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Automatic detection of saccadic eye movements using EOG for analysing effects of
cognitive distraction during driving.
Master’s Thesis in Biomedical Engineering
ALESSANDRO CAFASSO and SEBASTIAN KARLSSON
Department of Applied Mechanics
Division of Vehicle Safety
Chalmers University of Technology

Abstract
Driver distraction is a relevant driving safety issue and an ongoing field of research.
A particular distraction is cognitive distraction, which refers to when the driver is
mentally engaged in a task unrelated to driving, e.g. talking to a passenger. Eye
movements can be analyzed to study effects of cognitive distraction during driving,
and are typically recorded using video-based eye tracker systems. An alternative
technique that might be suitable for eye movements measurements during driving is
the electro-oculography (EOG). EOG is a method for recording the electrical signal
of the eyes as they move. One interesting eye movement in cognitive distraction
studies is the saccade, the rapid movement of the eye from one point of interest to
another.

The primary purpose of this thesis is to develop an algorithm for automatic de-
tection of saccades using EOG. The resulting algorithm is a combination of two
modified existing eye detection algorithms, namely Continuous Wavelet Transform
Saccade Detection (CWT-SD) and Shape Features. It is found that the developed
algorithm can be used in driving environments if good signal quality can be assured.
The secondary purpose of this thesis is to investigate how cognitive distraction af-
fects saccadic rate and amplitude during driving. The findings suggest a statistically
significant decrease in saccadic rate during cognitive load but not in saccade ampli-
tude. However, further research on bigger datasets and different driving scenarios
is needed to verify the results.

Keywords: saccades, eye movements, EOG, saccade detection, classification, cogni-
tive distraction, driver distraction
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1
Introduction

Drivers’ behavioral abilities and limitations need to be thoroughly studied in or-
der to develop optimal driver support systems. The level of drowsiness, distraction
and stress may significantly affect the driver’s ability to drive safely and handle
traffic situations. A particular driver state is cognitive distraction, which refers to
when a driver is mentally engaged in something else than driving. When a driver is
cognitively distracted, his/her eyes might be on the road and hands on the steering
wheel, but driving abilities might be impaired since the mental attention is allocated
to another task. An example of this is using a speech-to-text system or talking on
the phone. The effects of cognitive distraction have been heavily debated, and in
order to learn more about the subject and understand the effects of driver distrac-
tion, reliable measuring techniques are needed. Deeper understanding of cognitive
distraction during driving could potentially increase traffic safety and consequently
lead to societal benefits.

One way to study cognitive distraction is through measuring the driver’s eye move-
ments. They can both be used to detect cognitive distraction (e.g. through an
increased blink frequency), and to understand effects on driver performance (e.g.
through increased gaze concentration wherein drivers look more in the forward road
direction). The most interesting eye movements in cognitive distraction studies are
saccades, the rapid movement of the eye from one point of interest to another.

Traditionally, eye movements in car drivers are detected by camera-based eye track-
ing systems. However, eye trackers do not always provide sufficient precision in
time resolution in studies where a precise time detection of the eye movements is
necessary. Moreover, the light conditions, as well as large and sudden movements
of the driver’s head, can affect tracking performance.

An alternative measurement technique for recording eye movements is electro-oculography
(EOG), which is used to measure the electrical signal of the eye. The signal varies
depending on the eye’s position. A typical measurement setup consists of four elec-
trodes placed around the test subject’s eyes, measuring the potential between the
cornea and retina as the eyes move.

The main purpose of this thesis is to develop an algorithm in MATLAB for au-
tomatic detection and classification of saccades using EOG data. The goal is to
detect as many and small saccades as possible. The main challenges are noise and
artifacts, limiting the detection capability. Therefore, limitations related to the qual-
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1. Introduction

ity of the signal have to be taken into account and an amplitude threshold below
which the detection algorithm cannot perform reliably, has to be found. Moreover,
a consistent definition of saccade start- and end point is needed to determine the
amplitude of saccades. The thesis aims to answer the question "Can EOG be used
for saccade detection in driving environments in a research context?".

