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Abstract
An RTL-based energy evaluation framework dubbed CREEP (Chalmers Energy
Evaluation framework for Pipelines) is implemented and evaluated. The frame-
work consists of pipeline RTL and the architectural simulator SimpleScalar. Power
estimates are extracted from the RTL and combined with performance counters
generated by SimpleScalar. The combination lends SimpleScalar accurate energy
estimates otherwise reserved to low level circuit analysis. The framework has been
used to characterize several different embedded processor configurations. Addition-
ally, a case study of the framework was used to implement and evaluate a speculative
way-halting technique called SHA which pointed to a 25.6% energy reduction in a
conventional four-way data cache.
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1
Introduction

In the early days of integrated circuit (IC) design, computer architectures were devel-
oped with a focus on achieving high performance. Other design factors such as cost,
area and power were also considered but only as limiting factors. However, in the late
1990’s it became apparent that this design philosophy was unsustainable. Comple-
mentary metal–oxide–semiconductor (CMOS) technology scaling allowed for higher
densities and increasing clock frequencies, but performance-centered designs that
tried to leverage these advances became hard or impossible to cool cost-effectively
[5].

Currently energy efficiency is next to performance the major focal points in very-
large-scale integration (VLSI) design. The driving forces behind this are increased
portability, the power wall and environmental concerns. For portable battery-
powered devices lower energy consumption directly translates into a more well-
received product. The power wall, a direct consequence of discontinued Dennard
scaling, means that technology scaling no longer is the obvious answer to increased
performance and lower power [6][7]. Lastly, it is becoming painfully obvious that
the rate at which the global energy consumption increases is not sustainable. ICs
contribute to a considerable chunk of this increase [8].

To facilitate energy efficient design evaluation frameworks at the software and register-
transfer level (RTL) are required to make vital early estimations. Early estimations
are perhaps the most important estimations as changes at the architectural level
have a larger impact on the final energy and performance numbers than changes
at the circuit level. As such, these frameworks allow for accurate estimation and
thereby more predictable prototyping results. Furthermore, these tools are sig-
nificantly faster than those available at the circuit level which is essential when
exploring a complex design space [9][10]. These framework have traded speed for
accuracy, often adopting parameterizable models obtained through analytical or em-
pirical studies of the underlying hardware. However, by adopting such models many
of the existing frameworks neglects the impact of design integration, i.e., the syn-
ergy between the integrated parts of a design. We propose an open source energy
evaluation framework for pipelines that facilitates software and hardware co-design.
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1. Introduction

The framework, named Chalmers RTL-based energy evaluation framework for pipelines
(CREEP), extends down to the RTL which yields high accuracy and allows for de-
tailed pipeline studies at the system level.

1.1 Goals and challenges

The aim of this thesis is to develop and demonstrate CREEP, a framework that esti-
mates energy usage of integrated processor pipelines. The framework is based on an
existing methodology that has been used in several published papers at Chalmers.
The two major components that will be used to create the framework are; 1) Pipeline
and cache RTL [11] and 2) A version of the SimpleScalar simulator [12]. The RTL
and the simulator exist prior to the framework development but they are two sepa-
rate and incoherent components combined in an ad-hoc manner. Hence, there are
many challenges to address throughout the work, some of which are listed below:

• Create a scalable energy estimation framework from an ad-hoc methodology.
Trade-offs between energy estimation accuracy and scalability are required
throughout the development.

• The existing pipeline RTL code represents an in-order 5-stage pipeline (5SP)
augmented with level-one instruction cache (L1IC) and level-one data cache
(L1DC). The RTL code has been used in several projects that necessitated
changes and quick patches in the code. As such, the code needs to be cleaned
to make the RTL presentable and to reintroduce some features such as config-
urable cache sizes that is necessary for the framework. Additionally, a scalable
power estimation methodology that includes the impact on power due to in-
tegration aspects needs to be implemented.

• The SimpleScalar simulator represents a more complex pipeline than the RTL.
Thus, the simulator shall be modified to match the RTL code as closely as
possible. This requires changes to the source code which must be verified
to work as intended. Furthermore, the simulator will be modified to track
additional resource usage information.

• The pipeline RTL and SimpleScalar components will then be combined by
mapping resource usage obtained from the simulator to the RTL power es-
timations. The challenge here is to do the mapping in such a way that the
framework estimates the processor energy adequately.

• Lastly, the framework will be automated to make it more approachable. The
automation also serves the purpose of keeping the components coherent, which
will make the results generated by the framework reproducible.

2



1. Introduction

1.1.1 Goals

Several concrete goals related to CREEP have been identified and these are sum-
marized below:

• Present a coherent and scalable framework with accuracy close to a placed and
routed pipeline design.

• The framework should be automated through scripts which will make CREEP
more user-friendly.

• The framework should support limited configuration, e.g., different cache con-
figurations and processor speeds.

• Evaluate the applicability of the framework in a case study.

• Present the framework in a suitable forum to introduce it to the community.

1.2 Limitations

The framework development is complex and limitations need to be imposed on the
development.

• The framework is only guaranteed to work as is. As such, any modifications
made by the user to any of the framework components are not covered by the
standard framework workflow.

• CREEP will be limited to the provided 5SP. Any changes to the RTL code
are not guaranteed to work and the user needs to verify the changes in the
context of the framework.

• CREEP does not include a level-two (L2) cache and does not attempt to
approximate the impact of lower levels in the memory hierarchy on power
dissipation and performance.

• CREEP is limited to the SimpleScalar source and configuration provided with
the framework. Any changes to these components need to be verified and
integrated into the framework by the user.

• This thesis will use the RTL for the pipeline and will only modify it to suit
the needs of the framework. No performance enhancements will be done and
the CREEP configurations are limited to run at 400MHz.

• The RTL will not be fabricated and no silicon of said design will be produced.

3



1. Introduction

1.3 Related works

Energy evaluation frameworks have over time evolved from small frameworks limited
to specific structures within a processor, to large and complex system-level frame-
works. Depending on how the frameworks obtain circuit-level energy estimations
they can be divided into analytical or empirical frameworks [5]. Analytical tools
generally have the advantage of being more generally applicable to different archi-
tectures whilst empirical methods are best suited for the type of architectures from
which they were derived. In this section previous energy evaluation frameworks and
methods are presented.

The first high-level energy framework, CACTI, was released 1996 specifically target-
ing cache structures [13]. CACTI uses analytical models to estimate both power and
delay within the cache structure. It has since its release been updated regularly to
include leakage power, other types of memory cells, device scaling effects based on
International Technology Roadmap for Semiconductors (ITRS) predictions and wire
effects on delay and power [14]. The reason it targeted caches was that a significant
amount of total chip power, up to 40%, was dissipated by the caches in embedded
processors [9]. Furthermore, caches are highly regular structures thus less complex
analytical models are needed to accurately estimate energy consumption and delay.
It has allowed computer architects to explore trade-offs in the memory hierarchy de-
sign [13]. In contrast to CACTI, CREEP also models the datapath with which the
caches are integrated. Hence CREEP provides an estimate for a complete integrated
pipeline.

WATTCH and SimplePower, both released in 2000, analytically modeled power for
a whole processor. WATTCH was one of the first tools to link a traditional archi-
tectural performance simulator, SimpleScalar [12], to analytical power models [15].
It bases its power estimations on a collection of parametrized power models for
different hardware structures (for example random access memory (RAM), content
addressable memory (CAM), other array structures, latches, buses, caches arith-
metic logic unit (ALU)s) and per-cycle resource usage counts generated through
cycle-level simulations using the SimpleScalar architectural simulator [9] [15]. Sim-
plePower is an execution-driven, cycle-accurate RTL energy estimation tool that
uses a combination of analytical and transition sensitive energy models [16] [17].
The SimplePower framework is built around a five stage datapath with instruction
fetch, decode, execution, memory and write-back stages [16]. Transition-sensitive
models are defined for each functional unit in the datapath and the models contain
switch capacitance on a per-input basis obtained from VLSI layouts and extensive
circuit simulation [17]. Models are provided for several technology nodes. Simple-
Power uses a combination of analytical and transition-sensitive energy models for the
memory system. The analytical models are reserved for the memory arrays whereas
the transition-sensitive models are used for the connecting buses [17]. In contrast to
the functional units, the switching capacitance of these buses is based on pessimistic
assumptions rather than HSPICE simulations [17]. The control path of the 5SP has
been neglected because developing transition-sensitive models for this was consid-
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1. Introduction

ered extremely difficult. SimplePower leverages on the SimpleScalar simulator by
using the same ISA and compiler. The framework simulates the generated executa-
bles providing cycle-by-cycle energy values based on the aforementioned models [16].
Both of these were fast and usefully accurate to quantify potential power savings in
architecture design. However, compared to CREEP, WATTCH and SimplePower,
while being more flexible, again fail to capture the integration aspect that CREEP
addresses.

McPAT, another analytical tool, is an abbreviation of multicore power area and
timing. The framework was released 2009 and it estimates power, area and timing
which enables architects to use metrics that relate performance to both area and
power [10]. In contrast to SimplePower and WATTCH, McPAT is compatible with
any performance simulator through an XML interface. Furthermore, McPAT is built
on more accurate analytical models compared to WATTCH and these models also
include static and short-circuit power. Just as the name implies it also handles
the complexities of multicore architectures. Similarly to McPAT, CREEP provides
a system perspective but does so more accurately as power estimates are obtained
from an RTL implementation and not analytical models. However, CREEP supports
less complex systems as it targets simple embedded processors.

One empirical framework of interest is IBM’s PowerTimer [15]. The major difference
from the previous approaches that are based on analytical models is primarily the
formation of the energy models. PowerTimer’s models are based on empirical data
collected from existing microprocessors. These models are then scaled to capture
device scaling. PowerTimer takes a bottom-up approach and the energy models
are derived from circuit-level power simulation data. Low-level circuit macros are
analyzed and used to generate higher-level energy models for microarchitectural
units [15]. These models are then controlled by two sets of parameters; 1) technology
and circuit parameters, 2) microarchitectual parameters such as buffer sizes, pipeline
latencies and bandwidth values. The microarchitectual parameters are also used in a
stand-alone performance simulator. By connecting the performance simulator with
the energy models a total or cycle-by-cycle energy evaluation can be performed.
IBM’s PowerPC architecture was used to create the energy models and as such
was best suited for design exploration within that microarchitecture. CREEP is
likewise limited to the specific architecture implemented in RTL. Both frameworks
work at the system level but PowerTimer chooses to distance itself from the physical
implementation through parameterized models which lends it greater flexibility at
the expense of accuracy.

Yet another example of an empirical framework was proposed by Aziz et al. [18].
This framework is used for marginal-cost analysis. Their approach was to first
create architectural models using design space sampling and statistical inference to
capture the multi-dimensional space of microarchitectural parameters. The energy-
delay trade-offs of the composing circuit blocks that formed the architectures were
then stored in a circuit library. The created joint architecture-circuit design space
was then combined with exploration engine which is given an optimization objective
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1. Introduction

and resource budgets [18]. The exploration engine then searches the design space to
find the most efficient configuration under the given constraints. As it is a high-level
framework, it is more flexible than CREEP but trades aspects such as accuracy and
integration to achieve this flexibility.

Rance Rodriges et al. conducted a study in [19] on the usage of performance counters
and how they can be used to estimate power in microprocessors. While performance
counters have been widely used to estimate power online in situ the counters used
vary widely between processor architectures. Rance Rodrices et al. attempts to
identify a set architecture-agnostic counters that estimate processor power with low
error. Two architectures, Intel Atom and Nehalem, at opposite ends of the de-
sign spectrum were used to select performance counters which in both architectures
showed a strong correlation to power. Using SESC architectural performance simu-
lator and WATTCH as reference they concluded that #Fetched instructions, #L1 hit
and #Dispatch stall counters was sufficient to approximate processor power with an
average error of 5%. Furthermore, the chosen set of counters variation between pro-
cessor architectures only had a small impact, 3%, on the estimation accuracy. While
the objective of this work is different from CREEP, it indicates what performance
counters are relevant for a selection of architectures, albeit at higher performance
design point, and can serve as an inspiration for CREEP.

A high-level estimation methodology and the associated tool, SoftExplorer, was
presented in [20]. The methodology models a processor through functional analysis
and a parametric software model is used to capture the software’s impact on power.
The processor model can be as coarse grained as a functional block diagram. The
parametric software model accepts relevant algorithmic parameters such as cache
miss rate. The first step in the methodology is to cluster the processor model
into functional blocks that are concurrently activated when code is running. The
relevant consumption parameters are chosen as the links between the functional
blocks. The second step is to characterize the processor model’s power consumption
as the architectural and algorithmic parameters are varied. Lastly, a curve fitting
of the graphical representation of the characterized power is performed through
regression analysis. SoftExplorer was compared to SimplePower where the tool was
found to be significantly faster and within 2.4% of the estimates. Compared to
CREEP, SoftExplorer sacrifices accuracy for flexibility and speed and neglects the
integration aspect covered by CREEP.
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2
Background

This chapter will provide the reader with the basic knowledge to understand the
concepts used to develop Chalmers RTL-based energy evaluation framework for
pipelines (CREEP). First, the basics of CMOS logic with a focus on implemen-
tation, i.e., power and speed will be discussed in Sec. 2.1. Since complementary
metal–oxide–semiconductor (CMOS) is the primary fabrication technology used to
implement integrated circuits (ICs), CMOS speed and power are central to this
work. Secondly, the basics of IC design with a focus on cell-based CMOS designs
are presented in Sec. 2.2. The foundations of computer architecture with a focus on
pipeline design and physical implementation are presented in Sec. 2.3. Lastly, the
existing ad-hoc methodology which this work is based on is presented in Sec. 2.4.

2.1 CMOS

The abbreviation CMOS stems from the structure of the device as it was composed
of at least one n-type metal–oxide–semiconductor (nMOS) and one
p-type metal–oxide–semiconductor (pMOS) transistor [21]. The simplest CMOS
circuit, the CMOS inverter, is shown in Fig. 2.1. The arrangement of the inverter
is such that the input of the CMOS inverter is connected to the gate terminal of
both transistors. Whilst the transistors’ behavior in reality is more complex, they
can ideally be viewed as switches that close and open when a voltage transition is
detected on the gate. The behaviors of the nMOS and pMOS are opposite that of
each other, i.e., when a potential VDD (supply voltage, logic 1) is asserted on gate
terminal the nMOS closes and the pMOS opens. Conversely, when no potential
or GND (ground, logic 0) is present on the gate the nMOS opens and the pMOS
closes.

