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Aspects of Spin 3 Bianchi Identities in 2 + 1 Dimensional Higher-Spin Theories
VINCENT ERICSSON
Department of Fundamental Physics
Chalmers University of Technology

Abstract
The higher spin theories in 2 + 1 dimensions considered in this thesis are of great
physical interest since they are an important part in our understanding of both string
theory, the AdS/CFT correspondance and M-theory. These conformal higher-spin
theories are introduced by obtaining a conformal basis to the spin-2 algebra so(2, 3).
This algebra neatly generalizes to the higher spin algebra, giving rise to a theory
containing fields of all spins. Looking at the projection of the vacuum equations
of motion, F = 0, and the Bianchi identities, DF = 0, onto the conformal basis,
the content of these equations is explored. Using the conformal spin-2 basis, the
curvature equations from 2+1 dimensional (conformal) general relativity is obtained
as a confirmation that the method used is correct. A similar projection onto the
conformal spin-3 basis is found and it is shown that assuming only the parabolic
part of F = 0 is enough to satisfy the Bianchi identity. Hence, the Bianchi identity
allows for coupling the system to matter.
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1
Introduction

1.1 Invitation

Nature is today known to have four fundamental forces: the electromagnetic, strong,
and weak forces and gravity. On a classical level these are all described using
field theories such as Yang-Mills or general relativity. The problem with classical
physics is that it does not work on small scales, or at high energies where physics is
governed by quantummechanics. In the case of the electromagnetic, strong and weak
forces, this poses no problem and theories such as quantum electrodynamics and
the standard model have been shown to agree exceptionally well with experimental
results. There are, however, trouble when trying to include gravity into these small
scales, or in other words, when trying to quantize gravity. Using quantum field
theories similar to those used for the other forces gives a perturbational theory which
is non-renormalizable. Renormalizability is the property that makes it possible to
remove any infinities of a theory. As of today, there is only one theory that allows
gravity to be quantized and that is string theory.
String theory is a theory where the nature of the fundamental objects considered
is changed. Instead of thinking of pointlike particles, string theory uses small vi-
brating strands of energy, or, strings, where different modes of oscillation (different
excitations) of the strings correspond to different particles. This means that, instead
of several different pointlike particles, there is one string whose vibrational modes
create what on a larger scale is seen as different particles.
The thing is that string theory is a rather complicated theory and to get a better
understanding of it, string theory is often studied in different limits, where it, in some
way, is easier to understand. Some of these are the low-energy field-theory limit and
a double limit leading to AdS/CFT. A more intricate one is the zero-tension limit
believed to give a so-called higher-spin theory.
AdS/CFT is a limit where spacetime features two different theories, one gravitational
(string) theory in the bulk of AdS (Anti-de Sitter space) and one conformal field
theory (CFT) of one dimension lower than the AdS theory, where the CFT lives on
the boundary of the AdS spacetime.
The higher-spin limit comes from the infinite tower of higher spin string states of
which most are massive, but taking the limit where the tension, T , of the strings goes
to zero, the mass of these higher spin states go to zero as well (M ∼ T ∼ 1√

α′
). In

this way, the higher-spin limit gives rise to an infinite tower of massless fields with
all integer spins from 0 to ∞ (for the bosonic string, the superstring contains in
addition all half integer spins). To ensure unitary, these fields have more symmetry

1



1. Introduction

than the string theory it was obtained from (each higher-spin state will, in fact,
have its own gauge symmetry). Such higher-spin theories have been constructed,
independent of string theory, by Vasiliev [1]. These Vasiliev theories all live on AdS
spacetimes.
In the field theory limit of M-theory one has also uncovered an eleven dimensional
supergravity theory. M-theory is known to contain all known string theories in ten
dimensions (due to various dualities). The last limit to be discussed here is this
M-theory. It might be misleading to call it a limit of string theory since, in reality,
it is the other way around where the string theories of today are limits to the more
fundamental M-theory. However, instead of strings, this field theory has 2 + 1
dimensional solutions, the so-called M2-branes as its fundamental objects (which
include the enigmatic M5 branes of dimension 5 + 1 not further discussed in this
thesis). The ultimate goal when studying 2 + 1 dimensional conformal field theories
is to understand these M2-branes better.

1.1.1 AdS/CFT
The AdS/CFT correspondance is a conjecture proclaimed by Maldacena in 1997 [2]
stating that a gravitational (string) theory on AdS spacetime is dual to a conformal
field theory in one less dimension. It may seem strange that these vastly different
theories are dual; e.g. they have different dimensions and while one theory is strongly
coupled, the other one is weakly coupled. However, the correspondence can be, to
some extent, justified by a few arguments from string theory.
In type IIB string theory, there is a 5-form field strength giving a solution AdS5×S5
to the vacuum equations. This string theory allows for so-called D3 branes, which
have two interpretations. The first is from the open string’s point of view. Here,
a stack of D3 branes results in a 4 dimensional conformal field theory, a result
originating from the open strings’ connection to the D3 branes. On the other hand,
when regarding closed strings, they see D3 branes as charged objects that source
the fields of the theory. In some way, a D3 brane sourcing gravity can be seen as a
black hole. A very interesting aspect of the two theories now obtained is that the 5
dimensional AdS spacetime and the 4 dimensional conformal field theory have the
same global symmetries SO(2, 4), which is a crucial part of the duality.
The second, perhaps simpler version of this stringy AdS/CFT, is the HS/vector
model duality. It is a similar duality exhibiting a higher spin theory in the bulk and
an vector-sigma model on the boundary. It was first observed by Sundborg [3] that
Vasiliev’s theory [1] exhibit the correct set of higher-spin fields for this to work. This
connection comes from considering a vector sigma model containing N scalar fields
in the large N limit (N →∞), also called the semi-classical limit. This theory can
be shown to contain SO(N) invariant conserved higher-spin currents that couple to
gauge fields now living in the bulk.

2



1. Introduction

1.1.2 Higher-Spin Theory
Higher-spin theory is a subject of its own and concerns the study of massless gauge
fields with all integer spins. However, three dimensions is an exception where the-
ories without scalars exist, that is where spins 2, 3, 4, . . . can make up a consistent
theory by themselves. The theory discussed in this thesis is of this kind. As previ-
ously mentioned, these higher spin fields appears in the zero tension limit of string
theory. There are a number of reasons why this theory is interesting. It may be
a new way to understand geometry, e.g. the big bang gets a new interpretation
when considering it in terms of higher-spin theory, without the spacetime singular-
ity[4]. There is also the fact that the classical version of higher-spin theory lives
somewhere right between string theory and general relativity. Because of this, a
quantized version of it might be very interesting when trying to understand the
AdS/CFT correspondance and it might in fact be the key to prove the duality.

1.1.3 M-theory
String theory emerged in the beginning of the 1970s by trying to answer questions
in hadron physics. It describes how all particles, both matter and force carriers,
are different vibrational modes of some fundamental one-dimensional object called
a string. It did, however, run into a problem as more versions of the equations
describing string theory were discovered, ending with a total of five different string
theories. Each of these string theories exhibits different characteristics, but worst of
all; each one of them appeared to be correct.
This was solved in 1994 by Witten [5], who found that each of these five string
theories described different aspects of one and the same, more fundamental theory.
This more fundamental theory is called M-theory and is an 11-dimensional theory
featuring vibrating two-dimensional membranes (M2-branes) instead of strings (as
mentioned above, there are also fundamental M5 branes in M-theory). The different
string theories arise by reducing M-theory to 10 dimensions and using a web of
dualities.
The surface of these two-dimensional membranes gives rise to a conformal field
theory in 2 + 1 dimensions and in order to understand M-theory, it is crucial to
understand these 2 + 1-dimensional conformal field theories.

1.1.4 Conformal Higher-Spin Theory in 2+1 Dimensions
The higher-spin theories that are concerned in this thesis are conformal higher-spin
theories in three spacetime dimensions. A theory of this kind is related to much
of what is said above and the interesting parts of it are due to two very important
developements some years ago. First is BLG [6]–[8], an attempt to construct a
conformal field theory on a stack of M2-branes with N = 8 supersymmetries, which
was not entirely successful. Then there is ABJM [9], which is known to be the
correct theory for such a stack, but with N = 6 supersymmetries. Both these
three-dimensional conformal field theories live on flat, three-dimensional Minkowski
spacetime and are parity conserving. Although, as a crucial ingredient, they both
contain parity breaking Chern-Simons terms.

3



1. Introduction

In AdS/CFT, Chern-Simons terms arise from Neumann boundary conditions in
AdS, as argued by Witten[10]. The question is: Can also the higher spin fields in a
higher-spin theory be given such unusual boundary conditions and if so, what kind
of boundary field theory would this lead to? Many recent results [11]–[15] indicate
that the answer is yes and that the models appearing on the boundary are of the
kind studied in this thesis.

1.2 Overview
The aim of this thesis is to present an introduction to higher-spin theory for the
higher under-graduate level student, which is reflected in the order the various topics
are presented. First is the basic theory needed to relate the theory presented here to
other theories, where general relativity is the one most commonly refered to. This
is needed to understand the arguments in later chapters. Following this are the
actual calculations coupling Chern-Simons for spin 2 to general relativity. These are
carried out in detail, since they are needed to follow the tougher problems which are
the real aim of this thesis. In the appendices, extra calculations are found, some to
clarify arguments, others because they are necessary for a coherent overall picture,
but have no obvious place among the other chapters.

1.2.1 Cartan Formulation of General Relativity
General relativity is in this thesis presented in a slightly more mathematical version
than usual. It describes the physics in the same way, but the theory is expressed
differently and the calculations are performed in another way. Hence it is of im-
portance to know how they are done and what the difference to the formulation
generally taught to students is. This chapter mostly concern the formulation of gen-
eral relativity, while the Chern-Simons description of spin 2 is left to later chapters.

1.2.2 Conformal Symmetry
It is important to know the symmetries of the system considered and the symmetry
group exploited in this thesis is SO(2, 3). First it is approached in an easy to
grasp way without much group theory, and using the generators that are defined to
preserve the Minkowski metric (up to a multiplying factor), the conformal algebra
is worked out.
This way of obtaining the conformal algebra is easy to understand, but not easily
generalized to higher spins. Instead, a method relying on the fact that so(2, 3) '
sp(4,R) and functions on a phase space with this symmetry, is used. This method
is a bit tricky, but relatively easy to generalize to higher spins than 2.

4



1. Introduction

1.2.3 Spin 2
Spin 2 represents ordinary general relativity, here introduced in another way, using
Chern-Simons theory, than commonly done and these are the techniques which will
be used in higher-spin calculations. The equations are projected onto the conformal
basis elements obtained in the conformal symmetry chapter and the content of the
equations are worked out. The calculations are performed in detail to make it easy
for the reader to follow all steps, since a good understanding of the spin-2 calculations
are needed before moving on to higher spins.

1.2.4 Spin 3
Here, the spin-3 equations are presented and solved in their linearized versions.
There are both more and tougher equations than in the spin-2 case. A good under-
standing of the techniques must hence be assumed in order to follow the calculations
presented here.

1.3 The reader
The reader of this thesis is assumed to have a basic knowledge of general relativity
in order to follow most calculations and some argumentation. For a complete under-
standing, a base in theoretical physics including general relativity, field theory and
some string theory will be needed. For the uninitiated reader, it may be beneficial
to read through the appendices before reading chapters 4 and forward.

5
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2
Cartan Formulation of General

Relativity

The Cartan formalism (sometimes called the tetrad formalism in 4 spacetime di-
mensions) is not a theory on its own, but rather a way to formulate existing theories
of for instance gravity [16]–[18]. There is a possibility to use the Cartan formalism
to include torsion into general relativity, but this will not be done here.
The main difference between the usual formalism of general relativity and the Car-
tan formalism is the object that defines the structure (curvature) of spacetime. In
general relativity this is the metric tensor gµν , where spacetime is observed as a
bunch of coorinates related by the metric. The Cartan formalism has a slightly
different way of observing spacetime. Here, the object defining it is called a vielbein
eµ

a (vierbein and dreibein in four and three dimensions respectively) and spacetime
is seen from an observational point of view. Instead of seeing a bunch of coordinates,
put an observer at every point in spacetime and let every observer see space from
their local Lorentz frames. This creates a so-called tangent space at every point
where spacetime is flat Minkowski space. The curvature of spacetime is found by
relating two of these local frames by continuously moving one frame to the other
and at every point observe how the frame changes to represent a new local frame.
The connection between the tangent space and the curvature is described by the
above mentioned vielben eµ

a. These two formulations of General Relativity may
seem very different or very similar, but they lead to the same physics since there is
a very direct way of connecting the metric with the vielbein

gµν = eµ
aeν

bηab = eµ
aeνa. (2.1)

Note that eµ a has D(D−1)
2 extra degrees of freedom compared to gµν , however, these

can be removed by a local Lorentz transformation. The extra degrees of freedom
can also be removed via a gauge choise in the Cartan formulation and is discussed
further in section 4.2.1. One way to interpret this is that the metric is obtained by
observing the curvature in the (µ, ν) directions from the same local frame.
These two formulations might lead to the same physics, but they do it in different
ways. Einstein’s formulation assumes the principle of general covariance, which says
that the form of the laws governing the physics must be invariant under general
coordinate transformations of some symmetry group. In Cartan formalism, the
principle of general covariance is supplemented by local gauge invariance of the
Lagrangian and hence, the manner in which the physics is obtained is different.
The lagrangian used in this thesis is the one from Chern-Simons theory [19]. It looks
as follows

7



2. Cartan Formulation of General Relativity

SCS = k
∫ (

A ∧ dA+ 2
3A ∧ A ∧ A

)
= k

∫
A ∧ F, (2.2)

where F = dA + A ∧ A = DA is the field strength of the theory, D the exterior
covariant derivative and A is the gauge field. The variation of this expression gives
the equations of motion of free space

δSCS

δA
= F = 0. (2.3)

If the theory instead is coupled to other (matter) fields, then F 6= 0.
For general relativity in four dimensions the action is generalized (the original theory
is three-dimensional) to

SCS = 1
κ2

∫
ea ∧ eb ∧Rcdεabcd, (2.4)

where Rab is the 2-form Riemann tensor.
When a variation is introduced to ea, the theory states the equations of motion as
R = 0 (R is the Ricci scalar). In general relativity this means that in absence of
matter (or other field), the spacetime is not curved. The Chern-Simons action will
be regarded more closely in appendix E.

2.1 Properties of the vielbein eµ
a

In Einstein’s formulation of gravity ([17], [20]), one very useful feature of the metric
tensor is that it can be used to raise or lower indices. The vielbein serves a similar
purpose in the Cartan formulation and depending on how it is used, it can raise and
lower indices or switch between curved (µ, ν, σ, . . . ) and flat (a, b, c, . . . ) ones.
To raise or lower indices, it is enough to relate the vielbein to the metric tensor (see
eq. (2.1)), a continuation of this to raise or lower flat indices is simply

ηab = eµ ae
ν
bgµν = eµ aeµb. (2.5)

The eµ a used here is just the inverse of eµ a and in the same way as for the metric
tensor this can be ignored when doing index manipulations. If an index is changed
from flat to curved it means that there is a vielbein hidden in the notation

eµ
aVa = Vµ, eµ aUµ = Ua. (2.6)

Many times, combinations of these index operations are used and some short-hand
expressions are very useful. To raise or lower an index and on the same time switch
between curved and flat index, the following notation is used

eν
agµν = eµa, eµ

bηab = eµa, eµ
aeµ b = δab . (2.7)

For any field featuring both curved and flat indices, the order is very important.
The curved ones will always be written first to allow for the index manipulation in
eq. (2.6), hence, it might be more correct to say that the curved content of a field
will lie in its first indices, even if they are represented by flat indices.

8



2. Cartan Formulation of General Relativity

2.2 The spin connection ωa b

The affine connection plays an important role in general relativity when curvature is
considered and is the connection used for covariant derivation of fields with curved
indices. Now, when flat indices are introduced, there is another connection used in
the covariant derivative. It is called the spin connection, denoted ωµ a b, and works
as

DµV
a = ∂µV

a + ωµ
a
bV

b. (2.8)
Even though many fields exibit both curved and flat indices, this thesis will almost
exclusively rely on the spin connection. The affine connection (in torsion-free space)
vanishes when equations are written using differential forms since this creates an
anti-symmetry in the indices of the covariant derivative and the field. These are
the lower two indices in the affine connection, which are known to be symmetric (at
least in torsion-free space)

D[µV
a
ν] = ∂[µV

a
ν] + ω[µ

abVν]b − Γσ[µν]V
a
σ = ∂[µV

a
ν] + ω[µ

abVν]b. (2.9)

2.2.1 Uniqueness of the affine connection
Yet another argument for the equivalence of the Cartan and Einstein formulations
of general relativity would be to show that the affine connection Γ obtained from
the usual expression

Γσµν = 1
2g

σλ [∂µgνλ + ∂νgµλ − ∂λgµν ] (2.10)

in Einstein formulation is the same as the one found from the Cartan formalism. Just
enter eq. (2.1) into eq. (2.10) and put this equal to the expression of the covariant
derivative acting on a vielbein. Then solve for the affine connection. The covatiant
derivative is known to look as

Dµeν
a = ∂µeν

a + ωµ
a
beν

b − Γλµνeλ a = 0, (2.11)

and is here assumed to be zero in the same way that Dσgµν = 0. The spin connection
ω can be expressed in terms of the vielbeins as (see appendix C for derivation)

ωµ
bc = 2eν[b∂[µeν]

c] − eσ[beλ
c]gνλeµa∂σeν

a, (2.12)

and the expression for the affine connection, taking the way via the spin connection,
becomes

Γσµν(ω(e)) = eσ a∂µeν
a + 2eσ aeλ[a∂[µe

b]
λ]eνb + eσ ae

λ[aeρ
b]eµceνb∂

ρeλ
c =

= eσa∂µe
a
ν + 1

2

[
eσ ae

λa∂µeλ
beνb − eσ aeλb∂µeλ aeνb + eσ ae

λa∂λeµ
beνb−

− eσ aeλb∂λeµ aeνb +
]
+

+ 1
2

[
eσ ae

ρbeλaeµceνb∂ρeλ
c − eσ aeρaeλbeµceνb∂ρeλ c

]
=

= 1
2

[
eσ a∂µeν

a + eσ a∂νeµ
a
]

+ 1
2g

σλ
[
eνa∂µeλ

a + eµa∂νeλ
a
]
−

− 1
2

[
eνa∂

σeµ
a + eµa∂

σeν
a
]
.

