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Abstract

In the digital society we rely upon our devices to both function correctly and securely.
With more and more general purpose devices these properties become increasingly dif-
ficult to assure. Traditionally hardware specific devices with dedicated usage scenarios
have been used to provide a safe environment for safety critical applications. With more
complex devices, such as smartphones, it is however very difficult to guarantee a safe
execution environment. This thesis will investigate the possibilities of hiding sensitive
information in an insecure host environment. By combining several state of the art ob-
fuscation techniques such as white-box cryptography and control flow flattening a proof
of concept implementation have been created and evaluated. Although security through
obscurity will offer far from perfect protection it can increase the cost of an attack. De-
pending on the level of security required and the types of adversaries expected it can in
some scenarios offer an acceptable protection level.





Acknowledgements

We would like to thank our supervisor Aikaterini Mitrokotsa for her support and encour-
agement throughout the thesis. We would also like to thank John Karman, our contact
person at Gemalto for his time and support. Lastly we would like to thank Petr Sturc
for his time and assistance.
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Glossary

AES Advanced Encryption Standard (AES) is a world-wide used symmetric-key en-
cryption algorithm, established by the U.S. National Institute of Standard and
Technology (NIST) in 2001. The encryption key length can either be 128, 192 or
256 bits and the block length is 128 bits.

BGE BGE is an attack against the white-box AES implementation presented by Chow
et al. The name BGE stands for the first letter of each of the authors, Billet,
Gilbert and Ech-Chatbi.

Black-box Black-box describes a system model where only the produced input and
output of a program is known to an observer.

DES Data Encryption Standard (DES) is a symmetric-key encryption algorithm, de-
veloped in the 1970s. DES is considered to be broken due to the short key length
of 56 bits.

GF Galois Field (GF) is a mathematical term of a field containing a finite number of
elements.

IDE Integrated Development Environment (IDE) is one or several programs that usually
contains a text editor, a debugger, a compiler and other tools that together aims
to provide an environment for programming.

JAD JAva Decompiler (JAD) is a tool written by Pavel Kouznetsov that transforms
compiled java class files into java source code.

JAR JAva Archive (JAR) is a package that contains one or more java class files together
with other associated data that are required in order to execute the program.

SHA Secure Hash Algorithm (SHA) is a family of cryptographic hash functions, used
as a one-way function to transform some data into an unrecognizable form.
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Glossary

White-box White-box describes a system model where all internal states of a program
is known to an observer before, after and during runtime.

XOR Exclusive Or (XOR) is a logical operation which evaluates two values and returns
false if the values are equal and true if they differ.
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1
Introduction

In the modern society digital devices have become a more and more integral part of
every day life. One can find embedded computers in almost everything. As technology
advances the demand for functionality and availability increases with it. We rely on that
these devices function correctly and securely. Traditionally, purpose specific hardware
has been used to run safety critical applications. While this creates a secure execution
environment it also comes with disadvantages such as high hardware cost and low user
flexibility. In comparison protecting the safety critical execution with software, where
the end-user would already be in possess of the required hardware, for example a smart-
phone, would not only be both cheaper and more flexible but also more convenient.
Since such hardware would need to have access to the Internet it is crucial to protect
the device from adversaries.

The goal with protecting the safety critical execution is to hinder an adversary from
retrieving sensitive information from the application. Both data, such as secret keys,
and code, such as proprietary algorithms, may be of protection needs. How secure a
system is against different attacks depends largely on the security model describing the
assumptions of the system. The conventional black-box and grey-box models are no
longer sufficient because of the assumption that the application is run on an uncompro-
mised host. Therefore, an additional, white-box model has been introduced. A short
description of the different models are given below.

In the black-box model the assumption is that an adversary can only access the in-
put/output behavior of the running program. In order to be completely secure the
adversary should not gain any knowledge of the functionality of the system with this
information. Execution in the black-box model will henceforth be known as running in
a black-box environment.

1



1.1. PROBLEM DESCRIPTION CHAPTER 1. INTRODUCTION

The grey-box model is similar to a black-box environment with the exception that the
system is leaking some kind of input dependent information, such as the execution time,
radiation or other physical characteristics. In some cases this might give enough infor-
mation about the system for a successful attack to be performed.

In contrast to the previous, rather limited, models the white-box model implies that
an adversary has complete access to the system. An adversary can read and modify any
data used by the system at any time. An adversary also has the ability to analyze the
program before, during and after execution. Analyzing the system without executing it
is called static analysis while performing a run-time analysis is called dynamic analysis.
It is important to protect the system against both types of analyses as well as making the
underlying logic incomprehensible for an adversary. Execution in the white-box model
will henceforth be known as running in a white-box environment.

1.1 Problem Description

Due to the significant advantages an adversary gains in a white-box environment the tra-
ditional protection techniques designed for a black-box environment is no longer giving
a satisfactory security. An adversary can perform reverse engineering by observing and
modifying the internals’ of the program and therefore other techniques to secure sensi-
tive information are required. Achieving the same security in a white-box environment
as in a black-box environment by obfuscation was in 2001 proven to be impossible by
Barak et al. [1] The impossibility result was based on the definition that an obfuscated
program in a white-box environment behaves as a “virtual black box”, i.e. an adversary
is not gaining any knowledge that can lead to an exploit of the program. Even though
Barak et al. [1] provided an impossibility result, obfuscation should not be discarded.
By providing a more loose definition of an obfuscated program, one can achieve “good-
enough” security. The main goal with obfuscation is to make the process of successfully
reverse engineering the program difficult enough so that the time and resources required
are not cost effective.

Collberg et al. [2] has defined a more loose definition of an obfuscated program, pre-
sented in Definition 1 below. In this paper we will use this definition when referring to
obfuscation.

Definition 1. (Obfuscating Transformation)

Let P
τ−→ P ′ be a transformation of a source program P into a target program P ′.

P
τ−→ P ′ is an obfuscating transformation, if P and P ′ have the same observable behavior.

More precisely, in order for P
τ−→ P ′ to be a legal obfuscating transformation the following

conditions must hold:

• If P fails to terminate or terminates with an error condition, then P ′ may or may
not terminate.

2



1.2. AIM AND METHOD CHAPTER 1. INTRODUCTION

• Otherwise, P ′ must terminate and produce the same output as P .

2

1.2 Aim and Method

The aim of this Master Thesis is to research how and whether it is possible to obfuscate
a source program P so that it is unprofitable for an adversary to extract the secret in-
formation. The program is considered to be unprofitable to reverse engineer if the cost
it takes to reverse engineer is greater than the potential gain. The point is to make the
reverse engineering process so tedious that the adversary give up before even finishing.
In order to make the reverse engineering process unprofitable, the obfuscate program P ′

should withstand known automatic reverse engineering tools as well as harden the man-
ual analysis of P ′. Furthermore, each instance of P ′ should differ in some way so that
the adversary have to spend additional resources for each instance of the program. By
forcing an adversary to manually reverse engineer each instance the amount of time and
resources required increases drastically compared to using an automatic tool to perform
the entire reverse engineering process alone.

To gain a better understanding of the area of obfuscation and to determine which tech-
niques to investigate further a literature review of relevant research has been conducted.
While there is relatively much information available on different obfuscation techniques
in an isolated perspective, we found that little research has been published of combining
techniques into a single solution. First we use an obfuscation technique called white-box
cryptography to implement a white-box Advanced Encryption Standard (AES) encryp-
tor which aims to hide an AES key while still maintaining encryption functionality. This
implementation acts as our source program P . We then investigate how well other ob-
fuscation techniques work together with the source program P by creating an obfuscated
version P ′. The goal of the obfuscated program P ′ is to improve the security level so that
it will be even more expensive for an adversary to extract the secret key in comparison to
P . Both the source program P and the obfuscated program P ′ will be further described
in Chapter 4.

Our work will be performed according to the following steps:

• Implement source program P .

• Identify the goal of an adversary.

• Define the knowledge-space and capability of an adversary.

• Attempt to reverse engineer P with the defined adversary knowledge capacity.

• Select obfuscation techniques that makes it more difficult for an adversary to reach
his goals.

3
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• Implement the obfuscated program P ′.

• Evaluate the total obfuscation quality of P ′.

• Attempt to reverse engineer P ′ with the defined adversary knowledge capacity.

• Compare the reverse engineering process of P ′ with the reverse engineering process
of P .

1.3 Contribution

Our contribution to the area of obfuscation is to investigate if combining several obfusca-
tion techniques hardens the reverse engineering process. Specifically, how well white-box
AES obfuscation technique works together with other existing obfuscation techniques.
We have done this by first implementing a white-box AES solution, referred to as P .
We have then continued by developing an obfuscated version of P , referred to as P ′ that
combines several other obfuscation techniques together with the white-box AES imple-
mentation. The result is a tailor-made solution that combines several state-of-the-art
obfuscation techniques into a unique solution that hardens the defense against known
white-box AES attacks. The aim is not to make the reverse engineering process impossi-
ble but instead as cost ineffective as possible, optimally to the point where an adversary
would not profit from performing an attack by reverse engineering.

1.4 Ethical and Sustainability Issues

Our research aims to explore and analyze different methods for hiding information in the
program code. Consequently the results of this study may be used for malicious intent,
for instance obfuscating and hiding unwanted behavior in program code of viruses or
malware.

Obfuscating program code almost always causes a negative impact on performance.
Compared to an unobfuscated program more time and resources for executing the same
job is required. This will increase the energy consumption and may for that reason
have a negative impact on the environment. However the environmental impact of the
increased energy consumption ought to be marginal compared to the manufacturing and
distributing of hardware.

1.5 Outline

The report begins with a chapter on obfuscation techniques which contains a general
introduction to different obfuscation techniques available. Furthermore each obfuscation
technique is described, and a short review of the state-of-the-art research is presented.
Chapter 3 contains the theory on both black-box and white-box AES. The following two

4
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next chapters describe the implementation as well as an evaluation of that implementa-
tion. Before discussion and conclusion the result from the implementation is presented.

5



2
Obfuscation Techniques

Obfuscation is used to harden reverse engineering by making the program code difficult
to analyze while keeping the same functionality. The objective of obfuscation is to make
the logic of the program incomprehensible to both humans and automated analysis tools.
There exist several different techniques, each with different level of security, some are
used to hinder static analysis while others aim to prevent dynamic analysis.

2.1 Code Obfuscation

One important obfuscation technique is code obfuscation which aims to transform a
program to a functionally equivalent one with the goal of making it more difficult for
both humans and automatic tools to understand it. Code obfuscation can range from
a primitive name scrambling transformation to a more complex transformation where
the control flow of the program is obfuscated. Collberg et al. [2] have classified code
obfuscation into four different types; 1) layout obfuscation, 2) control obfuscation, 3)
data obfuscation and 4) preventive transformations. The following sections will go into
more details about each of them.

2.1.1 Layout Obfuscation

Depending on the programming language used, different amounts of identifier informa-
tion, such as variable or argument names, will remain in the final form. This information
may help an adversary to gain understanding of the program as names are often descrip-
tive. Layout obfuscation, also known as lexical transformation, is a technique that
transforms, or scrambles, all identifiers to a non meaningful name. Layout obfuscation
is used to make it harder for humans to understand the logic of a program. In List-
ing 2.1 a short method written in Java is presented. Listing 2.2 presents the same code
after layout obfuscation has been applied. By just looking at the identifier names in the
deobfuscated code, one can easily guess what the program is supposed to do without

6



2.1. CODE OBFUSCATION CHAPTER 2. OBFUSCATION TECHNIQUES

actually running it. The logic of the obfuscated code on the other hand, is significantly
harder to understand.

Listing 2.1: Unobfuscated code

private void SendNewsletter(Template template , Recipient recipient ){

if (recipient.IsSubscribed ()){

Mail mail = GenerateMail(template );

recipient.updateSendCount ();

SendMail(mail , recipient );

}

}

Listing 2.2: Obfuscated code with lexical transformation

private void a(b c, d e){

if (e.a()){

F g = h(c);

e.a();

i(g, e);

}

}

Apart from scrambling identifier names, layout obfuscation also includes removing com-
ments from the original code as well as removing source code formatting information in
class files. Layout obfuscation is primarily applied by running an automatic tool which
is specific for each program language.

2.1.2 Control Obfuscation

In order to successfully understand a program one needs to be able to tell when and in
which order operations are executed. A valuable method used when analyzing a program
is to construct a so called control flow graph. Control flow graphs visualize all executions
paths that can be traversed in a given program, what code blocks precedes and succeeds
every other code block as well as the conditions that determine which execution path
to take next. The aim of control obfuscation is to increase the difficulty to trace the
execution flow of a program. If the adversary has trouble understanding the correct
control flow of a program, then he might also find it hard to make any meaningful
manipulations to the code.

Control Flow Flattening

Control flow flattening is a technique that can be used to make control flow analysis
more difficult. Control flow flattening uses a dispatcher node that decides what code
blocks should be executed next. When a code block is finished executing it will direct
the flow to the dispatcher node instead of passing it directly to the succeeding block. By
using this technique a control flow graph of the program will show all blocks as potential
predecessors or successors of each other.

7
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Wang et al. [3] proposed a method for flattening control flow graphs using aliased point-
ers, though no actual algorithm was presented. In 2009 László and Kiss [4] introduced
an algorithm that made use of control flow flattening, and then implemented it in C++.
Listings 2.3 below shows the original source code which is about to be flattened. List-
ings 2.4 shows the resulting code when control-flow flattening has been applied.

Listing 2.3: Source code original

i = 1;

s = 0;

while (i <= 100){

s+=i;

i++;

}

Listing 2.4: Source code flattened

int swVar = 1;

while(swVar != 0){

switch (swVar){

case 1:{

i = 1;

s = 0;

swVar = 2;

break;

}

case 2:{

if(i <=100)

swVar = 3;

else

swVar = 0;

break;

}

case 3:{

s+=i;

i++;

swVar =2;

break;

}

}

}

Cappaert et al [5] found Lászlò and Kiss implementation vulnerable since the assignment
of the swVar variable is hard-coded. An attacker can simply perform a local scan of
the code for swVar assignments in order to determine the successor block. They also
raised a concern regarding the if-else statement since the code still revealed where the
execution would branch.
To hinder a local analysis the swVar should be assigned relatively, i.e; the new value
should depend on the current value. If the current value is unknown the succeeding
block will also be unknown. However as the value of the swVar is always equal to the
current case label the value is still vulnerable to a local analysis. One solution is to use
a bijective, one-way function that operates on the swVar. While not strictly bijective,
cryptographic hash functions such as Secure Hash Algorithm (SHA) can be used for this
purpose as finding collisions is hard. The hash function will take the swVar together
with the previous hash in order to produce a new hash to be used in the switch case.
This will render a local attack impractical as the hash, determining the succeeding block,
will be based on all preceding blocks. This will force an attacker to trace the execution

8
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path from the very first block in order to find the correct hash. To complicate things
further one can also introduce bogus blocks that either never gets executed or executes
operations that doesn’t affect the end result.

