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Can one hear the shape of a flat torus?
A look at whether isospectrality gives isometry
ERIK NILSSON
Chalmers University of Technology

Abstract
Perhaps it was Milnor’s article, published two years prior, that triggered Mark Kac
in 1966 to ask the famous question of whether one could hear the shape of a drum.
If one were to somewhat liberally define a drum as any kind of Riemannian manifold
in any dimension, then what Milnor showed was an example to the contrary; namely
that there exist two isospectral yet non-isometric flat tori living in 16-dimensional
space. The question of Kac in turn spurred a great wave of mathematical research
within the field which we today refer to as spectral geometry, finally culminating in
the article by Gordon, Webb and Wolpert[28] showing that no; “One cannot hear
the shape of a drum.” During these years however, a huge number of new questions
have been born out of the search, making spectral geometry a vibrant field of study
today. Looking back to Milnor then, it is clear that the flat torus holds a special
place in the field (regardless of how one chooses to define a drum!). Yet, with the
exception of a few articles, the flat torus seems to have been forgotten in the context
of its spectral geometric conception: the lowest dimension for which one can exhibit
an isospectral non-isometric pair of flat tori is a question discussed by few. In the
wake of this great travesty the ensuing text was written.

Keywords: flat torus, isospectral, isometric, quadratic form, theta series, lattice,
differential geometry, Riemannian geometry, spectral geometry, number theory.
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1
Introduction

In 1964, John Milnor was to able to show the existence two isospectral (in the sense
of the Laplace-Beltrami operator) flat tori that are distinct as Riemannian manifolds
[17]. The construction was done by way of Witt[27], in 16 dimensions. This is what
we call an inverse problem of spectral geometry; given the eigenvalue spectrum of
some Riemannian manifold, what can we deduce about the manifold itself? It turns
out that we can deduce quite a lot, including but not limited to the volume and
the dimension of the manifold. Thus Milnor’s counterexample was important in
the sense that it showed restrictions on what the spectrum could glean from the
characteristics of a Riemannian manifold.

Throughout this text we shall consider the eigenvalues of the Laplace-operator
on a closed Riemannian manifold (M, g) from the following problem.

Eigenvalue problem

Find all λ ∈ R for which there exists some nonzero function f ∈ C∞(M) such
that

−∆f = λf (1.1)

The set of these eigenvalues is called spectrum and two manifolds are said to be
isospectral if their respective spectra are the same. We say that the manifolds are
isometric if, intuitively speaking, we can find a smooth length-and-angle-preserving
map between them. Intuitively the isospectral problem, that is the problem of
whether the spectrum of a certain manifold contains enough information to char-
acterise it, can be interpreted as asking whether one can hear the shape of the
manifold. The interpretation stems from the Helmholtz equation describing the
vibration modes of a clamped, elastic membrane. See Chapter 4 for the rigorous
introduction to these topics.

Since 1964 several examples of isospectral but not isometric flat tori have been
discovered in lower dimensions: among them 12 [13], 8 [12] and even 4 [20][7].
However, in dimensions 1, 2 and 3 it has been shown that all isospectral pairs of flat
tori are also isometric. The last proof for 3 dimensions was given by Schiemann[21]
in 1990 which makes it a quite recent result. Despite this, the answer to the question
of finding the lowest dimension inside which one can exhibit a pair of isospectral yet
non-isometric flat tori seems to be relatively unknown, even among experts in the
field of spectral geometry. Why is this so?

1



1. Introduction

1.1 A problem in language
For an analyst or geometer the isospectral problem for flat tori shares a common
context and language within differential geometry. Supposedly, if such a person
would be looking for the lowest dimension of isospectral non-isometric flat tori, then
she would search the web using the language she knows. Unfortunately none of the
cited articles above except for Milnor’s even mention flat tori. Hence there is a lin-
guistic problem present, and it is due to the following: the problem of isospectrality
for flat tori is equivalent to a problem in number theory. Solving the problem in
either framework solves the problem in the other, and indeed the problems have
been solved for the most part in the number theoretic realm.

Differential geometric frame Number theoretic frame

Does isospectrality of any pair of
n-dimensional flat tori
imply their isometry?

Are n-dimensional positive definite
quadratic forms determined up to

integral equivalence by their representation
numbers, or theta series?

This so called theta series is the power series representation of these representation
numbers, and it turns out to be the same thing as the partition function of differential
geometry, i.e. the trace of the heat kernel. We discuss this aspect in more detail
in later chapters. The corresponding problem in number theory is much older and
thus the language of quadratic forms makes a potentially more impactful frame in
which to solve the problem. At least it is within that frame that the methods have
been developed and so as a consequence it is there which we will need to spend most
of our time.

The situation improves when looking for textbooks on the subject. In some of
these we can find mentions and even derivations of some of the results. However in
most cases the topic is only briefly mentioned, almost as a footnote. For example
none of the standard books in Riemannian geometry, like [16], [2], [11], [9] and [23],
mention the flat torus in the context of the isospectral problem. Moreover specific
textbooks within spectral geometry, besides suffering from the collective barrier of
entry that is some prior knowledge of differential geometry, do not in general cover
the topic. Indeed out of [24], [14], [8], [4] and [3], only [14], [8] and [3] mention it
(in level of detail corresponding to order of mention). Thus if an initially interested
student were to give up her search, one would be justified in forgiving her. However,
it should of course be mentioned that no book has any real obligation to cover any
specific topic.

1.2 Terminology
The phrase ‘a pair of isospectral flat tori are isometric’ and its variants become
lengthy and tedious to write and read after only a couple of occurrences. To remedy
the situation we have decided to introduce some new terminology. Previously in
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1. Introduction

e.g. [6], the colloquial term audible has been used for a property of a Riemannian
manifold that is determined by the spectrum, connecting to the intuitive picture of a
beating drum. We shall call an audible property a spectral invariant. With this term
one would say ‘flat tori are audible’ instead of ‘all isospectral flat tori are isometric.’
However note that it doesn’t really work on a pairwise level (which we need), the
phrase ’this pair of flat tori are not audible’ does not make much sense - what it
means for a pair of objects to be audible can be slightly ambiguous. Therefore we
introduce the following
Definition 1.1.
Let C be a nonempty set of Riemannian manifolds. We say that C is spectrometric
if the isometry class of each element M ∈ C (i.e. the set of manifolds isometric to
this element) is completely determined by the spectrum of the Laplace-operator on
M . In other words, if M,N ∈ C are isospectral then they are isometric.

In physics the term spectrometry can mean several things, but in general it alludes
to measuring something with the help of some kind of spectrum. For instance, in
Rutherford back-scattering spectrometry the structure and composition of materials
is found by measuring the back-scattering of a high energy beam of ions impinging
on a sample. This fits neatly with what we want the term to mean in our context.

1.3 Reading guide
Care has been taken to make the text readable for both experts and complete novices
in the field of differential geometry. That being said, the introduction to Chapter
3 will be very difficult for the novice since much of the important motivation and
detail of concepts like manifolds, charts and tangent spaces is omitted. Some of
these details, but not all are given in Appendix A. If one is nonetheless determined
to understand this chapter without prior knowledge it is advised to have a companion
introductory book on the subject close by, see any of [16][2][11][9][23].

The text is meant to be read from "top to bottom". Chapter 2 is an easy go-
ing introduction to the central objects of study and should hopefully be readable
by anyone with an undergraduate background in mathematics. As mentioned, in
Chapter 3, but also in Chapter 4, we dive into the theoretical background needed
to fully appreciate the later results given in Chapter 5 and Chapter 6. The expert
might want to start reading at one of these later chapters, they can be read in
any preferred order and they do not depend on each other. If the novice does not
care much for the equivalence of the problems and is able to take certain results
on faith, then it is possible also for her to start at Chapter 4 (or even Chapter 5),
given that the results from thereafter are understandable without much knowledge
of differential geometry.

3



1. Introduction

4



2
Preliminary theory

2.1 Lattices

A lattice is an object that we encounter every day or at least every week 1. Indeed,
the plastic containers from which you pick your vegetables, taken as parts of a whole,
precisely take the shape of a (local) lattice. Another example is the tiling of a chess
board. In analysis they are an ever-extending set of evenly spaced points, formally
as a subset of Rn we define a lattice as a set

Γ :=
{

n∑
i=1

αiai : αi ∈ Z
}
,

where the {ai}ni=1 are column vectors forming a basis2 of Rn.

Figure 2.1: The lattice of a set of boxes for oranges, more abstractly represented
in R2.

The last criterion is important since the vectors need to be independent in order
to create a lattice of appropriate dimension. Note that these basis vectors ai are
the only degrees of freedom available from which to create the lattice. Therefore

1If you don’t go grocery shopping very often.
2It is of course possible to consider lattices with bases in Rd, with d < n but this is more than

we will require. We will work with so called full-rank lattices.
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2. Preliminary theory

they completely characterise the lattice and, taking A = (a1 a2 . . . an), we write the
equivalent formulation

Γ = {Aα : α ∈ Zn} = AZn.

Basis matrices A of this type are invertible since their columns are linearly inde-
pendent. They actually form a group under matrix multiplication called the general
linear group of degree n, denoted by GLn(R) with R meaning that the entries of the
matrix (and its inverse) are real numbers. We shall also work with GLn(Z) which
has the same meaning, replacing R by Z. It is worth to note that it is a necessary
condition for A ∈ GLn(Z) to have determinant det(A) = ±1, due to the requirement
that A-1 needs integer entries. Elements of GLn(Z) are called unimodular matrices.

The fact that we can represent the lattice by a basis matrix is interesting; it begs
the question of whether we can have different bases for the same lattice? Formally,
if every column of one basis can be written as a Z-linear combination of columns
from another basis and vice versa, then surely the bases are equivalent? Indeed, we
have

Proposition 2.1 (Lattices are equal up to GLn(Z)).
Two lattices Γ = AZn and Γ′ = A′Zn are equivalent IFF

A′ = AB, for some B ∈ GL(n,Z).

Proof. If Γ = Γ′ then any column ai of A is an element of Γ′ so that, recalling
the definition above, ai = A′b where b ∈ Zn. Therefore we have that A = A′B,
where B ∈ Zn×n. Similarly for C ∈ Zn×n we have A′ = AC so that A′ =
A′BC =⇒ BC = I.

For the other direction we suppose A′ = AB, for some B ∈ GL(n,Z). For
some α ∈ Zn the key lies in observing that β = Bα is again an element of Zn,
since the entries of B are integers. But the entries of B-1 are also integers, so
the mapping B : Zn → Zn is a bijection. Thus,

Γ′ = {A′α : α ∈ Zn} = {A(Bα) : α ∈ Zn} = {Aβ : β ∈ Zn} = Γ.

We can view this as saying that Zn absorbs elements of GLn(Z). This relation in
fact forms an equivalence relation; A ∼ A′ IFF A′ = AB & B ∈ GLn(Z). Thus we
may consider the set of lattices as the quotient space

GLn(R)/
GLn(Z) = GLn(R)/

∼ = {{A′ ∈ GLn(R) : A′ ∼ A} : A ∈ GLn(R)} .

This is the set of equivalence classes in GLn(R) wherein two matrices are considered
equivalent if they are equal up to multiplication by an element of GLn(Z).

In other words, the basis matrix defining the lattice is not unique, and one can
wonder which basis would make the best representative. Indeed this leads to a
concept called lattice reduction3, whose history goes as far back as Lagrange[15].
We shall encounter this concept in action in Chapter 6. We should thus comment

3Today it is a very important concept in computer science and cryptography.
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2. Preliminary theory

that denoting a lattice Γ by ΓA for one of its basis matrices A, while appealing, is
not good notation since A is not unique.

There is another notion of equivalence between lattices, called congruence. We
say that two lattices are congruent if one can be transformed into the the other
via an orthogonal automorphism. That is, Γ and Γ′ are congruent if there exists
C ∈ On(R) :=

{
C ∈ GLn(R) : CCT = I

}
such that Γ′ = CΓ. The notion will come

into play in Chapter 3 and stay from there throughout the rest of the text.
Later on in Chapter 5 we will use lattices as building blocks to construct other

lattices which will serve as tools to disprove spectrometry in higher dimensions. One
of these tools requires some discussion for the uninitiated. Given n1, n2 ∈ Z and
two lattices Γ1 = A1Zn1 , Γ2 = A2Zn2 we identify Γk with its identity image with
respect to the map sending Rnk → Rnk × {0} ⊂ Rn. Then γ1 ∈ Γ1 denotes a vector
(γ1 0 . . . 0︸ ︷︷ ︸

#n2

)T in Rn1+n2 . With this we construct the orthogonal sum

Γ1
⊥
+ Γ2 :=

{
γ = γ1 + γ2 : γ1 ∈ Γ1, γ2 ∈ Γ2 & γT

1γ2 = 0
}
. (2.1)

Can we write the basis of Γ1
⊥
+ Γ2 as some mashup of the bases of its underlying

lattices Γ1 and Γ2? Yes we can.

Proposition 2.2 (The basis for the orthogonal sum lattice is given by the bases
for its summands).

A basis for Γ1
⊥
+ Γ2 is given by

(
A1 0
0 A2

)
.

Proof. Take α = (α1α2)T ∈ Zn1+n2 and compute(
A1 0
0 A2

)(
α1
α2

)
=
(
A1α1

0

)
+
(

0
A2α2

)
.

Note that
(
A1α1

0

)
∈ Γ1 and

(
0

A2α2

)
∈ Γ2, while their inner product is 0.

2.2 Dual lattices
For our purposes the concept of the dual lattice of a lattice will be of great impor-
tance; the lengths of its vectors will basically correspond to the set of eigenvalues
of the Laplace-operator to the flat torus defined by said lattice. The dual lattice is
defined to be the set

Γ∗ :=
{
γ∗ ∈ Rn : γTγ∗ ∈ Z ∀γ ∈ Γ

}
.

The definition is more natural than it looks. The dual space of Γ is defined to
be the set of functionals γ∗ : Γ → Z that are linear in Γ and bounded in the norm
of Rn. We know by the Riesz representation theorem that any such functional is
represented by the application to Γ of another vector in Γ through the inner product.

7



2. Preliminary theory

Proposition 2.3.
Γ∗ is a lattice, and it’s given by Γ∗ = A-TZn whenever A is a basis for Γ.
Proof. When an inverse exists we have that the inverse and transpose of a matrix
commute, so there is no ambiguity in writing A-T.

We claim γ∗ ∈ Γ∗ IFF ATγ∗ ∈ Zn. The result then follows easily since
ATγ∗ ∈ Zn IFF γ∗ ∈ A-TZn, whereby a basis of Γ∗ is A-T. We proceed to prove
the claim.

Suppose γ∗ ∈ Γ∗. Then ∀γ ∈ Γ γTγ∗ ∈ Z, which is equivalent by definition of
elements in Γ to that αTATγ∗ ∈ Z ∀α ∈ Zn. Making use of the Einstein sum-
mation convention: repeated indices implies a hidden sum, αTATγ∗ = αjAijγ

∗
i .

From here we can pick α = aI , the canonical unit basis with 1 in the I th position
and 0 everywhere else. For each such I = 1, 2, . . . n we get αjAijγ∗i = AiIγ

∗
i ∈ Z.

We can collect this in a vector to equivalently say Aijγ∗i ∈ Zn. But Aijγ∗i = ATγ∗

and we are done.
The other direction is simpler since we now know that we only need to show

αTATγ∗ ∈ Z ∀α ∈ Zn. Starting from ATγ∗ ∈ Zn, we see immediately that the
result of multiplication by α ∈ Zn from the left will result in an integer since Z
is a ring.

Therefore if we have the situation (2.1) of an orthogonal sum of lattices, its dual
lattice is given as

(Γ1
⊥
+ Γ2)∗ =

(
A1 0
0 A2

)-T

Zn1+n2 =
(
A-T

1 0
0 A-T

2

)
Zn1+n2 ,

and thus we have

Proposition 2.4 (Orthogonal sums carry self-duality).
If Γ1,Γ2 are self-dual, meaning Γ1 = Γ1

∗ and Γ2 = Γ2
∗, then so is Γ1

⊥
+ Γ2.

Proof.

(Γ1
⊥
+ Γ2)∗ =

(
A-T

1 0
0 A-T

2

)
Zn1+n2 =

(
A1 0
0 A2

)
Zn1+n2 = Γ1

⊥
+ Γ2.

Lastly we shall have use of the following proposition in Chapter 5 when discussing
twelve dimensions.

Proposition 2.5.
The lattices Γ1 and Γ2 are congruent if and only if their duals Γ1

∗ and Γ2
∗ are

congruent.
Proof. Take C ∈ On(R), and let Γ1 = A1Zn and Γ2 = A2Zn. Then A1 = CA2
implies

A-T
1 = (AT

1)-1 = (AT
2C

-1)-1 = CA-T
2 .

8



2. Preliminary theory

The reader can convince herself of the other direction.

2.3 Tori
Now that we have a decent handle on what a lattice is we can turn our attention
to the torus. Notice how we have neglected calling the torus flat. This is because
this kind of torus is a special geometric torus whose surface is intrinsically “flat”.
We also call a cylinder “flat” in the same way. These remarks are made precise
in Chapter 3. In short, the torus will not be called flat until we have a notion of
measuring angles of vectors residing on its surface.

Fix a basis A = (a1a2 . . . an) of a lattice. We shall say fundamental domain to
mean the closed set of representatives of each equivalence class that lie inside and
on the left-down boundary of the “first” lattice cell{

n∑
i=1

ciai : ci = 0 or 1, i = 1, . . . , n
}

with respect to this basis. The fundamental domain of a lattice Γ shall be denoted
by RΓ. As an example the fundamental domain of Zn is given by [0, 1)n.

Figure 2.2: The fundamental domain of a lattice, courtesy of Wikipedia
@https://en.wikipedia.org/wiki/Fundamental_domain.

Moreover we shall use root representative to mean one specific element in this
fundamental domain.

Algebraically a lattice is an additive subgroup of Rn. In fact it is a so called
discrete subgroup since we can find an open neighbourhood around any point of it
that contains no other points of the lattice. The idea that we want to keep in mind
for realising the torus is that of “rolling up” a lattice to make its edges meet. Think
of its fundamental domain (see Figure 2.2) and identify parallel edges to be identical
so that it “wraps around” two ways. Figure 2.3 neatly illustrates the idea, note that
the second folding stretches distances; trying this with a piece of a paper will not
work.

9



2. Preliminary theory

Figure 2.3: Rolling up of a fundamental domain, taken from [25].

The algebraic way to describe the operation of “rolling up” a lattice is predicated
on the lattice Γ being a subgroup. Take x, y ∈ Rn and set x ∼ y if and only if x is
found from y by a simple left translation of Γ, i.e. x = γ + y for some γ ∈ Γ. With
respect to this equivalence relation

Rn/
Γ = R

n/
∼ := {[x] : x ∈ Rn},

where the equivalence class [x] := {y ∼ x : y ∈ Rn}. It is helpful to visualise this in
two dimensions, elements in [x] are equal to each other up to addition of a vector of
the lattice. Thus in terms of sets we have accomplished what we set out to do; the
lattice cell now wraps around just like we wanted. We shall call R

n/
Γ a torus.

In actual fact the torus is foremost a topological object, so we should to specify
which sets are considered open in R

n/
Γ. We nevertheless postpone this discussion to

the next chapter since it isn’t really required for the theory in the chapters following
Chapter 3.

The volume of a torus R
n/

Γ is defined by

det(Γ) = | det(A)| =
√

det(ATA), (2.2)

with A being any basis of R
n/

Γ. This definition corresponds to calculating the
volume of the fundamental domain in Rn, which can be proven in the case of non-
orthogonal bases by making use of Cavalieri’s principle. Note moreover that the
definition is invariant of the basis A used, since det(B) = ±1 for B ∈ GLn(Z). As
det(A-1) = 1

det(A) , we have that the determinant of the dual lattice is given by

det(Γ∗) =
∣∣∣∣∣ 1
det(A)

∣∣∣∣∣ = 1
det(Γ) .

Let us motivate the upcoming theory. Consider again Figure 2.3. The flat torus,
as we will soon see, does not have any stretched distances. How can that be if it is
still the result of a rolling up of a lattice? The question of how exactly to perform
the rolling up was unknown until Nash[18], who showed that it can actually be done
without stretching distances. The resulting flat torus looks like the cover of this
thesis.

10



2. Preliminary theory

A special type of flat torus which we will consider in Chapter 6 is the one whose
lattice Γ has a diagonal basis matrix. These will be called rectangular tori.

To ponder what kind of object a flat torus is, and what it means for two flat tori
to be equivalent, we need the contents of the next chapter. In short we will see that
lattices characterise flat tori up to orthogonal transformations:

“set of flat tori” =

(
GLn(R)/

GLn(Z)

)/
On(R).

11
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3
The flat torus as a Riemannian

manifold

A flat torus is properly understood in the context of Riemannian geometry. In
particular we need to define a geometric structure that is general enough to explain
what is special about the inherent geometry of a flat torus. Without this we are
unable to prove Theorem 3.2, which is central to the results discussed in Chapter 5
and Chapter 6. For a reminder of the differential geometry we make use of in this
chapter, see Appendix A.

The space Rn with the natural topology induced by the metric g(v, u) = uTv is
a smooth manifold, in fact it is a smooth Lie group. The atlas consists of a single
chart which covers all of Rn. Given a lattice Γ, seen as a discrete subgroup of Rn, we
ask the question of whether a torus R

n/
Γ also can be seen as a C∞-manifold, and

whether there is some way to transport the Euclidean metric down to the torus so
that we get a Riemannian manifold. To give an answer, we consider here the general
treatment of a Riemannian manifold ‘quotiented’ by a discrete group action.