2.1.1 Power dissipation

The power dissipation of a CMOS circuit is generally considered to be composed of
three components; 1) Dynamic power, 2) Short-circuit power and 3) Static power [22].
The total gate power dissipation is given as the sum of these components as shown
in Eq. 2.1.
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VDD

GND

OutIn

Cout

Ishort

In

Ip

Figure 2.1: Schematic view of CMOS inverter

Ptotal = Pdynamic + Pshort + Pstatic (2.1)

The dynamic power dissipation is by far the most dominant source of power con-
sumption in a CMOS circuit [22]. Dynamic power is also called switching power
because power is consumed when the gate is switching, i.e., charging or discharging
the gate output capacitance Cout to VDD or GND [21]. The output capacitance
consists of several components; Cint, Cwire and Cload as shown in Eq. 2.2 [22].

Cout = Cint + Cwire + Cload (2.2)

The internal capacitance Cint is related to the structure of the gate and include
parasitic capacitances. Cwire is the capacitance of the wire that connects the output
of the device to the input of another CMOS gate which in turn constitutes the
Cload capacitance. Consider Fig 2.1 where a voltage transition from VDD to GND is
asserted on the input. The nMOS transistor opens and the pMOS transistor closes.
A current Ip flows from the voltage supply to the output capacitance which charges
the capacitance. The amount of charge pulled from the supply is given by CoutVDD
and the energy drawn from it by CoutV 2

DD. However, half of the energy drawn from
the supply is dissipated as heat in the resistance posed by the pMOS transistor
so the energy in the output capacitance is given by Ec = 1/2CoutV 2

DD. When the
input voltage later is increased to VDD the pMOS opens, the nMOS closes, and
the output capacitance is discharged as a current In flows to ground. The stored
energy in the capacitance Ec is dissipated in the resistance posed by the nMOS
transistor. If this circuit is operated at a clock frequency f and and the output
switches with a probability of α the total dynamic power drawn from the supply is
given by Eq. 2.3 [21].

Pdynamic = CoutV
2
DDαf (2.3)
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The short circuit power dissipation Pshort is nowadays considered a small compo-
nent of the total power [22]. The power is dissipated when the output of the gate
switches. The nMOS and pMOS devices are in reality not behaving as ideal switches
and require a finite time to open and close. This time is determined by how long the
input voltage remains between the transistors threshold voltage Vtn, and VDD −Vtp,
where Vtn and Vtp are the threshold voltages of the nMOS and pMOS transistors re-
spectively. Threshold voltage is the minimum gate to source potential that is needed
to create a conducting path in the transistor, i.e., close the switch. Consequently
there is a small period of time when both transistors are on and a current Ishort
shown in Fig. 2.1 is allowed to pass from the supply to ground, which consumes a
small amount of power.

The last component is the static power dissipation that is intermediate in size com-
pared to the previous components [22]. It is smaller than the dynamic power and
has historically been negligible. It is called static because it is omnipresencent in
all CMOS circuits that are powered. The static power stems from a collection of
different currents passing between the various terminals of the devices most notably
source to drain. The leakage power is closely connected to the threshold voltage and
the temperature of the device [21]. As the feature size of the transistor is shrinking
below 65nm, leakage power is increasing and in more recent technology nodes it has
become a considerable contributor to the total power dissipation.

2.1.2 Speed

As discussed in the previous section, a transition on the output of a CMOS gate does
not happen instantaneously as the current would have to be infinite in magnitude.
Naturally, this is not the case in a real CMOS circuit. Instead, the current is
determined by the transistor’s ability to drive it, which due to nonlinear I-V and C-V
characteristics is no simple thing [21]. However, the transistors can be approximated
by an RC-delay model that allows the transistors to be viewed as simple RC circuits,
which most electrical engineers are familiar with. R is the transistor’s effective
resistance that is the product of the Vds and Ids, i.e., the potential between the drain
and source terminal and the current passing through the drain source junction [21].
The capacitance is the output capacitance of the CMOS circuit (see Sec. 2.1.1).
The transfer function of the equivalent RC circuit is given in Eq. 2.4 and the step
response in Eq. 2.5.

H(s) = 1
1 + sRC

(2.4)

Vout(t) = VDDe
−t/τ (2.5)

Solving the step response for Vout(t) = 1/2VDD gives the propagation delay through
the CMOS circuit shown in Eq. 2.6.
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tpd = RC ln 2 (2.6)

The propagation delay is an approximation of how fast the output of the CMOS
circuit transitions from VDD to 1/2VDD when an input step is asserted on the input
of the circuit. A non-trivial CMOS circuit is composed of many CMOS circuits
which are connected as shown in Fig. 2.2 and the propagation delay from input In1
to the final output Out n can become significant.

In1 In2 In n Out n

Figure 2.2: Example of a CMOS circuit consisting of multiple inverters

To manage the delay, the current drive capability of the transistors in the CMOS
gate can be increased. This is done through transistor sizing whereby the widths
of the pMOS and nMOS transistors are increased [21]. Essentially this reduces
the effective resistance experienced by the current and a larger current is allowed
through the circuit. However, increasing the transistor size also causes an increase of
the gate capacitance, i.e., the output capacitance experienced by the driving gate in
the circuit resulting in higher power dissipation. Moreover, gates that are unsized
and connected to the resized gates will have to charge a larger load capacitance,
which slows down unsized parts of the design.

2.2 IC design

Modern ICs are immensely complicated circuits often composed of several millions,
if not billions, of transistors. Designing such complex beasts is without computer
aid simply beyond the capabilities of a human designer. To facilitate IC develop-
ment software assistance is key throughout the design process. The software tools
providing this assistance are collectively refered to as electronic design automation
(EDA). The term EDA spans a wide range of functionality required throughout the
design of an IC, which will be the focus of this section.

Designing ICs is complex and it was discovered early on that doing so at the gate
level, even with the aid of EDAs specializing in the practice, was too cumbersome. As
a response, tools were developed to create gate-level representations, called netlists,
from a specification at a higher level of abstraction through a process called logic
synthesis. These abstractions are usually expressed in a hardware description lan-
guage (HDL) such as verilog or VHDL. These design languages allow the designers
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to express the behavior of the logic circuits at the register-transfer level (RTL) in
the sense that an assignment to a register expresses functionality.

The process of designing an IC is composed of several stages and for digital circuits
these are design, functional verification, logic synthesis and place and route (PnR).
The initial design stage is followed by functional verification, which is first done
at the register transfer (RT) level and infers testing that design described in HDL
matches the expected functional behavior. This is normally done at the cycle level
by applying stimuli to the design whereby the logic transitions of the output can
be observed and compared with the desired behavior. The stimuli is commonly
supplied by a testbench that provides input from a set of test vectors [23]. The
test vectors can be selected with the intent of testing specific functionality (directed
testing) or randomly to test corner-cases [23]. A key concern when selecting test
vectors is coverage that can be defined as how large part of the design that has been
tested (in percent). The RTL verification is facilitated by an HDL simulator tool.
There are many different HDL simulators available such as ModelSim from Mentor
Graphics, IES from Cadence and VCS from Synopsys [24][25][26].

After the RTL has been verified the design is brought through a cell-based logic
synthesis with the aid of a synthesis tool. The designer supplies the RTL design
together with design constraints with regards to timing which will guide the synthesis
tool through the multiple stage process that is cell-based logic synthesis [23]. The cell
library, which contains the standard gates (cells) used for synthesis, is provided by
silicon foundries such as ST Microelectronic or TSMC. The cell libraries are unique
to each manufacturer as they are tightly knit to their manufacturing processes. For
each cell in the library, parameters such as size, internal power dissipation, leakage
power and input pin capacitance are defined [23]. Normally several libraries are
necessary to fully evaluate a process technology. The libraries are optimized for
different design points, e.g., low power (LP) and general purpose (GP). The GP cell
library is optimized for performance and the LP cell library for low power designs.
Furthermore, the GP and LP libraries are further divided into sub-libraries with
different threshold voltages, which allows for fine grained control of performance and
power dissipation. Higher performance can be achieved by using a low-threshold
voltage version but at the price of higher leakage power dissipation. Conversely,
for design where power dissipation is a cause for concern, a high-threshold voltage
version is a good choice as these are slower but have lower leakage-power dissipation.
It is up to the designer to choose a library that suits the application at hand. Small
variations in the manufactured design can have a large impact on cells’ behavior.
To capture these variations, design corners are used. The worst-case corner contains
cells that have the worst possible (and still producing working devices) variations
that affect speed negatively. Conversely, the best-case corner cell library has the
best variations. Naturally, there is a nominal cell library that falls in between the
two. Moreover, the cell libraries have been characterized for different temperatures
and voltages. Temperature and voltage depend on in situ conditions and also affect
the behavior of the final circuit. As such, every cell library exist in several models
with different temperatures and voltages.
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Synthesis is a complex process and EDA tools that specialize in the practice are avail-
able from different suppliers such as Encounter RTL Compiler from Cadence, Design
compiler from Synopsys and HDL Designer from Mentor Graphics [27][28][29]. The
different tools provide similar functionality but differ in the algorithms and heuris-
tics used during the synthesis process. The synthesis results in a gate-level netlist,
a sequence of standard cell logic gates realizing the functionality of the RTL code.
In contrast to the HDL description of the design that solely captures the intended
functionality, the netlist also includes parameters such as area, timing and power.
The synthesis tool strives to meet the imposed timing constraint using the cells from
the specified libraries. It accomplishes this through static timing analysis which al-
lows it to find and balance the critical paths in the design [23]. This balancing
act entails selecting gates with sufficient current drive capabilities for the entire cir-
cuit to switch within the timing constraint. As such, the same design will produce
different gate-level netlists with different area and power. At the synthesis level,
the functional verification amounts to ensuring that the netlist behaves the same as
the RTL design. This is achieved through equivalence checking or simulation-based
methods as described for RTL verification.

Lastly, the design netlist is brought through PnR which is a physical design phase
composed of three steps; 1) Floorplaning where the design’s blocks are organized,
2) Placement of standard cells and iterative optimization of placement and 3) Rout-
ing of standard cell interconnects, power lines and clock tree [23]. The process is
strictly guided by design rules imposed to ensure that the placed and routed design
is manufacturable. The most significant changes to the netlist are the addition of
wires and clock tree. Wires constitute a part of the nodal capacitance described in
Sec. 2.1.1 which in some cases necessitates larger, more powerful gates to be used.
The addition of wire capacitance and larger gates with higher internal capacitances
increases the power of the design. Furthermore, the clock tree is a significant con-
tributor to the design power and is only included after the design has been placed
and routed. This stage relies on EDA tools, such as Encounter from Cadence, that
specialize on PnR as the burden of placing thousands of gates is simply beyond the
capability of a human designer [30].

Implementation power closure is important for power constrained circuits, e.g.,
portable embedded processors. As such, methods for obtaining power closures are
also included in many IC design flows. The power dissipation of CMOS-based cir-
cuits comes from active device switching and leakage where the former are the main
contributor as discussed in Sec. 2.1.1. The switching powers are then summed over
all capacitive nodes in the design. While the power estimates could be done prior to
the PnR, the power would be underestimated as the nodal capacitance is greatly in-
creased by the wire capacitances. The power also depends on the switching activity
(see Sec. 2.1.1) of these nodes and there are different techniques used to approximate
it. One such technique is probabilistic testing where the input statistics, asserted
by a designer, are propagated to each node in the circuit [22]. However, this creates
an nondeterministic polynomial time (NP) complete problem so the scope at which
this is done must be limited, e.g., parts of the design are analyzed instead of the
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whole design.
Another is use-case based switching activity which is facilitated through simulation-
based methods as described for RTL verification [22].

2.3 Pipeline design

The most fundamental parts of computer architecture are the instructions that define
what a computer is capable of and the microarchitecture that decides how it executes
the instructions. To that end the structure of a complete set of instructions called
instruction set architecture (ISA) and more specifically the MIPS I ISA, is presented
in Sec. 2.3.1. Microarchitectural concepts relevant to this thesis such as pipelining
and caching are then discussed in Sec. 2.3.2.

2.3.1 MIPS I instruction set architecture

All computer programs are made up of instructions which are the basic operations
carried out by a processor [2]. Instructions are usually very frugal and each of them
normally does one basic operation, e.g., memory access, arithmetic or flow control.
To make up a complex computer program many different instructions are needed.
The instructions are grouped together to form a set of instructions possibly unique
to their implementing architecture thus forming an ISA.

The MIPS I ISA, first released in 1982, was developed by John Hennessy and his col-
leagues at Stanford [31][2]. MIPS I was one of the first successful reduced instruction
set computing (RISC) ISAs built on four main principles; simplicity favors regular-
ity, make the common case fast, smaller is faster and that good design demands good
compromises. Derivatives of the MIPS ISA are still used today by CISCO (routers),
Nintendo and Sony (hand held gaming consoles) and Silicon Graphics among others.

MIPS I instructions can have three different encoding formats referred to as R, I
and J-type instructions in the literature [2]. By only allowing a limited number of
instruction formats the ISA gains regularity which simplifies the instruction decod-
ing [2]. Each instruction has its own operation (OP) code which is encoded in the
op-field shown in Figs 2.3-2.5. Besides the OP-code, the main difference between the
instruction formats is the number of operands that are encoded in the instruction.
R-type instructions however, need two extra fields (shamt and funct) to characterize
each operation, which includes mathematical or logical operations such as addition,
subtraction and shift operations. R-type instructions require two operands encoded
in the rt and rd fields shown in Fig. 2.3. In contrast, I-type instructions require
just one operand encoded in the rt field (see Fig 2.4) and lastly J-type require no
operands.

The operands are fetched from a small register-file whose modest size lends it speed.
The size of the register-file and how the memory is addressed are the parameters,
besides instruction width, that the MIPS I ISA enforces on the underlying microar-
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op rs rt rd shamt funct

R-type

6-bits 5-bits 5-bits 5-bits 5-bits 6-bits

Figure 2.3: MIPS I R-type instruction format.

op rs rt immediate

I-type

6-bits 5-bits 5-bits 16-bits

Figure 2.4: MIPS I I-type instruction format.

op addr

J-type

6-bits 26-bits

Figure 2.5: MIPS I J-type instruction format.

chitecture. MIPS is a load-store ISA because all operands are fetched from the
register-file [1]. I-type instructions substitute one operand for a value, called imme-
diate value, which is encoded directly in the instruction itself. Examples of I-type
instructions are load and store operations. Stores read data from the register-file
and store the data in data memory. Loads on the other hand read data from data
memory and store the data in the register-file. Similarly, all R-type instructions also
store the result of the operation back into the register-file to a location indicated by
the rs field. However, other I-type instructions called control flow instructions, e.g.,
branch instructions, do not access the register-file. Instead, the control flow instruc-
tion decides the order in which the instructions in the program are executed. Lastly,
J-type instructions, which mainly include another type of flow control instructions
called jump instructions, trade both operands for a larger immediate value. MIPS
I also defines the format of the operands. Operands of 8-bit (ASCII characters),
16-bit (Unicode characters, half word), 32-bit (integers, word), 64-bit (long integer,
double word) and IEEE 754 floating point in 32-bit (single precision) and 64-bit
(double precision) are allowed [1].