Opaque Predicates

Another way to harden control flow analysis is to embed opaque predicates in the code.
A predicate is a branch with two different outcomes that is determined by a statement
that can be either true or false. The opaque property implicate that even though the
outcome is known a priori it is hard to deduce the outcome by using static program
analysis. Even though opaque predicates offers good resistance against static analysis
they are still vulnerable to dynamic analysis since an adversary can observe the outcome
during runtime.

2.1.3 Data Obfuscation

It is not only the structure of the program that needs to be obfuscated but also the
data used during computations. There exist several different kinds of data obfuscation
techniques, dependent on the data being obfuscated. Collberg et al. [2] define data ob-
fuscation as altering the storage, ordering, encoding and aggregation of the data.

Depending on the programming language used, there are some “traditional” ways to
store data, such as storing the data in variables and arrays. Memory allocation for such
variables and arrays usually is done in sequence and stored in the same memory area. In
order to obfuscate the data non traditional storage forms would be preferable. For ex-
ample, shuffling or splitting data into different memory regions and using non-standard
structures are actions that can be taken in order to reduce understandability.

Another important part to obfuscate is the data access operations, for instance the
index values in arrays. Shuffling or splitting data into different memory regions does not
do much unless the fetching operations is obfuscated as well. Consider iterating over an
array by using a for-loop as an example. When accessing the array one normally uses
the iterating variable as index for the array. This can be changed so instead of using
the iterating variable directly one can for instance use hashing algorithms together with
algebraic operations in order to produce unpredictable indexes that are hard to statically
analyze.

Apart from index values in arrays, evaluation expressions used in predicates should
also be obfuscated. Traditionally, a boolean expression, which either evaluates as either
true of false, is used to check a condition in a predicate. An example is the comparison of
two values to see if the first value is greater than second. By splitting the variables into
several separate variables, which are algebraically combined during evaluation, hardens
the understanding of the expression. For example, if i = 6 and j = 9 then the boolean
expression i > j will evaluate to False. The expression 32 * x + 7 - y / 5 * 7 -
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z, where x = 5, y = 52 and z = 155, will also evaluate to 6 and can therefore replace
i. However, this only hardens the human understanding and an automatic tool can just
evaluate the expression into 6 again. On the other hand, the hard-coded constants that
are used for comparison can be hashed in order to hide their true value. This forces the
adversary to perform a dynamic analysis rather than statically analyzing the expression.

Aggregating data is also a usable technique in data obfuscation. Structures can be
aggregated and stored in an unconventional way. An example is storing two 32-bit val-
ues in one 64-bit variable which when examined is regarded as a 64-bit value rather than
2 smaller values. Another way to aggregate data is to reorder the whole data structure.
Arrays can be split in smaller sub-arrays which forces an adversary to find all the sub-
arrays in order to retrieve the data of the original array. In the same way, several arrays
can be merged into one large array. Arrays can also be folded or flattened, which means
increasing or decreasing the dimensions of the array respectively.

2.1.4 Preventive Transformation

The previous obfuscation techniques described foremost tries to harden the understand-
ing of the underlying program logic for a human reader. The main aim of preventive
transformation on the other hand is to harden the use of known automatic deobfuscation
techniques. The goal of an automatic deobfuscation tool is to evaluate transformed code
in order to attempt to restore the original program code. However, if a deobfuscation
technique is known one can take specific measures in order to fool it. For instance,
inserting junk bytes between instructions may counter the dissembling process. Preven-
tive transformation can also be used as a compliment to other obfuscation techniques.
Reordering a for-loop to run backwards can easily be identified by an automatic deob-
fuscation tool. However, by adding a bogus data dependency inside the reversed loop
can hinder the tool to identify that the loop is reversed.

2.2 Code Encryption

When reverse engineering an adversary usually analyze the program both statically and
dynamically. In order to protect the program from static analysis the code can be stored
in an encrypted form, which means that it is unreadable unless executed. Naturally
an entry point containing a decryption routine will need to be stored in an unencrypted
form. The design of this decryption routine will affect the difficulty of a dynamic analysis.
Also, even though the decryption routine is stored in an unencrypted form it should be
obfuscated in some way to harden the reverse engineering process further. Generally, one
can identify two different types of decryption techniques, bulk decryption and on-demand
decryption, both presented below.
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2.2.1 Bulk Decryption

With bulk decryption the entire program will simply be decrypted and loaded into
memory upon start. The program will then execute the unencrypted version of the
program. This method offers very little protection as an adversary could just copy the
decrypted program from memory after the decryption routine is run. However, the
technique still requires that the adversary needs to execute the program in order to
retrieve a decrypted copy. Bulk decryption should however be used together with other
obfuscation techniques for best results.

2.2.2 On-Demand Decryption

On-demand decryption works by decrypting specific code parts only when they are
needed. The decrypted parts are loaded into memory, executed and then encrypted
again as they have already been executed. This method increases the amount of work
required to extract the decrypted code. Still, the on-demand decryption offers greater
protection than bulk decryption since only executed code is decrypted. If program ex-
ecution differs from time to time, the adversary needs to execute the program with all
possible outcomes in order to retrieve the complete decrypted program. On-demand
decryption should as well be used in complement with other obfuscation techniques for
best results.

2.3 Software Diversification

Software diversification is a method of changing the program execution so that different
instances of the same program operate differently, while still preserving the identical
functionality. The aim is to thwart a global attack, i.e. prevent an attacker from using
information gained from one program execution to attack all other programs in the same
way. By introducing software diversification in a program each instance of the program
must be attacked individually.

Software diversification is a relatively new technique mostly used to hinder software
piracy [6]. Schrittwieser and Katzenbeisser [7] presents a software diversification ap-
proach in assembler code. The solution is split into so called gadgets, which contains
some assembler instructions each. The gadgets are of varying sizes and different input
results in different execution behavior. Dependent on the input, the program executes
different paths through the program.

2.4 White-box Cryptography

In a white-box environment the regular black-box model cryptographic algorithms no
longer are applicable since they were developed with secure execution environment in
mind. These algorithms depend on the secrecy of the cryptographic key, which is easily
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acquired by an adversary in a white-box environment by just examining the program
code. Consequently, several attempts have been made to evolve regular Data Encryp-
tion Standard (DES) and Advanced Encryption Standard (AES) implementations to be
resistant to attacks in a white-box environment. The execution of both DES and AES
consists of several different operations performed in a specific order. The white-box
solutions consist of transforming those operations into a series of lookup tables. Each
operation in a white-box solution is done by fetching a value from the lookup tables.

In 2003, Chow et al. published a white-box DES implementation [8], soon followed
by an AES application [9]. Later that year Jacob et al. [10] found an attack against the
white-box DES implementation by injecting faults during execution. Improvements to
the white-box DES implementation have been proposed by Link and Neumann [11] as
well as Wyseur and Preneel [12]. In 2007 two independent cryptanalysis on the white-
box DES implementations were published by Wyseur et al. [13] and Goubin et al. [14].

The white-box AES implementation was first broken in 2005 with the so called BGE
attack presented by Billet et al. [15]. Bringer et al. [16] proposed a whole new white-box
AES implementation two years later. In 2009 Xiao and Lai [17] proposed an improve-
ment of the first white-box AES implementation proposed by Chow et al. [9] which was
resistant to the attack proposed by Billet et al. [15]. However, both the improvement
and the new implementation has been broken through cryptanalysis [18], [19].
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3
Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a symmetric block cipher used for en-
cryption and decryption of data. The original design of AES is intended for execution
in a black-box environment, i.e; the existence of secure endpoints are assumed. This
assumption is however far from always correct and an encryption standard that can re-
sist attacks in a white-box environment is desirable. This chapter will first describe the
original AES specification and then continue with explaining the modifications required
in order to obtain a white-box solution.

3.1 Black-box AES

The original AES design is specified in FIPS 197 [20] and it is based on the Rijndael
block cipher. AES operates on a fixed block size of 128 bits at a time and process the
blocks as a 4x4 byte matrix. The blocks are passed through several four-step rounds
that mixes the key together with the plaintext in order to produce a ciphertext. Before
the block processing begins the key is expanded using Rijndael’s key schedule [21]. The
key length used can either be 128, 192 or 256 bits. Depending on the key length the
number of rounds differ. This thesis will henceforth focus on AES with a key length of
128, which operates on 10 rounds.

Each round the four steps SubBytes, ShiftRows, MixColumns and AddRoundKey are
performed. Each step is described in detail below. Most of the steps are calculated in
the finite field; GF(28) [21].
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3.1.1 The SubBytes step

The SubBytes step is a non-linear byte substitution where each byte ai,j in the block is
replaced with another byte bi,j according to a predefined lookup table called the S-box,
see Figure 3.1. The S-box, defined in the Rijndael block cipher, is a 16x16 byte matrix
that contains a permutation of all possible 256 byte values. When performing a S-box
lookup the 4 leftmost bits of the byte are used as index for the row and the 4 rightmost
bits are used as index for the column. Different byte values will therefore never be
mapped to the same value. The S-box is constructed to avoid fixed points, ai,j 6= bi,j , as
well as to avoid opposite fixed points, i.e. ai,j ⊕ bi,j 6= 0xFF .

0,0a 0,1a 0,3a

2,0a

0,2a

1,0a 1,1a 1,2a 1,3a

2,1a 2,2a 2,3a

3,0a 3,1a 3,2a 3,3a

0,0b 0,1b 0,3b

2,0b

0,2b

1,0b 1,1b 1,2b 1,3b

2,1b 2,2b 2,3b

3,0b 3,1b 3,2b 3,3b

a2,2 b2,2

S-box

Figure 3.1: S-box lookup performed in the SubBytes step.

3.1.2 The ShiftRows step

The ShiftRows step is a transposition step where each row of the block are cyclically
shifted a certain number of steps. The first row is left unchanged, the second row is
shifted once, the third row is shifted twice and the fourth row is shifted three times. The
complete ShiftRows step is illustrated in Figure 3.2 below.
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Figure 3.2: The ShiftRows step

3.1.3 The MixColumns step

The MixColumns step, operates on the columns of the block. Each byte of the column
is combined together will all other bytes of the column and hence transformed into a
new value, as shown in Figure 3.3. The transformation is achieved by multiplying the
column with a pre-computed matrix, shown here.

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02


The matrix multiplication are performed in GF(28) and therefore the matrix multipli-
cation can be simplified as follows; when multiplying a value by 01 the value remains
the same, and when multiplying by 02 the value is shifted one step to the left. Multi-
plication by 03 can be implemented as shifting the value one step to the left and then
XOR-ing the result together with the original, unshifted value. Addition in GF(28) is
simply implemented as XOR.
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Figure 3.3: The MixColumns step

3.1.4 The AddRoundKey step

The AddRoundKey step combines the block and the round key. Each byte of the round
key, which has the same size as the block, is added to the corresponding byte of the
block using bitwise XOR, as shown in Figure 3.4.
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Figure 3.4: The AddRoundKey step

In each round of AES, the steps described above are performed in the order illustrated
below in Figure 3.5.

block ← plaintext
AddRoundKey(block,k0)
for r = 1 . . .9

SubBytes(block)

ShiftRows(block)

MixColumns(block)

AddRoundKey(block, kr)
SubBytes(block)

ShiftRows(block)

AddRoundKey(block, k10)
ciphertext ← block

Figure 3.5: Pseudocode of the black-box AES

17



3.2. WHITE-BOX AES CHAPTER 3. ADVANCED ENCRYPTION STANDARD

3.2 White-box AES

In contrast to the original black-box AES implementation the white-box AES implemen-
tation is based on several lookup tables. The ideal way to implement a secure white-box
AES, i.e; with no information leakage, would be to create a huge lookup table that maps
the entire plaintext to the corresponding ciphertext with respect to some key. Unfor-
tunately, such a lookup table would be completely impractical because of the massive
amount of storage space required for it. For instance, a 128-bit cipher would require
2128 · 128 bits, i.e. 4.95 · 1027 terabytes of storage space. Chow et al. [9] has presented a
more practical solution containing a number of smaller lookup tables. The specification
by Chow et. al. is designed around AES with a key length of 128 bits, so called AES-128.
However the same obfuscation techniques can be applied to AES-256 as well. The basic
idea of Chow’s white-box AES implementation is described below.