3.1 The flat torus as a smooth quotient manifold
Let us first discuss the topology of the torus. It is given the so called quotient
topology, wherein its open sets are defined so as to make the quotient map

π : Rn → Rn/
Γ

x 7→ π(x) = [x].

continuous. Specifically, a subset P ⊂ R
n/

Γ is called open if and only if π-1(P )
is open in Rn.

From the theory of smooth quotient manifolds, discussed in more detail in Ap-
pendix A.1, we have the following.

Theorem A.3 (Discrete quotient manifold theorem).
Whenever G is a discrete group whose action on the C∞-manifold M is free
and proper, there is a unique smooth structure of M

/
G

that together with the
quotient topology makes it a C∞-manifold. In more detail the structure is such
that each point p ∈M

/
G

is inside a connected neighbourhood P ⊂M
/
G

whose
projection preimage π-1(P ) = ⋃

Wα, where the Wα are open and connected and

13



3. The flat torus as a Riemannian manifold

when used to restrict the projection as π|Wα they make it a diffeomorphism onto
P .
The fact that the chart transition maps are diffeomorphisms imply that they are,

in particular, bijective and therefore the dimension ofM
/
G

is the same asM . This
is important. In fact, Theorem A.3 provides a way in which to construct many
examples of n-dimensional manifolds.

We wish to apply this result to the torus, in that way turning it into a C∞-
manifold. It happens that any discrete subgroup G of a Lie group M (like the
lattice) acts freely and properly by left translations.

Theorem A.4.
Let M be a Lie group and G ⊂ M a discrete subgroup. The left translation
action M 3 x 7→ gx ∈M by g ∈ G is free and proper on M .

Hence we can now safely establish that the torus given as R
n/

Γ, by some lattice
Γ, is a well defined C∞-manifold. Indeed, Γ is clearly a discrete subgroup of the Lie
group Rn; every two distinct points of Γ are a finite distance apart. Note that we
do not call the torus flat as of yet, this will come later when we discuss metrics.

Let us investigate exactly how the manifold looks and operates. Let x ∈ Rn. In
each equivalence class p = π(x) we can find the root representative κp ∈ p which
is the unique element of p that lies in the fundamental domain RΓ. With this root
representative we can write any other element in the equivalence class p as Γ + κp.
It is true that also κp can be written this way, but uniquely as 0 + κp.

Let us recall the notion of charts and atlases of a manifold. We must around every
point in our manifold be able to find an open neighbourhood and a corresponding
invertible chart map which maps the neighbourhood into a subset of Rn so that this
map and its inverse are both continuous. Now since we can cover Rn with a single
chart equal to (Rn, id), we wonder if we can do the same on our torus. Unfortunately
the answer is no, but the reason why is interesting enough to warrant a discussion.

The first guess is to take as our candidate the projection restricted to our funda-
mental domain

π|RΓ : RΓ → Rn/
Γ.

The chart map would then pick out the root representative of a point on the torus.
A restriction really means that π|RΓ= π ◦ i where i : RΓ ↪→ Rn is the inclusion map.
As such the space RΓ is a topological space in its own right, its so called subspace
topology being defined by sets S being open if and only S is the intersection of RΓ
with an open set in Rn; S = RΓ ∩ U , U open in Rn.

Like we just saw at the start of this section 3.1, the map π is continuous, there-
fore so is π ◦ i. The composition is also bijective, in contrast to π, since a root
representative is uniquely associated to a point on the torus.

As our chart map, consider therefore the inverse h := (π|RΓ)-1 = (π ◦ i)-1. See
Figure 3.1 for a picture of the situation. Thus h is bijective and h-1 is continuous by
definition. The problem is that h itself is not continuous, so it is not an acceptable
chart map.

To see why, note that we must find some open set C ⊂ RΓ such that its preimage
with respect to h, namely h-1(C) = (π ◦ i)(C), is not open in the topology of R

n/
Γ.

14



3. The flat torus as a Riemannian manifold

Figure 3.1: A supposed global chart map h, mapping the entire torus to a subset
RΓ of Rn. The topological space RΓ gets sent by i to R2 before being sent by π
to the topological torus. Three different topologies are at play. The gluing is also
illustrated, but it is important here to remember that RΓ is only a topological space
- not the torus itself!

By definition, a set B is open in the topology of R
n/

Γ if and only if π-1(B) is open
in Rn. Thus it remains to see whether we can find an open set in RΓ such that
π-1((π ◦ i)(C)) = i(C) is not an open set in Rn.

The idea is to take a set which is inherently linked to the particular wrapping
needed to create the torus from the fundamental domain. As such, let C = RΓ∩Bε,
where Bε is the open ball of very small radius ε > 0 centered at the origin. See
Figure 3.2. This is by definition clearly an open set in RΓ. However, the inclusion
i(C) = C is not open in Rn since it contains a 2ε-part of ∂RΓ. Thus h is not
continuous.

We may however construct an atlas by taking our set C as one chart, while adding
two other charts which we get from making cuts along parallel lines inside RΓ. See
Figure 3.3. Note that this means that unlike Rn, the torus is a closed manifold,
since every cover of the torus has this finite subcover and there is no boundary to
speak of from the local perspective (i.e. that of an ant) on the torus.
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3. The flat torus as a Riemannian manifold

Figure 3.2: The set RΓ ∩ Bε is open in the subset topology of RΓ but not in the
standard topology of Rn.

Figure 3.3: Three charts which together make up an atlas of the topological torus.
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3. The flat torus as a Riemannian manifold

3.2 Inheritance of the Euclidean metric
While now in possession of a smooth structure, we have yet to construct a geomet-
rical one. The goal of this chapter is to prove that the torus R

n/
Γ is a Riemannian

manifold, that it has a geometrical structure in the form of a Riemannian metric.
Let us first recall some definitions, we refer to Appendix A.2 if they make no sense.

A Riemannian metric g on a C∞-manifold is a (0,2)-tensor field satisfying for
all vector fields X, Y ∈ Γ(TM)

(i) g(X, Y ) = g(Y,X),
(ii) Y 7→ g(X, Y ) is a C∞-isomorphism,
(iii) g(X,X) > 0 for all X ∈ Γ(TM) \ {0}.

The second condition is a non-degeneracy condition which guarantees the existence
of the musical isomorphisms [ : X 7→ X[ := g(X, •) and ] : ω 7→ ω] ∈ Γ(TM) s.t.
g(ω], Y ) = 〈ω, Y 〉, where the 1-form ω ∈ Γ(TM∗).

A C∞-manifoldM equipped with a Riemannian metric g is called a Riemannian
manifold, which we denote by (M, g).

A local diffeomorphism ϕ from and to Riemannian manifolds (M, g) → (N, g′)
is called a local isometry if the metric gets pulled back by ϕ, i.e. g = ϕ∗g′. If a
manifold is in local isometry with Euclidean space then we say that this manifold
is flat. One can show that this definition of flatness is equivalent to the Riemann
curvature tensor vanishing.

Lemma A.5.
If ϕ : M → N is a smooth covering map from and to smooth manifolds, then
ϕ∗,x is an isomorphism for every x ∈M .

Our map π : Rn → Rn/
Γ is such a smooth covering. By the lemma we thus have

π∗,x isomorphic for every x ∈ Rn. This is key - the metric on Rn descends to R
n/

Γ
since we can now set for every p ∈ R

n/
Γ,

_
gp(X, Y ) := gx((π∗,x)-1X, (π∗,x)-1Y ),

where X, Y ∈ TpR
n/

Γ and x ∈ π-1(p). But the expression on the right is precisely
how we define the pullback, setting u := (π∗,x)-1X, v := (π∗,x)-1Y we see that

gx(u, v) = _
gp(π∗,xu, π∗,xv) = (π∗_g)x(u, v)

implying that gx = (π∗_g)x for every x ∈ Rn. Consequently g = π∗
_
g as (0, 2)-tensor

fields. In other words, the very definition of the metric _
g ensures that it is flat.

However, we are not sure that this is well defined since there could be two points
x, y say in overlapping neighbourhoods U 3 x ∈ U ∩ V︸ ︷︷ ︸

6=∅

3 y ∈ V both with π(x) =

p = π(y). This would in turn possibly give us trouble in defining gπ-1(p) since
(π∗,π-1(p))-1 could mean both (π∗,x)-1 and (π∗,y)-1.

If the reader is satisfied by simply reading that we do not need to worry and that
_
g is in fact well defined, then she can stop here and move on to the next section on
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3. The flat torus as a Riemannian manifold

the analysis of when two tori are isometric. Otherwise we must turn our attention
to some more preliminaries.

By (A.9) we see that the Euclidean metric tensor g in Rn can be written

g = (ωidxi)⊗ (ω′jdxj) = ωiω
′
jdx

i ⊗ dxj,

and since

gij = g( ∂

∂xi
,
∂

∂xj
) = ωkω

′
l(dxk ⊗ dxl)(

∂

∂xi
,
∂

∂xj
) = ωkω

′
l〈dxk,

∂

∂xi
〉〈dxl, ∂

∂xj
〉 = ωiω

′
j

this implies that g = gijdx
i ⊗ dxj. But recall that the Euclidean metric tensor is

just the identity gij = δij and therefore we arrive at

g =
n∑
i=1

dxi ⊗ dxi,

which will be of use to use to us shortly.

Lemma 3.1.
The pullback commutes with tensor products and the differential. Therefore the
Euclidean metric is invariant under pullbacks. If ϕ : M → N is a smooth map
from and to smooth manifolds then

(i) ϕ∗(F ⊗G) = ϕ∗F ⊗ ϕ∗G,
(ii) ϕ∗(dyi) = d(ϕ∗yi), for y ∈ V ⊂ N with chart map y : V → Rn.
(iii) l∗g = g, where l is the translation by some c ∈ Rn.

Proof. We follow our nose.

(ϕ∗(F ⊗G))x(X1, . . . , Xs+q) = (F ⊗G)ϕ(x)(ϕ∗,xX1, . . . , ϕ∗,xXs+q) =
= Fϕ(x)(ϕ∗,xX1, . . . , ϕ∗,xXs)Gϕ(x)(ϕ∗,xXs+1, . . . , ϕ∗,xXs+q) =
= (ϕ∗F )x(X1, . . . , Xs)(ϕ∗G)x(Xs+1, . . . , Xs+q) =
= ((ϕ∗F )x ⊗ (ϕ∗G)x)(X1, . . . , Xs+q),

and we have shown (i).
Showing (ii) is again a matter of checking definitions. Note that while yi :

V → R we have ϕ∗yi = yi ◦ ϕ : ϕ-1(N) → R, which is a coordinate function of
some chart map of M . Thus for some x ∈ π-1(V ), take X ∈ TxM . It holds that

〈d(ϕ∗xi)x, X〉 = 〈d(xi ◦ ϕ)x, X〉 = X(xi ◦ ϕ).

On the other hand we have

〈(ϕ∗dxi)x, X〉 = 〈dxiϕ(x), ϕ∗,xX〉 = ϕ∗,xX(xi) = X(xi ◦ ϕ),

whereby we receive (ii).
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3. The flat torus as a Riemannian manifold

We now apply (i) and (ii) to show (iii).

l∗g = l∗
n∑
i=1

dxi ⊗ dxi =
n∑
i=1

l∗dxi ⊗ l∗dxi =

=
n∑
i=1

d(xi ◦ l)⊗ d(xi ◦ l) def. of l=
n∑
i=1

d(xi + ci)⊗ d(xi + ci) =

=
n∑
i=1

dxi ⊗ dxi = g.

Take distinct x, x′ ∈ Rn and suppose π(x) = π(x′) = p ∈ R
n/

Γ. That means
they are in the same equivalence class by left translation of Γ, i.e. x′ = γ + x for
γ ∈ Γ. Let us denote this map by l : Rn 3 x 7→ γ + x ∈ Rn so that l(x) = x′. By its
definition π is thus agnostic to l in the sense of π = π ◦ l, and therefore we get

π∗,x = πl(x)∗ ◦ l∗,x = πx′∗ ◦ l∗,x (3.1)

for every x ∈ Rn. Let us now show that _
gπ(x′)(X, Y ) = _

gπ(x)(X, Y ) for X, Y ∈
Tp
Rn/

Γ.

_
gπ(x′)(X, Y ) l◦l-1=id= gl(x)(l∗,x ◦ (l∗,x)-1 ◦ (πx′∗)

-1X, l∗,x ◦ (l∗,x)-1 ◦ (πx′∗)
-1Y ) =

= gl(x)(l∗,x ◦ (πx′∗ ◦ l∗,x)
-1X, l∗,x ◦ (πx′∗ ◦ l∗,x)

-1Y ) (3.1)=

= gl(x)(l∗,x ◦ (π∗,x)-1X, l∗,x ◦ (π∗,x)-1Y ) (A.10)=

= (l∗g)x((π∗,x)-1X, (π∗,x)-1Y ) Lemma3.1=
= gx((π∗,x)-1X, (π∗,x)-1Y ) = _

gπ(x)(X, Y ).

We can as such rest assured that the metric descends from (Rn, g) down to the
flat torus

T
n

Γ :=
(
Rn/

Γ,
_
g
)

in a well defined way so as to make the resulting metric flat.

3.3 Isometry of flat tori

Two Riemannian manifolds (M, g), (M ′, g′) are said to be isometric if there exists
a (global) diffeomorphism ϕ : M → M ′ such that g = ϕ∗g′. With (A.10) we can
write the statement g = ϕ∗g′ more precisely as

gx(X, Y ) = (ϕ∗g′)x(X, Y ) = g′ϕ(x)(ϕ∗,xX,ϕ∗,xY ),

for X, Y ∈ TxM and any x ∈M .
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3. The flat torus as a Riemannian manifold

Figure 3.4: The idea of Theorem 3.2.

Theorem 3.2 (Flat tori are equal up to congruence of their lattices).
Two flat tori T nΓ and T nΓ′ are isometric if and only if Γ′ is congruent to Γ.

Proof. For this proof we shall denote points in T
n

Γ by [x] and points in T
n

Γ′ by
[x]′. Let us start by assuming the lattices are congruent, that is Γ′ = CΓ for
some C ∈ On(R). Take x ∈ Rn, the only reasonable map to consider is C itself,

C : [x] = {y : y = γ + x, γ ∈ Γ} 7→ [x]′ = C[x] = {y : y = γ + Cx, γ ∈ CΓ}

which is invertible. Any invertible linear map between finite-dimensional vector
spaces is moreover always a diffeomorphism.

We are left to show that _
g = ψ∗

_

g′. To this end let us take [x] ∈ T
n

Γ and
vectors X, Y of T[x]T

n

Γ . Then we are looking to compare

_
g[x](X, Y ) = gx((π∗,x)-1X, (π∗,x)-1Y )

with

(ψ∗
_

g′)[x](X, Y ) =
_

g′[x]′(ψ∗,[x]X,ψ∗,[x]Y ) =
= gx(((π′∗,x)-1 ◦ ψ∗,[x])X, ((π′∗,x)-1 ◦ ψ∗,[x])Y ).

But recall the proof of Lemma A.5; we have since ψ is a diffeomorphism that the
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3. The flat torus as a Riemannian manifold

pushforward ψ∗,[x] is an isomorphism. Therefore the following diagram commutes

TxRn

T[x]T
n

Γ T[x]′T
n

CΓ

π∗,x
π′∗,x

ψ∗,[x]

and so (π′∗,x)-1 ◦ ψ∗,[x] = (π∗,x)-1.
Now we wish to show the other direction, suppose that the two tori T nΓ , T

n

Γ′

are isometric. This means that ψ is a diffeomorphism and _
g = ψ∗

_

g′. Intuitively
we can say that the map preserves the geometry in the sense of distances and
angles, we need to lift this idea from the tori to the Euclidean space. First note
that for the charts (U, φ) and (U ′, φ′), φ′ ◦ ψ ◦ φ-1 : Rn → Rn is necessarily an
isomorphism, and therefore it is an invertible linear map that we denote by C.
That _

g = ψ∗
_

g′ means

gx((π∗,x)-1X, (π∗,x)-1Y ) = gx(((π′∗,x)-1 ◦ ψ∗,[x])X, ((π′∗,x)-1 ◦ ψ∗,[x])Y ),

for all x ∈ Rn and X, Y ∈ T[x]T
n

Γ . Therefore we must have ψ∗,[x] = π′∗,x ◦ (π∗,x)-1

and this means that ψ∗,[x] is an isomorphism.
There is a natural identification between points (or vectors) of Rn and vectors

of its tangent space T0Rn. Thus for two vectors v′, w′ ∈ RΓ′ ⊂ Rn we have
v′

id= (π′∗,0)-1X ′, w′
id= (π′∗,0)-1Y ′ for some X ′, Y ′ ∈ T[0]′T

n

Γ′ . Since C is an invertible
map we also have v′ = Cv,w′ = Cw for some vectors v, w ∈ RΓ which in turn
are identified as v id= (π∗,0)-1X,w

id= (π∗,0)-1Y for X, Y ∈ T[0]T
n

Γ . Consequently
we have the following commutative diagram

T[0]T
n

Γ T[0]′T
n

Γ′

T0Rn
id= Rn Rn id= T0Rn

ψ∗,[0]

(π∗,0)-1 (π′∗,0)-1

C

which implies that C = (π′∗,0)-1 ◦ ψ∗,[0] ◦ π∗,0. We can therefore see that X ′ =
ψ∗,[0]X and Y ′ = ψ∗,[0]Y . Indeed for instance

(π′∗,0)-1X ′ = v′ = Cv = C(π∗,0)-1X = (π′∗,0)-1 ◦ ψ∗,[0]X.

Hence by isometry of the tori,

vTCTCw = (v′)Tw′ = g0(v′, w′) = g0((π′∗,0)-1X ′, (π′∗,0)-1Y ′) =
= g0((π∗,0)-1X, (π∗,0)-1Y ) = vTw,

implying that CTC is just the identity. We are done.

As Riemannian manifolds then, flat tori are different up to congruence of their
lattices. By virtue of this being an ‘if and only if’ it gives us the characterisation
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3. The flat torus as a Riemannian manifold

we are looking for. A flat torus is defined by its lattice up to congruence and so1,

“set of flat tori” =

(
GLn(R)/

GLn(Z)

)/
On(R).

In response to this we can define a notion of basis matrix for the torus by extending
the notion of basis for a lattice. A matrix A′ is a basis for the flat torus T nΓ if it
can be written A′ = CA for any C ∈ On(R), where A is a basis for the lattice Γ.

To finish this section we recall Proposition 2.5 which says that two lattices are
congruent if and only if their respective dual lattices are. Immediately this gives the
following corollary to Theorem 3.2.

Corollary 3.3.
Two flat tori T nΓ and T nΓ′ are isometric if and only if (Γ′)∗ is congruent to Γ∗.

3.4 The Laplace operator on a Riemannian man-
ifold

It is appropriate at this point to define the Laplace-Beltrami operator (also
called Laplacian) of a function on a Riemannian manifold. This section serves
simply as a reminder, the precise construction of the Laplacian is given in Appendix
A.3. Having both (A.11) and (A.13) in mind, the Laplacian is given as

∆ := div ◦ grad : C∞(M)→ C∞(M)
f 7−→ ∆f = div(gradf).

Locally in a chart,

∆f = 1√
|g|

∂

∂xi
(
√
|g|(gradf)i) = 1√

|g|
∂

∂xi
(
√
|g|gik ∂f

∂xk
).

Additionally, the following properties hold given any smooth functions f, g and
a ∈ R:

(i) ∆(fg) = ∆fg + f∆g + 2g(grad(f), grad(g)),
(ii) ∆(af + g) = a∆f + ∆g.

At this stage we are ready to start to consider eigenvalue equations on Riemannian
manifolds. It might be sightly anti-climactic at this point to hear that we shall
restrict this discussion to the case of flat tori immediately, but recall that we never
promised to do anything more. The reason for this restriction is rooted in the
complexity of the general theory; in order for the text to be accessible we would
need to develop this stuff over several additional pages while also leaving out the
proofs of certain fundamental results.

1Here there exist different notational conventions, where different authors take the quotient from
the left if the map characterising the difference lands on the left. We make no such distinction;
taking always the quotient on the right.
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4
The eigenvalue equation on a flat

torus

The Helmholtz equation describing the vibration modes of a clamped, elastic mem-
brane takes the form

−∆A = k2A, where k is the wave number and A is the amplitude.

In one dimension it describes a vibrating string with fixed end points. In two
dimensions we may consider a circular domain whose boundary is similarly fixed.
In polar coordinates the solutions received after a separation of variables takes the
form of products of

sin(nθ), cos(nθ) and Jn(km,nr).

The Jn(km,nr) are Bessel functions. These solutions are the modes of vibration of
a circular drumhead. Is it possible using these vibration modes to hear how big
the drumhead is? More generally, given any shape of drumhead and corresponding
vibration modes, can we hear its shape? Is the problem even well-defined?

Figure 4.1: Some eigenmodes of a disk-shaped domain, taken from
@https://www.acs.psu.edu/drussell/Demos/MembraneCircle/Circle.html.