If the aforementioned register-file were the only storage available to a processor com-
puter programs would be very limited in size. However, as implied above, another
type of memory that is larger in size is usually available. The MIPS I ISA defines
how the processor interfaces with memory by specifying how the memory is address-
able. MIPS I specifies two ways of addressing memory; 1) byte-addressable or 2)
word-addressable. This means that the smallest addressable data unit is a byte (8
bits) while the largest is a word (4 bytes) as illustrated in Fig. 2.6. All memory
accesses must be aligned to either a byte or word access, otherwise the access is
unaligned and erroneous [1]. In the same figure to the left, the address of the cor-
responding data is shown. The address used to access the memory is generated by
the memory operation (I-type instruction) by adding the immediate value with the
register indicated by the rt field.
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Figure 2.6: MIPS I memory is byte addressable [1].

Furthermore, MIPS I supports five ways of generating memory addresses through
so called addressing modes; Register-only addressing, Base addressing, Immediate
addressing, PC-relative addressing and pseudo-direct addressing [2]. Register-only
addressing has already been described, all R-type instruction uses this addressing
mode. Base addressing is used by some I-type instructions, such as stores and loads,
and has likewise been described. Immediate addressing is similar to base addressing
but it does not use the register pointed to by the rt field (I-type). Program counter
(PC) relative addressing is used by conditional branch instructions (I-type) where if
a condition holds true, the PC is added to the immediate field to produce the final
address. Lastly, pseudo-direct addressing is used by J-type instructions where the
larger address field (see Fig. 2.5) is first concatenated with the four most significant
bits of the PC.

2.3.2 A MIPS I pipeline

An ISA does not define the implemented hardware besides register-file and address-
ing modes. A distinction is made between an architecture and a microarchitecture
where the latter includes implementation details. This means that two different pro-
cessor architectures can support the same ISA while being fundamentally different
at the microarchitecture level. In this section a MIPS I compliant microarchitecture
will be presented. The microarchitecture utilizes pipelining, which is a concept that
is used in most modern processors that offers higher performance at the expense of
design complexity.

The speed of a processor, and systems in general, depends on latency and throughput
of the data passing through it [2]. Low latency is preferred for systems that are re-
quired to be responsive and deliver results in a timely manner. In contrast, through-
put is beneficial for systems that prioritize computational performance over time-
liness. Latency and throughput are often contradictory in the sense that measures
that improve one degrade the other [2]. In general-purpose computing, through-
put has historically been more important than latency. Throughput can mainly be
improved by exploiting instruction-level parallelism (ILP), i.e., by executing mul-
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tiple instruction at the same time. Parallelism can be divided into spatial and
temporal parallelism [2]. Spatial parallelism entails executing more instructions si-
multaneously by utilizing increased computational resources. In contrast, temporal
parallelism implies dividing the existing computational resources into discrete steps
where each step is utilized by different instructions. Spatial parallelism has the
benefit of increasing throughput with little or no impact on latency [2]. However,
spatial parallelism requires additional hardware resources and results in larger and
more complex designs. Conversely, temporal parallelism sacrifices latency to in-
crease throughput while only requiring limited hardware additions to the design in
the form of a few registers and control logic.

In the context of microarchitecture temporal parallelism is more commonly referred
to as pipelining and the concept has been used in most processors for the last three
decades [32]. Pipelining is implemented by dividing a processor’s data path, i.e.,
computational resources, into stages separated by pipeline registers which limit the
logic paths of the design to that between two consecutive pipeline registers. In effect,
the design can meet stricter timing constraints and thus run at a significantly reduced
cycle time. The reduced cycle time allows the design to be clocked at a higher rate,
which causes a reduction of the execution time since the pipelined processor executes
(ideally) one instruction each cycle. The discrete stages allow the pipelined processor
to achieve temporal parallelism with several in-flight instructions.

The goal of a pipeline design is to evenly distribute the datapath’s logic between
the different pipeline stages. In a perfectly balanced n-stage pipeline the cycle
time of the design is roughly 1/n of the cycle time of a corresponding un-pipelined
designs [1]. However, in practice the stages in the pipeline are seldom balanced
perfectly resulting in some stages requiring more time to finish their execution. The
critical path, which imposes the lower bound on the design cycle time, is thus found
in these stages. Furthermore, pipelining also introduces some performance overhead.
A small part of this overhead is the delay introduced by the inserted pipeline reg-
isters but the by far more substantial overhead is caused by dependencies between
instructions moving down the pipeline [2]. These dependencies are called hazards
and will be discussed in greater detail later in this section. In short, hazards increase
the cycles per instruction (CPI) or instruction per cycle (IPC) which has a detrimen-
tal effect on performance. The overhead caused by the pipeline registers and hazards
increases the latency of each individual instruction in a pipelined processor [1].

An example of a pipeline implementing the MIPS ISA is shown in Fig 2.7. The
pipelined processor performs operations in five discrete stages separated by pipeline
registers as shown in the figure. The stages are instruction fetch (IF), instruction
decode (ID), execute (EX), memory access (MEM) and write-back (WB).

Fig 2.8 shows the same pipeline as Fig 2.7 but it also shows the control unit. The
control unit generates control signals in the decode stage and the signals are prop-
agated alongside the instruction in a control-path that in each stage reflect the
instruction’s individual needs.
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Figure 2.7: A MIPS I 5SP [2]

Figure 2.8: A MIPS I 5SP augmented with a control unit [2]

All instructions traverse the datapath one stage at a time and need five clock cycles
to fully traverse the pipeline. Fig 2.9 illustrates an example of an instruction flow.
The first instruction is fetched in the first cycle and stored in the subsequent pipeline
register. In cycle two a new instruction is fetched while the preceding instruction is
decoded, both of the instructions are stored in the respective pipeline register after
the stage they passed through. In the third and fourth cycle yet another instruction
is fetched while the later instructions proceed through the pipeline. In cycle five the
pipeline is utilized fully with an instruction being executed in all stages. The first
instruction has now cleared the pipeline and is written back (if R-type or load) to
the register-file. After cycle 5 the pipeline should ideally remain fully utilized until
the program is completed.
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Figure 2.9: Instruction sequence in a 5SP.

However, in reality pipelined processors do not achieve full utilization in most cases
because of the occurrence of pipeline hazards. Hazards are defined as dependencies
between consecutive instructions in the pipeline. Hazards are divided into three cat-
egories; data hazards introduced by arithmetic and load/store instructions, control
hazards introduced by flow-control instructions, e.g., branches, and lastly structural
hazards where in-flight instructions compete for pipeline resources. Data and con-
trol hazards will be explained in greater detail but structural hazards, which are
non-existent by design, will not be elaborated on.

Data hazards occur when a subsequent instruction needs data generated by a pre-
vious instruction. For instance an add instruction is followed by a subtraction that
uses the value produced by the addition. The addition instruction is unable to reach
the WB stage before the subtraction clears the ID stage and finishes the register-file
access thus entering the EX stage with incorrect operands. This is called a read
after write (RAW) hazard and if unaddressed would lead to program errors. A less
elegant solution would be to stop the IF and wait for the instruction causing the
dependency to write back its result to the register-file. While simple, stalling the
pipeline increases the CPI and incurs performance losses. A more elegant solution
is forwarding. It is possible for the addition to provide the correct value to the
subtraction by passing it to the subtraction as it enters the EX stage. The addition
forwards the data causing the dependency to the subtraction. The pipeline shown
in Fig 2.10 has been augmented with a forwarding unit that controls the added for-
warding paths between the EX, MEM and WB stages. The forwarding unit reads
the Rs and Rt registers of the instruction entering th execute stage and compares it
to the Rd of the instruction entering the MEM and WB stage if this instruction is
a R-type instruction and forwards data as needed.

Forwarding does not solve RAW hazards where a dependency exists between a load
and a subsequent instruction. Assume a load followed by an addition: The load
needs to propagate to the WB stage before the data is brought from memory. At
this point however, the addition has already passed the EX stage and is entering
the MEM stage. The only solution to this problem is to stop the addition from
propagating in the pipeline by stalling it. This allows the load to propagate to the
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Figure 2.10: The 5SP augmented with a hazard detection unit [2]

WB stage where the load is able to forward data to the addition waiting in the
ID stage. The necessary addition to the pipeline and hazard detection is shown in
Fig 2.11. The pipeline register between IF and ID stages now has an enable signal
that when asserted forces it to hold its contents. The pipeline register between
the ID and EX stage has an additional clear signal that sets the register contents
to zero which effectively stops random data from propagating down the pipeline
after the load instruction. Instead, the pipeline stages after the load are idle or
conceptually executing a no-operation (NOP) instruction. Additional inputs to the
hazard detection unit are added to allow it to detect hazards that require stalls.

Control hazards are caused by branch and jump instructions because they update
the PC. Assume that a branch instruction is fetched from instruction memory. The
pipeline is oblivious to the fact that the branch could redirect the IF to a different
portion in the program and erroneously continue to fetch instructions sequentially.
When the branch is resolved to be taken in the EX stage (see Fig 2.8) two instruc-
tions from the wrong execution path have already been fetched. The pipeline would
then need to be flushed (pipeline registers emptied). Alternatively the pipeline could
be stalled, i.e., instruction fetch halted. Both solutions would degrade performance
by increasing the CPI. A better solution is instead to use a delayed branch slot.
The delayed branch slot scheme relies on the compiler to move an instruction orig-
inally placed before the branch to immediately behind it. The compiler must be
able to ensure that no dependencies are created when moving the instruction [1].
This scheme works reasonably well in the pipeline in Fig 2.8, but would still require
one stall cycle for the branch to be resolved in time for the instruction after the
delayed branch slot. However, this stall cycle can be avoided by moving the branch
resolution to the ID stage as depicted in Fig 2.12 below.
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Figure 2.11: The 5SP with stall support [2]

A dedicated comparator has been added in the ID stage that operates immediately
on the fetched register contents. Likewise, the sign extension and address generation
have also been moved to the ID stage.

Figure 2.12: The 5SP with branch resolution in the ID stage [2]
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While the stall cycle is eliminated in the pipeline in Fig 2.12 the early branch
resolution introduces additional RAW hazards. The branch condition could possibly
depend on a preceding instruction about to enter the EX stage and the lack of
forwarding paths from the EX stage to the ID stage where the branch is about to
be resolved could result in erroneous branching. However, forwarding paths can be
added and the hazard-detection unit could be expanded to detect and handle this
forwarding as shown in Fig 2.13.

Figure 2.13: The 5SP with branch resolution in ID stage with added forwarding
paths [2]

In this section a simple MIPS I 5-stage pipeline (5SP) was outlined. More advanced
pipelines are in use today and these are usually deeper than five stages. However,
deeper pipelining increases the occurrence of data hazards, which necessitates a
more complex control path. Adding more stages further decreases the logic per
stage, but increases the number of dependencies at the same time and ultimately
deeper pipelines will be stalled more than their simpler counterparts. Furthermore,
because of the minute logic in each stage, the setup time and input to output delay
of the pipeline register become more prominent [2]. This causes diminishing returns
and a minimum in execution time can be found at a specific number of pipeline
stages. If energy is also considered, determining the number of stages becomes even
more daunting because power increases linearly with frequency (see Sec. 2.1.1) which
in turn grows higher with the number of pipeline stages. Optimum pipeline depth
is dependent on the architecture and the specific program being executed, there-
fore there is no way to determine a general optimal number of pipeline stages [2].
Historically, processor pipelines grew deep to exploit the available ILP in the run-
ning instruction stream. However, ILP is limited and exceedingly deep pipelines,
called super pipelines, only yielded marginally more performance while significantly
increasing the power dissipation. Approaching the power wall, a practical upper
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limit on power dissipation due to discontinued Dennard scaling, and the advent
of portable computing made energy efficiency an important design goal [33]. The
design space became more complex as performance and energy efficiency on most
occasions warrant different design choices.

2.3.2.1 Caching

As mentioned before, if the register-file were the only memory available to the pro-
cessor, program complexity would be limited. However, as implied above, more
memory is available and the ISA defines how the memory is interfaced with the
processor. More available memory allows for more complex and useful programs to
be created. However, this memory would need to remain fast even though its size is
increased to not slow down the processor. Such memory, if it existed, would be very
expensive. A better solution can be found by taking into account how a program
is executed. Only a limited part of the program is executed at any given time and
due to code constructs such as loops the same parts of the program are likely to be
executed in the near future. The insights of spatial and temporal locality can be
used to construct a memory hierarchy that delivers on both speed and capacity at
less expense [1].

A conceptual view of a memory hierarchy is shown in Fig. 2.14. In the figure,
access times of the structures and their size are shown. As can be seen, smaller
memory is generally faster and kept closer to the processor. The register-file, as
discussed, is a very small and fast structure integrated into the datapath. The
cache is likewise integrated into the pipeline and is larger than the register-file and
consequently slower, but it is still fast enough to be accessed without imposing
intolerable performance losses [1]. Fig. 2.14 depicts the cache as several layers where
the level-one (L1) cache is small and fast followed by a larger, but slower level-two
(L2) cache. Modern designs stretches further with larger lower-level caches located
off chip or possibly integrated onto the chip [1]. Succeeding the caches is a larger
and slower (two orders of magnitude (OOM)) main memory. Lastly, the largest and
slowest part of the memory hierarchy is disk memory. The memory hierarchy is a
very complex system and describing it in its entirety is beyond the scope of this
report. Instead, the report is limited to describing the highest part of the hierarchy,
i.e., the caches.

In load-store architectures, such as MIPS I described in Sec. 2.3.1, the processor
is only allowed to interact with the memory through dedicated load and store in-
structions [2]. Consequently, if the processor needs data that is not present in the
register-file, a load instruction in the program instruction flow must bring it into the
register-file. This load instruction is directed to the cache. If the data is found in
the cache, a hit is generated and the data is sent to the processor. However, because
caches are small, it is likely that the data is not present and a miss is generated.
The memory access then continues searching in lower levels in the hierarchy until
the data is found. To support overlapping instruction fetch and data access, the L1
cache is usually separated into separate caches, i.e., an level-one instruction cache
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Figure 2.14: A conceptual overview of a memory-hierarchy [1]

(L1IC) and an level-one data cache (L1DC), and this approach is referred to as the
Harvard cache model. Lower levels in the memory hierarchy are usually unified,
containing both data and instructions, according to the Princeton cache model [34].

Caches are arrayed structures where each row, usually referred to as a cache line, is
addressable using the address generated by a store or load instruction. [1] The sim-
plest way to structure a cache is called direct-mapped, where each memory address
maps to one specific line within the cache. As caches are small, memory addresses
will overlap and map to the same location in the cache. Thus, the processor needs to
be able to distinguish between the addresses. This is achieved by storing the higher-
order address bits, called a tag, alongside the data and comparing these with the
address used to access the cache [1]. The portion of the cache that stores the tags is
referred to as tag-array and the part that stores the data the data-array. If the tag
matches the address used to access the cache a hit is generated. Conversely, if the
tag does not match the address a miss is generated and the cache line is replaced
by the requested data brought in from lower levels in the memory hierarchy.

