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Abstract
Traceability information between different system artifacts, like the one between
requirements, architectural elements and the results of test cases can be used to ex-
pose interesting relationships between the early phases of the software development
process and the software faults in the end product. For instance, complex depen-
dencies between features and software components could lead to an increased level
of flaws in the code. Such patterns can be detected and visualized as early warnings
to the relevant stakeholders (e.g., the architect or the project manager). Ultimately,
a fully-fledged prediction model can be developed if enough historical information
is available from previous software projects. In this thesis work we investigate the
relationships between the system design attributes and test case results looking for
fault patterns using the traceability data and design metrics. Our intention is to use
these patterns to predict the system faults in early stage of the development process.
The ultimate goal is to introduce a method for building a decision support system
based on historic product data. The research presented in this thesis is based on
a quantitative case study conducted together with our industrial partner Systemite
AB, where the raw data was provided by three Swedish automotive companies. We
found that design attributes, such as a number of component in port or functional-
ity could have a strong relation with the probability of failed tests, thus they could
by use as an indicator to predict faults. Those faults could be avoided during the
design phase, which will lead to improve the quality and reliability of the system
and reduce its cost and development time.

Keywords: Software Fault Prediction, Early Stage of Development Life Cycle, Met-
rics, Requirement, Software Architecture, System Design, Design attributes, Trace-
ability Links, System Quality.
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1
Introduction

This chapter shortly presents the existing state of software fault prediction in dif-
ferent stage of system development, and the important of predicting fault in the
early stage of the development life cycle. The chapter further outlines the overall
research question and hypothesis and how this report aims to convey the study’s
most important features.

1.1 Background
Software fault prediction has been intensively studied in academia and industry.
Many researchers have tried to predict faults based on implementation-level pa-
rameters and source code metrics such as size of code, code change history, source
code complexity, complexity of the implementation processes, and programming lan-
guages. One such study has investigated the effect of class size on fault-proneness
[13]. Another study goes farther to investigate the relation between the complexity
of source code modification and the faults prediction [9], therefore they conclude
that high complex changes to a file will lead to higher chance of containing faults.

Having an early predictors (i.e., before the start of implementation and testing
phases) is useful and desirable as it can reduce the cost of software development,
as known from the cost models for fixing defects, the cost dramatically increase
through the development process, e.g., by 6.5 times when moving from the design to
the implementation phase. Similarly, it increases from 6.5 to 15 times, when moving
from implementation to testing phase, and from 15 to 100 times by moving from
testing to maintenance [16] and [17], as shown in Figure1.1.

Figure 1.1: Relative cost to fix software defects per life cycle phase
Source: IBM Systems Science Institute.
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1. Introduction

Moreover, Mohan et al. show that 64% of defects are generated by the requirements
analysis and design phases, while only 36 % of the defects are introduced in other
development phase [16], as shown in Figure1.2.

Figure 1.2: Origin of software defects
Source: Crosstalk, the journal of defense software engineering.

Fewer research studies exist with respect to the use of early defect predictor. For
instance, a model using object oriented design metrics has been built to predict the
faults during design phase. This model uses a technique based on neural networks
and Bayesian Regularization (BR) algorithms [14]. Moreover, other works exist
about using design properties as predictors. For instance, Rathore and Gupta [11] in-
vestigated the relationship between the class level object-oriented metrics with fault
proneness of object-oriented software system. The results of their work showed that
design attributes like coupling, complexity and size are correlated to fault proneness.

As a novel contribution, we plan on using information from requirements and design
artifacts (and the traceability links between them) to predict faults1. In order to
accomplish our goal and investigate our hypotheses we selected an application from
the automotive industry. The hosting company was Systemite AB [44], and the raw
data used to validates our research question and hypotheses comes from two Swedish
automotive companies, the first company provides us with two mature systems and
the second company provides one mature system, the name of these companies will
be anonymous for the confidentiality of their data. The research present in this
thesis work is based on a quantitative industrial case study conducted together with
our partner Systemite.

The studied data comes from the automotive industry, it contains several mature
projects that have been deployed and revised over time. The requirements and
design for these projects are contained in SystemWeaver [43], an information man-
agement platform from Systemite [44]. The requirements are in rich text format
with different textual styles and pictures, links, and sometimes more formal such as
state machines and use cases. When it comes to design, SystemWeaver contains the
architecture and design information at component- and signal-level and how signals

1In our work, we use the failures of test cases as a proxy for actual software faults.
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1. Introduction

propagate and components are connected. Also we can access both hardware and
logical design (functions and features) and how they are allocated on to the hard-
ware. Moving to testing part, the test is structure in test suits, every test suit is
a collection of test cases that are intended to test a behavior or a set of behavior
of a system. Moving down to test case level, test cases are related to a system or
component under test and they often have traceability to individual requirements.
Finally, the result of test cases is stored, and it could be passed, failed, or not com-
plete.

The process of our work had divided mainly into four phases, which divided later
into ten steps that form our research methodology. The result of each phase was
an entrance for next one. The goal of phase one was to study the available data
set, organized them, and eliminate inappropriate data. In phase two we define a set
of design metrics, based on literature review for related work, Systemite’s previous
project and research, and the properties of the studied data. Moving to phase three
we built a tool, which allow us to apply the design metrics that we have, investigate
the correlation between metrics results and the test case result, and define the fault
prediction pattern. Finally, in phase four we improved our tool in order to predict
the system faults based on the historical product data.

1.2 Research Question & Hypotheses

1.2.1 Research Question

Our overall research question is whether the relationships between requirements and
design artifacts (as well as information from individual artifacts) can be leveraged
to predict software faults?

1.2.2 Hypotheses

In this thesis, we aim to validates the following six hypotheses:
1. A higher- complexity system design has a higher failure rate.
2. Software components that have a higher interaction with other component

have a higher chance of failing a test.
3. Software components that have a higher number of responsibility have a higher

chance of failing a test.
4. Software components that are responsible for (i.e., linked to) a higher number

of requirements have a higher chance of failing a test.
5. Software requirement linked to large number of components tend to have more

test failures than average.
6. Software requirement that have a higher number of sub-requirements have a

higher chance of failing a test.

3



1. Introduction

1.3 Thesis Outline
This introduction is followed by six other chapters, each of which covers a particular
focus to the study, together with two appendixes that include our related publication.

CHAPTER 2 presents related works. The chapter begins by introducing the
method used for selecting relevant literature, then it describes the fault prediction
at different stages of development process, which are the implementation and design
phases. Thereafter, design metrics and its uses for predicting fault are presented.
Furthermore, traceability between system artifices described. Finally, software fault
prediction models are presented.

CHAPTER 3 presents methodology. The research methodology of this thesis is
quantitative case study conducted together with our industrial partner Systemite
AB, and the raw data was provided by two Swedish automotive companies, that use
Systemite’s platform (SystemWeaver) to store and manage their data. The chapter
organized as following, Section 3.1 presents the over all methodology. Section 3.2
further describes the research methodology steps. Finally, Section 3.3 discusses the
research limitation and validity threats.

CHAPTER 4 presents design metrics. The design metrics are implemented in
our work, in order to measure the design attributes, to be use later to investigate
the relation between design attributes and system fault. The chapter organized
as following, section 4.1 presents system metrics. Section 4.2 present component
metrics. Section 4.3 present requirement metrics. Section 4.4 presents testing metric.
Finally, Section 4.5 presents combined metrics.

CHAPTER 5 describes tool implementation. The development work could be
divided into two stages, preparation for the study using Xpath expression and im-
plementation of the study using C# WPF. The chapter begin with describing the
hosting company and their platform. Then, it describes the using of Xpath expres-
sion to define design metrics and filtering our raw data. Finally, it presents the tool
implementation, which has been used to extract the data and build our data set, we
called it SmartTrace.

CHAPTER 6 presents results. This chapter summarizes the outcome of perform-
ing the case study, by presenting and interpreting the measurement result, which is
crucial for understanding the impact of design attributes in generating faults. First,
the data collection process presented in Section 6.1. Second, descriptive statistics
described in Section 6.2 .Then, inferential statistics described in Section 6.3.Finally,
the data analysis discussed in Section 6.4.

CHAPTER 7 consists of the thesis conclusion. This chapter starts with sum-
marizing the thesis work and listing our finding. Which is followed by a discussion
section that describe the quality of finding, benefit, and suggestions for both Sys-
temite and the data provided companies. Finally, future works are presented.

4



1. Introduction

APPENDIX A includes our first related paper. Using XPath to Define Design
Metrics.

PESARO 2016 : The Sixth International Conference on Performance, Safety and
Robustness in Complex Systems and Applications. Lisbon, Portugal

APPENDIX B includes our second related paper. Traceability Data in Early
Development Phases as an Enabler for Decision Support.

XP 2016 : International Workshop on Emerging Trends in DevOps and Infras-
tructure. Edinburgh, Scotland.
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2
Related Work

In this chapter, different related literature is described. The chapter begins by intro-
ducing the method used for selecting relevant literature, then it describes the fault
prediction at different stages of development process, which are the implementation
and design phases. Thereafter, design metrics and its uses for predicting fault are
presented. Furthermore, traceability between system artifices described. Finally,
software fault prediction models are presented.

Foreword
Fault prediction is the process of evolving models that can be used by the software
practitioners in the early stage of development life cycle for detecting faulty con-
structs such as, classes, requirement, and modules [37]. The process of software
fault prediction can be done in different phase of development process. Accordingly,
the software community have been investigated the fault proneness in all phases of
system development. However, predicting the fault in the early stage of the de-
velopment process is always desired due to its benefits in reducing the cost and
improving the quality [16]. Moreover, it enhances the reliability, maintainability, ef-
ficiency, and portability [29], and of course, reduce the effort of testing, and increase
the performance [30].

2.1 Literature Collection
A literature review serves many important purposes, including establishing the
knowledge body for the research, framing the valid research methodologies, expand-
ing the knowledge of the researcher, and preventing the researcher from conducting
research that already exists [47]. As a matter of fact, a research is a small piece in a
complex jigsaw puzzle [46]. In our project the method of conducting the literature
review involved the following steps [47]:

• Identify search keywords: it was obtained through the following, a pre-study
held at the start of the project, supervisors guidelines, superusers and indus-
trial experts input, and old related project held by the hosting company.

• Literature databases & electronic resources: this included Chalmers databases
which include 47 databases in computer science area, and many other related
databases, i.e, statistic and research. Industrial literature which was available
at Systemite site. Physical resources which were available at both Chalmers
library and Systemite.

7



2. Related Work

• Keywords search: The search process had started first by reading title, article’s
keywords, abstract, and conclusion. Then, for those related work by reading
the whole work, even go through their references. In addition, during this
work we had two publications, hence we received several recommendations to
examine several related works.

• Know the literature: by listing, defining, describing, identifying, and extract-
ing the meaningful information from the selected literature

• Comprehend the literature: by summarizing, differentiating, interpreting, and
contrasting the related work.

• Apply the literature: by demonstrating, illustrating, solving, relating, and
classifying , as descried on chapter 4 and 5.

• Analyze the literature: by separating, connecting, comparing, selecting, and
explaining the related works.

• Synthesize the literature: by combining, integrating, modifying, rearranging,
designing, composing, and generalizing the related works.

• Evaluate the literature: by assessing, deciding, recommending, selecting, judg-
ing, explaining, discriminating, supporting, and concluding the related works.

2.2 Prediction of Fault at Implementation Phase
There have been huge work exists on using code properties as predictors of faults.
Many works, for instance, use software metrics like code complexity, code size, and
so on. Some exhaustive literature reviews exist, like for instance, the work of Rad-
jenovic et al. [12]. They aim at identifying software metrics and to assess their ap-
plicability in software fault prediction. For that, 106 papers were selected published
during two decades (between 1991 and 2011). The selected papers were classified
according to metrics and context properties. The results of this review according to
the select studies were as the following [12]:

• Object-oriented metrics were used (49%) nearly twice as often as traditional
source code metrics (27%) or process metrics (24%).

• The most popular object oriented metrics were the CK (Chidamber and Ke-
merer’s) metrics, which were used in almost (50%).

• There are significant differences between the metrics used in fault prediction
performance.

• Object-oriented and process metrics have been reported to be more successful
in finding faults compared to traditional size and complexity metrics.

• Process metrics seem to be better at predicting post-release faults compared
to any static code metrics.

Another literature Review in this context, "using code properties as predictors of
faults", is the work of Catal et al. [10]. In this paper the authors reviewed 90 soft-
ware fault prediction papers published between year 1990 and year 2009 in software
fault prediction for both machine learning based and statistical based approaches.
According to this study, they found the following:

• The majority of the studies used method level metrics, i.e., numbers of lines
of code.

8
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• Machine learning techniques were the mostly based models comparing to other
techniques.

• Naive Bayes is a robust machine learning algorithm for supervised software
fault prediction problem.

2.3 Prediction of Fault at Early Phase
Moving to the design level properties (or requirements and architecture level prop-
erties) as predictors, which is our interest domain, some work exists but the number
is significantly less compared to the work on code properties. One of those work
is [15], in this paper the authors present the need of fault prediction at design phase
to decrease the cost of development, reduce the effort of testing, and increase the
performance. In addition, they stated that fault prediction at early stage could re-
duce the risk of a new project, where fault could be discovered earlier and knowledge
can be transfer between different projects, by using design metrics results of other
projects as initial guideline for the new project. In this study they used a data
set from NASA MDP repository from seven public domain software development
at design level. They conclude based on the data studied “The metrics from the
early software life cycle are useful and should be used, regardless of the data from
within project, software fault prediction model can be built at design phase with
other project’s design level fault data” [15].