The intended application of the developed algorithm is primarily cognitive distrac-
tion studies. In this thesis, a limited analysis of how cognitive distraction affects car
drivers’ saccadic eye movements is performed. Saccadic rate and saccade amplitude
are considered for the analysis. The difference between drivers that are cognitively
distracted and not cognitively distracted is studied in order to answer the second
question; "How are frequency and amplitude affected by cognitive distraction during
driving?".
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2
Background

In this chapter, background information about the eye, eye movements and the
implemented algorithm is presented. First, the relevant anatomy of the eye and
eye movements is provided. In connection to this, EOG and other eye measuring
techniques are presented. Next, current eye movement detection algorithms are
provided together with the core theory behind the implemented algorithms. Finally,
background information regarding the cognitive distraction study is given.

2.1 General structure of eye
The eye is the organ of the body responsible for detection, localization, and analysis
of the light, and represents the core of one of the sensory systems, called "vision"
[1]. In a general broad way, the eye can be thought as a camera, which mainly con-
sists of the lens, the shutter (eyelid), the film (retina) and the cable (optic nerve)
connecting the camera (eye) to the computer (brain). A rough illustration of the
anatomy of the eye is shown in Figure 2.1.

Figure 2.1: Gross anatomy of the eye

The retina is the light-sensitive innermost coat of the eye and it plays a fundamen-
tal role both for vision and eye movements recording. It consists of a neural layer
containing photo-receptor cells specialized in converting light into images, and a pig-
mented layer, called "retinal pigment epithelium", that contributes to absorbing the
stray light rays [2] and it also represents the origin of EOG [3]. The accumulation of
electrical charges in the pigment layer of the retina creates an electrical potential in

3



2. Background

the eye and it makes EOG recording possible. More details about EOG are further
presented in Section 2.3.1.

The retina has also a paramount importance due to the presence of the fovea in
its center. The fovea is a small depression of about 2 mm in diameter [1] and it
is the area of highest visual acuity (sharpness of vision). Its presence is the reason
why the eyes move, so that the light rays (the real world images) can be focused on
the fovea.

2.2 Eye Movements
The eyes move in order to extend the visual range that can be covered without
moving the head. The oculomotor system is responsible for the eyeballs to move
and rotate inside their sockets in the skull with the help of the extraocular muscles.
There exist different types of eye movements that can be distinguished based on
their physiological properties and how they contribute to vision [4]. These basic
types are saccade, fixation, smooth pursuit, vergence, vestibular and optokinetic
nystagmus.

Saccades are quick movements of the eye performed in order to bring images of
objects of interest onto the fovea. Fixations consist of miniature movements that
stabilize the image of a stationary object on the fovea in order to acquire visual
information, while smooth pursuits occur when the eyes are tracking a smooth mov-
ing target. Thus, they stabilize the image on the fovea as the eyes are rotating.
Vergence movement refers to the situation when the eyes move in opposite direc-
tions in order to place the image of a object onto the fovea of each eye. Nystagmus
ocular movements consist of smooth pursuits interspersed with saccades, appearing
as a sawtooth-like time series pattern, and they can be distinguished in two types,
vestibular and optokinetic nystagmus. Vestibular nystagmus occurs in order to hold
the images steady on the retina during short head movements, whereas optokinetic
nystagmus has the same function but during faster movements of the head [4, 5].
However, only three of these eye movements, namely saccade, fixation and smooth
pursuit, represent the fundamental ones that need to be modelled because of their
unique functionality [5]. Therefore, in the sections 2.2.1, 2.2.2, 2.2.3 more detailed
information about these three eye movements is given.