A cache that supports a more flexible address mapping is called n-set-associative
where the n denotes the flexibility of the mapping [1]. Assuming a four way associa-
tive cache the cache is effectively split into four sets, each able to store data mapped
to one cache address. At the extreme end of associativity is a full-associative cache
where every address maps freely into the cache. Associative caches require more
hardware because each set needs to be searched for the proper cache line and com-
pare the tag values with the requested address [1]. Furthermore, when an address
maps to a full set and generates a miss, a victim selection mechanism needs to be
in place. There are several techniques available but the least recently used (LRU)
or random selection schemes or variations thereof are usually enforced. Again, this
adds to the hardware overhead of using a set-associative cache.

Direct-mapped and associative caches both have their advantages and disadvantages.
Direct-mapped caches are simple in terms of hardware but generally suffer from lower
hit rate than their associative counterparts [1]. In contrast, the higher hit rate of
associative caches comes at an expense of more hardware and thus power dissipation
overhead. Which scheme to use depends on the application [1].
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Irrespective to what cache scheme that is used, store instructions pose problems
when it comes to memory coherency [1]. This problem is present in all layers in the
memory hierarchy, but is more acute in caches which are latency sensitive. A store
operation will update the cache content in the L1 cache and unless this is reflected
in lower levels, e.g., the L2 cache, the memory is said to be incoherent. Should the
L1 cache line be evicted, the line cannot be restored and data is irreversibly lost.
Thus memory coherency is required to ensure program correctness. The simplest
solution is to let stores propagate down the memory hierarchy [1]. While simple,
this solution increases the cache latency and ergo the execution time of the running
application. Another less penalizing scheme is the write-back scheme, which only
writes back the cache line when evicted to lower levels in the hierarchy. The write-
back approach requires extra bookkeeping hardware, called a dirty bit, to indicate
whether a write-back operation is necessary. Naturally variations and enhancements
of these approaches exist but they will not be discussed.

Because misses are expensive, the performance of a memory hierarchy is to a large
extent determined by the miss rate as shown in Eq. 2.7 [1].

Cache access = Ht +Mr ∗Mp (2.7)

The hit time (Ht) is the time paid for a successful cache access, the miss rate (Mr)
the fraction of misses to the total access count and lastly miss penalty (Mp) the
cost to access lower levels in the hierarchy. This formula can easily be extended
to include more layers in the hierarchy, as shown in Eq. 2.8 where a L2 cache is
included.

Cache access = HtL1 +MrL1 ∗ (HtL2 +MrL2 ∗MpL2...) (2.8)

Depending on the workload, an increased average access time can be very deteri-
orative to performance [1]. As such, great care must be taken when designing the
memory hierarchy.

2.4 Existing pipeline evaluation method

As stated in Sec. 1.1 this work aims at implementing a methodology that has been
used with success at Chalmers University of Technology. The methodology builds
on two components, an architectural simulator and pipeline and cache RTL. This
section will elaborate on these components, starting with the simulator in Sec. 2.4.1
followed by the RTL in Sec. 2.4.2 and lastly how they have previously been combined
in Sec. 2.4.3.
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2.4.1 Architectural simulator

SimpleScalar is an execution-driven functional simulator capturing both the behavior
and performance of the simulated architecture [12]. The fact that it is execution-
driven is essential as this captures the dynamic behavior caused by branches and
cache misses of the underlying architecture, which can have a dramatic impact on
performance and energy. Furthermore, because SimpleScalar captures both the func-
tionality and performance of the architecture, correct program behavior is ensured
and accurate resource usage and time measurements (execution time in clock cycles)
are possible [12]. It can be argued that the simulator is too old and limited to single
core designs in an age of multi-core processors. Other more modern tools, with equal
or a super-set of SimpleScalar’s features, such as McPAT or Gem5 are available but
were turned down in favor for SimpleScalar because SimpleScalar was sufficient for
the relatively simple 5SP design that it was used to model.

SimpleScalar provides several different simulators of varying detail and speed [12].
The simplest and fastest simulator, called sim-fast, is a purely functional simulator
that does not account for time (cycles). In contrast, the most complex simulator,
the sim-outorder, supports out-of-order issue, speculative execution, multiple issue
while also accounting for time.

The structure of SimpleScalar is shown in Fig. 2.15. The bpred block defines the
branch predictor behavior, the cache block defines cache behavior (cache size, asso-
ciativity and replacement technique), the regs block defines register related behavior
and the memory block the memory related behavior. The simulator core defines the
datapath’s architecture and it is by far the most substantial block.

Figure 2.15: Modular structure of SimpleScalar

The simulators support configuration through configuration files that are provided
to the simulator of choice when calling it from the command line [12]. The config-
uration files allow features such as branch resolution, cache parameters, speculative
execution, decode width, issue width and number of functional units to be tweaked
without the need to rebuild the simulator.

The simulator used in the methodology is based on a modified version of the sim-
outorder simulator. The modifications were implemented to reduce the out-of-order
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pipeline modeled by the simulator to an in-order pipeline similar to the RTL pipeline
described in Sec. 2.4.2 below. The base simulator was then augmented with special-
ized performance counters that tracked usage of, for the project, relevant pipeline
resources. Because of frequent use in various projects the base simulator had been
modified, sometimes extensively, to fit the needs of each new project.

2.4.2 RTL design and verification

The RTL used in the methodology captures 5SP MIPS I pipeline design developed
at Chalmers. The 5SP has been enhanced with one cycle access latency L1IC and
L1DC caches also developed at Chalmers. This setup has since been used in several
well-received publications [4][35].

The implemented microarchitecture features some 50 instructions including different
branches, logic and memory instructions and a register-file with re general-purpose
32-bit registers. This microarchitecture does not include a floating-point unit to pro-
vide floating-point support, which was motivated by the targeted embedded market
where floating-point operations usually are replaced by fixed-point calculations.

An overview of the microarchitecture is shown in Fig. 2.16 and it is similar to the
pipelines discussed in Sec. 2.3.2. The instructions are processed in five stages; IF,
ID, EX, MEM, and WB. In the IF stage, instructions are read from the instruction
cache from an address pointed to by the PC register, which is updated to point
to consecutive instructions or to branch target addresses. During the ID stage the
register-file is accessed and control signals for later stages are set based on the
instruction type. Branch and jump instructions are solved in the ID stage, but by
the time they are resolved the next instruction has already been fetched. A delayed
branch slot is utilized to solve this problem and is accounted for by the compiler
(see Sec. 2.3.2). In the EX stage arithmetic and logic operations are executed in
an arithmetic logic unit (ALU). A dedicated two-stage multiplication unit is also
available, spanning the EX and MEM stages. In the memory access stage, loads
and stores access the L1DC. Finally, in the WB stage, results are written back
to the register-file. In the RTL code the MEM and WB stages were combined to
simplify the implementation. However, the combined stage logically functions as
two separate stages.

A hazard-detection unit, which physically resides in the ID stage but is shown sep-
arately in Fig. 2.16, detects any potential hazards and stops the pipeline by stalling
the IF stage. In this manner, NOPs are inserted into the pipeline. The cache also
produces a stall signal, which is asserted upon a cache miss. In contrast to the
hazard stalls, cache misses stall the entire pipeline in Fig. 2.16 where the arrows
pointing to the pipeline registers denote the stall signals. The microarchitecture
does not support exceptions, but these are by design rare events. Exceptions are
necessary to support I/O and recover from errors (Invalid Opcode etc.) and system
calls.
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Figure 2.16: Microarchitectural overview of the 5SP.

Figure 2.17: Memory hierarchy of the 5SP.

The design includes L1IC and L1DC caches. These caches are separate from each
other according to the Harvard architecture to avoid structural hazards as explained
in Sec. 2.3.2.1. No L2 cache is included in the design, instead an ideal memory mod-
ule serves as a replacement for the lower levels of the memory hierarchy as shown in
Fig. 2.17. The data cache is available for read and write accesses, while the instruc-
tion cache only serves reads. However, the instruction cache still needs to access
external memory on cache fills and in the case of a cache miss. The two caches share
one memory bus to the external memory and a memory controller (arbiter) orches-
trates which one of the caches that is allowed to access the external memory. Both
caches were designed to be flexible and allow for any size the user desires. However,
because the RTL has been used in several projects, which sometimes required ex-
tensive modifications to the RTL code much of this flexibility was lost. Previously
the associativity could be set to zero (effectively direct-mapped cache), two-way
or four-way with replacement algorithms LRU or pseudo random. The cache also
supported banking whereby cache lines are split across separate memory macros.

2.4.2.1 Design and verification flow

The existing evaluation method loosely defines a RTL design and verification flow
which has been used to verify and extract power from the pipeline RTL. The RTL
design was first brought through a functional verification as described in Sec. 2.2
followed by a cell-based synthesis and then PnR. From the place and routed netlist,
power estimates of the design were obtained. As the power estimates are obtained
from a complete pipeline design that has been synthesized and placed and routed to
meet a set timing constraint, they capture the synergy between the different com-
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ponents in the pipeline. The synergy is due to the fact that logic paths stretches
over several components, i.e., the speed of one component imposes speed require-
ments on subsequent components. These logic paths are then adapted to meet the
imposed timing constraint, which is achieved through transistor sizing. However,
the evaluation method focused solely on the caches of the RTL design which allowed
for probabilistic testing. The probabilistic approach was used to obtain power es-
timates of peripheral units of the cache such as DTLB, arbiter and replacement
logic. The power of the actual static random access memory (SRAM) memory cuts
was obtained in the library files used during synthesis. The existing evaluation
methodology strikes a balance between quick prototyping and estimation accuracy
but neglects scalability. Changes to the cache would require a complete reiteration
of the design flow, with a lot of effort spent on PnR and power estimates.

2.4.3 Ad-hoc combination of RTL and simulator

The RTL and SimpleScalar components of the methodology are then combined in a
way specific to each project. Performance counters were introduced for each project
and power estimates were extracted from RTL structures that were represented by
these performance counters. An example of a prior application is the STA (Spec-
ulative Tag Access) project where power estimates were extracted from the caches
through probabilistic techniques and the simulator was augmented with performance
counters that monitored cache access patterns [4]. Similar approaches were used in
several other publications with the main exception being the introduction of addi-
tional RTL structures and different performance counters [35][36] [37]. However, the
new RTL was not integrated into the pipeline but instead analyzed separately.
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A unified evaluation framework

The goal of this work is to develop an energy estimation framework for pipelines
that captures the ad-hoc methodology outlined in Sec. 2.4. As discussed the pipeline
register-transfer level (RTL) code and SimpleScalar simulator constitute the two
major components of the framework. The methodology was established previous
to this work, albeit in an ad-hoc manner, so this section will instead elaborate
on the methods that allow the two components to be integrated into one coherent
framework.

3.1 Framework workflow

The conceptual workflow of the framework is shown in Fig 3.1 where the RTL and
architecture simulator constitute the two branches of the flow. The RTL branch
consists of an RTL verification flow similar to the one described in Sec. 2.4.2.1,
which will be implemented to verify the RTL and later netlists. Slight alterations to
this approach are necessary for it to be scalable and applicable to a range of designs.
For instance the power estimation previously based on probabilistic methods is sub-
stituted for a use-case based method, which allows the whole design to be studied
on a pipeline unit basis. Whether the power estimates are averaged or time-based
is similarly a matter of scalability. Time-based analysis produces considerably more
data than averaged but allows for detailed analysis of the power dissipation. In
contrast averaged analysis is easier to integrate into a scalable framework since less
data are produced. However, as the power is averaged over a unit of time, the power
dissipation for units with low utilization is amortized over the estimation interval.
The issue can be addressed by introducing resource counters in the testbenches used
in the verification flow and scaling the final average power according to the counters
as shown in Eq. 3.1.

Pscaled = Punscaled
Utilization

(3.1)

where Utilization is the total percentage of the total execution time, in either sec-
onds or cycles, when the unit is used. Furthermore, doing the power estimates after
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Architecture
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Figure 3.1: The methodology embodied in the CREEP framework.

the place and route (PnR) creates an issue of scalability as all designs are different
and would need to be placed and routed manually. Instead, one design will be placed
and routed and serve as an indication for how much the power increases post PnR.

The simulator branch consists of SimpleScalar as described in Sec. 2.4.1. The sim-
ulator is used to acquire accurate per cycle resource usage using workloads that
are impractical (impossible) to use during RTL power estimation due to their com-
plexity and size. These resource usage statistics are then combined with the power
estimates obtained from the RTL.

There are two issues that arise in the combination of the power estimates and sim-
ulator statistics. Firstly, the mismatch between resource counter and RTL power
estimates must be bridged and secondly, the pipeline power must be mapped to re-
source counters in a manner that does not systematically over or underestimates the
energy. The first issue stems from the power reports, e.g., unit conversions, group-
ing into different sources of power dissipation, i.e., leakage and switching power and
whether the power reports are time-based or averaged. Unit conversions are trivial
and will be done to obtain energy per cycle in order to combine the power estimates
with resource counters. The power grouping should likewise pose no issues but will
require some consideration of scalability as dealing with different types of power
dissipation sources will complicate the framework workflow. The second issue is
brought about by the different structure and granularity of the architectural simu-
lator and the RTL code. The resource mapping will be done by carefully grouping
the RTL pipeline units and introducing selective performance counters in the archi-
tectural simulator where it is necessary. The granularity of the resource mapping
will be done incrementally from coarse to finer.
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The combination of said energy estimates and performance counters will be auto-
mated in order for the framework to be able to reproduce results consistently, which
is stated as a goal in Sec. 1.1. Furthermore, to meet the configurability goal the user
shall be able to configure the RTL and simulator components. Settings related to
the cache and possibly to the pipeline will be exposed to the user, but the user will
not make any changes to the components themselves. Instead, this process will also
be automated thus ensuring that the components are combined consistently. Incon-
sistencies between the two components would needlessly affect the energy estimates
negatively.

3.2 Verification

Verification of the framework will be done at the component level. For the RTL
the functional verification is inherent to the established RTL verification and power
estimation flow. However, the power estimates themselves need to be verified. As
the RTL has been used in previous projects, estimates for parts of the design, more
specifically, the caches are available. These estimates will be used to do a rudimen-
tary evaluation of the power estimates.