It is clear that the problem we wish to construct is one involving functions which
are periodic in a way that is generalised from periodic functions on R. The natural
extension of periodicity for functions in R is to consider functions f with the property
f(x+z) = f(x) for all x ∈ Rn and z ∈ Zn. More generally, we might as well consider
f(x + γ) = f(x) for all γ in some lattice Γ ⊂ Rn. This is fascinating because,
supposing these f are also smooth, then these functions are precisely the functions
on Rn which correspond to smooth functions

_

f on the torus T nZn . In other words we
should examine functions on the flat torus T nΓ if we wish to extend the discussion of
vibration modes and their impact on shapes of drums to multiple dimensions.
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4. The eigenvalue equation on a flat torus

4.1 Recasting to Euclidean space

On a Riemannian manifold (M, g) we consider the

Eigenvalue problem

Find all λ ∈ R for which there exists some nonzero function f ∈ C∞(M) such
that

−∆f = λf (4.1)

The minus sign is chosen by convention. The eigenvalues λ correspond to the
wavenumbers of different modes of vibration of the membrane.

Thus for the flat torus M = T
n

Γ we want to find real eigenvalues λ and nonzero
smooth functions

_

f satisfying −∆
_

f = λ
_

f on R
n/

Γ. Can we to any function
_

f on the
torus get a unique representative function f on Rn, so as to flip the problem (4.1)
to Rn? Indeed we can, by pulling

_

f back through the natural projection. Consider
the function f ∈ C∞(Rn) defined by

f := π∗
_

f =
_

f ◦ π : Rn → R, (4.2)

where
_

f ∈ C∞(T nΓ ) is any function on the torus and π : Rn → T
n

Γ the natural
projection considered in Chapter 3.1. The function f is uniquely associated to

_

f
due to π being unique. Additionally f has the special property of being Γ-periodic
in the following sense; f(x + γ) =

_

f(π(x)) = f(x) for all γ ∈ Γ, and we write
f(x+ Γ) = f(x).

As a representative domain consider RΓ, the closure in Rn of the fundamental
domain, and set for every f =

_

f ◦π the restriction f := f |RΓ
= f ◦ i, where i : RΓ ↪→

Rn is the inclusion map. The inclusion map for a set is unique, so f is the function
on RΓ uniquely associated to

_

f .
Thus for every function

_

f ∈ C∞(T nΓ ) there is an associated unique function1

f ∈ C∞Γ
(
RΓ
)

:={f ∈ C∞
(
RΓ
)

: f(x) = f(x+ γ)
for all γ ∈ Γ such that x+ γ ∈ RΓ,

and f remains smooth when
extended periodically to Rn}.

Hence it is equivalent to consider the

1We have written simply f in place of f̌ = f |RΓ
, and will continue to do so for notational

convenience.
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4. The eigenvalue equation on a flat torus

Eigenvalue problem for the torus in Euclidean space

Find all λ ∈ R for which there exists some nonzero function f ∈ C∞Γ
(
RΓ
)

such that−∆f = λf

f(x) = f(x+ γ) for all x ∈ ∂RΓ, γ ∈ Γ such that x+ γ ∈ RΓ
(4.3)

The equivalence of these two perspectives, between the flat torus and its pullback
representation in Rn (i.e. its fundamental domain RΓ), allows us to define any kind
of function space we like on the flat torus by simply transferring from RΓ what
we already know in Euclidean space. We already discussed smooth functions, that
C∞(T nΓ ) ∼= C∞Γ

(
RΓ
)
, and for sets of integrable functions the case is even easier due

to the following definition of integral of a function f on the torus;∫
TnΓ

f :=
∫
RΓ
f(x) dx.

Therefore L1(T nΓ ) is identified directly with L1(RΓ), and the same is true that any
Lp(T nΓ ) ∼= Lp(RΓ), p ∈ [1,∞). In addition, theorems like Lebesgue’s dominated
convergence are inherited easily. Thus we shall henceforth perform all analysis in
the fundamental domain and transfer deduced results onto its corresponding flat
torus.

4.2 Well-posedness on the fundamental domain
To see that (4.3) is a well defined problem, let us recast it to a variational form.
Multiply by g ∈ C∞Γ

(
RΓ
)
on both sides and integrate over the domain. Applying

the divergence theorem we get∫
RΓ
∇f(x) · ∇g(x) dx =

∫
∂RΓ
∇f · ng dS + λ

∫
RΓ
f(x)g(x) dx.

We can make a change of variables in the surface integral to transform the domain
to RZn = [0, 1]n. Recall the volume Vol(T nΓ ) defined by (2.2) in Chapter 2. It is
given by

Vol(T nΓ ) := det(Γ) = | det(A)|,

with A being any basis of T nΓ . Hence,∫
∂RΓ
∇f · ng dS = Vol(T nΓ )

∫
∂[0,1]n

∂f

∂xi
nig dS =

= Vol(T nΓ )
n∑
i=1

∫
∂[0,1]n\[0,1]i

∂f

∂xi
g − ∂f

∂xi
g dS = 0,

since for any given n − 1 dimensional side i we have ni = (0, 0, . . . , 0, ±1︸︷︷︸
#i

, 0, . . . , 0)

while f and g are periodic.
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4. The eigenvalue equation on a flat torus

This last step is essential to our analysis and is deserving of a remark. Usually
the boundary part is killed off by imposing Dirichlet or Neumann conditions on the
boundary of (4.3). As such one usually speaks, with regards to well-posedness of
eigenvalue problems, of ‘Dirichlet-’ and ‘Neumann-eigenvalues’. Yet as a result of
the very specific Lipschitz2 fundamental domain associated to a flat torus, we are
able to do much the same with periodic boundary conditions.

Thus, we seek f ∈ H1(RΓ) := {u ∈ L2(RΓ) : ∇u ∈ L2(RΓ)} such that∫
RΓ
∇f · ∇g dx = λ

∫
RΓ
fg dx (4.4)

for all g ∈ H1(RΓ). The Sobolev space H1(RΓ) is needed to make the integral on
the left-hand side well defined; its inner product is given by

〈f, g〉H1(RΓ) :=
∫
RΓ
∇f · ∇g dx+

∫
RΓ
fg dx.

Thus, by Hölder’s inequality we consequently have∫
RΓ
∇f · ∇g dx ≤ ‖∇f‖L2(RΓ) ‖∇g‖L2(RΓ) <∞,

which would not be true if f, g ∈ L2(RΓ). InH1(RΓ) the problems (4.4) and (4.3) are
equivalent in a distributional sense, i.e. in their respective integral representations
for all g ∈ H1(RΓ), by virtue of the divergence theorem.

In this weak form (4.4) we can show that there exists solutions. We denote by

Spec(T nΓ ) := {λk} = {λ1, λ2, . . . }

the spectrum of the problem (4.3) defined by the values λ ∈ R for which there are
nontrivial solutions f ∈ H1(RΓ) to (4.4), called eigenfunctions. For each eigenvalue
λk ∈ Spec(T nΓ ) there is a set of eigenfunctions associated to λk called the eigenspace
of λk, denoted by

Ker(∆ + λkI) := {f ∈ H1(RΓ) : (4.4) holds for λ = λk},

where I : H1(RΓ)→ H1(RΓ) is the identity operator. The dimension of Ker(∆+λkI)
is always finite (by Theorem B.1) and denoted by mk, the multiplicity of λk.

Let us take account of some very specific properties owing to (4.4); these will
fulfil the requirements for the invocation of Theorem B.1. Taking V = H1(RΓ) and
H = L2(RΓ) we note that (4.4) can be written as

a(f, g) = λ〈f, g〉H ,

for the symmetric bilinear form a(f, g) :=
∫
RΓ
∇f · ∇g dx in V . Such a form is

continuous if a(f, g) ≤ c ‖f‖V ‖g‖V for some c ∈ R and all f, g ∈ V , which is clearly
satisfied by our form for c = 1 through Hölder’s inequality. By weakly coercive we
mean that the expression

a(g, g) + λ0 ‖g‖2
H ≥ α ‖g‖2

V

2A domain whose boundary can be thought of as the graph of a Lipschitz function.
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4. The eigenvalue equation on a flat torus

is satisfied for some α > 0 and some λ0 ∈ R. This property holds as well, with
equality for α = λ0 = 1. However we may do even better; picking α = λ0 > 0 close
to 0 we see that a(g, g) + λ0 ‖g‖2

H = ‖∇g‖2
H + λ0 ‖g‖2

H ≥ λ0 ‖g‖2
V , whence we may

pick λ0 > 0 as small as we like.
Furthermore, the sets are in continuously dense embeddings with each other as

V ↪→ H ↪→ V ∗ and V ‖•‖H = H.

We call such a collection {V,H, V ∗} a Hilbert triplet. To be continuously embed-
ded simply means for {fk} ⊂ V and f ∈ V that fk

‖•‖V→ f in V implies fk
‖•‖H→ f in

H. Not only is V ↪→ H, but due to Rellich’s theorem, we have a compact embed-
ding V ↪→c H meaning that any sequence {uk} bounded in V has a subsequence
converging in the norm of H to an element of V .

All of this spent effort is worth its price, we satisfy

Lemma B.1 (Spectral theorem for bilinear forms).
Consider a Hilbert triplet {V,H, V ∗} with H separable and V compactly embed-
ded into H. Given a symmetric, continuous and weakly coercive bilinear form
a(•, •) we have

(i) The spectrum σ(a) ⊂ (−λ0,∞) is infinite, yet it can be ordered in a
nondecreasing sequence {λk} where each eigenvalue appears a number
of times equal to its finite multiplicity. Also λk →∞.

(ii) H has an orthonormal basis of eigenfunctions {fk} ⊂ V ,

a(fk, fl) = λk〈fk, fl〉H = 0 for λk 6= λl.

Here σ(a) = Spec(T nΓ ). Explanations from where this result derives is given in
Appendix B, inspired by [19]. For similar results in the Riemannian framework, see
for instance [14].

The existence theorem Theorem B.1 is important. Without it we would not be
fully justified in searching for solutions to (4.4), since there might not have been any
to find. Now we may safely pass to investigating the spectrum and its eigenspaces.

4.3 Revealing the spectrum
Let us try to deduce how the eigenfunctions and corresponding eigenvalues must
look on a general flat torus T nΓ , where the lattice Γ ⊂ Rn. The periodicity at the
boundary is key; f(x) = f(x + γ) for all x on the boundary and γ ∈ Γ such that
their sum x+ γ is also on the boundary. We can show for the 1-dimensional lattice
bZ = SpanZ{b} with b ∈ R, that any element of

{e2πix/bn}n∈Z

solves − d2

dx2f = λf on R
/
bZ with λ = 4π2

(
n
b

)2
. These functions are b-periodic and

we will by the end of this section be convinced that they form an L2-orthogonal
basis of functions on R

/
bZ.
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4. The eigenvalue equation on a flat torus

Suppose for y ∈ Γ∗ that f(x) = g(yTx) for some 1-periodic g : R → R. This is
nice because for every γ ∈ Γ it holds that yTγ = z for some z ∈ Z, and hence

f(x+ γ) = g(yTx+ yTγ) = g(yTx+ z) = g(yTx+ z − 1 + 1) =
= g(yTx+ z − 1) = · · · = g(yTx) = f(x).

Taking g to be 1-periodic is simply another way of saying that g is a function on
R/
Z, and that it for constants cn ∈ R therefore takes the (heuristic) form

g(yTx) =
∑
n

cne
2πiyTxn =

∑
n

cne
2πi(ny)Tx =

∑
y∈Γ∗

cye
2πiyTx = f(x).

Indeed, we claim that any element of

{e2πiyTx}y∈Γ∗

solves −∆f = λf on T nΓ with λ = 4π2yTy = 4π2 ‖y‖2. Notice that this also covers
the eigenvalue λ = 0 in the sense that it is achieved by y = 0, and hence we may set
its corresponding eigenfunction as e2πi0 = 1. Furthermore, the functions in {e2πiyTx}
are smooth, Γ-periodic and they will form an L2-orthogonal basis of functions on
T
n

Γ , with orthonormality achieved by the set 1√
Vol(T nΓ )

e2πiyTx


y∈Γ∗

.

We remark that e2πiyTx ∈ C∞Γ
(
RΓ
)
implies that such a function solves the original

problem (4.3) in the classical sense. In other words, once we have weak solutions
we have strong solutions.

Let us start by seeing that e2πiyTx solves (4.3) for y ∈ Γ∗. For any j ∈ {1, 2, . . . , n},

− ∂2

∂x2
j

e2πiyTx = − ∂2

∂x2
j

e2πiyixi = 4π2y2
j e

2πiyTx

and so −∆e2πiyTx = 4π2 ‖y‖2 e2πiyTx as promised. Orthogonality of {e2πiyTx} in
L2(T nΓ ) is more tricky and we must spend some time to investigate the situation
on L2(RΓ).

The analysis is done through a consecutive simplification procedure, to the point
where we have eventually reduced the problem to 1 dimension. In this spirit let us
recall that RΓ is always an n-dimensional parallelepiped and that linear maps (i.e.
Jacobians of smooth maps) transform such parallelepipeds to other parallelepipeds.
Therefore let A be a basis of Γ and note for y ∈ Γ∗ that∫

TnΓ

e2πiyT• =
∫
RΓ
e2πiyTxdx =

∫
RΓ
e2πi(A-Tz)Txdx =

∫
RΓ
e2πizTA-1xdx =

= Vol(T nΓ )
∫
RZn

e2πizTx′dx′ = Vol(T nΓ )
∫
TnZn

e2πizT•. (4.5)
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4. The eigenvalue equation on a flat torus

Thus it becomes an straight forward exercise to show that
{

e2πiy
Tx√

Vol(TnΓ )

}
y∈Γ∗

is an

orthonormal basis for T nΓ if and only if {e2πizTx}z∈Zn is an orthonormal basis for T nZn .

Mini-appendix: distributions

Before proving the following theorem let us recall what we mean when describ-
ing a limit being true ‘in the sense of distributions’. Let Ω be any bounded,
open set in Rn. On Ω the set of smooth functions with compact support are
denoted by C∞0 (Ω). There is an appropriate notion of convergence which we
may endow C∞0 (Ω) with; namely for ϕk, ϕ ∈ C∞0 (Ω), we write ‘ϕk → ϕ in
C∞0 (Ω)’ if there is a compact set in Ω containing the support of every ϕk
while the convergence of any derivativea Dαϕk → Dαϕ is uniform in Ω. With
this (very strong) convergence we write D(Ω) for C∞(Ω), and call this set
the set of test functions. A distribution is defined as a linear functional
L : D(Ω)→ R which is continuous in the following sense:

〈L, ϕk〉 → 〈L, ϕ〉 whenever ϕk → ϕ in D(Ω).

One such distribution is the Dirac delta δ, defined by

〈δ, ϕ〉 = ϕ(0).

The set of distributions, denoted D′(Ω), is a linear space and we can add to it
a notion of ‘weak’ convergence. We say that Lk converges to L ‘in the sense
of distributions’, or ‘weakly’, if

〈Lk, ϕ〉 → 〈L, ϕ〉 for all ϕ ∈ D(Ω).

Lastly, for p ∈ [1,∞], we have the continuous embeddings Lp(Ω) ↪→ D′(Ω);
meaning that if uk → u in Lp(Ω) then uk → u in D′(Ω).

aHere, α = (α1, . . . , αn) is a multi-index with |α| ≥ 0.

Theorem 4.1 (Fourier basis on the torus).
The functions in {e2πixTγ}γ∈Γ∗ form an L2-orthonormal basis of the flat torus
T
n

Zn.

Proof. Let us show then by (4.5) that the set {e2πizTx}z∈Zn forms an orthonormal
system on the torus quotiented by the lattice Zn. Recall that an orthonormal
basis is a complete orthonormal system. Take the L2 inner product of e2πixTz
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4. The eigenvalue equation on a flat torus

and e2πixTz′ for z, z′ ∈ Zn,∫
[0,1]n

e2πixTze2πixTz′dx =
∫

[0,1]n
e2πixT(z−z′)dx =

∫
[0,1]n

e2πixT(
∑

k
(αk−α′k)ek)dx =

=
∫

[0,1]n
e2πi(

∑
k
(αk−α′k)xk)dx =

=
∫

[0,1]n\[0,1]l
e2πi(

∑
k 6=l(αk−α

′
k)xk)dx′

∫ 1

0
e2πi(αl−α′l)xl)dxl =

= 1
2πi(αl − α′l)

∫
[0,1]n\[0,1]l

e2πi(
∑

k 6=l(αk−α
′
k)xk)dx′ (e2πi(αl−α′l) − 1)︸ ︷︷ ︸

=0

=

= 0

by the fact that αl−α′l ∈ Z. That the functions are of L2 length 1 is easily seen
by a similar integration.

To show the system is complete is more complicated. We need to show
that the L2-closure Spanz∈Zn({e2πizTx})

L2

= L2([0, 1]n), or equivalently that the
orthogonal complement to Spanz∈Zn({e2πizTx}) is composed of only the zero.
This means that there is no nonzero f ∈ L2([0, 1]n) orthogonal in the L2-sense
to the system;

〈f, e2πizTx〉L2([0,1]n) = 0 ∀z ∈ Zn =⇒ f ≡ 0.

We reduce to the one-dimensional case by the following result.

Lemma 4.2.
If {umj}mj∈Z is an orthogonal basis in L2(0, 1), then {∏n

j=1 umj}m1,...,mn∈Z is
an orthogonal basis in L2([0, 1]n) = L2(0, 1)× ...× L2(0, 1).
Proof. We show only completeness of the orthogonal system since that is
all we need. Also, we only concern ourselves with dimension 2, as the rest
follow by recurrence.

Let F (y) =
∫ 1

0 f(x, y)um1(x)dx, where f ∈ L2([0, 1]2). Then for all
m1,m2 ∈ Z,

0 = 〈f, um1um2〉L2(0,1)×L2(0,1) =

=
∫ 1

0

∫ 1

0
f(x, y)um1(x)um2(y)dxdy =

∫ 1

0
F (y)um2(y)dy

=⇒ F (y) = 0, by completeness of {um2}.

But F (y) = 0 =⇒ f(x, y) = 0, by completeness of {um1} .

Hence, what we need to prove is that {e2πimx}m∈Z is complete in L2(0, 1). To
carry out this last step we use the fact that C∞0 (0, 1) is dense in L2(0, 1) to make
the further restriction of considering f ∈ C∞0 (0, 1). The idea is to combine the
facts that the Dirac delta δ acts as the identity in convolution with that it
can be approximated (in the sense of distributions) by linear combinations of
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4. The eigenvalue equation on a flat torus

{e2πimx}m∈Z. In order to get an appropriate notion of convolution we must
consider the odd extension of f ,

f(x) =

f(x), x ∈ (0, 1)
−f(−x), x ∈ (−1, 0)

Clearly f(x) = 0 ⇐⇒ f(x) = 0, and it is straight forward by∫ 1

−1
f(x)e2πimxdx = 2

∫ 1

0
f(x)e2πimxdx

to see that ∫ 1

0
f(x)e2πimxdx = 0 ⇐⇒

∫ 1

−1
f(x)e2πimxdx = 0.

We may then set up the convolution,

(f ∗ g)(x) =
∫ 1

−1
f(x− y)g(y)dy.

Consider now the function

hk(x) = Kk

(1 + cos(πx)
2

)k
,

where Kk is a constant such that
∫ 1
−1 hk(x)dx = 1. We have that hk(−1) =

hk(1) = 0 and hk(0) = Kk. Furthermore by the binomial theorem hk(x) is a
linear combination of functions in {e2πimx}m∈Z.

Figure 4.2: The function hk for some values of k.
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4. The eigenvalue equation on a flat torus

Now, as k increases the support of hk shrinks to x = 0 and therefore the value
of Kk must increase in tandem - to keep the area under the graph equal to 1.
In fact it holds that hk(x)→ δ in the sense of distributions. As f is in C∞0 (0, 1)
they may act as test functions for δ. Hence we finally receive the sought after
result by first assuming

∫ 1
0 f(x)e2πimxdx = 0 for all m ∈ Z;

0 = f(x) ∗ hk =
∫ 1

−1
f(x− y)hk(y)dy → f(x) ∗ δ = f(x)

hence f(x) = 0 and {e2πimx}m∈Z is complete.

We are not done before we have shown that any eigenfunction of (4.4) must be
written as a superposition of eigenfunctions in {e2πiyTx}y∈Γ∗ . Luckily, this is precisely
what the completeness of this set grants. Let us write 〈•, •〉2 for the inner product in
L2(RΓ). Now suppose f ∈ H1(RΓ) ⊂ L2(RΓ) solves (4.3) in the weak sense. Then,
by completeness, we may write

f(x) = 1√
Vol(T nΓ )

∑
y∈Γ∗
〈f, e2πiyTx〉2e2πiyTx in L2(RΓ).

Moreover, the series ∑〈f, e2πiyTx〉2e2πiyTx converges uniformly since e2πiyTx is smooth.
As a consequence we may differentiate term-wise due to Fubini’s theorem on differ-
entiation, so that

−∆f = λf =⇒
∑
y∈Γ∗
〈f, e2πiyTx〉2(−∆)e2πiyTx =

∑
y∈Γ∗
〈f, e2πiyTx〉2λe2πiyTx, (4.6)

in L2(RΓ). However, by now we know for a fact that −∆e2πiyTx = 4π2 ‖y‖2 e2πiyTx.
Consequently, by uniqueness of the Fourier coefficients of the function λf ∈ L2(RΓ),
the coefficients on the right and left of (4.6) all have to match up. As y changes
for every term while λ is constant, there can be only one nonzero Fourier coefficient
〈f, e2πiyTx〉2 such that the corresponding eigenvalue 4π2 ‖y‖2 on the left in turn equals
λ on the right; there is no other possibility. Hence for some y ∈ Γ∗,

f(x) = 〈f, e2πiyTx〉2e2πiyTx.