Moreover, there are a number of studies on software fault prediction using the re-
quirements level properties. For instance [19], in this paper the authors investigate
whether metrics available early in the development lifecycle (requirements phase)
can be used to identify fault-prone software modules. Starting from this question
and using data from three NASA projects, they found that metrics applied in early
stage of project lifecycle can have a important role in project management, either
by pointing to the need for increased quality monitoring during the development
process or by using them to assign verification and validation activities [19].

Another research carried by Singh et al. [30], in this research the authors evalu-
ated and analyzed techniques to predict the fault at design phase. Vast experiments
were performed on eleven projects from NASA metrics data program, which offers
design metrics and its associated faults, to discover the effect of different elements
of a learning scheme for fault prediction. They found that design metrics can be
used precisely as software fault indicator in early stage of software development.

2.3.1 Design Metrics
Design metrics have been have been developed to help in predict software defects or
evaluate design quality for a long time [11], [30], [31], [32], and [33]. Those design
metrics are described in details in Chapter 4. Some of these metrics show a better
ability to discover faults, Rathore et al. [11], they suggested that models built on
coupling and complexity metrics are better and more accurate than those built on
using the other metrics(cohesion, inheritance, and size). They draw this conclusion
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based on empirical study. In our work, we extract most of the metrics that we im-
plemented from literature [11], [18], [20], [21], [22], [26], [19], [29], [19] [30], [31], [32],
and [33]. as well as from the best practice of the ongoing and completed projects at
Systemite [6] and [48].

One of those project is Synligare [56], it is European project cared by Systemite
and four other companies (Volvo, Semcon, Arccore, and Autoliv), the goals of the
project are complexity bridging, cost effective, and collaborative development. In
this project they look attentively at metrics as a key performance indicators used to
gauge and follow/up system development status. For them metrics is important to
have early feedback from customer to the supplier, and to be able to assess progress
for the OEM (original equipment manufacturer). Accordingly, they define large
number of metrics and categorise them in three categories, which are [48]:

• Qualities and correctness, i.e., Dependability and Cost.
• Progress and completeness, i.e., Number of completed work products and

Number of change requests
• Risk and impact, i.e., Appropriateness of method and Impact of monitored

system.
Another related work for this project is [6], in this work the authors proposed a
new way to define design metrics using Xpath, to read more about Xpath [50], as
well as, they presented six metrics that measure both the progress of requirement
allocation, and system complexity. These metrics are :

• The set of all requirements.
• The set of allocated requirements.
• The set of unallocated requirements
• The fraction of the sets.
• Cyclomatic Complexity.
• Couplings between objects.

2.4 Traceability

Traceability can be described as the ability to track and follow processes that links
and depends with one another to complete a certain job [57]. A traceable pathway
from the root of fault (design properties) to a leaf of test case fail is necessarily to
specify the cause behind generating fault. Over the last decade, researchers have
studied on particular areas of the traceability problem and they tried to develop more
complicated tooling, even they suggested many new research areas to be address-
ing [34]. Traceability has many uses, it could be used to check if the requirements
have been satisfied in advance development phase, like design and code. Also, it
could help to assess and manage the impact of changing a system artifact, i.e., re-
quirement, among many other artifacts [35]. Moreover, traceability has been used
in fault based testing to generate test data to demonstrate the absence of a set of
pre-specified faults [36].
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2.5 Software Fault Prediction Model
Software fault prediction models have an important role in software quality assur-
ance. They identify software artifacts, i.e., modules, components, requirement, etc.
which have a higher chance of failing a test. These artifacts, in turn, receive ad-
ditional resources for verification and validation activities [28]. The system design
metrics and fault data can be used to build models that can be used to predict faulty
modules in the early stage of software development process. System fault prediction
model can be done by categorizing the system modules as fault prone and not fault
prone. The model’s metrics and fault data can be acquired from similar product or
other version of the product [37]. Many researcher, for example [37] and [54] have
presented the use of various machine learning techniques for the software fault pre-
diction problem. Machine learning techniques have the ability to predict software
fault proneness and can be used by software users and researchers. An example for
using machine learning techniques to predict software fault is the work of G. John
et al. [55]. The employed random forests (RF) method ,which is an extension of
decision tree learning, for prediction of faulty modules with data sets provided by
NASA .
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3
Methodology

In this thesis project we use the quantitative case study conducted together with our
industrial partner Systemite AB, and the raw data was provided by two Swedish
automotive companies, that use Systemite’s platform to store and manage their
data. The chapter organized as follows, Section 3.1 presents the overall methodology.
Section 3.2 further describes the research methodology steps. Finally, Section 3.3
discusses the research limitation and validity threats.

3.1 Methodology
This section presents an overview for the methodology of our work. The thesis work
is conducted using the empirical research method [40] and [41] based on the quan-
titative approach [42]. First, we studied the raw data, which was provided by two
Swedish automotive company and sorted using SystemWeaver [43], with the goal to
identify whether the relationships between requirements and design artifacts, as well
as, information from individual artifacts can be leveraged to predict software faults.
Our hypotheses was based on the assumption that system design attributes affect
the probability of failing test case. More precisely, we have six hypotheses cover
system, component, and requirement design attributes, as mentioned in Section 1.2.

The next step after defining the research goal and hypotheses, we conducted a
thorough case study analysis [52]and tested the suitability of the selected metrics,
which presented in Chapter 4. For that purpose, we used both the available body
of knowledge existing in the literature and the expert people at the hosting com-
pany (Systemite), as well as, the expert users at the customer side (Systemite’s
customers).

After defining the bases of our project, the next step was to understand the raw
data and filter them in order to apply our measurement. This step was a challenge
for us, where the size of the raw data was too large and it comes from different
sources. Even, all data providers use the same platform, but every one of them
customized the platform to fit their own needs, by defining their own meta-model.
To overcome this challenge, we used Xpath expression[6], and this was the first part
of our implementation, as shown in section 5.2.

Then, in order to perform the intended measurements and present the results, a
tool has been implemented, we called it SmartTrace, as shown in section 5.3. which
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is able to apply the system, component, requirement, testing, and combined metrics,
using the available traceability data, as described in Chapter 4. As a part of metrics
and tool validation, we conducted several interviews with both SystemWeaver’s de-
velopers and users. A detailed description of the research methodology steps delivers
in the next section.

3.2 Research Methodology Steps

This section presents a detailed description of our research methodology steps. The
research methodology includes ten steps, in general the result of each step was the
input for the next one. But, this was not the case all the times, in some cases we
modified a step based on a feedback or a result of other steps, as well as, some times
more than one step could be a prerequisite to start other step, as shown in Figure
3.1.

Figure 3.1: Research methodology steps.

Figure 3.1 shows our research methodology steps, and the following are the descrip-
tion of those steps:

Step 1: Partnership with Systemite AB [44], at the start of this thesis we built a
partnership with Systemite. The selection of this hosting company was due to several
reasons. These reasons are Systemite’s powerful platform [43] (SystemWeaver), the
availability of the raw data for more than 15 years, Systemite’s previous research
and project, and common interests between our thesis gaols and their work.
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Step 2: Define the project goals and scope, after building the partnership we
define the thesis goal and scope, based on the common interests between us and the
hosting company, properties of the available data, Systemite’s previous projects i.e.,
Synligare [48], and our previous industrial project with Systemite, where we used
this industrial project as a foundation stone to start this thesis.

Step 3: Literature review, at this step we build a body of knowledge, position our
work, and presents the need for this thesis, as descried in Chapter 2.

Step 4: Data collection, this step was going in parallel with literature review step,
because we wanted to get a feeling about the available data, to pick from literature
what it is relevant, as described in Section 6.1.

Step 5: Study the raw data, this step was one of the most challenging step for
many reasons, first the size of the data was too large. Second, understanding the
platform where the data is stored, since SystemWeaver has 18 modules supporting
the system development process, and gaining a good understanding about them took
long time. Third, data inconsistency, because the data comes from different sources.
Fourth, no single source has an overall understanding about the data, because the
system built by different people located in different site, even from different compa-
nies, i.e., meta-model built by the application engineers, testing by system tester,
and system architecture by system designer. To comeover those challenges we in-
terviewed several people from both the platform development company and their
customers, as well as, we used Xpath expressions [6], (Xpath [50]), to study the
data and have a better overview, as described in Section 5.2.

Step 6: Define design metrics, at this step we select 19 metrics to be implemented
in our work, as described in Chapter 4. The selection of these metrics was based on
three criteria, first, Systemite’s previous work and research, including our previous
industrial project with them (step 1). Second, studying the related work (step 3).
Finally, the properties of the studied data (step 4). At the end of this step we
published our first paper [6], "Using XPath to Define Design Metrics".

Step 7: Implementation, this step includes the tool implementation, which has
been used to extract the data and build our data set, we called it SmartTrace, as
described in Section 5.3.

Step 8: Validate the results, the gaol of this step was to make sure that the result
of the metrics are correct and accurate, as described in Section 5.3.1.

Step 9: Analyse the results. After validate the result we applied both the descrip-
tive and inferential statistics on the data set that we get, as described in Chapter
6. At the end of this step we published our second paper [39], "Traceability Data in
EarlyDevelopment Phases as an Enabler for Decision Support".
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Step 10: Conclusion, finally we draw our conclusion based on the statistical result
of the industrial case study, as described in Chapter 7. At the end of this step we
presented our future work and suggestions for both Systemite and the data provided
companies.

3.3 Limitation & Validity Threats
The validity of a study indicates the trustworthiness of the study results, and to
which degree the results are not biased by the researchers’ subjective point of view
[52]. This section describes the threats to validity in this thesis based on the clas-
sification scheme provided by Runeson et al. [52], which includes internal validity,
external validity, conclusion validity, and construct validity.

3.3.1 Internal Validity
Internal validity is a scientific concept that address the relationship between two
variables [52]. In other words, it is the extent to which a researcher proves that only
the independent variable is responsible for change in the dependent variable . In our
project the independent variables are the result of metrics which measure the system
design attributes, i.e., number of component in port or size of the system, and the
dependent variable is the percentage of failed test cases, i.e., a component failed
20 % of the total performer test cases. Our goal is to investigate the relationships
between requirements and design artifacts, as well as information from individual
artifacts(independent variable) and the test case result(dependent variable).

This project has two threats to internal validity, which are selection and matu-
ration. Starting with sample selection, the studied data comes from two automotive
companies that provided us with three mature systems, after the data filtration
process we end up with a data provided by one company, this data is 12 versions
of a same system, as described in Section 6.1. Having a data from one company, as
well as the data is versions of the same system could effect the result of the study.
Moving to the second internal threats which is maturation, as mentioned before the
data comes from system versions which mean that the system maturation could ef-
fect the number of failed test cases, where system engineer become more experience
and mature over the system development period, especially that the period between
those 12 versions is about five years. On the other hand, this long period could
reduce the threats of other internal validity, such as history, because of the isolation
of effect an interceptor happened, i.e., crisis or company’s unstable situation.

3.3.2 External Validity
External validity is the extent to which the results of a study can be generalized to
the world at large [52]. In our work the data comes from automotive industry, and
our finding could not be generalized to other industries. Moreover, the data stored
at SystemWeaver, which mean that the internal design of SystemWeaver could effect
the study result. As a part of future work we had a plan to study more data provides
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by other companies, as well as other industries, in order to generalize our finding. At
the present time we repeat our measurements over 12 versions of a system, and the
tool that we developed is capable to measure any system, as long as the system is
build using a same meta model, even if a system developed based on different meta
model the tool could be modify easily to catch the new change. At the same time
the tool has the capability for expand to measure more system design attributes,
because we implement every primarily blocks, to reuse them later when we need to
define new metrics.

3.3.3 Conclusion Validity
Conclusion validity is the degree to which conclusions we reach about relationships
in our data are reasonable [52]. More precisely statistical conclusion validity refers
to whether or not we have used our statistical properly and have drawn the right
conclusion based on our results. In our work not all studied versions show the cor-
relation between the dependent and independent variables. As a matter of fact we
have two conclusion threats, which are restriction of range and random selection.
First, restriction of range, in data collection step we excluded all system artifacts
that were not tested or did not have a traceability link to other system artifacts,
as described in Section 6.1. This could restrict the range of data selection, as well
as the select data was built based on a meta model where a system could be define
only according to this meta model, which mean that the meta model could restrict
our data. Second, random selection, the selection of our data had four limitations.
These limitations are the data come from one company, the data come from one in-
dustry, the data are versions of same system, and the data stored in SystemWeaver
according to specific meta model.

On the other hand, we overcome other statistical conclusion threats, such as vi-
olated assumption of statistical test and unreliability of measures. Starting with
statistical assumption, we make sure that all our assumption about the data are
correct, by applying several statistical test, i.e., normality test, linearity test, etc.
as discussed in Sections 6.3 & 6.2. Moving to, unreliability of measures, we ensure
that our measurement is accurate and correct using three practises. First, review
the related work to make sure that the applied metrics measure what it is intended
to measure. second, interviewing both Systemite’s experts (application engineers
from the platform development site) and SystemWeaver’s users (system developers
from the automotive company where our data comes from), in these interviews we
presented our work, described our assumption, and collecting feedback. Finally, tool
validation by comparing the results of our work with other tool that offer similar
functionality, for example SystemWeaver’s script language to validate the metrics
results and SPSS to validate the statistical result.