For the simulator the modifications as well as the added resource counters need
to be verified. The modifications can be verified by comparing the default per-
formance counters to the counters produced by the modified simulator. Several
counters should indicate in-order, non-speculative and single-issue behavior. The
added resource counters can similarly be validated by comparing them to default
counters produced by SimpleScalar.
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4
Implementation

This chapter will outline the implementation of Chalmers RTL-based energy eval-
uation framework for pipelines (CREEP), starting with the implementation of the
register-transfer level (RTL) flow in Sec. 4.1.1 followed by the simulator in Sec. 4.1.2.
How these two are integrated into the framework workflow is then discussed in
Sec. 4.2. Lastly, the work related to automating the framework will be outlined in
Sec. 4.3.

4.1 Implementation of framework components

The RTL of the framework describes a 5-stage pipeline (5SP) that supports the
integer subset of the 32-bit MIPS I instruction set architecture (ISA) (see Sec. 2.4.2).
However, in order for the RTL to fulfill the framework’s needs several modifications of
it was necessary. Furthermore, an integrated circuit (IC) design and verification flow
with emphasis on scalability was implemented in order to obtain power estimates
from a wide range of designs. The SimpleScalar simulator was similarly modified to
fit into the framework. For clarity this section is split up into three parts: The
first part, Sec. 4.1.1, discusses the RTL modifications and establishment of the
design and verification flow. The second part, Sec. 4.1.2, elaborates on the simulator
modifications. The last part, Sec 4.1.3, deals with the framework’s configurability.

4.1.1 RTL modifications

As previously mentioned in Sec. 2.4.2 the caches were originally designed to have
adjustable dimensions, associativity and replacement techniques. However, the
pipeline design was used in other projects prior to the framework development dur-
ing which the level-one instruction cache (L1IC) and level-one data cache (L1DC)
were fixed to a configuration with 16kB 4-way associativity and LRU as replacement
algorithm. To meet the goal of configurability stated in Sec. 1.1, it was decided that
the caches should be restored to their original flexible condition.

The main limitation of the cache components in their original initial condition was
set by the use of 1024x32-bit static random access memory (SRAM) memories for the
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data-arrays and 128x32-bit SRAM memories for the tag-arrays. This corresponded
to 128 sets with a line size of 8 instructions for the L1IC or 8 words for the L1DC.
Furthermore, the setup was locked to a 4-way configuration producing a cache of
16kB in total (4 × 1024 × 32). The tag arrays were optimized to fit four 21-bit
tags (tag + dirty bit) into three SRAM memories rather than the conventional four
memories (one per way). The rationale behind this was that three tag arrays were
sufficient to hold four tags (21 × 4 = 84 < 96). The code was modified to instead
map the tags into four tag-arrays. This change allowed the associativity to be set
within the original bounds of direct-mapped to 4-way associative. However, this
caused an increase in the bit overhead in the tag-arrays as only 21 of 32 bits were
used. This was deemed unavoidable since SRAM memory matching the tag width
of 21-bits was unavoidable.

Additional SRAM memories of different sizes were introduced to allow for additional
cache sizes of 8kB and 32kB. Furthermore, banking was reintroduced which can be
used to divide the cache lines between several SRAM memories. In addition to the
LRU replacement algorithm, the pseudo-random replacement algorithm was also
reintroduced.

Because of licensing issues no SRAM memories can be shipped with the frame-
work. To make the RTL available without SRAMs the caches were augmented with
the ability to use logic-based memory (flip-flops). Compared to SRAM logic-based
memory produces larger (area) and more power dissipating caches.

Other ways of allowing more flexibility in the pipeline design were considered, but
the remaining options were related to the datapath. Changes to the datapath,
such as allowing wider-issue width, speculative execution, different branch resolu-
tion techniques would all essentially warrant a complete redesign of all or some
pipeline stages. Furthermore, allowing such flexibility was outside the scope of the
framework, which targets simpler embedded processors.

4.1.1.1 Design verification flow

A verification flow built on the methods described in Sec. 2.4.2.1 was established.
Cadence IES was the electronic design automation (EDA) tool of choice for hard-
ware description language (HDL) simulations. More specifically NCVHDL was used
to compile the RTL code, NCELAB was used to elaborate the design and NCSIM
was used for simulations. To verify the design, a testbench was constructed around
the pipeline design. As the design is complex test vectors were chosen as stimuli for
the design. More specifically, the vectors were directed to test the design’s imple-
mentation of the MIPS I ISA through instruction set simulations using executables
compiled for the MIPS I ISA. However, RTL simulations of large designs are time
consuming but can be facilitated through the use of small and effective workloads
with ample test coverage. A good match was found in the EEMBC benchmark suite,
which is a benchmark suite that targets embedded processors. The benchmarks in
the suite are light weight and utilizes fixed point arithmetics. The benchmarks used
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in the framework are listed below:

• Autocorrelation

• Convolutional Encoder

• FFT/IFFT

• Viterbi Decoder

• RGBCMY01 (Consumer RGB to CMYK)

The next stage in the verification flow is synthesis. The EDA tool of choice for
synthesis was Synopsys Design Compiler (DC), which was chosen because it is the
de-facto standard tool used by the community. The synthesis was done using the
compile-ultra command and cells from the 65nm low power (LP) low threshold
worst-case corner library (1.1V 125◦) provided by ST Microelectronics. A corre-
sponding library was used for the SRAM memories in the caches. These libraries
represent the worst-case process corner and use scenario (extreme temperature and
low voltage) and were used because of the strict performance requirements placed
on ICs. Additionally, automatic clock-gating was enabled in an effort to reduce the
design’s dynamic power dissipation [38]. Clock-gating is widely used in the industry
because of its potentially large energy savings at little extra design effort. Most
EDAs specializing in synthesis support it, DC included. The synthesis was carried
out for increasingly strict timing constraints to find the maximum achievable clock
frequency of the design and the design was established to meet a timing constraint
of 2.5ns, producing a netlist running at 400 Mhz. The netlist verification was done
using the same testbench developed for RTL verification.

The final stage is place and route (PnR) for which Cadence Encounter was used.
As described in Sec. 2.4.2.1 PnR produces yet another netlist, but this netlist has
now been subjected to a number of structural changes to facilitate physical imple-
mentation. PnR was necessary to include in the verification flow because of two
reasons. Firstly, the utilized SRAM memories are already placed and routed and
thus dissipates significantly more power than the rest of the design unless this is also
placed and routed. Secondly, a placed and routed design allows for more accurate
power estimations than a post-synthesis design (see Sec. 2.2). However, the PnR
stage is unique to each design, which conflicted with the desired scalability of the
verification flow. A more scalable approach was implemented that estimated the
PnR impact on power dissipation by comparing the power of one placed and routed
netlist to a post-synthesis netlist and from this comparison a scaling factor could
be deduced. The rationale behind this approach was that the pipeline was not sub-
jected to any modifications (see Sec. 4.1.1) and remains relatively unaffected by the
configuration of the caches.
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4.1.1.2 Design power estimations

It was not possible to use the power-estimation method used in the ad-hoc method-
ology in order to obtain power estimates of the design (see Sec. 2.4.2.1). The main
reason was the larger scope of the power estimates, which previously were limited
to the L1DC, but now included the entire pipeline. As such, using a probabilistic
approach was unfeasible. Instead, the power dissipation of the design was estimated
by using use-case statistical simulations whereby switching activities for the nodes
in the design were obtained. Two different statistical methods were considered. The
first considered method was switching activity interchange format (SAIF) genera-
tion. During SAIF generation the average switching activities of the nodes in the
design are recorded throughout simulation, which allows an average power estimate
of the design to be produced. The second was value change dump (VCD) generation
which tracks the nodes’ switching on a per-cycle basis which allows for time-based
power analysis. The VCD based method allows for detailed analysis of the power
dissipation, e.g., maximum power dissipation analysis, but the usage of VCD is com-
putationally complex and hence less scalable than the SAIF-based method. Thus,
VCD generation was dropped in favor for SAIF generation. Cadence NCSIM was
used to simulate the netlist using the aforementioned RTL testbench and the previ-
ously listed EEMBC benchmarks as stimuli. A total of five of five SAIF-generations
were done (one per EEMBC benchmark).

Synopsys PrimeTime (PT) was the EDA tool used to generate the final power es-
timates [39]. PT was first used to remap the gate netlist to a different cell library
from the one used during synthesis. In contrast to the synthesis, which was done
with the worst-case high-temperature corner library, the nominal-nominal variation
(1.2V NOM 25◦) was used to generate the power reports. The reason for using
the nominal corner and nominal voltage and temperature library was to provide
nominal power estimates for the pipeline design and thus allow different pipeline
configurations to be compared under normal circumstances. The power estimation
was done by reading the netlist and each of the aforementioned SAIF files. Thus,
a total of five power reports were produced and averaged to create the final design
power estimate. Hierarchal reports were produced for the design and the granular-
ity of these reports was tweaked to reveal major pipeline units within each pipeline
stage. However, the granularity of these reports was later tweaked to better suit
the performance counters generated by the simulator component (Sec. 4.1.2). PT
reported the power divided into three different categories: 1) switching power, 2)
internal power and 3) leakage power. To simplify the workflow the sum of all these
powers was used for each reported pipeline unit.

As discussed in Sec. 3.1, average power reports amortize the power of certain units
over the power estimation interval. Units such as the arithmetic logic unit (ALU),
multiplier and L1DC are associated with enable signals that prompts them to acti-
vate, i.e., start switching and dissipating power. Unless the power of these units are
scaled according to their usage, the framework would greatly underestimate their
contribution to the final energy results. The solution to this problem, which was dis-
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cussed in Sec. 3.1, required information of how many cycles the affected units were
used during the power estimation interval. The usage information was obtained by
augmenting the RTL testbench used during verification and power estimation with
counters that were incremented when the enable signal for these structures was as-
serted. These counters were then divided by the total number of cycles also tracked
by the testbench. The scaling factor was then computed as shown in Eq. 4.1.

Utilization = active_cycles
total_cycles (4.1)

The power dissipation reported by PT was then divided by this utilization factor,
as shown in Eq. 4.2 to obtain the final power values used in the framework.

Pscaled = Punscaled
Utilization

(4.2)

As discussed briefly in Sec. 3.1 and Sec. 4.1.1.1 a scalable approach to power esti-
mation of a placed and routed design was necessary for the scalability goal as stated
in Sec. 1.1. An attempt was made at running the post-PnR netlist through the im-
plemented verification flow but this was met with technical issues that proved hard
to solve. Instead a probabilistic approach was adopted, which limited the scope
at which the design could be analyzed. Since the SRAM memories comes placed
and routed, the PnR scaling should only be applied to combinatorial pipeline units.
Hence, the ALU was chosen as a representative combinatorial unit and switching
activities were assigned to the ALU input. The power dissipation was then extracted
from a synthesized and a post-PnR netlist. Then the PnR factor was derived from
the fraction of the PnR power to the power based on the synthesized design as shown
in Eq. 4.3. The PnR-scaling factor was then applied to all combinatorial units in
the pipeline.

PnRscaling = ALUsynth
ALUPnR

(4.3)

A similar estimation was done for the clock-tree power, which is small in a synthe-
sised netlist. The limited clock power dissipation accounted for in a post-synthesis
design is related to the clock pins on registers in the design. Hence, the major-
ity of the difference in clock power dissipation between a synthesized netlist and a
post-PnR netlist is due to the added clock-tree.
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4.1.2 SimpleScalar

There was no reason to replace SimpleScalar as the architectural simulator used in
CREEP. As discussed in Sec 2.4.1 SimpleScalar consists of many different simulators,
each with a different level of abstraction, but the only simulator that allowed for
accurate resource tracking was the sim-outorder simulator. A modified version of this
simulator was used previously in the ad-hoc methodology. However, this version of
the simulator had repeatedly been modified to include project-specific functionality,
which inhibited its direct use in the framework. It was decided that it was a better
to start with an unmodified version of the simulator rather than to spend time on
restoring the ad-hoc simulator. Consequently, a default SimpleScalar version was
obtained and modified to allow it to be used used in the framework.

The simulator modifications were aimed at reducing the modeled pipeline to a state
that closely models the provided RTL pipeline. Hence, the out-of-order execution
capabilities were removed reducing the simulated pipeline to a strictly in-order 5SP.
This was achieved through source code modifications. These modifications included
moving store operations from the commit stage to the issue stage (for example
loads) whereby the stores were locked to non-speculative in-order execution. Other
features such as multi-issue, speculative execution (for instructions besides stores)
and branch prediction were configured through configuration files. Because the RTL
code does not support these microarchitectural features they fall outside the features
supported by the framework. Thus, the configuration file was changed to limit the
issue width to one and disable speculative execution. However, an exception was
made for the issue bandwidth which was set to two. This was necessary as load and
store instructions are split up into a separate address calculation and read/write
instruction. This will not cause any issues for the other instructions as only one
instruction at a time leaves the preceding dispatch stage. The branch prediction
was configured to perfect (always correct), which resembles the delayed branch slot
technique used in the RTL pipeline. A common ground between the simulator and
RTL was found in the caches. The SimpleScalar caches are configured through the
aforementioned configuration file and support a superset of the settings available in
the RTL code. The caches were configured to mirror the caches in the RTL code.
All relevant settings for the framework are summarized in Table 4.1.

One major difference between the provided 5SP and the corresponding SimpleScalar
implementation, that cannot be solved through configuration files nor reasonable
source code modifications, was that the latter supported a larger set of instructions,
e.g., floating point instructions and system-calls. The impact of this issue was limited
by choosing simulator benchmarks that included few of the unsupported instructions
and features. Furthermore, the unsupported instructions could be ignored when
introducing the resource counters and thus not allow them to affect the framework
result.
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Table 4.1: Summary of relevant SimpleScalar configurable settings

Setting Description Value
-fetch:ifqsize Instruction fetch que size, set to 1 to model a single-issue pipeline. 1

-decode:width Decode width, set to 1
to model single-issue pipeline 1

-issue:width
Issue width, set to 2 to model
single-issue and allow loads/stores to
be issued in one cycle.

2

-commit:width Commit width, set to 1 to modle a single-issue
processor. 1

-issue:inorder Pipeline is set to issue in-order true
-issue:wrongpath Pipeline is set to issue non-speculatively false
-bpred Branch predictor component set to perfect to emulate delayed branch slot perfect
-cache:il1 / -cache:dl1 L1 Cache settings, to be coordinated with RTL -RTL
-cache:il1lat / -cache:dl1lat L1 Cache access latency 1
-cache:il2lat /-cache:dl2lat L2 Cache access latency 12

Several workloads were considered for the framework. One candidate was provided
by SPEC, a non-profit organization with the philosophy to ensure that the market-
place has a fair and useful set of metrics to differentiate systems. SPEC provides
several benchmark suites for different applications [40]. One of the suites, SPEC
CPU2006, is specifically designed for microprocessors. SPEC CPU2006 is in turn
composed of two different benchmark suites; CFP2006 and CINT2006. Sadly, SPEC
is not open source which effectively inhibits it from being included in the framework.
An other candidate was MiBench, which in contrast to CPU2006, is open source and
fills roughly the same niche as SPEC but is leaning more towards embedded pro-
cessors. EEMBC consists of a set of 35 embedded applications which are divided
into six suites targeting a specific area in the embedded market [41]. MiBench was
chosen as the simulator workload for the framework mainly because it was open
source that would allow it to be shipped with the framework. However, not all
35 benchmarks in the suite are used because of incompatibility with the simulator.
Instead, a subset of 20 benchmarks were selected from the automotive, consumer,
network, office and security categories. The categories and pertaining benchmarks
are shown in Table 4.2.