(2.13)
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2. Cartan Formulation of General Relativity

Ideally, this equals the expression obtained by combining eqs. (2.1) and (2.10)

Γσµν(g(e)) = 1
2g

σλ [∂µ(eν aeλa) + ∂ν(eµ aeλa)− ∂λ(eµ aeνa)] =
= 1

2g
σλ [eλa∂µeν a + eνa∂µeλ

a + eλa∂νeµ
a + eµa∂νeλ

a − eνa∂λeµ a − eµa∂λeν a] =
= 1

2

[
eσ a∂µeν

a + eσ a∂νeµ
a
]

+ 1
2g

σλ
[
eνa∂µeλ

a + eµa∂νeλ
a
]
−

− 1
2

[
eνa∂

σeµ
a + eµa∂

σeν
a
]
.

(2.14)
Fortunatelly, they are the same

Γ(ω(e)) = Γ(g(e)). (2.15)

Hence, either of the expressions (eqs. (2.10) and (2.11)) can be used to obtain an
expression for the affine connection.
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3
Conformal Symmetry

When using a Lagrangian to describe the physics of a system, it is of interest to
know what symmetries this Lagrangian is invariant under, in other words, which
transformations can be performed on the fields in a Lagrangian that results in a
Lagrangian equal to the one the transformation was performed on. These symme-
tries of the Lagrangian depend on the theory considered. In special relativity, the
symmetry group is the Poincaré group while the standard model has a symmetry
group that also involves gauge symmetries related to SU(3) × SU(2) × U(1). The
symmetry considered in this thesis is SO(2, 3) viewed as a conformal symmetry in
2 + 1 dimensions as explained below. For a discussion to why conformal symmetries
are interesting, see [21].
Conformal symmetries are those generated by the transformations that leave the
Minkowski metric invariant up to a (local) scale factor i.e. transformations that
preserve angles

xµ → x′µ = xµ + ξµ, δηµν = ∂µξν + ∂νξµ = c(x)ηµν , (3.1)

here expressed in terms of continuous transformations. There are four types of con-
tinuous transformations, and one discrete that have this property (see e.g. [22], [23]).
The first two continuous transformations are simply the Poincaré transformations of
translation and Lorentz rotations, while the other two are scalings and the special
conformal transformations (here shown as infinitesimal transformations)

εµ(x) = ξµ translations, c(x) = 0,
εµ(x) = xνω

[νµ] rotations, c(x) = 0,
εµ(x) = λxµ scalings, c(x) = 2λ,
εµ(x) = 2(a · x)xµ − x2aµ special conformal, c(x) = a · x.

(3.2)

The discrete transformation is called inversion and is the tensorial variant of x→ 1
x

xµ → xµ

x2 . (3.3)

To get an idéa of how the conformal transformations work, an example of each
transformation is shown in figs. 3.1 – 3.5.
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3. Conformal Symmetry

x

y

Figure 3.1: A Cartesian grid prior to
any transformation.

x

y

Figure 3.2: The grid from fig. (3.1)
after a translation.

x

y

Figure 3.3: The grid from fig. (3.1)
after a rotation.

x

y

Figure 3.4: The grid from fig. (3.1)
after a scale transformation.

x

y

Figure 3.5: The grid from fig. (3.1)
after a special conformal transformation.
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3. Conformal Symmetry

3.1 Generators of conformal transformations

The easiest way to find the generators of the conformal transformations is to use
the continuous conformal transformations in eq. (3.2) written on partial notation.
The inversion cannot be generated since it is a discrete transformation and because
of this it will only be considered when looking at finite transformations. The four
generators of conformal symmetry is denoted Pµ, Mµν , D, and Kµ, representing
translations, rotations, scalings, and special conformal transformations respectively

Pµ = ∂µ, (3.4)
Mµν = xµ∂ν − xν∂µ, (3.5)
D = xµ∂µ, (3.6)
Kµ = 2xµxν∂ν − x2∂µ. (3.7)

The commutators of these generators are what is called the algebra of the symmetry
group. Figuring out this algebra is important for later computations and is not that
tricky. There are two things to remember, the first one being that partial derivatives
commute

[Pµ, Pν ] = [∂µ, ∂ν ] = ∂µ∂ν − ∂ν∂µ = 0 (3.8)

and the second one is how an xµ-derivative acting on xν works inside a commutator,
as e.g. in

[Pµ, D] = ∂µ (xν∂ν)− xν∂ν∂µ = ∂µx
ν∂ν + xν∂µ∂ν − xν∂ν∂µ =

= ∂xν

∂xµ
∂ν = δνµ∂ν = ∂µ = Pµ.

(3.9)

Knowing this, the rest is down to shufling terms and result in

[Pµ, Pν ] = 0, (3.10)
[Mµν , Pλ, ] = −2ηλ[µPν], (3.11)

[D,Pµ] = −Pµ, (3.12)
[Pµ, Kν ] = 2ηµνD − 2Mµν , (3.13)

[Mµν ,M
σλ] = 4δ[σ

[νMµ]
λ], (3.14)

[D,Mµν , ] = 0, (3.15)
[Mµν , Kσ] = −2ησ[µKν], (3.16)

[D,D] = 0, (3.17)
[D,Kµ] = Kµ, (3.18)

[Kµ, Kν ] = 0. (3.19)

This is one way to define the so(2, 3) conformal algebra, which can, but not easily,
be generalized to higher spins. In the next section the algebra will be re-introduced
in a way more suited for higher spin extensions.
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3. Conformal Symmetry

3.2 The so(2, 3) conformal algebra in the qp-basis

The so(2, 3) higher spin conformal algebra is now introduced in the way it will be
used throughout this thesis. It uses a product of two SL(2, R) spacetime spinors (
denoted qα and pα) to construct the spin-2 algebra presented in the previous section.
The pq-realization [24], [25] of spin 2 uses the group theoretical observation that
so(2, 3) ' sp(4,R). This means that the 4-component real objects (qα, pα) can be
used to create the SO(2, 3) symmetry group, and writing out all bilinear forms and
working out their Poisson brackets results in the so(2, 3) spin-2 Lie algebra. The
commutators, rather than the Poisson bracket, would be used in a quantized theory.
First of all, the so(1, 2) subgroup of the algebra is obtained via the bilinear form

Ma = −1
2(γa)α β(qαpβ) (3.20)

and is extended to the full so(2, 3) algebra by including the rest of the possible
bilinear forms of qα and pα

P a = −1
2(γa)αβ(qαqβ), (3.21)

Ka = −1
2(γa)αβ(pαpβ), (3.22)

D = −1
2q · p, (3.23)

where the gamma matrices (γa) are given in appendix A.2. These are the basis
elements of the full so(2, 3) algebra, which is obtained by finding the Poisson brackets
between the possible combinations of the basis elements. The Poisson bracket is
defined as

{f(q, p), g(q, p)}PB = ∂f

∂qα
∂g

∂pα
− ∂g

∂qα
∂f

∂pα
, (3.24)

which directly implies the canonical relations {qα, pβ}PB = δαβ , {pα, qβ}PB = −δβα
and {pα, pβ}PB = {qα, qβ}PB = 0.
An example of a Poisson bracket that needs to be figured out is {Ma, P b}PB. It is
done in the following way

{Ma, P b}PB = {−1
2(γa)α β(qαpβ),−1

2(γb)γδ(qγqδ)}PB =
= 1

4(γa)α β(γb)γδ{(qαpβ), (qγqδ)}PB,
(3.25)

where the remaining Poisson bracket follows from

{qαpβ,qγqδ}PB = qα{pβ, qγqδ}PB + {qα, qγqδ}PBpβ =
= qαqγ{pβ, qδ}PB + qα{pβ, qγ}PBq

δ + qγ{qα, qδ}PBpβ + {qα, qγ}PBq
δpβ =

= −δδβqαqγ − δ
γ
βq

αqδ,
(3.26)

using the trick [AB,C] = A[B,C] + [A,C]B known from commutator calculations.
When considering the Poisson bracket, it follows from the product rule of differen-
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3. Conformal Symmetry

tiation. Hence eq. (3.25) becomes

{Ma, P b}PB = −1
4(γa)α β(γb)γδ

(
δδβq

αqγ + δγβq
αqδ

)
=

= −1
4

(
(γa)α β(γb)γβqαqγ + (γa)α β(γb)βδqαqδ

)
=

= −1
2

(
γaγb

)
αβ
qαqβ = −1

4

(
[γa, γb] + {γa, γb}

)
αβ
qαqβ =

= −1
2

(
εab c(γc)αβ + ηabεαβ

)
= −1

2ε
ab
c(γc)αβqαqβ = εab cP

c.

(3.27)

The other brackets are worked out using the same techniques and result in (note
that the Poisson bracket from now on will be denoted with square brackets, the
same way as commutators)

[P a, P b] = 0, (3.28)
[Ma, P b] = εab cP

c, (3.29)
[D,P a] = P a, (3.30)

[P a, Kb] = −2εab cM c − 2ηabD, (3.31)
[Ma,M b] = εab cM

c, (3.32)
[D,Ma] = 0, (3.33)

[Ma, Kb] = εab cK
c, (3.34)

[D,D] = 0, (3.35)
[D,Ka] = −Ka, (3.36)

[Ka, Kb] = 0. (3.37)

Notice that these are similar, but not equal to the commutators in eqs. (3.10)
to (3.19). The change from Mµν to Ma is due to the fact that in three dimensions,
two anti-symmetric indices ab can be rewritten as one index c using a Levi-Civita
symbol. Here, this is used to obtain an M with only one index as

Ma = −1
2ε
a
bcM

bc ⇔ Mab = εab cM
c. (3.38)

The differences in sign could be cared for by changing signs in eq. (3.23), but the
sign is here kept common for all basis elements.
Note that on several places in this thesis, there will appear a parentheses after some
fields, e.g. F a(1,3), this parentheses (q,p) states how many q’s and p’s, respectively,
the basis element the field is projected on has. For example, the part of the field
strength F projected onto the spin-2 basis element P a is denoted by F a(2,0), since
the basis element contains two q’s and no p. The F will have as many flat indices
as the basis element for the notation to be unambiguous, e.g. the projection onto
Ma and D will be F a(1,1) and F (1,1) respectively.
Also note that the D basis element provides a grading of the number of q’q and p’s.
Denote the number of q’s with m and p’s with n in a generator T , then [D,T ] =
m−n

2 T , note that T can feature indices. This will be consistent even in higher spins.
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3. Conformal Symmetry

3.3 The higher-spin algebra

The conformal higher spin algebra is obtained as an extension of the spin-2 conformal
algebra obtained in the previous section. This is done by including polynomial terms
of pα and qα of degree higher than 2 (all polynomials of degree 2 gave the spin-2
algebra). The spin-3 extension will be obtained by including polynomials of degree
4, the spin-4 extension by polynomials of degree 6 and so on. Why a polynomial
of degree 4 corresponds to spin 3 is discussed in section 5.2. Using odd degrees of
the polynomials would correspond to fermions, which are possible, but much harder
to examine and will not be done here. Worth noting is that the bracket between
two elements of the spin-3 algebra results in an element of the spin-4 algebra. This
means that the spin-3 algebra is not closed, as in the case with the spin-2 algebra.
To get a closed higher-spin algebra, all higher-spin terms must be included, this is
called the universal enveloping algebra of so(2, 3) and is here denoted hs(so(2, 3)).

If the case of pure AdS3 had been considered instead of a 2+1 dimensional conformal
spacetime, the algebra would have been obtained by sl(N,R)× sl(N,R) and would
have included the closed algebra for all spin states from spin 2 to spin N .

The qp polynomials for the higher-spin algebra basis elements will be on the form

T a...b...c(r,s) =
(
−1

2(γa)α1α2(qα1qα2)
)
. . .
(
−1

2(γb)αr β1(qαrpβ1)
)
. . .

. . .
(
−1

2(γc)βs−1βs(pβs−1pβs)
) (3.39)

Note that the expression is symmetric in all upper and lower indices respectively
and that there is no middle term if both r and s are even.

An important aspect when calculating the algebra for these bases is how many of
the spinors that appear in the different expressions. This is a kind of grading of the
fields which is denoted by G(N), where N is the number of spinors. As an example,
G(2) gives the spin-2 algebra, while G(4) gives spin 3. Now remember eq. (3.24),
it is clear that the bracket removes two of the spinors, one for each derivative, this
can be expressed as

[G(N), G(M)] = G(M +N − 2). (3.40)

This means that finding the bracket between two elements of the spin-2 basis results
in another element in the spin-2 basis, but when considering higher spins, this is not
the case. In, for instance, spin 3, two elements of the spin-3 basis results in a spin-4
element. Hence, for the algebra to be closed, the theory either has to be restricted
to spin-2, or all higher spins has to be included. Worth noting is that a bracket
between any G(N) and a spin-2 element results in an element of the grade N .
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3. Conformal Symmetry

3.3.1 The spin-3 basis
Using eq. (3.39), the spin-3 basis elements are obtained as

P ab = 1
4(γa)αβ(γb)γδ(qαqβ)(qγqδ), (3.41)

P̃ ab = 1
4(γa)αβ(γb)γ δ(qαqβ)(qγpδ), (3.42)

M̃ab = 1
4(γa)αβ(γb)γδ(qαqβ)(pγpδ), (3.43)

K̃ab = 1
4(γa)α β(γb)γδ(qαpβ)(pγpδ), (3.44)

Kab = 1
4(γa)αβ(γb)γδ(pαpβ)(pγpδ). (3.45)

Using the Fierz identities from eqs. (A.8) and (A.10), it is clear that P ab and Kab are
both symmetric and traceless. Similarly, P̃ ab and K̃ab are traceless (see eq. (A.8)),
while M̃ab are neither traceless nor symmetric. However, it would be more convenient
if all of the basis elements in eqs. (3.41) to (3.45) would be symmetric and traceless.
The way this is solved is to introduce a new basis where the elements in eqs. (3.41)
to (3.45) are kept, but symmetrized and made traceless, where the anti-symmetric
parts of P̃ ab, M̃ab, and K̃ab are found in this new basis as the elements P̃ a, M̃a and
K̃a respectively, while the trace of M̃ab is found in D̃. These are introduced as

M̃ [ab] = εab cM̃
c, M̃a = −1

2ε
a
bcM

ab, (3.46)
P̃ [ab] = −1

2ε
ab
cP̃

c, P̃ a = εa bcP
ab, (3.47)

K̃ [ab] = −1
2ε
ab
cK̃

c, K̃a = εa bcK
ab, (3.48)

where the signs follow from the Fierz identities in eq. (A.9) for eq. (3.46) and
from eq. (A.10) for eqs. (3.47) and (3.48). Similarly, the trace of M̃ab follows from
eq. (A.11)

Ma
a = 2D̃. (3.49)

Hence, the qp-form of these new basis elements are

P̃ a = 1
4(γa)αβqαqβ(q · p), (3.50)

M̃a = 1
4(γa)α βqαpβ(q · p), (3.51)

D̃ = 1
4(q · p)2, (3.52)

K̃a = 1
4(γa)αβpαpβ(q · p). (3.53)

Together the nine equations in eqs. (3.41) to (3.45) and eqs. (3.50) to (3.53) make
up the spin-3 basis, where all basis elements with two indices are symmetric and
traceless.
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3. Conformal Symmetry

3.3.2 The spin-3 algebra
In section 3.2, the spin-2 algebra was obtained using the qp-basis. Here the same
is done for the spin-3 algebra. The calculations are very similar, with just a few
exceptions. Still, one calculation will be shown here as well to make the procedure
clear.
Note that all brackets considered here are between one spin-2 and one spin-3 element,
since brackets between two spin-3 elements results in a spin-4 element (remember
eq. (3.40)). The one shown is[

P a, M̃ bc
]

=
[
−1

2(γa)αβqαqβ, 1
4(γb)γδ(γc)σλqγqδpσpλ

]
=

= −1
8(γa)αβ(γb)γδ(γc)σλ

[
qαqβ, qγqδpσpλ

]
.

(3.54)

Where the bracket is given by[
qαqβ, qγqδpσpλ

]
= qγqδqαpσδ

β
λ + qγqδqαpλδ

β
σ + qγqδqβpσδ

α
λ + qγqδqβpλδ

α
σ . (3.55)

Hence, eq. (3.54) is

− 1
8(γa)αλ(γb)γδ(γc)σλqγqδqαpσ − 1

8(γa)ασ(γb)γδ(γc)σλqγqδqαpλ−
− 1

8(γa)λβ(γb)γδ(γc)σλqγqδqβpσ − 1
8(γa)σβ(γb)γδ(γc)σλqγqδqβpλ =

= −1
4(γb)γδ

(
(γaγc)α σqγqδqαpσ + (γaγc)α λqγqδqαpλ

)
=

= −1
2(γb)γδ(γaγc)α σqγqδqαpσ = −1

2(γb)γδ
(
εac d(γd)α σ + ηacδσα

)
qγqδqαpσ =

= −1
2ε
ac
d(γb)γδ(γd)α σqγqδqαpσ − 1

2η
ac(γb)γδqγqδ(q · p) =

= −2εac dP̃ bd − 2ηacP̃ b.

(3.56)

This might seem correct, but look more closely at the expressions used. All places
where P̃ ab appears in terms of gamma matrices, the version used is the one that is not
yet symmetrized and traceless, and this must be compensated for. The symmetry
of M̃ bc is added by simply symmetrizing the bc indices in the final result. Removing
the anti-symmetry in the term P̃ bd is harder, but accomplished by separating the
symmetric and anti-symmetric parts of P̃ bd and then use eq. (3.47) for the anti-
symmetric part

−2εac dP̃ bd = −2εac dP̃ (bd) +−2εac dP̃ [bd] = −2εac dP̃ (bd) + εac dε
bd
eP̃

e =
= −2εac dP̃ (bd) + ηabP̃ c − ηbcP̃ a.