3.3.4 Construct Validity
Construct validity means how well a test or tool measures the constructs that it
was designed to measure [52]. As mentioned before we make sure that our metrics
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measure exactly what they intend to measure, to do that we used both human
expertise and tool support as described in Section 5.3.1.
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Metrics

This chapter presents the design metrics. These metrics were implemented in our
work, in order to investigate the relation between design attributes and its relation
to generate fault. The chapter organized as follows, Section 4.1 presents system
metrics. Section 4.2 presents component metrics. Section 4.3 presents requirement
metrics. Section 4.4 presents testing metric. Finally, Section 4.5 presents combined
metrics.

Foreword
In our work, the metrics selection method is based on three parts. The first one
is to study earlier academic work [11], [18], [20], [21], [22], [26], [19], [29], [19] [30],
[31], [32], and [33]. The second is to get best practice from ongoing and completed
projects at Systemite [6] and [48]. The third is the attribute of the studied data [43],
as descried in Section 5.1.1. Provided that, we select 19 metrics, which divided later
into four main categories, in addition to fifth one where we combined metrics from
the previous four main categories. Those metrics categories are system, component,
requirement, testing, and combination categories.

4.1 System Metrics
In this section, we presents three system metrics that we implemented to mea-
sure the complexity, weight, and size of the system. These metrics are cyclomatic
complexity, weight(number of function, requirement, and edge), and size(number of
components).

4.1.1 Cyclomatic Complexity
Cyclomatic complexity(CC) is a software metric, used to indicate the complexity of
a program. It counts the number of independent path through a system [23]. The
higher number mean more complex system, also it could be used to give an indicator
about the number of test cases needed to cover the system.
In other words, the relation between system modules, represents the design struc-
ture also define the overall design complexity. McCabe et al. [22] concluded that,
quantifying the complexity of a system design provide the designer a metric, could
forming a significant management tool. Many following studies, support this claim
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and provide statistical evidence for that. For instance Jiang et al. [19] and Rathore
et al. [11]. The formula of calculating cyclomatic complexity is [23]:

CC = E −N + 2P (4.1)

Where:

• E = the number of edges of the graph.
• N = the number of nodes of the graph.
• P = the number of connected components.

4.1.2 Weight

A research made by Chidamber et al. [20] addresses the need for design metrics, by
proposing a suit of metrics contended six metrics one of them was Weighted Methods
Per Class (WMC), which is the number of method implemented by a class. Their
intention to define this metric is to address two points. The first one is number
of method in a class could give an indicator of resources needed to develop and
maintain. The second one, large number of method in a class will affect its child,
since child will inherit those methods. Also, the large size will affect the possibility
of reuse, since it is more application specific [20]. We implemented three weight
metrics measure number of system function (methods), number of requirements,
and number of edges, as described in Table 4.1.

System Metrics Description
Number of functions The number of functions per system or sub-system. In

our work, Function : is an artifact that specifies and
represents an end user task.

Number of requirements The total number of requirements per a system. In
our work, Requirement : is an artifact that specifies
behavior or function of a system.

Number of edges The total number of edges per system. In our work,
Edge : is an artifact that connect two components to-
gether, by connecting a component out port with other
component in port.

Table 4.1: System weight metrics.

4.1.3 Size

As in source code metric we have a number of line code (LOC) as a measurement
of system size, number of component per system is a similar metrics but on design
level. It gives an indicator about the size of a system, whereas large size means more
complex and higher probability to find error comparing to small size [18].
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4.2 Component Metrics
There are several types of component metrics, which measures the component from
different perspective. For example, the number of component incoming ports, or the
component interaction. In this section we present two types of component metrics,
which we implemented in our work, which are interaction (component interaction,
actual interactions, and total interactions performed), and weight (number of in
port, out port, total port, requirement, responsibility, and function).

4.2.1 Interaction
Interaction metrics are aimed to measure the communication between a component
and other surrounding components. Chen et al. developed many different types of
component interaction metrics [18]. We implemented three of them in our work,
which are component interaction, actual interactions, and interactions performed
metric.

4.2.1.1 Component Interaction

Component interaction metric(CI) measures a component interaction in individual
level. It is defined to compute the ratio of dividing the number of component
incoming ports by the number of outgoing ports. The formula is [18]:

CI = I

O
(4.2)

Where:

• I = The number of a component’s incoming ports.
• O = The number of a component’s outgoing ports.

4.2.1.2 Actual Interactions

Actual interactions metrics (AI) measures the interaction intensity among the whole
components. By measuring the actual component interaction comparing to the
maximum interaction among the whole system components. The formula is [18]:

AI = I +O

I.Max+O.Max
(4.3)

Where:

• I = The number of a component’s incoming ports.
• O = The number of a component’s outgoing ports.
• I.Max = The maximum number of a component’s incoming ports over a whole

system.
• O.Max = The maximum number of a component’s outgoing ports over a whole

system.
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4.2.1.3 Total Interactions Performed

Total interactions performed metric (TIP) measures the ratio of actual interaction
divided by the total number of components in a system. The formula is [18]:

TIP = AI

C
(4.4)

Where:

• AI = The actual interactions (Equation 4.3)
• C = The total number of system components.

4.2.2 Weight
In like manner to what we did in system weight metrics (section 4.1.2)but this time
in component level, we implement six component weight metrics, which presents in
Table 4.2

Metrics Description

Number of in port

The number of incoming ports per component.
In our work, In port : is an interface that allows
component to receive information, i.e., signal,
from other component.

Number of out port

The number of outgoing ports per component.
In our work, Out port : is an interface that allows
component to send information, i.e., signal,
to other component.

Number of ports The total number of ports per component. In our work,
Total ports = incoming ports + outgoing ports.

Number of requirement
The number of requirement per component.
In our work, Requirement : is an artifact that
specifies behavior or function of a component.

Number of responsibility
The number of responsibilities per component.
In our work, Responsibility : is an artifact that
is responsible for one part of the component’s job.

Number of function
The number or functions per component.
In our work, Function : is an artifact that
specifies and represents an end usertask.

Table 4.2: Component weight metrics.

4.3 Requirements Metrics
Requirement management is an essential part of system development process. An
empirical study tested many projects from different organization, showed that more
than 50% of defects generated from requirement phase [29]. Another research
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claimed that measurement is essential to ensure the quality of requirements to sup-
port the rational management decisions [26]. The software community has developed
a large number of requirements metrics to ensure high quality requirements and mea-
sure the requirements attributes.

Jiang in his research investigated how to use requirement metrics in early stage
of development process to insure the quality of the system and predict fault. He
used several requirement metrics, and concludes that using textual description of
requirement alone could not be a good enough indicator to detect defects, comparing
with use those metrics together with other design metrics [19].

In our work, we implemented two requirement metrics, both of them are quanti-
tative based metrics, taking the advantages of the availability of traceability data.
We left the requirement textual interpretation metrics for future work, based on the
available resources for this thesis project. The implemented metrics are number of
sub-requirements per requirement and number of linked components metrics.

4.3.1 Sub-Requirements per Requirement
It measures the number of sub requirements per a requirement. This metric could
have other uses beside fault prediction, such as defining the weight of the parent
requirement, assessing the re-usability, and evaluating the changeability.

4.3.2 Number of Linked Components
It measures the number of different components that use the same requirement. For
instance, this metric will be equal to one if the corresponding requirement is used
by one component, and five if it is used by five different components.

4.4 Testing Metrics
Testing is one of the most important procedures in quality assurance process. How-
ever, it is a costly process and it requires special skills. Moreover, some defects are
very hard to discover, and with time they become very costly to fix [16]. In our
work we implemented three testing metrics, which are total number of test cases,
number of passed test cases, and number of failed test cases. In the light of these
three metrics we can extract more metrics, i.e., percentage of failed test case by
dividing the number of failed test case by the total number of performed test case
for a specific system artifact.

4.4.1 Number of Test Case
It measures the total number of performed test cases on a system artifact, i.e,
component or requirement, or on a whole system, regardless the result of the test
case.
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4.4.2 Number of Passed Test Case
It measures the number of passed test case, which performed on a system artifact
or a whole system.

4.4.3 Number of Failed Test Case
It measures the number of failed test case, which performed on a system artifact or
a whole system.

4.5 Combination Metrics
Every single metric has its own value, however combining them together creates
a benefit that cannot be obtained by any individual one. Many researchers inves-
tigated the synergy between metrics, for instance, Hristov et al. [21] developed
a re-usability model, by forming a single metric measures several factors influenc-
ing the component re-usability, which are reuse, adaptability, price, maintainability,
quality, complexity, documentation, and availability.

Another example is to use complexity and testing metrics together to measure how
well a system is tested. Given that cyclomatic complexity metric may give an in-
dicator about the number of test cases needed to cover the system [23], along with
testing metrics like total number of test case performed, a system stakeholders could
have a better understanding about the system quality and testing progress.
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This chapter describes the software that was implemented. The development work
could be divided into two stages. First, preparation of the study and data cleaning
using Xpath expression, as shown in Section 5.2. Second, implementation of the
study using C# WPF, as shown in Section 5.3. The chapter begin with describing
the hosting company and their platform. Then, it describes the use of Xpath ex-
pression to define design metrics and filtering our raw data [6]. Finally, it presents
the tool implementation, which has been used to extract the data and build our
data set, we called it SmartTrace [39].

Foreword
All data used in this project had been provided by two Swedish automotive com-
panies and it is based on SystemWeaver platform deployed to different types of
vehicle. In order to perform the measurements and present their results, a tool has
been implemented which is able to apply the design metrics, described in Chapter 4,
analyse the results of the metrics by applying statistical test, and visualized their
result. The ultimate goal is to build a decision support system based on historical
product data, which guide the system developer during the design process [39].

5.1 Systemite AB
In this section, we introduce our partner Systemite AB [44], and their platform Sys-
temWeaver [43]. SystemWeaver is the systems engineering platform that we use to
conduct this thesis project, where all the raw data were stored in this platform.

SystemWeaver is an information management platform solution for systems engi-
neering and software development [43]. SystemWeaver is developed by Systemite
AB [44], a Swedish software development company located in Gothenburg with one
branch on Stockholm and two representations, in Republic of Korea and China.
SystemWeaver allows user to design system in different abstraction level and keep
traceability between all system artifacts, create product specifications, managing
requirement, generate reports, managing version and configuration, and testing so-
lution. In addition, it supports work with product lines including feature models,
defining various models and their variability. SystemWeaver has been used by dif-
ferent companies for approximately 15 years, which create a huge data repository.
The goal of this master thesis is to use this data, as well as the platform’s powerful
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to investigate the relation between system design artifacts, as well as information
from individual artifacts, and software faults, using the traceability link between
requirement, design, and test.

5.1.1 SystemWeaver’s Architecture
SystemWeaver is a model driven development environment where data is ruled by a
strong meta model that specifies how models could be built. The strong meta models
in SystemWeaver means that user could not do anything that is not explicitly allowed
by the meta model [43]. Figure 5.1 shows the meta model for SystemWeaver’s
conceptual architecture, which includes the following [49]:

• Object: it represents all references based on using IDs, i.e., part reference type.
• Generic node: it is a built-in support for structured model(classical product

data management), i.e., test specification result.
• Item: it is a basic reusable artifact in SystemWeaver, i.e, function, use case,

signal, and requirement.
• Part: it is a relation from one item to another, i.e., send poert, receive port,

and sub-function.
• Attribute : it is a typed values that are unique to an item, i.e., ID, name, and

status.

Figure 5.1: SystemWeaver’s conceptual architecture meta model.
Source: Systemite AB, SystemWeaver’s help documentation.

Similarly, Figure 5.2 shows the meta model for SystemWeaver’s testing and verifi-
cation, which includes the fowling [49]:

• Test suite: it is the higher abstraction level of testing, which includes a col-
lection of test cases intended to test a behavior or a set of behaviors of an
abstract artifact.
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• Test: it is a part of test suite point to a system under test.

• Test scope: it describes specifically what the test intended to accomplish.

• Test specification: it includes both test cases and test specification require-
ment.

• Test case: it is an artifact intended to test part of system behaviors.

• Abstract artifact: it is a system under test.

• Requirement: it is a test specification requirement, which the test case intented
to test.

Figure 5.2: SystemWeaver’s testing and verification meta model.
Source: Systemite AB, SystemWeaver’s help documentation.

Moving to traceability in SystemWeaver, the traceability data takes different forms,
as shown in Figure 5.3 [39]. First, it includes the relations (called T.W in the
figure) between the product artifacts at the same abstraction level, for instance,
the traceability links between a software component, its requirements, and test case
validating the component’s behavior. Second, SystemWeaver also maintains the
relations (T.L in the figure) between the product artifacts on different abstraction
levels, i.e., the traceability links between analysis level and logical design level.
Finally, the traceability information could include the relations (T.V in the figure)
between product versions, i.e., the traceability links between Version 1 and version
2.
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Figure 5.3: SystemWeaver’s traceability between system artifacts, abstraction
level, and versioning

5.1.2 SystemWeaver’s Models

SystemWeaver has many models supporting the development management process,
as present in Figure 5.4 . These modules applied on different level of production
process. For instance, feature model describes the features that a product could
support. While design model contains the superset of all available components that
could be included in a product with possibility to automatically generate the spec-
ification of a product, by identifying the way that a component relates to features.
Another model is requirement management model, which manages all activities re-
lated to product requirement, for example versions, configuration, attributes etc.
Also, the platform support both failure mode and effects analysis (FMEA) and
fault tree analysis(FTA). Moving to hardware management, the hardware represen-
tation model containing a superset of hardware component (ECUs), where network
design model manage the communication between ECUs through signals. Moreover,
the platform offers a collaboration with other environment, For example automo-
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tive open system architecture(AUTOSAR) model support mapping a component’s
interfaces to defined data types for this Autosar system, requirements Interchange
Format (ReqIF) model allowing to export any SystemWeaver model to the ReqIF
format and DBC model allowing to store all information that describes the network
.

