
Automatic scaling of machine resources
in complex computing systems
Master’s thesis in Master Programmes:
Engineering Mathematics and Computational Science
Complex Adaptive Systems

SIMON STRANDBERG
SIMON WESTLUND

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018:NN

Automatic scaling of machine resources in
complex computing systems

SIMON STRANDBERG
SIMON WESTLUND

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2018

Automatic scaling of machine resources in complex computing systems
SIMON STRANDBERG SIMON WESTLUND

© SIMON STRANDBERG, 2018.
© SIMON WESTLUND, 2018.

Supervisor: Staffan Truvé, Recorded Future
Supervisor: Ulf Månsson, Recorded Future
Examiner: Mats Granath, Department of Physics

Master’s Thesis 2018:NN
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Marty, Recorded Future’s mascot, sensing for future information.

Typeset in LATEX
LATEX-template adapted from Frisk (2015)
Gothenburg, Sweden 2018

iv

Automatic scaling of machine resources in complex computing systems
SIMON STRANDBERG
SIMON WESTLUND
Department of Physics
Chalmers University of Technology

Abstract
This thesis examines the feasibility of detecting future queues in complex computing
pipelines using historic time series data as training data for a recurrent neural net-
work. It is suspected that surges of information that will be processed at different
stages in the system spread and affect other processes. By predicting how large
the queues are going to be a few minutes in the future, preemptive measures can
be taken in order to mitigate the spikes in workload. This can be done by scaling
the computing power at every node accordingly ahead of time. In order to find the
useful information patterns in a very large feature space, different feature selection
methods are tried and evaluated. It is found that choosing features based on their
relevance to the target feature performs better than choosing features that span the
feature space. Three different ways of looking at the results are tested: Naive pre-
diction of future queue sizes, WTTE-RNN and the Sliding Box model. It is found
that some predictive power exists in the former two, while the Sliding Box model
performs poorly, but more tuning and data collection is needed before putting the
results into production.

Keywords: Automatic scaling, Computing systems, Time series, Recurrent neural
networks, LSTM, WTTE-RNN.

v

Acknowledgements
There are several people without whom the work with this thesis would have been a
much less pleasant experience. Firstly we extend our deepest gratitude to all people,
both at Recorded Future and beyond, that have lent us their time, experience,
patience and expertise, helping us understand the problems at hand and working
out potential solutions. There are far too many names to mention everyone. You
know who you are. A special thanks of course to our supervisors, Staffan and Ulf,
for proposing the project from the beginning, and helping us with guiding, ideas and
inspiration from start to end. Lastly, to whomever placed a ping-pong table in the
corner kitchen room: you are a catalyst for the solution of many of our problems,
and a lifesaver by keeping our work ethic up after long days of reading technical
reports. Thank you!

Simon Strandberg and Simon Westlund, Gothenburg, May 2018

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 On the nature of the task and the purpose of the thesis 2
1.2 Outline . 3

2 Feature Selection 5
2.1 Naive selection using cross-correlation 6
2.2 Iterative Cross-correlation Filtering 7
2.3 Granger causality . 8
2.4 CLeVer based methods . 8

2.4.1 Principal Component Analysis 9
2.4.1.1 Common Principal Components 10

2.4.2 CLeVer-Rank . 10
2.4.3 CLeVer-Cluster . 11
2.4.4 CLeVer-Hybrid . 11

3 Recurrent Neural Networks 13
3.1 Feed-forward neural networks . 13

3.1.1 Neuron representation . 13
3.1.2 Activation function . 14
3.1.3 Network structure . 15
3.1.4 Energy function . 15
3.1.5 Backpropagation . 16

3.2 Recurrent neural networks . 19
3.2.1 Simple RNN . 19
3.2.2 LSTM . 20

3.3 Predictive regression with RNN . 22
3.3.1 Prepare data for supervised learning with RNN 22
3.3.2 The RNN model . 23
3.3.3 Training the model . 23
3.3.4 Evaluating the results . 23

4 Weibull Time-To-Event 27
4.1 Weibull distribution . 27

ix

Contents

4.2 Censoring . 29
4.3 Likelihood functions . 30
4.4 The Model . 31

4.4.1 Defining an event . 32

5 Sliding Box Model 35

6 Results 37
6.1 A quick note on selected features . 37
6.2 Standard LSTM model . 38
6.3 WTTE . 39
6.4 Sliding Box . 40
6.5 Temporal drift . 41

7 Discussion 45
7.1 On the importance of feature selection 45
7.2 Evaluation and comparison of the models’ performances 46
7.3 Temporal drift . 47
7.4 Concluding remarks . 48

Bibliography 51

x

List of Figures

2.1 Example of principal components in data. Most of the variance in
the data is along the first principal component. 9

2.2 Example of Common Principal Components between two data sets a
and b with their respective leading principal components PC1a and
PC1b. 10

3.1 On the left is a simplified illustration of a real neuron. On the right is
a neuron representation in an artificial neural network, where ai are
the inputs, wi are the weights, b is the bias, z is the input sum and f
is the activation function. 14

3.2 Four examples of activation functions used to limit the neuron output
and determine the value to be sent forward in the network. 15

3.3 An illustration of a single layer feed-forward neural network. Each
line connecting inputs to neurons has a corresponding weight and
each neuron contains a bias value used to calculate the input sum. . . 15

3.4 A visualisation of a multi layer feed-forward neural network. This
neural network has two layers of neurons; a hidden layer and an out-
put layer. The hidden layer consists of four neurons and the output
layer has two. All connections between inputs and neurons, as well as
between neurons and neurons, contain weights and each neuron also
has a corresponding bias value. 16

3.5 A visualisation of two RNN units and the connection between them.
The hidden state of one unit is fed into the next unit along with the
next input value, allowing the RNN to utilise the sequentiality in the
data. 18

3.6 Examples of different types of RNN structures. Many inputs can give
one output, one input can give many outputs and multiple inputs can
give multiple outputs. 18

3.7 An LSTM unit and its underlying components. Both the hidden state
and the cell state is sent forward in the network, unlike the RNN unit
where there only is a hidden state that is kept. 20

xi

List of Figures

3.8 An example of a successfully predicted peak. If the prediction is
within tf away from the actual value it is considered a successful pre-
diction. In this example the prediction is plotted to pass the threshold
three minutes after the actual curve does so. However, information is
still gained from this result. Since the prediction is plotted directly
after making a prediction and its corresponding label from the real
data is actually tf = 5 minutes ahead of time, being three minutes
too late in the plot actually means predicting the peak two minutes
in advance. 24

3.9 Examples of different prediction outcomes. The left panel shows an
example where there is an actual peak that exceeds the threshold, but
the model fails to predict it; a so called false negative. The middle
panel is an example of a false positive, when the queue size never
exceeds the threshold but the model predicts that it will. The right
panel shows a successful prediction where the model rather accurately
mimics the actual behaviour of the queue. 24

4.1 Examples of the Weibull distribution for different sets of parameters
α and β. 28

4.2 Example of structure and workings of an RNN network outputting
parameters [α, β]T for a Weibull distribution at every step. Figure
taken from [1]. The xi are new input for every time step and hi is the
internal state of the network passed on to the next time step. 32

6.1 Performance for the standard LSTM model using the four different
data sets. The left axis gives the scale for the precision and recall
values, while the right axis measures the average time to event left
when the predictions were given. The line covering the top of each
bar indicates the standard deviation of the measurements. 38

6.2 Maximum a posteriori prediction results versus true time to event
from the WTTE-model. Dashed lines show the cut-off points used
for deciding whether to count a prediction as false or not. 39

6.3 Performance for the WTTE model using the four different data sets.
The left axis gives the scale for the precision and recall values, while
the right axis measures the average time to event left when the pre-
dictions where given. 40

6.4 Performance for the Sliding Box model using the four different data
sets. The left axis gives the scale for the precision and recall values,
while the right axis measures the average time to event left when the
predictions where given. 42

6.5 The effect of temporal drift on the standard LSTM model trained on
the four different data sets. The average of all these results is also
illustrated. 43

xii

List of Tables

6.1 The number of features included in each of the data sets. 37
6.2 The resulting evaluation scores, as defined in section 3.3.4, for the

standard LSTM model using different data sets. 39
6.3 The evaluation scores describing the performance of the WTTEmodel

when trained on data sets containing features obtained using the four
different feature selection methods. 41

6.4 The evaluation scores describing the performance of the sliding box
model when trained on data sets containing features obtained using
the four different feature selection methods. 41

xiii

List of Tables

xiv

1
Introduction

Various computing systems are met with fluctuating demand for computing power
at different points in time. The effect and severity of having too little computing
power differs depending on the application. It can mean missing the opportunity
to perform important computations, slow response times to the user of the system,
or something else. However, having less computing capability than needed is never
desirable.

One way of dealing with the problem of insufficient computing power is horizon-
tal scaling, i.e adding more machines working on the task at hand. By distributing
the workload on a greater number of machines the spikes in workload and the possi-
ble following queues being built up can be mitigated. Many systems are built such
that scaling certain components in the system, independently of all other compo-
nents, is possible.

The question of when to scale up the number of machines can be approached by
simple thresholding. When the workload, or some measurable effect of the work-
load, rises over a certain limit more machines are added to the specific task at hand.
There are two main drawbacks with this though. Firstly, the spike has already
started building up by the point at which the command to scale up and add more
machines is given. Secondly, there is often some delay in conjunction with adding
a new machine to the task at hand. Thus, knowing beforehand when to scale up is
advantageous.

Lots of previous work on detecting spikes in cloud computing, for example by Ibidun-
moye and Elmroth [2], has focused on detecting whether the current load does indeed
make up a ”spike” or not. The systems studied there are, however, limited to han-
dling a large incoming amount of requests from some external source. No previous
information is contained in the system giving information on future work load. The
goal is then to correctly classify if the current increase in workload is indeed a spike
or not, based on the characteristics of the change of the workload. If the workload
increases in such a way that a larger spike is to be expected, some measure is taken
in order to deal with the increased load.

However, given that one studies a system with multiple components that are pro-
cessing tasks sequentially, or doing tasks in parallel that are communicating with the
same database, there may be information to be had before the spike starts to build
up at the specific process being studied. One can imagine such a system as a set

1

1. Introduction

of pipelines, interconnected in some more or less complicated way, with information
flowing through them. Given the state of the pipes and amount of information at
specific points, the rate of the flow of information and various other system metrics it
will likely be possible to use current information in order to predict future behaviour.

This thesis deals with such a system.