Table 4.2: MiBench benchmarks
Category Applications
Automotive Basicmath, Bitcount, Qsort, Susan
Consumer JPEG, Lame, TIFF
Network Dijkstra, Patricia
Office Ispell, Rsynth, Stringsearch
Security Blowfish, Rijndael, SHA, PGP
Telecomm ADPCM, CRC32, FFT, GSM

4.1.3 Configurability

One of the goals with the framework was to allow for limited configurability (see
Sec. 1.1). However, this configurability must be found in both the RTL and sim-
ulator as the simulator captures the behavior of the RTL and vice versa. During
the implementation it became clear that the RTL placed the most limitations on
configurability. Essentially only the caches in the RTL supported configurability,
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the pipeline was not to be configured as discussed in Sec. 4.1.1. Conversely, the
simulator supported extensive configuration of both datapath and caches through
the aforementioned configuration files. Thus, the configuration of the framework
was limited to the L1IC and L1DC. The RTL pipeline does not include a level-two
(L2) cache, hence the framework cannot estimate the power dissipation of this cache.
However, SimpleScalar could still be used to simulate the L2 cache’s impact on per-
formance and indirect impact on the energy estimates. Thus, settings related to
the L2 cache were also included amongst the configurable settings. The supported
settings are presented below:

• L1 Data cache settings:

– Associativity: 1-4

– Replacement policy: LRU/Pseudo random

– Number of sets: 64, 128, 256, 512

– Line size (words): 8

– Bank size (words): 4, 8

• L2 Data cache latency: 12

• L1 Instruction cache settings:

– Associativity: 1-4

– Replacement policy: LRU/Pseudo random

– Number of sets: 64, 128, 256, 512

– Line size (instructions): 8

– Bank size (instructions): 4, 8

• L2 Instruction cache latency: 12

These settings were deemed sufficient for the framework as it targets embedded
processors which usually have small capacity caches.

4.2 Combining RTL and SimpleScalar

With the core components of the framework implemented they needed to be com-
bined to form one complete workflow. As discussed in Ch. 3 this creates unit mis-
matches and introduces the issue of resource mapping. These problems are the topic
of this section.

It was noted that there was a mismatch between the power reports produced by
PT and the usage scenarios captured by SimpleScalar. PT reported the power in
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the SI unit for power, i.e., J/s rather than Joules per cycle (J/c), which is required
for the power estimates to be combined with the resource counters reported by
SimpleScalar. A conversion from J/s to J/c was necessary, which was trivial as the
clock frequency was set during synthesis. The conversion is shown in Eq. 4.4 where
J is Joules, c refers to clock-cycle, s seconds and f the clock frequency.

J/c = J/s

f
(4.4)

The most pressing issue when combining the RTL pipeline design with SimpleScalar
was combining the power obtained from the pipeline with the simulator. In both
components, matching resources were to be identified. Moreover, the scale at which
this would be done would have a great effect on the final energy estimates out-
putted by the framework. The goal was set optimistically with the aim of achieving
estimates close to the PnR level as stated in Sec. 1.1.

The main limitation on how fine-grained the resource mapping could be done was
that the sim-outorder simulator had a high level of abstraction capturing the discrete
pipeline stages and major events coupled to each of these such as ALU, multiplier
and cache usage. In contrast, the RTL power reports can be generated down to the
transistor level. It was decided that a simple approach was preferred and if necessary
the matching was to be refined. The initial resource mapping was done on a pipeline
stage basis. However, exceptions were made for the ALU and multiplier that were
mapped directly to their counterpart in the RTL code. The clock network power
was combined with a counter that tracked the total number of simulated processor
cycles.

It was quickly discovered that this initial resource mapping was too coarse grained
as some pipeline stages, such as MEM/WB (the combined memory access (MEM)
and write-back (WB) stage) and execute (EX) were unrealistically penalized. In the
MEM/WB case the resource counter was increased every cycle while the load store
unit (LSU) contained in the stage was only used for load and store instructions. For
the EX stage the ALU was used for address calculation related to loads and stores
whereas in the RTL the address generation unit (AGU), a smaller and less power
dissipating unit, was used for this purpose. These issues were rectified by exclud-
ing these units power from the pipeline stage’s power and introducing specialized
counters which were selectively increased whenever a load/store instruction were en-
countered. To this end, two new counters, one for the LSU in the MEM/WB stage
AGU in the EX stage were added. Another issue with the initial resource mapping
was that important information used during design space exploration was drowned
by other resources. Examples of this were the hazard detection logic, branch logic
and decode logic which were overshadowed in terms of power by the register-file
also located the instruction decode (ID) stage. The solution was to allocate sepa-
rate resource counters for these units and combine them with corresponding power
estimates from the RTL code.

41



4. Implementation

The cache resource counters were also a cause for concern. The caches are by far
the largest and most power consuming structures in the design. As such the energy
related to cache accesses was substantially larger than for the other pipeline units.
This was especially the case for the L1IC which dominated the initial energy results
of the framework. Instruction caches have historically been very energy consuming
and were the focus of many energy saving techniques. Most modern instruction
caches incorporate such techniques. As such, it was decided to include one energy
optimizing technique called way-prediction [42] in order to bring the L1IC energy in
line with more contemporary designs. Way-prediction was emulated in SimpleScalar,
which was achieved by introducing code which detected whenever a successful way-
prediction was possible and a counter was incremented whenever this occurred and
energy could be saved.

4.3 Framework automation

One of the goals with the framework was for it to be approachable. This was achieved
by automating the framework and present the configurable parameters, as well as a
few options on how to run the framework workflow, to the user.

The framework RTL and simulator components create an intimidating amount of
output data that need to be combined as discussed in Sec. 4.2. Leaving this to the
user would only reduce the usability of the framework and deter users from using
it. The issue was addressed by creating a script that when invoked runs the entire
workflow. The scripting language chosen to implement the script was Perl because
it excels at text handling and file I/O which was the major requirements for the
script.

To ensure that the architectural parameters are the same for the RTL and simulator
all parameters, save the configurable settings, were hidden from the user. In addi-
tional to the configurations listed in Sec. 4.1.3, a setting used to enable or disable the
emulated way-prediction in the L1IC was added (see Sec. 4.2). Configuration files,
called CREEP-configurations, were created which lists the configurable options. As
users would want to create several configuration files the main script was designed
to use one such configuration as argument when calling the script as shown below:

# ./CREEP.pl -[CREEP_configuration]

The parameters specified in the configuration file would be parsed by the main
Perl script, applied to the RTL code, the simulator configuration and all auxil-
iary scripts surrounding these components such as RTL testbenches, DC synthesis
script, SAIF-generation scripts and PT-scripts. The main script would then start
both components and use the outputs, power estimates from the RTL and resource
usage from the simulator.
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The RTL output would then be scaled by the main script according to the scal-
ing discussed in Sec. 4.1.1.2 and then combine the partial results according to the
resource mapping discussed in Sec. 4.2 to produce the final energy estimates.

The script was designed to allow the user three options; 1) run the entire framework,
i.e., RTL and simulator components, 2) run the RTL component alone and 3) run
the simulator separately. The options were designed to be specified when invoking
the script from a terminal as such:

# ./CREEP.pl -[flag] -[CREEP_configuration]

Allowing separate components to be used would allow users that, because of licensing
issues, are unable to use the RTL component to still use the framework. An issue
here is that simulator statistics alone are not enough to produce the final energy
results. This issue was addressed by saving the partial results generated from the
RTL and simulation components for later use. The main script would then be able
to load these partial results when running one of the components. It was decided to
name the partial results after the provided CREEP-configuration file to allow the
aforementioned command invocation to remain unaltered and the interaction with
the main script simple.
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5
Results and discussion

In this chapter, the finalized Chalmers RTL-based energy evaluation framework
for pipelines (CREEP) is presented and discussed. A user-centric overview of the
framework is presented in Sec. 5.1, which shows the final framework as most users
will come into contact with it. The framework is then demonstrated in Sec. 5.2
by showing the framework results of a selection of configurations supported by the
framework. The verification of the framework is then presented and discussed in
Sec. 5.3 and lastly future improvements to the framework are discussed in Sec. 5.4.

5.1 User-centric overview

Fig. 5.1 provides an overview of the final framework package. The benchmark folder
contains the EEMBC benchmarks used for register-transfer level (RTL) verifica-
tion and switching activity interchange format (SAIF)-generation. The RTL folder
contains all hardware description language (HDL) files for the pipeline, the caches
and multiplier. The documentation folder contains the documentation of the frame-
work. The scripts folder contains all script files used in the framework’s workflow,
e.g., synthesis and power estimation scripts. More importantly this folder contains
the main perl script, CREEP.pl, which orchestrates the entire framework. The sim
folder is used to store simulation-related files generated during RTL verification
and the SAIF-files created during SAIF-generation. The SimpleScalar folder con-
tains the SimpleScalar framework and the modified simulator source code used in
the framework. The MiBench folder contains the provided open-source benchmark
suite MiBench which is used as stimuli to generate the final performance and en-
ergy values. The synthesis folder contains the files produced during synthesis, most
notably the design netlist. The configurations folder contains CREEP-configuration
files, either shipped with the framework or user created. The configurations_sim
and energy_configurations folders contain the partial results generated by the sim-
ulator and RTL component respectively. Lastly, the final results outputted by the
framework are found in the results folder.

The finalized workflow is shown in Fig. 5.2. The workflow starts with the user sup-
plying an option flag and a CREEP-configuration file as shown in Sec. 4.3. The
main script, named CREEP.pl, applies the configuration to all relevant files in the
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Figure 5.1: CREEP package overview

framework and starts the components designated by the flag. The RTL and sim-
ulator components generate data, i.e., power scaling information, pipeline power
dissipation estimates and resource counters, which are combined by the CREEP.pl
script according to the power scaling and resource mapping discussed in Sec. 4.2.

RTL Simulator

Verification

Synthesis

Power extration

CREEP.pl

Scaling

Power

Resource
counters

Configuration
  processing

ConfigurationFlag

sim-outorder

Energy estimates

Figure 5.2: The workflow of the framework showing the RTL and simulator
components and the central CREEP.pl script.
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Due to licensing issues, the RTL component is shipped without EDA tool binaries
and cell libraries, i.e., no logic nor static random access memory (SRAM) libraries
are included in the framework package. However, as discussed in Sec. 4.3, a selection
of configurations and pertaining power estimates are supplied with the framework to
allow the simulator component to function separately and produce energy estimates
of the provided configurations.

5.2 Demonstration

A selection of CREEP configurations were used to demonstrate the framework. The
number of configurations had to be limited due to the large design space supported
by the framework (see Sec. 4.1.3). The configurations are shown in Table 5.1 and
they were selected on the basis that they span the design space supported by the
framework, i.e., cache sizes and associativity. Unless specified, all configurations use
a 12 cycle access latency to the level-two (L2) cache.

The 8kB direct-mapped configuration (8kB 1-1) is representative of a light-weight
embedded processor. The two and four-way associative configurations, 8kB 2-2 and
8kB 4-4, were chosen to evaluate the impact of increased associativity on perfor-
mance and energy. Furthermore, it is common to have lower associativity in the
level-one instruction cache (L1IC) than in the level-one data cache (L1DC) due
to simpler access patterns in the former. Configuration with low associative L1IC
would ideally reduce power dissipation, while sacrificing a small degree of perfor-
mance compared to a configuration with high associativity in both level-one (L1)
caches. To evaluate lower associativity in the L1IC the 8kB 1-4 configuration was
chosen. Two variants of the aforementioned 8kB 1-1, 8kB 2-2 and 8kB 4-4 configura-
tions with with variations in L2 access latency were derived in order to evaluate the
impact of the L2 cache on execution time (and thus energy). These configurations
are named 8kB 1-1 10, 8kB 1-1 14, 8kB 2-2 10, 8kB 2-2 14, 8kB 4-4 10 and 8kB 4-4
14. The framework does not include any energy estimates of the L2 cache and lower
levels of the memory hierarchy. Thus the primary impact on power of the lower
levels, such as the L2 cache, is neglected (see Sec. 1.2). However, secondary effects
on energy are expected due to the changes in the execution time.

The 16kB 4-4 configuration represents a performance-oriented embedded processor
and it was the mainstay configuration used in the ad-hoc methodology prior to the
framework development as described in Sec. 2.4.2. From the 16kB 4-4 configuration
two configurations with lower associativity are derived, 16kB 2-4 and 16kB 2-2, to
further evaluate the impact of associativity as cache capacity increases.

The 32kB configuration represents a no compromise performance-oriented embedded
processor and uses the upper bound on the supported cache size in the framework.
All configurations were synthesized to meet a 2.5ns cycle time.
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Table 5.1: Cache parameters for the selected configurations

Name Size Associativity IC Associativity DC Replacement policy Sets IC Sets DC Line size Bank size
8kB 1-1 10 8kB 1 1 - 256 256 8 8
8kB 1-1 8kB 1 1 - 256 256 8 8
8kB 1-1 14 8kB 1 1 - 256 256 8 8
8kB 2-2 10 8kB 2 2 LRU 128 128 8 8
8kB 2-2 8kB 2 2 LRU 128 128 8 8
8kB 2-2 14 8kB 2 2 LRU 128 128 8 8
8kB 4-4 10 8kB 4 4 LRU 64 64 8 8
8kB 4-4 8kB 4 4 LRU 64 64 8 8
8kB 4-4 14 8kB 4 4 LRU 64 64 8 8
8kB 1-4 8kB 1 4 LRU 256 64 8 8
16kB 4-4 16kB 4 4 LRU 128 128 8 8
16kB 2-4 16kB 2 4 LRU 256 128 8 8
16kB 2-2 16kB 2 2 LRU 256 256 8 8
32kB 32kB 4 4 LRU 256 256 8 8

The aforementioned configurations will be analyzed in terms of performance and
power in Sec. 5.2.2 and then the distribution of energy in the designs are presented
in Sec. 5.2.3. Before this however, the execution time of the MiBench suite is
discussed in Sec. 5.2.1.