Figure 5.4: SystemWeaver’s integrated embedded systems development process.
Source: Systemite AB, SystemWeaver’s help documentation.

5.2 Xpath Expression

XML Path Language (XPath) 2.0 became a W3C recommendation 2010 [50]. XPath
is a specialized query language that can express selection criteria of nodes of an XML
document, typically from within an XML style sheet. The selection criteria include
the path to traverse in the structure of the document, and additional tests and
predicates that must be fulfilled for the selected nodes [6]. The way XPath is used
is by :

• Selecting the sets of nodes in the XML document that are relevant for the
specific metrics.

• Performing arithmetic operations on the quantities defined by the sets.
SystemWeaver uses language is an XML-based language created to be used by built-
in components such as a report generator and a graph generator to extract infor-
mation from the system. For example, user with architectural privilege could built
a report to serve specific purposes, for instance product specification report, this
report will be used later by other user to generate a product specification at any
point of the development process, even if some requirements or design change, the
generated report automatically will includes all those changes.

At the first stage of our implementation we used this script language to get bet-
ter understanding about the studied data, cleaning the data, define design metrics,
and visualize the result. Figure 5.5 shows an example for implementing four metrics
using XML path language in SystemWeaver, and Figure 5.6 shows how the result of
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one of these metrics is presented in a grid view format. The result of those metrics
could be presented in different format, such as report and graph.

Figure 5.5: Metrics implemented in SystemWeaver.

Figure 5.6: Grid view for weight metric in SystemWeaver.

Using Xpath to define design metrics has several advantages as we reported in [6],
those advantages are:

• The XPath expressions can be expressed according to the meta-model of the
used architecture language, meaning that the correctness of the expressions
can be validated statically.

• The XPath language is standardized, technology independent, mature and
wide spread.

• A tool implementation of the method may directly interpret and execute the
XPath expressions. This makes it easy to try different metrics expressions in
the tool implementation, without changing the tool itself.
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In addition to these advantages, the implementation of the support for XPath has
taken benefit from the fact that XPath supports the selection of sets of elements,
thus making it suitable for interactive analysis and traceability between the visual-
ization of the metrics and the underlying data.

On the other hand, there is some natural limitations and disadvantages of using
XPath, as we report in [6], and this was the motivation for us to move to the second
implementation stage, as described in section 5.3. The limitations of using XPath
are the following[6]:

• The approach is likely feasible only for those cases where the language is
expressed as XML, specifically, that the schema is a reflection of the used
meta-model.

• Given the declarative characteristics of the language it is likely that not all
types of metrics can be defined easily in the language.

5.3 SmartTrace

The second stage of our implementation after using Xpath was to build a tool, we
called it SmartTrace, in order to perform the measurements, present their results
in interactive way,visualized the result, analyse the result internally by allowing the
tool to implementing the basic statistical methods, and overcome the limitation of
using Xpath. This tool ables to apply the design metrics described in Chapter 4, as
well as, it is capable to implements a wide range of quantitative metrics, because
we developed the basic functions that allows the tool to expand. The ultimate goal
is to build a decision support system based on historical product data, which guide
the system developer during the design process [39]. In this master thesis we build
the basic blocks for this model by develop this tool as a seed for the model. At the
same time, the tool was used to investigate our research question and validate our
hypothesis.

SmartTrace uses SystemWeaer as a data model to retrieve the raw data, where
the studied data is stored in SystemWeaver as mentioned before. The connection
between SmartTrace and SystemWeaer was build using SystemWeaver’s API (ap-
plication program interface), as shown in Figure 5.7. The API specifies how Sys-
temWeaer’s components should interact between each other, as well as how they
interact with other external software components. To run SystemWeaver two things
are required, first SystemWeaver’s server, second SystemWeaver’s client. Starting
with the SystemWeaver’s server part, many pre-requirement should be meet to run
the server, which are [49]:

• swTestServer.exe, it is a server application developed by Systemite, that allows
user to configure a connection, by choose port, IP, database file repository and
SSL (Secure Sockets Layer).

• A database, i.e., SQL Server
• ssleay32.dll, it is a library developed by The OpenSSL and part of The OpenSSL

Toolkit.
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• libeay32.dll, it is a library that contains encryption functions which allow for
coded communications over networks.

Moving to SystemWeaver’s client part, several requirement should be exist as well,
such as [49]:

• .NET Framework 4
• SystemWeaverClientAPI.dll, it is a library developed by Systemite and offer

the basic function and methods, i.e., connection with the server, get item, and
get attributes of an item.

Figure 5.7: Interaction between SystemWeaver and SmartTrace.

For the sake of statistic we used MathNet [51] library, which offers a wide variety
of statistical methods, i.e., linear regression and correlation as shown in Figure
5.8. MathNet library allows us to implemented a basic statistical test inside our
tool, without the need to export the data to other statistical packages, i.e., SPSS
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(Statistical Package for the Social Science). Provided that our model become more
capable stand alone tool, keeping in mind our ultimate goal to build a full decision
support system we implement several methods that we did not used in this thesis.
However, for this thesis we Kept using SPSS, because it performs a highly complex
data manipulation and analysis, as well as to test our tool, by comparing the result
of the tool and SPSS to validate the tool.

Figure 5.8: SystemWeaver and MathNet APIs.

To give a feeling about the tool and how it works the following figures (Figure 5.9,
Figure 5.10, and Figure 5.11) included. They show an example for some of the tool
functionalists, Figure 5.9 shows test cases results statistics. It presents how many
test cases applied on a system, with further classification based on the test case
result, for instance, how many test cases passed, failed, or not complete. Moreover,
the tool offer further classification based on the type of system artifact. For example
how many test cases applied on requirement, component, etc. This form could be
used by system tester to see which system artifact could generate a higher number
of fault to use this information in testing prioritization process, as well as it could
be used to evaluate the system quality, contracting, progress measurement,.. etc.
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Figure 5.9: Test case results statistic.

Moving to Figure 5.10, which shows how the result of component metrics presents
in an grid view format. More precisely, it shows the result of computing component
metrics, described in section4.2, where every row of the grid represent one compo-
nent and the columns show component id, name, version number, number of the
component passed test cases, number of the component failed test cases, number of
the component not completed test cases, percentage of failed test cases (equation
6.1) and the rest of the columns show the result of the metrics, i.e., number of in
port, number of out port, and component interaction.

Figure 5.10: Tool implementation for component metrics.

Finally, Figure 5.11 shows part of the tool statistical functionality. It presents an
example for one of a nonparametric measure of statistical dependence between two
variables (metrics result and percentage of failed test cases). User can select a metric
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to calculate it’s correlation with test case result, and even generate a Scatter plots
to show how much one variable (metrics result) is affected by another (test case
result).

Figure 5.11: Tool implementation for the correlation between metrics and test
case results

5.3.1 Implementation Validation
The Implementation stage was one of the most critical stage in this project, since any
wrong assumption could drive a incorrect conclusion. Especially with a very large
data size, which came from different source. To ensure that our implementation and
assumption are accurate we followed several procedures, which are:

• Manual checks by comparing the tool result with the raw data using Sys-
temWeaver’s views and graphs.

• Xpath checks by applying Xpath queries on the same data and compering its
result with the tool result.

• SPSS checks to validate the tool statistical part by comparing the tool statis-
tical result with SPSS result for the same data.

• Expert checks by interviewing Systemite application engineers, as well as ex-
pert user from customer side.

Consequently, we modified and improve the tool based on feedback and recommen-
dation from the validation team.
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6
Results

This chapter summarizes the outcome of performing the case study, by presenting
and interpreting the measurement result, which is crucial for understanding the im-
pact of design attributes in generating faults. First, the data collection process pre-
sented in Section 6.1. Second, descriptive statistics described in Section 6.2 .Then,
inferential statistics described in Section 6.3. Finally, the data analysis discussed in
Section 6.4.

6.1 Data Collection

In this process we collect and measure information on targeted variables, in order to
to answer the relevant research questions and hypothesis, and evaluate the outcomes.
The study domain is automotive industry, we examine three raw data provided by
two Swedish automotive companies and stored in SystemWeaver. The process of
data collection divided into two rounds. To move to the second round, the data
should meet certain criteria. In the first round we measure the following attributes:

1. Size of the data, i.e., system size (number of requirement, component, etc.)
2. Availability of test case result.
3. Availability of traceability data.

To do that we used XPath expressions [6], the result of this round was to exclude
two data out of three, and include one data which contains 40 versions of the same
system, that have been developed over more than five years. In the second round,
farther filtration was applied, based on the following criteria:

1. The completeness of traceability data, as described in Section5.1.1 (Figure
5.3).

2. The coverage of test cases (the number of test cases applied on a system).
The final result was 12 versions of the same system, these versions had tested both
system requirement and component, except one version that tested only system
requirement. Since, we used 12 versions to validate the requirement metrics category,
and 11 for component metrics category. The overall characteristics of all versions
are the fallowing :

• Average number of components = 144 Components.
• Average number of requirements = 245 Requirements.
• Average number of test cases = 23127 Test cases.

– Average number of passed test cases = 14858 Test cases.
– Average number of failed test cases = 719 Test cases.
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6.2 Descriptive Statistics
This section summarize and describe the evaluable data, which has been collected
from a historical record of a Swedish automotive company and stored in SystemWeaver.
To extract the data and implement our measurements we built SmartTrace, this tool
uses the data available at SystemWeaver as an input and measures the system design
attributes as an output, with the ability to visualise and analyse the result. The
rest of this section is organised as following, Section 6.2.1 presents the normality
check, and Section 6.2.2 presents the Linearity check. Section 6.2.3 describes the
correlation between design metrics and the failed test cases. Finally, Section 6.2.4
presents the deference between the mean for the failed and passed test cases with
respect to the applied measurements.

6.2.1 Normality Test
Normality is one of the most common assumption made in the development and
use of statistical technique [1]. In parametric testing the underlying assumption of
normal data is required, Unlike the non parametric testing [2]. There are several
methods to evaluate the normality, i.e., numerically and graphically. We applied
the graphical method by visualising the destitution of the data using histogram and
Boxplot charts. Figure 6.1 shows two example for the nature of the data that we
have, it shows the results of two metrics (number of component in port and out port
metrics ).

Figure 6.1: Histogram of in ports and out ports metrics data

In general our data was not normally distributed, this affects our decision for select-
ing the type of the correlation test to be use. Accordingly, non parametric testing
was selected.

6.2.2 Linearity Test
Testing the linearity is required because regression, correlation, and other parts
of the general liner model assume liner relation between the dependent and non-
dependent variables [3]. There are many methods to assess the linearity, for example,
graphically and numerically. For our data we used both the graphical and descriptive
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methods. Figure 6.2 presents an example for the graphical linearity test (Scatter
Plot) illustrate the relation between the total interaction performed metrics and the
percentage of failed test cases.

Figure 6.2: Scatter Plot for the total interaction performed metrics and the per-
centage of failed test cases.

Generally speaking, our data did not show a linear relation between the applied
metrics and the failed test cases. Accordingly, non parametric testing was selected.

6.2.3 Spearman’s Correlation
Spearman’s correlation is a nonparametric, distribution-free, rank statistic proposed
by Charles Spearman as a measure of the intensity of an association between two
variables [4]. It is applicable when Pearson’s assumption are violated. The Pearson’s
assumption are both variables must be normally distributed, random selection of the
sample, the observations are independent, the relation between the two variables is
linear, and the variance is constant over the whole data [5]. As mentioned in the
previous two subsection, our data violates the Pearson’s assumption, which make
Spearman’s correlation is best choose to be use. Our metrics had divided into four
categories, which are system, component, requirement, and testing. The following
three tables show the Spearman’s correlation between each metrics category and
the percentage of failed test cases. The percentage of failed test cases (RerFTC) is
defined as following:

RerFTC = NumberofFailedTestCases

TotalNumberofPerformedTestCases
(6.1)
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We divide the correlation degree into three levels weak, medium, and strong as
shown in Table 6.1 [58], and apply Spearman’s correlation on the three metrics
categories,which are system, component, and requirement metrics as described in
the following subsections.

Weak Medium Strong
ρ 0.2-0.4 0.4-0.6 0.6-1.0

Table 6.1: Correlation degree categories

6.2.3.1 Correlation at System level

In system category we applied five metrics, which are size, cyclomatic complexity,
number of functions, number of requirements, and number of edge, as described on
Chapter 4 (Section 4.1). Our intention is to investigate the relation between the
previous metrics and system fault. In this category, we had two problems, first the
sample size, which is 12, second the selection of the sample was not random, where
all samples are versions of the same system. Accordingly, we could not drive any
conclusion based on the available data. But, still this data could be helpful for future
investigation, where more raw data could be include. On the other hand, this data
can be use to investigate the relation between the system faults and changes over
time. The following line chart, Figure 6.3, shows how the test case results have been
changed over 12 versions, the X axises represent the version number, the Y axises
represent the number of test cases, and the lines illustrate how passed, failed, not
available, total number, and percentage of failed (Equation 6.1) test cases changed
over versions.