1.1 On the nature of the task and the purpose of
the thesis

Recorded Future, a world leading company in digital threat intelligence based in
Gothenburg, has a system very much like the one described above. At one end of
the system data is collected from multiple sources on the internet. These data are
then processed in various steps, finding interesting entities and references. The col-
lected information is then stored in a database and indexed, trying to connect bits
of information and detecting patterns indicative of malicious behaviour. During the
processing different processes communicate with and retrieve/store information in
a set of databases. To every process there is one or multiple queues with messages
yet to be handled.

On the other end of the system are the customers, getting alerts on possible ex-
ploits, leaks, IP-addresses et cetera, or asking queries to the databases that might
be of interest to them in their work with digital security. These queries might be of
differing size and complexity.

The purpose of this thesis then is to examine the possibility of predicting future
queues building up using machine learning so that the necessary actions can be
taken in order to minimise the queues or prevent the queues from happening alto-
gether. To achieve this, data about the current and previous states of the system is
used. Specifically, data about the sizes of the queues at every time, and the rate of
flow of information in and out of the queues.

The historical data about the system is stored as time series in one-minute inter-
vals. There are several different metrics for every queue, including, but not limited
to: number of messages in the queue, average ingress rate, average egress rate,
consumers (cores in a computer) working on the messages in the queue, et cetera.
Similarly, there are a number of different metrics for every process, as well as metrics
for every machine in the database clusters.

Given the complexity of the system and the interactions between all its parts, using
neural networks to predict queues is a reasonable route to go. Specifically, recurrent
neural networks will be used in order to utilise the sequentiality of the data, taking
into consideration changes over time in the state, not just momentary snapshots in
time.

2

1. Introduction

In all machine learning tasks data preparation is an important task. This project
will delve somewhat into feature selection given the very large possible feature space.
Taking all metrics available for all processes, queues and databases would yield about
3000 features in total. With a look-back period of x minutes for every feature, the
possible number of combinations for the network to learn and recognise becomes ex-
tremely large. Thus, selecting a smaller number of important features is of interest
in order to enhance the signal and not train the network on what might be mostly
noise.

1.2 Outline
In chapter 2, the theory behind four different feature selection methods specific for
time series data are presented.

Chapter 3 then introduces the concept of artificial neural networks and their mo-
tivation, and then extends that to recurrent neural networks in general, and the
LSTM cells specifically. This then constitutes the general framework for all learning
methods used in the thesis. The chapter ends with the setup of the task and data
for the first method tried, and presents a score system to evaluate and compare
different models to each other.

In chapter 4 the concept of Weibull Time To Event Recurrent Neural Networks
(WTTE-RNN) are laid out [3]. Its theory is briefly discussed and some general in-
tuition is given. Chapter 5 then quickly presents the third method tried, the Sliding
Box model for prediction of events.

The results of simulations and test are then presented in chapter 6, and chapter
7 concludes with some discussion on the results, possible improvements and future
work.

3

1. Introduction

4

2
Feature Selection

When working with machine learning, having very high dimensional data is not
necessarily a problem, but definitely something that has to be dealt with. Richard
Bellman coined the term ”the curse of dimensionality” in connection with working
on exhaustive enumeration of product spaces for optimisation problems [4]. As the
number of dimensions grow, the number of possible combinations increases exponen-
tially. Consider a Cartesian grid with spacing 1/10 on the unit cube in p dimensions.
The number of points on the grid is then 10p. Exhaustive search then quickly be-
comes very computationally expensive with growing dimensionality.

When working with artificial neural networks the problem is similar in nature. An
artificial neural network is tuned in order to map a previously unseen input to a
value or label that is close to some formerly known similar training input. If the
network has not had the chance to train on something similar to the new input, the
result will not be a very informed guess. What similarity is is not a trivial question,
but for many purposes euclidean distance is a good proxy. In a high dimensional
space most things become very far apart, and thus nothing is similar to anything.
Hence the need for very large amounts of training data.

Another potential problem with including many features in a machine learning
model is the possibility of training on noise, so that the results are not general-
isable to new data, or not finding ”the signal” in the data, so that no meaningful
learning is possible at all. Thus, reducing the number of input features is important.

Feature selection methods are generally divided into three broad classes: Wrapper,
embedded and filter methods. A wrapper method typically considers the feature
selection as a search problem in which it tries some subset of the features and eval-
uates it using a predictive model. Features are then added or discarded depending
on how important they are deemed for the result. Recursive Feature Elimination
(RFE) is a typical wrapper method in which a model is built using all features, and
the least important one is eliminated until the desired number of features is reached.
A drawback of wrapper methods is their large demand for computational time and
power, especially when starting with a very large feature space.

Embedded methods use simultaneous training and selection. A common class of
embedded methods are regularisation methods that introduce certain penalties on
including many features in for example a regression model so that the model be-
comes biased to having fewer features.

5

2. Feature Selection

The last class then, to which all of the following proposed methods belong, is filter-
ing methods. This class of methods use some statistical test on the data, filtering
out features before any training is performed at all. Given a large feature space
to begin with, filtering methods are the most computationally viable ones to use,
especially in comparison with wrapper methods [5].

In the following sections a number of different filtering techniques are presented.
Some of them are completely data-driven, meaning that no human intervention and
possible following bias is introduced. Others require some intervention in choosing
the number of features to include.

2.1 Naive selection using cross-correlation
Cross-correlation is a measure of the similarity between two series x and y at a
certain offset τ defined as

Rxy(τ) := (x ∗ y)(τ) =
∫ ∞
−∞

x∗(t)y(t− τ)dt (2.1)

where x∗(t) denotes the complex conjugate of x(t).

In order to select features, the cross-correlation between the dependant feature and
all other features is calculated. The importance of the feature is measured by how
high the maximum cross-correlation is. Using knowledge about the nature of the
data studied a maximum lag of T can be considered for increased computational
efficiency. If it is known that data outside some time-lag τ but within a certain
threshold 0 < τ ≤ T should not have any significant effect on the outcome, then
those cross-correlations can be omitted from calculation. Given that the nature of
the data is such that all features are strictly non-negative at all times, the idea
is that there should be some activity in the feature prior to the examined feature
rising, giving rise to a higher cross-correlation for that time lag.

Since the value of 2.1 is dependant on the size of the respective series, it is often
convenient to scale the value according to

Rscaled
xy (τ) := 1√

Rxx(0)Ryy(0)
Rxy(τ) (2.2)

so that the value of Rscaled
xx (0) = 1 and Rscaled

xy (τ) ∈ [−1, 1]. After normalising the
cross-correlations according to 2.2 and calculating Rmax := max0≤τ≤τmax R

scaled
xy (τ),

the n features with largest Rmax are selected.
One possible drawback of naively choosing all the highest correlating features how-
ever is the possibility of including redundant information. If multiple features have
a high cross-correlation with the target feature at some point in time, they should
also have high cross-correlation with each other, thus sharing information, and only
one of them could be enough.

6

2. Feature Selection

2.2 Iterative Cross-correlation Filtering

Iterative Cross-correlation filtering, ICF for short, uses the principle of cross-correlation
to perform a more advanced forward selection of features excluding features that are
pairwise correlated, or just noise. The algorithm is performed in multiple steps, and
the proceedings and selection rules demand a rather lengthy explanation. The in-
terested reader can find the exact proceedings and motivations in [6]. This section
will provide only a brief summary in order to give some intuition to the method.

As described in [6], ICF works on the following three intuitions:
• Select a variable to be included if it is not correlated with any other variable.
• Eliminate variables that are correlated with all other already selected variables.
• Act conservatively; if the rules for selection or elimination result in a working

set of mutually correlated variables, maintain only the features that are less
correlated with those selected.

The first part of the algorithm calculates a redundancy matrix R ∈ {0, 1}D×D, where
D is the total number of features. Every entry Rij is 1 if feature i and j at some
point in time have a cross-correlation close to 1, or zero otherwise. Features awarded
with a 1 are said to be pairwise redundant. That is, they contain the same infor-
mation, but with some time-lag. The diagonal of R is set to 0 in order to rule out
the trivial cross-correlations of a series with itself at no lag.

Secondly, features that are likely noise are deleted. This is determined by checking
the auto-correlation (cross-correlation of a series with itself). If the average auto-
correlation of all non-zero lags is close to 0, then the feature is deemed noise and is
therefore deleted.

The last step of ICF is to assign all remaining features in the set F of unassigned
features to either the group of selected features SF , or the set of deleted features
DF , by consecutively checking four selection rules.

1. If row Ri. is completely uncorrelated with the others (Ri. contains only zeros),
then that feature is removed from F , added to SF , and all corresponding
entries in R are removed. If this in turn creates a new feature that is completely
uncorrelated with all others, that feature is assigned to DF .

2. If row Ri. is correlated with all others and there is at least 1 non-completely
correlated feature (i.e., R does not contain only one off-diagonal), then add i
to DF and remove it from F along with all corresponding entries in R.

3. If all remaining features in F are correlated with each other, select the one
that is least correlated with the features already in SF and add that feature
to SF . Move all others to DF and then terminate the algorithm.

4. If none of the earlier rules apply, then find the remaining feature i least cor-
related with all others in F . Define S(i) ∈ F to be the set of all features
correlated with i and chose j ∈ S(i) that is most correlated with the features
in SF . Lastly, add i to SF , j to DF and remove them both from F along
with all corresponding entries in R.

7

2. Feature Selection

2.3 Granger causality
The concept of Granger causality was originally proposed as a means of identifying
causal interactions between different time-series in econometry [7]. Recent work [8]
has used the concept of Granger causality in order to design a feature selection al-
gorithm for multivariate time-series.

The basic principle of Granger causality is a statistical hypothesis test, compar-
ing if a variable x increases the predictive power on y compared to an ordinary
auto-regressive model. More formally, let x and y be two different time series, let xt
and yt be their most recent value and let xt−k and yt−k be their lagged values with
a lag of k time steps. First conduct the two regressions:

ŷt1 =
l∑

k=1
akyt−k + εt (2.3)

ŷt2 =
l∑

k=1
akyt−k +

w∑
k=1

bkxt−k + ηt (2.4)

where ŷti is the least square regression model fitted according to the equations, ak
and bk are regression coefficients, l and w are the maximum allowed lag of y and
x respectively and εt and ηt are the prediction errors. The size of w and l could
in theory be infinite, but are assumed much shorter and are usually determined by
the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) [8].

Variable x is then said to Granger cause y if and only if 2.4 improves the accu-
racy as compared to 2.3 by some statistical test, for example the F-test, with some
specified level of certainty p.

The decision to include feature x(i) in the model is made if x(i) Granger causes
y but y does not Granger cause x(i). This is then repeated for all features.