5.2.1 MiBench execution time

The MiBench execution time of the 16kB 4-4 configuration is shown in Fig. 5.3.
Note that this is not simulation time, but the execution time based on simulated
processor cycles multiplied with the cycle time: sim_cycles×Tcycle. As can be seen
there are a few deviating benchmarks, the most noticeable are basicmath, rsynth
and stringsearch. As the name implies basicmath is mainly composed of arithmetic
operations and is by far the largest benchmark with 6,360,380,890 simulated in-
structions. In contrast, rsynth and stringsearch are included in the office category
(see Sec. 4.1.2) and are composed of text processing computations. Both rsynth
and stringsearch are small compared to basicmath with 113,849,0 and 465,678,2
simulated instructions respectively. Moreover, as the simulator component captures
dynamic events in the pipeline, such as cache misses and hazards stalls, that degrade
the processor’s instruction per cycle (IPC) (see Sec. 2.3.2) the number of simulated
cycles are greater than the simulated instructions. For basicmath the 16kB 4-4 con-
figuration manages an IPC of 0.7 which offers further insight into the execution time
of the benchmark. Fig. 5.3 also shows the average execution time that lands around
2,887 seconds.

5.2.2 Power and performance

The average execution time versus the average power dissipation for all aforemen-
tioned configurations is shown in the scatter plot in Fig. 5.5. Fig. 5.4 shows the
average miss rates of the L1 caches. The execution time, power dissipation and miss
rates are based on the entire MiBench suite. The 8kB configurations have the lowest
performance with average execution times ranging from 3.24 to 3.46 seconds. The
small cache capacity causes high cache miss rates, which can be seen in Fig. 5.4 where
the 8kB 1-1 configuration shows the highest miss rates. Each miss is associated with
cycle penalties of accessing the L2 caches as described in Sec. 2.3.2.1. The impact
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Figure 5.3: Per-benchmark execution time for standard 16kB 4-4 configuration.

of the L2 access latency is clearly visible between the 8kB 1-1 10, 8kB 1-1 and 8kB
1-1 14 configurations which are evenly spaced on the performance axis in Fig. 5.5.
The 8kB 1-1 10 configuration is the fastest due to the lower L2 latency and the 8kB
1-1 14 is the slowest due to the higher L2 latency. The 8kB 1-1 configuration has
the standard 12 cycle latency and falls between the aforementioned configurations.
The minor power dissipation differences between the 8kB 1-1 variants are likewise
explained by the difference in L2 latency. The faster 8kB 1-1 10 configuration has a
higher power density than the slower 8kB 1-1 configuration and slower still 8kB 1-1
14 configuration.
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Figure 5.5: Execution time versus power of the different configurations.

Increasing the associativity in the L1DC to four-way yields the 8kB 1-4 configu-
ration. This configuration manages to perform better than the 8kB 1-1 and 8kB
1-1 14 configurations but not the 8kB 1-1 10 configuration. The performance in-
crease can be attributed to the increased associativity in the L1DC clearly visible
in Fig. 5.4, which reduces the miss rates in the L1DC (see Sec.2.3.2.1). Increasing
the associativity in the L1IC while reducing the associativity in the L1DC yields
the 8kB 2-2 configurations. These configurations trade increased miss rates in the
L1DC for decreased miss rates in the L1IC. Since the L1IC is accessed almost every
cycle, lower L1IC miss rate has a larger impact on performance than lower L1DC
miss rate, which explains why the 8kB 2-2 configuration performs better than the
aforementioned 8kB configurations. Again, the impact of the L2 latency is observ-
able in Fig. 5.5 with the 8kB 2-2 14 configuration being the slowest, followed by the
8kB 2-2 configuration and then the 8kB 2-2 10 configuration with the lowest latency.
However, the observed speedups for these configurations are lower compared to the
direct-mapped 8kB 1-1 configurations. The lower speedups are caused by the re-
duced cache miss rates due to associativity that subsequently decreases the number
of L2 accesses susceptible to the access latency. Likewise, the differences in power
dissipation is due to the different execution times causing the faster configurations
to have a higher power density.

Increasing the associativity of both L1 caches results in the 8kB 4-4 configurations
which are the best performing 8kB cache configuration. The performance increase is
caused by the higher associativity, which leads to less cache misses in both L1 caches
as shown in Fig. 5.4. However, the miss rate reduction is small compared to the
8kB 2-2 configuration which results the minor speedup observable in Fig. 5.5. The
minor impact on miss rate for increasing associativity indicates diminishing effects
of associativity. Similar effects of increased L2 latency as observed for the afore-
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mentioned configurations are visible for the 8kB 4-4 configurations in Fig. 5.5, but
they are less pronounced. The reason why the latency affects these configurations
less is that the cache miss rates have been further reduced due to higher associa-
tivity. For all associative 8kB configurations, the performance increase comes at
the price of higher power dissipation. The rise in power dissipation is caused by
additional SRAM memories that are added to the associative designs. In the 8kB
1-4 case six memories, in the 8kB 2-2 configuration four memories and in the 8kB
4-4 configuration 12 memories are added when compared to the direct-mapped 8kB
1-1 configurations.

When stepping up the cache capacity to 16kB the performance increases substan-
tially. Larger capacity caches can store larger parts of the program and more data
without the need to evict items to the L2 caches. In effect, the number of misses
and subsequent L2 accesses are reduced, which can be seen in Fig. 5.4 where the
16kB configurations have lower miss rates in both caches compared to the 8kB con-
figurations. The lowest performing 16kB configuration is the 16kB 2-2 configuration
with the lowest degree of associativity. However, as seen in Fig. 5.5 the config-
uration offers good performance with comparatively low power dissipation that is
substantially better than the other 16kB configurations. Moreover, the 16kB 2-2
configuration is both faster and has a lower power dissipation than the smaller 8kB
4-4 configurations. Increasing the associativity in the L1DC to four-way yields the
16kB 2-4 configuration. The increase in associative does increase performance but
only slightly which is explained by the minor reduction in the L1DC miss rate shown
in Fig. 5.4. In contrast, the power dissipation increases substantially because ad-
ditional SRAM memories are added to facilitate the associativity, which shifts the
configuration to the right in Fig. 5.5. Increasing the associativity in the L1IC results
in the 16kB 4-4 configurations which manages to achieve the highest performance
of all the 16kB configurations but also dissipates the most power. As the capacity
of the cache is increased to 32kB the performance rises considerably but less than
the step from 8kB to 16kB. The increase in performance stems from the lower miss
rates in the L1DC and especially the L1IC shown in Fig. 5.4. The 32kB cache clocks
in at 2.75 seconds which is by a sizable margin the fastest configuration. However
with eight large SRAM macros and low execution time the configuration dissipates
the most power at around 53mW.

The general trend that can be observed in the results indicates that higher capacity
rather than increased associativity produces the most power-efficient configurations
that also boasts good performance increases. This can be explained by the non-linear
power increase of SRAM blocks, which are designed to be dense and power-efficient.
There are fixed costs associated with the input pins on the blocks and the internal
power dissipation scales well with size. Thus using fewer larger SRAM blocks,
i.e., lower associativity, is more power-efficient than several smaller SRAM blocks.
Another trend is the diminishing returns in performance for increasing cache size
and especially associativity, which could indicate that MiBench benchmarks are too
simple to capture the performance increases normally associated with high capacity
and associative caches.
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5.2.3 Energy distribution

The total energy used by the configurations for the entire MiBench suite is shown
in Fig. 5.6. The energy is further divided into four categories; 1) clock network, 2)
pipeline, 3) L1IC and 4) L1DC. Energy relates execution time to power dissipation,
which means that power-efficient designs are not necessarily the most energy-efficient
if their performance is too low. However, in this case the 8kB direct-mapped configu-
rations offer adequate performance, in conjunction with their low power dissipation,
to also be the most energy-efficient configurations. A minor energy difference can be
observed between the 8kB 1-1 configurations which is caused by the difference in L2
latency. Higher L2 latency causes longer simulation times during which the clock
network dissipates power. Consequently, the 8kB 1-1 14 configuration uses more
energy in the clock network than the 8kB 1-1 configuration and more still when
compared to the 8kB 1-1 10 configuration. Similar reasoning on the L2 applies to
the 8kB 2-2 configurations. The 8kB 2-2 configurations are less energy-efficient than
their direct-mapped counterparts because the speedup offered by the associativity
is insufficient to compensate for their higher power dissipation. Interestingly, the
8kB 1-4 configuration is less energy-efficient than the direct-mapped configurations,
but more energy-efficient than the 8kB 2-2 configurations. The energy difference
between the 8kB 1-4 and 8kB 2-2 configurations can be attributed to higher L1IC
utilization compared to L1DC utilization, which causes the power markup in the
L1IC to affect the energy efficiency to a larger degree. The 8kB 4-4 configurations
are even less energy-efficient as the performance increase is greatly outweighed by
the rise in power dissipation in the L1IC and L1DC.

The 16kB 2-2 configuration manages to be the most energy-efficient 16kB config-
uration while also beating the 8kB 4-4 configurations and breaking even with the
8kB 2-2 configurations. It performs good enough compared to the 8kB 2-2 to com-
pensate for its higher power dissipation and it beats the 8kB 4-4 configurations in
both performance and power. The 16kB 2-4 configuration dissipated more power in
the L1DC than the 16kB 2-2 configuration while only slightly increasing the perfor-
mance and is thus less energy-efficient. The least energy-efficient caches are the large
capacity and four-way associative 16kB 4-4 and 32kB configurations. The lower ex-
ecution time offered by both configurations is insufficient to offset the higher power
dissipation in the caches.

The general trends are that the caches dominate the energy consumption and the
number of SRAM macros, i.e., associativity, is the main source to this. Size, as
mentioned while discussing power, does contribute but to less extent. The L1IC tend
to consume the most energy when the caches are balanced (same associativity in the
caches), which is expected as an instruction is ideally fetched each cycle. In contrast,
the L1DC is accessed roughly every fourth instruction. As mentioned, the clock
energy depends on the execution time and decreases with increasing performance.
However, the clock energy differences are small and is really only observable between
the 8kB 1-1 and the 32kB configurations. The energy of the pipelines remains
relatively constant across the configurations with a difference of roughly 0.2mJ
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between the 8kB 1-1 and 32kB configurations which most likely is due to synthesis
heuristics.
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Figure 5.6: Absolute energy of the different configurations.

All results presented thus far have utilized the power scaling discussed in Sec. 4.1.1.2
and the way-halting technique discussed in Sec. 4.2. The impact of these interven-
tions are shown in Fig. 5.7 where the average relative energy distribution for the
standard 16kB 4-4 configuration is shown. In a) no power scaling nor way-prediction
are used and the L1IC dominates the energy, drowning out the other components’
energy. The distribution changes in b) where the power scaling is added. The
pipeline energy consumption decreases marginally due to large energy increase in
the L1DC. The L1DC is large and dissipates more power compared to the pipeline
and is used around 20% of the EEMBC execution time which results in a considerable
scaling factor (see Sec. 4.1.1.2). In contrast, the pipeline dissipates comparatively
small amounts of power and only parts of the pipeline are scaled as discussed in
Sec. 4.1.1.2. The L1IC and clock tree are unaffected by the power scaling and their
respective portion shrinks. Lastly, in c) the way-prediction emulation is taken into
account which results in a considerable decrease in the L1IC energy.
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Figure 5.7: Energy distribution for a) Unscaled and without way-prediction b) Scaled
and without way-prediction c) scaled with way-prediction
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Figure 5.8: Energy distribution of three 8kB 1-1 configurations with different L2
latencies, a) 8kB 1-1 10 cycles b) 8kB 1-1 12 cycles c) 8kB 14 cycles
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Figure 5.9: Energy distribution of three 8kB 2-2 configurations with different L2
latencies, a) 8kB 2-2 10 cycles b) 8kB 2-2 12 cycles c) 8kB 2-2 14 cycles

The average relative energy distribution for all aforementioned configurations are
shown in Fig. 5.11-5.13. What can be seen is that increasing cache sizes, with
the exception of lower associative caches, shifts the energy distribution towards
the caches. For the 8kB 1-1, 8kB 2-2, 16kB 2-4 and 16kB 2-2 configurations the
energy instead shifts towards the clock network and the pipeline, most notably so for
the 8kB 1-1 configuration as the cache energy has been reduced significantly when
compared to the other configurations.

5.3 Evaluation

This section is split into two parts. Firstly, the framework verification methods
presented in Sec. 3.2 will be used to evaluated the framework. Secondly, the work
will be held to the goals stated in Sec. 1.1.
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Figure 5.10: Energy distribution of three 8kB 4-4 configurations with different L2
latencies, a) 8kB 4-4 10 cycles b) 8kB 4-4 12 cycles c) 8kB 4-4 14 cycles
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Figure 5.11: Energy distribution of three 8kB configurations, a) 8kB 1-1 b) 8kB 1-4
c) 8kB 4-4
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Figure 5.12: Energy distribution the different 16kB configurations: a) 16kB 4-4 b)
16kB 2-4 c) 16kB 2-2
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Figure 5.13: Energy distribution 32kB configuration.

5.3.1 Evaluation of verification methods

The functional verification of the RTL code was inherent to the RTL verification
and power estimation flow as discussed in Sec. 3.2. However, to make a rudimentary
verification of the power estimates they can be compared to access energy estimates
used in previous projects. However, in the previous projects only the L1DC power
was estimated from the RTL design. Furthermore, these power estimates were based
on a probabilistic approach where components of the L1DC were analyzed in isola-
tion. Due to the nature of the earlier projects load and store power are estimated
separately. The ad-hoc methodology utilized a 16kB four-way associative cache
with least recently used (LRU) as replacement technique. Additionally, the access
energy includes data translation lookaside buffer (DTLB) power estimates, which
is neglected in CREEP. The access energy of the ad-hoc methodology are shown in
Table 5.2 below.
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Table 5.2: Power estimates obtained from the RTL during previous projects [4]

Access Energy (pJ/cycle)
Load 201.2
Store 122.4
Miss w/o writeback 251.2
Miss w writeback 479.1

Power estimates of the L1DC obtained from CREEP using the same configuration,
results in an aggregate access energy of 225 pJ. This is close to the previous esti-
mated L1DC load energy. However, as the previous estimation include a DTLB and
the aggregated CREEP estimates also include stores, the CREEP estimates could
be expected to be lower. However, the slightly higher access energy estimated in
CREEP could be explained by the fact that other events such as misses, which have
a considerably larger power impact, are also included.

The modified simulator component was verified by inspecting a number of per-
formance counters generated by the simulator. More specifically the number of
executed instructions was compared to the number of committed instructions. A
mismatch between the two would indicate that the simulator is issuing instructions
speculatively. Moreover, as stores were moved in the simulator the number of L1DC
accesses was compared to the total number of memory references. Lastly, as a final
check the total number of instructions was compared to the total amount of com-
mitted instructions. No mismatches were detected in any of the counters, which
points to the modified simulator working correctly.