3.2.1 Rearranging the steps

Starting from the black-box AES steps, shown in Figure 3.5, the AddRoundKey step is
moved into the for-loop. Also, since in the same S-box is applied to each byte of the block
the SubBytes step followed by the ShiftRows step gives the same result as ShiftRows

step followed by the SubBytes step. The result of these changes are shown in Figure 3.6
below.

block ← plaintext
for r = 1 . . .9

AddRoundKey(block,kr−1)
ShiftRows(block)

SubBytes(block)

MixColumns(block)

AddRoundKey(block, k9)
ShiftRows(block)

SubBytes(block)

AddRoundKey(block, k10)
ciphertext ← block

Figure 3.6: Pseudocode of AES with rearranged steps

Since the ShiftRows step is a linear transformation it is possible to perform the ShiftRows
step on the round key kr−1 prior to the actual AddRoundKey step, in order to switch places
on the ShiftRows and the AddRoundKey step. The preshifted round key is here denoted
as k̂r−1, and the resulting steps are as shown in Figure 3.7 below.
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block ← plaintext
for r = 1 . . .9

ShiftRows(block)

AddRoundKey(block, k̂r−1)
SubBytes(block)

MixColumns(block)

ShiftRows(block)

AddRoundKey(block, k̂9)
SubBytes(block)

AddRoundKey(block, k10)
ciphertext ← block

Figure 3.7: Pseudocode of AES with rearranged steps and shifted key k̂r−1

3.2.2 T-boxes

Combining the S-box from the SubBytes step together with the AddRoundKey step creates
a series of sixteen so called T-boxes, denoted Ti,j

r, which are defined as follows:

T ri,j(x) = S(x⊕ k̂r−1i,j ) for i = 0, . . . ,3, j = 0, . . . ,3, r = 1, . . . ,9

T 10
i,j (x) = S(x⊕ k̂9i,j)⊕ k10i,j for i = 0, . . . ,3, j = 0, . . . ,3

where the k̂r−1 is the preshifted round key. The resulting steps are shown in Figure 3.8:

block ← plaintext
for r = 1 . . .9

ShiftRows(block)

TBoxes(block)

MixColumns(block)

ShiftRows(block)

TBoxes(block)

ciphertext ← block

Figure 3.8: Pseudocode of AES with T-boxes

3.2.3 Tyi tables

In the MixColumns step the bytes are multiplied with the MC matrix, as described in
Figure 3.9.
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02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02



x0

x1

x2

x3

 = y0 ⊕ y1 ⊕ y2 ⊕ y3

y0 = x0


02

01

01

03

 , y1 = x1


03

02

01

01

 , y2 = x2


01

03

02

01

 , y3 = x3


01

01

03

02



Figure 3.9: MixColumns multiplication

The terms on the right of the figure (denoted y0,y1,y2,y3) are each a function of an 8 bits
input. Since each yi maps 8 bits to 32 bits, they are represented as so-called Tyi tables
which are defined as follows:

Ty0(x) = x·[02 01 01 03]T

Ty1(x) = x·[03 02 01 01]T

Ty2(x) = x·[01 03 02 01]T

Ty3(x) = x·[01 01 03 02]T

The Tyi tables maps 8 bits to 32 bits and therefore the results need to be XORed back
together to 8 bits. The resulting steps are shown in Figure 3.10. All steps except the
ShiftRows are now transformed into lookup tables. The ShiftRows steps is instead
implemented by shifting the input block before the lookup table step.

block ← plaintext
for r = 1 . . .9

ShiftRows(block)

Tboxes/TyiTables(block)

XORTables(block)

ShiftRows(block)

TBoxes(block)

ciphertext ← block

Figure 3.10: Pseudocode of AES with T-boxes and Tyi tables

Up to this point, the implementation still functions as a black-box AES. In order protect
the AES implementation to withstand attacks in a white-box environment the AES im-
plementation is further modified by adding Input and output encodings, external

encodings and mixing bijections. These operations will be described in more detail
below.
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3.2.4 Mixing Bijections

Mixing bijections are invertible linear transformations, they are used in the key-dependant
lookup operations in order to achieve diffusion [22]. Without them Chow et al. showed
that it’s possible to perform a frequency analysis in order to extract the internal encod-
ings. The mixing bijections are selected uniformly at random by generating invertible
matrices in GF(2). Moreover Chow et al. recommends that, in order to maximize the
diffusion, matrices should be generated by combining several smaller matrices of full
rank. A method for doing this is described in an article by Xiao and Zhou [23].

For all rounds except the first, sixteen 8x8-bit mixing bijections are used, one for each
byte in the block. The inverses are used as input to the T-boxes in order to cancel out
the bijection from the end of the last round.
For all rounds except the last, four 32x32 bit mixing bijections that cancel each other
out are used before and after the XOR operations.

3.2.5 Encodings

In order to withstand attacks in a white-box environment all table data needs to be
encoded. If the tables were not encoded it would be easy for an adversary to learn
the contents of the tables, including the incorporated round keys in the T-boxes/Tyi
tables. The encodings used are both internal, input and output encodings, and external
encodings. Both are described below.

Input and Output Encodings

The content of the lookup tables are protected by adding encodings to every table. The
encodings adds confusion and are used in a networked fashion, meaning that the output
encoding of one table is cancelled out by the input encoding of the next table. The
encodings are simply bijections and is selected uniformly at random. Because of the
XOR, which operates over 4-bit values, the encodings are created as 4-bit chunks and
concatenated together when needed in order to form longer encodings.

External Encodings

As a last step external encodings are applied to the input and output of the entire
cipher. This will modify the implementation to instead of mapping raw plaintext to
raw ciphertext it will to map encoded plaintext to encoded ciphertext. The external
encodings are required in order to prevent an attacker, with either knowledge of the key
or decoding functionality, to to retrieve the plaintext. An adversary will not be able
to retrieve the plaintext without the knowledge the encodings therefore the encodings
should be stored on a secure remote location. Chow et al [9] suggests that the external
encodings should be 128-bit to 128-bit mixing bijections.
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3.2.6 Table-based implementation

In the white-box AES implementation by Chow et al [9], the tables are divided into
4 types; Type 1, Type 2, Type 3 and Type 4. Type 1 tables consists of the external
encodings, which are 32 4-bit encodings and are generated as shown in Figure 3.11. Type
1 tables are applied before the first round and after the last round. Type 2 tables, shown
in Figure 3.12, are applied in the first half of each round transformation. Figure 3.12
shows the round transformation for round 2, though round 3 to 9 are applied the same
way but with different mixing bijections. In round 1 the inverse mixing bijection L is not
applied, and in round 10 the mixing bijection MB is not applied. Hence, round 10 does
only contain Type 2 tables. Type 3 tables are tables which cancels the mixing bijection
MB as well as adding the mixing bijection L, and Type 4 tables consisting of simple
XOR operation, as shown in Figure 3.12.

128 x 8

4-bit 
input 
decoding

4-bit 
input 
decoding

4-bit 
input 
encoding

4-bit 
input 
encoding

4-bit 
input 
encoding

4-bit 
input 
encoding

T1

Figure 3.11: A figure of a T1 table presented by Chow et al [9]
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Shift
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2
nT

Ty0 Ty1 Ty2 Ty3
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0
nL

-1

1
nL

-1

2
nL

-1

MB MB MB

8 XOR

8 XOR

8 XOR
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XOR XOR XOR XOR XOR XORXOR XOR

XOR input XOR input

9 14 3 8 13 24 715 1210 1 6 1150

5 6 7 8 9 104 113 122 13 14 1510

Figure 3.12: Round transformation of AES in round 2, modified figure from [24].
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3.2.7 Summarization

To sum up the difference between black-box AES and white-box AES is that the steps
described in Figure 3.5 are incorporated into several lookup tables. Instead of storing the
key in memory the white-box solution utilizes multiple lookup tables that produces the
equivalent result without storing the key in memory at all. In addition the lookup tables
in the white-box solution are protected by input and output encodings, external

encodings and mixing bijections, all which are not a part of the black-box solution.
Another difference is the constraint that different keys requires different white-box AES
implementations, since the T-boxes/Tyi tables have the round keys incorporated in the
tables. A black-box AES implementation does not have this constraint.

3.2.8 BGE Attack

The paper by Billet et al. [15] presents an algebraic attack against the white-box AES
specification by Chow et al. [9]. The attack is named the BGE attack and denotes
the initials of the authors. The attack can recover the AES key in 230 computational
steps. On a very high level the BGE attack works by analyzing entire AES rounds and
interpreting them as a 32-bit to 32-bit transformations. By transforming the non-linear
parts to affine transformations in GF(2) and using algebraic analysis the round keys can
be obtained. Because of the reversibility of the AES schedule the round keys can be
used to recover the AES key. By adding additional obfuscation layers to a white-box
AES implementation the BGE attack cannot directly be applied without first reversing
the added layers. The implementation can therefore be seen as broken if the obfuscation
layers protecting the white box AES implementation are reversed. For that reason we
consider the BGE attack out of scope for this report. For more information about the
BGE attack please refer to the cryptanalysis by Billet et al. [15].
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Method

As previously stated, the aim of this Master Thesis is to investigate whether it is possible
to obfuscated a source program P so that it is unprofitable for an adversary to extract
the secret information. Our work is performed according to the following steps.

• Implement source program P .

• Identify the goal of an adversary.

• Define the knowledge-space and capability of an adversary.

• Attempt to reverse engineer P with the defined adversary knowledge capacity.

• Select obfuscation techniques that makes it more difficult for an adversary to reach
his goals.

• Implement the obfuscated program P ′.

• Evaluate the total obfuscation quality of P ′.

• Attempt to reverse engineer P ′ with the defined adversary knowledge capacity.

• Compare the reverse engineering process of P ′ with the reverse engineering process
of P .

4.1 Source Program

Our source program P , which later on is obfuscated into P ′, is a white-box AES im-
plementation. We chose AES encryption since it is widely used and AES make use of
a secret which needs protection. Further, we chose to implement a white-box AES in-
stead of a black-box AES since the obfuscated program is designed to be tested in a
white-box environment. Although all specifications of white-box AES implementations
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have been theoretically broken it is still a valuable method for drastically increasing the
work required for extracting the cryptographic key compared to a black-box AES imple-
mentation. Practical examples of broken white-box AES implementations are difficult
to find and if the implementation differs from the specification in some way the difficulty
for breaking it will be even greater.

Our white-box AES implementation is based on the specification given by Chow et
al. [9], as described in Section 3.2. The implementation is essentially a generator that
takes a key as input and generates a set of lookup tables. The tables then can be ex-
ported and later used in order to give either encryption or decryption functionality in a
stand-alone solution. A set of loops iterate over each round, column and row in order
to pass each byte through the lookup tables in a specific order. The implementation is
written in Java. The Java language was chosen because it is good for development. It
offers good debugging functionality and can be decompiled easily. This will speed up the
development process and the used obfuscation techniques are relatively easy to apply in
other syntactically similar languages.

4.2 Threat Model

Before selecting which obfuscation techniques to improve P with, a threat model of an
potential adversary needs to be determined. The goal of implementing a obfuscated
program P ′ is to harden the reverse engineering effort made by an adversary to retrieve
the secret key. In order to successfully evaluate how the implementation can withstand
reverse engineering attacks from an adversary we must define the skill level of that adver-
sary. Apart from determining the skill level, it is also vital to determine the adversary’s
goal. Yamauchi et al. [25] presents a goal-oriented approach to identify the goal and
capacity of a hypothetical adversary, which consists of the following five steps:

Step 1 Define the capability of the adversary.

Step 2 Identify an adversary’s goal.

Step 3 Conduct a goal-oriented analysis.

Step 4 For every terminal sub-goal, select obfuscation.

Step 5 Apply the selected obfuscations to the program.

Our implementation was made as an iterative process of development and evaluation.
As a result, step 3 to 5 in the list above was performed after each development round
with input from the previous evaluation round.

4.2.1 Adversary’s Capability

An adversary’s capability is a combination of knowledge and understanding as well as
the resources the adversary has access to. Yamauchi et al. [25] categorizes the capability
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of an adversary into three dimensions; knowledge, system observation and system con-
trol. The dimensions are described below.

Knowledge is the level of understanding an adversary has about the program and its
behavior.

System observation is the level of observation an adversary can perform on the pro-
gram. Depending on the level, the adversary might have access to a decompiled
version of the program. The adversary might also have a debugger with break-
point functionality used to gain more understanding of the underlying logic. With
the debugger the adversary can observe the internal states as well as the execution
trace of the program.

System control is the level of control the adversary has over the system. Depending
on the level, the adversary might have access to control the input to the program
by controlling the mouse and keyboard inputs. The adversary might also have the
ability to change instructions and memory values in any way desired, both before,
during and after execution of the program.

Both P and P ′ are designed to be run in a white-box environment where the adversary
has the ability to observe, change and alter everything. Hence, the adversary has maxi-
mum level in both the system observation and system control dimensions. The knowledge
dimension however, is highly diverse depending on the adversary. The level of knowl-
edge is a combination of the understanding about white-box AES implementations in
general, understanding of the different obfuscation techniques being used as well as the
understanding of our implementation. The level of understanding of the programming
language used is also a part of the knowledge dimension. The knowledge dimension in
our implementation can be defined as:

Ktot = KWBAES +Kobf0 ∗Kobf1 ... ∗Kobfn +Kimp +Klang (4.1)

where

• Ktot is the total level of knowledge in the knowledge dimension

• KWBAES is the understanding of white-box AES in general

• Kobfn is the understanding of the obfuscation technique n

• Kimp is the understanding of our implementation

• Klang is the understanding of the programming language being used

In P no additional obfuscation techniques are used and hence all Kobfn parameters are
set to zero. In P ′ though, the understanding of each additional obfuscation technique
are multiplied since all of the techniques are combined.
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4.2.2 Goal of the Adversary

The second step of the analysis is to define the goal of the adversary. The primary goal
of an adversary using our implementations is to retrieve the encryption key used when
encrypting or decrypting. In order to reach the primary goal the adversary might need
to reach smaller subgoals, which in turn can be divided into smaller subgoals and so on.
Yamauchi et al. [25] presents a goal tree, which is a graph over the relationship between
the primary goal and all subgoals. In order to create a goal tree the symbols shown in
Table 4.1, originally from the paper by Yamauchi et al. [25], will be used.

Root goal
The final goal of an adversary in attacking the
target system.

Intermediate goal
A sub-goal decomposed from the parent node
(root goal or an intermediate goal). An adver-
sary needs to complete intermediate goals before
achieving the root goal.

AND gate
A gate that indicates all lower goals must be
completed to achieve the higher goal.

OR gate
A gate that indicates either one or more goals
must be completed to achieve the higher goal.

Transfer in
A transfer node connected to a “transfer out”
node of other goal tree (child tree).

Transfer out
A transfer node connected to a“transfer in”node
of other goal tree (parent tree).