2.4 CLeVer based methods
CLeVer, first proposed in 2005, is short for descriptive Common principal com-
ponent Loading based Variable subset selection method [9]. CLeVer is actually a
collection of three different, but theoretically and application-wise similar, methods.
The basis for them is Principal Component Analysis (PCA) on separate Multivari-
ate Time-Series (MTS) items.

CLeVer was suggested with a set of different MTS’s in mind, such as one would
get when measuring values on a set of different people - for example doing MRI
scans on 10 different patients - thus generating multiple disjoint MTS’s but with
similar characteristics. This thesis works with one very long continuous MTS over
3 months, but that can easily be cut into several shorter MTS’s.

8

2. Feature Selection

Figure 2.1: Example of principal components in data. Most of the variance in the
data is along the first principal component.

What CLeVer does not do is take into account lagged values of a feature, or au-
tomatically choose the number of features to include, thus requiring some human
intervention.

In order to understand CLeVer, a brief recollection on PCA is first presented,
including Common PCA, and then the three different CLeVer methods. Unless
otherwise stated, the following theory is taken from [9].

2.4.1 Principal Component Analysis

Intuitively, the purpose of PCA is finding the directions in the data with the maxi-
mum variance, or rather the directions which minimises the variance of the residual
errors when the data is projected there. In most data mining settings the aim is to
find a lower dimensional space to which the data can be projected while losing as lit-
tle useful information as possible. Figure 2.1 shows an example of a two-dimensional
set of data where the data is spread mainly along one axis, the first principal com-
ponent.

This is done by performing a Singular Value Decomposition (SVD) on the covariance
matrix corresponding to the data set so that

A = V ΣU∗

where A is the covariance matrix, V contains the loadings for the eigenvectors span-
ning the principal components and Σ is a square matrix with the corresponding
eigenvalues, where the size of the eigenvalue corresponds to the variance along that
direction.

9

2. Feature Selection

Figure 2.2: Example of Common Principal Components between two data sets a
and b with their respective leading principal components PC1a and PC1b.

2.4.1.1 Common Principal Components

When having several sets of MTS’s the PC’s can be calculated for each one. One
method to then calculate a set of Common Principal Components (CPC) was pro-
posed in [10]. The concept used is to bisect the angles between the corresponding
PC’s from the various MTS’s. Suppose every MTS is described by its leading p
principal components. The ith CPC (i = 1, ..., p) is then obtained by successively
bisecting the angles between the ith PC in every MTS. An example is shown in
figure 2.2 where the first CPC is found by bisecting the angle between the leading
PC’s of the two sets of data.

The CPC’s then describe the subspace that most closely agrees with all the sub-
spaces from the collected MTS’s. Constructed in this way it is also ensured that
the CPC’s are orthogonal, and ordered non-increasingly. Furthermore the value of
the jth component in every CPC is corresponding to the contribution from the jth
feature in the original feature space, just as would be expected from ordinary PC’s.

All of the three following methods start off with a set of CPC’s calculated from
a set of MTS’s as described above.

2.4.2 CLeVer-Rank
CLeVer -Rank chooses features based on their contribution to the CPC’s, according
to the L2-norm of the corresponding loadings from that feature. For variable vi the
ith loading li of every CPC is used to assign a score according to

|vi| =
√
l21,i + ...+ l2p,i (2.5)

The intuition here is that variables with a high score has contributed a lot to at
least one and probably several of the CPC’s. Then the K highest ranked variables
are chosen to be included in the model.

10

2. Feature Selection

One drawback of this scheme is that it is prone to selecting redundant variables.
It is possible that an even smaller amount of variables might have equal predictive
performance, since many high ranked variables probably share information through
correlation with each other. It is also possible to miss important variables that get
a low ranking, but are only important when paired with certain other variables.
CLeVer -Cluster aims to solve these problems to some extent.

2.4.3 CLeVer-Cluster
Instead of choosing variables that are individually important, CLeVer -Cluster
tries to select variables that hold different kinds of information and complement
each other. By performing a K -means clustering of the CPC’s it is possible to
find the variable closest to each cluster centre and select that to be included in the
model; The idea being that variables that are highly correlated and thus placed in
the same cluster will share information that are redundant when used together with
all variables in the same cluster.

To get better performance, the K -means clustering is performed 20 times and then
the iteration with the least within cluster sum of Euclidean distances to the cluster
centroid is chosen. This increases the possibility of getting more clearly defined,
tight, clusters.

Whilst CLeVer -Rank always returns the chosen number K of variables, CLeVer
-Cluster returns at most K, being the number of clusters formed. If several clus-
ters have the same feature closest to the cluster centre, then fewer features will be
chosen.

2.4.4 CLeVer-Hybrid
CLeVer -Hybrid utilises the strengths of both previous methods. Firstly the clus-
tering is performed according to the same method as in CLeVer -Clustering. Then
the variables within the cluster are ranked in the same way as in CLeVer -Rank.
Instead of choosing the feature closest to the cluster centroid, the highest ranking
feature for every cluster is chosen instead.

When referring to the CLeVer method when doing feature selection later in this
thesis, CLeVer -Hybrid is the one used.

11

2. Feature Selection

12

3
Recurrent Neural Networks

An artificial neural network is a model used for machine learning inspired by the hu-
man brain, trying to mimic how neurons interact with each other through electrical
signals being sent through synapses. Depending on the strength of the connection,
neurons affect each other to varying degrees. The artificial neural network is trained
by being fed data and then optimising an energy function, in the hope that it learns
to recognise patterns in the data and is able to correctly label or assign an adequate
value to a new, previously unseen, set of data.

In this chapter the theory behind basic feed-forward neural networks will be ex-
plained and formalised in section 3.1, whereupon the extensions to recurrent neural
networks will be made in section 3.2. Readers familiar with the basic theory can
skip directly to section 3.3, where a framework for doing the predictive regression
on future queue sizes specific for this thesis is set up.

3.1 Feed-forward neural networks
The performance of neural networks can be outstanding in finding non-linear and
complex relationships between inputs and outputs. They also generalise very well,
using their lessons learned from training data on previously unseen data efficiently
[11]. There are several distinct network architectures that are used for different types
of tasks, a common one being the feed-forward neural network, which consists of a
network of artificial neurons with unidirectional connections between each other.

3.1.1 Neuron representation
As previously mentioned neural networks are inspired by how neurons in our brain
interact with each other. A neuron, as seen on the left of figure 3.1, consists among
other things of a cell body, dendrites, synapses and an axon. Transmitting a signal
to another neuron is a complex chemical process, but it can be simplified to releasing
certain substances to the receiving cell in order to increase or decrease the electrical
potential inside its body. If the potential exceeds a threshold the cell would fire a
pulse along the axon, which would then affect other cells [12].

An artificial neural network is a hugely simplified version of this process. A sin-
gle neuron in an artificial neural network, as can be seen on the right of figure
3.1, receives numbers from previous parts of the network as input and calculates

13

3. Recurrent Neural Networks

Figure 3.1: On the left is a simplified illustration of a real neuron. On the right is
a neuron representation in an artificial neural network, where ai are the inputs, wi
are the weights, b is the bias, z is the input sum and f is the activation function.

a weighted sum with an added bias value. Variables called weights and biases are
used in the computation, which goes by the name input sum and is expressed as

z =
∑
i

wiai + b, (3.1)

where b is the bias, wi are the weights and ai are the inputs. The weights and
biases are tweaked during the training of the model in order to create the desired
behaviour. The result of the input sum will consequently be passed through an
activation function to determine what should be advanced in the network [12].

3.1.2 Activation function

The neuron does not take any bounds of its output value into consideration, hence
it can be any real number. In order to know when the neuron should fire the value
needs to be passed through an activation function. An activation function can be as
simple as a step function, where the neuron would fire if the output exceeds a cer-
tain threshold. However, a lot of information is lost when using a binary activation
function like the step function.

If instead the activation function was linear, no information about what the neuron
wanted to output is lost. Although there is an essential problem with this as well.
If the output of all neurons is calculated by a linear function and then activated by
another linear function the output of the network of neurons would just be a linear
function of the inputs. Hence, the ability to stack layers of neurons to calculate
complex non-linearities is lost. In most cases where neural networks are effective
they need to be able to find nonlinear relationships between the input and the out-
put [13]. Effectively, the activation function is what creates non-linearity in a neural
network, provided that the activation function itself is nonlinear.

Three of the most well used activation functions for neural networks, seen in fig-
ure 3.2, are the sigmoid function, the hyperbolic tangent function and the rectified
linear unit (ReLU) [14]. They have different properties that make them efficient at
different tasks. The sigmoid function is better at classification tasks rather than
regression tasks, while ReLU has properties that makes the network faster to train
as compared to the hyperbolic tangent function for example [14].

14

3. Recurrent Neural Networks

Figure 3.2: Four examples of activation functions used to limit the neuron output
and determine the value to be sent forward in the network.

Figure 3.3: An illustration of a single layer feed-forward neural network. Each line
connecting inputs to neurons has a corresponding weight and each neuron contains
a bias value used to calculate the input sum.

3.1.3 Network structure

Connecting these neurons to each other creates a neural network. Figure 3.3 shows a
single-layer neural network where the inputs are fed to the output that consequently
provides a result. So far this is a quite simple mathematical operation to process
a few input values. However, increasing the size of the network both in regards to
the amount of neurons and to the amount of layers in the network can create a
large network with ability to find rather complex patterns in the input data [13].
An example of a multi-layer neural network is illustrated in figure 3.4 where the
inputs are first fed to what is called a hidden layer where they are processed and
fed forward to the output layer.

3.1.4 Energy function

In order to train the neural network it is necessary to be able to evaluate its perfor-
mance. The training process is essentially about minimising the network’s energy
function, or loss function as it is often called. The purpose of the loss function is to
measure how well the network is performing on the given data. In a regular super-
vised learning problem the actual results, also called labels, of the training data are
known and can be used to compare with the output from the network.

A general loss function can be expressed as

15

3. Recurrent Neural Networks

Figure 3.4: A visualisation of a multi layer feed-forward neural network. This
neural network has two layers of neurons; a hidden layer and an output layer. The
hidden layer consists of four neurons and the output layer has two. All connec-
tions between inputs and neurons, as well as between neurons and neurons, contain
weights and each neuron also has a corresponding bias value.

L = 1
n

n∑
i=1

L(yi, ŷi), (3.2)

where n is the number of training cases, L is a function of the desired outputs yi and
the predicted outputs ŷi. The loss function’s requirements are that it needs to be
averageable over training cases and it needs to be possible to write it as a function of
outputs [15]. A common loss function is mean squared error of which the standard
form is defined as

L = 1
n

n∑
i=1

(yi − ŷi)2, (3.3)

where n is the number of training cases and y represents the actual results while ŷ
is the output from the network [16].