(3.57)

The symmetric part is here denoted P̃ (bd). Similarly, the trace is removed by taking
the bc-trace of eq. (3.56)

− 2εa cdP̃ cd − 2P̃ a = −4P̃ a (3.58)

and removing this times 1
3η

bc from eq. (3.56). All in all, the final expression for the
bracket is [

P a, M̃ bc
]

= −2εa(b
dP̃

c)d − ηa(bP̃ c) + 1
3η

bcP̃ a. (3.59)
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This shows the most important techniques for calculating brackets between spin-3
basis elements. Working out all combinations of one spin-2 and one spin-3 basis
elements gives the following non-zero brackets

[
P a, P̃ bc

]
= εa(b

dP
c)d, (3.60)[

P a, P̃ b
]

= −P ab, (3.61)[
P a, M̃ bc

]
= −2εa(b

dP̃
c)d − ηa(bP̃ c) + 1

3η
bcP̃ a, (3.62)[

P a, M̃ b
]

= −P̃ ab + 3
2ε

ab
cP̃

c, (3.63)[
P a, D̃

]
= −2P̃ a, (3.64)[

P a, K̃bc
]

= 3εa(b
dM̃

c)d − 3ηa(bM̃ c) + ηbcM̃a, (3.65)[
P a, K̃b

]
= −M̃ab − 3εab

cM̃
c − 8

3η
abD̃, (3.66)[

P a,Kbc
]

= −4εa(b
dK̃

c)d − 6ηa(bK̃c) + 2ηbcK̃a, (3.67)[
Ma, P bc

]
= 2εa(b

dP
c)d, (3.68)[

Ma, P̃ bc
]

= 2εa(b
dP̃

c)d, (3.69)[
Ma, P̃ b

]
= εab

cP̃
c, (3.70)[

Ma, M̃ bc
]

= 2εa(b
dM̃

c)d, (3.71)[
Ma, M̃ b

]
= εab

cM̃
c, (3.72)[

Ma, K̃bc
]

= 2εa(b
dK̃

c)d, (3.73)[
Ma, K̃b

]
= εab

cK̃
c, (3.74)[

Ma,Kbc
]

= 2εa(b
dK

c)d, (3.75)[
D,P ab

]
= 2P ab, (3.76)[

D, P̃ ab
]

= P̃ ab, (3.77)[
D, P̃ a

]
= P̃ a, (3.78)[

D, K̃ab
]

= −K̃ab, (3.79)[
D, K̃a

]
= −K̃a, (3.80)[

D,Kab
]

= −2Kab, (3.81)[
Ka, P bc

]
= −4εa(b

dP̃
c)d + 6ηa(bP̃ c) − 2ηbcP̃ a, (3.82)[

Ka, P̃ bc
]

= 3εa(b
dM̃

c)d + 3ηa(bM̃ c) − ηbcM̃a, (3.83)[
Ka, P̃ b

]
= M̃ab − 3εab

cM̃
c + 8

3η
abD̃, (3.84)[

Ka, M̃ bc
]

= −2εa(b
dK̃

c)d + ηa(bK̃c) − 1
3η

bcK̃a, (3.85)[
Ka, M̃ b

]
= K̃ab + 3

2ε
ab

cK̃
c, (3.86)[

Ka, D̃
]

= 2K̃a, (3.87)[
Ka, K̃bc

]
= εa(b

dK
c)d, (3.88)[

Ka, K̃b
]

= Kab. (3.89)
(3.90)

Note that the grading discussed last in section 3.2 holds true for the spin-3 basis as
well.
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3.4 The SO(2, d) symmetry group

The generators of any group of type SO(2, d) (using metric ηMN = trace(−1, 1, . . . , 1,−1))
can be expressed as

(JMN)PQ = δ
[M
P δ

N ]
Q , (3.91)

where P , Q are the indices of the generating matrices and M , N the indices of the
algebra. With correct normalization this gives the commutation relations

[JMN , JPQ] = −4δ[M
[P J

N ]
Q], (3.92)

where P , Q,M , N now all are indices of the algebra. These are not the commutation
relations (bracket relations, remember that the theory is studied at a classical level)
obtained in eqs. (3.28) to (3.37) for the conformal so(2, 3) algebra, only the generator
Mab commutated with itself follows this pattern (remember from eq. (3.38) howMab

relates to Ma). However, the entire algebra can be cast on this form. First, let the
indices µ and ν run over the first d dimensions (µ, ν = 0, 1, . . . , d−1) and define the
generators JMN as follows (the comma is for clarity, it does not denote derivation)

Jµ,ν = Mµν , (3.93)
Jµ,d = 1

2 (Kµ − Pµ) , (3.94)
Jµ,d+1 = 1

2 (Kµ + Pµ) , (3.95)
Jd+1,d = D. (3.96)

Note that the J ’s are anti-symmetric. This combination of the algebra in eqs. (3.28)
to (3.37) commutes as eq. (3.92) and is a confirmation that the algebra obtained
indeed is the so(2, 3) Lie algebra.

3.5 Finite conformal transformations
The infinitesimal continuous conformal transformations have now been studied in
detail and even tough this thesis does not use the finite ones, they deserve to be at
least mentioned. The problem with the finite transformations is that they are much
harder to express than the infinitesimal ones. The exceptions being the translations
and the inversion

xµ → xµ + aµ, xµ → xµ

x2 (3.97)

where aµ is a constant finite vector describing the translation. To obtain the spe-
cial conformal transformations, perform an inversion followed by a translation and
another inversion. After some algebra the special conformal transformation becomes

xµ → xµ − x2aµ

1− 2(a · x) + a2x2 . (3.98)

To be sure that this is the special conformal transformations used before, rewrite it
as

xµ − x2aµ

1− 2(a · x) + a2x2 = xµ + 2(a · x)xµ − a2x2xµ − x2aµ

1− 2(a · x) + a2x2 (3.99)
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and keep only the lowest powers of aµ, leaving 2(a·x)xµ−x2aµ in the enumerator and
1 in the denominator, which is the expression used for generating special conformal
transformations in eq. (3.7). The finite versions of rotations and scalings are also
obtained through inversions and translations. Doing this is hard, but the idéa is
that the commutator between the generators of translation and special conformal
transformations consists of an anti-symmetric part and a trace. These parts will
correspond to rotations and scale transformations respectively. Working this out
begins with taking the two group elements g = P = ePµa

µ and h = K = eKµb
µ and

commuting these (here, it is done to first order)

ghg−1h−1 − 1 = aµbν [Pµ, Kν ]. (3.100)

But the special conformal transformation h can be written in terms of a translation
and two inversions. h can hence be written as h = IgI, changing the commutator
to

gaIgbIg
−1
a Ig−1

b I = aµbν [Pµ, Kν ]. (3.101)

Taking the trace (ηµν [Pµ, Kν ]) and the anti-symmetric part (εσµν [Pµ, Kν ]) gives scale
transformations and rotations respectively, to first order in aµ and bν . To get the
exact expressions, the entire spectrum of commutators from [ePµaµ , eKνbν ] must be
considered.
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4
Spin-2

Before higher spins are introduced it is important to understand the spin-2 case.
Even though both the Einstein and Cartan formulations [17] may be familiar to the
reader, this chapter will introduce the most important techniques which is later used
to obtain results in the higher-spin sector. It also gives a simpler interpretation for
the results obtained since spin 2 can be thought of in terms of general relativity.
Similar calculations can be found in [24]–[26].

4.1 Projection of F = 0

The vacuum equations of motion (obtained in eq. (2.3)) for spin-2 are F = 0. This
will not be solved in its current form, but instead projected onto the different basis
elements TA of a spin-2 system. The basis elements are the ones found in section 3.2

TA = (Pa,Ma, D,Ka) , (4.1)

which is a complete basis for the Lie algebra of so(2, 3). First, the gauge field A is
projected onto this basis

AATA = AaPa + AaMa + AD + AaKa = eaPa + ωaMa + bD + faKa, (4.2)

where ea, ωa, fa and b are the different basis components of the gauge field and will
from now on be the objects used instead of the gauge field itself. The notation used
here is not coincidental, the Pa projected field is indeed the dreibein ea and ωa is
the spin-connection from the Cartan formulation of gravity seen in section 2.2. fa
will similarly get a physical mening as the Schouten tensor (see appendix F), while
b soon will be set to zero via a gauge choice.
While the projection of the gauge field is very simple, the projection of the field
strength F is a little bit trickier. The field strength is connected to the gauge field
in the known way

F = dA+ A ∧ A =
(
dAA + ABACfBC

A
)
TA, (4.3)

where fBC A is the structure coefficient describing the bracket between TB and TC ,
defined as [TB, TC ] = fBC

ATA. Selecting all terms corresponding to a specific basis
element TA is hence the projection of F onto TA. Written in terms of brackets this
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4. Spin-2

look as follows

Pa : F
∣∣∣
Pa

= deaPa + (ωa ∧ eb)[Ma, Pb] + b ∧ ea[D,Pa], (4.4)

Ma : F
∣∣∣
Ma

= dωaMa + (ωa ∧ ωb)[Ma,Mb] + (ea ∧ f b[Pa, Kb])
∣∣∣
Ma
, (4.5)

D : F
∣∣∣
D

= dbD + (ea ∧ f b[Pa, Kb])
∣∣∣
D
, (4.6)

Ka : F
∣∣∣
Ka

= dfaKa + (ωa ∧ f b)[Ma, Kb] + (b ∧ fa)[D,Ka]. (4.7)

Note that only the non-zero brackets are written out. The brackets are known from
eqs. (3.28) to (3.37) and entered into the equations to find

Pa : (dea + εa bcω
b ∧ ec + b ∧ ea)Pa = 0, (4.8)

Ma : (dωa + εa bcω
b ∧ ωc − 2εa bceb ∧ f c)Ma = 0, (4.9)

D : (db− 2ηabea ∧ f b)D = 0, (4.10)
Ka : (dfa + εa bcω

b ∧ f c − b ∧ fa)Ka = 0. (4.11)

These can be simplified further by remembering the definition of the Cartan covari-
ant derivative (eq. (2.8)) and the Riemann tensor

Pa : Dea + b ∧ ea = 0, (4.12)
Ma : Ra − 2εa bceb ∧ f c = 0, (4.13)
D : db− 2ea ∧ fa = 0, (4.14)
Ka : Dfa − b ∧ fa = 0, (4.15)

where the basis elements have been removed for clarity and the fact that they play
no role for the content of the equations. The exterior derivative d in eq. (4.14) could
be exchanged for a covariant derivative, but since b has no flat index, it is omitted
to avoid confusion.

4.2 Projection of δA
It is interesting to see how F transforms under a gauge transformation δA, since
knowing this may give useful information about the equations. Specifically, it might
give the opportunity to set some part of A to zero by a clever gauge choice.
δA is a non-abelian gauge transformation and hence looks as follows

δA = DΛ = dΛ + [A,Λ] . (4.16)

Here Λ is the gauge parameter defining the transformation. It can be projected onto
the basis elements in the same way as A was in eq. (4.2)

Λ = PaΛa(2,0) +MaΛa(1,1) +DΛ(1,1) +KaΛa(0,2). (4.17)

The small parentheses after the Λ’s denote the field content as (q,p), where q denote
the number of q spinors in the basis that Λ is projected onto and similarly for p.
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Hence Λ|D = Λ(1,1), since the bilinear form used for the basis element D (eq. (3.23))
contained one p spinor and one q spinor, and the number of indices on the Λ’s are the
same as on the basis element it is projected onto. This allows for the projection of the
entire expression in eq. (4.16), which is done in a similar, but not identical, way to
how the equation F = 0 was projected in eqs. (4.4) to (4.7). Since the commutator
in eq. (4.16) is between two different fields, care must be taken to include all its
brackets

Pa : δea = dΛa(2,0) + ωa[Ma, Pb]
∣∣∣
Pa

Λb(2,0) + ea[Pa,Mb]
∣∣∣
Pa

Λb(1,1)+ (4.18)

+ b[D,Pa]
∣∣∣
Pa

Λa(2,0) + ea[Pa, D]
∣∣∣
Ma

Λ(1,1),

Ma : δωa = dΛa(1,1) + ωa[Ma,Mb]
∣∣∣
Ma

Λb(1,1) + ea[Pa, Kb]
∣∣∣
Ma

Λb(0,2)+ (4.19)

+ fa[Ka, Pb]
∣∣∣
Ma

Λb(2,0),

D : δb = dΛ(1,1) + ea[Pa, Kb]
∣∣∣
Ma

Λb(0,2) + fa[Ka, Pb]
∣∣∣
Ma

Λb(2,0), (4.20)

Ka : δfa = dΛa(0,2) + ωa[Ma, Kb]
∣∣∣
Ma

Λb(0,2) + fa[Ka,Mb]
∣∣∣
Ma

Λb(1,1)+ (4.21)

+ b[D,Ka]
∣∣∣
Ma

Λa(0,2) + fa[Ka, D]
∣∣∣
Ma

Λ(1,1).

Note that the Λ’s are 0-forms and hence, no wedges appear between them and the
other fields. If Λ instead had been a 1-form, it had been necessary to use the wedge
product and also to change some signs in eqs. (4.18) to (4.21) (this stems from the
nature of the wedge product and will have to be considered in section 4.4).
After entering the brackets into eqs. (4.18) to (4.21), noting the covariant derivatives
and some simplifications

Pa : δea = DΛa(2,0)− εa bcebΛc(1,1) + bΛa(2,0)− eaΛ(1,1), (4.22)
Ma : δωa = DΛa(1,1)− 2εa bcebΛc(0,2) + 2εa bcf bΛc(2,0), (4.23)
D : δb = dΛ(1,1)− 2eaΛa(0,2) + 2faΛa(2,0), (4.24)
Ka : δfa = DΛa(0,2)− εa bcf bΛc(1,1)− bΛa(0,2) + faΛ(1,1). (4.25)

4.2.1 Choosing the spin-2 gauge condition
Looking at eqs. (4.22) to (4.25) there is a choice to use one of the Λ’s to put some of
the fields equal to zero. The eqs. (4.12) to (4.15) simplifies the most by using Λa(0,2)

to gauge the b field to zero. Fields that can be set to zero in this way are called
Stückelberg fields.
However, note that the remaining parameters Λa(2,0), Λa(1,1), and Λ(1,1) can be iden-
tified as translations, rotations, and scale transformations, respectively, which are
some of the conformal symmetries. The Λa(0,2) parameter can in the same way be
identified as the special conformal transformations, but it is used up to set b = 0.
In some sense, it still has this role as a special transformation, but not at the linear
level considered here and an extended discussion of how this works is outside the
scope of this thesis.
To make the gauge choice, let Λa(0,2) take on such a value that b = 0. This is however
not enough. Since δb also depends on Λa(2,0) and Λ(1,1), these transformations will

25



4. Spin-2

change the value of b. The solution to this is to make a so-called compensating
gauge transformation, where the Λa(0,2) is tuned to always cancel δb. After b is set
to zero, any new transformation on the fields leads to a change in Λa(0,2) according
to

δbµ = ∂µΛ(1,1)− 2Λµ(0,2) + 2fµνΛν (2,0) = 0 ⇒
⇒ Λµ(0,2) = 1

2∂µΛ(1,1) + fµνΛν (2,0).
(4.26)

If Λa(0,2) is, everywhere it appears, replaced in the way eq. (4.26) describes, b will
be put to zero independent on which transformations are made. This changes the
projection of the gauge transformations in eqs. (4.22) to (4.25) into

δeaµ = DµΛa(2,0)− εa µcΛc(1,1)− eµ aΛ(1,1),

δωµ
a = DµΛa − εσa µ∂σΛ(1,1)− 2εσa µfσνΛν (2,0) + 2εa bcfµ bΛc(2,0),

δfµ
a = 1

2Dµ

(
eσa∂σΛ(1,1)

)
+Dµ

(
eσafσνΛν (2,0)

)
− εa bcfµ bΛc + fµ

aΛ(1,1).

(4.27)

Note that there also is the possibility to use Λa(1,1) to set the anti-symmetric part
of eµ a to zero, removing the extra degrees of freedom it has compared to gµν and
letting it take the role of the metric instead of the dreibein.

4.3 Solving F = 0
As stated before, the equations of motion are written as F = 0 and to solve this
equation gives information of the vacuum state. The projections in eqs. (4.12)
and (4.13) allow to solve for ωµ a and fµ

a in terms of eµ a and ωµ
a, respectively.

The projection in eq. (4.14) is an identity and may be used to perform calculations,
while the last projection eq. (4.15) is an equation describing the dynamics of the
system. These facts are now shown explicitly.

4.3.1 The Pa projection
The expression for the projection of the equation F = 0 was found in section 4.1
and is restated here

dea + εa bcω
b ∧ ec = 0. (4.28)

To solve it, it is easier to implement the anti-symmetry using a Levi-Civita symbol
rather than differential froms

εµνλ
(
∂µeν

a + εa bcωµ
beν

c
)

= 0. (4.29)

multiplying the Levi-Civita symbols simplifies the expression

εµνλ∂µeν
a + ωaλ − eλaωb b = 0. (4.30)

The trace of ω is obtained by multiplying the entire expression by eλa and then solve
for ων ν

2ωc c = eλaε
µνλ∂µeν

a = εµν a∂µeν
a. (4.31)

This results in an expression that is correct, up to flatness of the indices

ωaλ = 1
2e
λaeσcε

µνσ∂µeν
c − εµνλ∂µeν a. (4.32)
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Giving the final expression

ωλ
a = 1

2eλ
aeσcε

µνσ∂µeν
a − εµνσeσ aeλc∂µeν a =

= 1
2ε
µνσ (eλ aeσc − 2eσ aeλc) ∂µeν c.

(4.33)

4.3.2 The Ma projection
The Ma projected equation was found in eq. (4.13) and can be used to solve fµ a in
terms of ωµ a, here there will not be any explicit ωµ a terms, but they constitute the
Riemann tensor Ra. The expression can be written as

Ra − 2εa bceb ∧ f c = 0,
Ra = 2εa bceb ∧ f c, Rµν

a = 4εa bce[µ
bfν]

c,
(4.34)

which when multiplied with εa νσ becomes

Rµ
σ = −8δνσbc e[µ

bfν]
c = −8δ[ν

[µfν]
σ] = 2fµ σ + 2δσµTr [f ] . (4.35)

The trace is found by contracting µ and σ

R = 2Tr [f ] + 6Tr [f ] = 8Tr [f ] ⇒ Tr [f ] = 1
8R (4.36)

and the expression becomes

fµσ = 1
2Rµσ − 1

8gµσR = 1
2Sµσ. (4.37)

The term Sµσ is the so-called Schouten tensor recognized from three-dimensional
general relativity.

4.3.3 The D projection
2ea ∧ fa = 0 (4.38)

is obtained from eq. (4.14) and is quickly seen to be

e[µ
afν]a = −f[µν] = 0. (4.39)

This states that the Shouten tensor is symmetric as expected since it consists of the
Ricci tensor Rµν and the metric gµν , which both are symmetric.