Figure 6.3: Test case results changes over versions

Similarly, Figure 6.4 describes how the test cases result have been changed over 5
years.
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Figure 6.4: Test case results changes over time

6.2.3.2 Correlation at Component Level

In this category we calculated the Spearman’s rank correlation coefficient between
the percentage of failed test cases and nine of the component metrics, described on
Chapter 4 (Section 4.2), only over 11 system versions, since one version out of 12
versions was not tested on component level, as shown in Table 6.2. The horizontal
table line represents the system version under test, in this case we have 11 versions
encoded v1 to v11. Also, the sample size (number of components) shows under the
version number, i.e., N= 28. On the other hand, the vertical table line represents
the component metrics. Finally the table cells resulting from intersecting the system
versions row and component metrics column shows the correlation result between a
component metrics and the percentage of failed test cases in specific system version.
For instance, the table cell(1,1) value is 0.842**, that means in system version-1, the
Spearman’s rank correlation coefficient between the percentage of failed test cases
and number of component in port equal to 0.842**. By reference to the correlation
degree categories table, Table 6.1, the number of in port metrics shows a strong
correlation to the percentage of failed test cases in system version 1. Similarly, the
rest of the table cell are filled in.
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Spearman’s correlation (ρ)

Metrics V1
N=28

V2
N=29

V3
N=31

V4
N=31

V5
N=38

V6
N=39

V7
N=39

V8
N=27

V9
N=49

V10
N=49

V11
N=51

Number of
In Port ,842** ,104 ,445* ,102 ,227 ,322* ,177 ,300 ,288* ,374** ,112

Number of
Out Port ,291 -,096 ,393* -,054 ,236 ,382* ,230 ,159 ,356* ,315* -,086

Total Number
of Ports ,943** -,030 ,420* ,003 ,237 ,361* ,211 ,205 ,288* ,336* -,003

Interaction ,715** ,133 ,421* ,006 ,099 ,143 -,004 ,162 ,070 ,204 -,186
Actual
Interactions ,943** -,030 ,420* ,003 ,237 ,361* ,211 ,205 ,288* ,336* -,003

Total
Interactions
Performed

,943** -,030 ,420* ,003 ,237 ,361* ,211 ,205 ,288* ,336* -,003

Number of
Requirements ,569** ,016 ,655** ,163 ,000 ,586** ,412** ,261 ,275 ,280 ,133

Number of
Responsibility ,732** ,236 ,450* ,353 ,134 ,090 ,031 ,419* ,126 ,047 ,065

Number of
Function ,643** ,148 ,550** ,158 -,044 ,410** ,420** ,299 ,287* ,334* ,079

Table 6.2: Spearman’s rank correlation coefficient between percentage of failed
test cases and component metrics.

In short, every component metrics had been tested(correlated to the percentage of
failed test cases) over 11 versions of the system, according to our assessment of
the correlation degree, shown in Table 6.1, a summary table was built, Table 6.3,
shows the number of correlation occurrence over 11 version, based on our estimate of
correlation degree. The interpretation of this table along with other analysis parts
presented in Section 6.4

Number of existing Spearman’s correlation
over 11 system versions

Metrics Strong
(ρ = 1.0 − 6.0)

Medium
(ρ = 0.6 − 0.4)

Weak
(ρ = 0.4 − 0.2)

Result
(Correlation exist)

Number of In Port 1 1 3 5 /11
Number of Out Port 0 0 3 3 /11
Total Number of Port 1 1 3 5 /11
Interaction 1 1 2 4 /11
Actual Interactions 1 1 3 5 /11
Total Interactions Performed 1 1 3 5 /11
Number of Requirements 1 3 0 4 /11
Number of Responsibility 1 3 0 4 /11
Number of Function 1 3 2 6 /11

Table 6.3: Summary of the Spearman’s correlation exists between component
metrics and the percentage of failed test cases over 11 system versions.

6.2.3.3 Correlation at Requirement Level

In this category we calculated the Spearman’s rank correlation coefficient between
the percentage of failed test cases and two of the requirement metrics, Chapter 4
(Section 4.3), over 12 system versions. Similar to what we did in component metrics
category in the previous section, the correlation table built, Table 6.4, it shows
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the relationship between the dependent and independent variables. The horizontal
table line represents the system version under test, in this case we have 12 versions
encoded v1 to v12. Also, the sample size (number of requirement) shows under the
version number. The vertical table line represents the requirement metrics. Finally
the table cells resulting from intersecting the system versions row and requirement
metrics column shows the correlation result between a requirement metrics and the
percentage of failed test cases in specific system version.

Spearman’s correlation (ρ)

Metrics V1
N=97

V2
N=108

V3
N=116

V4
N=94

V5
N=152

V6
N=199

V7
N=197

V8
N=104

V9
N=228

V10
N=27

V11
N=49

V12
N=243

Number of
Linked Components -,026 -,026 -,013 -,170 -,076 -,076 -,143* -,103 -,007 ,051 ,022 ,022

Number of
Sub-Requirements -,082 -,084 -,143 ,106 ,170* ,168* ,031 ,322** ,130 -,014 ,132* ,223**

Table 6.4: Spearman’s rank correlation coefficient between percentage of failed
test cases and requirement metrics

To put it differently and by referring to Table 6.1 a new table created, Table 6.5, to
summarize the relation between the percentage of test case failed and requirement
metrics. The interpretation of this table along with other analysis parts presented
in Section 6.4.

Number of existing Spearman’s correlation
over 12 system versions

Metrics Strong
(ρ = 1.0 − 0.6)

Medium
(ρ = 0.6 − 0.4)

Weak
(ρ = 0.4 − 0.2)

Result
(Correlation exist)

Number of
Linked Components 0 0 1 1 /12

Number of
Sub-Requirements 0 1 4 5 /12

Table 6.5: Summary of the Spearman’s correlation exists between requirement
metrics and the percentage of failed test cases over 12 system versions

6.2.4 Mean Difference
To build a confidence interval, we need to be knowledgeable about the variability
of the samples mean differences. For this reason, it is common for a researcher to
be interested in the difference between means than in the exact values of the means
themselves[7]. In order to visualise the mean of sample, as well as, the difference
between means we generate a blot box for every calculated metrics in each system
version. For instance, in system version one we generate the blot box related to
number of component in port metric, where we compered the means between healthy
component( the component that passed all test cases ) and the defect component
(the component that failed one or more test cases) as shown in Figure 6.5. The figure
shows that the mean of the in port number in healthy component equal to 3,100 ,
where the mean of the in port number in defect component equal to 3,333. Which
mean the difference mean between the healthy and defect equal to 0.233. Similarly,
the mean difference of the other metrics were computed for the two groups (the
healthy and defect artifacts) and reported in the Section 6.4.

43



6. Results

Figure 6.5: The in port mean difference between the healthy and defected compo-
nent.

6.3 Inferential Statistics
To generalize our finding, we use inferential statistics to make assessments of the
possibility that our observations from the sample data could be correct for the whole
population, and they did not happen by chance in this study. For this reason, we
applied a non-parametric method, which is Mann–Whitney U test(Wilcoxon rank
sum test), provided that the nature of the evaluable data.

6.3.1 Mann–Whitney U Test
It is often hard to have access to large normally distributed samples. Fortunately,
there are a bunch of alternative ways to compare two independent groups that do
not require perfect normally distributed samples. The MannWhitney U is one of
these alternative way tests [38]. In our case, the dependent variables are the metric
results, and the independent variables (grouping variables) are the healthy and defect
artifacts. We encoded the independent variables as following:

• 0 = Healthy artifact (the artifact passed all test cases )
• 1 = Defect artifact (the artifact failed one or more test case(s) )

The test carried out based on the the following assumptions using SPSS and the
result reported in Figure 6.6 describes bellow :

• H0: The distribution of scores for the two groups are equal, in other words,
the samples of the both groups came from the same population) [38].

• HA: The distribution of scores for the two groups are not equal [38].
• P-Value = 0.05.

Figure 6.6 shows Mann Whitney U test between two independent variables(grouping
variables), which are the healthy and defect component, and dependent variables,
which are the component metrics result, with significance levels of 0.05, in a two tail
test the following resulted from this test and summarized in Figure 6.7 :

• P-value > 0.05 (retain the null hypothesis)
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– There is no significant difference between healthy and defect component
in terms of the number of out ports.

– There is no significant difference between healthy and defect component
in terms of the component interaction.

• P-value < 0.05 (reject the null hypothesis)

– There is a significant difference between healthy and defect component
in terms of the number of in ports.

– There is a significant difference between healthy and defect component
in terms of the total ports number(In and out ports).

– There is a significant difference between healthy and defect component
in terms of the actual interactions.

– There is a significant difference between healthy and defect component
in terms of the total interactions performed.

– There is a significant difference between healthy and defect component
in terms of the Number of requirement.

– There is a significant difference between healthy and defect component
in terms of the Number of responsibility.

– There is a significant difference between healthy and defect component
in terms of the Number of function.

Figure 6.6: Mann Whitney U test between two independent groups(healthy(0)
and defect(1) component) and component metrics
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Figure 6.7: Hypothesis test summary for the two group(healthy(0) and defect(1)
component metrics

In like manner to what we did in component metrics, we applied Mann Whitney U
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test on requirement metrics as well. Coupled with the same assumption of hypothe-
sis, significant level (P = 0.05), and test type(two tail) in component metrics. Using
SPSS the test result reported in Figure 6.8. The Figure shows the Mann Whitney U
test between two independent variables(grouping variables), which are the healthy
and defect requirement, and dependent variables, which are the requirement metrics
result. The results were as the following, they are summarized in Figure 6.8 as well:
P-value < 0.05 (reject the null hypothesis)

• There is a significant difference between healthy and defect requirement in
terms of the number of sub-requirement.

• There is a significant difference between healthy and defect requirement in
terms of the number of components linked to a requirement.

Figure 6.8: Mann Whitney U test between two independent groups(healthy(0)
and defect(1) component) and requirement metrics

Figure 6.9: Hypothesis test summary for the two group(healthy(0) and defect(1)
requirement metrics

6.4 Data Analysis
This section reporting and discussing our findings. In this project we investigate
whether the relationships between requirements and design artifacts, as well as, in-
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formation from individual artifacts, can be leveraged to predict software faults. In
order to do that we measured different aspects of requirement, component, system,
and test cases, taking the advantages of the existing traceability data, which allowed
us to to track the faults in both ways, forward and backward, and investigate the
cause of the fault in quantitative method. With this intention, we divided the met-
rics into four categories, as shown in Chapter 4 and investigated each category along
with the associated test case suite. By applying both the descriptive statistics and
inferential statistics on the available data we reach the following results:

In system category, we had two limitations, in the first place the sample size was
only 12 samples, second all these samples are a versions of the same system, which
inconsistent with the condition of random sample selection. Under those circum-
stances, we could not tell if the system design attributes, like a system complexity,
size, weigh (number of requirement, number of method, number of edge, etc.) can
be leveraged to predict software faults. Consequently, we were unable to prove our
first hypothesis, which is " A higher- complexity system design has a higher fail-
ure rate.". However, difference in means across the 12 versions of the system gives
an indicator that system versions with higher complex design have a higher failure
rate. Although this may be true, but still there is no enough statistical evidence
to support our claim. Accordingly, more data is needed to validate our hypothesis,
which we consider in our future plan, due to unavailability of more data in this thesis.

Moving to component category, we applied nine metrics measure three attributes of
a component, which are wight (in port, out port, total port, and requirement), inter-
action(component interaction, actual interaction,and total interaction performed),
and load (number of component responsibility and number of function). Based on
the results of the previous statistical tests and the provided data, we found that
component design attribute can be leveraged to predict software faults, more pre-
cisely, each of the following component attribute shows a correlation to component
faults. The degree of the correlation was different among them, so the following
order present them from strongest(1) to weakest (3):

1. Number of function.
2. Number of requirement and number of responsibility.
3. Actual interaction, total interaction performed, in port, and total number of

port.
Accordingly, we could accept our second hypothesis, which is "Software components
that have a higher interaction with other component have a higher chance of failing
a test.", as well as, the third hypothesis, which is "Software components that have
a higher number of responsibility have a higher chance of failing a test.", together
with, the fourth hypothesis, which is "Software components that are responsible for
(i.e., linked to) a higher number of requirements have a higher chance of failing
a test.". However, non of the previous metrics showed 100% correlation over the
11 version, as described before in Table 6.3. Accordingly, we discussed our finding
quality in Chapter 7(Section 7.2).

Finally, the requirement category, in this category we applied two metrics to inves-
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tigate whether a software requirement linked to large number of components tend
to have more test failures than average(hypothesis 5), as well as, whether software
requirement that have a higher number of sub-requirements have a higher chance of
failing a test(hypothesis 6). The statistical test result did not show a clear relation
between a requirement linked to large number of components and a higher chance of
failing test. Accordingly, we do not have enough statistical evidence to support our
claim, so we failed to prove the hypothesis 5. Moving to hypothesis 6, the statistical
test result showed a weak relation between a higher number of sub-requirements and
a higher chance of failing test, as shown in Table 6.5. Accordingly, we need to study
more data, in order to support our claim.
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7
Conclusion

This chapter starts with summarizing the thesis work and listing our finding. Which
is followed by a discussion section that describe the quality of finding, benefit, and
suggestions for both Systemite and the data provided companies. Finally, future
works are presented.