3.1.5 Backpropagation
Arguably the most important part of neural networks is their ability to learn from
experience. Backpropagation is what makes that possible. It works by changing the
variables of the network, i.e. the weights and the biases, according to the result of
the loss function. Understanding how differences in weights and biases can reduce
the loss function will provide the potential to improve the network’s performance
[13]. The backpropagation algorithm is based on gradient descent. By calculating
the gradient of the loss function with respect to the weights and biases it is possible
to minimise the error of very complex nonlinear functions [13].

In order to use gradient descent to optimise the loss function it is necessary to

16

3. Recurrent Neural Networks

know the partial derivatives of the loss function with respect to the weights and
biases. These partial derivatives can be expressed as

∂L
∂wlkj

and ∂L
∂blj

(3.4)

for weights and biases respectively, where the superscript l indicates the layer and
subscripts k and j denotes a specific neuron. An error signal of each neuron is
defined as

δlk ≡
∂L
∂zlk

(3.5)

in order to calculate the partial derivatives above. This simply expresses how much
the error changes when the input sum is changed. This input sum is defined as

zlk =
∑
i

wlika
l−1
i + blk, (3.6)

where zlk is the result of alk being passed through the activation function. By using
the chain rule the right hand side of equation 3.5 can be written as

∂L
∂zlk

= ∂L
∂alk

∂alk
∂zlk

=
(∑

m

∂L
∂zl+1

m

∂zl+1
m

∂alk

)
∂alk
∂zlk

=
(∑

m

∂L
∂zl+1

m

wlmk

)
σ′(zlk). (3.7)

This can in turn be formulated as

δlk = (
∑
m

δl+1
m wl+1

mk)σ′(zlk). (3.8)

This equation enables the ability to recursively calculate all the error signals in the
network, which will be necessary in the computation of the partial derivatives in
equation 3.4. The equation can perhaps be more easily understood when expressed
in matrix form as

δl = (wl+1)T δl+1 � σ′(zl), (3.9)

where applying the transpose weight matrix can be seen as moving the error back-
wards in the network. Taking the component-wise multiplication of the derivative of
the activation function moves the error backwards through the activation function.
At this stage it would be helpful to be able to express the partial derivatives in
equation 3.4 as a function of the error signals. It is easy to see that ∂zl

k

∂bl
k

= 1 which
means that

∂L
∂blk

= ∂L
∂zlk

∂zlk
∂blk

= ∂L
∂zlk

= δlk. (3.10)

The same procedure with the partial derivative of the loss function with respect to
the weights results in

∂L
∂wlkj

= ∂L
∂zlk

∂zlk
∂wlkj

= δlka
l−1
j . (3.11)

17

3. Recurrent Neural Networks

Now that expressions for the partial derivatives in equation 3.4 have been derived
and can be computed with known quantities it is time to update the weights and
biases according to these gradients. The standard updating rule using gradient
descent gives

wlkj ← wlkj − η
∂L
∂wlkj

(3.12)

blk ← blk − η
∂L
∂blk

, (3.13)

where η is the learning rate. However, using standard gradient descent is not the
only way to update the variables in order to improve the network’s performance.
There are more efficient algorithms that tend to increase the learning speed. A few
examples are AdaGrad, RMSprop and Adam. The difference between these methods
and the standard gradient descent method is that they have adaptive learning rates
[17]. They all have different ways of doing this, which results in unique properties
and therefore different performance depending on the type of data.

Figure 3.5: A visualisation of two RNN units and the connection between them.
The hidden state of one unit is fed into the next unit along with the next input
value, allowing the RNN to utilise the sequentiality in the data.

Figure 3.6: Examples of different types of RNN structures. Many inputs can give
one output, one input can give many outputs and multiple inputs can give multiple
outputs.

18

3. Recurrent Neural Networks

3.2 Recurrent neural networks
Many problems suited for machine learning are based on sequential data. Trans-
lating natural language, speech synthesis and time series prediction are just a few
examples [18]. Ordinary feed-forward neural networks do not handle its input data
as a sequence. The order of the data is not considered and thus it will not be able
to use information that exists in the sequence itself. Recurrent Neural Networks
(RNNs) consist of units that are not only connected to units in the next layer, but
also to units in its own, which aims to solve this problem.

3.2.1 Simple RNN
The reason recurrent neural networks handle sequential data so well is that they use
the hidden state of the previous time step as part of the input to the next unit. The
hidden state is a function of the input and the hidden state ht from the previous
unit, such that

ht = f(W · xt + U · ht−1 + b), (3.14)

where W is the weight matrix for the inputs, U is the weight matrix for the hidden
state, b is the bias, xt are the inputs and ht−1 is the hidden state from the previous
unit. The function f is the activation function of the unit. The hidden state will
be outputted to the following unit and sometimes also to the next layer of units.
Figure 3.5 is a visualisation of this.

The unique connections in a recurrent neural network enhances the flexibility of
its general structure. Figure 3.6 illustrates how the sizes of the input and output
data can differ between models. This thesis will work only with the ”many-to-one”
structure to the left in the figure, using the inputs from multiple sources and giving
one guess after seeing the complete training history.

Aside from the addition of the hidden state’s recurrent nature the RNNs are not very
different from a feed-forward neural network. However, there is a slight difference
in how updating the weights and biases is handled in recurrent neural networks.
Instead of the usual backpropagation algorithm described in section 3.1.5 a some-
what different algorithm called backpropagation through time (BPTT) is used. The
difference is that this time the loss is not only backpropagated through layers, but
also through the time steps in each recurrent layer.

Trying to exploit memory by connecting units as in a regular RNN comes with
some consequences. Using BPTT to train the RNN will unfold the RNN through
time, essentially making it act like a deep neural network [19]. It quickly becomes
difficult to train because of the vanishing or exploding gradient problem. As ex-
plained in section 3.1.5 the error signals in the network are affected by later error
signals. These in turn affect the gradients when updating the weights and biases.
Hence, gradients less than one will cause even smaller ones in the previous layer. In
the same way, gradients larger than one will cause larger gradients in the previous

19

3. Recurrent Neural Networks

Figure 3.7: An LSTM unit and its underlying components. Both the hidden state
and the cell state is sent forward in the network, unlike the RNN unit where there
only is a hidden state that is kept.

layer. If the network is deep enough this will cause the gradients to either vanish
or explode, making it difficult to train each layer of the network sufficiently. For
example, extremely small gradients in the early layers will update those weights
and biases a lot slower than the larger gradients in the network’s later layers. This
issue makes recurrent neural networks difficult to train as the number of time steps
increase [19]. In order to deal with this problem a unit called Long Short-Term
Memory (LSTM) was invented.

3.2.2 LSTM
Replacing the basic RNN unit with the more advanced LSTM unit often enhances
the ability to train the network, which leads to an improved performance of the
RNN [20]. The principal idea of the LSTM unit is called the cell state and it runs
through each time step in the chain of units. Each LSTM unit can potentially add or
remove information to the cell state. The information is optionally changed through
structures called gates. There are three of these gates; the forget gate, the input
gate and the output gate, each with their own purpose. The interaction between cell
state, hidden state and gates is illustrated in figure 3.7. The forget gate essentially
decides what information to discard from the cell state. It analyses the hidden state
from the previous unit and the input to the current unit and outputs a decimal
fraction for each value in the cell state to represent how much of the information to
keep. The following equations describing how the LSTM unit updates its cell state
and calculates its hidden state is taken from Lipton, Berkowitz and Elkan’s article
”A Critical Review of Recurrent Neural Networks for Sequence Learning” [21]. The

20

3. Recurrent Neural Networks

equation that corresponds to the action of the forget gate can be expressed as

ft = σ(Wf · [ht−1, xt] + bf), (3.15)

where σ is the sigmoid activation function of the forget gate, Wf and bf represent
the weights and biases of the forget gate and ht−1 and xt is the hidden state and the
input respectively. The subsequent step is for the unit to decide what information
should be added to the cell state, which is regulated by the input gate. In this
process two neural network layers combine their respective contributions. The first
of the layers is a sigmoid layer that decides which values to update according to the
following equation

it = σ(Wt · [ht−1, xt] + bi). (3.16)

The second layer creates new values, C̃t, that are candidates to be added to the cell
state. The equation corresponding to this layer is defined as

C̃t = tanh(WC · [ht−1, xt] + bC). (3.17)

The results of these layers are then multiplied to create update values for the cell
state. The complete update of the cell state in a single LSTM unit is described by
the equation

Ct = ftCt−1 + itC̃t. (3.18)

The only remaining component of the LSTM unit to be explained is the output
gate, which intends to decide the output of the unit. The output is the hidden state
of the current unit and depends on the input, the hidden state of the previous unit
and the updated cell state. The equations used to calculate the hidden state are
defined as

ot = σ(Wo[ht−1, xt] + bo) (3.19)

ht = ot · tanh(Ct). (3.20)

The reason that this architecture prevents the gradients from vanishing or exploding
when backpropagating through time is the cell state [22]. When calculating the
derivative of Ct with respect to Ct−1 only the forget gate term remains from equation
3.18. The output of the forget gate is essentially the weights for the cell state,
activated by the identity function. The derivative of the identity function is one, so if
the output of the forget gate is one as well the information from the previous cell state
will be kept unchanged. The network can then inherently learn what information is
important to keep, without it vanishing or exploding because of the small or large
gradients. Models using LSTM units typically outperform models using basic RNN
units, but LSTMs are slower to train. The reason for this is evident in equations 3.15-
3.19. LSTMs contain several additional weight matrices and biases that are being
updated throughout the backpropagation. Hence, the many advantages of LSTMs
such as the gained robustness while training and improved long term dependency
come at the cost of slower training.

21

3. Recurrent Neural Networks

3.3 Predictive regression with RNN

As mentioned in sections 3.1 and 3.2, neural networks in general are proficient at
finding complex non-linear relationships between input and output, while recurrent
neural networks in particular are good at handling time series data. This seems
like a perfect combination for the task at hand. The goal is to create a recurrent
neural network and use it to predict future queue sizes in the system while feeding
data about the current state of the system to the model. The queues consist of the
number of documents currently waiting to be processed by a particular process in the
pipeline. The inputs are features chosen with the methods described in chapter 2.
Since there is so little knowledge of the relationships between the input features and
the output queue size, a neural network is a viable model for solving this problem.
The recurrent neural network model is coded in Python using Keras as a framework
and TensorFlow as its back end. The model is trained on 3 months of collected
historical data, sampled at one minute intervals.

3.3.1 Prepare data for supervised learning with RNN

In a supervised learning problem, such as the one present in this thesis, the aim is
to train the neural network on previous events, so that similar patterns occurring in
the future will be detected and outputed sufficiently close to the actual target value.
To do this, the data needs to be set up in an effective way.