In other words, f must be in the span of the eigenfunctions {e2πiyTx} and thus there
is no eigenfunction outside said span existing on the torus.

We may conclude that a generic flat torus T nΓ has the following exhaustive spec-
trum and eigenspaces

Spec(T nΓ ) = {4π2 ‖y‖2 : y ∈ Γ∗},
Ker(∆ + 0) = SpanR{1},

Ker(∆ + λk) = Ker(∆ + 4π2 ‖y‖2) = SpanR{sin(2πxTy), cos(2πxTy)},
for some y ∈ Γ∗ \ {0}.
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4. The eigenvalue equation on a flat torus

4.4 Fourier series and Poisson summation

The periodicity of functions on the flat torus T nΓ also implies that flat tori constitute
a natural setting for an extension of Fourier analysis to multiple dimensions. As
usual we shall not distinguish between

_

f and f . We also keep the notation 〈•, •〉2 for
the inner product in L2(RΓ).

We seek to prove the Poisson summation formula in the general case where the
summation is done over a lattice Γ ⊂ Rn and its dual Γ∗. In a certain form we shall
discuss, it has a profound impact on characterising isospectrality, which will be of
great use to us in both Chapter 5 and Chapter 6. Here the formula takes the shape

∑
γ∈Γ

f(γ) = 1
Vol(T nΓ )

∑
y∈Γ∗

f̂(y),

where f ∈ L1(Rn). For any function f ∈ L1(Rn) we have its Fourier transform
defined by the Lebesgue integral

f̂(y) =
∫
Rn
f(x)e−2πixTydx.

Recall Theorem 4.1 and consider Bessel’s inequality whose proof is left as an
exercise:

1
Vol(T nΓ )

∑
y∈Γ∗
〈f, e2πiyTx〉2 ≤ ‖f‖2

2 .

Using these results one can show that any function f ∈ L2(RΓ) can be modified
on a set of Lebesgue measure 0 to be continuous and equal ∑y∈Γ∗ cye

2πiyTx, where
cy = 1

Vol(TnΓ )〈f, e
2πiyTx〉2. Thus for every x ∈ RΓ,

f ∈ L2(RΓ) =⇒ f(x) = 1
Vol(T nΓ )

∑
y∈Γ∗
〈f, e2πiyTx〉2e2πiyTx.

As a last remark on Theorem 4.1, note that there was nothing in the proof of
completeness that required f ∈ L2([0, 1]n) specifically. In fact since C∞0 ([0, 1]n) is
dense in any Lp([0, 1]n), p ∈ [1,∞), we have in particular by the same proof that

f ∈ L1(RΓ) =⇒ f(x) = 1
Vol(T nΓ )

∑
y∈Γ∗
〈f, e2πiyTx〉2e2πiyTx (4.7)

in L1(RΓ).

This means that
{

1
Vol(TnΓ )e

2πiγTx
}
γ∈Γ

is dense in L1(RΓ).
A question we didn’t ask ourselves until now is how to get a function on the torus

T
n

Γ if we start with a function f defined on Rn. There are basically two ways. The
first is to consider the formal sum whose convergence we shall not worry about yet∑

γ∈Γ
f(x+ γ).
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4. The eigenvalue equation on a flat torus

This function is periodic since x 7→ x + γ′ would simply permute the order of Γ in
the sum. The other way is to write∑

γ∈Γ∗
f̂(γ)e2πixTγ.

What Poisson summation tells us, is that the two approaches are essentially the
same.

Theorem 4.3 (Poisson summation formula).
Take f ∈ L1(Rn). Then for x ∈ RΓ the series∑

γ∈Γ
f(x+ γ)

converges (absolutely) in the L1(RΓ)-norm. The resulting function in L1(RΓ)
has the series expansion

1
Vol(T nΓ )

∑
y∈Γ∗

f̂(y)e2πixTy.

Proof. Convergence is easily checked once one appreciates that Rn is the disjoint
union

◦⋃
γ∈Γ RΓ−γ of fundamental domain translates. Indeed the series converges

to a function in L1(RΓ),∫
RΓ
|
∑
γ∈Γ

f(x+ γ)|dx ≤
∑
γ∈Γ

∫
RΓ
|f(x+ γ)|dx =

∑
γ∈Γ

∫
RΓ−γ

|f(x)|dx =

=
∫
Rn
|f(x)|dx <∞.

Now recall the discussion of (4.7). It implies by density that ∑γ∈Γ f(x+γ) ∈
L1(RΓ) can be written for cy = 1

Vol(TnΓ )〈
∑
γ∈Γ f(x+ γ), e2πixTy〉2 as

∑
γ∈Γ

f(x+ γ) =
∑
y∈Γ∗

cye
2πixTy in L1(RΓ).

Again, since ∑γ∈Γ f(x+ γ) lives in L1(RΓ) we may invoke Fubini’s theorem and
compute for all y ∈ Γ∗,

cy = 1
Vol(T nΓ )

∫
RΓ

( ∑
γ′∈Γ

f(x+ γ′)
)
e−2πixTydx =

= 1
Vol(T nΓ )

∑
γ′∈Γ

∫
RΓ−γ′

f(x+ γ′)e−2πixTydx =

= 1
Vol(T nΓ )

∫
Rn
f(x)e−2πixTydx = 1

Vol(T nΓ )
f̂(y).
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Hence for every x ∈ Rn

∑
γ∈Γ

f(x+ γ) = 1
Vol(T nΓ )

∑
y∈Γ∗

f̂(y)e2πixTy. (4.8)

Picking x = 0 in (4.8) we get the sought formula∑
γ∈Γ

f(γ) = 1
Vol(T nΓ )

∑
y∈Γ∗

f̂(y).

A choice of f = e−k‖•‖
2 with k > 0 yields∑

γ∈Γ
e−k‖γ‖

2
= 1

Vol(T nΓ )
∑
y∈Γ∗

(
π

k

)n/2
e−

π2‖y‖2
k

after a classical calculation of f̂ . The function is smooth and decays very rapidly at
infinity, so it most definitely is in L1(Rn). The exponent −k ‖γ‖2 on the left-hand
side is familiar to us if γ is in Γ∗. Exchanging Γ by its dual Γ∗ gives

∑
y∈Γ∗

e−k‖y‖
2

= Vol(T nΓ )
∑
γ∈Γ

(
π

k

)n/2
e−

π2‖γ‖2
k .

Letting now k = 4π2t for t ∈ (0,∞) finally yields
∑
y∈Γ∗

e−4π2‖y‖2t =
Vol(T nΓ )
(4πt)n/2

∑
γ∈Γ

e−
‖γ‖2

4t , (4.9)

where the left-hand side is called the partition function of the flat torus T nΓ .
The partition function in general sums those exponentials whose exponents are

the Laplace-eigenvalues of the manifold. Its name derives from the partition function
of statistical mechanics, where it relates microscopic- to macroscopic quantities of
a thermodynamical system[1]. We know from Theorem 4.3 that the series on both
sides of the equality converge.

4.5 Spectral implications of Poisson summation
For the partition function we can show

lim
t→0

∑
y∈Γ∗

e−4π2‖y‖2t =∞, and lim
t→∞

∑
y∈Γ∗

e−4π2‖y‖2t = 1.

Making the substitution w = e−4π2t ∈ (0, 1) in (4.9) gives us the so-called theta
function, or theta series, of the lattice Γ∗,

θΓ∗(w) =
∑
y∈Γ∗

w‖y‖
2
. (4.10)

Since we can quotient Rn by any lattice Γ we like, the theta function of a lattice
always converges.

With this in hand let us proceed to prove the following result
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4. The eigenvalue equation on a flat torus

Theorem 4.4 (Torus spectrum contained within theta series).
The theta series θΓ∗ of the dual lattice to a torus T nΓ determines its eigenvalues
and their multiplicities.
Proof. Let us make the substitution w = e−4π2t to work with the partition
function P (t) = ∑

y∈Γ∗ e
−4π2‖y‖2t instead of the theta function, since this makes

our proof easier. Everything which we will show for P (t) also holds for the
theta-series by virtue of this substitution.

Enumerating the spectrum Spec(T nΓ ) = {4π2 ‖y‖2 : y ∈ Γ∗} as

{0, 4π2 ‖y1‖2 , 4π2 ‖y2‖2 , . . . }

with ‖yi‖ < ‖yi+1‖ for i = 0, 1, . . . , we can write the partition function as

P (t) = 1 +
∞∑
i=1

mie
−4π2‖yi‖2t,

where mi is the multiplicity of the ith eigenvalue. Then for r ∈ R consider

ert(P (t)− 1) =
∞∑
i=1

mie
t(r−4π2‖yi‖2).

Since ‖y1‖ is less than every other length, if r < 4π2 ‖y1‖2 then r is less than
any eigenvalue and so in this case every exponent would be negative. Thus we
have

lim
t→∞

ert(P (t)− 1) =

0, r < 4π2 ‖y1‖2

∞, r > 4π2 ‖y1‖2 .

If on the other hand r = 4π2 ‖y1‖2 we can see that the first summand will have
exponent equal to 0 while the rest will be negative, so that limt→∞ e

rt(P (t)−1) =
m1. Note that this happens only when r is exactly 4π2 ‖y1‖2. Thus if we define
4π2 ‖y1‖2 to be the unique value r ∈ R so that limt→∞ e

rt(P (t) − 1) = m1, we
will get 4π2 ‖y1‖2 to be the correct first eigenvalue of the torus.

Since we now have the first eigenvalue as 4π2 ‖y1‖2, we can proceed by the
same argument to find the second 4π2 ‖y2‖2 by analysing

lim
t→∞

er
′t(P (t)− 1−m1e

−4π2‖y1‖2),

with varying values of r′ ∈ R. We continue in this way, incrementally, to receive
the kth eigenvalue by analysis of

lim
t→∞

ert
(
P (t)− 1−

k−1∑
i=1

mie
−4π2‖yi‖2

)
,

for r ∈ R.

Immediately we have the corollary
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4. The eigenvalue equation on a flat torus

Corollary 4.5 (Characterising isospectrality #1).
Two flat tori T nΓ and T nΓ′ are isospectral if and only if their dual lattices have the
same theta series;

θΓ∗(w) = θΓ′∗(w).

Proof. Isospectrality gives θΓ∗(w) = θΓ′∗(w). The other direction follows from
Theorem 4.4.

An important consequence to Corollary 4.5 is the spectral invariance of the volume
Vol(T nΓ ). It remains unchanged between tori having the same spectrum since such
tori have equal theta series, and so in (4.9) we may take the limit as t → 0+,
concluding that they have the same volume.

Corollary 4.6.
Two isospectral flat tori have the same volume.

We may glean additional knowledge about the spectrum from the right-hand side
of (4.9). The behaviour of

Vol(T nΓ )
(4πt)n/2

∑
γ∈Γ

e−
‖γ‖2

4t

in (4.9) as t→ 0+ uniquely determines the values in {‖γ‖ : γ ∈ Γ} in an analogous
manner to the proof of Theorem 4.4. Thus we have

Corollary 4.7 (Characterising isospectrality #2).
Two flat tori T nΓ and T nΓ′ are isospectral if and only if their lattices have the same
length spectra, i.e.

{‖γ‖ : γ ∈ Γ} = {‖γ′‖ : γ′ ∈ Γ′}.
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4. The eigenvalue equation on a flat torus
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5
Counterexamples in dimensions

16, 12 and 4

Historically, since Milnor[17], the search for non-spectrometric pairs of flat tori be-
came a race down to the lowest possible dimension, essentially due to Proposition
5.2. This proposition which we prove in the next section gives non-spectrometric
pairs in any dimension above some dimension where they have already been found.
The lowest dimension exhibiting these counterexamples was incrementally lowered
over the course of around forty years, from 16 in 1964, to 12 by Kneser[13] in 1967,
to 8 by Kitaoka [12] in 1977, and eventually down to 4 by Schiemann[20] in 1990.

5.1 Working with theta series in high dimensions
We know by Corollary 4.5 that two flat tori are isospectral if and only if the theta
functions of their corresponding dual lattices are the same. This fact motivates the
analysis in the following. In this section we follow [8], simply giving more details.
We shall give the 16- and 12-dimensional counterexamples provided by Milnor and
Kneser respectively.

Let us first consider some lattices which we use to create non-spectrometric tori
in higher dimensions. Let

Dn :=
{
δ ∈ Zn :

n∑
i=1

δi ∈ 2Z
}
,

where δi are the components of δ with respect to the standard basis (if nothing
else is said about the components in the following then we mean with respect to
the standard basis). This is a lattice since Dn = DZn, where D = (d1, . . . , dn) =
(e1 − en, e2 − en, . . . , en−1 − en, en−1 + en). Indeed, for α ∈ Zn

Dα =

n−2∑
i=1

αk︸︷︷︸
∈Z

ek

+ (αn−1 + αn)︸ ︷︷ ︸
∈Z

en−1 +
((

n−1∑
i=1
−αk

)
+ αn

)
︸ ︷︷ ︸

∈Z

en,

so that for δ = Dα
n∑
i=1

δi = 2αn ∈ 2Z.

Note that we really need to show that the columns are linearly independent, but we
will almost always skip this for brevity’s sake.
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5. Counterexamples in dimensions 16, 12 and 4

Given any lattice we can consider its translation by some vector, which formally
translates every point of the lattice along one unit of this vector. In essence such
a translate is also a lattice but one that we cannot write in the form AZn for some
A ∈ GLn(R) since the zero is removed. We will thus call these objects translates of
a lattice in order to avoid confusion. For a given lattice Γ we denote its translate
by t ∈ Rn by

Γt = Γ + t = {v ∈ Rn : v = γ + t, γ ∈ Γ}.
For example we will consider Dn + t, where ∑n

i=1 ti ∈ 2Z + 1. This translate gives
us the set of vectors whose components sum to an uneven integer

D̂n := Dn + t =
{
δ̂ ∈ Zn :

n∑
i=1

δ̂i ∈ 2Z+ 1
}
,

which has the same basis D but acts on vectors α ∈ Zn by Dα + t. We write
D̂n = DZn + t. The reader can check that this satisfies the definition of D̂n above.

The third lattice we shall consider here is the so called n-dimensional diamond
packing En, called thus by virtue of the fact that E3 has the structure of carbon
atoms in a diamond. It is defined1 by (for 1/2 = (1/2, . . . , 1/2))

En := Dn

◦
∪ D1/2

n
n even=

=
{
ξ ∈ Zn

◦
∪ (Z+ 1/2)n :

n∑
i=1

ξi ∈ 2Z
}
,

and is actually a lattice so long as n is even. Taking n ∈ Z note that 1/2 is in E4n
but not E2n, whereas its multiple vector 1 = 21/2 is in E2n.

We shall be interested in E8 and to see that it is a lattice we simply provide a
basis E8 and right multiply it by α ∈ Zn. Then,

E8α =



1/2 0 0 0 0 0 0 0
1/2 1 0 0 0 0 0 0
1/2 0 1 0 0 0 0 0
1/2 0 0 1 0 0 0 0
1/2 0 0 0 1 0 0 0
1/2 0 0 0 0 1 0 0
1/2 0 0 0 0 0 1 1
1/2 −1 −1 −1 −1 −1 −1 1


α =



1
2α1

1
2α1 + α2
1
2α1 + α3
1
2α1 + α4
1
2α1 + α5
1
2α1 + α6

1
2α1 + α7 + α8

1
2α1 − α2 − α3 − · · · − α7 + α8


(5.1)

so that setting ξ = E8α we get that
8∑
i=1

ξi = 2(α8 + 2α1) ∈ 2Z.

Note moreover that depending on whether α1 ∈ 2Z, for all i = 1, 2, . . . , 8, ξi is either
in Z or (Z+ 1/2).

In order to construct the theta functions of these lattices and to be able to
work with them, we next investigate how theta functions of lattices change under
simple set operations. After this we shall see how these theta functions can all be
constructed as superpositions of three particularly simple theta functions.

1 ◦
∪ means disjoint union.
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5. Counterexamples in dimensions 16, 12 and 4

Proposition 5.1 (Theta function building rules).
In the following, Γ1 and Γ2 are lattices or translates of lattices.

(i) For Γ1 ⊂ Rn1 and Γ2 ⊂ Rn2, where n1 +n2 = n ∈ Z, let Γ = Γ1
⊥
+ Γ2

(recall (2.1), this means γ ∈ Γ =⇒ γ = γ1 + γ2 where γ1 ∈ Γ1, γ2 ∈
Γ2 and γT

1γ2 = 0). Then

ΘΓ = ΘΓ1ΘΓ2 .

(ii) Let Γ = Γ1
◦
∪ Γ2 be a lattice, then

ΘΓ = ΘΓ1 + ΘΓ2 .

Proof. (i) Note that γ ∈ Γ takes the form γ = (γ1, γ2) = γ1 + γ2 and
thus ‖γ‖2 = ‖γ1‖2 + 2 γT

1γ2︸ ︷︷ ︸
=0

+ ‖γ2‖2. This implies that

ΘΓ(w) =
∑

γ1,2∈Γ1,2

w‖γ1‖2+‖γ2‖2 =

=
∑

γ1,2∈Γ1,2

w‖γ1‖2w‖γ2‖2 =

=
∑
γ1∈Γ1

w‖γ1‖2
∑
γ2∈Γ2

w‖γ2‖2 = ΘΓ1(w)ΘΓ2(w)

(ii) This follows by definition of disjoint union, the elements are either
in one lattice or the other and so

ΘΓ(w) =
∑
γ∈Γ

w‖γ‖
2

=

=
∑
γ1∈Γ1

w‖γ1‖2 +
∑
γ2∈Γ2

w‖γ2‖2 = ΘΓ1(w) + ΘΓ2(w).

Immediately we can show,

Proposition 5.2 (Ladder of non-spectrometry).
Suppose we are given a pair of non-spectrometric tori T nΓ∗ and T

n

(Γ′)∗ in dimension
n > 0. Then we can find a pair of non-spectrometric tori in dimension n+ 1.
Proof. Consider the vector v = (w, 0, . . . , 0) ∈ Rn+1 where w is strictly less than
the length of any nonzero vector of Γ and Γ′. Then the lattice vZ = {zv : z ∈
Z} = Zv is embedded in Rn+1. We now set

Γ := Γ
⊥
+ Zv, Γ′ := Γ′

⊥
+ Zv.

These two have the same theta series by (i) of Proposition 5.1, so the tori
T
n

Γ∗ and T
n

Γ′∗ are isospectral. Recall Corollary 3.3, they are isometric if and only
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5. Counterexamples in dimensions 16, 12 and 4

if we can find C ∈ On+1(R) such that Γ′ = CΓ. However, the only way Γ and
Γ′ can be rotated to each other, when Γ and Γ′ can not be, is if v would get
rotated to a vector of Γ′ of different length than any vector of Γ. By definition
of v, this situation never occurs.

Thus the game from here is to try to exhibit a counterexample in so low a di-
mension as possible. The dimensions 12 and 16 require some discussion of a list of
specific lattices.

Consider the simplest lattice Z of integers on the line. The norm of an integer
squared is simply the integer squared, and so for every integer besides 0 we have
two copies, thus giving us the theta function

ΘZ(w) =
∑
k∈Z

wk
2 = 1 + 2w + 2w4 + 2w9 + · · · = Θ3(w),

where Θ3(w) is the third Jacobi theta function; which is one of the four elliptic2

analogues of the exponential function. These theta functions (three of which to be
precise) will be of great use to us.

Indeed, also the second is associated to the translate by 1/2 of this lattice Z:

Z+ 1/2 = {h ∈ R : h = z + 1/2, z ∈ Z} = {. . . ,−5
2 ,−

3
2 ,−

1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 , . . . }.

We see immediately that the theta function is the same, but with the argument
shifted by +1/2,

ΘZ+1/2(w) =
∑
k∈Z

w(k+1/2)2 = 2w1/4 + 2w9/4 + 2w25/4 + . . . ,

and this is precisely the expression for the second Jacobi theta function Θ2(w) =∑
k∈Zw

(k+1/2)2 .
We will also have need of the fourth Jacobi theta function Θ4(w) := ∑

k∈Z(−w)k2 .

Proposition 5.3.
The theta functions of our considered lattices are all superpositions of the Jacobi
theta functions, namely

ΘZn = Θn
3 , (5.2)

ΘDn = 1
2(Θn

3 + Θn
4 ), (5.3)

ΘD̂n
= 1

2(Θn
3 −Θn

4 ), (5.4)

ΘEn = 1
2(Θn

2 + Θn
3 + Θn

4 ). (5.5)

Proof. We shall make continued use of Prop. 5.1. First we note that

Zn = e1Z
⊥
+ e2Z

⊥
+ · · ·

⊥
+ enZ

implying by Prop. 5.1 that ΘZn = Θn
3 .

2A meromorphic function that is periodic in two distinct periods.
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5. Counterexamples in dimensions 16, 12 and 4

We will show (5.3) and (5.4) by induction. For the base case, note that
D1 = 2Z. Then,

1
2(Θ3(w) + Θ4(w)) = 1 + 2w4 + 2w16 + · · · =

∑
k∈Z

w(2k)2 = ΘD1(w)

Since Z = D1
◦
∪ D̂1, it holds that

ΘD̂1
= Θn

3 −
1
2(Θ3 + Θ4) = 1

2(Θ3 −Θ4).