The rotation of the eyes is due to the action of three pairs of extraocular mus-
cles, which are displayed in Figure 2.2. These work together as agonist-antagonist
muscles allowing rotations in the horizontal, vertical and torsional directions. An-
tagonist refers to that the activity of the antagonist muscle opposes the one of the
agonist, and follow the principle of reciprocal innervation [6]. These three pairs
of extraocular muscles are: the lateral rectus and medial rectus, the superior
rectus and inferior rectus, the superior oblique and inferior oblique [6]. The
first two aforementioned muscles (medial and lateral recti) are entirely responsible
for moving the eye horizontally, while the other four are used to move the eye in a
vertical and torsional motion [6]. Indeed, elevation (upwards eyeball movement) is
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2. Background

Figure 2.2: Oculomotor system showing the six extraocular muscles. To
note that the medial rectus muscle is not visible in the figure. As its coun-
terpart it looks like the lateral rectus but located on the opposite side of the
eye.

performed by the superior rectus and the inferior oblique muscle, while depression
(downwards eyeball movement) is actuated by the inferior rectus and the superior
oblique [7]. Three cranial nerves innervate the six extraocular muscles, namely the
abducens (cranial nerve VI), the trochlear (cranial nerve IV) and the oculomotor
nerve (cranial nerve III), which are originated in two different regions of the brain-
stem. The abducens nerve supplies the lateral rectus and has its associated nuclei
in the pons, while both the trochlear nerve and the oculomotor nerve exit from the
midbrain. The trochlear nerve innervates the superior oblique, whereas the oculo-
motor nerve triggers the superior rectus, the inferior rectus, the medial rectus and
the inferior oblique [7][2].

2.2.1 Saccades
A saccade is a rapid eye movement with the purpose of moving the fovea from one
point of interest to another. Consequently, saccades carry out a vital function of
the eye, since the fovea is where the visual acuity is sharpest. Saccades can be both
reflexive or voluntary. Normal triggers of saccades are the appearance of an object
seen or heard, but they can also be triggered by memory or be part of visual search.
There exists a direct link between the presence of a fovea in primates and voluntary
saccades, and primates without a fovea, i.e. rabbits, mainly performs saccades dur-
ing head movements [4].

The saccade signal of the ocular motoneurons has the shape of a pulse-step, as
shown in Figure 2.3 and it encodes the characteristics of the saccade in terms of
their temporal discharge. The duration and the size of the saccade are proportional
to the total number of the pulses (discharge spikes). This burst of activity of the
ocular motoneurons is originating in the brainstem and it starts about 8 ms before
the eye begins to move [4].
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2. Background

Figure 2.3: Pulse-step waveform. To generate a saccade the ocular mo-
toneurons send a sequence of signal with a shape of a pulse-step.

Once the programming of a motor command is completed and the saccade is ini-
tialized, the target point cannot be altered. Saccades rarely last longer than 100
ms, which is about the same time needed for the visual system to process new in-
formation and turn it into a new motor command. This is why visual information
cannot be used to alter the target point after a saccade is triggered. The latency
of saccades (time between target presentation and the start of eye movement) de-
pends on several factors. Examples of factors are properties of the stimulus (visual
or auditory, target size/intensity etc.), the amount of available information and the
urgency to make a decision. In studies where subjects were asked to track a target
that moves from one point to another, a saccade is normally initiated with a latency
of around 200 milliseconds [4]. It is believed that the latent period represents the
time interval during which the decision whether to generate a saccade or not is taken
by the central nervous system (CNS) [6].

Speed, amplitude, and duration of normal saccades are related to each other, where
greater amplitude results in higher peak velocities and longer duration. The peak
velocity Vpeak of a saccade normally increases approximately linear with the ampli-
tude up to 20° and starts to saturate around 500°/s for larger saccades [4, 8]. The
relationship is commonly described by equation (2.1), where Vmax is the maximum
velocity of a saccade (around 500°/s), A is the amplitude and C is a constant nor-
mally set to the amplitude where the velocity reaches 63% of the saturation value
[8].