Table 4.1: Goal tree symbols.
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4.2.3 Reverse Engineering: Source Program

By using the goal tree symbols from Table 4.1 a goal tree has been constructed for the
white-box AES source program P , as shown in Figure 4.1 below. The primary goal of
an adversary is to retrieve the AES key. Since our source program P is a white-box
AES implementation based on the specifications by Chow et al. [9] our implementation
also is vulnerable to the BGE attack presented by Billet et al. [15]. The BGE attack
was proven to successfully extract the cipher key with a worst time complexity of 230

operations and with negligible space requirements. In order to execute a successful BGE
attack an adversary needs the input and output from one AES round. Since the BGE
attack has already been demonstrated by Billet et al. [15] we consider the implementation
broken if it is possible to retrieve input and output from one AES round. For a deeper
insight of the BGE attack we refer the reader to the original paper by Billet et al. [15]

Find input and 
output for 1 round

Run AES manually
Identify 16 times loop

Identify nestled 4 times 4 time loop

Identify 
256 32 bit 
T2 values

Identify 16 
T2 tables

Identify 16 
T3 tables

Identify 4*48 
T4 tables

Identify 
256 32 bit 
T3 values

Identify 
16*16 32 

bit T4 
values

Identify 
32 bit T2 

value

Identify 
32 bit T4 

value

Identify 
32 bit T3 

value

Perform BGE 
attack

Retrieve the 
AES key

Figure 4.1: The goal tree of white-box AES without obfuscation.

The goal tree analysis in Figure 4.1 shows that the adversary can be successful in re-
trieving input to the BGE attack in one of two ways. In order to succeed with the
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subgoals in the left branch of the tree the adversary need to analyze the code in order
to retrieve all tables and later on use those tables to manually run a specially crafted
white-box AES implementation. P only performs table lookups that are relevant to the
given input, i.e. a subset of all possible lookups, which forces the adversary to run the
application several times in order to retrieve the tables which makes this approach both
tedious and time-consuming. The other approach, as can be seen in the right branch of
the goal tree, is to statically analyze the decompiled code. The nestled loops are easily
recognizable and with knowledge of the white-box AES specification the location of the
round data handling can be identified easily. Since reaching the subgoals in the right
branch of the goal tree is considered to be the easiest way to go the reverse engineering
of P , focus has be on harden these subgoals.

Below in Listing 4.1 is a short code snippet of the source program given. As can be
seen in the code the loops for each round, column and row are easily identified without
the need of executing the program. In the most inner for loop the T2 operation is made
by fetching a value from the look up table array T2.

Listing 4.1: Code snippet of source program.

public static byte[] encrypt(byte[] in) {

...

for(int l = 0; l < len; l += 16) {

byte[] block = new byte[l]

...

for (int i = 0; i < ROUNDS; i++) {

...

for (int c = 0; c < COLUMNS; c++) {

...

for (int r = 0; r < ROWS; r++) {

int idx = shift[c * 4 + r];

result[r] = T2[i][c * 4 + r][block[idx]];

}

...

}

...

}

...

}

...

}

Retrieving the input and output of one AES round from P was rather easy. The only
effort required was to analyze the program and identify the when the next round begun.
Generating a control flow graph of the program has been proven to be a profitable
approach when performing analysis of a program. Below in Figure 4.2 a generated
control flow graph of P is shown. The control flow graph is generated by an Eclipse
plugin called Eclipse CFG Generator [26]. Besides illustrating the program complexity
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the graph can also be used as a complement to the code in order to gain a better
understanding of the underlying logic.

Figure 4.2: Generated control flow graph from the unobfuscated white-box AES imple-
mentation.
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As can be seen in Figure 4.2, the control flow of P is rather straight forward. Even
though the names of the nodes in the graph are not that descriptive it is still easy to
identify some of the underlying logic, such as for-loops. With the knowledge of how
white-box AES is constructed, our adversary could easily identify the points where the
table lookups are performed just by looking at the control flow graph. With help from
the control flow graph, it is easy to identify where a new round begins in the code, shown
in Listing 4.1. Simply adding a printout to the code at the end of the for-loop of a round
was the only effort required to retrieve the input and output of one round. Hence, the
effort to reverse engineer the source program can be considered as low.

4.3 Implementation Process

The implementation of P ′ has been developed in an iterative process, with the following
steps:

• Identify a ‘weak point’ in the program which simplifies the reverse engineer process.

• Find an obfuscation technique that hardens the reverse engineering of the found
weak point.

• Add the obfuscation technique to the implementation.

• Reverse engineer the improved implementation.

The reverse engineering process has been done in parallel with the continuous implemen-
tation of P ′. After each iteration of the implementation, an attempt to reverse engineer
the improved implementation was made. Hence, both the implementation choices and
the reverse engineering process is described below.

The obfuscated program P ′ is an implementation that combines white-box AES with
several traditional obfuscation techniques. The traditional obfuscation techniques pro-
vide an additional layer of protection that protects the white-box AES data tables. The
obfuscation techniques are not limited to any specific white-box AES implementation and
should work, with little or no modification, together with any white-box AES implemen-
tation. Together the obfuscation techniques in P ′ aims to provide AES-128 encryption
functionality without revealing the key nor giving the ability to decrypt any data. Even
though the implementation is written in Java the methods used can be applied to most
syntactically similar languages.

The organized way of storing and applying the lookup tables in a plain white-box AES
implementation make it relatively easy for an adversary to extract data needed in order
to perform an attack such as the BGE attack [15]. To hinder the extraction of such data
we have created a generator that takes white-box AES table data as input and outputs
an obfuscated version of the otherwise plain implementation. This section will describe
how different obfuscation techniques were used in order to achieve this.
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4.3.1 Reverse Engineering Process

In order to test how well the obfuscated program P ′ withstands adversaries, we created
an automatic tool to reverse engineer the implementation, hereby called round data ex-
tractor (RDE). The implementation process of the RDE tool was done in an iterative
manner, hence different versions; RDE-1, RDE-2, RDE-3 and RDE-4. All versions of
the RDE tool was implemented by parsing the source code of P ′ in order to identify the
various operations. This was done by modifying the source code to output the current
state at different points of interest. The modified program was then executed and the
state information was used to extract the round data. Since P is a white-box AES
implementation then P ′ is considered broken if it is possible to retrieve the input and
output on one round which is needed to launch a BGE attack [15].

P ′ is written in Java, thus the code is compiled and packaged into a jar file. In or-
der to retrieve the source files the jar file needed to be decompiled. For that purpose,
the Java decompiler JAD [27] was used. JAD runs through the command prompt and
expects a jar file as input. It interprets the Java byte-code and outputs Java source code
that are functionally equivalent to the original source. The decompiled source files was
then imported into the Java IDE Eclipse. [28]. During the reverse engineering process
the Eclipse debugger was used as aid to analyze the code.

Defining Our Adversary

After each iteration of the implementation an attempt to reverse engineer that imple-
mentation is being performed. In order to fully evaluate how hard the reverse engineering
process is we need to define the knowledge and abilities of the adversary making these
reverse engineering attempts - our adversary. As presented in Section 4.2.1 an adver-
sary’s capability is highly dependent on its knowledge level . Equation 4.1 presents all
parameters that results in the total knowledge of an adversary. Since we reverse engi-
neered our own code, all Kobfn as well as the Kimp parameter and can be considered
to be extremely high. Also, since our source program is a functioning white-box AES
implementation the parameter KWBAES can be considered to be high as well. The last
parameter, Klang, might not be as high as the other parameters but it is still considered
to be quiet high. Hence, the total knowledge domain of our adversary is considered to be
exceedingly high. Considering that we reverse engineered our own code, our adversary
most likely has a significantly higher insight in the underlying logic compared to any
other adversary. Therefore, the knowledge of our adversary is considered to be much
higher than an adversary who has never seen the code before.

One other important aspect to keep in mind is that our adversary has the advantage of
performing the reverse engineering in iterations. Which means that all knowledge from
previous iterations can be used in the next iteration. This is also an advantage that any
other adversary would not have.

33



4.3. IMPLEMENTATION PROCESS CHAPTER 4. METHOD

4.3.2 Control Flow Flattening

The analysis of the adversary’s goal, represented by a goal tree shown in Figure 4.1,
demonstrates that P is vulnerable to both static and dynamic analysis. When perform-
ing analysis of a program, generating a control flow graph of the program has been
proven to be a profitable approach. The reverse engineering of P showed that it was
very easy to identify the for loops with the help of a control flow graph. Hence, the
control flow of the program is the weakest point of P . According to our literal research
we evaluate that the control flow flattening obfuscation technique is the best obfuscation
technique against constructing control flow graphs, which is an important step in static
analysis. Also, control flow flattening can harden the underlying logic of the program
and hence indirectly harden the dynamic analysis as well. Therefore, we choose control
flow flattening to be implemented in the first iteration of the obfuscated program P ′.

In our implementation, the control flow flattening technique, as described in Chapter 2,
is applied to the set of loops that control the lookup operations. For each loop, the
lookup values are extracted and stored as separate methods. The methods are stored in
a randomized order and are called in the correct order by a dispatcher node during ex-
ecution. In addition to performing the lookup operations, each method will modify two
global variables that together are used to calculate a random hash value. The random
hash value is used by the dispatcher node in order to decide what method to execute
next. This means that by just looking at one specific method there is no way to tell
which method will execute next. In order to get the general structure of how the obfus-
cation technique altered the behavior of the program, a short example is presented in
Listing 4.2 below. The pseudo code is merely an illustrative example which will be used
to illustrate how the program changes over the iterations. It is not vital for the reader
to understand the complete logic of the code, and hence only a brief explanation will be
given.

The swVar variable is the dispatcher node, and the variables h and s together with
the current dispatcher node is hashed together to determine which next case statement
that will be executed. It is important to note that the hash is calculated of the value
of the variables and not the name of them. The reason why the case value are so large
is because they are in fact hash values calculated in previous case statements. In each
case statement one table lookup is performed, for example T2, and stored in the block

variable. The block variable is 16 bytes large represented by a 2x2 matrix and hence
ranges from [0][0] to [3][3]. The table lookups are also matrices with various lengths.
The T2 and T3 operations has three matrix levels which corresponds to round, columns
and byte. To simplify the byte is in the example represented by x. The value of x is
in P ′ represented as an integer. The T4 operation on the other hand, has four matrix
levels since it is an XOR operation between two bytes. In order to simplify one of the
bytes are represented as a number and the other one as x. The four matrix levels are;
current row, which of the XOR operation in the XOR chain that should execute, and
lastly the two byte that should be XOR:ed with each other.
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Listing 4.2: An pseudo code example of P ′ after adding the
control flow flattening technique.

switch swVar

case -2090260694 :

block [2][1] = T2Table [5][3][x];

h-=17; s*=32; swVar = hash(swVar ,h,s);

case 1245918113 :

block [3][0] = T4Table [3][13][57][x];

h*=4; s-=1; swVar = hash(swVar ,h,s);

case 8329260 :

block [0][2] = T3Table [2][7][x];

h-=6; s/=17; swVar = hash(swVar ,h,s);

case -202756108 :

block [3][2] = T4Table [1][32][9][x];

h+=50; s*=3; swVar = hash(swVar ,h,s);

...

case 268264046 :

block [3][3] = T2Table [5][15][x];

h/=3; s-=7; swVar = hash(swVar ,h,s);

case -1819546496 :

return block;

case 742416915 :

block [1][3] = T4Table [0][27][30][x];

h-=10; s+=43; swVar = hash(swVar ,h,s);

case 561877267 :

block [0][0] = T3Table [6][9][x];

h/=7; s*=6; swVar = hash(swVar ,h,s);

case 1557566154 :

block [2][2] = T4Table [2][39][110][x];

h-=0; s+=14; swVar = hash(swVar ,h,s);

case 804012105 :

block [0][1] = T2Table [3][15][x];

h*=5; s -=189; swVar = hash(swVar ,h,s);

Compared to the code snippet of P , shown in Listings 4.1 under Section 4.2.3, there is
no longer any signs of loops in the implementation which was the ultimate goal with
adding control flow flattening. The example above also illustrates that fact that by just
looking at the swVar variable it is not possible to determine which case statement that
will be executed next.

4.3.3 Reverse Engineering: Control Flow Flattening

The first iteration of the P ′ implementation included the control flow flattening obfus-
cation technique. The technique flattens the control flow of the program and it is no
longer possible to get any useful information from a generated control flow graph. The
generated control flow graph, shown in Figure 4.3, no longer reveals any underlying logic.
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Figure 4.3: Generated control flow graph from the control flow flattened implementation.
The figure is meant to illustrate that a control flow graph of a control flow flattened program
is essentially useless.

Even though the control flow of the program no longer consists of for-loops it is still
rather easy to identify the table lookups when analyzing the code. This because lookup
tables are stored together in arrays which are easily identified. This issue is well illus-
trated in the example presented in Listings 4.2. As can be seen in the example, the T2,
T3 and T4 tables are stored as multidimensional arrays. By dynamically analyzing the
flow of the program during execution the actual lookup can be determined when the
arrays containing the lookup tables are accessed. By using a debugger little effort was
required to extract the input and output of one AES round. Hence it was possible for
our adversary to get the correct data without implementing any tool.

Adding the control flow flattening obfuscation technique altered the subgoal of the ad-
versary a bit. This is illustrated by redefining the goal tree, shown in Figure 4.4. Only
the right branch of the goal tree has changed, and as showed the adversary no longer can
identify the rounds by finding for loops. The weak point of the implementation is still the
right branch of the goal tree, since the adversary can statically and dynamically analyze
the code. Control flow flattening did however hinder the adversary from generating a
control flow graph which is a good aid when analyzing code.
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Figure 4.4: The goal tree of P ′ with control flow obfuscation
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4.3.4 Data Obfuscation I

The reverse engineering of P ′ with just the control flow flattening obfuscation technique
was proven not to be sufficient enough. To hinder an adversary from just reading the
lookups when the lookup tables are accessed this data needs to be stored in uncon-
ventional ways. The next obfuscation technique to be implemented is data obfuscation
where the ordering of data will be transformed.

Normally the lookup tables are stored as multidimensional maps, typically organized
after round, column and row. Each of these tables contain a final table that maps input
values to different output values. Instead of storing these tables as multidimensional
maps it is possible to split them up and put them into separate methods. However,
the most inner table is operating on the program input rather than the state and can
therefore not be transformed into separate methods.