Each data point consists of n features, each with a value from T time steps. Each
data point is also associated with its own target value, which is the size of the specific
queue tf time steps into the future. The data for a single data point looks like

[x(t−T)
1 , x

(t−T)
2 , ..., x(t−T)

n , x
(t−T+1)
1 , ..., x(t−T+1)

n , ..., x(t)
n , x

(t+tf)
target], (3.21)

where t is the current time, xi are the input features and xtarget is the target feature.
The model will use the first n · T values as input to base its prediction on, where
all data from the same feature is fed to the same RNN cell sequentially. It will then
evaluate its performance by comparing the output to x(t+tf)

target through its loss function
and update itself according to the result of this evaluation.

The value of T could in theory be such that all available previous history is used in
classifying every new point. However, it is reasonable to believe that the long term
dependencies will not be that large. Documents entering the system are usually
processed and done within a couple of minutes, and only in rare and extreme cases
does the delay, defined as the median time for a document entering until it is finished
processing, rise above 20 minutes. Thus, T can in practice be much shorter than 3
months, being the limit of the amount of data collected. This also has the advantage
of added computational efficiency and limiting abundant information. Having larger
T means the complexity of the patterns rise, and with a very large feature space to
begin with that is not desirable.

22

3. Recurrent Neural Networks

3.3.2 The RNN model
The basic RNN model consists of two layers of LSTM cells with sizes 60 and 30
respectively. The second LSTM layer returns a sequence which is fed into a dense
multi-layer neural network. The layers are of sizes 30 and 10 nodes plus the output
layer containing one node. The biggest advantage of using LSTM cells instead of
vanilla RNN cells is that LSTM cells handles vanishing and exploding gradients a
lot better. This means that it is possible to train the model on longer sequences.
In this case the sequences are not necessarily too long for simple RNN cells to cope
with. The choice of using LSTM cells instead of simple RNN cells is based on
the fact that LSTM networks often outperform simple RNN networks and the only
downside is that the training is a bit more time consuming [22]. The LSTM layers
use the hyperbolic tangent as its activation function, while the dense layers use the
rectified linear unit. The shape and size of the network was decided by intuition in
combination with some quick performance testing. The model is trained to optimise
the mean squared error between the prediction and labeled data using the Adam
optimizer.

3.3.3 Training the model
The model is trained and evaluated on four separate data sets with features from
the four different feature selection methods outlined in chapter 2. The data set is
split into data points consisting of values from every feature 10 time steps back
in time. Since the data sets consist of minute-interval data, this means that the
previous 10 minutes of data is used in order to make the prediction of the future
state. The label is set to the value of the target feature 5 minutes ahead of the
last time stamp in the corresponding data point. Using 90 days worth of data on
minute-interval results in 129600 data points. A negligible amount of these, 15 to
be exact, cannot be used because they are at the boundaries of the data set and do
not have a sufficient amount of data from previous time steps to base a prediction
on. The model is trained using 80% of the data, the rest being saved for validation,
for 100 epochs with a batch size of 64, meaning that it iterates through every single
data point 100 times in total and updating its variables once every 64th data point.

3.3.4 Evaluating the results
The method of evaluation obviously has a direct effect on the interpretation of the
result, hence it is a vital choice. The usual approach is to use the loss function for
evaluation as well, but that might not be the most significant in all cases. This
standard LSTM model, predicting the size of the queue tf minutes into the future,
is using mean squared error as a loss function. This makes sense because it punishes
large deviations much more than small ones. Thus, if the prediction is a little bit off
when the queue is very low it does not matter that much, but predicting low values
when a peak rises up is punished more, encouraging the model to prioritise finding
the occurrence or non-occurrence of peaks. However, the exact difference between
the predicted and actual value along the whole curve is not the most important
feature as regarding to how well the model will perform in action.

23

3. Recurrent Neural Networks

Figure 3.8: An example of a successfully predicted peak. If the prediction is within
tf away from the actual value it is considered a successful prediction. In this example
the prediction is plotted to pass the threshold three minutes after the actual curve
does so. However, information is still gained from this result. Since the prediction
is plotted directly after making a prediction and its corresponding label from the
real data is actually tf = 5 minutes ahead of time, being three minutes too late in
the plot actually means predicting the peak two minutes in advance.

Figure 3.9: Examples of different prediction outcomes. The left panel shows an
example where there is an actual peak that exceeds the threshold, but the model
fails to predict it; a so called false negative. The middle panel is an example of a false
positive, when the queue size never exceeds the threshold but the model predicts
that it will. The right panel shows a successful prediction where the model rather
accurately mimics the actual behaviour of the queue.

24

3. Recurrent Neural Networks

The aim is for the model to sufficiently predict future queue sizes in order to scale
up the computing power for the corresponding process proactively, which will con-
sequently lead to smaller queues and thereby also a decreased total processing time.
The current decision for when to scale up is based on certain threshold values. When
the size of a queue exceeds one of its threshold values, a scale up command is sent
for its corresponding process. If the model can predict when the queue size will
surpass a threshold value it can send the scale up command ahead of time, while
keeping the same method for scaling up. So rather than evaluating the model by
every vaĺue on the curve, it is more relevant to evaluate how well and how much
ahead of time it can predict an exceeded threshold value.

When using the threshold based evaluation method there are a few important things
to consider. First of all the amount of successfully predicted peaks needs to be cal-
culated. A rather arbitrary distinction has to be made here regarding how far off
the prediction can be from the actual peak for it to be considered as a successful
prediction. In this case the limit for this has been set to tf , the number of time
steps in the future to predict, as is visualised in figure 3.8. The average amount
of time that the model gains on reality should be calculated as well as it is a good
measure of how well the model is performing. An earlier correct prediction is obvi-
ously more beneficial than a later one. However, two very important aspects to take
into account is false positives and false negatives. A false positive would mean that
the model predicts a peak even though it does not appear in reality. This would
lead to pointlessly scaling up the process, which is an unnecessary expense. A false
negative means that the model fails to predict a peak when there is one in reality.
Examples of false positives, false negatives and a successful prediction is visualised
in figure 3.9. The false positives should be considered more harmful than the false
negatives.

In order to test different versions of the model against each other it is beneficial
to have a specified comparable measurement for the performance. The three factors
that affect the performance mentioned above (time, false positives and false nega-
tives) should all be included in this score. They are not all equally important, which
means that they should be weighted to reflect on that. The proposed measurement
score is one where the factors are weighted by exponents. The term influenced by
the false positives is called the precision of the model, defined as

P = tp
tp + fp

, (3.22)

where tp is the number of true positives and fp is the number of false positives.
The precision then is the percentage classified positives actually being positive. The
term affected by the false negatives is very similar. It is called recall and is defined
as

R = tp
tp + fn

, (3.23)

25

3. Recurrent Neural Networks

where again tp is the number of true positives and fn is the amount of false negatives.
The recall is the percentage of the total amount of true positives found by the model.
Since P,R ∈ [0, 1] it is suitable that the term influenced by the time factor is in
the same range, so that the weighted exponents can be compared to each other in
regards of the terms’ importance. The time term is therefore expressed as

T = ta
tf
, (3.24)

where ta is the average time gained from the prediction and tf the desired amount
of time to predict into the future (as well as the limit for a detected event to be
considered a true positive). In total then we define the performance score as

f(ta, fp, fn) = TαP βRγ (3.25)

with T, P and R defined as above. In this equation the variables were set to α = 2,
β = 3 and γ = 1. This represents their importance to the results. A high expo-
nent means lower values are punished more and in turn punish the entire score more.

The most important part is to not get many false positives (high precision), since
that is connected with buying unnecessary amounts of computing power, followed
by gaining a lot of time in the predictions. Getting few false negatives (high recall)
is deemed the least important, since the backup solution then is just to scale up
according to the current guidelines. Of course this internal ranking between the
three is entirely arbitrary, as well as their relative importance, but the evaluation
score gives some guidelines for comparing performance over various sets of features
and differing choices of models.

26

4
Weibull Time-To-Event

Weibull time-to-event recurrent neural networks, or WTTE-RNN for short, was de-
veloped in Egil Martinssons’ master’s thesis in 2016 as a novel way to model churn
prediction, but has applications under many different circumstances [3]. Unless oth-
erwise stated, all theory in this chapter is taken from Martinsson’s original thesis, in
which the theory, motivations and framework for WTTE-RNN was first put together.

The key concept of the methodology is to train an RNN not to output a point
prediction in every step, but to output a set of parameters θ for some probability
distribution over the expected time to the next event. What constitutes an event
is of course very domain specific. In the case of this thesis, an event is defined
to be any point in time at which the target queue reaches the threshold on which
the command to scale up the number of machines working on that specific process
should be given. The TTE then is the number of minutes remaining until the next
time the queue grows to that size.

One of the strengths of tuning a model to find parameters for a probability dis-
tribution instead of a point prediction is the possibility to make statements with
some degree of certainty. For every time step the network generates a new set of
parameters describing the probability of a new event from the current point in time
and forward. Then one does not have to act based on a single guess, but can for
example take action only if the possibility of an event exceeds some limit within
some set time-frame.

The following sections will discuss the properties of the Weibull distribution, define
the concept of censoring, give a brief reminder on likelihood functions and extend
that to log-likelihood for right censored data and then describe the model used. It is
restated that this will only be a brief overview of the theory, covering the essentials
for understanding the methodology. For a more thorough analysis, discussion and
motivation of the theory presented, the interested reader is referred to [3].

4.1 Weibull distribution
The Weibull distribution has a number of properties that are good for the proposed
model. These include:

27

4. Weibull Time-To-Event

• Both continuous and discrete variants
• Unimodal
• Simple (only two parameters), but very expressive
• Numerically stable closed form CDF and Quantile function

The shape of the Weibull distribution is governed by the parameters α ∈ [0,∞)
(scale/location parameter) and β ∈ [0,∞) (shape parameter). The probability
density function for the continuous case of the Weibull distribution is

f(t) =

β
α

(t
α

)β−1 exp[−(t
α

)β], 0 ≤ t

0, t < 0
(4.1)

Two other important distributions are the cumulative hazard function

Λ(t) =

(t
α

)β, 0 ≤ t

0, t < 0
(4.2)

and its derivative, the hazard function

λ(t) =

(t
α

)β−1 · β
α
, 0 ≤ t

0, t < 0
(4.3)

As previously stated the Weibull distribution is very expressive, and can take many
forms. When β ≤ 1 the distribution is strictly decreasing. For β = 1 the distribution
turns into the exponential distribution in the case of continuous distribution, or in
the discrete case the geometric distribution. If β → ∞ it converges to the Dirac
delta function. Some varying cases with different α and β can be seen in figure 4.1.