Vpeak = Vmax(1− e−A/C) (2.1)
The period before a saccade reaches peak velocity is the acceleration period, and the
period after peak velocity until the end of the saccade is the deceleration period. The
asymmetry between acceleration and deceleration period duration is called skewness
(which is calculated as [duration of acceleration period]/[duration of acceleration pe-
riod]+[duration of deceleration period]). The skewness ranges between 0.2 and 0.5,
where 0.5 corresponds to the smallest saccades and 0.2 to the largest. Another mea-
surement of saccades is the ratio between peak velocity and mean velocity. This
ratio is normally around 1.6 [4].

Start- and end points of a saccade are commonly decided by a velocity criterion.
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2. Background

The criterion can be either fixed or dynamic. Fixed criterion is when the start point
is defined as the point where the velocity exceeds a fixed threshold, i.e. 30 °/s, and
the end point when the velocity falls below the same threshold [4]. Another similar
approach is a dynamic threshold, where the thresholds are set to 10% of the peak
velocity of the saccade [9].

The duration of saccades is approximately linear to the amplitude A. This rela-
tionship is often described by a linear function described in equation (2.2) or by a
power function described in equation (2.3):

Duration = D0 + dA (2.2)

Duration = D1A
P (2.3)

where D0 and d are the constants of the linear function, while D1 is the duration
of a 1-degree saccade and P is a constant. The power function relationship more
accurately describes the duration of smaller saccades.

After a primary saccade, a short, oppositely directed small saccade can occur. This
is called "dynamic overshoot" and the phenomenon is illustrated in Figure 2.4. Dy-
namic overshoots normally have an amplitude in the range of 0.25° - 0.5°, but larger
and smaller dynamic overshoots can occur [4]. The reasons for dynamic overshoots
are not clear. One theory is that the reversal breaking pulses that bring the eye
to an abrupt stop occasionally are too large, causing a dynamic overshoot to occur
[10]. The reason can also be mechanical properties of the orbital tissues [4].
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Figure 2.4: Example of a dynamic overshoot, a small saccade occurring
after a primary saccade and it is oppositely directed
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If the primary saccade fails to reach the desired target point, a secondary saccade
can be triggered to reduce the error. These secondary saccades are commonly called
"corrective saccades". This type of saccades can occur even if no visual feedback
is available after the primary saccade is completed (target is no longer visible).
However, when visual feedback is present, the corrective saccade are more accurate
and have lower latency. Furthermore, the tolerance for error is also lower when visual
information is available. The latency of corrective saccades is dependent on the size
of the position error, where greater errors are corrected faster [11]. In studies where
test subjects track a moving target point, the average latency of visually guided
corrective saccades is in the interval of 100-130 ms [4]. The latency of saccades was
reduced when the target point was available in the deceleration phase of the saccade
but turned off before the saccade was completed. This is an indication that visual
information available during the deceleration phase of the saccade is used to trigger
corrective saccades [4, 11].

2.2.2 Fixations
Fixations are considered as the time intervals of apparent ocular immobility be-
tween two saccades, during which visual and cognitive information is acquired and
processed [12]. On average the fixations have a duration that lies between 100 ms
and 200 ms [13] but they can also last longer [14]. An example of fixation occurring
between two saccades can be seen in Figure 2.5, where the saccades are marked by
violet ellipsoids and the fixation by a gray ellipsoid.
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Figure 2.5: Saccades and fixation. Example of a sequence of saccade-
fixation-saccade taken from a horizontal EOG signal.
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The eye is not completely still during fixation since it performs microscopic gaze
shifts, commonly known as "fixational eye movements", which help to hold the cen-
tral foveal vision in place. These involuntary fixational eye movements prevent
fading of images and consist mainly of three components: tremor, microsaccades
and ocular drift. Ocular tremor has a frequency range up to 150 Hz and an am-
plitude less than 0.01°, which is smaller than the size of one photo-receptor in the
fovea. Microsaccades are the small involuntary saccades that occur during fixation
and can be considered the miniature replicas of the saccadic gaze shift presenting
an amplitude range between 0.02° and 2° [4][12]. Ocular drift is the low-frequency
component (<40 Hz) that resembles the random motion of a particle in a fluid
(Brownian motion) [12].