Let us proceed by assuming (5.3) and (5.4) for n and proving them for n+ 1.
Observe that Zn+1 3 (α1, . . . , αn, αn+1) ∈ Dn+1 gives two mutually exclusive
cases based on whether (α1, . . . , αn) ∈ Dn or not. If true, then to make the n+1-
sum equal to an even integer, αn+1 must be in D1. If false, that is (α1, . . . , αn) ∈
D̂n, then by the same token αn+1 must be uneven and so αn+1 ∈ D̂1. Therefore
we can write

Dn+1 = (Dn

⊥
+ D1)

◦
∪ (D̂n

⊥
+ D̂1),

allowing for the invocation once more of Prop. 5.1 to grant us

ΘDn+1 = ΘDnΘD1 + ΘD̂n
ΘD̂1

=

= 1
4 ((Θn

3 + Θn
4 )(Θ3 + Θ4) + (Θn

3 −Θn
4 )(Θ3 −Θ4)) = 1

2(Θn+1
3 + Θn+1

4 ).

For any element of Zn, its components under the standard basis can sum to
either an even or an uneven integer. Thus Zn+1 = Dn+1

◦
∪ D̂n+1, hence

ΘD̂n+1
= ΘZn+1 −ΘDn+1 = 1

2(Θn+1
3 −Θn+1

4 ).

We are left to show (5.5), and by Prop. 5.1 it’s enough to find the theta func-
tion forD1/2

n by induction. By noting thatD1/2
1 = {. . . ,−7/2,−3/2, 1/2, 5/2, 9/2, . . . },

the base case follows as

Θ
D

1/2
1

=
∑

k∈D1/2
1

wk
2 = w1/4 + w9/4 + w25/4 + · · · = 1

2Θ2.

Now, since D1/2
n is simply a translate in every component of Dn with respect

to the standard basis, it inherits the decomposition of Dn, namely

D
1/2
n+1 = (D1/2

n

⊥
+ D

1/2
1 )

◦
∪ (D̂1/2

n

⊥
+ D̂

1/2
1 ).

Moreover since D̂1/2
1 = {. . . ,−9/2,−5/2,−1/2, 3/2, 7/2, . . . } it has the same

theta function Θ
D̂

1/2
1

= 1
2Θ2. Suppose then that D1/2

n = D̂1/2
n = 1

2Θn
2 and let us
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5. Counterexamples in dimensions 16, 12 and 4

show,

Θ
D

1/2
n+1

= Θ
(D1/2

n

⊥
+D1/2

1 )
◦
∪(D̂1/2

n

⊥
+D̂1/2

1 )

Prop. 5.1=

= Θ
D

1/2
n

Θ
D

1/2
1

+ Θ
D̂

1/2
n

Θ
D̂

1/2
1

= 1
2Θn+1

2 .

By ΘEn+1 = ΘDn+1 + Θ
D

1/2
n+1

we immediately receive (5.5). The argument for

D̂
1/2
n+1 is very similar and left as an exercise.

The Jacobi theta functions obey a set of algebraic rules, which constitute the last
bit of information we need to tackle spectrometry of 16- and 12-dimensional tori.

Proposition 5.4.
The following relation is true,

Θ4
2 + Θ4

4 = Θ4
3, (5.6)

from which it follows that

Θ12
3 + Θ12

4 = 1
2(Θ4

3 + Θ4
4)(Θ8

2 + Θ8
3 + Θ8

4), (5.7)

Θ16
2 + Θ16

3 + Θ16
4 = 1

2(Θ8
2 + Θ8

3 + Θ8
4)2. (5.8)

Proof. The first relation (5.6) hinges on the fact that E4 will be shown to be
congruent to Z4. Recall that congruence is equivalent to the existence of an
orthogonal automorphism C ∈ O4(R) such that CE4 = Z4 (it is enough that
the basis of one lattice gets mapped by C to the basis of the other). In partic-
ular their congruence implies isospectrality, whereby comparing ΘZ4 = Θ4

3 with
ΘE4 = 1

2(Θ4
2 + Θ4

3 + Θ4
4) gives the result.

An orthonormal basis for E4 is given by

E4 =


1/2 1/2 1/2 1/2
1/2 −1/2 1/2 −1/2
1/2 −1/2 −1/2 1/2
1/2 1/2 −1/2 −1/2

 , so that ξ := E4α =


1
2(α1 + α2 + α3 + α4)
1
2(α1 − α2 + α3 − α4)
1
2(α1 − α2 − α3 + α4)
1
2(α1 + α2 − α3 − α4)


gives∑4

i=1 ξi ∈ 2Z and two mutually exclusive cases ∀i = 1, 2, 3, 4, namely ξi ∈ Z
or ξi ∈ Z+ 1/2.

By virtue of the orthonormality of E4, consider taking C = ET
4 . The reader

can verify that ET
4E4 = I, with I being the identity matrix of orthonormal basis

vectors to Z4.
From here showing (5.7) and (5.8) is a matter of plug and play, although

since the author spent a particularly gruesome two hours on (5.8) we give the
details below.

44



5. Counterexamples in dimensions 16, 12 and 4

1
2(Θ4

3 + Θ4
4)( Θ8

2︸︷︷︸
(Θ4

2)2

+Θ8
3 + Θ8

4) =

= 1
2(2Θ12

3 − 2Θ8
3Θ4

4 + 2Θ4
3Θ8

4 + 2Θ8
3Θ4

4 − 2Θ4
3Θ8

4 + Θ12
4 ) = Θ12

3 + Θ12
4 .

1
2(Θ16

2 + Θ16
3 + Θ16

4 ) + 1
2( Θ8

2︸︷︷︸
(Θ4

2)2

Θ8
2 + Θ8

3︸︷︷︸
(Θ4

3)2

Θ8
3 + Θ8

4︸︷︷︸
(Θ4

4)2

Θ8
4) =

= 1
2(Θ16

2 + Θ16
3 + Θ16

4 )+

+ 1
2(Θ8

2Θ8
3 − 2Θ8

2Θ4
3Θ4

4 + Θ8
2Θ8

4 + Θ8
2Θ8

3 + 2Θ4
2Θ8

3Θ4
4 + Θ8

3Θ8
4 + Θ8

2Θ8
4 − 2Θ4

2Θ4
3Θ8

4 + Θ8
3Θ8

4) =

= 1
2(Θ16

2 + Θ16
3 + Θ16

4 + 2Θ8
2Θ8

3 + 2Θ8
2Θ8

4 + 2Θ8
3Θ8

4) + Θ4
2Θ4

3Θ4
4(−Θ4

2 + Θ4
3 −Θ4

4︸ ︷︷ ︸
=0

) =

= 1
2(Θ8

2 + Θ8
3 + Θ8

4)2.

Finally, as promised, we are ready to show that 16- and 12-dimensional tori are
not spectrometric.

Theorem 5.5.
Two 16-dimensional tori do not need to be spectrometric.
Proof. For our counterexample we pick T 16

E16
and T 16

E8
⊥
+E8

. Let us first claim for
all n ∈ N that E8n = E8n

∗, i.e. E8n is self-dual. To see this, E8n
∗ = {ξ∗ ∈

R8n : ξTξ∗ ∈ Z ∀ξ ∈ E8n} and since every ξ ∈ E8n can be written as a linear
combination of basis elements in E8n it’s enough to check these (we pick E8n to
be the corresponding extended basis to E8, see (5.1)). For γ∗ ∈ Rn,


εT1γ
∗

εT2γ
∗

...
εT8nγ

∗

 =



1
2
∑8n
i=1 γ

∗
i

γ∗2 − γ∗8n
γ∗3 − γ∗8n

...
γ∗8n−1 − γ∗8n
γ∗8n−1 + γ∗8n


∈ Z8n,

which implies first that ∑8n
i=1 γ

∗
i ∈ 2Z. Moreover, if we add the last entry with

the second to last, then it is clear that γ∗8n−1 ∈ 1
2Z = Z

◦
∪ (Z + 1/2) which

implies that the same is true for γ∗8n, i.e. γ∗8n ∈ 1
2Z. Therefore we can see that if

γ∗8n ∈ Z then the rest must follow suit: γ∗1 , γ∗2 , γ∗3 , . . . , γ∗8n−1 ∈ Z, vice versa the
same is true in the other case of γ∗8n ∈ Z+ 1/2. Hence E8n is self-dual and this
we know by Prop. 2.4 implies that E8

⊥
+ E8 is also self-dual.
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5. Counterexamples in dimensions 16, 12 and 4

Thus since

Θ
E8
⊥
+E8

(5.5)= 1
4(Θ8

2 + Θ8
3 + Θ8

4)2 (5.8)= 1
2(Θ16

2 + Θ16
3 + Θ16

4 ) (5.5)= ΘE16

our two chosen tori are isospectral.
By contradiction suppose they are isometric, that there by virtue of Theorem

3.2 exists an orthogonal automorphism C ∈ O16(R) such that E16 = C(E8
⊥
+

E8). Then in particular we must have E16 = CE⊥16, where we have received

E⊥16 =
(
E8 0
0 E8

)
from Prop. 2.2. Note that every column basis vector of E⊥16 has

length
√

2 and that this property must continue to hold for any basis vector in
E16 by the properties of C ∈ O16(R). Now, all vectors of E16 are of the forms

16∑
i=1

ξiei or
16∑
i=1

(ξi + 1/2)ei such that ξ1, ξ2, . . . , ξ16 ∈ Z &
16∑
i=1

ξi ∈ 2Z,

and since we cannot generate a vector of the second form using only vectors of
the first, we must have a vector ξ = ∑16

i=1(ξi+1/2)ei in our basis E16. This yields
a contradiction, since

‖ξ‖ =

√√√√√√
16∑
i=1

(ξi + 1/2)2︸ ︷︷ ︸
≥1/4

≥ 2.

The above result in 16 dimensions was first noticed by Milnor[17] in 1964, after
he noted that the two lattices found non-isometric by Witt in 1941 were regardless
isospectral. In 1967 Kneser[13] observed the existence of a 12-dimensional non-
spectrometric counterexample.

Theorem 5.6.
Two 12-dimensional tori do not need to be spectrometric.
Proof. For this counterexample let us pick the tori T 12

D∗12
and T

12(
E8
⊥
+D4

)∗ . By a

direct application of Prop. 5.1, Prop. 5.3 and Prop. 5.4 we get isospectrality as

Θ
E8
⊥
+D4

= ΘE8ΘD4 = 1
2

1
2(Θ4

3 + Θ4
4)(Θ8

2 + Θ8
3 + Θ8

4) (5.7)= 1
2(Θ12

3 + Θ12
4 ) = ΘD12 .

Suppose by contradiction that the tori are isometric so that there by Corollary
3.3 is a C ∈ O12(R) turning E8

⊥
+ D4 into D12 by D12 = C

(
E8

⊥
+ D4

)
. Consider

then the following basis of

E8
⊥
+ D4 = {γ ∈ Z12 ◦∪ ((Z+1/2)8×Z4) :

16∑
i=1

γi ∈ 2Z and γ = γ′︸︷︷︸
∈E8

+ γ′′︸︷︷︸
∈D4

s.t. γ′Tγ′′ = 0},
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5. Counterexamples in dimensions 16, 12 and 4

F12 = (f1f2 . . . f12) =

=



1/2 0 0 . . . 0 0 0 0 0 0 0
1/2 1 0 . . . 0 0 0 0 0 0 0
... 0 1 . . .

... ... ... ... ... ... ...
... ... 0 . . . 0 ... ... ... ... ... ...
... ... ... . . . 1 0 0 ... ... ... ...
... 0 0 . . . 0 1 1 0 ... ... ...

1/2 −1 −1 . . . −1 −1 1 0 ... ... ...
0 0 0 . . . 0 0 0 1 0 ... ...
0 0 0 . . . 0 0 0 0 1 0 0
0 0 0 . . . 0 0 0 0 0 1 1
0 0 0 . . . 0 0 0 −1 −1 −1 1



.

The reader can verify that this constitutes a proper basis for E8
⊥
+ D4 by the

exact same procedure as we have done previously in this text. Note that all
basis vectors are of length

√
2, which will translate by the isometry to the basis

CF12 of D12. But therein lies the key point of the coming contradiction - the
vectors of length

√
2 of D12 are very special.

Recall D12 = {δ ∈ Z12 : ∑12
i=1 δi ∈ 2Z}. Since with respect to the standard

basis we are dealing with integer components, for δ ∈ D12 we have

‖δ‖ =

√√√√ 12∑
i=1

δ2
i =
√

2 =⇒ |δi| < 2 ∀i =⇒

=⇒ ∃k, l ∈ N : δk = ±1, δl = ±1 & δi = 0 for i /∈ {k, l}.

Thus the only vectors δ in D12 of length
√

2 take the form δ = pδek + qδel with
k 6= l and pδ, qδ ∈ {+1,−1}.

Now note that the inner product dTi dj of any two vectors di, dj ∈ CF12 is equal
to fT

i fj since di = Cfi for all i = 1, 2, . . . , 12. The same is of course true for
|dTi dj| = |di||dj|| cos^(di, dj)|, so intuitively we can say that the angles between
vectors remain unchanged and we will use this to produce a contradiction. Let
us next completely characterise what happens for distinct basis vectors di, dj ∈
CF12,

|dTi dj| = |(piek + qiel)T(pjem + qjen)| = |pipjeTkem + piqje
T
ken + qipje

T
l em + qiqje

T
l en|

(5.9)

Note that we can never get |dTi dj| = 4 since that would contradict k 6= l and
m 6= n.

If the vectors are colinear, that is di = ±dj, then |dTi dj| = 2. On the other
hand if |dTi dj| = 2 we must have both k, l ∈ {m,n}. The cases are analogous, so
suppose k = m and l = n. Then |dTi dj| = |pipj+qiqj| = 2 only if pj = pi & qj = qi
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5. Counterexamples in dimensions 16, 12 and 4

or pj = −pi & qj = −qi. The first case means that di = dj while the second
implies di = −dj, in other words the vectors are colinear.

If {k, l} ∩ {m,n} only contains one single element, e.g. k = m, l 6= n, then
|dTi dj| = 1. If |dTi dj| = 1 then we must have a single summand in the right
hand side of (5.9), and the only possibility for this is that |{k, l} ∩ {m,n}| = 1.
Indeed, the only other option lies in supposing k = m,l = n, which cannot give
us 1 = |dTi dj|.

Suppose no indices out of k, l,m or n are equal, then obviously |dTi dj| = 0.
However there is another way this can occur, namely if {k, l} = {m,n} while
di, dj are not colinear. Then, e.g. for k = m, l = n, (5.9) simplifies to |pipj+qiqj|
and so if pipj = −qiqj we get 0. How can this happen? Well suppose pi = pj, then
qi = −qj and vice versa, here this means that di = piek+qiel = pjem−qjel 6= ±dj,
i.e. di and dj are not colinear.

Thus we are left to conclude

|dTi dj| =


2, IFF di, dj colinear,
1, IFF |{k, l} ∩ {m,n}| = 1,
0, IFF {k, l} ∩ {m,n} = ∅ or {k, l} = {m,n} and di, dj not colinear.

(5.10)

Let us follow [8] and, knowing the exact form of all fi, construct the following
table where each entry (i, j) is the result of |dTi dj| = |fT

i fj|,

d1 d2 d3 d4 d5 d6 d7 d8
d1 2 0 0 0 0 0 0 1
d7 0 1 1 1 1 1 1 1
d8 1 1 1 1 1 1 0 2

In the following we keep (5.10) in mind. First make note of |dT1d8| = 1 so that
d1 = p1eK + q1eL and d8 = p8eK + q8eM , for fixed K,L,M ∈ N. Now consider
d7 = p7ek+q7el. Since both |dT7d1| = 0 and |dT7d8| = 0, d7 must have distinct basis
vectors from eK , eL and eM , that is d7 = p7eX +q7eY for N 3 X, Y /∈ {K,L,M}.
Indeed if say |dT1d7| = 0 would imply the other case then {k, l} = {K,L} while
{k, l} ∩ {K,M} = ∅, a contradiction. Otherwise if both would imply the other
case then {k, l} = {K,L} = {K,M} and yet we know M 6= L since |dT1d8| = 1,
another contradiction. Note that there are other cases to consider, but their
analysis is analogous, so we skip them for the sake of brevity.

For the rest i = 1, 2, . . . , 6 of di = piemi+qieni we have |dTi d7| = 1 and |dTi d8| =
1, which must mean that mi ∈ {X, Y } and ni ∈ {K,M}. But this implies that
{d1, d2, . . . , d8} ⊂ Span(eK , eL, eM , eX , eY ) and so the set {d1, d2, . . . , d12} cannot
possibly constitute a basis. Contradiction!

5.2 Conway and Sloane’s 4-dimensional family

In this section we follow [10].
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5. Counterexamples in dimensions 16, 12 and 4

Consider a lattice L ⊂ R4. A sublattice (a subspace which is also a lattice) can
then be constructed as 3L := {3l : l ∈ L}. What happens if we quotient L by 3L as
L/3L? Since L is isomorphic to Z4 by a change of variables we receive the so-called
linear code F4

3
∼= Z4/3Z4.

A linear code C of length n is a linear subspace of the vector space Fnq , where Fq is
a finite field of q elements3. Since every finite field of prime q elements is isomorphic
to {0, 1, . . . , q− 1} with addition and multiplication defined modulo q, we can write

F4
3 =

α


1
0
0
0

+ β


0
1
0
0

+ γ


0
0
1
0

+ δ


0
0
0
1

 : α, β, γ, δ ∈ {−1, 0, 1}

 .

In other words F4
3 consists of equivalence classes whose elements are equivalent if

and only if they differ by an element of 3Z4. For instance


1
2
0
1

 and


4
−1
3
1

 are the

same since they differ by


3
−3
3
0

.
As we always have with quotient sets, the natural surjection

π : L→ Z4/
3Z4

is defined. It takes an element l ∈ L and sends it to the equivalence class π(l)
for which it is a representative. In this case however it is not representing π(l) as
itself, but rather as its isomorphic copy in Z4. Thus another l′ ∈ π(l) if and only if
l − l′ ∈ 3Z4. From here we can take the preimage of any linear code C ⊂ Z4/3Z4,
and this will define a sublattice of L containing 3L. Indeed

π-1(C) = {l ∈ L : π(l) ∈ C}

and since 0 is always in π-1(C), this implies that π(3l) ∈ C so that 3l ∈ π-1(C). Let
us heuristically assume that we have a way of choosing the ‘simplest’ representatives
of C, and collect these in a set B. Then it is clear that every l ∈ π-1(C) has the
unique form l = b+ 3l′ where b ∈ B and l′ ∈ L. We shall have use of this very soon.

There are two codes we are especially interested in. They are found by considering
so-called self-dual codes, but we will not concern ourselves with this. Let v0 = w0 =
0,

v1 =


1
−1
1
0

 , v2 =


0
1
1
−1

 , v3 =


−1
0
1
1

 , v4 =


−1
−1
0
−1


3They are used in coding theory to help with transmitting information that can in some sense

correct itself should some components be lost.
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5. Counterexamples in dimensions 16, 12 and 4

and

w1 =


1
−1
1
0

 , w2 =


1
1
0
−1

 , w3 =


0
−1
−1
−1

 , w4


1
0
−1
1

 .
Then the codes are the following subspaces of F4

3,

C1 = {[0],±[v1],±[v2],±[v3],±[v4]} and C2 = {[0],±[w1],±[w2],±[w3],±[w4]}.

From these we define the lattices L1 := π-1(C1) and L2 := π-1(C2). By our previous
discussion, for some l ∈ L and i ∈ {0, 1, 2, 3, 4}, any element of L1 takes the form
vi + 3l while any element of L2 takes the form wi + 3l.

Proposition 5.1.
The flat tori T 4

L1
and T 4

L2
are isospectral.

Proof. Consider the following set of orthogonal maps from Z4 to itself,

K4 =

g1 = id, g2 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , g3 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , g4 = g3g2

 .

Not only are they orthogonal, they are also symmetric with the property that
givi = wi and giwi = vi for all i = 1, 2, 3, 4. In particular this means that vi and
wi have the same length. Therefore we may construct a length-preserving map
Ψ : L1 → L2 byΨ(3l) = 3l,

Ψ(vi ± 3l) = gi(vi ± 3l) = wi ± gi(3l)
, for l ∈ L and i ∈ {1, 2, 3, 4}.

The map has an inverse Ψ-1 : L2 → L1 constructed in a similar manner asΨ-1(3l) = 3l,
Ψ-1(wi ± 3l) = gi(wi ± 3l) = vi ± gi(3l)

, for l ∈ L and i ∈ {1, 2, 3, 4}.

Hence the vectors of L1 and L2 are of the same length, by virtue of this invertible
map Ψ.

From here we just need to find a specific example of L1 and L2 by choosing some
particular L to start with. Let a, b, c, d ∈ R and consider the following vectors

u1 = a


−1
1
1
1

 , u2 = b


1
−1
1
1

 , u3 = c


1
1
−1
1

 and u4 = d


1
1
1
−1

 .
From them let us construct a basis matrix A = A(a, b, c, d) which shall define our
lattice as L = AZn. Let the first column vector a1 of A = (a1 a2 a3 a4) be given
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5. Counterexamples in dimensions 16, 12 and 4

as a1 = −u1 + 3u2 − u3 + u4. Similarly we define a2 = u1 − u2 − u3 + 3u4, a3 =
−u1 − u2 + u3 + 3u4 and a4 = −u1 + u2 − u3 + 3u4 so that the lattice L = AZ4 is
defined by the basis

A =


a+ 3b− c+ d −a− b− c+ 3d a− b+ c+ 3d a+ b− c+ 3d
−a− 3b− c+ d a+ b− c+ 3d −a+ b+ c+ 3d −a− b− c+ 3d
−a+ 3b+ c+ d a− b+ c+ 3d −a− b− c+ 3d −a+ b+ c+ 3d
−a+ 3b− c− d a− b− c− 3d −a− b+ c− 3d −a+ b− c− 3d

 .