4.3.4 The Ka projection
Lastly, the projection in eq. (4.15) is considered

Dfa = 0. (4.40)

This is just the anti-symmetrized covariant derivative acting on fa, also known as
the Cotton tensor Cµν

εµ
σρ (Dσfρν) = εµ

σρDσ

(
Rρν − 1

4gρνR
)

= Cµν = 0, (4.41)

known as the Cotton equation. A theory that has a Cotton tensor equal to zero is
conformally flat, which is not the case for a theory coupled to matter. Instead, a
theory coupled to matter looks as Cµν = Tµν(φ, ψ).
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4.4 Solving the spin-2 Bianchi identity DF = 0
The Bianchi identity must always be fulfilled and may seem trivial with F = 0.
It could, however, reveal some interesting physics by solving it without assuming
that F = 0 and if a subset of the projected equations of F = 0 is used while all
projections of DF = 0 still are identities, it becomes interesting. Especially if the
Cotton equation Cµν = 0 (eq. (4.41)) does not have to be assumed for DF to equal
zero. If this is the case, the Cotton equation can pick up a right hand side which
would allow it to couple to e.g. matter.
The projection of the Bianchi identity is done similarly to the equation F = 0 by
the expression

DF = dF + A ∧ F − F ∧ A = 0 (4.42)
and is again projected onto the conformal basis elements Pa, Ma, D and Ka

Pa : DF
∣∣∣
Pa

= DF a(2,0)− εa bcF b(1,1) ∧ ec − F (1,1) ∧ ea = 0, (4.43)

Ma : DF
∣∣∣
Ma

= DF a(1,1)− 2εa bceb ∧ F c(0,2) + 2εa bcF b(2,0) ∧ f c = 0, (4.44)

D : DF
∣∣∣
D

= DF (1,1)− 2ea ∧ F a(0,2) + 2F a(2,0) ∧ fa = 0, (4.45)

Ka : DF
∣∣∣
Ka

= DF a(0,2)− εa bcF b(1,1) ∧ f c + F (1,1) ∧ fa = 0, (4.46)

where the gauge b = 0 is implemented and the different components of F are ob-
tained from section 4.1

F a(2,0) = Dea,
F a(1,1) = Ra − 2εa bceb ∧ f c,
F (1,1) = −2ea ∧ fa,
F a(0,2) = Dfa.

(4.47)

As of now, the equations eqs. (4.43) to (4.46) are all still identities but that might
not be the case after subjecting them to constraints. Note that it is important to
remember all brackets and remember to use the correct sign when calculating the
projections of eq. (4.42).

4.4.1 Zero torsion condition
Start with the minimal assumption, which is the zero torsion condition Dea = 0.
The minimal assumption is the realisation where the least amount of projections
of F = 0 is assumed. It means to only assume the highest graded equation, the
Pa-component of F , to be zero (F a(2,0) = 0). Hence changing the equations to

Pa : DF
∣∣∣
Pa

= −εa bcF b(1,1) ∧ ec − F (1,1) ∧ ea = 0,

Ma : DF
∣∣∣
Ma

= DF a(1,1)− 2εa bceb ∧ F c(0,2) = 0,

D : DF
∣∣∣
D

= DF (1,1)− 2ea ∧ F a(0,2) = 0,

Ka : DF
∣∣∣
Ka

= DF a(0,2)− εa bcF b(1,1) ∧ f c + F (1,1) ∧ fa = 0.

(4.48)

These are hopefully all identities, but that has to be made sure before any conclusions
can be drawn.
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4.4.1.1 The (2,0) equation

Start with the (2,0)-equation by entering the expressions in eq. (4.47) for the different
components of F into the Pa projection of DF

DF
∣∣∣
Pa

= −εa bcF b(1,1) ∧ ec − F (1,1) ∧ ea =

= −εa bc
(
Rb − 2εb deed ∧ f e

)
∧ ec + 2eb ∧ f b ∧ ea.

(4.49)

The Levi-Civita symbols can be simplified to εa bcεb de = δadηce − δaeηcd

DF
∣∣∣
Pa

= −εa bcRb ∧ ec + 2ea ∧ f b ∧ eb − 2eb ∧ fa ∧ eb + 2eb ∧ f b ∧ ea =

= −εa bcRb ∧ ec = 0,
(4.50)

where the last term vanish from symmetries of the Riemann tensor

εa bcR
b ∧ ec = 1

2R
a
b ∧ eb = R[µν

abeσ]b = R[µν
a
σ] = Ra

[σµν] = 0. (4.51)

4.4.1.2 The (1,1) equations

The (1,1)-equations are quite easy to figure out

DF
∣∣∣
Ma

= DF a(1,1)− 2εa bceb ∧ F c(0,2) =

= DRa − 2εa bc
[
Deb ∧ f c − eb ∧Df c

]
− 2εa bceb ∧Df c = (4.52)

= 2εa bceb ∧Df c − 2εa bceb ∧Df c = 0,
DF

∣∣∣
D

= DF (1,1)− 2ea ∧ F a(0,2) =
= −2 [Dea ∧ fa − ea ∧Dfa]− 2ea ∧Dfa = (4.53)
= 2ea ∧Dfa − 2ea ∧Dfa = 0.

4.4.1.3 The (0,2) equation

Now, the only one left is the (0,2)-equation, which is the one requiring most trickeries

DF
∣∣∣
Ka

= DF a(0,2)− εa bcF b(1,1) ∧ f c + F (1,1) ∧ fa =

= DDfa − εa bc
(
Rb − 2εb deed ∧ f e

)
∧ f c − 2eb ∧ f b ∧ fa.

(4.54)

The Levi-Civita symbols are simplified as before

DF
∣∣∣
Ka

= DDfa − εa bcRb ∧ f c + 2ea ∧ fb ∧ f b − 2eb ∧ fa ∧ f b − 2eb ∧ fb ∧ fa =

= DDfa − εa bcf b ∧Rc.
(4.55)

Most terms vanished, but it remains to show that the two remaining are equal.
Notice that the DDf -term contains two antisymmetrized covariant derivatives (they
are covariant exterior derivatives), which means that they can be rewritten as their
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brackets. It can in turn be rewritten as a Riemann tensor through the Ricci identity
[27]

DDfa =
[
D[µ, Dν

]
fσ]

a = −R[µνσ]
λfλ

a −R[µν
abfσ]b =

= −R[µν
abfσ]b = −εab cR[µν

cfσ]b = −εab cRc ∧ fb
(4.56)

which shows that also the fourth equation is an identity

DF
∣∣∣
Ka

= DDfa − εa bcf b ∧Rc = −εa bcRc ∧ f b − εa bcf b ∧Rc = 0. (4.57)

The conclusion that can be drawn form this is that if the zero torsion condition is as-
sumed, the equation DF = 0 is still an identity and hence allows a non-homogenous
Cotton equation.

4.4.2 The Schouten tensor
Assuming the zero torsion condition left the equation DF = 0 as an identity, but
this minimal assumption will not allow other fields than ωa to be solved in terms of
the dreibeins. To make it possible to also solve fa in terms of ωa, another constraint
has to be imposed. Since the equation used to solve fa in terms of ωa and ea was
F a(1,1) = 0, take this as the constraint. This also happens to be the field projection
next in line according to the grading order. The equation F a(1,1) = 0 identified fa
as the Schouten tensor (eq. (4.37)) Sµν = Rµν − 1

4gµνR. Before entering this into
the equations, note that the constraint Fµν (1,1) = 4f[µν] = 0 follows from F a(1,1) = 0.
Just multiply it by εν σa to obtain

εν σaFµν
a(1,1) = εν σa

(
Rµν

a − 4εa bce[µ
bfν]

c
)

= 1
2Rµσ − 4εν σaεa bce[µ

bfν]
c =

= 1
2Rµσ − 2 (eν ceσb − eν beσc)

(
eµ

bfν
c − eν bfµ c

)
=

= 1
2Rµσ − 2 (gµσTr [f ]− fµσ − fµσ + 3fµσ) =

= 1
2Rµσ − 2gµσTr [f ]− 2fµσ = 0,

(4.58)

or after some rearranging of terms

fµν = 1
4Rµν − gµνTr [f ] . (4.59)

The constraint Fµν (1,1) = 4f[µν] = 0 follows since both gµν and Rµν are symmetric.
Now it is time to rewrite eqs. (4.43) to (4.46) using the new constraints F a(2,0) =
F a(1,1) = F (1,1) = 0

Pa : DF
∣∣∣
Pa

= 0 = 0,

Ma : DF
∣∣∣
Ma

= −2εa bceb ∧ F c(0,2) = 0,

D : DF
∣∣∣
D

= −2ea ∧ F a(0,2) = 0,

Ka : DF
∣∣∣
Ka

= DF a(0,2) = 0.

As seen, the (2,0)-equation is trivial, but the other three require some work.
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4.4.2.1 The Ma equation

Solving the Ma-equation is done by implementing the anti-symmetri of the curved-
space indices with a Levi-Civita symbol and entering the expression for fa

εµνσDµFνσ
∣∣∣
Ma

= −2εµνσεa bceµ bF c
νσ(0,2) = −2εµνσεa bceµ bDνfσ

c =

= 2 (eσaeν c − eνaeσ c)Dν

(
Rσ

c − 1
4eσ

cR
)

=

= Dν

(
Raν − 1

4e
νaR

)
−Da

(
R− 3

4R
)

=
= 1

2D
aR− 1

4D
aR−DaR +Da 3

4R = 0.

(4.60)

4.4.2.2 The D equation

The D-equation is easy remembering that f[µν] = 0

DF
∣∣∣
D

= −2ea ∧ F a(0,2) = e[µ
aDνfσ]a = D[σfµν] = 0. (4.61)

4.4.2.3 The Ka equation

Lastly, the Ka-equation. It is simply two covariant exterior derivative acting on fa.
The expression for this was found in eq. (4.56). Again, use the Levi-Civita symbol
for the anti-symmetry

εµνσDµFνσ
∣∣∣
Ka

= εµνσDµF
a
νσ(0,2) = εµνσDµDνfσ

a = −εµνσεa bcRµν
cfσ

b =

= −εµνσεa bcRµν
c
(
Rσ

b − 1
4eσ

bR
)

=
= −εµνσεa bcRµν

cRσ
b + 1

4ε
µνσεa bcRµν

ceσ
bR =

= −2εa bcRσcRσ
b + 1

2ε
a
bcR

bcR = 0.

(4.62)

The first term is zero, since RσcRσ
b is symmetric under the exchange b↔ c and is

anti-symmetrized from the Levi-Civita symbol, and the second term is zero since the
Ricci tensor is symmetric. This is good! The equation DF = 0 is still an identity
with all of F = 0, except the projection that enforces the Cotton equation assumed.
This means that there is no violation of the Bianchi Identity even if the theory is
coupled to matter.
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Spin 3

The first step towards higher spins is spin 3. Spin 3 is introduced in this chapter
and the equations are solved in the same way as the spin 2 equations were solved in
chapter 4. The main difference is the amount of work needed to solve the equations.
Since there are 9 basis elements in the spin-3 algebra, there will be 9 projections of
both the F = 0 equation and the Bianchi identity. These will be larger than the ones
found in the spin-2 case. Hence, as a first approach, the entire equations will not be
considered. Instead, the linearized versions of them are. The linearized equations
are the original ones, with all terms not proportional to the dreibein eaµ removed,
this also include reducing the covariant derivative to the partial one. This make
them significantly easier to solve, while still preserving some physical properties.
Similar calculations has been made in [24]–[26].

5.1 The projection of F = 0
The projection of the F = 0 equation onto the spin-3 generators are equivalent to
what was done in section 4.1. First, the gauge field A is written out in its basis
elements

AATA = eabPab+ẽabP̃ab+ẽaP̃a+ω̃abM̃ab+ω̃aM̃a+b̃D̃+f̃abK̃ab+f̃aK̃a+fabKab. (5.1)

One important thing about these is that all fields with two flat indices (a and b) are
symmetric and traceless. This also means that all equations with two free flat indices
will be symmetric and traceless, since the basis elements they are projected onto are
symmetric and traceless. The field strength F now follows from its definition

F = dA+ A ∧ A = 0. (5.2)

Which written out in therms of the different graded parts of F is five expressions,
each containing the covariant derivative on the corresponding part of A with two
brackets resulting in terms projected onto the respectively graded parts.

F (4,0) = DA(4,0) + [A(1,1), A(4,0)] + [A(2,0), A(3,1)] = 0,
F (3,1) = DA(3,1) + [A(2,0), A(2,2)] + [A(0,2), A(4,0)] = 0,
F (2,2) = DA(2,2) + [A(2,0), A(1,3)] + [A(0,2), A(3,1)] = 0,
F (1,3) = DA(1,3) + [A(0,2), A(2,2)] + [A(2,0), A(0,4)] = 0,
F (0,4) = DA(0,4) + [A(0,2), A(1,3)] + [A(1,1), A(0,4)] = 0.

(5.3)

33



5. Spin 3

Already now, this looks tougher than the spin-2 case, but this is only the conceptual
equations, entering all the brackets into the respective equation reveals the full set
of equations.

F ab(4,0)
3×5 = Deab(4,0) + 2b(1,1) ∧ eab(4,0) + ec(2,0) ∧ ẽd(a(3,1)εcd

b)− (5.4)
− (e(a(2,0) ∧ ẽb)(3,1)− Tr []) = 0,

F ab(3,1)
3×5 = Dẽab(3,1)− 2ec(2,0) ∧ ω̃d(a(2,2)εb) cd − (e(a(2,0) ∧ ω̃b)(2,2)− Tr [])− (5.5)

− 4f c(0,2) ∧ ed(a(4,0)εcd
b) = 0,

F a(3,1)
3×3 = Dẽa(3,1)− eb(2,0) ∧ ω̃ba(2,2) + 3

2e
c(2,0) ∧ ω̃d(2,2)εcd

a − 2ea(2,0) ∧ b̃(2,2)+ (5.6)
+ 6fc(0,2) ∧ ec(a(4,0) = 0,

F ab(2,2)
3×5 = Dω̃ab(2,2) + 3ec(2,0) ∧ f̃d(a(1,3)εcd

b) − (e(a(2,0) ∧ f̃ b)(1,3)− Tr [])+ (5.7)
+ 3f c(0,2) ∧ ẽd(a(3,1)εcd

b) + (f (a(0,2) ∧ ẽb)(3,1)− Tr []) = 0,

F a(2,2)
3×3 = Dω̃a(2,2)− 3eb(2,0) ∧ f̃ ba(1,3)− 3eb(2,0) ∧ f̃ c(1,3)εbc

a+ (5.8)
+ 3fb(0,2) ∧ ẽba(3,1)− 3f b(0,2) ∧ ẽc(3,1)εbc

a = 0

F (2,2)
3 = Db̃(2,2)− 8

3e
a(2,0) ∧ f̃a(1,3) + 8

3f
a(0,2) ∧ ẽa(3,1) = 0, (5.9)

F ab(1,3)
3×5 = Df̃ab(1,3)− 4ec(2,0) ∧ fd(a(0,4)εcd

b) − 2f c(0,2) ∧ ω̃d(a(2,2)εcd
b)+ (5.10)

+ (f (a(0,2) ∧ ω̃b)(2,2)− Tr []) = 0,

F a(1,3)
3×3 = Df̃a(1,3)− 6eb(2,0) ∧ f ba(0,4) + fb(0,2) ∧ ω̃ba(2,2)+ (5.11)

+ 3
2f

b(0,2) ∧ ω̃c(2,2)εbc
a2fa(0,2) ∧ b̃(2,2) = 0,

F ab(0,4)
3×5 = Dfab(0,4) + f c(0,2) ∧ f̃d(a(1,3)εcd

b) + (f (a(0,2) ∧ f̃ b)(1,3)− Tr []) = 0. (5.12)

The 5 × 3 in F ab(q,p)
3×5 is the degrees of freedom in the equation. In the case of

5×3 the equation contains one curved index and two symmmetric and traceless flat
indices, containing three and five degrees of freedom respectively. Note also that the
Tr [] is shorthand for the trace of the term before it, e.g. e(a(2,0) ∧ ẽb)(3,1) − Tr [] =
e(a(2,0)∧ ẽb)(3,1)− 1

3η
abec(2,0)∧ ẽc(3,1). As said, the full set of equations is large and for

the initial approach, the linearized ones are considered.

F ab(4,0)
3×5 = deab(4,0) + ec(2,0) ∧ ẽd(a(3,1)εcd

b) = 0, (5.13)

F ab(3,1)
3×5 = dẽab(3,1)− 2ec(2,0) ∧ ω̃d(a(2,2)εb) cd − (e(a(2,0) ∧ ω̃b)(2,2)− Tr []) = 0, (5.14)

F a(3,1)
3×3 = dẽa(3,1)− eb(2,0) ∧ ω̃ba(2,2) + 3

2e
c(2,0) ∧ ω̃d(2,2)εcd

a (5.15)
− 2ea(2,0) ∧ b̃(2,2) = 0,

F ab(2,2)
3×5 = dω̃ab(2,2) + 3ec(2,0) ∧ f̃d(a(1,3)εcd

b) − (e(a(2,0) ∧ f̃ b)(1,3)− Tr []) = 0, (5.16)

F a(2,2)
3×3 = dω̃a(2,2)− 3eb(2,0) ∧ f̃ ba(1,3)− 3eb(2,0) ∧ f̃ c(1,3)εbc

a = 0, (5.17)
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F (2,2)
3 = db̃(2,2)− 8

3e
a(2,0) ∧ f̃a(1,3) = 0, (5.18)

F ab(1,3)
3×5 = df̃ab(1,3)− 4ec(2,0) ∧ fd(a(0,4)εcd

b) + (f (a(0,2) ∧ ω̃b)(2,2)− Tr []) = 0, (5.19)

F a(1,3)
3×3 = df̃a(1,3)− 6eb(2,0) ∧ f ba(0,4) + 3

2f
b(0,2) ∧ ω̃c(2,2)εbc

a = 0, (5.20)

F ab(0,4)
3×5 = dfab(0,4) + (f (a(0,2) ∧ f̃ b)(1,3)− Tr []) = 0. (5.21)

5.2 The projection of δA

In section 4.2, the projections in eqs. (4.18) to (4.21) were found for a variation of
the gauge field in spin 2. Here, the corresponding result in spin 3 for a variation of
the gauge field is written out in eqs. (5.4) to (5.12). The terms appearing are all
1-forms, since the variations Λ are 0-forms. The structure of the terms are obtained
through the brackets (section 3.3.2).