Listings 4.3 below shows the same example as presented in Listings 4.2. There is not
much difference between the two except that instead of performing table lookups on mul-
tidimensional arrays, each look up is now performed in its own method. As previously
stated the most inner table is operation on the program input rather than the state, each
method will take a input value as argument. In the example below each method takes
a byte x as input and outputs the correct operation on the given byte. This means that
inside each method there is a lookup based on 128 different values. This is considered
a flaw but it is not possible to work around. The focus lies instead on trying to harden
the understanding so that the adversary has trouble reaching this conclusion.
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Listing 4.3: An pseudo code example of P ′ after the first data
obfuscation technique was added.

switch swVar

case -2090260694 :

block [2][1] = ApplyT2Table_5_3(x);

h-=17; s*=32; swVar = hash(swVar ,h,s);

case 1245918113 :

block [3][0] = ApplyT4Table_3_13_57(x);

h*=4; s-=1; swVar = hash(swVar ,h,s);

case 8329260 :

block [0][2] = ApplyT3Table_2_7(x);

h-=6; s/=17; swVar = hash(swVar ,h,s);

case -202756108 :

block [3][2] = ApplyT4Table_1_32_9(x);

h+=50; s*=3; swVar = hash(swVar ,h,s);

...

case 268264046 :

block [3][3] = ApplyT2Table_5_15(x);

h/=3; s-=7; swVar = hash(swVar ,h,s);

case -1819546496 :

return block;

case 742416915 :

block [1][3] = ApplyT4Table_0_27_30(x);

h-=10; s+=43; swVar = hash(swVar ,h,s);

case 561877267 :

block [0][0] = ApplyT3Table_6_9(x);

h/=7; s*=6; swVar = hash(swVar ,h,s);

case 1557566154 :

block [2][2] = ApplyT4Table_2_39_110(x);

h-=0; s+=14; swVar = hash(swVar ,h,s);

case 804012105 :

block [0][1] = ApplyT2Table_3_15(x);

h*=5; s -=189; swVar = hash(swVar ,h,s);

4.3.5 Reverse Engineering: Data Obfuscation I

Changing so that the lookup tables no longer are stored in arrays is proven to be a good
method to confuse the adversary. Still, one major problem with the implementation
is that the names of the variables and methods are still revealing much information.
Usually for program variables a descriptive name is used to help the programmer to be
able to identify the underlying logic without execution. However, the descriptive names
also helps the adversary in understanding the code. So even though the control flow
is altered and the data is stored separately, the descriptive names helps to keep track
of what is being executed when using a debugger. For example, in Listings 4.3 above,
the method name ApplyT2Table_5_3 suggests that the operation is of type T2 in round
5, column 3. By debugging the relevant methods it was possible to get the input and
output of one AES round, thus the effort to reverse engineer P ′ at this stage was by our

39



4.3. IMPLEMENTATION PROCESS CHAPTER 4. METHOD

adversary considered to be rather low. Again, since it was easy to reverse engineer with
just a debugger no tool was developed.

Altering the storage of the lookup tables is not affecting the adversaries goals, hence
the goal tree is unchanged. This because the data obfuscation technique only alters the
understanding of the program, rather than actually altering the behavior of the pro-
gram. The adversary still needs to identify the various operations, though adding data
obfuscation has made that a bit harder than in previous iteration.

4.3.6 Layout Obfuscation

As previously stated, an adversary can make use of descriptive identifier names so nat-
urally the next obfuscation technique to implement is the layout obfuscation technique
where all identifiers are scrambled. Layout obfuscation also refers to removing com-
ments. However, removing comments is not needed because the Java compiler already
removes them during compilation.

All identifiers need to be named so they don’t leak any information on what their pur-
pose is. In our implementation the variables are simply given non-descriptive names and
for the methods random strings are generated. The real method names are then mapped
to the generated strings and replaced in the implementation. The randomly generated
strings are different for each instance and each instance will also have different ordering
of all method calls and declarations.

Below in Listings 4.4 the pseudocode example is presented with all named scrambled.
As can be seen it is impossible to guess which method that performs which operation,
compared to the descriptive names shown in Listings 4.3.
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Listing 4.4: An pseudo code example of P ′ after the layout
obfuscation technique was added.

switch Zcx

case -2090260694 :

jsZ [2][1] = UWD5y5ue(x);

s-=17; h*=32; Zcx = hash(Zcx ,s,h);

case 1245918113 :

jsZ [3][0] = y9FKSQKg(x);

s*=4; h-=1; Zcx = hash(Zcx ,s,h);

case 8329260 :

jsZ [0][2] = MB9c84SX(x);

s-=6; h/=17; Zcx = hash(Zcx ,s,h);

case -202756108 :

jsZ [3][2] = rFuZkgnU(x);

s+=50; h*=3; Zcx = hash(Zcx ,s,h);

...

case 268264046 :

jsZ [3][3] = UpRE9c6k(x);

s/=3; h-=7; Zcx = hash(Zcx ,s,h);

case -1819546496 :

return jsZ;

case 742416915 :

jsZ [1][3] = NssnGrGp(x);

s-=10; h+=43; Zcx = hash(Zcx ,s,h);

case 561877267 :

jsZ [0][0] = n6aCnTBB(x);

s/=7; h*=6; Zcx = hash(Zcx ,s,h);

case 1557566154 :

jsZ [2][2] = cSQS3b6j(x);

s-=0; h+=14; Zcx = hash(Zcx ,s,h);

case 804012105 :

jsZ [0][1] = wrpJT3Ph(x);

s*=5; h -=189; Zcx = hash(Zcx ,s,h);

4.3.7 Reverse Engineering: Layout Obfuscation

The level of effort required in the reverse engineering process really increased during this
iteration. Any previous analysis of the code did not give much knowledge on how to
reverse engineer the implementation this time and it was no longer possible to reverse
engineer just by using a debugger. As can be seen in the examples shown in Listings 4.4
and Listings 4.3 the method name ApplyT2Table_5_3 was scrambled to UWD5y5ue. Our
adversary did not have the luxury of having to identical implementations where one
was scrambled and one was not as in the examples. Hence, another way than just an-
alyzing the code was needed to reverse engineer P ′ at this iteration. After thorough
debugging of the program flow, a pattern was identified. The found pattern made out
the order of which each operation was executed as well as where the result was stored.
Once these key parts were identified it was rather easy to create the first version of
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the RDE, RDE-1, which kept track on which operations had been executed. Once all
operations from one round had been executed the value currently in memory was the
output of said round. Since previous reverse engineering processes has been done man-
ually by using a debugger the effort no longer is considered to be low but rather medium.

Even though this iteration raised the bar for the adversary the goal tree is still unchanged.
Once again, the obfuscation technique being added only altered the understanding of the
program.

4.3.8 Data Obfuscation II

In the previous iteration, the easiest way to reverse engineer the implementation was to
keep track of which order the operations were executed. Although the control flow has
been altered and the data storage been randomized the first method that was executed
correspond to the first lookup operation. To harden the identification of which opera-
tion that is executed all operations that does not depend on each other will be run in a
randomized order. This forces the adversary to keep track of more data simultaneously
as well as forcing the adversary to identifying which operation that is executed each time.

Another problem arisen from the previous reverse engineering iteration is the storage
of intermediate results. Intermediate results from each operation have to be stored
somewhere. Normally when a byte is being processed the result will overwrite the old
value and therefore corresponding sub-results will be stored in a fixed memory space. An
attacker could monitor this memory area and extract data of interest. To hinder this all
sub-results will be stored in an unstructured fashion. The current executing method de-
termines where the data should be fetched from and stored to in the succeeding method.

In the example below, shown in Listings 4.5, the second data obfuscation technique
was added to P ′ and has altered the program further. Each method is extended to also
return the values of i and j which determines where the next intermediate result will be
stored. Apart from this change, the variables s and h has changed values to illustrate the
random execution order of operations, compare to the previous example in Listings 4.4.
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Listing 4.5: An pseudo code example of P ′ after the second
data obfuscation technique was added.

switch Zcx

case -2090260694 :

jsZ[i][j], i, j = UWD5y5ue(x);

s+=42; h+=1; Zcx = hash(Zcx ,s,h);

case 1245918113 :

jsZ[j][i], i, j = y9FKSQKg(x);

s*=18; h/=84; Zcx = hash(Zcx ,s,h);

case 8329260 :

jsZ[j][i], i, j = MB9c84SX(x);

s -=109; h/=57; Zcx = hash(Zcx ,s,h);

case -202756108 :

jsZ[i][j], i, j = rFuZkgnU(x);

s/=22; h*=4; Zcx = hash(Zcx ,s,h);

...

case 268264046 :

jsZ[i][j], i, j = UpRE9c6k(x);

s+=19; h-=5; Zcx = hash(Zcx ,s,h);

case -1819546496 :

return jsZ;

case 742416915 :

jsZ[j][i], i, j = NssnGrGp(x);

s/=76; h+=13; Zcx = hash(Zcx ,s,h);

case 561877267 :

jsZ[i][j], i, j = n6aCnTBB(x);

s-=90; h*=5; Zcx = hash(Zcx ,s,h);

case 1557566154 :

jsZ[i][j], i, j = cSQS3b6j(x);

s*=10; h+=3; Zcx = hash(Zcx ,s,h);

case 804012105 :

jsZ[j][i], i, j = wrpJT3Ph(x);

s*=52; h-=6; Zcx = hash(Zcx ,s,h);

4.3.9 Reverse Engineering: Data Obfuscation II

Once again the effort required to reverse engineer the implementation has risen. The
development of RDE-1 was based on the assumption that all operations executed in
a specific order. Also, some assumption was made regarding where in the program
the results, both intermediate and final, was stored. Since these assumption no longer
were valid, RDE-1 no longer functioned as expected. Also, as shown in Listings 4.5 the
lookup methods returned values which determined where to store the next calculated
result. Since this was not the case when developing RDE-1 the tool did not work at
all. So even though an automatic tool already had been implemented adding data
obfuscation techniques hardened the reverse engineering process quite a lot. A new
analysis of the program behavior had to be done to identify new patterns. The RDE
was developed into RDE-2 which helped a lot to keep track on the unconventional storage
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of the results. Also, RDE-2 could keep track on which operations that succeeded each
other and therefore bypass the randomized execution order of operations. The required
effort to retrieve the input and output of one AES round was by our adversary considered
to be some where between medium and hard, but the possibility to retrieve the data
needed for a BGE attack [15] is still considered to be relatively easy. Once again the
goals of the adversary has not been changed, even though it is now somewhat more hard
to achieve. However, if the adversary did not have any prior knowledge of the program
then it might have been harder to reverse engineer.

4.3.10 Bogus Operations

With knowledge of the exact operations that are performed in an white-box AES im-
plementation an attacker could compare the the executed operations to the operations
that should be executed according to the specification. By doing this an attacker could
identify when operations of interest occur and extract data from them. To counter this,
bogus operations is inserted in the implementation. Bogus operations look and behave
exactly like real operations, the result from the bogus operations will be stored in the
same way as real operations and may also later be used as input for other bogus opera-
tions. The bogus operations will however not have an affect on the computation of the
final result. The bogus operations are chosen and inserted randomly for each instance.
This means that no two instances will perform the same operations. In our implementa-
tion the majority of operations are bogus operations to harden the identification of real
operations. Also, the bogus operations are run in such a way that removing them from
the program would break the flow of the program and the program would stop function-
ing. As illustrated in the example below, shown in Listings 4.6, there is no apparent
difference between real and bogus operations. In the example additional comments has
been added to show the reader which operations that in fact is bogus. There are no such
comments in the original code. Another aspect is also that P ′ has a majority of bogus
operations but in the example below only a few was added. To be a complete repre-
sentation of the code, the example should have at least a dozen more bogus operations.
These are however emitted to shorten the example since the point was only to show that
it is not possible to distinguish between real and bogus operations without executing the
code.
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Listing 4.6: An pseudo code example of P ′ after the bogus
operations was added.

switch Zcx

case -2090260694 :

jsZ[i][j], i, j = UWD5y5ue(x);

s+=42; h+=1; Zcx = hash(Zcx ,s,h);

case 1267505648 :

jsZ[i][j], i, j = jbK3M4RZ(x); // Bogus

s+=62; h-=10; Zcx = hash(Zcx ,s,h);

case 1245918113 :

jsZ[j][i], i, j = y9FKSQKg(x);

s*=18; h/=84; Zcx = hash(Zcx ,s,h);

case 8329260 :

jsZ[j][i], i, j = MB9c84SX(x);

s -=109; h/=57; Zcx = hash(Zcx ,s,h);

case -50017354 :

jsZ[j][i], i, j = UupCHU9K(x); // Bogus

s*=14; h-=2; Zcx = hash(Zcx ,s,h);

case -202756108 :

jsZ[i][j], i, j = rFuZkgnU(x);

s/=22; h*=4; Zcx = hash(Zcx ,s,h);

...

case 268264046 :

jsZ[i][j], i, j = UpRE9c6k(x);

s+=19; h-=5; Zcx = hash(Zcx ,s,h);

case -1819546496 :

return jsZ;

case 742416915 :

jsZ[j][i], i, j = NssnGrGp(x);

s/=76; h+=13; Zcx = hash(Zcx ,s,h);

case 561877267 :

jsZ[i][j], i, j = n6aCnTBB(x);

s-=90; h*=5; Zcx = hash(Zcx ,s,h);

case 856817361 :

jsZ[j][i], i, j = jbK3M4RZ(x); // Bogus

s+=1; h/=79; Zcx = hash(Zcx ,s,h);

case 1893017956 :

jsZ[j][i], i, j = F8vzzbxJ(x); // Bogus

s-=24; h+=31; Zcx = hash(Zcx ,s,h);

case 1557566154 :

jsZ[i][j], i, j = cSQS3b6j(x);

s*=10; h+=3; Zcx = hash(Zcx ,s,h);

case 804012105 :

jsZ[j][i], i, j = wrpJT3Ph(x);

s*=52; h-=6; Zcx = hash(Zcx ,s,h);

4.3.11 Reverse Engineering: Bogus Operations

During this reverse engineering process it was vital to keep track of which operations
that was real and which one that was not. The definition of a real operation is that a
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real operation affects the outcome of the final result in round 10, i.e. the value had an
impact at the whole encryption.