Theorem 5.2.
The flat tori T 4

L1
and T 4

L2
are not always isometric.

Proof. Take L defined by A as above. Then we DO NOT see that L1 =
SpanZ4(a1, a2, 3a3, 3a4) while L2 = SpanZ4(a1, 3a2, a3, 3a4). A side comment
unrelated to the proof is that these two lattices L1 and L2 respectively corre-
spond to L+ and L− of [7] and [6] up to elementary row operations. Let now
a = 1, b = 7, c = 13 and d = 19 all prime. Then

L1 =


28 36 192 156
−16 52 228 108
52 64 108 228
−12 −76 −156 −192

Z4 while L2 =


28 108 64 156
−16 156 76 108
52 192 36 228
−12 −228 −52 −192

Z4.

A simple check reveals that there is no C ∈ O4(R) transforming L1 to L2 or
vice-versa.
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6
Spectrometry of low-dimensional

flat tori

Showing that flat tori are spectrometric in low-dimensional settings is quite easy in
one dimension, slightly more difficult in two dimensions, and very very hard in three.
In fact the latest result in this whole theory of spectrometry of flat tori is Schiemann’s
proof of three dimensional spectrometry [21], given in 1997. In addition, the result
by Schiemann is only found after careful searching - in it there is no mention of
either lattices of flat tori.

The problem to decide whether any given pair of flat tori are spectrometric turns
out to be equivalent to problem in number theory, that is to decide whether positive
definite quadratic forms are determined up to integral equivalence by their represen-
tation numbers (or theta series). We encountered this term in Chapter 4.1, and in
fact it is precisely the same series as the partition function of differential geometry.

Before continuing let us give a disclaimer about three dimensions. We shall
not prove this result since the only proof available requires a deep dive into the
number theory of quadratic forms - most of which is perhaps not so useful for an
analyst or geometer in the sense that the knowledge cannot be pulled back for use in
the differential geometric setting. We shall however give all information regarding
the equivalence between the two problems, namely spectrometry of flat tori versus
representation number equivalence of quadratic forms.

We start by associating uniquely to every torus an equivalence class of quadratic
forms.

6.1 Constructing the bijection

Consider again the general linear group GLn(R). There is a natural map p from
this set onto the set S+

n (R) of positive definite symmetric matrices, defined by

p : A 7→ ATA.

The result is indeed positive definite, since we have xTATAx = ‖Ax‖2 > 0 for any
x ∈ Rn \ {0}. Note that any positive definite symmetric matrix can be written in
this manner by way of Cholesky decomposition.

To investigate if p is injective suppose p(A) = p(A′) for A,A′ ∈ GLn(R). Then

ATA = A′TA′ (6.1)
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6. Spectrometry of low-dimensional flat tori

which implies AA′-1 = A-TA′T. This is equivalent to writing AA′-1(AA′-1)T = I,
implying AA′-1 = C ∈ On(R), i.e. A is equal to A′ up to an orthogonal matrix.

Therefore we do not have a bijection yet, but we know precisely the procedure
required to get one. Indeed, the map

p : GLn(R)/
On(R) −→ S+

n (R)

[A] 7−→ p([A]) = ATA

does the job. Its existence is guaranteed by the Fundamental theorem on homomor-
phisms.

We now identify S+
n (R) with the set of positive definite quadratic forms1 by

setting qA to be the form whose matrix is ATA, that is qA(x) = xTATAx = ‖Ax‖2

for x ∈ Rn. To connect to lattices (and thus tori), we quotient this set by GLn(Z)
and consider (recall Prop. 2.1) the natural surjective map

π : GLn(R)/
GLn(Z) →

S+
n (R)/

GLn(Z).

The elements of S
+
n (R)/

GLn(Z) are equivalence classes defined by the relation

qA′ ∼ qA ⇐⇒ qA′(x) = qA(Bx) ∀x ∈ Rn, some B ∈ GLn(Z).

This corresponds well to the quotient in the domain of π, since qA(Bx) = qAB(x).
Thus we can state the relation alternatively as

qA′ ∼ qA ⇐⇒ qA′ = qAB.

The acute reader may be seeing where this is going, and indeed π will only be
injective from tori, and not from lattices in GLn(R)/

GLn(Z).
To see this take two lattices Γ1,Γ2 and choose respective bases A1, A2 so that

Γ1 = A1Zn and Γ2 = A2Zn. Note that we may always find such bases. Suppose
now that π(Γ1) = π(Γ2) ⇐⇒ qA2 = qA1B. Then we must immediately have
AT

2A2 = BTAT
1A1B, and so letting A′1 := A1B we see that we are in exactly the same

situation (6.1) as when considering injectivity for p, implying that A2A
′-1
1 = C for

some C ∈ On(R). What does this imply for the lattices? Recall from Prop. 2.1 that
Zn “eats” elements of GLn(Z),

Γ1 = A2Zn = A2A
′-1
1 A

′
1Zn = A2A

′-1
1 A1Zn = A2A

′-1
1 Γ.

Thus the injectivity fails by a factor of On(R) and so through Theorem 3.2 we
get a bijection by sending from tori instead;

π :

(
GLn(R)/

GLn(Z)

)/
On(R) −→

S+
n (R)/

GLn(Z)
T
n

Γ 7−→ π(T nΓ ) = [qA], where A is some basis of T nΓ .
1All real quadratic forms have a unique associated symmetric matrix.
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6. Spectrometry of low-dimensional flat tori

6.2 Poisson summation and quadratic forms

The set of eigenvalues of the Laplace-Beltrami operator ∆ of a flat torus T nΓ =(Rn/
Γ,
g
/

Γ
)
is given by

{
4π2 ‖y‖2 : y ∈ Γ∗

}
. Recall Corollary 4.5 and Corollary

4.7; these results simplify the analysis of the ∆-spectrum by allowing us to consider
the length spectrum

{
‖γ‖2 : γ ∈ Γ

}
of the lattice Γ instead. Now, any such γ can

be written γ = Ax, where A is a basis for Γ and x ∈ Zn. Therefore ‖γ‖2 =
xTATAx = qA(x), and so it holds that the length spectrum is precisely Spec(qA) :=
{qA(x) : x ∈ Zn}, for some quadratic form qA ∈ [qA]. It does not matter from which
equivalence class we take the quadratic form: any other basis of Γ can be written AB
for some B ∈ GLn(Z), and so Spec(qAB) = Spec(qA) since ‖γ‖2 = qA(x) = qAB(x′)
for some x, x′ ∈ Zn not necessarily equal.

It is then clear that two tori, respectively represented by the equivalence classes
[qA] and [qA′ ] of quadratic forms, are isospectral if and only if Spec(qA) = Spec(qA′),
for some qA ∈ [qA] and qA′ ∈ [qA′ ]. In addition we can talk about the length spectrum
of a quadratic form equivalence class without there being any confusion as to what
is meant.

6.3 Low-dimensional and rectangular flat tori
Let us investigate one dimension first, it will get progressively more difficult. We
are now aware that the spectrum {‖γ‖2 : γ ∈ Γ} determines the lengths of the
lattice associated to a flat torus. In one dimension therefore, where length is the
only geometry, we would expect spectrometry.

Proposition 6.1.
One-dimensional flat tori are spectrometric.
Proof. In one dimension a lattice is simply equal to aZ for some a ∈ R. Let the
a priori distinct tori R

/
aZ and R

/
a′Z be isospectral, meaning that {|az|2 : z ∈

Z} = {|a′z|2 : z ∈ Z}. Then

a2 = (z′a′)2 and a′2 = (za)2, for z, z′ ∈ Z.

Thus |z| = 1/|z′| which implies that z′ = ±z = ±1. We observe that aZ is the
same lattice as a′Z, whence R

/
aZ and R

/
a′Z are isometric.

For two dimensions the result is more tricky; the additional degree of freedom
introduces so much added complexity to the lattice as an algebraic object that we
must develop some new concepts before being able to prove spectrometry.

Being that we consider forms inside an equivalence class we might start thinking
about whether there is a particularly simple representative in a given class. It is
a reasonable speculation, so reasonable in fact that the answer is a number theo-
retic concept going back to Lagrange[15] called reduction of positive definite forms.
Details on the following discussion is found in Appendix C.
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6. Spectrometry of low-dimensional flat tori

To a quadratic form q(x) = xTAx there is an associated symmetric bilinear form
_
q(x, y) = xTAy, where x, y ∈ Zn. A primitive set of vectors of a lattice
Λ ⊂ Rn is a set of vectors {u1, . . . , uk} (k ≤ n) of the lattice Λ such that if a vector
u ∈ SpanR{u1, . . . , uk} is also a lattice vector (u ∈ Λ), then u must necessarily be
an integer linear combination

u = α1u1 + · · ·+ αkuk, for α1, . . . , αk ∈ Z.

Intuitively, one can view a primitive set of lattice vectors as an optimal “sub-basis”
of the lattice, i.e. a basis of shortest vectors for some dimension(s) of the lattice.

Let {v1, . . . , vk−1}, for k− 1 < n, be a primitive set of independent vectors of Zn.
Let us then define the following subset of Zn

P (v1, . . . , vk−1,+) := {v ∈ Zn : {v1, . . . , vk−1, v}
is a primitive set of independent vectors}, (C.2)

such that when k = 1, we have P (+) = {all primitive vectors of Zn}. We then say
that the positive definite quadratic form q ∈ S+

n (R) is reduced in the sense of
Minkowski (or simply reduced) with respect to the basis V := (v1v2 . . . vn) ⊂ Zn×n
for Zn if for any k = 1, . . . , n,

(i) vk ∈ P (v1, . . . , vk−1,+),
(ii) q(vk) = min{q(x) : x ∈ P (v1, . . . , vk−1,+)},
(iii) _

q(vk, vk−1) ≥ 0.
Such a reduction can always be found for some basis V of Zn, we show this in

Appendix C. Being a basis, we can find a matrix A transforming V to the standard
basis E . Any such basis transformation matrix A must from linear algebra theory
be a matrix A ∈ GLn(Z). Note then that V = EA, which means precisely that the
forms q ◦ V and q are equivalent. Moreover, it is not hard to show that q ◦ V by its
construction must be reduced with respect to the standard basis E . Hence there is
a form in every equivalence class of S

+
n (R)/

GLn(Z) which is reduced with respect
to the standard basis. The representative of every class has been found.

Note that it is enough to check the primitive vectors {v} to find the minima q(ek)
at each stage k = 1, . . . , n, since q(v) ≤ q(αv) = α2q(v) for all α > 0.

With E in place of V , let λk = q(ek) for every k = 1, . . . , n. We know by (ii) that

λ1 ≤ λ2 ≤ . . . λn.

Moreover, λ1 = q(e1) ≤ q(x) for all x ∈ Zn \ {0}, which means that isospectrality
of two flat tori must give us that λ1 = q(e1) is equal to λ′1 = q′(e1), where q and
q′ are the corresponding forms. Can we say the same for the other basis vectors ek
with k > 1? For all k = 1, . . . , n, we have for any x′ ∈ P (e1, . . . , ek−1,+) and some
x ∈ Zn that

q(x) = q′(x′)
from isospectrality alone. Then the question becomes whether x ∈ P (e1, . . . , ek−1,+)
as well; if yes, then we are done since it is clear that the respective minima over this
set must be the same. We have x′ = Cx for some C ∈ On(R), and as such we can
write Cx ∈ P (e1, . . . , ek−1,+). This means precisely that the set {e1, . . . , ek−1, Cx}
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6. Spectrometry of low-dimensional flat tori

is primitive, i.e. ∑i αiei + αkCx ∈ Zn implies α1, . . . , αk ∈ Z. Given the symmetric
matrix representations of q and q′ as A and A′, we have

C = AA′-1 (6.2)

due to ‖Ax‖ = ‖A′x′‖. For a criterion showing that {e1, . . . , ek−1, x} is primitive as
well, we must take α1, . . . , αk ∈ R and suppose ∑i αiei + αkx ∈ Zn. Applying C
gives ∑

i

αiCei + αkCx ∈ CZn,

which only allows for invocation of primality of {e1, . . . , ek−1, Cx} if it holds that
CZn ⊂ Zn, i.e. Cei = βiej for βi ∈ Z and not necessarily equal i, j = 1, 2, . . . , n.

Successive minima equality criterion

Isospectrality of q(x) = xTAx and q′(x) = xTA′x implies for all k = 1, . . . , n
that

λk = q(ek) = q′(ek) = λ′k, (6.3)

if AA′-1Zn ⊂ Zn.

Nevertheless, it always holds that λ2 = λ′2. For a proof of this fact, see [8]. The
result (6.3) is quite powerful. It gives us a consequence immediately.

Theorem 6.2 (Rectangular tori are spectrometric).
A pair of rectangular tori T nΓ whose lattices are given by the type Γ = DZn,
where D = diag(d1, . . . , dn) is a diagonal matrix, are spectrometric regardless
of dimension if each squared entry of one matrix is an integer multiple of the
corresponding squared entry of the other.
Proof. Let the two a priori distinct tori T nΓ and T nΓ′ be rectangular as Γ = DZn
and Γ′ = D′Zn. Then, as the multiplication of diagonal matrices with each
other is always another diagonal matrix, their representative quadratic forms
have matrices which are respectively diag(d2

1, . . . , d
2
n) and diag(d′21 , . . . , d′2n ).

Suppose the two tori are isospectral. By the assumption, we have d2
i /d
′2
i ∈ Z

for all i = 1, 2, . . . , n. We may thus invoke criterion (6.3), getting

λj = q(ej) = dj and λ′j = q′(ej) = d′j for all j = 1, . . . , n.

It is clear to see that the above implies that q = q′. Thus T nΓ and T
n

Γ′ are
isometric.

Moreover, we are ready to prove the two-dimensional case.

Proposition 6.3.
Two-dimensional flat tori are spectrometric.
Proof. Take two arbitrary flat tori T 2

Γ and T
2

Γ′ and consider their respective
quadratic forms q and q′. Suppose they are isospectral, that q(e1) = q′(e1) and
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q(e2) = q′(e2). Since the matrices of the forms are symmetric we have that

q(x) = q(x1e1 + x2e2) = x2
1q(e1) + 2x1x2

_
q(e1, e2) + x2

2q(e2)

which means that showing _
q(e1, e2) = _

q′(e1, e2) is all we have left to do. By
Corollary 4.6 we know that the volume of (2.2) given by

Vol(T nΓ ) = det(Γ) =
√

det(q)

is a spectral invariant. The volume in the case of 2 dimensions is given by
det(q) = q(e1)q(e2) − _

q(e1, e2)2. Therefore, since det(q) = det(q′), it is clear
that _

q(e1, e2) = _
q′(e1, e2) after noting that _

q(e1, e2),_q′(e1, e2) ≥ 0 by (iii) of the
Minkowski reduction.

We have seen that the addition of dimensionality complicates the flat torus in
a way that reduces the influence its eigenvalues has on its shape. We had to get
our hands quite dirty only stepping from dimension 1 to dimension 2. It is hard
to gauge exactly in which dimensions it breaks down, indeed we saw in Chapter
5 exactly how long it took the mathematical community to figure out the answer.
Nevertheless, in three dimensions spectrometry still holds.

6.4 The case of three dimensions
Let us give the premise and a (very) basic summary of Schiemann’s proof [21]. First
we recall

π :

(
GLn(R)/

GLn(Z)

)/
On(R) −→

S+
n (R)/

GLn(Z)
T
n

Γ 7−→ π(T nΓ ) = [qA], where A is some basis of T nΓ ,

and return to considering these classes of positive definite quadratic forms.
According to [26], the representation problem is the oldest problem relating to

binary quadratic forms2.
Representation problem

Given t ∈ R+ and a positive definite quadratic form q, in how many ways can
the equation

q(x) = t, x ∈ Zn

be solved?

The answer is called representation number of t by q and it is denoted by

A(q, t) = #{x ∈ Zn : q(x) = t}.

One could instead of Zn consider Rn or any other field, but Zn is the correct choice
when relating to flat tori. As an example consider q(x, y) = x2+y2. Here A(q, 3) = 0.

2So one would assume to quadratic forms in general.
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The representation number of a quadratic form equivalence class is simply the
same as that of any of its representatives, inherited by the equivalence relation.
From here the connection to the spectrum Spec(q) = {q(x) : x ∈ Zn} is clear: if the
representation numbers are known then we can construct the spectrum, and vice
versa if the spectrum is known then we know the representation numbers of interest
(of interest meaning the ones we can get from the domain of q). Thus

Proposition 6.4.
Two n-dimensional flat tori are isospectral if and only if the representation num-
bers of Zn by their corresponding quadratic form classes coincide. More precisely
if A(q, t) = A(q′, t) for all t ∈ R, where q, q′ are respective representatives of
classes associated to each torus.

holds.
Now we have fully described the equivalence between the analytic geometric prob-

lem and the number theoretic problem. Let us summarise; given some dimension n,
a pair of flat tori are always spectrometric if and only if any two positive definite
quadratic forms are determined up to integral equivalence by their set of represen-
tation numbers. It is in this second number theoretic framework that Schiemann’s
article takes place. Let us briefly describe the general approach taken.

Theorem 6.5.
Ternary positive definite quadratic forms are determined up to integral equiva-
lence by their set of representation numbers. This means that three-dimensional
flat tori are spectrometric.
Idea of proof. First, Schiemann notes that n-dimensional positive definite quadratic
forms are embedded in Rn(n+1)/2 due to their coefficients. Then he takes a par-
ticularly simple representative of each class, called Seeber-Eisenstein reduced
forms, which exist in a particular convex cone V as a subset of R6. These con-
stitute a further reduction from the Minkowski reduced forms and the cone V
is their fundamental domain. Then he considers successively minimal vectors so
that equal representation numbers gives him f(xi) = g(xi) for these successively
minimal x1, x2, . . . . Lastly, invoking a lot of topology and associated computa-
tions, Schiemann is able to find a bound b(f) of a form f such that if the two
forms f, g has

A(f, t) = A(g, t) for all t ≤ b(f) (6.4)

then f ∼Z g. Interestingly, this is enough to answer the theorem statement in
the affirmative, meaning that (6.4) is always satisfied for any pair of Seeber-
Eisenstein reduced positive definite ternary quadratic forms.
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A
Appendix A: Differential geometry

preliminaries

First let us recall some basic definitions. More details can be found in [2].
A C∞-manifold (or smooth manifold) is a Hausdorff locally Euclidean topo-

logical space with a global smooth structure in the sense of a maximal atlas of charts
connected to each other by smooth transition maps. Such a manifold can have what
is called a boundary, but we will not consider such examples. It can also be com-
pact if the underlying topological space is compact. Any compact smooth manifold
without boundary is called closed, an example being the flat torus.

A mapping π between smooth manifolds M,N is called a diffeomorphism if for
every point x ∈ M there is a chart (U, φ) around x and a chart (V, ψ) around π(x)
such that π(U) ⊂ V and ψ ◦ π ◦ φ-1 : Rn → Rm is a diffeomorphism1. Recall that
a map between Euclidean spaces is a diffeomorphism if it is smooth and bijective
with a smooth inverse.

A Lie group is a group that is also a differentiable manifold (i.e. the structure is
only at least once differentiable, not necessarily smooth) with the property that its
group operations are smooth. We shall call a group whose elements are countable
with every point an open set (discrete topology) a discrete group, it is a zero-
dimensional Lie group.

A.1 Smooth quotient manifolds
Given a Lie group G and a C∞-manifold M then G is said to act on M if there is
a diffeomorphism sending G×M 3 (g, x) 7→ g.x ∈M while satisfying

(i) (e, x) 7→ x, where e is the identity of G,
(ii) g1.(g2.x) = (g1g2).x, where g1, g2 ∈ G.

We can fix g ∈ G and consider the map g. : M → M . By (ii) we first see that
(g.)-1 = g-1. and thus the map is bijective since for all y ∈ M there exists a unique
x = g-1.y such that by (i) y = g.x. This means in particular that g. is an open map
sending open sets to open sets, by virtue of it being a diffeomorphism.

The set Gx = {g.x : g ∈ G} is called the orbit of x. The orbit space M
/
G

:=
{Gx : x ∈M} is a quotient space under the equivalence relation given by x ∼ y IFF
x = g.y for some g ∈ G. The surjective map

π : M →M
/
G

(A.1)
1The same definition is used regardless of the property of π, for instance π solely smooth.
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is called the natural projection of M onto M
/
G
.

The quotient topology is defined in such a way as to make the natural projection
π continuous, that is P ⊂ M

/
G

is open if2 π-1(P ) is open. On the other hand if
we take U ⊂ M open and if we fix g ∈ G, then since g. is an open map the set
gU := {g.x : x ∈ U} is open. Moreover the set GU := ⋃

g∈G gU , being the union of
open sets, if thus open as well. This means that the natural projection π is in fact
open. Indeed GU = ⋃

x∈U Gx and thus GU = π-1(π(U)) which means by continuity
of π that π(U) is open.