δeab(4,0)
3×5 = DΛab(4,0) + 2Λc(1,1)ed(a(4,0)εcd

b) + 2b(1,1)Λab(4,0) + 2Λ(1,1)eab(4,0)+ (5.22)
+ ec(2,0)Λ̃d(a(3,1)εcd

b) − (e(a(2,0)Λ̃b)(3,1)− Tr []) + Λc(2,0)ẽd(a(3,1)εcd
b)−

− (Λ(a(2,0)ẽb)(3,1)− Tr []),

δẽab(3,1)
3×5 = DΛ̃(3,1)− 2ec(2,0)Λ̃d(a(2,2)εcd

b) − (e(a(2,0)Λ̃b)(2,2)− Tr [])− (5.23)
− 4f c(0,2)Λd(a(4,0)εcd

b) − Λ(1,1)ẽab(3,1) + 2Λc(2,0)ω̃d(a(2,2)εcd
b)+

+ (Λ(a(2,0)ω̃b)(2,2)− Tr []) + 4Λc(0,2)ed(a(4,0)εcd
b) + 2Λc(1,1)ẽd(a(3,1)εcd

b),

δẽa(3,1)
3×3 = DΛ̃a(3,1)− eb(2,0)Λ̃ba(2,2) + 3

2e
b(2,0)Λ̃c(2,2)εa bc − 2ea(2,0)Λ̃(2,2)+ (5.24)

+ 6fb(0,2)Λba(4,0)− Λ(1,1)ẽa(3,1)− Λb(1,1)ẽc(3,1)εa,bc +Λb(2,0)ω̃ba(2,2)−
− 3

2 Λb(2,0)ω̃c(2,2)εa bc + 2Λa(2,0)ω̃(2,2)− 6Λb(0,2)eba(4,0),

δω̃ab(2,2)
3×5 = DΛ̃ab(2,2) + 3ec(2,0)Λ̃d(a(1,3)εcd

b) − 3Λc(2,0)f̃d(a(1,3)εcd
b)− (5.25)

− (e(a(2,0)Λ̃b)(1,3)− Tr []) + (Λ(a(2,0)f̃ b)(1,3)− Tr []) + 3f c(0,2)Λ̃d(a(3,1)εcd
b)−

− 3Λc(0,2)ẽd(a(3,1)εcd
b) + (f (a(0,2)Λ̃b)(3,1)− Tr [])− (Λ(a(0,2)f̃ b)(3,1)− Tr [])+

+ 2Λc(1,1)ω̃d(a(2,2)εcd
b),

δω̃a(2,2)
3×3 = DΛ̃a(2,2)− 3eb(2,0)Λ̃ba(1,3)− 3eb(2,0)Λ̃c(1,3)εa bc + 3fb(0,2)Λ̃ba(3,1)− (5.26)

− 3f b(0,2)Λ̃c(3,1)εa bc + 3Λb(2,0)f̃ ba(1,3) + 3Λb(2,0)f c(1,3)εa bc − 3Λb(0,2)ẽba(3,1)+
+ 3Λb(0,2)ẽc(3,1)εa bc − Λb(1,1)ω̃c(2,2)εa bc,

δb̃(2,2)
3 = DΛ̃(2,2)− 8

3e
a(2,0)Λ̃a(1,3) + 8

3 Λa(2,0)f̃a(1,3) + 8
3f

a(0,2)Λ̃a(3,1)− 8
3 Λa(0,2)ẽa(3,1), (5.27)

δf̃ab(1,3)
3×5 = DΛ̃ab(1,3)− 4ec(2,0)Λd(a(0,4)εcd

b) − 2f c(0,2)Λ̃d(a(2,2)εcd
b)+ (5.28)

+ (f (a(0,2)Λ̃b)(2,2)− Tr []) + 4Λc(2,0)fd(a(0,4)εcd
b) + 2Λc(0,2)ω̃d(a(2,2)εcd

b)−
− (Λ(a(0,2)ω̃b)(2,2)− Tr [])− 2Λc(1,1)f̃d(a(1,3)εcd

b) + Λ(1,1)f̃ab(1,3),
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δf̃a(1,3)
3×3 = DΛ̃a(1,3)− 6eb(2,0)Λba(0,4) + fb(0,2)Λ̃ba(2,2) + 3

2f
b(0,2)Λ̃c(2,2)εbc

a+ (5.29)
+ 2fa(0,2)Λ̃(2,2) + 6Λb(2,0)f ba(0,4)− Λb(0,2)ω̃ba(2,2)− 3

2 Λb(0,2)ω̃c(2,2)εbc
a−

− 2Λa(0,2)b̃(2,2)− Λb(1,1)f̃ c(1,3)εbc
a + Λ(1,1)f̃a(1,3),

δfab(0,4)
3×5 = DΛab(0,4) + f c(0,2)Λ̃d(a(1,3)εcd

b) + (f (a(0,2)Λ̃b)(1,3)− Tr [])− (5.30)
− Λc(0,2)f̃d(a(1,3)εcd,

b)−(Λ(a(0,2)f̃ b)(1,3)− Tr [])− 2Λc(1,1)fd(a(0,4)εcd
b)+

+ 2Λ(1,1)fab(0,4).

5.2.1 Choosing the spin-3 gauge condition
One choise, which is the one used throughout this chapter is to use the gauge
parameters Λ̃ab(2,2), Λ̃a(2,2) and Λ̃(2,2) in eq. (5.24) to set the field ẽµ a to zero. The
only other Stückelberg field is b̃µ, but it will not be set to zero. Instead the 5 and
3 part of ω̃µ a in eq. (5.26) and the 5 part of f̃µ a in eq. (5.29) are set to zero using
Λ̃ab(1,3), Λ̃a(1,3) and Λ̃ab(0,4) respectively.
The 5 and 3 parts refer to the degrees of freedom for the fields. For instance, the
field ω̃µ

a has two indices, wich each has three degrees of freedom (one for each
dimension). The total degrees of freedom of ω̃µ a is hence 3× 3 = 5 + 3 + 1, where
the 5 part represents the symmetric traceless part between the a and µ indices.
Similarly, the 3 part corresponds to the anti-symmetric part and the 1 part to the
trace. To summarize, the gauge choises used are

ẽµ
a = 0, (5.31)

ω̃µ
a = eaµω̂, (5.32)

f̃µ
a = εµ

abf̂b + eaµf̃ . (5.33)

This has one consequence that is important to note. Since ω̃µ a and f̃µ a now explic-
itly has a part depending on eaµ they must be included in the linearized equations
eqs. (5.13) to (5.21).
Note that there is an option to use Λ̃(3,1) parameters to make eµ ab symmetric in the
same way Λa(1,1) could be used to make eµ a symmetric in section 4.2.1. Hence, the
Λ̃(3,1) parameters can be interpreted as the spin-3 Lorentz transformations and the
symmetrized eµ ab can be seen as a spin-3 graviton gµνσ. This shows that the four q
and p spinors used result in spin 3.

5.3 Solving F = 0
As in the spin-2 case in section 4.3, some of the projected F = 0 equations not will
be assumed when confirming the Bianchi Identity, but it is still interesting to find
what they say. Especially, the assumed equations will provide convenient relations
between the different fields to be used during calculations.
The projected equations were found in section 5.1, here the linearized versions of
them will be used.
Note that all equations not solving one field in terms of another must be constraints
following arguments in appendix H.
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5.3.1 The Pab projection
The first of the equations to be solved is the Pab-projected one

F ab(4,0)
3×5 = deab + ec ∧ ẽd(aεcd

b) = 0. (5.34)

This equation can be used to express ẽab in terms of eab. Start by writing out indices
and implement the anti-symmetry using a Levi-Civita symbol

εµνσ∂µeν
ab + εµνσeµ

cẽν
d(aεcd

b) = εµνσ∂µeν
ab + εcνσẽν

d(aεcd
b) = 0, (5.35)

simplifying the Levi-Civita symbols

εµνσ∂µeν
ab + 1

2 ẽν
da
(
eσ de

νb − eν deσb
)

+ 1
2 ẽν

db (eσ deνa − eν deσa) =
= εµνσ∂µeν

ab + 1
2 ẽ
bσa − 1

2e
σbẽν

νa + 1
2 ẽ
aσb − 1

2e
σaẽν

νb = 0.
(5.36)

The trace of this is needed to continue solving the equation, this is obtained by
multiplying the whole expression by eσb. Remember that ẽab is symmetric and
traceless in a↔ b

eσb
(
εµνσ∂µeν

ab + 1
2 ẽ
bσa − 1

2e
σbẽν

νa + 1
2 ẽ
aσb − 1

2e
σaẽν

νb
)

=
= εµν b∂µeν

ab + 1
2 ẽσ

σa − 3
2 ẽν

νa + 1
2 ẽ
aσ

σ − 1
2 ẽν

νa =
= εµν beµ

ab − 3
2 ẽν

νa = 0,
(5.37)

which means that
ẽν

νa = 2
3ε
µν

b∂µeν
ab. (5.38)

Now enter this into eq. (5.36).

εµνσ∂µeν
ab + 1

2 ẽ
bσa − 1

2e
σbẽν

νa + 1
2 ẽ
aσb − 1

2e
σaẽν

νb =
= εµνσ∂µeν

ab + 1
2 ẽ
bσa − 1

3e
σbεµν c∂µeν

ac + 1
2 ẽ
aσb − 1

3e
σaεµν c∂µeν

bc =
= εµνσ∂µeν

ab + ẽ(ab)σ − 2
3ε
µν

ce
σ(a∂µeν

b)c = 0.
(5.39)

Moving around the terms

ẽ(ab)σ = 2
3ε
µν

ce
σ(a∂µeν

b)c − εµνσ∂µeν ab, (5.40)

where the following neat trick can be used

ẽcab = ẽ(cb)a + ẽ(ca)b − ẽ(ab)c. (5.41)

The expression becomes

ẽcab = 2
3ε
µν

dη
a(c∂µeν

b)d − εµνa∂µeν cb + 2
3ε
µν

dη
b(c∂µeν

a)d − εµνb∂µeν ca−
− 2

3ε
µν

dη
c(a∂µeν

b)d + εµνc∂µeν
ab =

= 2
3ε
µν

dη
a(c∂µeν

b)d − 2εµν(a∂µeν
b)c + 2

3ε
µν

dη
b(c∂µeν

a)d−
− 2

3ε
µν

dη
c(a∂µeν

b)d + εµνc∂µeν
ab =

= 2
3ε
µν

dη
ab∂µeν

cd − 2εµν(a∂µeν
b)c + εµνc∂µeν

ab,

(5.42)

where
eµ

ab = eµce
cab. (5.43)
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5.3.2 The P̃ab projection

F ab(3,1)
3×5 = dẽab − 2ec ∧ ω̃d(aεb) cd − (e(a ∧ ω̃b) − Tr []) = 0. (5.44)

This expression relates ω̃ab to ẽab in the same way ẽab was related to eab in sec-
tion 5.3.1 and if the same procedure is followed, the expression for ω̃ab becomes

ω̃cab = εµν(a∂µẽν
b)c − 1

2ε
cµν∂µẽν

ab − 1
3η

abεµν d∂µẽν
cd. (5.45)

5.3.3 The P̃a projection

F a(3,1)
3×3 = −eb ∧ ω̃ba + 3

2e
c ∧ ω̃dεcd a − 2ea ∧ b̃ = 0. (5.46)

The anti-symmetry of the curved indices can be represented with one index using a
Levi-Civita symbol

εµνσ
(
−eµbω̃ν ba + 3

2eµ
cω̃ν

dεcd
a − 2eµ ab̃ν

)
= 0. (5.47)

This equation has two free indices and hence 3× 3 = 5 + 3 + 1 degrees of freedom.
These 5, 3 and 1 parts can be examined separately by considering the symmetric,
antisymmetric, and trace parts of the free indices to get the 5, 3 and 1 parts,
respectively. Start with the 1 part by multiplying eq. (5.47) with eσa

εµν a
(
−eµbω̃ν ba + 3

2eµ
cω̃ν

dεcd
a − 2eµ ab̃ν

)
=

= −εν abω̃ν ba + 3
2ε
ν
acω̃ν

dεd
ac − 2εµν µb̃ν = 0,

(5.48)

which simplifyes to
ω̃ν

ν = eν
νω̂ = 0 ⇒ ω̂ = 0, (5.49)

when the gauge ω̃µ a = eµ
aω̂ is used, and hence, ω̃µ a = 0. Continue with the 3 part

by multiplying eq. (5.47) by εaσλ

εaσλε
µνσ

(
−eµbω̃ν ba + 3

2eµ
cω̃ν

dεcd
a − 2eµ ab̃ν

)
=

= −εaσλεb νσω̃ν ba − 2εaσλεaνσ b̃ν0.
(5.50)

Simplifying the Levi-Civita symbols

− (δνληab − eλbeν a) ω̃ν ba − 4δνλb̃ν = −ω̃λ a a + ω̃aλ
a − 4b̃λ = 0, (5.51)

which gives the expression
b̃µ = 1

4 ω̃νµ
ν . (5.52)

Now for the 5 part. What is done here is to symmetrize between the two free indices
a and σ = c

εµνceµbω̃ν
ba + εµνaeµbω̃ν

bc + 2εµνceµ ab̃ν + 2εµνaeµ cb̃ν =
= εb

νcω̃ν
ba + εb

νaω̃ν
bc + 2εaνcb̃ν + 2εcνab̃ν =

= 2εb ν(aω̃ν
c)b − 4εν(ac)b̃ν =

= 2εb ν(aω̃ν
c)b = 0.

(5.53)
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5.3.4 The M̃ab projection

F ab(2,2)
3×5 = dω̃ab + 3ec ∧ f̃d(aεcd

b) − (e(a ∧ f̃ b) − Tr []) = 0. (5.54)
Solving this using the procedure from section 5.3.1 gives

3f̃ cab = εµνc∂µω̃ν
ab − 2εµν(a∂µω̃ν

b)c + 2
3ε
µν

dη
ab∂µω̃ν

cd + 2
3η

c(af̂ b) − 2
9η

abf̂ c (5.55)

5.3.5 The M̃a projection

F a(2,2)
3×3 = dω̃a − 3eb ∧ f̃ ba − 3eb ∧ f̃ cεbc a = 0. (5.56)

Use a Levi-Civita symbol for anti-symmetry and examine the 1, 3 and 5 parts of
the equation separately. Start with the 1 part, the trace

eσaε
µνσ

(
−3eµbf̃ν ba − 3eµ bf̃ν cεbc a

)
= εµν a

(
3f̃µν a − 3f̃ν cεµc a

)
=

= 3εµν af̃µν a + 6eν cf̃ν c = 6eν cf̃ν c = 6eν c
(
εν

cbf̂b + eν
cf̂
)

=

= 18f̂ = 0 ⇒ f̂ = 0.

(5.57)

using the gauge f̃µ a = εµ
abf̂b + eµ

af̂ . Continue with the anti-symmetric 3 part

εaσλε
µνσ

(
3f̃µν a − 3f̃ν cεµc a

)
= (eµ aδνλ − eν aδ

µ
λ)
(
3f̃µν a − 3f̃ν cεµc a

)
=

= 3f̃aλ a − 3f̃λa a − 3f̃λ cεac a + 3f̃a cελc a =
= 3f̃aλ a + 3f̃a cελc a = 3f̃aλ a + 3εa cbf̂bελc a =
= 3f̃aλ a + 6f̂λ = 0 ⇒ f̂a = −1

2 f̃µa
µ.

(5.58)

Finish with the symmetric 5 part

3εµνcf̃µν a + 3εµνaf̃µν c − 3εµνcεν bdf̂dεµb a − 3εµνaεν bdf̂dεµb c =
= 6εµν(af̃µν

c) − 3εµνcεν bdf̂dεµb a − 3εµνaεν bdf̂dεµb c =
= 6εµν(af̃µν

c) − 3
(
eµbηcd − eµdηbc

)
f̂dεµb

a − 3
(
eµbηad − eµdηba

)
f̂dεµb

c =

= 6εµν(af̃µν
c) − 6f̂ (aεµ

c)µ + 6f̂µεµ (ac) =
= 6εµν(af̃µν

c) = 0 ⇒ εµν(af̃µν
b) = 0.

(5.59)

5.3.6 The D̃ projection

F (2,2)
3 = db̃− 8

3e
a ∧ f̃a = 0, (5.60)

which in tensors read
εµνσ

(
∂µb̃ν − 8

3eµ
af̃νa

)
= εµνσ∂µb̃ν + 8

3ε
µνσf̃µν =

= εµνσ∂µb̃ν + 8
3ε
µνσεµνaf̂

a =
= εµνσ∂µb̃ν − 16

3 f̂
σ,

(5.61)

giving the relation between f̂µ and b̃µ

f̂a = 3
16ε

µνa∂µb̃ν ⇒ f̃µa
µ = −3

8εa
µν∂µb̃ν . (5.62)
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5.3.7 The K̃ab projection

F ab(1,3)
3×5 = df̃ab − 4ec ∧ fd(aεcd

b) = 0. (5.63)

Solving this using the procedure from section 5.3.1 gives

4f cab = 2εµν(a∂µf̃ν
b)c − εµνc∂µf̃ν ab − 2

3ε
µν

dη
ab∂µf̃ν

cd. (5.64)

5.3.8 The K̃a projection

F a(1,3)
3×3 = df̃a − 6eb ∧ f ba = 0. (5.65)

Start with the 1 part

εµνa∂µf̃νa − 6εbνafνab = εµνa∂µf̃νa =
= εµνa∂µενaλf̂

λ =
= −2∂µf̂µ = 0.

(5.66)

Now the 3 part

εc
aλεµνc∂µf̃νa − 6εc aλεbνcfνab =

(
eνagλµ − eµagλν

)
∂µf̃νa − 6

(
eνaeλb − ηbagλν

)
fνab =

= ∂λf̃ν
ν − ∂µf̃λµ − 6fν νλ + 6fλa a =

= −∂µf̃λµ − 6fν νλ = 0.
(5.67)

Lastly, the 5 part

εµν(a∂µf̃ν
b) + 6εµν(afµν

c) = ∂(af̃ b) − 2ηab∂µf̂µ + 6εµν(afµν
c) =

= ∂(af̃ b) + 6εµν(afµν
c) = 0.

