4 112,87
5 130,03
6 193,38
7 192,81
8 206,02
9 219,22

10 232,95
11 251,53
12 252,39
13 238,72
14 246,21
15 250,1
16 280,64
17 273,66
18 254,39
19 253,02
20 235,52
21 206,93
22 161,99
23 147,18
24 112,87
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