7.1 Summary
Software defect prediction is the process of tracing defective components in software
before the start of implementation and testing phases [54]. Having an early pre-
dictors is useful and desirable as it can reduce the cost of software development[16]
and [17], eliminate the majority of defect since more than that 60% of defects are
generated at the early stage of development [16], reduced development time, reduced
rework effort, increased customer satisfaction, and improve the reliability and qual-
ity of a software [54].
In this project we investigated whether the relationships between requirements and
design artifacts, as well as information from individual artifacts, can be leveraged
to predict software faults. As a novel contribution, we used information from re-
quirements and design artifacts (and the traceability links between them) to predict
faults. More precisely, we examined six hypotheses related to system, component,
and requirement design attributes. Theses hypotheses propose that a higher com-
plexity system design, a higher interaction component, a component with higher
number of responsibility, a component liked to higher number of requirements, a re-
quirement linked to higher number of components, and a requirement has a higher
number of sub-requirements have a higher chance of failing a test.

To answer our research question and prove our hypotheses a quantitative case study
conducted together with our industrial partner Systemite AB had had been carried
out, with data provided by two Swedish automotive companies. The studied data
was stored in SystemWeaver, which is a holistic information management solution
for systems engineering and software development, developed by Systemite and has
been use by automotive industry from more than 15 years.

After building the partnership and setup the project setting, we review the related
work exists in both the academia and industry, as well as our previous project with
the same partner, which was the entrance for this thesis. As a result, we select 19
metrics to implement in this work, which measure different aspects of a system and
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its artifacts design attributes, taking the advantages of the evaluable traceability
data. In order to perform the measurements and present their results, a tool has
been implemented which is able to apply the design metrics, analyse the result of
the metrics by applying statistical test, and visualized their result.
Then, we validate our result and implementation, by interviewing Systemite’s ex-
perts and data engineers from the data provider company side, as well as, using
SystemWeaver’s script language (Xpath) to verify the tool results.

Then, we analyse the data using our tool and SPSS, by applying both the descriptive
and inferential statistical, i.e., normality test,linearity test, mean difference, Spear-
man’s correlation, Mann–Whitney U test, etc.

Finally, a conclusion was drawn based on the data given. We found that design
metrics and traceability data could be use to detect software fault patterns, which
could be use later to build a powerful fault prediction model that support system
design engineers decisions. In this project we found the following:

• More than the half of the studied data ( 6 out of 11 versions) shows relation
between component high number of in port and a higher chance of failing a
test

• Approximately half of the studied data (5 out of 11 versions) shows a relation
between total number of component ports (in ports and out ports) and the
percentage of failed test case. While only 3/11 of the studied data shows a
weak relation to a higher chance of failing a test.

• Less than the half of the studied data (5 out of 12 versions) shows a relation
between a higher number of sub-requirements and a higher chance of failing a
test.

• Only 4/11 of the studied data shows a relation between a component liked to
higher number of requirements and a higher chance of failing a test.

• Only 3/11 of the studied data shows a relation between a higher number of
component responsibilities and a higher chance of failing a test.

• Only 1/12 of the studied data shows a relation between a requirement linked
to a higher number of components and a higher chance of failing a test.

• Regarding the system design attribute, like a system size and a design com-
plexity, we failed to prove our claim due to the available data limitation. In
the event that, we have a small sample size (12 System), even those sample
are not randomly select (all of them versions of the same system).

7.2 Discussion
This section describe the quality of our finding, benefit of this project, and sugges-
tions for both Systemite and the data provided companies.

Starting with the quality of finding, the study data was collected from a mature
project developed by one of the largest Swedish automated company. This project
has been developed over the last five years, and the development process was man-
aged using SystemWeaver, where all project information is stored. With this data

52



7. Conclusion

we conducted our study and extracted our finding. However, as listed above non of
our finding present 100% support for our claims, i.e., 55% of the studied data sup-
port that a high number of component in port may cause a higher chance of failing
a test. Of course having more data that support our claims would sharp our finding,
but still the current finding could give an indicators about the correlation between
the system design attributes and faults. To have a stronger result more data need
to be study, which we planed to do in our future work, even from different industries.

Moving to the benefits obtained from this project. As a novel contribution, we
used information from requirements and design artifacts, and the traceability links
between them, to predict faults. Accordingly, we extract several fault patterns,
based on the provided data. These patterns could be use later to predict fault in
future system releases or other system. The advantages of those patterns that they
are retrieved from the same related data, which make them more accurate predictor,
comparing to patterns retrieved from other industry and applied on automotive in-
dustry. For example, a fault prediction model build based on data provided by space
industry (NASA)[55], to be use later to predict fault on other industries. Another
benefit for this work, it highlights the advantages and important of creating the
traceability data. For example the studied data was provided by two companies, we
failed to study two data, because these data did not have a traceability data or it
is not complete. Equally important, the traceability data can be use for more anal-
yses not only for fault prediction, i.e., change management. Finally, from technical
perspective, this project proposed a new technique to define design metrics using
Xpath [6], as well as it suggested a fault prediction model [39]. A primary version
of this model was developed in this thesis, as described in 5.3.

Finally, as a result of this project we have some suggestions for both our part-
ner (Systemite) and their customer (the data provided companies).
First, starting with Systemite, we recommend them to automate, or semi-automate,
the process of creation the traceability links, i.e., if a user create a test case to test
a requirement, then the platform automatically create a link between the test case
and the system, that contain the tested requirement.

Second, in some cases the reason behind missing the traceability data is using differ-
ent tool to manage the development process, we highly recommend both Systemite
and the data provided company to improve the communication and collaboration
between tools. Taking in consideration that both companies already recognize this
need and done some related project, but still more work could improve the system
development process, decrease the development complexity, and improve the collab-
oration between connected companies.

Third, another reason for missing the traceability data, even when the tool sup-
port that, is human factor, since the system development process done by different
teams, i.e., system designer, developer, and tester, in some cases the traceability
between the work of those teams is missing, i.e., the traceability between system
architecture and testing. We highly recommend to raise the awareness about the
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important of creating the traceability data, even if it is sometimes consuming re-
sources, and did not show a instantly benefits.

In short, the traceability data was a fundamental part of this project, it allows
us to study the whole chain of the development process, starting from system design
to testing, by enabling us to trace all system artifices in both forward and backward
direction. Software fault prediction is only one use of traceability data, since it
could be usefully for many other uses. Accordingly, we highly recommend to create
complete traceability data. Moreover, predicting faults at early stage of develop-
ment process could improve the whole development process in significant manner,
accordingly more work need to be done in this regard.

7.3 Future Works
This study constituted an early prediction of software faults using traceability data
and design metrics. In order to expand this work and achieve our ultimate goal
to develop a fault prediction and decision support system, a number of approaches
are suggested. First, expand the case study to cover other industries, as describes
in Section 7.3.1. Second, define and implement more design metrics, as presents in
Section 7.3.2. Third, study the relationship between system changes and generate
faults, as describes in Section 7.3.3. Finally, improve the current version of our tool,
which we developed in this thesis, to become a fully automated fault prediction
model and decision support system, as suggests in Section 7.3.4 .

7.3.1 Study Other Industries
One of the thesis’s limitations is that the studied data came only from companies
working in automotive industry. Accordingly, our finding could not be generalized
to other industries, as mentioned before in Section 3.3.2. To come over this limi-
tation and generalize our finding, we plan to study other industries, i.e., banking
and telecommunication, even expand our study within the automotive industry by
studying other automotive companies. Having more data to study will offers several
advantages.

First, it will sharp our finding, by increasing the data size. Second, it will add
a new dimension for our study, this dimension is to compare different industries in
term of generating fault, since every industry has its own features . For instance,
automotive systems should follow several standard and regulation, i.e., ISO 26262,
whereas bunking system should meet a certain level of security. Third, it will allow
us to generalize our finding and discover more fault patterns.

7.3.2 Define More Metrics
In this thesis work we implement 19 metrics for the purpose of measuring system,
component, and requirement design attributes. The selection of theses metrics was
based on literature, properties of the studied data, and Systemite’s previous projects.
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Having more data from different sources will allow us to define more metrics. Part
of our future plan is to implement more metrics recommended by the software com-
munity, which we could not implement it in this thesis, because of the limitations
of the available data and resource for this project. For instance, all metrics that
we implemented are a quantitative metrics, where we used the traceability data to
measure a system quantitative attributes, i.e., number of components used (linked
to) requirement or number of sub-requirement per requirement. For the future we
plan to implement qualitative metrics, i.e., number of requirement weak phrase or
requirement ambiguity[53]. To do that we need to implement textual analysis in our
model to be able to interpret the characteristics of a requirement textual description.

7.3.3 System Changes and Faults

Another part of or future plan is to investigate the relationship between system
changes and generate faults, which will improve the prediction power of our fault
prediction model. The studied data showed fluctuations in the percentage of failed
test cases (Equation 6.1), as well as the number of failed and passed test case over
12 versions of the system, which cover a time period of approximately 5 years, as
shown in Figure 7.1. However, this data alone could not be enough to be study and
draw strong conclusion for two reasons. First, the sample size is only 12. Second,
these 12 version are selected out of 40 versions, because they had tested by the data
provided company, accordingly we got access to their test case results. Since, the
other versions were tested by other automotive supplies companies. Having more
data to study will allow us to investigate this relationship more, as well as advance
our model.

Figure 7.1: The relationship between system changes and generate faults.
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7.3.4 Improve SmartTrace
Our ultimate goal is to build a fault prediction model, that predict system faults
at the early stage of development process, which guides the engineers towards the
identification of problematic components and requirements. This master thesis work
define the basic blocks to build this model, which we called SmartTrace and reported
in [39]. As a part of our future plan we aim to expand the current version of the
tool that we implemented in this thesis, which described in Chapter 5, to build a
fault prediction and decision support system (SmartTrace).

SmartTrace is designed to mature continuously as the product development data
in the organization grows. The data, often created by users, is used to generate
insights on the patterns that are likely to result in failures. These insights are used
to provide the user with decision support as shown in Figure 7.2 [39].

Figure 7.2: The SmartTrace fault prediction model using the traceability data in
the early stage of development life cycle.

Figure 7.2 shows how SmartTrace intended to works, system’s designers trigger the
model by creating or modifying the product data. The traceability data between
the product artifacts allows us to investigate the fault patterns, by applying statis-
tical methods over the product data. We use the traceability between the product
artifacts in addition to the isolated artifacts to retrieve these patterns.

The first part of the module is a continuous learning system, which grows organi-
cally and continuously to update retrieved data from the product models, by adding
the experience gained from new iteration to the old data. Over time the learning
system will be more capable to provide the prediction module with necessary data
to discover more potential faults.

Moving to the second part, which is the prediction model, it is responsible for
predicting faults based on existing fault patterns (this thesis aimed to define some
of those patterns) historical product data, and traceability data. The prediction
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module uses this data to find the faults or point to the places where the potential
faults could be hidden. The last part of this module is the decision support system,
which provides the users with real time decision support. An essential part of this
module deals with extracting the fault patterns. The patterns extraction process
starts by defining and calculating metrics, these metrics measure a wide variety of
product attributes, as mentioned before. The next step is to find the correlation
between the calculated metrics and the related test cases, we use standard statistical
tools, like non-parametric tests (e.g., Wilcoxon). A significant correlation with test
failures means that the metrics can be used to identify the product elements related
to the metrics (e.g., an architectural component) as a source of faults.

The decision support system recognizes these occurrences and check the product
based on the available patterns. Accordingly, the decision support system warns
the developers about the potential risk and provides them with suitable sugges-
tions (e.g., how to refactor the system to improve on the relevant metrics). For
instance, if the number of dependencies shows a likelihood of introducing failures in
one component, the decision support can suggest to split the component into two
smaller components or to restructure the allocation of software components onto the
electronic control units (ECUs).
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Abstract—Architecture description formats like EAST-ADL 

and automotive open system architecture (AUTOSAR) use an 

extensible markup language (XML) based file representation. 

The complexity of the systems based on these architecture 

description languages often call for metrics definitions for the 

purpose of complexity or completeness management. The 

Swedish research project Synligare deals with improved 

management of complex systems based on EAST-ADL. One 

result from the project was that XPath could be used as a basis 

for the definition of design metrics, offering several 

advantages. XPath has further been demonstrated in the 

project to offer sufficient expressiveness and usability for the 
purpose. 

Keywords-Metrics; XPath; EAST-ADL; AUTOSAR; Exchange 
metrics. 

I. INTRODUCTION 

The evolution rate of automotive electric/electronic(E/E) 
systems has increased exponentially during the last decade, 
and the number of electronic control units now typically 
amounts to 50-100 [1].New and complex functionalities and 
technologies are emerging, making the prospect of 
autonomous driving within reach [2]. A consequence of the 
higher complexity is that the classical document and file 
based methods are no longer sufficient to manage the 
product and process data. We have seen that the Software 
specification of a single Electronic Control Unit (ECU)can 
be in excess of 8.000 pages. Meanwhile, there is an increased 
demand for reduced development cycles and product costs. 