(5.68)

5.3.9 The Kab projection

F ab(0,4)
3×5 = dfab = 0. (5.69)

This is the last equation in graded order and is the one corresponding to section 4.3.4.
It can hence be interpreted as the spin-3 Cotton equation, with fµ

ab the spin-3
Schouten tensor.
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5.4 Solving the spin-3 Bianchi identity DF = 0

Using the method from section 4.4, the full projection of the spin-3 Bianchi identity
DF = 0 is found. With gauge choices implemented as determined in section 5.2,
the projections looks as

DF
∣∣
Pab

= DF ab(4,0)− 2F c(1,1) ∧ ed(aεcd
b) + 2b ∧ F ab(4,0)− 2eab ∧ F (1,1)+ (5.70)

+ ec ∧ F d(a(3,1)εcd
b) − (F (a(3,1) ∧ eb) − Tr [])− F c(2,0) ∧ ẽd(aεcd

b)+
+ (F (a(2,0) ∧ ẽb) − Tr []) = 0,

DF
∣∣
P̃ab

= DF ab(3,1)− 2ec ∧ F d(a(2,2)εcd
b) − (e(a ∧ F b)(2,2)− Tr [])− (5.71)

− 4f c ∧ F d(a(4,0)εcd
b) − F (1,1) ∧ ẽab + 2F c(2,0) ∧ ω̃d(aεcd

b)+
+ (F (a(2,0) ∧ ω̃b) − Tr []) + 4F c(0,2) ∧ ed(aεcd

b)−
− 2F c(1,1) ∧ ẽd(aεcd

b) = 0,

DF
∣∣
P̃a

= DF a(3,1)− eb ∧ F ba(2,2) + 3
2e
b ∧ F c(2,2)εa bc − 2ea ∧ F (2,2)+ (5.72)

+ 6fb ∧ F ba(4,0)− F (1,1) ∧ ẽa − F b(1,1) ∧ ẽcεa bc + Fb(2,0) ∧ ω̃ba−
− 3

2F
b(2,0) ∧ ω̃cεa bc + 2F a(2,0) ∧ b̃− 6Fb(0,2) ∧ eba = 0,

DF
∣∣
M̃ab

= DF ab(2,2) + 3ec ∧ F d(a(1,3)εcd
b) − 3F c(2,0) ∧ f̃d(aεcd

b)− (5.73)
− (e(a ∧ F b)(1,3)− Tr []) + (F (a(2,0) ∧ f̃ b) − Tr [])+
+ 3f c ∧ F d(a(3,1)εcd

b) − 3F c(0,2) ∧ ẽd(aεcd
b) + (f (a ∧ F b)(3,1)− Tr [])−

− (F (a(0,2) ∧ f̃ b) − Tr [])− 2F c(1,1) ∧ ω̃d(aεcd
b) = 0,

DF
∣∣
M̃a

= DF a(2,2)− 3eb ∧ F ba(1,3)− 3eb ∧ F c(1,3)εa bc + 3fb ∧ F ba(3,1)− (5.74)
− 3f b ∧ F c(3,1)εa bc + 3Fb(2,0) ∧ f̃ ba + 3F b(2,0) ∧ f cεa bc−
− 3Fb(0,2) ∧ ẽba + 3F b(0,2) ∧ ẽcεa bc − F b(1,1) ∧ ω̃cεa bc = 0,

DF
∣∣
D̃

= DF (2,2)− 8
3e
a ∧ Fa(1,3) + 8

3F
a(2,0) ∧ f̃a + 8

3f
a ∧ Fa(3,1)− (5.75)

− 8
3F

a(0,2) ∧ ẽa = 0,

DF
∣∣
K̃ab

= DF ab(1,3)− 4ec ∧ F d(a(0,4)εcd
b) − 2f c ∧ F d(a(2,2)εcd

b)+ (5.76)
+ (f (a ∧ F b)(2,2)− Tr []) + 4F c(2,0) ∧ fd(aεcd

b) + 2F c(0,2) ∧ ω̃d(aεcd
b)−

− (F (a(0,2) ∧ ω̃b) − Tr [])− 2F c(1,1) ∧ f̃d(aεcd
b) + F (1,1) ∧ f̃ab = 0,

DF
∣∣
K̃a

= DF a(1,3)− 6eb ∧ F ba(0,4) + fb ∧ F ba(2,2) + 3
2f

b ∧ F c(2,2)εbc
a+ (5.77)

+ 2fa ∧ F (2,2) + 6Fb(2,0) ∧ f ba − Fb(0,2) ∧ ω̃ba − 3
2F

b(0,2) ∧ ω̃cεbc a−
− 2F a(0,2) ∧ b̃− F b(1,1) ∧ f̃ cεbc a + F (1,1) ∧ f̃a = 0,

DF
∣∣
Kab

= DF ab(0,4) + f c ∧ F d(a(1,3)εcd
b) + (f (a ∧ F b)(1,3)− Tr [])− (5.78)

− F c(0,2) ∧ f̃d(aεcd,
b)−(F (a(0,2) ∧ f̃ b) − Tr [])− 2F c(1,1) ∧ fd(aεcd

b)+
+ 2F (1,1) ∧ fab = 0.
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However, these equations are very large and hard to solve, which is why the linearized
versions of these is used here as well.

DF
∣∣∣
Pab

= dF ab(4,0) + ec ∧ F d(a(3,1)εcd
b) − (F (a(3,1) ∧ eb) − Tr []) = 0, (5.79)

DF
∣∣∣
P̃ab

= dF ab(3,1)− 2ec ∧ F d(a(2,2)εcd
b) − (e(a ∧ F b)(2,2)− Tr []) = 0, (5.80)

DF
∣∣∣
P̃a

= dF a(3,1)− eb ∧ F ba(2,2) + 3
2e
b ∧ F c(2,2)εa bc − 2ea ∧ F (2,2)− (5.81)

− 3
2F

b(2,0) ∧ ω̃cεa bc = 0,

DF
∣∣∣
M̃ab

= dF ab(2,2) + 3ec ∧ F d(a(1,3)εcd
b) − (e(a ∧ F b)(1,3)− Tr [])+ (5.82)

+ (F (a(2,0) ∧ f̃ b) − Tr [])− (F (a(0,2) ∧ f̃ b) − Tr []) = 0,

DF
∣∣∣
M̃a

= dF a(2,2)− 3eb ∧ F ba(1,3)− 3eb ∧ F c(1,3)εa bc+ (5.83)
+ 3F b(2,0) ∧ f̃ cεa bc − F b(1,1) ∧ ω̃cεa bc = 0,

DF
∣∣∣
D̃

= dF (2,2)− 8
3e
a ∧ Fa(1,3) + 8

3F
a(2,0) ∧ f̃a = 0, (5.84)

DF
∣∣∣
K̃ab

= dF ab(1,3)− 4ec ∧ F d(a(0,4)εcd
b) − (F (a(0,2) ∧ ω̃b) − Tr [])− (5.85)

− 2F c(1,1) ∧ f̃d(aεcd
b) = 0,

DF
∣∣∣
K̃a

= dF a(1,3)− 6eb ∧ F ba(0,4)− 3
2F

b(0,2) ∧ ω̃cεbc a− (5.86)
− F b(1,1) ∧ f̃ cεbc a + F (1,1) ∧ f̃a = 0,

DF
∣∣∣
Kab

= dF ab(0,4)− (F (a(0,2) ∧ f̃ b) − Tr []) = 0. (5.87)

Note that some terms containing ω̃a or f̃a are included. After the gauge choises
were made, these both obtained an explicit ea term which must be included.

5.4.1 The minimal assumption

The minimal assumption in the spin-3 case is analoguous to the assumption in the
spin-2 case (section 4.4.1), which means that the (4,0) part of F is set to zero, but
the others are kept as they are. This changes the expression in eq. (5.79) to

DF
∣∣∣
Pab

= ec ∧ F d(a(3,1)εcd
b) − F (a(3,1) ∧ eb) + 1

3η
abF c(3,1) ∧ ec = 0, (5.88)

while the others stay the same. The next thing to do is to check that these equations
still are identities. This leads to quite a few long calculations that are similar to
each other, hence only the first two equations will be detailed, since the others follow
using the same techniques.

42



5. Spin 3

5.4.1.1 The first equation

Start by writing out eq. (5.88), implementing the anti-symmetry using a Levi-Civita
symbol

εµνσeµ
cFνσ

d(a(3,1)εcd
b) − εµνσFµν (a(3,1)eσ

b) + 1
3η

abεµνσFµνσ(3,1). (5.89)

Use the dreibeins to change indices in the Levi-Civita symbols and contract the two
Levi-Civita symbols in the first term

F (a
ν
b)ν (3,1)− Fν (ab)ν (3,1)− εµν(aFµν

b)(3,1) + 1
3η

abεµνσFµνσ(3,1). (5.90)

The expressions for Fµ ab(3,1) and Fµ a(3,1) are found in eqs. (5.13) to (5.21)

F (a
ν
b)ν (3,1) = ∂(aẽν

b)ν − εd ν(aω̃ν
b)d − 1

2η
abω̃ν

ν − 1
6 ω̃

(ab), (5.91)
Fν

(ab)ν (3,1) = ∂ν ẽ
(ab)ν − 5

3 ω̃
(ab), (5.92)

Fµν
b(3,1) = 3

2εµd
bω̃ν

d − ω̃νµ b − 2eµ bb̃ν , (5.93)
Fµνσ(3,1) = 3

2εµdσω̃ν
d − ω̃νµσ − 2gµσ b̃ν . (5.94)

Collecting the terms from eq. (5.90) gives

∂(aẽν
b)ν − εd ν(aω̃ν

b)d − 1
2η

abω̃ν
ν − 1

6 ω̃
(ab) − ∂ν ẽ(ab)ν + 5

3 ω̃
(ab)−

− 3
2ε
µν(aεµd

b)ω̃ν
d + εµν(aω̃νµ

b) + 2εµν(aeµ
b)b̃ν + 1

2ε
µνσεµdσω̃ν

d =
= ∂(aẽν

b)ν − ∂ν ẽ(ab)ν .

(5.95)

To tell that this is zero, the assumption F ab(4,0) = 0 must be used. It makes it
possible to express ẽµ ab in terms of eµ ab, which was found in section 5.3.1, and is

ẽcab = 2
3ε
µν

dη
ab∂µeν

cd − 2εµν(a∂µeν
b)c + εµνc∂µeν

ab. (5.96)

Hence, the expressions for ẽν aν and ẽ(ab)ν are

ẽ(ab)ν = 2
3ε
µσ

de
ν(a∂µeσ

b)d − εµσν∂µeσ ab, (5.97)
ẽν

aν = 2
3ε
µν

d∂µeν
ad, (5.98)

which when entered into the remaining terms of eq. (5.95) conveniently becomes

∂ν ẽ
(ab)ν = 2

3ε
µν

d∂µ∂
(aeν

b)d, (5.99)
∂(aẽν

b)ν = 2
3ε
µν

d∂µ∂
(aeν

b)d. (5.100)

Hence, eq. (5.88) is an identity.
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5.4.1.2 The second equation

The second equation of the spin-3 Bianchi identity is eq. (5.80)

DF
∣∣∣
P̃ab

= dF ab(3,1)− 2ec ∧ F d(a(2,2)εcd
b)−

− (e(a ∧ F b)(2,2)− 1
3η

abec ∧ Fc(2,2)) = 0.
(5.101)

The main difference betwen this one and eq. (5.88) is that this one has the term
with a derivative acting on some projection of F left. This derivative makes the
calculations somewhat shorter. Written out it is

dF ab(3,1) = ddẽab(3,1)− 2d
(
ec ∧ ω̃d(aεb) cd

)
− d(e(a ∧ ω̃b) − 1

3η
abec ∧ Fc(2,2)) =

= −2dec ∧ ω̃d(aεb) cd + 2ec ∧ dω̃d(aεb) cd − (de(a ∧ ω̃b) − 1
3η

abdec ∧ ω̃c)+
+ (e(a ∧ dω̃b) − 1

3η
abec ∧ dω̃c) =

= 2ec ∧ dω̃d(aεb) cd + (e(a ∧ dω̃b) − 1
3η

abec ∧ dω̃c).
(5.102)

Where the assumption F a(2,0) = dea = 0 has to be remembered. Now look at the
other terms. They all contain a derivative in their F terms which match these
derivatives up to the sign and hence, they all cancel. The terms not containing
derivatives in F ab(3,1) and F a(3,1) are

F ab(2,2)
.= 3ec ∧ f̃d(aεcd

b) − (e(a ∧ f̃ b) − 1
3η

abec ∧ f̃c), (5.103)
F a(2,2)

.= −3eb ∧ f̃ab − 3ec ∧ f̃dεcd a. (5.104)

When these are entered into eq. (5.101), all terms consist of at least two dreibeins
with wedges between them. Since the wedges anti-symmetrize and the dreibeins are
interchangeable, eq. (5.101) equals zero.
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5.4.2 Extending the minimal assumption
The most natural continuation of the minimal assumption is to continue according to
the graded order and set the next order of the F projections to zero. The extension
is hence given by F ab(3,1) = F a(3,1) = 0, this causes trouble in the third equation
eq. (5.79), while the others are solved in using the same techiques that were used in
the previous section.

DF
∣∣∣
Pab

= 0 = 0, (5.105)

DF
∣∣∣
P̃ab

= −2ec ∧ F d(a(2,2)εcd
b) − (e(a ∧ F b)(2,2)− Tr []) = 0, (5.106)

DF
∣∣∣
P̃a

= −eb ∧ F ba(2,2) + 3
2e
b ∧ F c(2,2)εa bc − 2ea ∧ F (2,2)− (5.107)

− 3
2F

b(2,0) ∧ ω̃cεa bc = 0,

DF
∣∣∣
M̃ab

= DF ab(2,2) + 3ec ∧ F d(a(1,3)εcd
b) − (e(a ∧ F b)(1,3)− Tr [])+ (5.108)

+ (F (a(2,0) ∧ f̃ b) − Tr [])− (F (a(0,2) ∧ f̃ b) − Tr []) = 0,

DF
∣∣∣
M̃a

= DF a(2,2)− 3eb ∧ F ba(1,3)− 3eb ∧ F c(1,3)εa bc+ (5.109)
+ 3F b(2,0) ∧ f̃ cεa bc − F b(1,1) ∧ ω̃cεa bc = 0,

DF
∣∣∣
D̃

= DF (2,2)− 8
3e
a ∧ Fa(1,3) + 8

3F
a(2,0) ∧ f̃a = 0, (5.110)

DF
∣∣∣
K̃ab

= DF ab(1,3)− 4ec ∧ F d(a(0,4)εcd
b) − (F (a(0,2) ∧ ω̃b) − Tr [])− (5.111)

− 2F c(1,1) ∧ f̃d(aεcd
b) = 0,

DF
∣∣∣
K̃a

= DF a(1,3)− 6eb ∧ F ba(0,4)− 3
2F

b(0,2) ∧ ω̃cεbc a− (5.112)
− F b(1,1) ∧ f̃ cεbc a + F (1,1) ∧ f̃a = 0,

DF
∣∣∣
Kab

= DF ab(0,4)− (F (a(0,2) ∧ f̃ b) − Tr []) = 0. (5.113)

5.4.2.1 The third equation

Before starting on the third equation, there is one important trick that will be used
to solve it. It uses the fact that an anti-symmetrization over four indices, where the
value of the expression takes on three values (up to a sign), is zero. Practically, this
is used as

εabcUd − εbcdUa + εcdaU b − εdabU c = 0, (5.114)
which will be used to replace one term with three as

εabcUd = εbcdUa − εcdaU b + εdabU c. (5.115)
Now, when the tools are ready, start with the third equation, remove all terms
containing two dreibeins and simplify the obtained expression

εb
µν∂µω̃ν

ab + 1
2ε
aµν∂µω̃σν

σ (5.116)
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Here, use the trick just shown to cycle the indices in the first term to obtain

− εabν∂µω̃νb µ − 1
2ε
aµν∂µω̃σν

σ. (5.117)

As this expression stand, it does not seem to be zero, what must be done is to use
eq. (5.45) to express the equation in terms of ẽµ ab, which after simplification is

∂µ∂ν ẽ
(µa)ν − ∂µ∂(µẽν

a)ν = −∂b
(
∂(aẽν

b)ν − ∂ν ẽ(ab)ν
)

(5.118)

which is the same as eq. (5.95) and it was shown to be zero.

5.4.3 The parabolic case
An approach that should work is to set the entire parabolic part of the algebra
to zero of reasons explained in appendix G. Doing so reduces eqs. (5.79) to (5.87)
considerably, but also makes them harder to sove

DF
∣∣∣
Pab

= 0, (5.119)

DF
∣∣∣
P̃ab

= 0, (5.120)

DF
∣∣∣
P̃a

= 0, (5.121)

DF
∣∣∣
M̃ab

= 3ec ∧ F d(a(1,3)εcd
b) − (e(a ∧ F b)(1,3)− Tr []) = 0, (5.122)

DF
∣∣∣
M̃a

= −3eb ∧ F ba(1,3)− 3eb ∧ F c(1,3)εa bc = 0, (5.123)

DF
∣∣∣
D̃

= −8
3e
a ∧ Fa(1,3) = 0, (5.124)

DF
∣∣∣
K̃ab

= DF ab(1,3)− 4ec ∧ F d(a(0,4)εcd
b) = 0, (5.125)

DF
∣∣∣
K̃a

= DF a(1,3)− 6eb ∧ F ba(0,4) = 0, (5.126)

DF
∣∣∣
Kab

= DF ab(0,4) = 0. (5.127)

The first three of these equations does not need solving and the last three is the same
as before. The three in the middle, however, is somewhat problematic. Especially
the M̃a equation, which needs some extra trickery to solve.
Note that the f̃ -terms are removed. They are gauged to have a part proportional to
eµ

a, but the coefficient f̂ in this proportionality were found to be zero in eq. (5.57).
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5.4.3.1 The fourth equation

The fourth equation is equivalent to
3
2ε
cµν∂µf̃ν

daεcd
b+ 3

2ε
cµν∂µf̃ν

dbεcd
a− 1

2ε
aµν∂µf̃ν

b− 1
2ε
bµν∂µf̃ν

a+ 1
3η

abεcµν∂µf̃νc, (5.128)
which after some Levi-Civita trickery and massageing becomes

3∂(af̃ν
b)ν − 3∂µf̃ (ab)µ − ∂(af̂ b) + 1

3η
ab∂µf̂

µ. (5.129)
The last term is zero when using eq. (5.62) since

∂ν f̂
ν = 3

16ε
µσν∂µ∂ν b̃σ = 0 (5.130)

and the first can be changed using eq. (5.58) giving

− 7∂(af̂ b) − 3∂µf̃ (ab)µ, (5.131)
but (using eq. (5.55))

3∂µf̃ (ab)µ = 3∂(af̃ν
b)ν − εµνσ∂σ∂µω̃ν ab − ∂(af̂ b) − 1

3η
ab∂σf̂

σ =
= −7∂(af̂ b)

(5.132)

and eq. (5.131) is zero.