RDE-2 was developed to during run-time keep track on where the execution were in
the program flow, i.e. which round was executed. The first attempt for RDE-3 was to
just develop RDE-2 further to keep track only of the real operations. However, since
the bogus operations behave exactly like real operations, with the only difference that
they do not affect the end result, it was really hard to distinguish between real and
bogus operations. Hence, the first attempt of RDE-3 identified several so called false
positives, i.e. identified bogus operations as real. It was hard to implement RDE-3 to
discard bogus operations since they were hard to identify due to their real behavior. So
when it was hard for our adversary to distinguish between real and bogus operations, as
illustrated in the example in Listings 4.6 above, it was nearly impossible to try to ’learn’
the RDE to see the difference. Some obvious bogus operations could however sometimes
be identified. For example, a T2 result used as input to another T2 operation. This is an
obvious bogus operation since a T2 operation is followed by an XOR, or T4, operation, as
is illustrated in 3.12. Removing such obvious bogus operations from the code also proved
to be a bad approach as the control flow is dependent on that all methods, including
bogus ones, are executed in the right order for the program to function correctly. After
several attempts to fix the first version of RDE-3 the whole idea of keeping track of the
operations as they run was discarded. Instead, a new idea was used when developing
RDE-3. In the worst-case scenario the bogus operations would perform the exactly same
operations as the real through out all rounds. In that case, the only way to identify the
real operations is to observe which results that are being used when returning the out-
put. The operation that was made right before saving the end result is by definition
a real operation, and so is the operation that happened before that one. Hence, new
attempt for RDE-3 was to keep track of the operations in the reverse way. Therefore
by beginning to track the operations backwards, from the values returned as output to
the values used as input while still keeping track on the operations executed the final
version of RDE-3 could successfully identify the input and output of all rounds. Even
though it was possible to successfully reverse engineer this iteration the effort for reverse
engineering was by our advanced adversary considered to be exceedingly high.

Since this iteration altered the logic of the program the adversary’s goal shifted and
a new goal tree was drawn, shown in Figure 4.5. The only addition to the previous goal
tree is that the branch of identifying bogus operations was added.
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Figure 4.5: The goal tree of P’ after adding bogus operations

4.3.12 Memory Shuffling

The last functionality added was memory shuffler. In arbitrary parts of the program
operations were added that would swap two random elements in the intermediate result
memory structure. This means that values that may be required for the next operation
would now have been swapped with another one. This should cause further confusion as
an adversary would have to keep track of the memory swap operations and immediately
take it into consideration as the next operation may be dependent on it.

There is not much difference between the example shown below, Listings 4.7 and the
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previous example in Listings 4.6. Below there are a few more case statements where the
internal structure of the intermediate results stored in the array jsZ. Since the array is
shuffled based on values in the array the adversary must execute the program to know
which values that are shuffled.
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Listing 4.7: An pseudo code example of P ′ after memory
shuffling was added.

switch Zcx

case -2090260694 :

jsZ[i][j], i, j = UWD5y5ue(x);

s+=42; h+=1; Zcx = hash(Zcx ,s,h);

case 1540322536 :

jsZ[i][j] = jsZ[jsZ[i -82]][ jsZ[j+5]];

case 1267505648 :

jsZ[i][j], i, j = jbK3M4RZ(x); // Bogus

s+=62; h-=10; Zcx = hash(Zcx ,s,h);

case 1245918113 :

jsZ[j][i], i, j = y9FKSQKg(x);

s*=18; h/=84; Zcx = hash(Zcx ,s,h);

case 8329260 :

jsZ[j][i], i, j = MB9c84SX(x);

s -=109; h/=57; Zcx = hash(Zcx ,s,h);

case -50017354 :

jsZ[j][i], i, j = UupCHU9K(x); // Bogus

s*=14; h-=2; Zcx = hash(Zcx ,s,h);

case -202756108 :

jsZ[i][j], i, j = rFuZkgnU(x);

s/=22; h*=4; Zcx = hash(Zcx ,s,h);

...

case 268264046 :

jsZ[i][j], i, j = UpRE9c6k(x);

s+=19; h-=5; Zcx = hash(Zcx ,s,h);

case -1819546496 :

return jsZ;

case 742416915 :

jsZ[j][i], i, j = NssnGrGp(x);

s/=76; h+=13; Zcx = hash(Zcx ,s,h);

case -1270516304 :

jsZ[i][j] = jsZ[jsZ[j+6]][ jsZ[i+51]];

case 561877267 :

jsZ[i][j], i, j = n6aCnTBB(x);

s-=90; h*=5; Zcx = hash(Zcx ,s,h);

case 856817361 :

jsZ[j][i], i, j = jbK3M4RZ(x); // Bogus

s+=1; h/=79; Zcx = hash(Zcx ,s,h);

case 1893017956 :

jsZ[j][i], i, j = F8vzzbxJ(x); // Bogus

s-=24; h+=31; Zcx = hash(Zcx ,s,h);

case 1557566154 :

jsZ[i][j], i, j = cSQS3b6j(x);

s*=10; h+=3; Zcx = hash(Zcx ,s,h);

case -2035379708 :

jsZ[i][j] = jsZ[jsZ[j -33]][ jsZ[i+9]];

case 804012105 :

jsZ[j][i], i, j = wrpJT3Ph(x);

s*=52; h-=6; Zcx = hash(Zcx ,s,h);
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4.3.13 Reverse Engineering: Memory Shuffling

The last iteration of the implementation added memory shuffling to the program. RDE-
3 did not work as intended and a minor upgrade was needed. RDE-3 needed to keep
track of the memory locations of all intermediate data and once an memory shuffling
operation was executed RDE-3 had to keep track on that swap. RDE-4 was developed
from RDE-3 with the fix to keep track of memory shuffling.

Even though this iteration only had a small impact on the RDE, adding memory shuf-
fling was a useful obfuscation technique. If an adversary did not have an automatic
tool from previous reverse engineering iterations, then the memory shuffling would have
hardened the reverse engineering process quiet a bit. Hence, if an adversary only had
gotten the final version of P ′ and no prior reverse engineering iterations, the effort for
retrieving the key would be considered to be extremely high.

The goal tree of the final version of P ′ is shown in Figure 4.6 below. Compared to
the previous goal tree, the memory shuffling obfuscation technique has been added as a
subgoal.

50



4.3. IMPLEMENTATION PROCESS CHAPTER 4. METHOD

Find input and 
output for 1 round

Run AES manually

Identify 
256 32 bit 
T2 values

Identify 16 
T2 tables

Identify 16 
T3 tables

Identify 4*48 
T4 tables

Identify 
256 32 bit 
T3 values

Identify 
16*16 32 

bit T4 
values

A

A

Identify T3 
operation

Identify T4 
operation

Identify T2 
operation

Identify shift 
operation

Identify 
bogus 32 

bit T2 
value

Identify 
bogus 32 

bit T3 
value

Identify 
real 32 bit 
T3 value

Identify 
bogus 32 

bit T4 
value

Identify 
real 32 bit 
T4 value

Identify 
bogus 32 
bit shift 
value

Identify 
real 32 bit 
shift value

Identify 
real 32 bit 
T2 value

Identify memory 
shuffling

Keep track 
of memory 
shuffling

Figure 4.6: The goal tree of white-box AES with obfuscation

The left side of the tree looks exactly the same as the goal tree for the source program,
shown in Figure 4.1. However, by splitting the arrays into separate methods these goals
are no longer as easily reached as in the goal tree of the source program. On the other
hand, the right side of the goal tree has been totally altered. Instead of identifying nestled
for-loops as in the source programs goal tree, the adversary now needs to identify each
operation separately.
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4.4 Reverse Engineering Tool Summary

As presented in Section 4.3.1, the automatic tool used in the reverse engineering process
was named Round Data Extractor or RDE. For each iteration the RDE was developed
further and to separate them apart we named them by numbers; RDE-1, RDE-2, RDE-3
and RDE-4.

The first two versions of the tool, RDE-1 and RDE-2, was developed to help keep track
on which operation in which round that was currently executed. Our adversary’s knowl-
edge helped to develop the RDE since the adversary was well aware of in which order
the different operations was executed. Also, the tools was based on several assumptions
that was true for the given iteration. After each iteration, some of the assumptions was
no longer true and the previous version of the tool did not longer work.

After the bogus operations was added to the implementation the previous version of
the tool started to behave unexpectedly. The tool identified bogus operations as real
operations because bogus operations behave, with the exception that they do not affect
the final output, exactly like real operations so it was impossible to identify bogus oper-
ations until the result was either discarded or saved. By the end of the execution it was
possible to identify which of the last operations that was real and then work you way
backwards. Therefore, RDE-3 was developed so that during run-time a multi-rooted
tree structure was built with the 16 bytes input as roots and each operation represented
by nodes which had one or more parents. After the whole program finished executing
the tree was complete. RDE-3 then traversed through the tree from the bottom to the
top, choosing the parents of each real operation. By doing this the real operations could
be identified because the bogus operations would never be traversed. In the example in
Figure 4.7 below the green path is the path that RDE-3 traverses in the tree. As can be
seen, no bogus operations are traversed. Note that the program traverses the tree from
the bottom up.
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Figure 4.7: An example of the tree structure in RDE-3. R nodes represent real operations
and B nodes represent bogus operations.

In order to know which round the operation belonged to, our adversary once again used
the knowledge of which operations that are executed during one round. Because of how
the tree was traversed, all bogus operations were filtered out. RDE-4 was a development
of RDE-3 that also kept track of memory shuffling.

Due to how the tool works the running time of all versions of the RDE tool is basically
the same as running the obfuscated program P’ as normal, i.e, depending on the input
length; from a few hundred milliseconds to a few seconds. The extra execution time in-
troduced by parsing the source code and the added operations from the tool is negligible.

RDE-1 and RDE-2 only helps keeping track on which round P ′ is executing by in-
specting the operation. After a finite set of operations has been executed, a new round
begins. So, when P ′ is done executing, the tool is done executing. The complexity for
both RDE-1 and RDE-2 is O(n).

RDE-3 and RDE-4 needs to execute whole P ′ to construct the tree structure. Then
the tool traverses the tree and in worst case it traverses the whole tree. If each round
has m number of operations and there are p rounds then the time complexity for both
RDE-3 and RDE-4 is O(n + mp). Traversing the tree introduces some extra execution
time, but it is still negligable. This because the RDE only traverses real operations in the
tree, rather than bogus ones, and the program contains a majority of bogus operations.
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4.5 Java Limitations

Java comes with a number of limitations that have to be taken into consideration. Other
languages may give better resistance against a reverse engineering attack, the techniques
used are however not language dependant and can be used in any language that supports
the required functionality. One major drawback with the Java language is that it’s very
easy to restore high-level source code from the compiled byte-code. Several tools that
offer automatic decompilation, such as JAD [27], exists and require no special knowledge
to use. Compared to other compiled languages, such as C / C++, that produces machine
code Java is easy to analyze and understand. However an adversary with good knowledge
in assembly can reverse engineer machine code using the same approach as with Java.
Another limitation of Java is that the size of methods are limited to 216 bytes. This can
be an issue with control flow flattening as the entire program flow will be transformed
into a huge switch case. This is however easily circumvented by splitting the switch case
into several smaller ones and having the default case referring the program flow to the
next switch case.

4.6 Final implementation

The final implementation is a combination of all of the techniques described above. The
generator will depend on many randomly generated numbers and by feeding the genera-
tor with different seeds no two instances will be the same. Identifiers will have different
names and order, lookup tables and intermediate results will be stored differently and
bogus operations will differ in placement and quantity between all instances. Below a
small example snippet of the resulting code can be seen.
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Listing 4.8: Code snippet of obfuscated implementation.

switch (hash(h, s)) {

case 2083867827:

A();

break;

case 122799172:

B();

break;

...

case 530909204:

C();

break;

}

...

void A() {

m[i[0]] = D(m[i[1]], m[i[2]]);

s += -4722;

h = 2083867827;

i = new int[] { 74, 69, 5 };

}

...

long D(long l0, long l1) {

switch(l0) {

case 121:

return 3654854678L;

case 34:

return 503624924L;

...

case 47:

return 835892428L;

}

}

As can be seen in Listing 4.8, the dispatcher node is represented as a switch case. The
switch case operates on a has value of two parameters h and s. It is this hash that
determines which method should be executed next. In the example above A, B and C are
such methods representing one operation each. In the middle of the Listing, method A is
shown as an example on how the methods look. A changes both s and h so that the right
method is executed after A. A calls on a method D which takes as input two values from
the memory array m and performs an operation. As can be seen D performs an operation
on only one of the input. However, D takes 2 values as input anyway in order to make
the methods hard to distinguish from each other. The result returned from D is stored
in a new position in m. The current method A alters the variable i which determines the
next method’s memory allocation. Hence, it is extremely hard to manually analyze this
implementation.
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Evaluation Results

Measuring the efficiency of an obfuscation technique has proven to be somewhat diffi-
cult. Most obfuscation techniques focuses on increasing the complexity of a program,
i.e. making it harder to understand the underlying function of the program. The word
complexity in this context refers to how complicated a program is and should not be
confused with time complexity. The level of complexity of a program is rather hard to
measure since it is highly individual and there are no specifications to follow. Therefore
another measure for evaluating how well an obfuscation technique works is needed. Coll-
berg et al. [2] have defined three different types of measurements that can be used for
evaluate the quality of an obfuscation technique, namely; potency, resilience and cost.
In order to test the obfuscation techniques used in our implementation these evaluation
methods are used.

As defined in Definition 1 a source program P is transformed into a target program
P ′, where P ′ is the obfuscated version of P . In our case the source program P is a
plain white-box AES implementation with no additional obfuscation techniques added,
according to the specification given by Chow et al [9]. Our target program P ′ is a
obfuscated version of the source program P , as described in Chapter 4.3. Note that
hereafter P ′ refers the implementation with all obfuscation techniques added, i.e. the
final implementation.

5.1 Reverse Engineering

Since P is a white-box AES implementation it is vulnerable to white-box AES attacks
such as the BGE attack [15]. Our goal was therefore to obfuscated P so that the obfus-
cated program P ′ would harden the defense against white-box AES attacks. In order to
successfully implement the BGE attack the input and output of at least one round of the
white-box AES is required. Due to the obfuscations of P ′ it is not possible to perform
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a BGE attack on P ′ without reverse engineer the program first, in order to retrieve the
input and output of one round. Hence, we consider the program broken if it is possible
to retrieve those values since it is then possible to perform the BGE attack.