2.2.3 Smooth Pursuits
Smooth pursuit movements allow clear vision of the object as it moves within the
visual environment [4]. They are designed to maintain the image of the smooth
moving object on the fovea [7]. Actually, saccades are able to catch the image
of a moving target but, in absence of pursuit, the image would slide off after each
saccade [4]. Moreover, it is a voluntary eye movement and the observer can choose if
to track the target or not, but it is not possible to perform a smooth pursuit without
tracking a moving target [7]. Smooth pursuit eye movement has an initiation latency
of 100-150 ms, which is shorter than for a saccade. Although smooth pursuits are
considered "slow" when compared to saccades, in some rare cases their velocities can
reach more than 100°/s [15].

2.2.4 Eyelid Movements (Blinks) and their effects on eye
movements

Eyelid closure, also referred as "blink", is the passive movement of the levator palpe-
brae muscle (LPM), as its innervation ceases. Eyelid and eye movements are coor-
dinated in order not to interfere with each other. During upwards gaze (when the
eye looks/moves upwards) the eyelid does not cover the pupil, while during down-
wards gaze (when the eye looks/moves downwards) the eyelid protects the upper
part of the eyeball. Eyelid movements are commonly categorized as spontaneous
(voluntary), passive (following saccades) or reflexive (triggered by sounds or visual
stimuli) [16]. On average, blink duration lies between 100 and 400 ms [13].

During blinks, visual sensitivity decreases and this temporary blanking goes practi-
cally unnoticed even though it can be for a relative large amount of time. However,
the eyeball does not stay put while blinks occur, but it moves inwards, downwards
and torsionally, hence activating all oculomotor muscles. These are called "blink-
associated eye movements" and are slower than saccades [16, 4].

Often blinks accompany horizontal and vertical saccades, and influence the saccadic
velocity, acceleration, deceleration and they increase saccade duration without af-
fecting saccade amplitude [16]. Typically, the occurrence of blinks is approximately
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20 times per minute and the likelihood of a blink occurring is proportional to the size
of the gaze shift. Moreover, saccades made with blinks tend to present an higher rate
of dynamic overshoots while saccades occurring under closed lids are much slower
compared to the visually-guided or memory-guided saccades [4].

When blinks occur during fixation of a stationary object, the eyes move down ap-
proaching the nose [4], while during smooth pursuits blinks tend to reduce the
pursuit velocity [16].

2.3 Eye movements sensing systems
Eye movements have been a subject of study since the end of the 19th century and
diverse techniques have been developed [17]. The three most popular methods for
monitoring the eyes are magnetic search coil, electro-oculography and video-based
eye tracking. These techniques are based on different working principles, which are
presented in the following sections 2.3.1, 2.3.2, 2.3.3.

2.3.1 Electro-oculography (EOG)
The electro-oculography (EOG) is a technique used to measure the electrical sig-
nal of the eye, where the signal varies depending on the eye’s position. The eye is
the origin of a standing electrical potential field and can therefore be modeled as a
dipole, where the negative pole represented by the retina (posterior part of the eye)
is oriented towards the positive pole, represented by the cornea (anterior part of the
eye) [18]. The potential between positive and negative charged parts of the eye is
called corneo-retinal potential (CRP). The origin of the potential is ion permeability
changes through the retinal pigment epithelium (RPE) membrane, situated behind
the photo-receptor layer, which is sensitive to retinal illumination [19]. However,
the CRP varies so slowly that it can be assumed steady and this assumption is the
basis for the EOG. Such CRP lies in the range of 0.4 - 1.0 mV [3]. CRP produces
an electrical field, which is the source of the EOG signal. By recording changes in
this electrical field due to the moving (rotation) of the dipole, the eye movement
can be tracked and its characteristics, such as amplitude, duration, and speed, can
be obtained.