5.4.3.2 The fifth equation

The fifth equations is solved in a similar way to the third equaiton in the previous
case in section 5.4.2.1. Start with the equation

3εb µν∂µf̃ν ab + 3εbµν∂µf̃ν cεbc a = 0. (5.133)
Again, use the trick of index cycling on the first term, one of the obtained terms are
zero, also simplify the last term and use eq. (5.58) to obtain

3
2ε
aνµ∂µf̃σν

σ − 3ενa b∂µf̃ν µb. (5.134)
Now use eq. (5.55) to express the equation in terms of ω̃µ ab

∂2ω̃ν
aν + ∂a∂µω̃ν

µν − ∂µ∂νω̃a µν − ∂µ∂νω̃µν a, (5.135)
which will be zero when one more step is taken using eq. (5.45) to express it in terms
of ẽµ ab .

5.4.3.3 The sixth equation

The sixth equation written out with a Levi-Civita symbol is

εaνσFµνa(1,3) = εaνσ
(
∂ν f̃σ

a − 6eν bfσab
)

= εaνσ∂ν f̃σ
a − 6εabσfσab =

= εaνσ∂ν f̃σ
a.

(5.136)

Using the gauge choise for f̃
εaνσ∂ν f̃σ

a = εaνσεσ
ab∂ν f̂b = −2eνb∂ν f̂b = ∂ν f̂

ν (5.137)
and is zero using eq. (5.130). Hence the expression is an identity with the same
conclusion in the spin-3 case as in the spin-2 case (section 4.4.2.3): There is no
violation of the Bianchi Identity even if the theory is coupled to matter.
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6
Outlook

Continuing on this work, there are some natural extensions. The two closest ones
being to solve the non-linear versions of the equations and to look at even higher
spins than three [25]. Another interesting aspect would be to explore the quantized
versions [26], where the Poisson brackets are replaced with commutators, giving rise
to ordering problems in the algebra.
Interesting is also to find out what these theories actually mean by adding higher-
spin terms to the Lagrangian and se how/if this differs from the spin-2 case [24].
Here there would also be a goal to provide a closed expression for all the higher-spin
terms included in the Lagrangian.
Perhaps quite a bit into the future, higher-spin theories can be placed more accu-
rately in the landscape of theories of physics. It might be the key to understanding
several advanced theories such as string theory, the AdS/CFT correspondance and
M-theory, who knows? It will at least be very interesting to find out where this is
heading!
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A
Conventions

A.1 The Levi-Civita symbol

The Levi-Civita symbol εabc is used extensively throughout this thesis and is a totally
anti-symmetric tensor density with weight 0. When an even number of Levi-Civita
symbols are found in a term, it is always possible to rewrite it as a number of
Kroenecker-delta functions δab . How it looks depends on if there are any contractions
between the different symbols.

εabcεabd = −2δcd, (A.1)
εabcεade = −2δ[bc]

de = δcdδ
b
e − δbdδce, (A.2)

εabcεdef = −6δ[abc]
def = δadδ

c
eδ
b
f + δcdδ

b
eδ
a
f + δbdδ

c
eδ
c
f − δadδbeδcf − δbdδceδaf − δcdδaeδbf . (A.3)

Note that in three dimensions, the Levi-Civita symbol can be used to rewrite two
anti-symmetric indices as one index:

Rµν
a = −1

2Rµν
bcεbc

a ⇒ Rµν
ab = εab cRµν

c. (A.4)

For the Riemann tensor, there is also a possibility to use the Levi-Civita symbol to
obtain the Ricci tensor

Rµν = −Rµσλε
σλ

ν . (A.5)

A.2 Gamma matrices in 2+1 dimensions
The three gamma matrices γ0, γ1, and γ2 constitutes a basis for the real traceless
2× 2 matrices realized in terms of the Pauli-sigma matrices as

(γ0)α β = (ε)α β = (iσ2)α β =
(

0 1
−1 0

)
, (γ1)α β = (σ1)α β =

(
0 1
1 0

)
,

(γ2)α β = (σ3)α β =
(

1 0
0 −1

)
.

(A.6)

The full basis for real 2× 2 matrices are obtained by including γ0γ1γ2 = 12×2.
The spinor indices α, β, . . . are raised or lowered using ε. Note that with both indices
down, all γ’s are symmetric

(γ0)αβ =
(

1 0
0 1

)
, (γ1)αβ =

(
1 0
0 −1

)
, (γ2)αβ =

(
0 1
1 0

)
. (A.7)
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A. Conventions

To make caluculations with the gamma matrices, the Fierz identities are very useful

(γa)(αβ(γa)γ)
δ = 0, (A.8)

(γ[a)αβ(γb])γδ = εab c(γc)(α
(γδ

δ)
β), (A.9)

(γ[a)(αβ(γb])γ)
δ = −1

2ε
ab
c(γc)(αβδ

δ
γ), (A.10)

(γa)αβ(γa)γδ = 2(γa)(α
(γ(γa)β)

δ). (A.11)

These are obtained by projection onto the basis elements. For instance, the first
of these (eq. (A.8)) is found by projecting αβ onto the symmetric basis (γb)αβ, the
anti-symmetric part of the basis can be ignored, since αβ are symmetrized. This
leads to

(γb)αβ(γa)(αβ(γa)γ)
δ = (γb)αβ(γa)αβ(γa)γ δ + 2(γb)αβ(γa)αγ(γa)β δ =

= 2ηab(γa)γ δ + 2(γaγbγa)γ δ =
= 2(γb)γ δ − 2(γb)γ δ = 0.

(A.12)

The second to last equality follows from writing out the expressions for (γaγbγa)γ δ
and finding that these are −(γb)γ δ. Using similar methods, the rest of the Fierz
identities are found.

A.3 Groups vs. group algebra
There are many discussions in this thesis regarding different groups and their algebra.
When a group is discussed in general, such as a gauge symmetry, the group is written
with upper case letters, e.g. SO(2, 3). If the group is written with lower case letters,
e.g. so(2, 3), it is the (Lie) algebra of the group that it refers to. In some arguments
it is very important to separate the group from its algebra, since the arguments
might be invalid if the group is considered instead of its algebra, or the other way
around.

A.4 Equality
In some places in this thesis the symbol .= is used instead of =. This is used when
the equality only relates parts of the right hand side to the left hand side, or where
the expressions contains the same information, but are not strictly equal. What the
difference is in a specific case should be clear from the circumstances it is used.
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B
Introduction to forms

B.1 Theory
The language of forms is sometimes used in physics, especially when dealing with
differential equations. In short, (differential) forms are a convenient way of combin-
ing a quantity with its differential. As an example, consider some field Aµ and its
differential dxµ, the contraction of these can be expressed as

A = Aµdx
µ, (B.1)

where A is a so-called 1-form. It is a 1-form since it contains one differential. The
integral over Aµ now takes the quite short appearance∫

A. (B.2)

This is generalized to p-forms, which are forms containing p differentials. A higher
dimensional p-form B consists of Bµ1...µp and its differentials dxµ1 . . . dxµp is in forms
expressed as

B = 1
p!Bµ1...µpdx

µ1 ∧ · · · ∧ dxµp , (B.3)

where ∧ denotes the wedge, or exterior, product defined below. Yet again, a very
simple expression is obtained for the integral over B∫

B. (B.4)

The wedge product introduced above is an anti-symmetrized product and hence
exhibit the following

dxµ1 ∧ dxµ2 = −dxµ2 ∧ dxµ1 (B.5)

for any two differentials in the product. It follows that if any p- and q-forms are
interchanged, the sign of the expression changes as

A ∧B = (−1)pqB ∧ A, (B.6)

for A a p-form and B a q-form. Another important object to introduce when con-
sidering forms is the exterior derivative, d, which is defined by

dA = ∂µA ∧ dxµ (B.7)
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and turns any p-form into a p+ 1-form. It has the very useful property that d2 = 0,
since the partial derivatives acting on an expression commute and the wedge product
is anti-symmetric, hence d2 acting on any object must be zero. The calculation is
quite short

d2A = ∂ν∂µA∧ dxµ ∧ dxν = −∂ν∂µA∧ dxν ∧ dxµ = −∂µ∂νA∧ dxν ∧ dxµ = 0. (B.8)

The last equality follows from the fact that the first and last written-out expression
is the same up to the sign (notice that the indices are relabeled) and must hence be
zero.
Another important object in the language of forms is the dual of a form F , denoted
∗F . This will not be used extensively, but is nonetheless an imortant part of the
form language. It takes a p-form in a d-dimensional space and creates a (d−p)-form
and does this in a certain manner. In three dimensions the following is in some sense
true

∗ (A ∧B) = A×B. (B.9)
In general dimensions, it is not as easy, but the dual can be written in the following
way for a k-form in n-dimensional space

∗ (ei1 ∧ · · · ∧ eik) = eik+1 ∧ · · · ∧ ein , (B.10)

where i1, . . . , in is an even permutation of 1, . . . , n. Uneven permutations follows
from the definition of the wedge product.

B.2 Examples

B.2.1 The Bianchi identity of F
A good example on forms is the Bianchi identity of the electromagnetic tensor F ,
which states DF = 0. First, the form equivalence of F µν is obtained by acting, on
some state Φ, twice with the covariant derivative D = d+ A,

DDΦ = (d+ A)(d+ A)Φ = (d2 + dA+ Ad+ A2)Φ = (dA+ A2)Φ + AdΦ. (B.11)

The terms that “stands on their own” in front of Φ are taken to be F , while the last
term with a derivative acting on Φ is dropped. F is now expressed as

F = dA+ A2. (B.12)

The Bianchi identity for this F is most easily found by first considering dF ,

dF = d(dA+ A2) = d2A+ dA2 = dAA− AdA =
= dAA+ A3 − AdA− A3 = (dA+ A2)A− A(dA+ A2) =
= FA− AF = [F,A].

(B.13)

Continuing, care must be taken when writing out the expression for DF since

DF = (d+ A)F 6= dF + AF. (B.14)
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What must be taken into account is that both A and F is matrix-valued and hence

DF = (d+ A)F = dF + [A,F ], (B.15)

which immediately gives the Bianchi identity

DF = [F,A] + [A,F ] = 0. (B.16)

B.2.2 Maxwell’s equations written in forms
Maxwell’s equations in tensor notation is very neatly written as

∂[µFνλ] = 0, (B.17)
∂µF

νµ = Jν , (B.18)

but can be written even shorter using forms. Identifying the elements in F as two-
forms, F can be written as

F = −Exdt∧dx−Eydt∧dy−Ezdt∧dz+Bxdy∧dz+Bydz∧dx+Bzdx∧dy. (B.19)

Now, since the first of Maxwell’s equations is a derivative acting on F with anti-
symmetric indices, the expression dF is a good place to start. It is

dF = ∂tFdt+ ∂xFdx+ ∂yFdy + ∂zFdz =
= −∂yExdt ∧ dx ∧ dy − ∂zEydt ∧ dy ∧ dz + ∂xEzdt ∧ dx ∧ dz−
− ∂zExdt ∧ dx ∧ dz + ∂xEydt ∧ dx ∧ dy + ∂yEzdt ∧ dy ∧ dz+
+ ∂tBxdt ∧ dy ∧ dz + ∂tBzdt ∧ dx ∧ dy + ∂tBydt ∧ dz ∧ dx+
+ ∂xBxdx ∧ dy ∧ dz + ∂yBydy ∧ dz ∧ dx+ ∂zBzdz ∧ dx ∧ dy =

= (∂xEy − ∂yEx + ∂tBz) dt ∧ dx ∧ dy+
+ (∂xEz − ∂zEx + ∂tBy) dt ∧ dx ∧ dz+
+ (∂yEz − ∂zEy + ∂tBx) dt ∧ dy ∧ dz+
+ (∂xBx + ∂yBy + ∂zBz) dx ∧ dy ∧ dz =

=
(
(∇× ~E)z + ∂Bz

∂t

)
dt ∧ dx ∧ dy +

(
(∇× ~E)y + ∂By

∂t

)
dt ∧ dx ∧ dz+

+
(
(∇× ~E)x + ∂Bx

∂t

)
dt ∧ dy ∧ dz +

(
∇ · ~B

)
dx ∧ dy ∧ dz,

(B.20)

but it is known from Maxwell’s equations that this equals zero, since putting dF = 0
and writing the terms out gives

∇ · ~B = 0, (B.21)

∇× ~E = ∂ ~B

∂t
. (B.22)

These two equations are two of the ordinary Maxwell’s equations and what is meant
by the tensorial expression ∂[µFνλ] = 0.
For the rest of Maxwell’s equations, first condider the expression for ∗F , which is

∗F = Exdy∧dz+Eydz∧dx+Ezdx∧dy+Bxdt∧dx+Bydt∧dy+Bzdt∧dz. (B.23)
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Now use this ∗F instead of F and hit it with an exterior derivative

d∗F = ∂t∗Fdt+ ∂x∗Fdx+ ∂y∗Fdy + ∂z∗Fdz =
=
(
−(∇× ~B)z + ∂Ez

∂t

)
dt ∧ dx ∧ dy +

(
−(∇× ~B)y + ∂Ey

∂t

)
dt ∧ dx ∧ dz+

+
(
−(∇× ~B)x + ∂Ex

∂t

)
dt ∧ dy ∧ dz +

(
∇ · ~E

)
dx ∧ dy ∧ dz,

(B.24)
which if the following expression is introduced

J = ρdx ∧ dy ∧ dz − Jxdt ∧ dy ∧ dz − Jydt ∧ dz ∧ dx− Jzdt ∧ dy ∧ dz, (B.25)

gives the last of Maxwell’s equations through d∗F = J . To put it all together,
Maxwell’s equations in form language can be written as

dF = 0, (B.26)
d∗F = J. (B.27)

The first of these expression is recognized as the Bianchi Identity when generalized
to curved space.
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C
Zero-Torsion

The zero torsion condition Dea = 0 can be used to solve for ω in terms of eµ a. Here
it is made in general dimensions, where the zero torsion condition can be written as

∂[µeν]
a + ω[µ

a
|b|eν]

b = 0. (C.1)

Lower all indices and change µ, ν → b, c

eµ [be
ν
c]∂µeνa + ω[b|ad|δ

d
c] = eµ [be

ν
c]∂µeνa + ω[b|a|c] = eµ [be

ν
c]∂µeνa − ω[bc]a = 0, (C.2)

hence, with some index relabeling

ω[ab]c = eµ [ae
ν
b]∂µeνc. (C.3)

Now, using another neat trick and rewrite

ω[ab]c + ω[ca]b − ω[bc]a = ωabc, (C.4)

which is easily checked by remembering that ωabc is anti-symmetric under b ↔ c
exchange. Using this expression for ωabc results in the three terms

ωabc = eσ [ae
ν
b]∂σeνc + eσ [ce

ν
a]∂σeνb − eσ [be

ν
c]∂σeνa. (C.5)

Raise b, c and convert a to µ to end up with the final expression

ωµ
bc = δσµe

νb∂[σeν]
c + eνcδσµ∂[νeσ]

b − eσ[bec]νeµa∂σeν
a =

= 2eν[b∂[µeν]
c] − eσ[bec]νeµa∂σeν

a.
(C.6)
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D
Conformal invariance of

Lagrangian terms

A conformal transformation is a transformation leaving the metric invariant up to
a constant, i.e.

gµν → eΩ(x)gµν ⇒ gµν → e−Ω(x)gµν . (D.1)

The term Ω(x) is some scalar-valued function of the position in spacetime. Be-
low, some terms are shown and how they are seen to be invariant under such a
transformation.

D.1 Invariance of anti-symmetric scalar

In four dimensions, the following scalar can be created

εµνσλFµνFσλ. (D.2)

Its invariance is trivial since ε transforms as

εµνσλ → εµνσλ. (D.3)

Since there is no need for Fµν to transform it can be left as it is, making invariance
trivial.

D.2 Invariance of FµνF µν

To show conformal invariance of FµνF µν , start by writing out how the different parts
of the expression transforms. First, notice how the scale factor √−g transforms

√
−g → e

D
2 Ω(x)√−g. (D.4)

The entire expression now transforms as

√
−gFµνF µν → e

D−4
2 Ω(x)√−gFµνF µν (D.5)

and is trivially invariant for D = 4 (but not for other dimensions).
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D. Conformal invariance of Lagrangian terms

D.3 Invariance of the kinetic term
Start with a massless kinetic term

L =
√
−g∂µφ∂µφ (D.6)

and continue with the conformal transformations

gµν → e2Ω(x)gµν ,
√
−g → eDΩ(x)√−g. (D.7)

This makes L transform as

L =
√
−g∂µφ∂µφ→ e(D−2)Ω(x)√−g∂µφ′∂µφ′. (D.8)

To cancel the e(d−2)Ω-factor φ must transform as

φ→ φ′e(1− d2 )Ωφ = e
2−d

2 Ωφ. (D.9)

Performing the transformation, partial integration and dropping constant terms
leaves

√
−g∂µφ∂µφ→

√
−g

[
∂µφ∂

µφ+
(
d−2

2

)2
φφ (∂µΩ)2 +

(
d−2

2

)
φφ∂2Ω

]
, (D.10)

where d is the number of spacetime dimensions (not spatial dimensions). This is, as
seen, not an invariant term. To fix it, another term must be added to the Lagrangian.
The only scalar available in a massless theory related to coordinate transformation
is the Ricci scalar. The Ricci scalar R transforms as (obtained by the transformation
of the affine connection, followed by the Riemann tensor, Ricci tensor and finally
the Ricci scalar)

R→ e−2Ω
(
R− 2(d− 1)D2Ω + (d− 1)(d− 2) (∂µΩ)2

)
, (D.11)

making the entire Lagrangian invariant with the right pre-factors

L =
√
−g∂µφ∂µφ+ d−2

2(d−1)
√
−gφφR. (D.12)

This transformation can also be made with vielbeins instead of with the metric. The
vielbeins transform covariantly as

eaµ → eΩeaµ, (D.13)

which is easily seen from its relation to the metric gµν = eaµe
b
νηab. This makes the

spin connection transform as

ωµ
a → ωµ

a + tµ
a (D.14)

and following this through the Riemann tensor, the Ricci tensor and finally the Ricci
scalar, the same transformation as above is obtained

R→ e−2Ω
(
R− 2(d− 1)D2Ω + (d− 1)(d− 2) (∂µΩ)2

)
. (D.15)

Hence, both Einstein and Cartan gravity produces the same invariant Lagrangian
terms.