Figure 4.1: Examples of the Weibull distribution for different sets of parameters
α and β.

This expressiveness means it is not necessary to make very strong assumptions on
the distribution of the data examined. The Weibull distribution will probably be

28

4. Weibull Time-To-Event

able to catch some of its characteristics anyway. Perhaps it is not always a very good
fit, but it should be proficient enough in finding were the large mass of probability
is located and give some hints about how the probability rises and fades away over
the time spectrum.

4.2 Censoring
The concept of censoring is that of not knowing when exactly an observed or exam-
ined event will happen. This is an inherent problem in waiting-time experiments. It
is not certain that the examined event will occur during the time of the experiment.
When looking at churn prediction this is easily imaginable, since customers might
stay for a very long time, but there is certainty that they will stop being customers
some time. If nothing else then by natural causes such as ageing and eventually
deceasing.

Censoring then is just when an event is going to happen, or have happened, but
the exact time of the event is not known. An event can be either un-, left-, right-
or interval censored.

Suppose some waiting time T is had. If the exact time T = t at which the event oc-
curred is known the event is called uncensored. If on the other hand it is known that
an event has happened before some time t, but not exactly when, so that T ∈ [0, t)
the event is called left censored. Similarly, if the event is known to happen after some
time t so that T ∈ (t,∞) or in some specified time interval, T ∈ [a, b] it is called
right censored and interval censored respectively. Naturally, the types of problems
studied here deal only with uncensored or right censored events.

Consider the observation (x, u) of the pair of random variables (X,∆). Let X =
min(T,C) where T is the waiting time, C is the censoring variable and ∆ = I(T ≤
C) is the failure indicator such that

∆ =

0, C < T Observation is censored
1, C ≥ T Observation is uncensored

(4.4)

Censoring can either be informative or non-informative. The censoring is said to
be informative if knowing about the censoring gives some information about the
distribution of T and/or its underlying parameter(s) θ. Otherwise, the censoring is
non-informative. More formally it is demanded that

C ⊥ T |θ
C ⊥ θ

It is assumed from here on out that only uncensored or non-informatively right
censored events are dealt with.

29

4. Weibull Time-To-Event

4.3 Likelihood functions
The likelihood function is defined as the probability of some parameter(s) θ given a
set of data x:

L(x, θ) = fX|θ(x) (4.5)

Given a set of n independent, identically distributed realisations of some measure-
ment their joint density functions is used so that L(x, θ) = ∏n

k=1 fX|θ(xk). Often it
is convenient to instead use the log-likelihood function defined as

log(L(x, θ)) =
n∑
k=1

log(fX|θ(xk)) (4.6)

for computational efficiency.

For non-informative right censored events the likelihood function becomes

L(t, θ) ∝

Pr(T = t|θ) if uncensored
Pr(T > t|θ) if right censored

(4.7)

where ”proportional to” is used since additive constants are not interesting when
trying to maximise the likelihood later on.

Looking at the joint PDF for (X,∆), and omitting to write that they depend on θ
for notational simplicity, leads to

fX,∆(x, u) = d

dx
FX,∆(x, u) = lim

h→0

1
h
Pr({x ≤ X ≤ x+ h} ∩ {∆ = u}) (4.8)

Given the non-informative censoring, C ⊥ T , means that fC,T (c, t) = fC(c)fT (t).
Now there are two cases to consider. First, assume u = 0:

1
h
Pr({x ≤ X ≤ x+ h} ∩ {∆ = 0}) =

1
h
Pr({x ≤ min(T,C) ≤ x+ h} ∩ {T < C}) =

1
h
Pr({x ≤ T ≤ x+ h} ∩ {T < C}) =

1
h

∫ x+h

x

∫ ∞
t

fT (t)fC(c)dcdt =

1
h

∫ x+h

x
fT (t)

∫ ∞
t

fC(c)dcdt =

1
h

∫ x+h

x
fT (t)SC(t)dt→ fT (x)SC(x)

(4.9)

Thus fX,∆(x, 0) = fT (x)SC(x), where S(x) is the survival function defined as

S(x) = Pr(x < X) = 1− F (x) = e−Λ(x) (4.10)

30

4. Weibull Time-To-Event

Taking u = 1 and performing a similar set of calculations leads to fX,∆(x, 1) =
fC(x)ST (x). Knowing that C ⊥ T |θ the joint PDF can be factored as

fX,∆(x, u) = (fT (x)SC(x))u · (fC(t)ST (t))u−1 = [fT (t)uST (t)u−1] · [fC(t)u−1SC(t)u]
(4.11)

but it is also the case that C ⊥ θ, meaning that fC(x) and SC(x) are both just
constants with regards to θ. Thus

L(x, θ) = fX,∆(x, u) ∝ fT (t)uST (t)1−u (4.12)

Utilising that f(t) = λ(t)S(t) and S(t) = e−Λ(t) this can be rewritten to the alter-
nate, and computationally more efficient, form

L = f(t)u · S(t)1−u

= λ(t)u · S(t)
= λ(t)u · e−Λ(t)

⇐⇒
log(L) = u · log(λ(t))− Λ(t)

(4.13)

which is the final form used. The case for discrete data is developed much in the
same way, eventually resulting in

Ld = (ed(t) − 1)u · e−Λ(t+1)

⇐⇒
log(Ld) = u · log(ed(t) − 1)− Λ(t+ 1)

(4.14)

where d(t) = Λ(t+1)−Λ(t). Putting everything together, the discrete log-likelihood
for the Weibull distribution then is

log(Ld) = u · log[exp(α−β((t+ 1)β − tβ))− 1]− α−β(t+ 1)β (4.15)

4.4 The Model

As previously stated, the goal of WTTE-RNN is to, for every time-step, make a good
guess on when the next event is about to happen, using historical data. Thus, an
RNN is trained to output two parameters α and β. An example structure showing
the procedure can be seen in figure 4.2.

31

4. Weibull Time-To-Event

Figure 4.2: Example of structure and workings of an RNN network outputting
parameters [α, β]T for a Weibull distribution at every step. Figure taken from [1].
The xi are new input for every time step and hi is the internal state of the network
passed on to the next time step.

A neural network is trained by minimising an energy function, often defined as the
squared Euclidean distance between the output and the correct answer, using some
variant of gradient based learning. Here the training is instead performed by max-
imising the log-likelihood for the parameters, as defined in the previous sections.
Still with gradient based learning though.

Let the output of each step in the RNN be[
αt
βt

]
= f(xt, ht−1, w)

where f is a recurrent neural network, xt the input in the current step, ht−1 the
hidden state vector, such that ht = i(xt, ht−1, wh) is a function of the input feature
vector xt, the previous hidden state ht−1 and wh the internal weights for the hidden
layer, and w the set of weights for the entire network. The optimisation problem
then is to find the w that maximises the log-likelihood, adopted from equation 4.15

max
w

log(Ld(w, y, u, x)) :=
T∑
t=0

(
ut ·

[
exp

[(
yt + 1
αt

)βt

−
(
yt
αt

)βt
]
− 1

]
−
(
yt + 1
αt

)βt
)

The optimisation is then performed via some form of gradient based learning, as
explained in chapter 3.

4.4.1 Defining an event
In order to use the WTTE model it is first necessary to define what constitutes
an event. In this setting, an event is considered to be any point in time at which
the target queue grows to such a size that a command to add more machines to

32

4. Weibull Time-To-Event

the process would be given. Subsequent points in time, in which the queue is still
larger than the assigned threshold, are not events. Instead the period immediately
following the event is removed from the data. The reason for this is based on
the intuition that a large queue at some point in the system is a ”failure” and
subsequent data is indicative neither of a typical performance of the system under
ordinary circumstances, nor the events leading up to such a point. Such data are
then ”noise” or ”aftershock” from the event. Thus the complete time series is divided
into several smaller time series, each ending with an event as defined above.
Then every point in time in every time series is given a Time To Event (TTE) and
a label that the event is uncensored, since this thesis only works with uncensored
data. This TTE, then, it what the network tries to predict. If it is more likely that
an event will happen in the near future, the mass of probability close to zero will be
pushed up. If it is unlikely that any event will happen soon, the mass of probability
will be pushed further away.

33

4. Weibull Time-To-Event

34

5
Sliding Box Model

One enticing property of the Sliding Box model is its simplicity. It turns the task
of event prediction into a binary classification task. For every point in time we set
an event indicator bt so that

bt =

1, if event occurred in[t, t+ τ]
0, otherwise.

(5.1)

Based on the recent historic data the goal then is to predict whether there will be
an event within the next τ time steps, for some fixed value τ .

The only modelling assumption that has to be made then is the size τ of the ”box”
that will be used. How far into the future would one want to look? In many circum-
stances, defining an optimal τ is not obvious. However, in the case of this thesis the
time it takes to add more computing power to a specific process is a clear guideline
on the decision. Empirically it takes 4-5 minutes from the scale up command given
to the amazon web host until a rise in the number of consumers on a queue can be
seen. Intuitively τ then should be set to 5 minutes.

The encoding of the data means that for every event there is a ”chain” of 1’s of
length τ leading up to the event, and zeros otherwise. Every event then has τ points
corresponding to it.

In order to classify the time points any classifying algorithm could be used. The
problem could be considered as trying to estimate the parameter θt of a Bernoulli
distribution, such that

Bt ∼ Bernoulli(θt) (5.2)

and then, using bt as defined in (5.1), estimate the probability

Pr(Bt = bt) = θbt
t (1− θt)1−bt . (5.3)

Assuming that θt is some function of the previous data x0:t according to θt = g(x0:t)
the task then is to maximise the likelihood of the given θt

max
θt

L(θt) := θbt
t (1− θt)1−bt . (5.4)

The set up of the problem also means that a recurrent neural network could be
trained to do the classification, meaning that the same theoretical and practical

35

5. Sliding Box Model

frame work as described in the previous chapters can be used as a classifier in this
setting as well, with a sigmoid activation function in the last layer of the network.

36

6
Results

In this chapter the performance of the three previously described models will be pre-
sented. All models have been tried on four different data sets, generated from the
complete set of features using the methods described in chapter 2. These selection
methods are the Naive cross-correlation, Iterative cross-correlation filtering (ICF),
Granger causality and CLeVer -hybrid.

All models have been trained to detect changes on the same queue correspond-
ing to one of the later processes in the pipeline.