5.3.2 Achievement of goals

The goals of this thesis were stated in Sec. 1.1 and the framework will be evaluated
according to these goals. The accuracy of the energy estimates produced by the
framework was evaluated previously in Sec. 5.3.1 and based on this rudimentary
verification, it seems as the framework is producing reasonable energy estimates.
The framework was successfully automated as discussed in Sec. 5.1 and 4.3. Fur-
thermore, the framework can be configured through CREEP configuration files as
described in 4.3 and this procedure was facilitated as part of the automation. This
feature was demonstrated in Sec. 5.2 where results of several configurations are
shown. A case study of a practical way-halting technique called SHA was produced
as part of the work, refer to Ch. 6 for more information about SHA. Currently,
several venues where the framework can be introduced are being investigated, but
this remains a work in progress.

5.4 Discussion

The implementation of CREEP required compromises between scalability and power
estimation accuracy as has been discussed in Sec. 3 and Sec. 4.1.1.1. However, there
are issues that in hindsight could have been implemented differently resulting in
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possible improvements of the energy estimates produced by the framework.

The biggest bottleneck in the framework is the MiBench suite that proved to be too
simple to fully characterize the behavior of large capacity and associative caches. It
is likely that a more comprehensive suite, like SPEC, would address this issue. SPEC
would fully load the configurations with larger data sets and under longer executions
and would better elucidate the benefits of cache capacity and associativity.

The energy approximations of the caches, and the rest of the pipeline, are based on
average power dissipation and make no distinction between accesses, i.e., load and
stores and whether these are hits or misses. These accesses represent events with
vastly different power costs, with loads being roughly twice as costly as store and
misses dissipating even more power. However, more accurate energy estimations
would require the use of either probabilistic methods or value change dump (VCD).
The probabilistic approach could have been used to characterize each kind of access.
Alternatively a characteristic power consumption could have been extracted from a
VCD file for each access. Both would reduce the scalability of the framework as each
approach would need to be adapted every new configuration and cache size. It is
possible that a parametric model could have been deduced, like many of the related
works discussed in Sec. 1.3, but that would compromise the integration aspect of
CREEP.

Another issue with the current cache power estimates is the implemented way-
prediction technique. The power of a successful prediction is calculated as one
fourth of the cache access power, i.e., three fourth of the power is saved. This
calculation does not take into account that the power savings are only related to
the SRAM memories. However, addressing this issue would require reverting to the
power estimation techniques used in the ad-hoc methodology but this would greatly
reduce the scalability of the framework. Furthermore, the power penalties for a
failed prediction is not taken into account.

The framework does not include any access energy estimates for lower levels in
the memory hierarchy, such as L2 or main memory. Lower levels in the memory
hierarchy are not only larger and slower, but they also requirer large amounts of
energy on an access. It is likely that if this energy would have been included the
evaluation done in Sec. 5.2 would favor larger and possibly associative caches as
these were demonstrated to have smaller miss rates in Fig. 5.4. Fewer misses would
in the long run lead to less accesses to the L2 cache, possibly resulting in less energy
usage. In contrast, the smaller caches would require more accesses to the L2 cache,
which would increase the power dissipation. All in all, the energy efficiency design
point is likely to shift towards larger caches.

During power estimation a zero delay model was used which could affect the ac-
curacy of the power estimates. If signal propagation was taken into account power
dissipation caused by glitches would have been accounted for [23]. However, whether
the glitching power would affect the overall results of the framework to any meaning-
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ful degree is questionable, especially since the glitching power only affects the logic
elements of the design. Using a unit delay model with a fixed delay could be in-
vestigated with minimal impact on scalability but using delay models based around
standard parasitic exchange format (SPEF) files would increase the complexity of
the RTL verification flow.

The leakage power could have been handled differently. As discussed in Sec. 4.1.1.2
the total power is extracted from the design, which includes the leakage power.
The total power is then subsequently scaled, which causes the leakage power to
be scaled erroneously. The leakage power does however constitute a fraction of
the total power and when coupled with the performance counters this should have
limited impact on the final results. While the leakage power is indirectly included,
its accumulative effect could currently be underestimated. To properly estimate
the the leakage energy the leakage power of the design should instead be combined
with the simulated cycles similar to the clock network power. However, separating
the different causes of power dissipation would have increased the complexity of the
power calculations and hence reduce the scalability.

The place and route (PnR) scaling that is implemented in the framework (see
Sec. 4.1.1.2) could have been done at a finer granularity. Because of technical issues
the placed and routed netlist could not be verified in the implemented RTL veri-
fication flow. Consequently it was not possible to obtain use-case based switching
activity for the post-PnR netlist. Instead, a probabilistic method was used which
meant that the scope at which the scaling factor could be derived was limited. The
scaling factor was derived from the arithmetic logic unit (ALU) and was applied to
units which also included registers that scales differently. Thus, it is likely that a
mismatch in PnR power growth was allowed to affect the final framework energy
results.

The clock network power was obtained as discussed in Sec. 4.1.1.2. This approach
causes clock energy to be underestimated as the clock pin power is neglected on all
the cells in the clock tree. Instead the clock pin-power is distributed to the pipeline
units and caches. Consequently, the clock power is accounted for but not attributed
to the clock network. Lastly, the clock tree power was derived from the standard
16kB configuration and it is likely that power varies between the different designs.
However, to extract accurate clock tree powers all the designs would have to be
placed and routed separately which was unfeasible to include in the framework.

Lastly, the framework needs to be verified to a greater extent before it is adapted
by the research community. The current verification, described in Sec. 5.3.1, is rudi-
mentary at best and only verifies the individual components. For the framework to
be satisfactorily verified the resource mapping needs to be scrutinized. Initially, this
was planned as a part of this work and the method of choice was based on EEMBC
simulations. The EEMBC benchmarks were to be simulated by SimpleScalar and
the energy results were to be compared to the energy estimates based on the aver-
age power dissipation of the design when combined with number of simulated cycles
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produced by SimpleScalar. However, this approach suffered technical difficulties as
the EEMBC benchmarks did not compile for the SimpleScalar simulator.
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6
Case study

This chapter will showcase the framework methodology in a case study that shows
how the framework can be customized to suit a specific project. The automated
workflow cannot accommodate new register-transfer level (RTL) or performance
counters in the simulator without changes to the automating scripts. Thus, frame-
work customization is reserved for advanced users that do not need to rely on the
automated standard workflow.

6.1 SHA - practical way-halting

The idea of this project was to address issues with earlier way-halting techniques
that were impractical to implement, either posing limitations on static random access
memory (SRAM) macros or causing long critical paths that would impact the speed
of the data cache [43][44]. Both of these issues could be addressed by speculatively
accessing the cache during the address generation stage as proposed by Bardizbanyan
et al. [4] using a technique called STA (Speculative Tag Access). The combination
of STA and way-halting was dubbed Speculative Halt-tag Access (SHA) and resulted
in a publication at Design Automation and Test in Europe 2016 [3].
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Figure 6.1: Overview of SHA. [3]

SHA works by accessing halt-tags, which contains the lower portion of the tag,
with the base-address index supplied by the resister-file or by forwarding paths as
shown in Fig. 6.1. The halt-tags are then compared to the lower-order tag bits of
the base address. If a hit is detected in the halt-tag array, corresponding tag and
data-array is enabled. Conversely, if no hit is detected in the halt-ways the enable
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signal is not asserted and the consequent access to tag and data-arrays is avoided.
Ideally only one halt-way would signal a hit and only one tag and data-way would
be accessed, thus saving roughly 75% of a conventional data cache’s read energy.
For stores, the energy saving is less as stores are accessed sequentially, i.e., only
the tag-array access energy can be reduced by halting. If more hits are detected
in the halt-tags for both reads and writes, corresponding tag and data-arrays are
enabled causing the energy savings to decrease gracefully. The address generation
unit (AGU) address computation is shown in Fig. 6.2 and speculative accesses are
successful when the base address does not cause an overflow from the line offset into
the line index. This information can easily be extracted from the adder and if a
speculation failure is detected the cache is accessed conventionally the next cycle.
A speculation failure comes at an energy overhead of a halt-tag access and has no
negative effect on performance.

Displacement

01531

Sign Extension
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32-bits32-bits

031

16

Line OffsetLine IndexTag

031

Base Address

Figure 6.2: AGU address calculation showing the address fields of interest. [3]

The evaluation method of the technique is based on the methodology embodied
by CREEP. However, because the project required modifications to be done to the
components of the framework, the automated workflow was not used.

The RTL component of the framework remained largely intact, with the design being
brought through a similar design flow to the standard workflow used in CREEP. The
exception was the power estimation methodology which was changed to a probabilis-
tic method because the scope of the power estimation was limited to the level-one
data cache (L1DC). This allowed the L1DC access power to be characterized in
greater detail, i.e., for read, writes and misses. The access energy estimates for
the different cache components are shown in Table 6.1. These estimates were then
combined to form the complete cache operations shown in Table 6.2 and 6.3, which
list the energy of different SHA cache events and cache miss energy respectively.

The simulator component was changed more substantially as several new architec-
tural events needed to be tracked and the cache component of the simulator needed
to be modified. The new events were related to the address generation and how
often the speculative accesses were successful, i.e., whether the address offset would
cause an overflow from the line offset into the index. 16 counters were added, one
for each bit in the address offset and these were increased on the condition that
no overflow was caused (speculative success) by that bit. The cache modifications
were aimed at emulating the halt-tag array. This was done by forcing the cache
to do two cache accesses, the first to do a linear search through the tag-array to
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Table 6.1: L1 DC Component Energy. [3]

Component Energy (pJ)
Read Halt 19.1
Write Halt 17.7
Read Tag 19.1
Write Tag 17.6
Read Data 26.5
Write Data 27.2
DTLB 17.5
Peripheral 18.8
Arbiter 2.0

Table 6.2: Components Accessed for Each Case. [3]

Case Read Halt Read Tag Read Data Write Data DTLB Peripheral Energy (pJ)
BL - 3 4 0 1 1 182.1
BS - 3 0 1 1 1 103.3
STA0 - 3 1 0 1 1 102.6
STA1 - 6 4 0 1 1 239.4
SHA0 0 4 4 0 1 1 201.2
SHA1 0 4 0 1 1 1 122.4
SHA2:0 1 0 0 0 1 1 37.9
SHA2:1 1 1 1 0 1 1 83.5
SHA2:2 1 2 2 0 1 1 129.1
SHA2:3 1 3 3 0 1 1 174.7
SHA2:4 1 4 4 0 1 1 220.3
SHA3 1 4 4 0 1 1 220.3
SHA4:0 1 0 0 0 1 1 37.9
SHA4:1 1 1 0 1 1 1 84.2
SHA4:2 1 2 0 1 1 1 103.3
SHA4:3 1 3 0 1 1 1 122.4
SHA4:4 1 4 0 1 1 1 141.5
SHA5 1 4 0 1 1 1 141.5

find a potential halt-tag hit and a second time to produce a proper tag hit. The
halt-tag search was based on a partial tag comparison with flexible width based on
the desired halt-tag width. Performance counters were added for the five possible
cases: 1) no hit was detected in any of the halt-ways, 2) one hit detected, 3) two
hits detected, 4) three hits detected and 5) four hits detected. Several modifications
to the cache component were necessary to achieve this, e.g., the tag structure was
changed from a hashmap to a linked list and fast lookups were disabled (features
that improved the speed of the simulator). Additionally, the cache component was
augmented to accept an additional argument that disables the the halt-tag search.
The halt-tag search was then enabled based on the selected address offset width
so that it was only enabled within the selected offset and for speculative successes.
Lastly, the cache misses were also monitored as these are not accounted for in the
other counters and represent energy costly events.

The performance counters were then combined with the access energy estimates in
Table 6.2 for the use-cases in a similar manner as in the standard CREEP workflow.
Depending on the selected address offset width, different amounts of speculative
successes and failures were recorded. The speculative successes were then further
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Table 6.3: Components Accessed on Miss Events. [3]

Case Write Halt Write Tag Read Data Write Data Peripheral Arbiter Energy (pJ)
B-NoWB - 1 0 8 8 8 251.2
B-WB - 1 8 8 16 16 479.1
H-NoWB 1 1 0 8 8 8 268.9
H-WB 1 1 8 8 16 16 496.8

categorized as an SHA2:X or an SHA4:X (load or store) access where the X
denotes how many halt-ways produced a hit. The speculative failures were combined
with SHA3 and SHA5 counters. Accesses for which the address offset exceeded
the chosen width are combined with SHA0 and SHA1 (loads and stores). The
counted cache misses were then combined with the events in Table 6.3.

The final results of the customized workflow is shown in Fig. 6.4 where the SHA
technique on average saves 25.6% energy compared to a conventional data cache.
Compared to the STA technique, it saves an additional 7.4% as can be seen in
Fig. 6.4. In addition to saving more energy on loads than STA, SHA also saves
energy on stores.

b
a
s
ic

m
a
th

b
it
c
o
u
n
t

q
s
o
rt

s
u
s
a
n

jp
e
g

la
m

e

ti
ff

d
ijk

s
tr

a

p
a
tr

ic
ia

is
p
e
ll

rs
y
n
th

s
tr

in
g
s
e
a
rc

h

b
lo

w
fi
s
h

p
g
p

ri
jn

d
a
e
l

s
h
a

a
d
p
c
m

c
rc

3
2 ff
t

g
s
m

H
a
lt
 r

a
te

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Miss−energy Store−energy Load−energy

Figure 6.3: SHA energy for the MiBench suite used in the CREEP framework. [3]

64



6. Case study

L1 DC Energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Baseline

STA

SHA

Miss−energy Store−energy Load−energy

Figure 6.4: SHA energy compared to STA and a conventional baseline cache. [3]
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7
Conclusion

Chalmers RTL-based energy evaluation framework for pipelines (CREEP), a frame-
work that combines register transfer (RT)-level power estimates with SimpleScalar,
an architectural-level simulator, to allow software and hardware co-evaluation was
implemented and demonstrated. The register-transfer level (RTL) component of the
framework consists of a MIPS I compliant 5-stage pipeline (5SP) with integrated
level-one (L1) caches, which are synthesized for the 65nm process node. The power
estimates of the design are obtained at a pipeline-unit basis through instruction set
architecture (ISA) simulation based on the EEMBC benchmark suite. The power
estimates are scaled in order to approximate the impact of place and route (PnR),
which allows the framework to estimate the power of a range of designs. The sim-
ulator component is used to model the resource usage of the RTL 5SP to produce
resource usage statistics of pipeline units based on the MiBench benchmark suite.
The final energy estimates of the framework are obtained by combining the RTL
power estimates with the simulated resource statistics. The framework is fully auto-
mated and supports configuration of the integrated RTL caches through configura-
tion files. The framework was demonstrated by selecting a range of configurations,
spanning the design space supported by the framework. Lastly, the extendability
of the framework was showcased in a case-study of SHA, a practical way-halting
technique, which was shown to save 25.6% of the energy used in a level-one data
cache (L1DC).
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