X



E
Chern-Simons like variational

general relativity

Here are some Chern-Simons and Chern-Simons like Lagrangians varied. First is two
invariant general Chern-Simons Lagrangians from gauge theory, which is followed
by the variation of some Chern-Simons like gravitational Lagrangians.

E.1 Chern-Simons Lagrangian

E.1.1 Three-dimensional abelian electromagnetic gauge in-
variance

Consider the integral over the field strength F = A ∧ dA and introduce the gauge
transformation A→ A+ dΛ. This transforms the expression as∫

A ∧ dA→
∫

(A+ dΛ) ∧ (dA+ ddΛ) =
∫

(AdA+ dΛ ∧ dA) =

=
∫

[AdA+ d(Λ ∧ dA)] =
∫
A ∧ dA,

(E.1)

where the last equality follows from a total derivative. The dd-terms vanishes since
two exterior derivatives on any field is identically zero (eq. (B.8)).

E.1.2 Three-dimensional non-abelian electromagnetic gauge
invariance

The gauge-transformation is now written as

Aµ → g−1Aµg + g−1∂µg, (E.2)

which, if the action from the abelian case is used, is not invariant and another term
must be included. Adding this term gives the Chern-Simons action

SCS =
∫

d3xεµνσTr
[

1
2Aµ∂νAσ + 1

3AµAνAσ
]
. (E.3)

Which now transforms as

SCS → SCS −
1
3

∫
d3xεµνσTr

[
g−1∂µgg

−1∂νgg
−1∂σg

]
, (E.4)
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E. Chern-Simons like variational general relativity

where the extra term is called the winding number of the gauge transformation g
and is most often imposed to be zero or a multiple of 2π. A way to understand
the winding number is in terms of string theory. If two points are identified, e.g.
to compactify the extra dimensions, and an open string has endings in both these
points, it will behave as a closed string, but with winding number 2π. More tech-
nically, it tells the number of times a string is wound around space (a cylinder, a
torus, etc) in such a way that it cannot be shrunk into a point.

E.2 Three-dimensional gravitational variation

A gravitational Chern-Simons like action in three dimensions is

SCS = 1
κ2

∫
ea ∧Ra, (E.5)

where
Ra = dωa + 1

2εabcω
b ∧ ωc (E.6)

is the Ricci-tensor expressed in terms of the spin connection. The Ricci-tensor in
general dimensions has two indices and the relation between these are given by
eq. (A.4). The expression in eq. (E.5) can be varied with respect to both ea and ωa.
Start vary with respect to ωa, this produces a variation of Ra, which is

δRa = dδωa + 1
2εabc(δω

b ∧ ωc + ωb ∧ δωc) = dδωa + εabcω
b ∧ δωc. (E.7)

The variation of the action is

δS = 1
κ2

∫
ea ∧ δRa = 1

κ2

∫
ea ∧ (dδωa + εabcω

b ∧ δωc), (E.8)

which after partial integration (and dropping a boundary term) becomes

δS = 1
κ2

∫
(−dea + εabce

b ∧ ωc) ∧ δωa = 1
κ2

∫
(−de+ e ∧ ω) ∧ δω. (E.9)

When the variation is put to zero, the zero-torsion condition is obtained

de+ ω ∧ e = 0. (E.10)

The sign on ω ∧ e comes from the anti-symmetry of the wedge product.
If the variation instead is made on ea and assuming that ea and ωa are independent

δS = 1
κ2

∫
δea ∧Ra ⇒ Ra = 0. (E.11)

For the case where ωa is expressed in terms of ea, see appendix F.2.4.

XII



E. Chern-Simons like variational general relativity

E.3 Four-dimensional gravitational variation
In four dimensions the Chern-Simons like action becomes

SCS = 1
κ2

∫
ea ∧ eb ∧Rcdεabcd, (E.12)

with
Rcd = dωcd + ωa c ∧ ωcb (E.13)

or, written with tensors

Rcd
µν = ∂µω

cd
ν + 2ωa c[µωcb ν]. (E.14)

A variation of this action with respect to ω results in

δSCS = 1
κ2

∫
ea ∧ eb ∧ δRcdεabcd, (E.15)

where the variation of Rab is

δRab = dδωab + δωa c ∧ ωcb + ωa c ∧ δωcb = Dδωab. (E.16)

The derivative on the δω-term is not wanted and is moved to one of the vielbeins
through partial integration, leading to

δSCS = 1
κ2

∫
εabcde

a ∧ T b ∧ δωcd, (E.17)

where T is the torsion coefficient and is given by

T a = Dea = dea + ωa b ∧ eb. (E.18)

Since the variation must vanish for any δω, the following expression is obtained

εabcde
a ∧ T b .= 6εabcde[µ

aTνσ]
b = 0. (E.19)

To get the same zero-torsion condition as in three dimensions, implement the anti-
symmetry with the Levi-Civita symbol and make the contraction eaµ

εabcdε
µνσλeµ

aTνσ
b = 2δνσλbcd Tνσ

b = 12T[bc
beλ d] = 0, (E.20)

or

6T[bce
λ
d]
b = Tbce

λ
d
b + Tcd

λ + Tdb
beλ c − Tcb beλ d − Tdc λ − Tbd beλ c =

= 2
(
Tcd

λ + Tbc
beλ d + Tdb

beλ c
)

= 0.
(E.21)

Closing λ with d makes the two last terms vanish (notice that D is the total dimen-
sion, not the covariant derivative)

eλ
d
(
Tcd

λ + Tbc
beλ d + Tdb

beλ c
)

= Tcλ
λ +DTλc

λ + Tλc
λ =

= DTλc
λ = 0 ⇒ Tλc

λ = 0,
(E.22)

XIII



E. Chern-Simons like variational general relativity

which makes the expression (E.21) state

Tcd
λ = 0. (E.23)

The variation with respect to ea is

δS = 1
κ2

∫ (
δea ∧ eb + ea ∧ δeb

)
∧Rcdεabcd =

= 2
κ2

∫
δea ∧ eb ∧Rcdεabcd ⇒ εµνσλεabcd = δλdR = 0,

(E.24)

which means (with R the Ricci tensor 2-form)

R = 0. (E.25)
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F
The Schouten tensor

The Schouten tensor is mentioned in general relativity as a part of the Riemann
tensor and appears in several places in this thesis, especially since it is a part of the
Cotton tensor. Here, it is derived from an expression for the Riemann tensor and
some features of the Cotton tensor is shown.

F.1 Derivation

The Riemann tensor Rµν
σλ in general relativity can be expressed as

Rµν
σλ = Wµν

σλ + 4δ[σ
[µSν]

λ]. (F.1)

Where Wµν
σλ is the Weyl tensor and Sµ ν is the Schouten tensor. However, in three

dimensions, an anti-symmetry in two indices can be represented using one index by
contraction using a Levi-Civita symbol. Since the Weyl tensor is identically zero for
arbitrary curvature in three dimensions, all information of the Riemann tensor is
contained in the Schouten tensor. The Riemann tensor is expressed in terms of the
Schouten tensor as

Rµν
σλ = 4δ[σ

[µSν]
λ], (F.2)

which means that the Schouten tensor can be solved for in terms of the Riemann
tensor. Multiply everything by εσλρ (the factor of −2 comes from eq. (A.4))

− 2Rµνρ = 4εσλρδσ[µSν]
λ (F.3)

and now by ετνρ

− 2Rσ
τ = −8δ[τν]

σλ δ
σ
[µSν]

λ = −8δ[τ
[µSν]

ν] = −2
(
Sµ

τ + δτµS
)

(F.4)

where S = Sµ
µ. The trace of Sµ τ is obtain by closing µ and τ in the expression,

giving
R = S + 3S = 4S ⇒ S = 1

4R (F.5)

and the final expression for the Schouten tensor is

Sµν = Rµν −
1
4gµνR. (F.6)
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F. The Schouten tensor

F.2 The Cotton tensor
The Cotton Tensor

Cµν = εµ
σρSρν = εµ

σρDσ

(
Rρν − 1

4gρνR
)
, (F.7)

is a field taking on the role of the Weyl tensor in three spacetime dimensions in the
sense that a conformally flat space has a vanishing Cotton tensor. Hence, it is of
interest to not demand the Cotton tensor to be zero if the theory is to be coupled
to other fields (matter, radiation, etc).

F.2.1 Symmetry of the Cotton tensor
The Cotton tensor is symmetric in its two indices, which can be shown by figuring
out that their anti-symmetric part is zero. Contract it with the Levi-Civita symbol
εµνλ

εµνλCµν = εµνλεµ
σρDσ

(
Rρν − 1

4gρνR
)

= −2δνλσρDσRρν − 1
2δ
σ
λDσR =

= −DσRλσ +DλR
σ
σ − 1

2δ
σ
λDσR = −Dσ

(
Rσλ − 1

2gσλR
)

= 0,
(F.8)

since the expression within the last set of parentheses is the contracted Bianchi
Identity.

F.2.2 Trace of the Cotton tensor
Another thing that can be important to know about the Cotton tensor is the trace.
It is obtained by contracting the two indices

gµνCµν = ενσρDσ

(
Rρν − 1

4gρνR
)

= 0. (F.9)

Both Rρν and gρν is symmetric and hence, when they are contracted with the Levi-
Civita symbol, the expression is zero.

F.2.3 Conformal invariance of the Cotton tensor
To make a conformal transformation of the Cotton tensor, note that it consists of R
and Rµν , and the variation of these were found in appendix D. Hence, the variation
of the Cotton tensor follows from those calculations and it is found to be conserved.
This makes it a good candidate for a conserved current, especially since it can be
found via a variation of the Lagrangian.
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F. The Schouten tensor

F.2.4 Variation of the Chern-Simons action
In appendix E.2 it was shown how to do a variation of a Chern-Simons like action
where ωa was independent of ea. The case where ωa is expressed in terms of ea
is shown here. Since the variation of ωa must be covariant, there is only one real
candidate for the variation

ωµ
a = 1

2ε
νσλ (eµ aeλb − 2eλ aeµb) ∂νebσ ⇒

⇒ δωµ
a = 1

2ε
νσλ (eµ aeλb − 2eλ aeµb)Dνδeσ

b.
(F.10)

It is the expression for ωa, but with a covariant derivative instead of a partial.
Entering this into the variation of the Lagrangian

δL = δωa ∧Ra = 1
2ε
νσλ (eµ aeλb − 2eλ aeµb)Dνδeσ

bRκτaε
µκτ (F.11)

or
δL = 1

2 (ενσ bεaκτ − 2ενσaεb κτ )RκτaDνδeσ
b (F.12)

Partial integration gives

δL = −1
2 (ενσ bεaκτ − 2ενσaεb κτ )DνRκτaδeσ

b (F.13)

which is zero for all variations δe, hence

(ενσ bεaκτ − 2ενσaεb κτ )DνRκτa = 0. (F.14)

Now, recognizing that

εµνσRµνσ = R, εµν aRµνb = 2Rab (F.15)

gives
ενσ bDνR− 4ενσaDνRba = 0. (F.16)

or
ενσaDν (ηabR− 4Rba) 0. (F.17)

Shuffle terms and changing to curved indices now gives the Cotton equation

εµ
σλDσ

(
Rλν − 1

4gλνR
)

= 0. (F.18)
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G
The parabolic subalgebra

The parabolic subalgebra discussed in this thesis is a subalgebra which emerge when
keeping all brackets of the algebra that result in an element with q ≥ p (here q
denotes the number of qα spinors and similarly for p). When setting the parabolic
part of F to zero (as done in section 5.4.3) all projected fields F (q,p) where q ≥ p are
set to zero, while the fields F (q,p) with q < p are kept. Note that if the bracket of
one element consists of two q spinors (i.e. P a) and another element has m q spinors
and n p spinors, the result will be an element with m + 1 q spinors and n − 1 p
spinors, moving a step up according to the grading order. This follows since the
Poisson bracket removes one q and one p from the total number of q and p spinors of
the elements that are included in the bracket yielding it non-zero. Similarly, if one
element consists of only two p spinors, the result is one step down in the grading
order. This means that if only the parabolic part of the equation F = 0 is assumed,
i.e. all terms with q ≥ p are set to zero, there will not remain any elements whos’
bracket is an element with a grade (transformation under D, or, equivalently q− p)
higher or equal to zero. Hence, if the projection onto a closed subgroup of the
algebra is removed, what is left of the Bianchi Identities should still be zero, which
is exactly what is proved in this thesis.
A bit more technical, the full higher-spin algebra can be thought of in terms of the
matrix G.2. It is a matrix containing all basis elements ordered according to their
content of q and p spinors, where q spinors increase for each column and p spinors
increase for each row.
In the matrix G.1, the elements along the diagonal forms a solvable algebra and
it stays along the diagonal, while all off-diagonal elements are nilpotent, mean-
ing that for each pair of nilpotent elemens J0 and J , there exist an n such that
[. . . [[J0, J ], J ] . . . , J ] = 0, where n is the number of brackets. In other terms, all off-
diagonal terms will drift outwards, away from the diagonal and “escape” the matrix
(looking at the spin-2 and spin-3 brackets, this is seen to be true). Before explaining
how this relates to what is here called the parabolic part, the so-called Borel sub-
group must be introduced. To understand this, start with the general linear group
GL(N), this group has the generators (Jmn)ij = δmi δ

n
j for all m and n.

The algebra of the general linear group viewed as in the matrix G.1 where the
Cartan algebra (a solvable algebra), with elements called h, is placed on the diagonal
(m = n) and elements above (or below) the diagonal, called e (m > n) and f (m < n)
respectively, are nilpotent. The Borel algebra of this is all the h and e elements (B+),
or all h and f elements (B−). In other words, taking all elements on the diagonal
together with all elements above or below will result in the Borel algebra, which is
the largest solveable subalgebra. This Borel algebra is also the minimal parabolic
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G. The parabolic subalgebra

algebra, where the parabolic algebra is any closed algebra equal to or larger than the
Borel algebra, but smaller than the ambient (full) algebra. Hence, by picking the
elements contained above the black line in the matrix G.1, a non-minimal parabolic
algebra is obtained.

h

f h e

h
·

f h

h




·
·

Figure G.1: The generator matrix for GL(N).

What in the rest of this thesis is refered to as the parabolic part of the algebra is
the maximal parabolic algebra of SO3(3, 2). The SO(N) algebras are not as easily
explained or visualized as the GL(N) algebras. However, the maximal parabolic
subgroup of SO(3, 2) is exactly the subgroup obtained by taking the terms with
q ≥ p. Including more terms would mean including terms drifting away to other
terms and hence, the only algebra larger than the parabolic one is the ambient
algebra.

1 spin(3
2) P a spin(5

2) P ab spin(7
2) spin(4) · · ·

spin(3
2) Ma,D spin(5

2) P̃ab,P̃a spin(7
2) spin(4) · · · · · ·

Ka spin(5
2) M̃ab,M̃a,D̃ spin(7

2) spin(4) · · · · · · · · ·

spin(5
2) K̃ab,K̃a spin(7

2) spin(4) · · · · · · · · · · · ·

Kab spin(7
2) spin(4) ... . . . · · · · · · · · ·

spin(7
2) spin(4) ... ... ... . . . · · · · · ·

spin(4) ... ... ... ... ... . . . · · ·
... ... ... ... ... ... ... . . .





1 q q2 q3 q4 q5 q6 · · ·

1
p

p2

p3

p4

p5

p6

...

Figure G.2: The matrix of higher-spin basis elements.

The elements in the matrix where it says spin(Q) contains basis elements of spin
Q − 1, used to obtain fields of spin Q. For instance, the basis elements having
spin 2 gives rise to spin-3 fields. The term 1 is the so-called central charge, an
element commuting with all other. The central charge is obtained when promoting
the q and p fields to operators (q, p→ q̂, p̂, quantizing the system), which gives the
commutators such as

[spin(4), spin(4)] = spin(6) + spin(4) + spin(2), (G.1)
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where the central charge corresponds to spin 1 (see fig. G.2) and thus appears only
when commutating an odd-spin field with an even-spin field, as in

[spin(3), spin(2)] = spin(3) + spin(1), (G.2)

similarly to how the central charge (or conformal anomaly) appears through a double
contraction in the Virasoro algebra in string theory.
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H
Integrability of the system

Assume that the field strength F = dA and that A = dΛ, making F = 0 (follows
from eq. (B.8)). However, it is not clear if it is true the other way around as well,
i.e. F = 0 ⇒ A = dΛ, but this is solved by the so-called Poincaré’s lemma [28]
stating that if ∂[αξβ] = 0, then (locally) ξα = ∂αξ.
To show this, start with the expressions

d
dλ [λξβ(λx)] = ξβ(λx) + λxα∂αξβ(λx) (H.1)

and

∂β [xαξα(λx)] = δαβ ξα(λx) + xα∂β(ξα(λx)) = ξβ(λx) + λxα∂αξβ(λx), (H.2)

where the last equality comes from ∂[αξβ] = 0 and hence, these two expressions are
equal.

d
dλ [λξβ(λx)] = ∂β [xαξα(λx)] . (H.3)

Now, ξ is given by
ξ(x) =

∫ 1

0
dλxαξα(xλ), (H.4)

wich follows from differentiating the expression

∂αξ(x) =
∫ 1

0
dλ∂α(xβξβ(xλ)) =

∫ 1

0
dλ d

dλ [λξα(λx)] = ξα(x). (H.5)

This means that locally F = 0⇒ A = dΛ, this is called the integrability condition,
showing that the field strength F can be used to solve for the potential A. In three
dimensions this can be done for all points in space, this follows from that there are
as many equations in F = 0 as the number of degrees of freedom in A (remember
that F is anti-symmetric). If there are more spacetime dimensions than three, the
system becomes overdetermined and extra constraints have to be set on A.
The same argument as above also holds for the Bianchi identity, saying that if
dF = 0, then locally F = dA.
Following from these arguments, the linear case studied in this thesis states that
F = dA+eA = 0, which can be inverted when the theory considered is gravity since
e 6= 0 (follows from det(g) 6= 0), hence A = e−1dA. Showing that when gravity is
considered A can be expressed in terms of its derivative and the inverse dreibein.
From this, since all equations relates the fields in A to some derivative of A, the
parts of the equation F = 0 that does not solve one part of the field in terms of
another must be identities. In other terms, the system is exactly soluble [29].
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