In all iterations of the implementation the input and output of all rounds was found,
with more or less effort. As an aid in the reverse engineering process an automatic tool
was developed. As we had access to the correct round data it was possible to compare
the output generated by the automatic tool and draw conclusions whether the changes
made were correct or not. Any other adversary would not have the ability, making the
development process of such a tool significantly more difficult. In order for an adversary
to know if the output of the automatic tool is correct or not the adversary needs to
perform the actual BGE attack on the output from the automatic tool. The attack then
might return a valid encryption key which the adversary then must use to encrypt some
input. The adversary also must encrypt the same input with P ′ and then compare the
encrypted cipher texts with each other. Only then, the adversary would know if the
automatic tool had retrieved the correct information. In other words, constructing an
automatic tool would be a rather tedious work since the only way to validate the output
of the tool would be running the BGE attack.

5.2 Obfuscation evaluation

Since our P ′ program contains several different obfuscation techniques in unison, the
program as a whole will be evaluated. The total quality of an obfuscation is a combina-
tion of the potency, resilience and cost, defined in Definition 5. Hence P ′ is evaluated in
terms of those three measurements, which are presented below.

5.2.1 Source Program

In order to successfully evaluate the quality of the final implementation P ′, a comparison
to the source program P is made. However, firstly the unobfuscated white-box AES im-
plementation P is evaluated. P is compared to an implementation of a regular black-box
AES, described in Section 3.1, used in white-box environment.

Even though the white-box AES has been broken in theory, it provides much more
obfuscation than a regular black-box AES implementation. The total understanding
of a white-box AES implementation depends on the understanding of white-box AES
in general as well as how the white-box AES is implemented. This might seem rather
straightforward but since there are several white-box AES specifications published, see
section 2.4, an adversary has to understand the white-box AES specifications used. Even
though the basics are pretty much the same some key elements differ in the various spec-
ifications.
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5.2.2 Potency Definition

Potency measures the complexity of the program. The complexity of a program is
decided by several things such as the number of predicates, nesting levels and interblock
dependencies. Basically potency can be viewed as a measure of how difficult it is for
a human to analyze and understand the code. Since the complexity of a program is
highly dependent on the observer it is a rather vague measurement. Collberg et al [2]
attempts to concretize the term by modifying complexity formulas used in Software
Engineering as shown in Table 5.1. The higher potency an obfuscation has the harder
reverse engineering becomes. In order to increase the potency the measures in Table 5.1
should be maximized. The scale for the measurements are low, medium and high.
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Table 5.1: Overview of some popular software complexity measures. E(X) is the complexity
of a software component X. F is a function or method, C a class and P a program.
Table originally from [2].

Metric Metric name Citation

µ1
Program Length

E(P ) increases with the number of operators and operands in P

µ2
Cyclomatic Complexity

E(F ) increases with the number of predicates in F

µ3
Nesting Complexity

E(F ) increases with the nesting level of conditionals in F

µ4
Data Flow Complexity

E(F ) increases with the number of inter-basic block variable references in F

µ5
Fan-in/out Complexity

E(F ) increases with the number of formal parameters to F , and with the
number of global data structures read or updated by F

µ6
Data Structure Complexity

E(P ) increases with the complexity of the static data structures declared in
P . The complexity of a scalar variable is constant. The complexity of an
array increases with the number of dimensions and with the complexity of
the element type. The complexity of a record increases with the number and
complexity of its field.

µ7
OO Metric

E(C) increases with the number of methods in C, the depth (distance from
the root) of C in the inheritance tree, the number of direct subclasses of C,
the number of other classes to which C is couples1, the number of meth-
ods that can be executed in response to a message sent to an object of C,
the degree to which C’s methods do not reference the same set of instance
variables.

1 Two classes are coupled if one uses the methods or instance variables of the other

The formal definition of potency, given by Collberg [2], and is shown below.

Definition 2. (Transformation Potency)

Let τ be a behavior-conserving transformation, such that P
τ−→ P ′ transforms a source

program P into a target program P ′. Let E(P ) be the complexity of P , as defined by
one of the metrics in Table 5.1.
τpot(P ), the potency of τ with respect to a program P , is a measure of the extent to
which τ changes the complexity of P . It is defined as
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τpot(P )
def
= E(P ′)/E(P )− 1

τ is a potent obfuscation transformation if τpot(P ) > 0.

2

5.2.3 Potency Evaluation

The control flow of the source program P is rather straight forward. Figure 4.2 shows a
generated control flow graph of our implementation of P , consisting of several for-loops
containing table lookups which are easily identified. However in the obfuscated program
P ′ the control flow is drastically altered. As seen in the Figure 5.1 the control flow
flattening changes the flow graph so that it consists of a enormous switch case. Since
unraveling this flattened version requires dynamic analysis P ′ is now protected against
static analysis.

Figure 5.1: Generated control flow graph from the control flow flattened implementation

According to Definition 2 the metrics in Table 5.1 help determine the total potency. Be-
cause of how the obfuscation is made some of the metrics are roughly the same in both
P and P ′. The metrics that differ are presented in Table 5.2 below as a comparison be-
tween the two implementations. The metrics of the obfuscated white-box AES will vary
slightly between different generated instances and the values presented are an example
from one instance. The measurements was made by using a small script that counted
the number of occurrences of certain identifiers. As can be seen in Table 5.2, P ′ has
significantly higher values on all measurements, i.e; the potency has increased compared
to P . By comparing the control flow graphs, Figure 4.2 and 5.1, it is not surprising that
the program length (µ1) has increased, in fact the measured program length of P ′ is over
4000 times more than P . The second metric (µ2) determines the cyclomatic complexity,
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i.e. the number of predicates. In this case the cyclomatic complexity is mainly a result
of the switch cases that handles over half a million different building blocks. The last
metric (µ4) is the measurement of the data flow complexity. This is a measurement on
the number of inter-basic block variable references in methods. Because all methods in
the main switch case of P ′ operate on global variables this metric is also considerably
higher.

Measurement Potency P Potency P ′

µ1 425 1 766 070

µ2 2 527 799

µ3 6 2

µ4 8 62 883

µ5 34 64 143

µ6 11 1

Table 5.2: Comparison of potency measurements from Table 5.1.

The measurements µ2, µ4 and µ5 are measured as a sum, meaning that for all methods
the values are added together to a total that represents the entire program. On the other
hand, the µ3 measurement represents the maximum nesting level found in the program
and is therefore represented as the highest nesting level rather than of the sum of nesting
levels. The µ1 value is measured as a total, representing the total program length. The
measurement µ7 is not taken into consideration as it measures different class properties
such as inheritance which is non-existent in both P and P ′, and hence is not present in
Table 5.1.

Splitting the lookup tables in P ′ and storing each value in its own method increases
the potency a great deal, to a high potency level. Considering that the differences be-
tween the lookup tables are very small it is difficult to reconstruct the lookup tables
from the methods. In P though, the lookup tables are stored as multidimensional maps
which are rather easy to identify. The fact that they are stored together makes it easy
for an adversary to extract the tables and run its own copy of the white-box AES. The
adversary will then have a much greater chance at retrieving the input and the output
from one round.

Scrambling the name of all identifiers through layout obfuscation is considered to add medium
potency and the fact that the names differ between generated instances makes it even
more difficult to try to reverse the process. Any possible comments are removed while
compiling which is considered to have a high potency level.

61



5.2. OBFUSCATION EVALUATION CHAPTER 5. EVALUATION RESULTS

In order to confuse a human analyzer more, bogus operations have been added to ob-
fuscate P ′ even further. With a majority of bogus operations, the process of identifying
the real operations can be lengthy. Bogus operations also make the program longer
which implies that the adversary needs to process more information in order to gain
understanding of the code, which results in a high potency level.

5.2.4 Resilience Definition

While potency is a measure of complexity in term of human understanding, resilience is
a measure to determine how well an obfuscation technique can withstand an automatic
deobfuscator. The level of resilience can be seen as both the effort required creating
an automatic deobfuscator as well as the time and space complexity required for such
deobfuscator to effectively reduce the potency of the program. It is vital to differentiate
between potency and resilience since potency aims to confuse a human reader, while
resilience aims to confuse an automatic deobfuscator. For instance, introducing more
conditional statements will increase potency but it will not necessarily increase the re-
silience. The resilience depends on how difficult it is to determine the outcome of a given
condition. A condition that simply compares two constant values would offer very low
resilience because an automatic deobfuscator could easily evaluate it and remove the
falsified path.

Resilience, as defined by Collberg et al [2], is measured on a scale from trivial to one-
way, shown in Figure 5.2a. An obfuscation technique which is classified as one-way
cannot be undone. For instance if some information is removed that is vital for human
understand but not for the programs execution, such as removing formatting, scramble
variable names etc. Even though these transformations also increase the potency, they
increase the programmers effort to create an automatic deobfuscator. Adding useless, or
bogus, information also increases the potency and thus indirectly the resilience. Adding
bogus information does not change the execution behavior but can be reverted with vari-
ous level of difficulty dependent on what and how the bogus information has been added.

Collberg et al [2] classifies the deobfuscator effort into polynomial time and exponen-
tial time, as shown in Figure 5.2b. The programmers effort, shown on the left axis, is
measured as the scope of the obfuscation. It is easier to create a deobfuscation tool when
the obfuscation only has been applied to a smaller part of the program, rather than the
whole program. As shown in Figure 5.2b the scope is divided into Local, Global, In-
terprocedural and Interprocess. The obfuscation technique is local if it only affects a
single basic block in a control flow graph, and it is global if the obfuscation affects the
whole control flow graph. The obfuscation is interprocedural if it affects the information
flow between procedures and it is interprocess if the obfuscation affects the interaction
between processes executing independently. Figure 5.2b
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Figure 5.2: The resilience of an obfuscation technique
Original Figure in [2]

The formal definition of resilience defined by Collberg et al [2] is given below.

Definition 3. (Transformation Resilience)

Let τ be a behavior-conserving transformation, such that P
τ−→ P ′ transforms a source

program P into a target program P ′. τres(P ) is the resilience of τ with respect to a
program P .
τres(P ) =one-way if information is removed from P such that P cannot be reconstructed
from P ′. Otherwise

τres(P )
def
= Resilience(τDeobfuscator effort,τProgrammer effort),

where Resilience is the function defined in the matrix in Figure 5.2b.

2

5.2.5 Resilience Evaluation

As shown in Figure 5.2a the level of resilience goes from trivial to one-way. These levels
are then mapped to the programmer effort and deobfuscator effort in Figure 5.2b. Since
the RDEs is executed in polynomial time, the left side of Figure 5.2b is the correct scale.

Changing the control flow of P into the flow shown in Figure 5.1 not only increases
the potency but also the resilience. The resilience level of the control flow flattening
obfuscation technique is considered to be strong, as shown in Figure 5.2a, since it is
infeasible to reconstruct the flow of program P , given the program P ′. The resilience
level of the control flow flattening obfuscation technique is highly dependent on how
the implementation is made. Listing 2.1 and Listing 2.2 shows an example where the
resilience level is weak since an deobfuscation tool only has to evaluate the predicates in
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order to restore the old control flow.

The resilience is not only determined by the control flow flattening obfuscation tech-
nique. Splitting the lookup tables to no longer be stored in multidimensional arrays, as
described in Section 4.3.4, increased the resilience level as well. The resilience level of this
obfuscation technique is evaluated to strong, since it would be hard for an automatic tool
to reconstruct the splitted values into an array again. Adding bogus operations also is
considered having a strong resilience level and since the majority of operations are bogus
operation which behaves in the same way as real operations they are hard to distinguish
form real once. Altering the name of the identifiers is the only obfuscation technique
that is considered to have a one-way resilience level. It is impossible to retrieve the old
identifier names once they have been altered.

Even though most of the obfuscation techniques increases the resilience there are some
that does not notably affect the total resilience level. Adding the second data obfuscation
technique, making the operations execute in random order, does not affect the execution
of an automatic tool at all and its resilience is hence evaluated as trivial. The technique
is however vital since it increases the potency - i.e. the human understanding. Another
technique that has low resilience as well is adding the memory swap. Even though this
obfuscation technique adds a little resilience it is not notably and hence considered to
have weak resilience.

The resilience is usually considered at each obfuscation technique alone but since our
final implementation is considered as a whole the total resilience must be evaluated ac-
cordingly. Some techniques have weak or trivial resilience but since the majority of the
techniques is considered to have strong or higher resilience the total resilience level is
very strong.

5.2.6 Cost Definition

The third and last measurement is the execution cost, i.e; the time and space penalty.
The cost measurement is divided into four classes; free, cheap, costly and dear. While
some trivial operations such as lexical transformations are classified as free, other tech-
niques such as control flow obfuscation are likely to cause an increase of execution cost.
Since resources are bounded the cost of obfuscation will also have to be taken into con-
sideration.

The formal definition of Cost, defined in [2], is given below:

Definition 4. (Transformation Cost)

Let τ be a behavior-conserving transformation, such that P
τ−→ P ′ transforms a source

program P into a target program P ′. τcost(P ), is the extra execution time/space of P ′

compared to P .
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τcost(P )
def
=



dear
if executing P ′ requires expo-
nentially more resources than
P .

costly
if executing P ′ requires
O(np), p > 1, more resources
than P .

cheap
if executing P ′ requires O(n)
more resources than P .

free
if executing P ′ requires O(1)
more resources than P .

2

5.2.7 Cost Evaluation

The cost of the implemented obfuscation techniques control flow flattening, data obfus-
cation, bogus operations and memory shuffling are all considered cheap since none of
these techniques increases the time complexity exponentially. The cost of the layout ob-
fuscation on the other hand is considered to be free since it is not affecting the execution
time in any way.

Our obfuscated implementation P ′ increased both in memory consumption and pro-
gram size compared to the unobfuscated version P . As seen in Table 5.3 the to-
tal program size of P ′ is over two times larger than of P while the memory con-
sumption remained roughly the same. The memory consumption was measured by
using the built-in Java methods Runtime.getRuntime().freeMemory() and Run-
time.getRuntime().totalMemory() while the program size was checked using file
properties in the operating system.