If we want M
/
G

to be Hausdorff, what must we require of our topology on
M?

Lemma A.1.
M
/
G

is Hausdorff if E = {(x, y) : x ∼ y} ⊂M ×M is closed.

Proof. Let x, y ∈M and suppose π(x) 6= π(y) so that (x, y) /∈ E. Then for some
open subset U × V ⊂M ×M we must have (x, y) ∈ U × V , and we can take it
small enough so that no point of U × V is in E. But this means precisely that
π(U) has no elements in common with π(V ). Moreover, since we established
that π is open, they are also open sets.

It turns out that we can getM
/
G

to be Hausdorff by restricting our group action
instead. The action of G on M is called free if g.x = x for all x ∈M implies g = e.
The action is called proper if the following two conditions are satisfied

(i) There is a neighbourhood U ⊂ M of every x ∈ M making the set
{g ∈ G : gU ∩ U 6= ∅} finite,

(ii) If Gx 6= Gy then there are respective neighbourhoods U, V ⊂M of
x, y such that their intersection gU ∩ V = ∅ for all g ∈ G.

(A.2)

This can be shown to be equivalent to the property that for all compact K ⊂M the
set {g ∈ G : gK ∩K 6= ∅} is precompact in G. Intuitively a group action is proper
if “very little” of G sends compact sets of M to themselves.

Item (ii) gives us that M
/
G

is Hausdorff. Indeed, the set E = {(x, y) : x ∼ y}
is closed if and only if Ec = {(x, y) : x � y} is open, which happens when around
every point we can find an open neighbourhood contained in Ec. But if Gx 6= Gy
then by (ii) the neighbourhood U × V contains (x, y) and no element (a, b) therein
can have a ∼ b since that would imply gU ∩ V 6= ∅ for some g ∈ G.

The subset of all group elements which by the action leaves a point x ∈ M
unperturbed is called the isotropy group Gx := {g ∈ G : g.x = x} of x and it is a
subgroup of G. Its properties are also affected if our group action is proper.

Lemma A.2.
The isotropy groups of a proper action are all finite. Moreover, for every point

2Since π is bijective, every set in M can be written as π-1(P ) for some set P ⊂M
/
G.
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x ∈M there is a neighbourhood W ⊂M of x such thatg /∈ Gx =⇒ gW ∩W = ∅,
g ∈ Gx =⇒ gW = W.

(A.3)

Proof. Take any x ∈M , then since the action is proper we get a neighbourhood
U such that {g ∈ G : gU ∩ U 6= ∅} is finite. It is easy to see that its isotropy
group is finite: pick g ∈ Gx, then x ∈ U and x ∈ gU implying that g ∈ {g ∈ G :
gU ∩ U 6= ∅}, which is finite.

The rest is more tricky. First note that all g ∈ {g ∈ G : gU ∩ U 6= ∅}
are either in Gx or G \ Gx. By our hypothesis we may enumerate elements in
G \Gx ∩ {g ∈ G : gU ∩U 6= ∅} = {g1, . . . , gN}. As M is Hausdorff we may pick
neighbourhoods Ui of x and Vi of gi.x so that Ui ∩ Vi = ∅. Set

W ′ = U ∩ U1 ∩ · · · ∩ UN ∩ g-1
1 V1 ∩ · · · ∩ g-1

NVN .

Take then g ∈ G \Gx. If g 6= gk for any k then g is not in {g ∈ G : gU ∩U 6= ∅}
so thus gU ∩U = ∅. On the other hand if g = gk for some k, then gg-1

k Vk ∩Uk =
Vk ∩ Uk = ∅. Therefore so long as g ∈ G \Gx it holds that gW ′ ∩W ′ = ∅.

The final stroke is taking W = ⋂
g∈Gx gW

′. Indeed if g′ ∈ Gx then

g′W =
⋂

g∈Gx
g′gW ′ group= W ′

while if g′ /∈ Gx then

g′W ∩W =
⋂

g∈Gx
g(g′W ′ ∩W ′) = ∅.

With this last lemma we are ready to prove that there is a unique smooth structure
on a discrete quotient manifold.

Theorem A.3 (Discrete quotient manifold theorem).
Whenever G is a discrete group whose action on the C∞-manifold M is free
and proper, there is a unique smooth structure of M

/
G

that together with the
quotient topology makes it a C∞-manifold. In more detail the structure is such
that each point p ∈M

/
G

is inside a connected neighbourhood P ⊂M
/
G

whose
projection preimage π-1(P ) = ⋃

Wα, where the Wα are open and connected and
when used to restrict the projection as π|Wα they make it a diffeomorphism onto
P .
Proof. By item (ii) of the proper action (A.2) we get that M

/
G

is Hausdorff.
An atlas of a manifold is countable if and only if we can find a countable “base”
of open sets for the manifold (i.e. every open set of the manifold can be written
as the union of some subfamily F of this base). This property is true for M
since M is a smooth manifold. Since π is continuous, taking P ⊂ M

/
G

open,
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we get π-1(P ) = ⋃
Uα∈F Uα for open sets Uα. Since π is an open map it holds

that P = ⋃
Uα∈F π(Uα) is a union of a subfamily of open sets.

Next we invoke Lemma A.2 to find around every point x ∈ M a neighbour-
hood W satisfying (A.3), we may without loss of generality choose it to be a
connected neighbourhood with an associated chart map φ : W → φ(W ) ⊂ Rn.
Consider now the restriction of the projection π to W . Since the action is free,
every Gx = {e}, so the only way that gW can equal W is if g = e. This is
enough to guarantee that π|W is one-to-one onto its image π(W ). Indeed, if
π(w) = p = π(w′) for W 3 w′ 6= w ∈ W , we have w′ = g.w for some g ∈ G
and therefore w′ ∈ gW , which forces g = e. Therefore π|W : W → π(W ) is a
homeomorphism. This implies that

_

φ := φ ◦ (π|W )-1 : π(W )→ Rn

is a homeomorphism as well, and we take it as our chart map. M
/
G

is therefore
locally Euclidean, since every p ∈M

/
G

is the image of some x ∈M , which has
a W as described above, and thus p ∈ π(W ). All the above amounts to saying
that M

/
G

is a topological manifold.
We want the structure to be smooth in order to prove the theorem. Label

Pα = π(Wα) for someWα ⊂M as described above, then since they are countable
{Pα,

_

φα} denotes our set of charts. Pick two charts (P,
_

φ), (Q,
_

ψ) ∈ {Pα,
_

φα} such
that P and Q overlap some, also let U = π-1(P ), V = π-1(Q). Since π is not
one-to-one we might have U ∩ V = ∅, a problem which is luckily remedied by
the fact there must thus be some g ∈ G such that gU ∩ V 6= ∅. Thus since g.
maps M onto itself we can write π = π ◦ g., whereby

_

φ = φ ◦ (π|W◦g.)-1 and
_

ψ = ψ ◦ (π|W )-1.

The chart transition map
_

φ ◦
(_
ψ
)-1

= φ ◦ g.-1 ◦ψ-1 is thus a diffeomorphism and

the same is then true for
_

ψ ◦
(_
φ
)-1

. Hence our atlas of charts defines a smooth
structure on M

/
G
.

Take W = U ∩ V so that (W,φ), (W,ψ) ∈ {Wα, φα}, for Wα = π-1(Pα). To
show that the smooth structure is unique, recall that the π|W : W → π(W ) ⊂
M
/
G

is a diffeomorphism if
_

φ ◦ π ◦ φ-1 : Rn → Rn is. Since

_

φ = φ ◦ g.-1 ◦ ψ-1 ◦
_

ψ

we can see that
_

φ maps p ∈M
/
G

to the same point as φ does for x ∈M . Thus
π|W is a diffeomorphism and, since ⋃αWα covers M , it means that the natural
projection π is locally a diffeomorphism. Hence no other smooth structure is
possible on M

/
G
.

We wish to apply this result to the torus, in that way turning it into a C∞-
manifold. Unfortunately, it is quite non-trivial to show that a discrete subgroup
G of a Lie group M (like the lattice) acts properly by left translations. We shall
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use the following notations for sets V, U ⊂ M ; V U := {vu : v ∈ V, u ∈ U},
V -1 := {v-1 : v ∈ V }.

Theorem A.4.
Let M be a Lie group and G ⊂ M a discrete subgroup. The left translation
action M 3 x 7→ gx ∈M by g ∈ G is free and proper on M .
Proof. Since the left translation gx = x only if g = e, the action is immediately
free. Now we must show that (i) and (ii) of a proper action (A.2) are satisfied.

To this end consider the neighbourhood U of e such that U ∩ G = {e},
which exists by the very definition of G. Let V1 × V2 ⊂ µ-1(U) be such that
(e, e) ∈ V1× V2, where µ : G×G→ G is multiplication in G. It thus holds that
V1V2 ⊂ U and since U is open so is V1, V2. Then take V3 = V1 ∩V2 ⊂ U . For the
neighbourhood V = V3 ∩ V -1

3 of e it now holds that V V -1 ⊂ U .
We now show (i), that {g ∈ G : gV ∩ V 6= ∅} is finite. Suppose that we

can find a point in the intersection, then for v1, v2 ∈ V and some g ∈ G we
have gv1 = v2 which implies g = v1v

-1
2 ∈ V V -1 ⊂ U =⇒ g = e, so (i) is most

certainly satisfied.
To show (ii) we need to show that if the orbits of two points are not equal then

there are neighbourhoods W,W ′ around the points such that W ∩ GW ′ = ∅.
We may without loss of generality take x = e. So suppose for y ∈ M that
G 6= Gy, which means that e /∈ Gy. Since every set in the discrete topology
is both open and closed, Gy is closed (as π-1(Gy) is in the discrete topology)
and therefore Û = (Gy)c 3 e is an open neighbourhood of e. We can then
find (by the second paragraph of the proof) a possibly smaller neighbourhood
V̂ of e so that V̂ V̂ -1 ⊂ Û . Set W = yV̂ and W ′ = V̂ . For any g ∈ G
suppose there is a point z ∈ W ∩ gW ′ = yV̂ ∩ gV̂ , then we have y-1z ∈ V̂ and
g-1z ∈ V̂ . Thus g-1y = (g-1z)(y-1z)-1 ∈ V̂ V̂ -1 while we already know g-1y ∈ Gy,
a contradiction.

A.2 Tangent spaces, pushforwards and pullbacks

We call a map that exhibits the same properties as the natural projection π (see
(A.1)) a smooth covering map, its features being surjective, open and locally a
diffeomorphism. Recall that being locally a diffeomorphism amounts to saying that
each point p ∈ M

/
G

has an open neighbourhood P ⊂ M
/
G

whose projection
preimage π-1(P ) = ⋃

Wα, where the Wα are open and connected and, when used
to restrict the projection as π|Wα they make it a diffeomorphism onto P . This type
of map has a special implication regarding pushforwards of vectors, so let us recall
these notions.

Recall that the tangent space of a smooth manifold M of dimension n at a
point x ∈M is defined as3

TxM :=
{
X : C∞(x) ∼→ R s.t. X(fg) = g(x)X(f) + f(x)X(g)

}
,

3The ∼ implies the map is linear, in this case R-linear.
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where C∞(x) is the space of smooth functions on M around the point x. The ∼
means that the mapping C∞(x) ∼→ R is linear in its domain, which in this case
happens to be C∞(x). We will write Xf for X(f) if there is no confusion as to what
is meant. The elements of the tangent space are called tangent vectors, one can
show that the tangent space is indeed a vector space. One can show, see e.g. [2],
that there is a basis { ∂

∂xj
} of TxM such that each vector X ∈ TxM can be written

X = ∑n
j=1X

j ∂
∂xj

= Xj ∂
∂xj

, where Xj ∈ R. Recall that xj = rj ◦ x where x is the
chart map to Rn and rj the jth standard coordinate.

Suppose we are given a smooth map ϕ between two smooth manifolds M,N .
Then we define for every x ∈M the pushforward or differential ϕ∗,x of ϕ at x by

ϕ∗,x : TxM → Tϕ(x)N

X 7→ ϕ∗,x(X) s.t. ϕ∗,x(X)f := X(f ◦ ϕ), (A.4)

where f ∈ C∞(ϕ(x)). We shall write shorthand ϕ∗,xX in place of ϕ∗,x(X) whenever
appropriate.

Take X ∈ TxM and f ∈ C∞(ϕ(x)) for x ∈ M . To see that the pushforward is
well defined we need to check linearity and the Leibniz rule. These are both easy to
check, the Leibniz rule for instance is given by

ϕ∗,x(X)(fg) = X((f ◦ ϕ)(g ◦ ϕ)) = g(ϕ(x))X(f ◦ ϕ) + f(ϕ(x))X(g ◦ ϕ) =
= g(ϕ(x))ϕ∗,xX(f) + f(ϕ(x))ϕ∗,xX(g).

Moreover the map is a homomorphism between tangent spaces in the following sense,
taking a, b ∈ R and Y ∈ TxM ,

ϕ∗,x(aX + bY )f = (aX + bY )(f ◦ ϕ) = aX(f ◦ ϕ) + bY (f ◦ ϕ) =
= aϕ∗,xXf + bϕ∗,xY f = (aϕ∗,xX + bϕ∗,xY )f.

Lastly we note that the pushforward commutes with function composition in a
way generalising the chain rule of differentials between Euclidean spaces. To see
this take L,M,N to be smooth manifolds and φ : L → M , ϕ : M → N as smooth
maps, then for arbitrary x ∈ L and y ∈ M , we have φ∗,x : TxL → Tφ(x)M and
ϕ∗,y : TyM → Tϕ(y)N , while the compositions

(ϕ ◦ φ)∗,x : TxL→ Tϕ◦φ(x)N, and
ϕ∗,φ(x) ◦ φ∗,x : TxL→ Tϕ◦φ(x)N.

Now for any X ∈ TxN and h ∈ C∞(ϕ(φ(x))) we have by the definition that

(ϕ ◦ φ)∗,x(X)h = X(h ◦ ϕ ◦ φ), is equal to
(ϕ∗,φ(x) ◦ φ∗,x)(X)h = ϕ∗,φ(x)(φ∗,x(X))h = φ∗,x(X)(h ◦ ϕ) = X(h ◦ ϕ ◦ φ).

Hence we write

(ϕ ◦ φ)∗,x = ϕ∗,φ(x) ◦ φ∗,x. (A.5)

At this point let us investigate an important special case before we end our
discussion of pushforward with Lemma A.5. Recall Def. A.4 and take N = Rn. For
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every point p ∈ Rn we have the identification X = X i ∂
∂xi

id= (X1, . . . , Xn) given any
X ∈ TpRn. This is basically saying that there is a unique vector v = (X1, . . . , Xn) in
Rn representing every derivation X in any tangent space as X = ∂

∂v
= v • ∇, where

∇ is the gradient of Rn. From this we can construct a special definition for the
differential of a function f in C∞(M) taking values in R, namely for any x ∈M

df(x) : TxM 3 X 7→ df(x)X = Xf ∈ R. (A.6)

Notice that this maps to the 1-dimensional “vector” representing the derivation
reached by the usual pushforward f∗,x. We shall reserve differential to mean this
particular map df(x).

Lemma A.5.
If ϕ : M → N is a smooth covering map from and to smooth manifolds, then
ϕ∗,x is an isomorphism for every x ∈M .
Proof. Since vectors only act on functions defined around a point, we have a
natural identification of TxM with TxU for all x ∈ M where U is an open
neighbourhood of x. Equivalently we may then consider for our pushforward
the diffeomorphism ψ := ϕ|U , meaning ψ∗,x = ϕ∗,x on TxM . Since ψ is a
diffeomorphism, we know it must have an inverse ψ-1 satisfying

ψ-1 ◦ ψ = id : U → U.

What does this imply for our pushforward ψ∗,x?
Well it would be nice if this inverse gave us a corresponding inverse (ψ∗,x)-1 for

the pushforward. By what we last showed regarding (A.5), we can immediately
see that (ψ-1 ◦ψ)∗,x = (ψ-1)∗,ψ(x) ◦ψ∗,x = id∗,x, so the question becomes whether
or not id∗,x : TxM → TxM is the identity map for tangent vectors. To investigate
this we take X ∈ TxM and f ∈ C∞(x) and observe that

id∗,xXf = X(f ◦ id) = Xf.

Thus (ψ-1)∗,ψ(x) = (ψ∗,x)-1 is the inverse to ψ∗,x and therefore ϕ∗,x : TxM →
Tϕ(x)N is bijective for all x ∈M and so an isomorphism.

Every tangent space TxM has a dual called the cotangent space given by
TxM

∗ := {ω : TxM ∼→ R}. Every element ω associates to any tangent vector
X ∈ TxM a real number 〈ω,X〉, the set of these cotangent vectors is also a vector
space and has a dual basis {dxj} such that 〈dxj, ∂

∂xi
〉 := ∂

∂xi
xj = δji . As an example

of an element of the cotangent space (called covectors), recall Def. A.6, we have
the differential df(x) of a function f ∈ C∞(M) which associates to every vector X
a value in R by df(x)X = Xf .

Let L,M,N be smooth manifolds as per usual. Recall that the pullback of a
smooth map ϕ : M → N by another smooth map φ : L→M is given by the smooth
composition φ∗ϕ := ϕ ◦ φ : L→ N .

We can also define the pointwise pullback ϕ∗|π(x)= ϕ∗π(x) of a cotangent vector
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ω ∈ Tπ(x)N as

ϕ∗y : Tπ(x)N → TxM (A.7)
ω 7→ ϕ∗π(x)(ω) s.t. 〈ϕ∗π(x)(ω), X〉 := 〈ω, ϕ∗,x(X)〉.

However note that in contrast to the (pointwise) pushforward it requires ϕ to be
injective and surjective to be well defined. Let us see if we can arrive at a better
more general definition.

Without any rigour (for that see [16]) we shall now concern ourselves with vector
fields and covector fields which map a point smoothly to a tangent vector and a
cotangent vector respectively. We set

Γ(TM) = {“vector fields”}, Γ(TM∗) = {“covector fields”}.

Note that it is impossible to find a global basis for these sets (they are not vector
spaces), yet on a chart the basis for the tangent (cotangent) space extends to a basis
for the local set of vector (covector) fields.

A (r, s)-tensor field T on a smooth manifold M is a C∞-multilinear map

T : Γ(TM∗)× · · · × Γ(TM∗)︸ ︷︷ ︸
#r

×Γ(TM)× · · · × Γ(TM)︸ ︷︷ ︸
#s

−→ C∞(M). (A.8)

It is possible to identify vector fields with (1, 0)-tensor fields, while we see that
covector fields are already defined as (0, 1)-tensor fields. The tensor product (see
[5] for more details) of a (r, s)-tensor field T with a (p, q)-tensor field S produces a
(r + p, s+ q)-tensor field R = T ⊗ S defined by

R(ω1, . . . , ωr+p, X1, . . . , Xs+q) = T (ω1, . . . , ωr, X1, . . . , Xs)S(ωr+1, . . . , ωr+p, Xs+1, . . . , Xs+q).

By virtue of this definition there is an isomorphism called the universal property
that identifies each (r, s)-tensor field T with an element in the corresponding tensor
product space as

T
id= ω1 ⊗ · · · ⊗ ωr ⊗X1 ⊗ · · · ⊗Xs ∈
∈ Γ(TM∗)⊗ · · · ⊗ Γ(TM∗)⊗ Γ(TM)⊗ · · · ⊗ Γ(TM). (A.9)

With the tensor field definition (A.8) in hand we can define the Riemannian metric,
for more details on tensor fields consult for instance [16].

Now, the pullback (A.7) makes a much nicer appearance applied to (0, s)-tensor
fields over the whole space (i.e. not pointwise). Given a smooth map between
smooth manifolds ϕ : M → N and a (0, s)-tensor field T on N we can define the
pullback ϕ∗T as the (0, s)-tensor field on M satisfying for every point x ∈M

(ϕ∗T )x(X1, . . . , Xs) := Tϕ(x)(ϕ∗,xX1, . . . , ϕ∗,xXs), (A.10)

where X1, . . . , Xs ∈ TxM . This always exists and is well defined.
Ironically, we can not analogously define a general pushforward applied to (r, 0)-

tensor fields, this requires the underlying map to be a diffeomorphism (similar to
the breakdown of pointwise pullback!).
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A.3 Constructing the Laplace operator on a Rie-
mannian manifold

What does it mean to take a derivative on a Riemannian manifold (M, g)? There
are a multitude of answers and they are arguably all nontrivial. We are in the end
looking to extend the Laplacian ∆ to a Riemannian manifold. This operator will
be a composition of the extended divergence and gradient, completely analogous in
the end to the Euclidean case.

Let us start by working towards the gradient before the divergence, since a smooth
function is something easier to deal with than a smooth vector field.

Intuitively we are looking for an operator grad : C∞(M) → Γ(TM). The only
notion of differentiation we have at this point is the differential, recall Def. A.6, of a
function. So let us use this differential in its “field form” (recall our naive extension
of covectors to covector fields). Given any function f ∈ C∞(M) its differential is
given by the covector field

df : M 3 x 7→ df(x) ∈ TxM∗.

Is there any way to turn this into a vector field? Indeed there is, we must simply
remind ourselves of the musical isomorphisms, specifically

] : ω 7→ ω] ∈ Γ(TM) such that g(ω], Y ) = 〈ω, Y 〉, where ω ∈ Γ(TM∗).