The EOG is measured by two pairs of skin electrodes placed at the periorbital
positions of the eye, plus an additional reference electrode on the forehead. This
set up allows identification of two different signal components corresponding to the
vertical movement and the horizontal movement of the eye [18]. When the eye is
at rest, the direction of the electrical field altered by the dipole is perpendicular
to the electrodes and thus no voltage is recorded [3]. However, as the eye moves
from the center to periphery, a difference of potential is detected because the retina
approaches one electrode while the cornea gets closer to the opposite one. Hence,
the polarity of the signal is positive at the electrode to which the eye is moving [3].
This change in orientation of the dipole, and therefore in electrical potential, cor-
responds to a change in the measured EOG signal. Consequently, eye movements
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can be studied by analyzing these changes. Moreover, EOG is usually included
in the electro-encephalography (EEG) setups in order to allow elimination of eye
movement artifacts [20]. Typical amplitudes of the signal range from 5 µV/° to 20
µV/° and the essential frequency content spans from 0 Hz to 30 Hz [13, 5]. EOG is
considered linear to the eye position in the range of ±25°[9].

2.3.1.1 Baseline drift and noise in the EOG signal

EOG signal tends to be strongly affected by different sources of noise, such as resi-
dential power-line, measurement circuitry, electrodes, muscle activity, etc [13]. For
instance, one physiological source of noise derives from the fact that the CRP is not
actually stable, especially in high illumination conditions [3]. Moreover, the activity
of facial muscles introduces a considerable number of artifacts in the EOG trace due
to, for example, eyelid closure, movement of the opposite eye, and the muscle action
potential spike at the onset of a saccade [4]. In addition, thermal noise generated by
the contact resistance of the skin electrodes, and unstable attachment of the elec-
trodes to the skin represent a relevant cause of disturbances that impair the signal
[9, 13].

Furthermore, a particular interference, which distorts the raw EOG signal is some-
thing called baseline drift. It may be caused by background signals, electrode polar-
ization or varying contact pressure of the electrodes. Essentially, it appears as a slow
signal change that is mostly uncorrelated to eye movements but it superimposes the
signal. Baseline drift affects the signal of all eye movements, except for the saccades,
since their duration is so short that the drift cannot be noticed [13].

Nevertheless, electro-oculography is a relatively inexpensive and noninvasive method
that can be applied in conditions of total darkness and it is also able to measure the
signal when the eyes are closed.

2.3.2 Scleral search coil

The most precise technique used to record and measure eye movements is the scleral
search coil technique, which is, at the same time, the most invasive. This method
consists of placing a silicon contact annulus/lens on the eye, precisely over the
cornea and sclera. The contact lens contains copper wire coil that is connected to
an external plug. By placing the subject in a magnetic field, the movements of
the eyes induce a current in the coil, from which the position of the eye can be
determined. Advantages of this technique are the high precision (up to 0.1°) of the
measurements in the horizontal, vertical and torsional dimension, and the robustness
against eyelid artifacts, which, affect the quality of the signal recorded with other
methods (EOG, video-based techniques). Besides its intrusiveness and consequent
discomfort, the scleral search coil method has the drawback to be unsuitable for
recordings longer than 30 minutes since it can cause irritation due to rubbing of the
device against the eyelid [21, 5].
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2.3.3 Video-based eye tracking systems
Video technology used to track and record eye movements, also defined as video-
oculography (VOG), has become increasingly in vogue as the electronic data pro-
cessing has been progressing. Nowadays, video-based trackers consist of affordable
cameras and image processing tools with more and more robust algorithms. Typi-
cally, the principle of VOG techniques is to track the position of eye-fixed markers
in a 2-D image, which has to relate to the head-fixed coordinates. High precision
of these positions is difficult to reach, therefore either the camera must be firmly
fixed to the head, or multiple ocular features must be determined in order to dis-
tinguish head and eye movements [5, 9]. The most common ocular features used to
compensate for head translation are the pupil center corneal reflections (PCCRs).
An infrared light source illuminates the eye, and a camera captures the reflection
patterns of the light bouncing back from cornea and pupil. These two are the points
of reference on the eye needed to differentiate eye movements from head transla-
tions. Hence, a vector containing the angle between the cornea and pupil center
reflections is computed, and it is then combined with other features to calculate the
gaze direction [22].