P P ′ Difference

Total Program Size 1459 kB 3345 kB 229 %

Memory Consumption 4078 kB 4577 kB 112 %

Table 5.3: Implementation size and memory consumption of P and P ′

The execution time have also increased as a result of the obfuscation. The execution
time is only measured over the time it takes to encrypt data. Booting the program as
well as generating lookup-tables for the control flow flattened implementation has not
been taken into consideration. The result of the execution times is shown in Table 5.4
below.
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Input Length Execution Time P Execution Time P ′

24 0.4 ms 317 ms

28 1 ms 572 ms

212 15 ms 5312 ms

216 236 ms 58616 ms

Table 5.4: Execution time for the implementation with and without control flow flattening
obfuscation technique added.

5.2.8 Quality Definition

The total quality is a combination of the potency, resilience and cost. The formal defi-
nition, given by Collberg et al [2], is given below:

Definition 5. (Transformation Quality)

τqual(P ), the quality of a transformation τ , is defined as the combination of the potency,
resilience and cost of τ :

τqual(P ) = (τpot(P ), τres(P ), τcost(P ))

2

5.2.9 Quality Evaluation

The total obfuscation quality of P ′ is a combination of the potency, resilience and cost.
As previously stated, the potency and resilience level of P ′ is evaluated to high and
strong respectively. The total cost on the other hand is evaluated to cheap. The total
quality of P ′ is therefore:

τqual(P ) = (high, strong, cheap)

This implies that even if P ′ has high potency and resilience the execution time is not
that great.

5.3 Correctness

The correctness of our implementation have been tested by generating six different ver-
sions of our implementation. Each version uses a unique AES key and random seed.
The test is performed by randomly generating 600 different inputs with lengths ranging
between 0 and 255 bytes. The input/output pair is then compared against a black-box
reference implementation. The result of the extensive testing was that all 600 test was
successfully encrypted the same way as the black-box reference implementation.
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5.4 Existing Obfuscation Tools

A comparison with existing Java obfuscators have also been made. An important thing
to consider is that our implementation P ′ is specially made for obfuscating a white-box
AES implementation while existing tools are general obfuscators, meaning that they ob-
fuscate any Java code. This will naturally effect the outcome of the measurements below.
The tools tested are Allatori Java Obfuscator [29] and Zelix KlassMaster [30]. Both are
available free as trial versions that are limited in some way but the limitations have been
taken into consideration and should not effect the comparison in any significant way.
The evaluation of obfuscation of P ′ was made with respect to potency, resilience and
cost. Therefore, a short comparison on each of those values is presented below.

The potency measurements, presented in Table 5.1, is used to evaluate the total po-
tency of both Allatori and Zelix. The values of Allatori and Zelix are compared to the
potency values of P ′ in Table 5.5 below. The values of P ′ are the same as previously
presented in Table 5.2.

Measurement P ′ Allatori Zelix

µ1 1766070 561 648

µ2 527799 12 26

µ3 2 1 1

µ4 62883 18 16

µ5 64143 - -

µ6 1 1 1

Table 5.5: Potency comparison with existing Java obfuscators.

A major difference between our implementation P ′ and the tested obfuscators is that
both Allatori and Zelix utilize a technique called Java byte-code inlining. For instance
they use byte-code to operate directly on the stack for method parameters and return
values. For this reason the measurement µ5 has not been measured as it is difficult to
determine whether a referenced data structure is global or not. Attempts to measure
time and space complexity of both Allatori and Zelix was also made but was unsuc-
cessful because neither of the tools output program was runnable. Finally, a tool called
ProGuard [31] was also tested but the only apparent transformation was name mangling
of variables. As this does not affect potency, resilience nor cost it’s not included in the
comparison.
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6
Discussion and Conclusion

The main aim of this master thesis is to investigate whether it is possible to obfuscate a
program so that it becomes unprofitable for an adversary to try to reverse engineer it.
As stated in the introduction, the obfuscated program should withstand known auto-
matic reverse engineering tools as well as hardening the static and dynamic analysis of
the program. Also, by making each instance differ in the implementation the adversary
may be forced to manually perform the reverse engineering process which increases the
amount of time and resources the adversary has to spend to successfully reverse engineer
the program.

Our implementation P ′ is created in iterations with development alternating with reverse
engineering. More details of the implementation can be found at Section 4.3. Based on
the findings from each reverse engineering attempt the next obfuscation technique was
chosen. The first iteration of P ′ consists of the control flow flattening obfuscation tech-
nique. Choosing control flow flattening as the primary obfuscation technique is decided
based on the fact that it is the obfuscation technique that alters the program the most
of all the techniques examined during the literature review, see Section 2. Also, control
flow flattening drastically hardens the ability to statically analyze the program. Hence,
the decision is to implement control flow flattening as the first obfuscation technique.
As shown by the reverse engineering of the first iteration, described in Section 4.3.3,
the control flow flattening obfuscation technique is not enough by its own to provide
the desired obfuscation level. Two problems still exist; the descriptive identifier and the
lookup tables being stored together in an array. Both of the problems are crucial to
correct so iteration 2 and 3 that handle those problems, are equally important. After
the third iteration the reverse engineering process is starting to become problematic.
The previous reverse engineering processes have been performed by manually debugging
the program during runtime. Now however, the program is too large and complex to
follow manually with a debugger. During this iteration an automatic tool is developed
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to help the reverse engineering process. The automatic tool is handwritten solely for
this purpose and it is vital to realize that our adversary, as described in Section 4.3.1,
is evaluated to have exceedingly high knowledge about the system and our implemen-
tation. However, the major challenge during the reverse engineering process is still to
understand the underlying logic of the program. An adversary with less insight in our
implementation and the obfuscation techniques being used would most likely have a
greater challenge to understand the program than our highly advanced adversary. The
two last iterations - adding bogus operations and memory swap - increases the level of
reverse engineering effort as well. However, once again our adversary has an extreme
advantage since he already has an automatic tool developed. It would have been inter-
esting to see whether our adversary would have been as successful in reverse engineering
the obfuscated program if he only was given the final implementation. During the devel-
opment of the automatic reverse engineering tool some assumptions about how the real
operations behaved were made, based on the reverse engineering analysis in iteration
3. Without these assumptions you can assume that an adversary would have a more
difficult time to reverse engineer the final implementation.

Even though the reverse engineering process of our obfuscated implementation was suc-
cessful one could still imagine usage scenarios where this, or a similar solution, would
be usable. Depending on the adversary the implementation may offer different levels of
protection. Even though our assumption throughout this thesis is that the execution
environment is a white-box environment with an adversary present, the adversary needs
to gain access in the first place. The environment may be “open” for attacks but the
adversary still needs to gain access before any attack can be performed. By defining
three different types of potential adversaries you can estimate how well the obfuscated
implementation would withstand an attack. The first type of adversary is very powerful
and may have an entire team of skilled hackers working together. Such an adversary may
have found an exploit which enables remote code execution and have in that way gained
white-box access to the system. In this scenario it is likely to assume that the adversary
can also reverse engineer any obfuscated software on that host given a relatively short
time period. The second type of adversary may not be able to produce its own exploits
but can utilize already published ones. For such an adversary our obfuscated implemen-
tation may offer enough resistance to either stop or slow down the attack long enough
for the target system to get patched. The third type of adversary is relatively unskilled
but have gained access to the system by for instance hardware theft. Against this type of
adversary the level of protection is assumed to be good enough to fully stop an attack. In
all cases our obfuscated implementation results in an increased amount of work required
for a successful attack. This may in turn encourage adversaries to consider other targets.

Apart from reverse engineering our implementation the obfuscation techniques was eval-
uated in terms of Potency, Resilience, Cost and Quality. Figure 4.2 and Figure 5.1,
which shows the generated control flow graphs of P and P ′ respectively, are a visual
representation of the change in potency. In the control graph of the source program,
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Figure 4.2, the underlying logic of the program is easily identified. The control graph
of P ′ however, shown in Figure 5.1, is nowhere close to be helpful when analyzing the
underlying logic of the program, even though the Figure shows an simplified version.
Even though the control flow graph of the obfuscated implementation is generated after
the final iteration the graph would look pretty much the same if it was generated in one
of the previous iterations. The layout obfuscation changes the identifier names and thus
the node names of the flow graph, and adding bogus operations extends the flow graph
with more nodes. Other than that the flow graph would look the same. This because the
control flow flattening obfuscation technique changes the flow of the program so drasti-
cally. Control flow flattening increases the number of predicates in the implementation.
As can be shown in Table 5.2 the µ2 value, which represents the number of predicates,
is increased around 264 000 times. The value is so high because each operation con-
tains at least one predicate. As previously stated, the majority of the operations in P ′

are bogus operations and therefore the value is larger than if only real operations were
present. The control flow flattening obfuscation technique also flattens the structure of
the implementation, which is shown by the µ3 value representing the nesting level. The
nesting level is decreased and thus affects the potency negatively, but the increase of
all the other values are far greater which make the decreased value negligible. Another
value that is decreased is the µ6 value, which shows the data structure complexity. The
reason for this is that when the lookup tables are transformed from multidimensional ar-
rays into separate methods they are no longer counted as data structures. However, the
decrease of µ6 is also negligible due to its small impact on the total potency. Also, one
important fact that the potency measurements is missing is that flattening an array can
actually increase the potency. A programmer that uses multidimensional arrays usually
make the design choice in order to make the code more understandable. Flattening the
array, i.e. removing the data structure complexity, probably makes the array less under-
standable even though the potency measure suggests the opposite. So even though the
mu3 and µ6 measurements is evaluated as a decrease in potency, the understanding of
the program is not affected much. Splitting the lookup tables into methods affects both
the µ2 value and the mu1 value with such extent that it is canceling out the decrease
of the µ6 values. Adding bogus operations increases the total program length as well.
The µ4 and µ5 values are both increased greatly as many of the data structures, such
as the intermediate results and variables for calculating hash values, are stored globally.
As every reference to a global or non inter-basic block variable is counted towards these
measurements they are of nearly the same. The difference is that µ5 also counts method
parameters and is therefore slightly higher.

The increase and decrease of the values in Table 5.2 are as expected. However, some of
the values are greater than expected. The length of the program for example, it is an
increase by approximately 415 600 %. The number of predicates also is a huge increase
by approximately 26 390 000%. When seeing the control flow graph of P ′ in Figure 5.1
these values are not surprising but still far greater than anticipated.

70



CHAPTER 6. DISCUSSION AND CONCLUSION

Table 5.5 shows a comparison of P ′ with some existing obfuscation tools available. The
table presents the measurements of potency, presented in Table 5.1. As the values show,
P ′ has greater values on all of the measurements compared to the two tools Allatori and
Zelix. This is not surprising since P ′ is constructed to increase the total quality of the
obfuscation, while the other tools are used for obfuscating general program code. It is rel-
atively difficult to write an obfuscator which can operate on all kinds of programs, while
writing a specific purpose program is easier. This explains the huge difference in potency.

The resilience level of P ′ is evaluated to very strong since several of the obfuscation
techniques each are evaluated to strong, and P ′ is a combination of those techniques.
As previously stated, our adversary might have had problems with implementing an
automatic tool to reverse engineer the program if he only was given the final implemen-
tation of P ′. Because even if both the control flow flattening technique added in the first
iteration and adding the bogus operation which was implemented in the fifth iteration
is separate evaluated to have strong resilience level, the combination of those two tech-
niques are even stronger. Although the scale of resilience, as shown in Figure 5.2a, only
has the values strong and one-way, we believe that the level of strong can be increased
by the combination techniques with strong resilience level. Hence, the total resilience
level of the implementation is very strong. The techniques evaluated to have trivial and
weak resilience levels are not affecting the total resilience level negatively but rather not
affecting the resilience at all.

Increasing the potency and resilience of P ′ has it drawbacks though. The increase of
cost with respect to the program size is more than doubled in P ′ compared to P . The
memory consumption used during execution also increased slightly. As can be seen in
Table 5.4 the execution time has a correlation to the input length, which is not that
surprising. Also, the execution time is far greater in P ′ than in P which also is not very
surprising. However, the difference in execution time is decreasing as the input length
increases. We suspect that this have to do with the fact that Java’s just in time compiler
is lazy, i.e; it only compiles code once it reaches it. As the input length increases each
method will be executed more times. As the methods are already compiled in all but
the first time this will decrease the average execution time. The increased cost may
seem like a huge disadvantage if using the program to secure execution on hardware in
a white-box environment, for example on a smart phone. However, we do not believe
that the running time is the limiting factor when it comes to securing sensitive data
in software. Waiting a few more seconds for a more secure authentication procedure is
probably acceptable.

Due to its byte-code format and extensive debugging utilities Java is relatively easy to
reverse engineer compared to many other languages. Since all the obfuscation techniques
discussed in this thesis can be applied to most programming languages a better level of
protection would probably have been achieved with another language. A programming
language that produces assembly code, such as C / C++, would be significantly more dif-
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ficult to reverse engineer and we believe that we would not have been able to successfully
reverse engineer our own implementation if it was written in such a language.

6.1 Future Work

Promising areas for future work includes investigating Java byte-code inlining. Instead
of distributing the program as byte-code compiled automatically by a Java compiler one
can inline Java byte-code in the source code before compiling it. If correctly done auto-
matic decompilers, such as JAD [27], will not be able to translate the inlined byte-code
back to Java source code. This results in more complicated code for an adversary and
will likely make the to reverse engineering process significantly more difficult. Alter-
natively other languages that compile into machine code, such as C / C++, could be
investigated. Most of the presented obfuscation techniques should work well with other
languages that are syntactically similar to Java. As decompiling and analyzing machine
code, compared to Java byte-code, is significantly more difficult it would increase the
work required for an adversary. Other types of languages, such as functional languages,
may also be interesting to investigate as they could possibly offer other obfuscation tech-
niques. Programs made in less known programming languages will also likely cause an
increased cost for an adversary as finding people with sufficient knowledge would be
harder.

In order to make the result more realistic it would be a good approach to give the
complete solution P ′ to an outside adversary that does not have the same level of knowl-
edge regarding the underlying logic of the program. This was not done in this Master
Thesis due to time constraints, but it is an area for future work.

Another interesting area to investigate is to store parts of the program on a secure
location. For the program to operate correctly it would need to request information
from a remote computer. This information should differ each time so that data from
previous runs have no value to future ones. While this requires a working connection of
some sort it would open up for possibilities to analyze requests as they arrive. An at-
tackers request pattern would likely differ from the one of a regular user and by running
a risk analysis preventive actions could be taken.
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