The chapter concludes with presenting the effects of temporal drift on the results
achieved

6.1 A quick note on selected features
No analysis will be done on precisely which features were chosen. The reasons are
two-fold, but connected. Partly, the features correspond to certain metrics regard-
ing the queues connected with certain processes. Naming the features would yield
nothing to the reader, since the names give nothing but a hint on what the feature
is or how it is connected to the workings of the system. On a deeper level, though,
analysis could perhaps be done given that sufficient knowledge about the system
was present. The authors, however, do not have such knowledge about the system
in question. The amount of chosen features by each method can be found in table 6.1.

Note that ICF and Granger are completely data driven, and no intervention to
the number of features chosen is done. For CLeVer -hybrid and the naive cross-
correlation on the other hand, the number of features to have must be chosen man-
ually beforehand. After running the ICF and Granger methods, and some experi-

Feature selection method Number of features chosen
Naive cross-correlation 60
Iterative cross-correlation filtering 161
Granger causality 57
CLeVer 60

Table 6.1: The number of features included in each of the data sets.

37

6. Results

Figure 6.1: Performance for the standard LSTM model using the four different
data sets. The left axis gives the scale for the precision and recall values, while
the right axis measures the average time to event left when the predictions were
given. The line covering the top of each bar indicates the standard deviation of the
measurements.

ments of performance with different number of features, 60 was decided upon as a
reasonable number. Partly because it was in line with the number of variables from
the Granger causality method, and partly because it was in the upper end of how
many features could be had before performance tended to drop.

6.2 Standard LSTM model

A visual representation of the results is presented in figure 6.1. A quick reminder
of the concept of precision and recall perhaps ought to be given here. Precision is
the percentage of all predicted positives that where actually correct. Recall on the
other hand is what percentage of the actual events where captured by the model.
Naturally one wants both of these scores to be as high as possible, but we value
precision more than recall since false positives are more costly than false negatives.

The results show that the naive cross-correlation feature set gives a clearly bet-
ter performance than the other three methods. The score, as defined in section
3.3.4, for the simulations using the different data sets can be found in table 6.2,
which confirms the visual results.

38

6. Results

Feature selection method Evaluation score
Naive cross-correlation 0.0999
Iterative cross-correlation filtering 0.0003
Granger causality 0.0012
CLeVer 0.0017

Table 6.2: The resulting evaluation scores, as defined in section 3.3.4, for the
standard LSTM model using different data sets.

Figure 6.2: Maximum a posteriori prediction results versus true time to event from
the WTTE-model. Dashed lines show the cut-off points used for deciding whether
to count a prediction as false or not.

6.3 WTTE
Since the WTTE model predicts a time to event for every time-point, it has first to
be decided what is a true and false prediction. First the model was trained on the
training data, using a maximum look back period of 30 minutes in order to keep the
data frames in a reasonable size for the computers memory limitations. For every
test event then, some number of time-steps were cut off at the end, and the model
was fed the test time series up until that cut off point, and then gave a guess on the
distribution of true remaining time to event. The result was taken as the maximum
a posteriori guess given the generated Weibull distribution. This is of course a rather
arbitrary choice, and other choices are absolutely possible. The results of this for
all test cases can be seen in figure 6.2.

A majority of the predictions are just under 30 minutes, the maximum look back
period in the training data. However, of the predictions that are actually lower than
29 minutes, rather few are larger than 20 minutes. There is also a large spread of the
points predicted to be lower than 29 in the range 0-20, and the exact results of the

39

6. Results

Figure 6.3: Performance for the WTTE model using the four different data sets.
The left axis gives the scale for the precision and recall values, while the right axis
measures the average time to event left when the predictions where given.

predictions does not seem overly trustworthy. Given the distribution of points, two
cut off points (the dashed green lines in the figure) were then decided. This divides
the output into four quadrants, where the lower left corresponds to true positives,
the upper right to true negatives, the upper left to false negatives and the lower
right to false positives. This was done in order to be able to compare the model use
wise with the other tested models. This results in a possible use case where every
time the model predicts an event less than 29 minutes in the future the action to
scale up the number of machines could be taken, and it would be reasonably certain
with some probability there would be an actual event sometime within the coming
20 minutes.

The performance results visualised can be seen in figure 6.3. The results are less
clear between the data sets, but table 6.3 show that Granger causality gives the best
results, followed by CLeVer .

6.4 Sliding Box

The Sliding Box model is the only one which is a classic binary classification task.
Just as for the previous models, the results are similarly visualised in figure 6.4.
However, the raw results are not a straight count of the number of events. The
box size was set to 5, which means that for every event there are 5 points in time

40

6. Results

Feature selection method Evaluation score
Naive cross-correlation 0.09224
Iterative cross-correlation filtering 0.07399
Granger causality 0.11643
CLeVer 0.10508

Table 6.3: The evaluation scores describing the performance of the WTTE model
when trained on data sets containing features obtained using the four different fea-
ture selection methods.

Feature selection method Evaluation score
Naive cross-correlation 0.00692
Iterative cross-correlation filtering 0.00008
Granger causality 0.00030
CLeVer 0.00029

Table 6.4: The evaluation scores describing the performance of the sliding box
model when trained on data sets containing features obtained using the four different
feature selection methods.

that belong to the positive class. Thus in the extreme case, even if only one out of
every five of the positive class were classified correctly, all events might have been
covered. No formal check has been done on this, but a visual inspection of the
results suggests the predictions from the model are often grouped together, so that
if the model detects one point for an event, it often also detects some of the other
points, whereas many of the events get none of their points predicted correctly.
The performance here is notably worse as compared to the other two models. Both
the precision and recall are lower. Notably ICF manages to capture more of the
positive class (higher recall), but only on account of making many more random
guesses, managing to capture some of the true ones in the process, which is seen in
the very low precision score. The total scores are also lower, as seen in table 6.4.

6.5 Temporal drift
An interesting factor when analysing time series data for predictive maintenance is
how often the model needs to be retrained. Circumstances change with time and
so the performance of the model will most likely change as well. Such changes of
circumstances may be internal, i.e that the system itself changes by updates to spe-
cific procedures, or external, i.e. the nature of the incoming data changing. Another
possible source of change is the implementation of the automatic scaling itself, which
might alter the stress points of the system and redirect the surges of information to
new points.

The three months of data that is available is split into the first two months for
training and then the rest for testing. The test data is then consequently split into
smaller intervals to determine whether the performance generally gets worse by time.

41

6. Results

Figure 6.4: Performance for the Sliding Box model using the four different data
sets. The left axis gives the scale for the precision and recall values, while the right
axis measures the average time to event left when the predictions where given.

The results from these simulations are illustrated in figure 6.5. Since the simulations
are rather time-consuming, they have only been performed for the standard LSTM
model, but there is no reason found to suspect why the results of temporal drift
would be different using another model.

There seems to be some decline in performance over the first weeks, but the rise in
the score after 6 weeks of all the models gives some evidence on the contrary to this.
It might be that specific types of occurrences in the system happen over time, and
that some of the occurrences in the 6th week also happened a lot in the training
data. More data and simulations would have to be performed in order to give some
more definitive answers.

42

6. Results

Figure 6.5: The effect of temporal drift on the standard LSTM model trained on
the four different data sets. The average of all these results is also illustrated.

43

6. Results

44

7
Discussion

The results in chapter 6 show that it is indeed possible to learn something about
future queues building up in the system. Both the method for selecting features and
the model used to look at the data does influence the results in different ways. This
chapter will discuss some of the results and compare the different models against
each other. It also contains some analysis on necessary actions in order to keep the
models in production in spite of the drift in performance that occurs through time.
The chapter is then concluded with some remarks on possible future work on the
thesis.

7.1 On the importance of feature selection
What set of features are chosen from the original set obviously affect the results.
Summing over all three different models, naive cross-correlation is the overall win-
ner. For the standard LSTM model naive cross-correlation wins clearly. For WTTE
on the other hand, the results are less clear. Using the evaluation scores, Granger
causality comes out as the winner, closely followed by CLeVer. The results for the
Sliding Box model were overall much poorer, but again naive cross-correlation does
the best job.

Common for all three models was the fact that ICF performed worst. One suspicion
as for why this is the case is that the pure number of included features does matter.
The other three feature sets were much smaller (57, 60 and 60 features respectively)
as compared to ICF (161 features). This was confirmed by doing simulations with
using naive cross-correlation and including different amounts of features, ranging
from 30 to 161. The variation in performance differed slightly in the range 30-90,
and then started declining. The pure amount of information available might lead to
the network not being able to find the signal and learn anything useful.

None the less, using the 161 most correlated features gave better results, as measured
by the evaluation score, than using the 161 features chosen by the ICF algorithm -
simulated on the standard LSTM model - which confirms that the way of choosing
the features also matters.

One speculation is that the diversity of reasons that may cause queues to build
up is important. An analogy could be done to a system of waterways leading from a
highland to the sea. Large rainfalls on the highland causes large masses of water to

45

7. Discussion

flow through the system, but it is not always known exactly which streams are going
to be flooded on the way, since that varies from time to time. Perhaps something
has happened in one of the streams, say a beaver has built a dam recently, which
makes the water build up at that point until the dam bursts and flows further down
the system. If the amount of water going to flow through a certain stream is to
be predicted, the best predictor is perhaps not found by looking at the amount of
water flowing through the major streams building up the entire system, but rather
the streams that have historically flooded right before the one under examination.
The goal then is to learn the beavers’ favourite habitat so to speak.

Both naive cross-correlation and Granger causality looks at the data in just this
way. By checking if the features to include tend to covariate with the target feature
in some way. Naive cross-correlation follows the dam and beaver analogy even fur-
ther by looking at the historical flows of information in the system, while Granger
causality tries to estimate the features predictive power as well. On the other hand
CLeVer, and ICF, try to build a set of features that span the feature space as good
as possible.

It is often the case that one tries to find such a set that most efficiently spans
the possible features space. One suspicion as to why that is not ideal in this sce-
nario is the sheer number of reasons why faults may occur and the complexity of
the system. It is perhaps difficult to find a set of features that describe the entire
system efficiently and capture enough information to make predictions on for a spe-
cific process. Thus maximising the amount of information available for that process
by taking the highest cross-correlating features for that process is better, despite
possible problems with features ”stealing importance” from each other, as is often
something one wants to avoid. Without looking at the right streams of information,
nothing can be learned.

7.2 Evaluation and comparison of the models’ per-
formances

Results in the previous chapter confirm that how one chooses to look at and evaluate
the results greatly impacts what the RNN can learn from the very same informa-
tion. One initial hypothesis was that the simplicity of the evaluation would affect
results. However, this proved not to be the case. The Sliding Box model, which is
arguably the most simplistic, reducing the problem to distinguishing between two
classes, performs worst with a large margin. Predicting queue sizes in a range from
0 to theoretically infinity using the standard LSTM model on the other hand does a
much better job, and the most complicated model, trying to generate parameters for
a probability distribution over an arbitrarily defined time to event, gives the highest
evaluation score.