The major advantage of VOG technique is its non-invasiveness because there is
no contact with the eye. The only discomfort might be if the device is mounted on
the head, or if it limits the field of view, which might happen when wearing mobile
eye tracker glasses [9]. VOG offers a temporal resolution that normally ranges be-
tween 50 and 400 Hz [9], but a sampling rate of 1000 Hz can also be reached [23].
However, a series of drawbacks affects this technique. Firstly, using the reflections of
the cornea adds more noise that has to be filtered out. Secondly, this method relies
on the profile of the cornea, which differs between people. Furthermore, VOG is not
able to track the eye during eyelid closure, such as while blinking, and neither when
the eyes stay closed for a prolonged time, which prevents this technique from being
used for sleep-related eye movements studies [9]. Finally, a disadvantage related to
the usage of eye tracker during driving task is that it loses tracking, e.g. during
large head movements.

2.4 Current methods for baseline drift removal
and EOG denoising

As mentioned before, noise and baseline drift contamination represent a big problem
that impairs the quality of the EOG signal. In the following two sections, some of
the related works done on baseline drift and noise removal are presented.

2.4.1 Baseline Drift Removal
As common for many physiological signals, the raw EOG signals are distorted by
the aforementioned baseline drift, which is a temporal slow signal change that su-
perimposes the EOG trace. However, it may affect the representation quality of the
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eye movements, such as fixations, smooth pursuits. Saccades are not strongly influ-
enced by baseline drift because of their high velocity [13]. Baseline drift needs to be
removed in order to ensure the accuracy of any extracted feature, such as duration
and amplitude. A number of novel techniques, which outperform the traditional
high-pass filtering solution, has been developed to remove baseline drift from elec-
trocardiogram (ECG), such as in [24, 25, 26, 27]. These algorithms perform fairly
well since the ECG signal has repetitive patterns [13]. Nonetheless, baseline drift
removal is still a field of ongoing research for non-repetitive signals such as EOG. For
example, in [20] Pettersson used an approach, which consisted of modeling the drift
with a polynomial function of degree 20, and then subtracting it from the raw signal.

Another well-used approach to extract and then remove the drift from the EOG
signal is based on Discrete Wavelet Transform (DWT). It was proved by Von Bor-
ries in [28] to be very powerful to remove the drift from ECG data and later on a
very similar approach gave great results by [13] when applied to EOG data.

2.4.2 EOG Denoising
The noise sources mentioned in the Section 2.3.1.1 may produce distortions in the
signal that compromise the quality and detection of certain eye movements. There-
fore, techniques, such as low pass filtering, wavelet denoising, and median filtering
have been used in several EOG related studies to reduce the noise in the signal.
For instance, low-pass filtering on the acceleration signal derived from the EOG
was used by Behrens in [29] to suppress frequencies higher than 25 Hz. However,
it results in a distortion of acceleration signal of the saccades, but it does not shift
them in time.

On the other hand, in [20] the noise was removed by applying wavelet denoising.
After decomposing the EOG signal, the coefficients with frequencies above 100 Hz,
which represent the fine structure like noise, were set to zero. The only drawback
of this method is that the slope of the saccades may be distorted.

Nevertheless, another method for filtering out the noise from EOG data is by us-
ing a median filter, which by definition takes the median value of the points in a
sliding window that runs through the signal. Median filtering was chosen by for
example Bulling in [13] since it preserves some of the saccade parameters, such as
slope steepness.