Likewise (df)] is a vector field and suffices for our definition of gradient:

grad : C∞(M)→ Γ(TM)
f 7→ gradf = (df)]. (A.11)

By definition of musical isomorphism, the gradient forms a specific “angle” with
any vector field Y ∈ Γ(TM). We have

g((df)], Y ) = 〈df, Y 〉 = Y f.

This property gives us the ability to express the gradient in local coordinates as

gradf = gij
∂f

∂xi
∂

∂xj
.

Thus in an affine space this reduces to our memory of the good old Euclidean
gradient: gradf = ∂f

∂xi
ei. It is not too hard from here to deduce, taking f, g ∈

C∞(M) and a ∈ R, the properties,
(i) grad(fg) = grad(f)g + fgrad(g),
(ii) grad(af + g) = agrad(f) + grad(g).

Next to consider is the divergence. We want a map taking vector fields in Γ(TM)
to functions in C∞(M). For this we actually need a new notion of derivative called
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the connection or covariant derivative, denoted by ∇. It is defined as follows,

∇ : Γ(TM)× Γ(TM)→ Γ(TM)
(X, Y ) 7−→ ∇XY obeying

(A.12)
(i) ∇Xf = Xf, for all f ∈ C∞(M),

(ii) ∇fX+YZ = f∇XZ +∇YZ, for all f ∈ C∞(M), Z ∈ Γ(TM),
(iii) ∇X(aY + Z) = a∇XY +∇XZ, for all a ∈ R, Z ∈ Γ(TM),
(iv) ∇X(Y ⊗ Z) = ∇XY ⊗ Z + Y ⊗∇XZ, for all Z ∈ Γ(TM).

This connection gives a way to discuss the rate of change of one vector field with
respect to another, in fact the name connection derives from its property of con-
necting tangent spaces through what is called parallel transport (a discussion we
will skip). How much freedom do we have in choosing ∇? Let us investigate in a
local chart. Since ∇ ∂

∂xi

∂
∂xj

is a vector field in Γ(TM) it must be able to be written
as ∇ ∂

∂xi

∂
∂xj

= Γkij ∂
∂xk

, for some coefficient functions Γkij. Taking these to be

Γkij = 1
2g

kl( ∂

∂xi
gjl + ∂

∂xj
gil −

∂

∂xl
gij)

gives us the unique so called Levi-Civita connection (this is a standard choice to
receive what is called a torsion-free manifold). We will not need to concern ourselves
further with this.

Intuitively the divergence of a vector field is a local measure of the flux of said
vector field, the flux taking all directions around said vector field into account. Can
we collect the covariant derivatives ∇YX of a vector field X by any vector field Y
into a single object retaining all information? Indeed we can.

We define the total covariant derivative of a vector field X ∈ Γ(TM) as a
(1, 1)-tensor field in the following way,

∇ : Γ(TM)→ Γ(TM∗)⊗ Γ(TM)
X 7→ ∇X : Γ(TM∗)× Γ(TM)→ C∞(M)

(ω, Y ) 7−→ ∇X(ω, Y ) = 〈ω,∇YX〉.

It is well defined by virtue of the C∞-linearity (i) of (A.12); ∇fY+ZX = f∇YX +
∇ZX implies ∇X(ω, fY + Z) = f∇X(ω, Y ) +∇X(ω, Z).

This total covariant derivative actually contains more information than we need to
define the divergence. We are only interested in the sum of its “diagonal” elements.
Think of the standard Euclidean divergence ∇ •X = ∂Xi

∂xi
. To this end we define the

trace tr : Γ(TM∗)⊗ Γ(TM)→ C∞(M) of a (1, 1)-tensor field ω ⊗X to be 〈ω,X〉.
While this definition seems arbitrary it is in fact well defined since (1, 1)-tensor fields
can be identified with endomorphisms {A : Γ(TM) ∼→ Γ(TM)}.

Finally we can define the divergence div : Γ(TM) → C∞(M) of a vector field
X as

divX = tr(∇X). (A.13)
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Locally it is a bit of an exercise to show that divX = 1√
|g|

∂
∂xi

(
√
|g|X i). Moreover

we have for X, Y ∈ Γ(TM), f ∈ C∞(M) and a ∈ R that
(i) div(fX) = g(gradf,X) + fdiv(X),
(ii) div(aX + Y ) = adiv(X) + div(Y ).

Now we are ready to define the Laplace-Beltrami operator (also called Lapla-
cian) of a function on a Riemannian manifold. Having both (A.11) and (A.13) in
mind, it is given as

∆ := div ◦ grad : C∞(M)→ C∞(M)
f 7−→ ∆f = tr(∇(df)]). (A.14)

Locally,
∆f = 1√

|g|
∂

∂xi
(
√
|g|(gradf)i) = 1√

|g|
∂

∂xi
(
√
|g|gik ∂f

∂xk
).

It is another nice exercise to use (A.11) and (A.13) to show that we have the following
properties given any smooth functions f, g and a ∈ R:

(i) ∆(fg) = ∆fg + f∆g + 2g(grad(f), grad(g)),
(ii) ∆(af + g) = a∆f + ∆g.

XI



A. Appendix A: Differential geometry preliminaries

XII



B
Appendix B: Spectral theory of
compact operators and bilinear

forms

For more details the reader is referred to [19].

B.1 A taste of finite dimensions
Consider a matrix A ∈ Rn×n. Then for λ ∈ R we look for solutions x ∈ Rn to

(A− λ)x = 0.

These solutions, if nontrivial, are called eigenvectors to the eigenvalue λ. This
framework is called the eigenvalue problem in finite dimensions. What results do
we have? Let’s start with some definitions.

We denote by Ker(A − λ) the set of eigenvectors to λ. The multiplicity m(λ)
is given by dim(Ker(A − λ)). The spectrum is denoted as Spec(A) = {λ ∈ R :
(A− λ)x = 0} while the resolvent set is ρ(A) = R \ σ(A).

We have that A may be diagonalised if and only if there is a basis in Rn of
eigenvectors solving the eigenvalue problem. Suppose the diagonalisation look like
A = QΛQ-1. Then the elements of Λ are the eigenvalues and the column vectors of
Q are the eigenvectors, therefore

AQ = QΛ.

Also we see that eigenvectors of different eigenvalues are orthogonal. Note first that
Spec(A) = Spec(AT), then

λie
T
i ej = (Aei)Tej = eTiA

Tej = λje
T
i ej =⇒ eTi ej = 0.

Lastly if A is symmetric then the basis of eigenvectors can always to taken normalised
and we may decompose A in its spectral components as

A = TDTT =
∑
i

λi ‖vi‖2 .

We can in some sense extend these results when A is an operator between infinite
dimensional spaces. First we must generalise certain properties of A.
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B.2 Compact and self-adjoint operators in infi-
nite dimensions

Let us take H to be an infinite dimensional Hilbert space. For L ∈ B(H) =
{L : H → H, linear in H and continuous such that ‖Lu‖H ≤ c ‖u‖H , for all u ∈
H and some c ∈ R} consider

Lu− λu = (L− λI)u = h,

where h ∈ H and I is the identity map I : H 3 u 7→ u ∈ H. The operator L
is compact if the image L(C) of any bounded set C ⊂ H is precompact in H
with respect to the norm topology. Recall that precompact means that the closure
L(C) is compact. With respect to the inner product of H we call L self-adjoint if
〈Lu, v〉 = 〈u, Lv〉.

The resolvent set of ‘perfect’ λ is defined as

ρ(L) := {λ ∈ R : L− λI is 1-to-1 and onto}.

For any λ ∈ ρ(L) the operator (L − λI)-1 exists and is continuous by the Open
mapping theorem.

The spectrum is then given by the set of λ which are left over;

σ(L) := R \ ρ(L).

The operator associated to these λ can fail at being nice in several ways.
First, L−λI might not be 1-to-1. This is equivalent to the equation Lu−λu = 0

having nontrivial solutions u ∈ H. For such u 6= 0 we call λ ∈ σ(L) an eigenvalue
and u a corresponding eigenvector. The set of eigenvalues is denoted by the point
spectrum

σp(L) := {λ ∈ R : (L− λI)u = 0, u 6= 0}.

The eigenspace of λ is defined as the kernel of L− λI, Ker(L− λI). The multi-
plicity of λ ∈ σp is then dim(Ker(L− λI)).

Second, L− λI might pass at being 1-to-1 but im(L− λI) might not be dense in
H, with respect to ‖•‖H . This set of λ’s is called the residual spectrum, denoted
by

σr(L) := {λ ∈ R : (K − λI)u = 0 =⇒ u = 0 and im(L− λI) ( H}.

Third, L − λI might pass at being 1-to-1 and having im(L − λI) dense in H,
but (L− λI)-1 need not be continuous. Such λ usually appear in a continuum and
therefore we denote the continuous spectrum by

σc(L) := {λ ∈ R : (K−λI)u = 0 =⇒ u = 0, im(L− λI) = H and (L−λI)-1 /∈ B(H)}.

We have σ = σp
◦
∪ σc

◦
∪ σr. Let us now state without proof the spectral theorem

for compact operators.
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Theorem B.1.
Let K ∈ B(H) be a compact and self-adjoint operator on an infinite-dimensional
separable Hilbert space H. Then

(i) 0 ∈ σ(K) and σ(K) \ {0} = σp(K),
(ii) H admits either a finite orthonormal basis of eigenvectors of K, or

a countably infinite orthonormal basis of eigenvectors of K,
(iii) in any case the corresponding set of eigenvalues can be arranged in a

decreasing sequence |λ1| ≥ |λ2| ≥ . . . , while in the countably infinite
case we also have |λk| → 0. Moreover, each such eigenvalue λ ∈
σp(K) has finite multiplicity.

B.3 Spectral theorem for bilinear forms

We continue our analysis from Chapter 4.2; knowing that a(•, •) is a symmetric,
continuous and weakly coercive bilinear form, while {V,H, V ∗} is a Hilbert triplet
with V ↪→c H.

First note that there is a unique map A : V → V ∗ such that for f, g ∈ V

〈Af, g〉∗ = a(f, g).

By continuity of a(•, •), the operator A is bounded in the operator norm. By virtue
of the Hilbert triplet we may consider the embedding

J = IH↪→V ∗ ◦ IV ↪→H : V ↪→ V ∗ with 〈Jf, g〉∗ = 〈f, g〉H ,

such that the weak problem (4.4) can be framed as finding f ∈ V solving

Af = λJf.

The construction of J also implies that J |H is a continuous embedding, and as such
we can write the problem as simply

Af = λf for f ∈ H. (B.1)

There is no need to worry about the fact that we have expanded the problem to
look for f ∈ H. We shall see that the problem (B.1) is still so intimately tied to
(4.4) as to net us eigenfunctions in V in the end.

The trick is to now consider A + λ0I : V → V ∗. Since this operator is nonzero
due to the weak coercivity, meaning for ‖g‖V = 1 that

‖A+ λ0I‖op ≥ 〈(A+ λ0I)g, g〉∗ = a(g, g) + λ0 ‖g‖H ≥ c > 0,

it follows by the Riesz representation theorem there exists an inverse (A + λ0I)-1 :
V ∗ → V . We define the resolvent

R0 := (A+ λ0I)-1|H : H → V.
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Applying R0 to (B.1) after adding λ0f on both sides gives,

f = (λ0 + λ)R0f ⇐⇒ R0f = 1
λ0 + λ

f. (B.2)

This problem (B.2) is equivalent to (B.1) since we may analogously start from the
above and apply A+ λ0I to get back (B.1) after lastly subtracting λ0f .

The resolvent is the operator we are looking for; it is self-adjoint and compact.
Indeed, we have

〈R0f, g〉H = 〈R0f, (A+ λ0I)R0g〉H = a(R0g,R0f) + λ0〈R0g,R0f〉H ,

so R0 is clearly self-adjoint. Furthermore since V ↪→c H, it holds that R0 is compact
as an operator from H to H.

Applying Theorem B.1 to R0 allows us to prove

Theorem B.1 (Spectral theorem for (4.4)).
Consider a Hilbert triplet {V,H, V ∗} with H separable and V compactly embed-
ded into H. Given a symmetric, continuous and weakly coercive bilinear form
a(•, •) we have

(i) The spectrum σ(a) ⊂ (−λ0,∞) is infinite, yet it can be ordered in a
nondecreasing sequence {λk} where each eigenvalue appears a number
of times equal to its finite multiplicity. Also λk →∞.

(ii) H has an orthonormal basis of eigenfunctions {fk} ⊂ V , such that

a(fk, fl) = λk〈fk, fl〉H = 0 for λk 6= λl.

Proof. Let us keep the notation of the previous discussion, with H = L2(RΓ)
and V = H1(RΓ). To the problem of finding f ∈ H such that R0f = µf there
exists a set of eigenvalues {µk} and a corresponding orthonormal basis {fk} ⊂ H
thanks to Theorem B.1. By virtue of the equivalence between (B.1) and (B.2),
the orthonormal eigenfunctions {fk} are also eigenfunctions of (B.1). Moreover,
these functions must necessarily be in V due to the definition of R0 : H → V .

Lastly, the eigenvalues λ of (B.1) are given by

λk = 1
µk
− λ0,

so that λk > −λ0 and increasing in absolute value with increasing k.
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quadratic forms

A positive definite quadratic form uniquely determines its flat torus, so it also
uniquely determines the fundamental domain of said torus. This domain is a convex
body, and this is the context in which Minkowski considered his theory of reduction
[22]; in the whole class of representations for a convex body, can we find a particularly
simple one described by geometrically extremal properties? Such considerations are
typical in the geometry of numbers, initiated by Minkowski himself.

A positive definite quadratic form f has the following properties for x, y ∈ Rn,
(i) f(x) > 0 if x 6= 0 and f(x) = 0 if x = 0,
(ii) f(αx) = α2f(x) for all α ∈ R,
(iii) f(x+ y) ≤ f(x) + f(y).

A function satisfying these is called gauge function and to every such function there
is an associated convex body defined by K := {x : f(x) < 1}. Here, we are looking
for a reduced gauge function (positive definite quadratic form) of the fundamental
domain to a lattice.

C.1 Successive minima

Let Λ be the fundamental domain of a lattice, and f its associated gauge function
(or positive definite quadratic form). For λ > 0, consider the number of Zn-points
of the set λΛ := {x : f(x) < λ}. If λ is very tiny, the only such point will be the
origin, 0. Say we increase λ bit by bit, then eventually there will be a value, call it
ν1, where the interior of ν1Λ contains no points of Zn, but the boundary will contain
at least two.

Suppose there are vectors b1, . . . , bk1 such that every Zn-point on the boundary
of ν1Λ can be written as a linear combination of these (certainly such vectors exist,
they can be taken as the Zn-points themselves.)

Now we may continue enlarging λΛ, to the point where there are points of Zn
on the boundary which are independent of the vectors b1, . . . , bk1 . We stop and
denote this value λ by ν2. Similarly, these points can be described by k2 linearly
independent vectors. Note that k2 is not necessarily larger then k1, just representing
an entirely different set of vectors.

Continuing in this manner we eventually get a set of n linearly independent
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vectors, with k1 + k2 + · · ·+ kj = n. Let

µ1 = ν1, µ2 = ν1, . . ., µk1 = ν1,

µk1+1 = ν2, µk1+2 = ν2, . . ., µk1+k2 = ν2, (C.1)
. . .

µk1+···+kj−1+1 = νj, µk1+···+kj−1+2 = νj . . ., µk1+···+kj= νj,

then we have found a set of unique successive minima 0 < µ1 ≤ µ2 ≤ · · · ≤ µn to
Λ, and an associated set of linearly independent vectors b1, . . . , bn.

It is possible to define the successive minima using the gauge function instead.
Set Zn0 = Zn\{0}. It is clear that µ1 must be the minimum value of f(Zn0 ), otherwise
we would have found a point of Zn earlier in our expansion of λΛ. Conversely if
µ1 = min f(Zn0 ), then µ1 must be the first value of λ we find such that the boundary
of λΛ = {x : f(x) < λ} contains a Zn-point.

Let µ1 = f(b1) for some vector b1. Then removing the span of b1 from Zn and
looking for the minimum of f in this set, gives us µ2. Similarly if b2 achieves
f(b2) = µ2, then µ3 is defined by the minimum of f over Zn0 \ SpanR{b1, b2}, and so
on. The arguments for why they coincide with the definitions in (C.1) are analogous
to the argument for µ1 in the prior paragraph. Thus,

µk = f(bk) = min{f(x) : x ∈ Zn0 \ SpanR{b1, . . . , bk−1}}, for k = 1, 2, . . . , n

Note that the vectors in {vi} are not necessarily a basis of Zn. This is what we
turn to figuring out next.

C.2 Reducing a basis
A primitive set of vectors of a lattice Λ ⊂ Rn is a set of vectors {u1, . . . , uk} (k ≤ n)
of the lattice Λ such that if a vector u ∈ SpanR{u1, . . . , uk} is also a lattice vector
(u ∈ Λ), then u must necessarily be an integer linear combination

u = α1u1 + · · ·+ αkuk, for α1, . . . , αk ∈ Z.

We have the following lemma, for whose proof the reader is referred to [22].

Lemma C.1.
Any primitive set of vectors of a lattice Λ ⊂ Rn can be extended to a basis for
the lattice.

For a set of vectors {u1, . . . , uk} to be extended to a basis simply means that there
are vectors wk+1, . . . , wn such that {u1, . . . , uk, wk+1, . . . , wn} is a basis.

Let {v1, . . . , vk−1}, for k− 1 ≤ n, be a primitive set of independent vectors of Zn.
Let us then define

P (v1, . . . , vk−1,+) := {v ∈ Zn : {v1, . . . , vk−1, v} (C.2)
is a primitive set of independent vectors},
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C. Appendix C: Reduction of quadratic forms

such that when k = 1, we have P (+) = {all primitive vectors of Zn}. With this
set (C.2) in hand, we may consider a similar approach as in the previous section to
find successive minima, but ending up with vectors which form a basis in the end.
However, these new values which we shall call λi will have the property of λi ≥ µi
for all i. This is nevertheless a small price to pay for what we gain.

First, the minimum of f(Zn) is certainly achieved by a primitive vector, so λ1 =
f(b1) = µ1 for v1 = b1 ∈ P (+). Then we may minimise f over P (v1,+), which is
a smaller set than Zn that in particular does not include v1, and denote this value
by λ2 = f(v2) for v2 ∈ P (v1,+). We continue in the same way, choosing vk ∈
P (v1, . . . , vk−1,+) such that λk = f(vk) is a minimum of f over P (v1, . . . , vk−1,+).
In this way we end up with values λ1 ≤ λ2 ≤ · · · ≤ λn such that for k = 1, 2, . . . , n,λk = f(vk) = min{f(x) : x ∈ P (v1, . . . , vk−1,+)},

vk ∈ P (v1, . . . , vk−1,+)
(C.3)

where the set {v1, . . . , vn} is a basis for Zn.
The set of vectors satisfying (C.3) is not unique, we may for instance replace any

v2 with −v2. To get uniqueness we make use of the fact that the particular gauge
function for the lattice Λ is a positive definite quadratic form f . Therefore it has
an associated symmetric bilinear form

_

f , and we require
_

f(vi+1, vi) ≥ 0, for i = 1, 2, . . . , n− 1. (C.4)

A quadratic form satisfying (C.3) and (C.4) is called reduced in the sense of
Minkowski (or simply reduced). One question remains: does such a reduced form
f represent its class, i.e. does it hold that all forms F ∈ [f ] are such that f = F ◦B
for some B ∈ GLn(Z)?

The following lemma, whose proof the reader can again find in [22], holds.

Lemma C.2.
For a basis {v1, . . . , vn} of a lattice Λ and a vector x ∈ Λ, the set {v1, . . . , vk−1, x}
is primitive if and only if the greatest common divisor of the coordinates xk, xk+1, . . . , xn
is equal to 1 (i.e. gcd(xk, . . . , xn) = 1.)

The lemma implies that we can rewrite (C.3) as

λk = f(vk) ≤ f(x), for all x with gcd(xk+1, . . . , xn) = 1, for k = 1, 2, . . . , n. (C.5)

Thus, starting from any positive definite quadratic form F the reduction procedure
precisely amounts to finding a particular unimodular matrix B such that (C.5) holds
for f = F ◦B.

XIX


	Introduction
	A problem in language
	Terminology
	Reading guide

	Preliminary theory
	Lattices
	Dual lattices
	Tori

	The flat torus as a Riemannian manifold
	The flat torus as a smooth quotient manifold
	Inheritance of the Euclidean metric
	Isometry of flat tori
	The Laplace operator on a Riemannian manifold

	The eigenvalue equation on a flat torus
	Recasting to Euclidean space
	Well-posedness on the fundamental domain
	Revealing the spectrum
	Fourier series and Poisson summation
	Spectral implications of Poisson summation

	Counterexamples in dimensions 16, 12 and 4
	Working with theta series in high dimensions
	Conway and Sloane's 4-dimensional family

	Spectrometry of low-dimensional flat tori
	Constructing the bijection
	Poisson summation and quadratic forms
	Low-dimensional and rectangular flat tori
	The case of three dimensions

	Appendix A: Differential geometry preliminaries
	Smooth quotient manifolds
	Tangent spaces, pushforwards and pullbacks
	Constructing the Laplace operator on a Riemannian manifold

	Appendix B: Spectral theory of compact operators and bilinear forms
	A taste of finite dimensions
	Compact and self-adjoint operators in infinite dimensions
	Spectral theorem for bilinear forms

	Appendix C: Reduction of quadratic forms
	Successive minima
	Reducing a basis