One guess is that the assumptions that a given time series of some length would be-
long to one of two classes is too simplistic and does not at all capture the complexity

46

7. Discussion

required by the problem. Pointing at what exactly a neural network really learns is
difficult task. One reasonable guess then could be that the RNN picks up on trends
and changes in the queue sizes and their rate of flow of messages. Thus using an
evaluation metric (queue size of a specific queue) similar to the input metrics (queue
sizes and their rate of change for some other sets of queues including the target one)
would perform better than abstracting the output to something perhaps simpler,
but conceptually different from what was learned on.

Although the WTTE model actually achieves the highest score of all on one data
set, this does not necessarily mean it is the best one to use in production. There
are some caveats to discuss. The first and foremost being how to decide to take
action on a prediction. To reiterate from the previous chapter, the way this was
done in the testing was by taking the maximum a posteriori prediction based on the
generated probability distribution. Then some thresholds were decided based on the
distribution of the test predictions. This threshold must be set rather high in order
to capture a reasonable number of events. In our case, the threshold was set to 29
minutes for the prediction and 20 minutes for the true results. In production this
would mean that every time an event was predicted to be closer in time than 29
minutes, an action would be taken to scale up the amount of computers working on
that queue. With some probability then, there would actually be an event within
the next 20 minutes. On average this would occur sometime between 7-11 minutes
after the prediction was made. This means that the scaling of the computing power
would on average be done 2-6 minutes ahead of when necessary, and for the false
predictions it would be kept for a total of 20 minutes before being shut down.

What kinds of events get missed and what kinds of events get predicted correctly
has not been studied. It could be that all models miss the same events, or they
could have differences. Perhaps some clustering of the events based some proximity
measure could be done. Further studies needs to be done in order to confirm or
discard this.

It must also be noticed that the way the evaluation score was designed and weighted
favoured the WTTE results over the LSTM results, in that T is set to 1 for all WTTE
models given the very early prediction done. Predicting more than 5 minutes ahead
of time is not an advantage, but rather a disadvantage. Designing the score in an-
other way, for example using an additive rather than a multiplicative model, and
adjusting the weights would change many of the rankings between different sets of
features and models. The exact trade-offs one would be willing to make and what
matters most would have to be considered before choosing an optimal model and
feature set to do further work on.

7.3 Temporal drift
As time goes on the circumstances surrounding the system change. New things are
being deployed every week, which implies that the system is constantly changing and
will behave different than before. In effect, this means that the data the model has

47

7. Discussion

been trained on will be less and less representative of the system as time passes. To
deal with this problem the model needs to be retrained on more recent data, which
in turn induces some complications. The models are trained on different metrics
surrounding the queues in the system. These queues will be directly affected when
the model is being used. The model will inform the system to signal for scaling
up earlier than it usually does. This will lead to the corresponding process having
the computing power that it needs at an earlier stage and therefore preventing the
queue to become as large as it otherwise would have. The new and different charac-
teristics of the queues will be unknown to the model which has been trained on data
in a dissimilar situation. This in itself affects the temporal drift negatively. The
severity of the effect is difficult to accurately, or at all, measure before the models
are actually in production.

This opens up a possible discussion about how often the models would need to
be retrained. The problem with retraining the models is that they would be re-
trained on data that has been influenced by the currently used model. To emulate
the same conditions as during the training, the newly trained model would have to
be used on top of the previous model. Stacking models this way is obviously not
sustainable, especially if retraining is necessary after a short amount of time. From
the results in figure 6.5 it is difficult to say how often retraining would be necessary.
After just a couple of weeks the average performance of the models has decreased
significantly. However, the rise in performance after 6 weeks suggest that perhaps
similar events that occurred in the training data did not occur in weeks 2-5, but did
in week 1 and 6. To determine what is really temporal drift and what is just chance
behaviour would need more extensive testing.

Based on figure 6.5 one could suggest that the models would need to be retrained at
least once every two weeks. This would quite quickly lead to a lot of models being
stacked on top of each other. A rather naive solution to this would be to let the
models stack until it could cause problems and then start from scratch, meaning
that new data when the model is not being used is collected and trained on. Quite
a tedious process considering that we started with three months’ data. However,
by this logic the system has changed too much during two weeks after the train-
ing stopped for the model to be useful. Is it by the same logic viable to use three
months’ data for training? The behaviour of the system could have changed so much
from the beginning of that period to the end that there might be a lot of the data
that can be considered as worthless. The problem is that with data from a shorter
amount of time there are not enough significant events to train on. Many aspects
can influence the queue metrics, which implies that the models need to train on all
of these different situations in order to be able to make a sufficient prediction when
a similar situation appears.

7.4 Concluding remarks
From the work in this thesis it is evident that learning when to scale up computing
power ahead of when it is actually needed is indeed possible. Selecting features based

48

7. Discussion

on their connection to the target feature seems to give better results than selecting
features that best span the entire feature space. One reason for this might be the
complexity of the system. Using the standard LSTM model with features chosen
with naive cross-correlation or the WTTE model with features from Granger causal-
ity gives the best results, but the models have different strengths and weaknesses
that would have to be considered. Some evidence of temporal drift in the results
are found, but again, more extensive testing has to be done in order to confirm or
discard this.

To consider putting the models into production, a choice first has to be made on
what importance the precision, recall and time gained in the prediction have. Then
more model tuning should be done, optimising various hyper-parameters connected
to the model.

As in all machine learning task, collecting more data would of course also be ben-
eficial. It should also be tested whether 1 minute sampling of the data is indeed
the best, and if so how long the time series fed to the network should be. Perhaps
higher frequency data can give even more information, or perhaps that is redundant
information. Memory management in computers have to some extent been a lim-
iting factor during the work with this thesis, but more extensive testing could be
done given more resources.

49

7. Discussion

50

Bibliography

[1] E. Martinsson, “WTTE-RNN - Less hacky churn prediction,” https:
//ragulpr.github.io/2016/12/22/WTTE-RNN-Hackless-churn-modeling/, ac-
cessed: 2018-04-16.

[2] O. Ibidunmoye and E. Elmroth, “Blackbox strategies for detecting service per-
formance anomalies in virtualized environments,” 2016.

[3] E. Martinsson, “WTTE-RNN : Weibull Time To Event Recurrent Neural Net-
work,” Master’s thesis, Chalmers University Of Technology, 2017.

[4] R. Bellman, Adaptive Control Processes: A Guided Tour. Princeton University
Press, 1961.

[5] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial
Intelligence, vol. 97, no. 1, pp. 273 – 324, 1997, relevance. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S000437029700043X

[6] B. Davide, “Unsupervised feature selection for sensor time-series in pervasive
computing applications,” Neural Computing and Applications, vol. 27, no. 5,
pp. 1077–1091, 2016. [Online]. Available: http://pages.di.unipi.it/bacciu/
wp-content/uploads/sites/12/2016/04/nca2015.pdf

[7] C. W. J. Granger, “Investigating causal relations by econometric models and
cross-spectral methods,” Econometrica, vol. 37, no. 3, pp. 424–438, 1969.

[8] Y. Sun, J. Li, J. Liu, C. Chow, B. Sun, and R. Wang, “Using causal
discovery for feature selection in multivariate numerical time series,” Machine
Learning, vol. 101, no. 1, pp. 377–395, Oct 2015. [Online]. Available:
https://doi.org/10.1007/s10994-014-5460-1

[9] H. Yoon, K. Yang, and C. Shahabi, “Feature subset selection and feature rank-
ing for multivariate time series,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 9, pp. 1186–1198, Sept 2005.

[10] W. J. Krzanowski, “Between-groups comparison of principal components,”
Journal of the American Statistical Association, vol. 74, no. 367, pp.
703–707, 1979. [Online]. Available: https://www.tandfonline.com/doi/abs/10.
1080/01621459.1979.10481674

[11] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: a tuto-
rial,” Computer, vol. 29, no. 3, pp. 31–44, Mar 1996.

[12] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural
Computationr. CRC Press, 1991.

[13] B. Kröse and P. van der Smagt, “An introduction to neural networks,” 1993.
[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.

7553, p. 436, 2015.

51

https://ragulpr.github.io/2016/12/22/WTTE-RNN-Hackless-churn-modeling/
https://ragulpr.github.io/2016/12/22/WTTE-RNN-Hackless-churn-modeling/
http://www.sciencedirect.com/science/article/pii/S000437029700043X
http://pages.di.unipi.it/bacciu/wp-content/uploads/sites/12/2016/04/nca2015.pdf
http://pages.di.unipi.it/bacciu/wp-content/uploads/sites/12/2016/04/nca2015.pdf
https://doi.org/10.1007/s10994-014-5460-1
https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10481674
https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10481674

Bibliography

[15] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press,
2015.

[16] D. Wackerly, W. Mendenhall, and R. Scheaffer, Mathematical statistics with
applications. Nelson Education, 2007.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.”
CoRR, vol. abs/1412.6980, 2014. [Online]. Available: http://dblp.uni-trier.de/
db/journals/corr/corr1412.html#KingmaB14

[18] L. C. Jain and L. R. Medsker, Recurrent Neural Networks: Design and Appli-
cations, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 1999.

[19] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” in International Conference on Machine Learning, 2013, pp.
1310–1318.

[20] A. Gers F., J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm,” Tech. Rep., 1999.

[21] Z. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent neural
networks for sequence learning,” 05 2015.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

52

http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dx.doi.org/10.1162/neco.1997.9.8.1735

	List of Figures
	List of Tables
	Introduction
	On the nature of the task and the purpose of the thesis
	Outline

	Feature Selection
	Naive selection using cross-correlation
	Iterative Cross-correlation Filtering
	Granger causality
	CLeVer based methods
	Principal Component Analysis
	Common Principal Components

	CLeVer-Rank
	CLeVer-Cluster
	CLeVer-Hybrid

	Recurrent Neural Networks
	Feed-forward neural networks
	Neuron representation
	Activation function
	Network structure
	Energy function
	Backpropagation

	Recurrent neural networks
	Simple RNN
	LSTM

	Predictive regression with RNN
	Prepare data for supervised learning with RNN
	The RNN model
	Training the model
	Evaluating the results

	Weibull Time-To-Event
	Weibull distribution
	Censoring
	Likelihood functions
	The Model
	Defining an event

	Sliding Box Model
	Results
	A quick note on selected features
	Standard LSTM model
	WTTE
	Sliding Box
	Temporal drift

	Discussion
	On the importance of feature selection
	Evaluation and comparison of the models' performances
	Temporal drift
	Concluding remarks

	Bibliography