Synligare1 is a Swedish industrial research project that 
aims to improve methods and tool support for model-based 
development of automotive E/E systems within and between 
organizations [7]. The members of the Synligare project 
include Volvo AB, ArcCore AB, Autoliv AB, Semcon and 
Systemite AB. The parties represent the different roles in a 
typical E/E development project, including Volvo as a 
manufacturer and integrator ("OEM" in current automotive 
terminology), Autoliv as a Tier 1 supplier, ArcCore as a Tier 
2 supplier, Systemite as a high level modeling tool supplier 
on high levels of abstraction, ArcCore as low level modeling 
tool supplier, and Semcon as a specialist engineering service 
supplier. 

The project uses the EAST-ADL  language [8] as a 
common specification for exchanging developed data within 
and between organizations. EAST-ADL is an adaptation of 
SysML[9] for automotive E/E systems. The language 

                                                        
1Synligare means “more visible” in Swedish. 

includes support for high level specifications of the system, 
for instance, vehicle features, down to the implementation 
level, based on AUTOSAR[10]. The language includes 
optional packages for modeling of variability, timing, safety, 
and more. 

One of the main objectives of the Synligare project is to 
enable exchange of functional safety data inside and across 
organizations. ISO 26262 is a standard for functional safety 
that challenges the automotive industry. The data is produced 
on different location by different companies. However, the 
progress needs to be measured, updated, and consolidated in 
different companies and exchanged between suppliers and 
OEMs. Many process and products metrics in the ISO 26262 
standard are valid across organization boundaries. Many of 
the progress metrics can be extracted from product data. For 
instance, one such metric is the state of progress of the 
verification process for all technical safety requirements, or 
the state of fulfillment of safety goals on different levels of 
abstractions. 

The Synligare project specifically addresses data 
exchange challenges between OEMs and suppliers. When 
the exchange is based on a single formalized representation 
like EAST-ADL the efficiency and quality of the exchange 
can be significantly improved, since handover of 
development, tracing impact of changes and analysis of data 
can be automated. 

A remaining challenge when information is shared and 
exchanged is to assure that all involved parties can interpret 
the information in the same way. Although the XML based 
exchange format for EAST-ADL provides a formalization of 
the information, the way this information is viewed by 
different parties is not specified; specifically, when it comes 
to design metrics. For instance, EAST-ADL does not include 
progress measurements such as completeness or complexity 
of the design. In the Synligare project, these metrics were 
originally specified in natural language, with references to 
the constructs of the language. For specifying the metrics, we 
used a more formal alternative, inspired by XPath 
expressions[11], to express the metrics. These metrics could 
then be shared between different tools at the OEM and 
supplier sides to calculate the metrics in a unified way. Using 
common metrics enables the different groups and 
organizations to share a common view of the progress of the 
project. In this paper, we introduce this method of sharing 
metrics on model-based development data. 

The remainder of this paper is organized as follows. In 
Section II, definition of the EAST-ADL Language, while 
metrics using path queries defined in Section III. Section IV 
presents the implementation aspects of XPath, while Section 
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V dissection and conclusion, and Section VI gives a vision 
for future work. 

II. THE EAST-ADL LANGUAGE 

EAST-ADL is a domain specific architecture description 
language specialized for describing automotive E/E systems. 
The language supports the use of different levels of 
abstraction with traceability between the levels. The logical 
structure of an architecture expressed in EAST-ADL is 
according to a structural component model where 
components are connected through ports. 

EAST-ADL defines an exchange format in XML, called 
EAXML [12]. The schema of the EAXML is the most 
precise definition of the language, although the underlying 
meta-model is defined in UML. The mapping between the 
meta-model and the XML schema is according to patterns 
defined in the AUTOSAR community. According to these 
patterns the schema becomes a reflection of the meta-model, 
and the schema will only include elements according to the 
meta-model. 

Note that the principles behind the EAXML and 
ARXML (AUTOSAR xml) schemas differ from the schema 
of the XMI format, used for the representation of UML 
models; XMI is based on the more generic MOF (Meta 
Object Facility) framework [13]. This means that the schema 
of XMI will not reflect the used meta-model, but rather the 
meta-meta-model according to MOF. A consequence of 
importance to the use of XPath is that the element structure 
of an EAXML file is a direct reflection of the corresponding 
EAST-ADL model. 

III. METRICS DEFINITIONS USING PATH QUERIES 

XPath 2.0 became a W3C recommendation 2007. XPath 
is a specialized query language that can express selection 
criteria of nodes of an XML document, typically from within 
an XML style sheet. The selection criteria include the path to 
traverse in the structure of the document, and additional tests 
and predicates that must be fulfilled for the selected nodes.  

The way XPath is used is by 1) selecting the sets of 
nodes in the XML document that are relevant for the specific 
metrics, and 2) performing arithmetic operations on the 
quantities defined by the sets. 

In this section, we present two types of metrics that we 
have specified with path queries and shared between object 
model tools. The metrics are inspired by the XPath query 
language for XML files. The first type of metrics calculates 
the progress of the development process using the product 
data. The second type of metrics calculated the complexity of 
the product components. 

 

A. Progress metrics 

One type of the metrics that we defined and shared 
between tools extracts the state of the project from the 
development data specified in different tools. The underlying 
specification of the tools is EAST-ADL, which enables us to 
create generic metrics and share them between tools. One 
such metric describes the completeness of the allocation of 
requirements. 

The metrics value was originally expressed in the 
Synligare project as: "Progress of requirement allocation is 
measured as the fraction of requirements allocated to 
architectural elements" 

The two sets of elements involved in this calculation are 
1) the set of all requirements, and 2)the set of allocated 
requirements. 

The first set can be expressed as the path expression (1) 
below, which is assumed to start from a "EA-PACKAGE" 
context node of the EAXML document. Definition for 
different elements of the XML representation of the meta-
model such as EA-PACKAGE is available on EAST-ADL’s 
language specification documentation [8]. 

Note that since the EA-PACKAGE structure in an 
EAXML document is an arbitrary packaging structure, it is 
suitable to exclude this part from the definition, and define 
the part on a case to case basis. 

/ELEMENTS/REQUIREMENTS-
MODEL/REQUIREMENTS/REQUIREMENT  (1) 

 
The set of allocated requirements is a subset of the set 

described above, with the additional constraint that the 
requirement must be included in a so called "Satisfy" 
relationship: 

/ELEMENTS/REQUIREMENTS-MODEL/OWNED-
RELATIONSHIPS/SATISFY/SATISFIED-

REQUIREMENT-REFS/SATISFIED-REQUIREMENT-
REF      (2) 

 
The set of unallocated requirements can be defined as the 

difference between the two sets, using the "except" 
operation: 

/ELEMENTS/REQUIREMENTS-
MODEL/REQUIREMENTS/REQUIREMENT except 

/ELEMENTS/REQUIREMENTS-
MODEL/REQUIREMENTS/REQUIREMENT  (3) 
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Figure 1 Completeness of allocated requirements 

 

 
The fraction of the sets can be calculated using the XPath 

count function and div operator: 

count(/ELEMENTS/REQUIREMENTS-MODEL/OWNED-
RELATIONSHIPS/SATISFY/SATISFIED-

REQUIREMENT-REFS/SATISFIED-REQUIREMENT- 
REF) div count(/ELEMENTS/REQUIREMENTS-

MODEL/REQUIREMENTS/REQUIREMENT)  (4) 

 
The real underlying need behind this metric is the need 

for traceability to the set of unallocated requirements. This 
traceability can be performed interactively using a pie chart 
representation of the set (3) in the SystemWeaver tool [14]. 
We see the evaluated system in the tree view to the left in 
Figure 1. The system is the reference system of the Synligare 
project, supplied by Volvo. The package 
"RequirementsPackage" has been selected, thereby selecting 
the context of the evaluation. The "Requirements allocation" 
view to the right displays a pie chart, where the two slices 
represent allocated requirements (in blue) and unallocated 
requirements (in red). By selecting the Unallocated slice, the 
set of model elements according to the XPath expression (3) 
become highlighted in the tree view.  

B. Complexity of component models 

Another type of metric that we investigated in this paper 
is the metrics concerning complexity of component models. 
One such complexity metric is cyclomaticcomplexity [5], 
calculated for a component model. 

count(/CONNECTORS/FUNCTION-CONNECTOR)–
count(/PARTS/DESIGN-FUNCTION-PROTOTYPE) + 
2      (5) 

 
Another component complexity metric uses couplings 

between objects [6] 
count(/CONNECTORS/FUNCTION-CONNECTOR) div 
count(/PARTS/DESIGN-FUNCTION-PROTOTYPE)
      (6) 

IV. IMPLEMENTATION ASPECTS OF XPATH 

In the Synligare project, support for metrics definitions 
expressed by the path query language was implemented in 
the SystemWeaver tool. SystemWeaver has a programmable 
meta-model and constitutes an internal database that can 
manage and integrate the content of multiple EAXML files. 
The constructs supported by the meta modeling framework 
in the tool supports the patterns used in EAST-ADL, like the 
type/prototype pattern. This means that the internal 
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representation in SystemWeaver to a high degree conforms 
to the EAXML file format. A database like the one in 
SystemWeaver is not limited to managing the content 
corresponding to a single system, but can manage any 
number of systems, and content shared between the systems. 

SystemWeaver supports dimensions of data that is not 
supported by EAST-ADL, like versioning and management 
of contexts that go beyond the scope of a single system. Such 
dimensions correspond to additional axes of the XPath 
expressions that cannot be derived from the specific meta-
model. 

A specific challenge is the way references are expressed 
according to EAST-ADL and AUTOSAR. Instead of 
common XML ID/IDREF to express references, EAST-ADL 
and AUTOSAR uses element paths of the XML file to 
reference elements, e.g.,"/DesignLevelElements/ 
FCN/GlobalBrakeController/BrakeTorqueFL". 

References like the one described above are common in 
the AUTOSAR/EAST-ADL models and means that the 
XPath expressions cannot be evaluated against a DOM 
(Document Object Model). Instead, the XML file has to be 
parsed and transformed into a custom object model where 
references have been replaced by object links. 
SystemWeaver for example represents the references as bi-
directional object links. During an import of an EAXML file 
into SystemWeaver all path strings are parsed and replaced 
with object links. 

It can be assumed that any tool that supports EAST-ADL 
or AUTOSAR will have an efficient internal representation 
of such references. We have seen that a real life AUTOSAR 
XML file can be of the size of 10 Mbyte or more, including 
more than 100,000 elements. A corresponding EAST-ADL 
model would include even more aspects, and thereby more 
elements. This means that efficiency becomes a real concern, 
especially when the evaluation of metrics is done 
interactively, or when the complexity of XPath expressions 
are O(n2) or higher, for instance, when set operations are 
used. 

V. CONCLUSION AND DISCUSSION 

In this paper, we presented a generic method to formalize 
metrics and share them between model-based data 
management tools. In the Synligare project, metrics 
originally expressed in natural language have been re-
expressed in an XPath-like format and executed in different 
tools with identical results.  

Being XML based, Xpath is intended for use with XML 
based representations. Since XPath is implementation 
independent it can work as a formal definition of the metrics, 
while also being executable. 

Elwakil et al. [4] identified a number of advantages of 
using XQuery in metrics definitions for XMI based 
representations. These advantages have been found to hold 
also for XPath, being a subset of XQuery, for the case that 
data is represented in the more basic XML representations 
used for AUTOSAR or EAST-ADL: 

 

 The XPath expressions can be expressed according to 
the meta-model of the used architecture language, 
meaning that the correctness of the expressions can be 
validated statically. 

 The XPath language is standardized, technology 
independent, mature and wide spread. 

 A tool implementation of the method may directly 
interpret and execute the XPath expressions. This makes 
it easy to try different metrics expressions in the tool 
implementation, without changing the tool itself. 

 
In addition to these findings, the implementation of the 

support for XPath has taken benefit from the fact that XPath 
supports the selection of sets of elements, thus making it 
suitable for interactive analysis and traceabilitybetween the 
visualization of the metrics and the underlying data. 

The solution has been demonstrated using industrial 
examples, with satisfactory performance.  

There are some natural limitations and disadvantages of 
using XPath: 

 

 The approach is likely feasible only for those cases 
where the language is expressed as XML; specifically, 
that the schema is a reflection of the used meta-model. 

 Given the declarative characteristics of the language it is 
likely that not all types of metrics can be defined easily 
in the language. The use of XQuery as described in [3] 
has not been investigated for the type of representation 
used in the project, but may be an alternative for more 
complex types of metrics. 

VI. FUTURE WORK 

The evaluation of XPath for metrics definitions described 
in this paper was limited to the use cases of the Synligare 
project. It remains to evaluate the suitability of the approach 
for other types of metrics. 
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ABSTRACT 
Traceability information between requirements, architectural 
elements and the results of test cases can be used to unearth 
interesting relationships between the early phases of the software 
development process and the software faults in the end product. For 
instance, complex dependencies between features and software 
components could lead to an increased level of flaws in the code. 
Such patterns can be detected and visualized as early warnings to 
the relevant stakeholders (e.g., the architect or the project manager). 
Ultimately, a fully-fledged prediction model can be developed if 
enough historical information is available from previous software 
projects. In this paper we introduce a method for building a decision 
support system based on historic product data. 

Keywords 
Traceability link; Requirement; Architecture; Test; Early 
development phases; Fault prediction. 

1. INTRODUCTION 
The problem tackled by this work is the early prediction of software 
defects, in order to reduce maintenance costs and improve quality. 
The context of this paper is the use of information extracted from 
requirements- and architecture-level information to predict test 
failures1, which represent a reliable proxy for software faults. 
Previous work investigated the relation between the requirements 
and architecture, and how the requirements drive the architecture. 
For example, Nuseibeh [1] developed the Twin Peaks model to 
describe the co-development of requirements and architecture. 
Previous work has also investigated the relation between 
architecture and test, and how properties of the architecture can be 
used to predict faults. For instance, the work of Rathore and Gupta 
[5] shows that design attributes like coupling, complexity and size 
are correlated to fault proneness. However, the state-of-the-art is 
rather limited with respect to the whole chain of this relation, i.e., 
starting from requirements, to architecture, and ending with test.  

In our work, we use data from large industrial projects and leverage 
the traceability data between requirements, architecture and tests in 
order to develop a fault prediction model, which could be used to 
generate early warnings to the software designers.  
In this paper, we outline our vision and present some initial results 
developed in an industrial setting. 

The identification of faults can be done in different places 
throughout the development process. However, the later discovery 
                                                                    
1 In our work, we use the failures of test cases as a proxy for 
actual software faults. 

of flaws leads to large fixing costs. In this work, the objective is to 
anticipate the faults at the early stages of the development process. 
The novel contribution of this work is the use of the relationships 
between requirements and high-level design (i.e., traceability links) 
to visualize sensitive points in the software system and possibly 
predict faults. An additional merit of this work is the use of 
empirical evidence. Realistic data about end-to-end relationships 
between the early artifacts and the discovered faults are not readily 
available to the research community. To overcome this limitation, 
we have partnered with a company specializing on managing 
traceability across artifacts in large projects. The uniqueness of the 
work comes from the tooling environment that stores the data 
traceability information. The tool enables programmed traversal of 
traceability links, which in tarn enables continuous and dynamic 
data analysis in an actual industrial context  

The paper is organized as follows. Section 2 discusses the related 
work. Section 3 presents the objectives of this research and how we 
can meet the objectives by using requirements and design metrics, 
together with traceability data in order to define a prediction model. 
Section 4 contextualizes our work and presents the concluding 
remarks. 

2. RELATED WORK 
Fault prediction has been intensively studied in academia and 
industry on different phases of development. A significant amount 
of the research has been done on the implementation level. Many 
researchers have tried to predict faults based on source code metrics 
such as size of code, code change history, source code complexity, 
complexity of the implementation processes, programing 
languages.  One such study has investigated the effect of class size 
on fault-proneness [3]. Another study goes further to investigate the 
relation between the complexity of source code modification and 
the faults prediction [2]. 

Having early predictors (i.e., before the start of the testing or 
implementation phase) is useful and desirable as it can reduce the 
cost of software development, improve the quality, and increase the 
reliability of the system. In this respect, less research studies exists. 
For instance, some studies exist about predicting the system defects 
before the testing phase. A model using Object Oriented metrics 
was built to predict the faults during design phase. This model used 
neural network technique and Bayesian Regularization (BR) 
algorithm. The results of this study prove that the BR algorithm 
provides better accuracy than Levenberg-Marquardt (LM) and 
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Back propagation (BPA) algorithms. In addition, the study finds 
that machine learning models are significantly used and provide 
superior results [6]. Moreover, other works exist about using design 
properties as predictors. For instance, Rathore and Gupta [5] 
investigated the relationship between the class design level object-
oriented metrics with fault proneness of object-oriented software 
system. The results of their work showed that design attributes like 
coupling, complexity and size are correlated to fault proneness.  

Over the last decade, researchers have studied on particular areas 
of the traceability problem and they tried to developing more 
complicated tooling, even they suggested many new research areas 
to be address [12]. Traceability has many uses it could be used to 
check if the requirements have been satisfied in advance 
development phase, like design and code. Also, it could help to 
assess and manage the impact of changing a system artifact, i.e., 
requirement, among many other artifacts[13]. Moreover, 
traceability has been used in fault based testing to generate test 
data to demonstrate the absence of a set of pre-specified 
faults [14].   

3. DECISION SUPPORT FROM 
TRACEABILITY DATA 
Our objective is to discover and highlight the critical relations 
between requirements and architectural design choices that could 
lead to software faults. To achieve our objective, we have analyzed 
three large projects from two companies. The raw data from these 
projects (primarily requirements documentation and architectural 
design) have been processed via an automated tool (which we built) 
in order to extract relevant metrics. In the investigated projects, the 
failure of the test cases is linked back to the appropriate 
requirements and design modules. Hence, the collected metrics also 
represent a starting point for the construction of a decision support 
system for the identification of software faults.  

In the following sub-section, we briefly describe the raw data from 
the three projects, the collected metrics, the technical aspects of the 
metrics along with some challenges of extracting them in real-life 
projects, and the initial results for the decision support system.  

3.1 Three Industrial Projects 
In this work, we are using a data management platform called 
SystemWeaver, which is a holistic information management 
solution for systems engineering and software development [8]. 
The selection of this platform as a data model was based on its 
capability to manage the product development process on different 
level of abstraction, the full traceability between the product 
artifacts, and the support for testing. The raw data which we are 
using to investigate our research comes from two of the leading 
automotive companies in Sweden. They include both the software 
and hardware design for several mature and deployed products. The 
structure of the data is represented in Figure 1. The highest level of 
abstraction is the system level, which contains the system features 
and represents how the features interact with each other. For 
example, a vehicle includes the braking function, the cruise control 
function, etc. The second level is the analysis level, which contains 
an abstract description of the system architecture. The next level is 
the logical design, which is a more detailed description of the 
system design and can be viewed as a refinement of the level above. 
At the logical design level, the system design contains a set of 
connected components. Each component has a set of requirements, 
functions, connection ports and some other attributes. The bottom-
most level in the figure is the hardware architecture, which 

represents the hardware-level design of a vehicle as a network of 
electronic control units (ECUs). 

The traceability information takes different forms. First, it includes 
the relations (called T.W in the figure) between the product artifacts 
at the same abstraction level, for instance, the traceability links 
between a software component, its requirements, and test case 
validating the component’s behavior. Second, SystemWeaver also 
maintains the relations (T.L in the figure) between the product 
artifacts on different abstraction levels. Finally, the traceability 
information could include the relations (T.V in the figure) between 
product versions.  

 
Figure 1. Traceability between system artifacts, abstraction 

level, and versioning. 

3.2 Extraction of Useful Metrics 
We have developed a module (called SmartTrace) that integrates 
with Systemite’s SystemWeaver [9] and performs the automated 
extraction of several metrics out of the raw data mentioned in 
Section 3.1. This module calculates metrics that can be specified 
dynamically using path expressions, as discussed in [7] and Table 
1 presents an example for some of the metrics that we had 
implemented in SmartTrace. 

Metrics have been used intensively by the software community to 
measure the system attributes in different phase of the development 
process, in order to evaluate the quality of the system. As shown in 
the Table 1, the metrics that we extract for our decision support 
system include requirements, design, test, and traceability metrics. 

The requirement metrics measure different aspects of the 
requirements like ambiguity, correctness, completeness, 
understandability, etc., [4]. The design metrics measure the design 
attributes, such as size, depth of inheritance, coupling, complexity, 
etc., [3]. The test metrics measure the testing attributes, i.e., number 
of test cases passed or failed, number of test cases under 
investigation and test case execution time. Finally, the traceability 
metrics measure the relations between different system artifacts, 
those artifacts are requirement, component, and test cases. By 
applying more metrics, the fault prediction module will be more 
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powerful, which will increase the probability of finding the fault 
patterns. Table 1 presents some of the metrics that we had 
implemented in SmartTrace fault prediction module, some of them 
are conventional metrics, where other are more innovative. 

Table 1. Metrics suite used by our decision support system. 

Category Metric Description 

Requirement 
 

Requirement 
Unambiguous 

It indicates the degree of 
the requirement 

understandability. 

Requirement 
Completeness 

It indicates the degree of 
the requirement 
completeness 

Design 
 

Cyclomatic 
Complexity 

It indicates the 
complexity of a system, 
by counting the number 
of the independent paths 

through a system. 
Coupling 

 
It measures the degree of 
interdependence between 

software components. 

Test 
 

Number of Test 
Case 

It measures the total 
number of performed test 
cases for a specific part 

of a system, regardless of 
the result of the test case. 

Pass/Fail Test 
Case 

It measures the number 
of passed/failed test case 

for a specific part of a 
system. 

Traceability 

Component 
Responsibility 

It measures the number 
of requirements 

implemented by a 
component . 

Requirement 
Uses 

 

It measures the number 
of components 
implementing a 

requirement. 
 

3.3 Metrics implementation and challenges  
We implemented the metrics using the path expression language in 
SystemWeaver, which navigates through the elements and 
attributes of the product. The result of the executed query is a set of 
model elements according to the XPath expression. The language 
supports the basic model operators, like div, and, or, and so on[10].  

The following is a simple example for one of the implemented 
metric, i.e., the component interaction metric (CIM) [11]. This 
metric measures the component interaction degree, by calculating 
the ratio between the component’s incoming (I) and outgoing (O) 
interaction. The formula of the metric is CIM = I/O. 

This metric can be calculated using the following XPath 
expression, which includes the count function and div operator: 

/ELEMENTS/COMPONENT-MODEL/IN-
PORT.Count.Div(/ELEMENTS/COMPONENT-MODEL/OUT-

PORT.Count) 

Using Xpath to define metrics has several advantages. For example, 
it allows us to share metrics between different parties, who have the 
same data model (meta model). This improves the communication 
between different tools or organization.         

We had several challenges associated with extracting the metrics. 
For instance, the structure of the raw data could be different 
between products or companies, which required us to adapt our 
metrics definition to fit the studied data. Another challenge was to 
understand the data with very large size. Also, we faced some 
limitations in the XPath language, where not all types of metrics 
can be defined easily [7]. Last but not least, sometimes the raw data 
that we have is inconsistent or not complete, which required from 
us some manual activities to overcome the problem.  

3.4 Towards a Decision Support System 
The above-mentioned SmartTrace module is currently being 
extended into an information dashboard for decision support, which 
guides the engineers towards the identification of problematic 
components and requirements. 

It is designed to mature continuously as the product development 
data in the organization grows. The data, often created by users, is 
used to generate insights on the patterns that are likely to result in 
failures. These insights are used to provide the user with decision 
support as shown in Figure 1. 

 
Figure 1. The SmartTrace fault prediction model using the 
traceability data in the early stage of development life cycle.  

The users trigger the module by creating or modifying the product 
data. The traceability data between the product artifacts allows us 
to investigate the fault patterns, by applying statistical methods 
over the product data. We use the traceability between the product 
artifacts in addition to the isolated artifacts to retrieve these 
patterns. The first part of the module is a continuous learning 
system, which grows organically and continuously to update 
retrieved data from the product models, by adding the experience 
gained from new iteration to the old data. Over time the learning 
system will be more capable to provide the prediction module with 
necessary data to discover more potential faults. 

Moving to the second part, which is the prediction model, this is 
responsible for predicting faults based on existing fault patterns, 
historical product data, and traceability data. The prediction module 
uses this data to find the faults or point to the places where the 
potential faults could be hidden. The last part of this module is the 
decision support system, which provides the users with real time 
decision support. 

An essential part of this module deals with extracting the fault 
patterns. The patterns extraction process starts by defining and 
calculating metrics, these metrics measure a wide variety of product 
attributes, as mentioned before. The next step is to find the 
correlation between the calculated metrics and the related test 
cases, we use standard statistical tools, like non-parametric tests 
(e.g., Wilcoxon). A significant correlation with test failures means 
that the metrics can be used to identify the product elements related 
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to the metrics (e.g., an architectural component) as a source of 
faults. The decision support system recognizes these occurrences 
and check the product based on the available patterns. Accordingly, 
the decision support system warns the developers about the 
potential risk and provides them with suitable suggestions (e.g., 
how to refactor the system to improve on the relevant metrics).  For 
instance, if the number of dependencies shows a likelihood of 
introducing failures in one component, the decision support can 
suggest to split the component into two smaller components or to 
restructure the allocation of software components onto the 
electronic control units (ECUs).  

Currently, we are looking for an automated way to discover those 
correlations between metrics and test cases. Later, we will expand 
this work to investigate the use of several metrics at once as failures 
could be due to factors related to multiple metrics. 

4. CONCLUSION 
This paper has reported on our vision concerning the use of rich 
traceability data to build a decision support system able to generate 
early warnings in case of problematic requirements, ill-designed 
architectural components, critical deployments and so on. The 
feasibility of our approach has been shown by investigating three 
large industrial projects and most of the necessary building blocks 
have been already developed. At this point, the key part of the 
proposed solution (the SmartTrace module) is being finalized. In 
future work, we will validate SmartTrace on a larger set of projects, 
possibly from different application domains, as so far we have 
focused on the automotive industry only. 

From a research perspective, the decision support system we are 
developing is expected to significantly contribute to the early 
detection of requirements- and design-level flaws. The objective is 
to increase the quality and reliability of software by reducing the 
number of software faults and fail cases. From an industrial 
perspective, the approach is meant to reduce the risk of a new 
project, by applying the historical and accumulated knowledge 
from the projects previously developed in a company. In addition, 
it helps the designers to be more open to accept the customer-
requested changes (as issues can be debunked by the decision 
support system), which will positively affect the customer 
satisfaction.  
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