2.5 Current eye movements detection approaches
Several methods have been implemented for eye movements detection from both
EOG and eye tracker data, especially focusing on detecting fixations and saccades
[30]. Usually, saccades are detected by velocity-based threshold methods, in which
a fixed threshold determines whether a saccade is present or not [31]. However, it
requires knowledge about the velocity in the conventional format, i.e. in degrees
per second (°/s). Therefore, a calibration to find the relation between recorded
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voltage and eye movement is needed. However, other methods for detection have
been developed, such as by Niemenlehto in [32] and by Behrens in [29], in which
adaptive thresholds are used. In [32] a technique commonly used in radar systems is
applied and computes an adaptive threshold to the velocity waveform of the EOG.
In the work by Behrens a saccade detection algorithm uses adaptive thresholds,
calculated from the Gaussian distribution of the acceleration profile of the EOG.
This acceleration-based method is stated to be suitable on uncalibrated EOG data
and also on video-based eye tracker data [29]. Also in the work by Pettersson an
auto-calibrating algorithm can automatically estimate threshold values for saccades
and blinks, based on their first derivative, i.e. their velocities [20].

In [33] Vidal developed an approach for specifically detecting smooth pursuit. It
is based on shape features, representing the characteristic low variance of this eye
movement, such as the integral measure of the signal, and a machine learning classi-
fication. Although this mentioned method originally was applied to eye tracker data,
it is stated by the authors that it possibly could be implemented for EOG data as
well. Worth to mention is a recent work by Hoppe, in which an approach based
on convolutional neural networks (CNN) is able to detect eye movements directly
from raw data, without any thresholding, pre-segmentation or manual intervention.
However, this method was only tested on video-based eye tracker data [34].

A different method for detecting saccades and fixations from EOG data was de-
veloped by Bulling in [35, 13] and it is based on the Continuous Wavelet Transform
(CWT). The signal is transformed into wavelet coefficients, describing the changes
in the signal. Since fixations and saccades differ significantly, they can be detected
by setting specific thresholds on the coefficients. Moreover, a similar approach was
proposed for blink detection. Both algorithms developed by Bulling showed an ac-
curacy of 94% [13], but saccades outside the duration range of 20 - 200 ms were
discarded.

2.6 Basic theory behind the implemented algo-
rithms

In this section, the basic theories used in the developed algorithm are presented.

2.6.1 Wavelet Transform
In the past several years wavelets have been studied and applied in the area of sig-
nal processing because of their powerful abilities in manipulating the signal for the
main purposes of denoising, data compression, wave detection and feature extraction
[36, 37]. Wavelets are mathematical transform methods that have the fundamen-
tal property to provide an adaptive time/space-frequency resolution of the signal.
Essentially, it means that small scale features of the signal are scanned with fine
resolution in time/space and coarse resolution in frequency, while big-scale features
are analyzed with coarse time/space resolution but fine resolution in frequency [38].
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There exist several families of wavelets, and some commonly used are Haar wavelets,
Daubechies wavelet, the bi-orthogonal spline wavelets and the reverse bi-orthogonal
spline wavelets [38].

The basic working principle of the wavelet transform, and more specifically of the
Discrete Wavelet Transform (DWT), is a decomposition/reconstruction process of
the data. First, the smallest scale features (the finest details of the signal) are sep-
arated from the others by decomposing the signal into two parts, namely approx-
imation and details. The approximation is created by applying low pass filtering
followed by a down-sampling operation, where every other point (sample) is rejected.
Likewise, the detail is obtained by high pass filtering and down-sampling. In the
second decomposition level, the features appearing on a scale twice as large as in the
first level are separated by filtering and then down-sampling the first level approxi-
mation coefficients. This operation creates a coarser approximation and a sequence
of finer details. The decomposition procedure continues until the level in which the
largest-scale features are differentiated. In this way, the decomposed signal consists
of a coarse approximation and a series of finer and finer details as shown in Figure
2.6.

Figure 2.6: Working principle of Signal Decomposition with the Discrete Wavelet Trans-
form.

The analyzing wavelet function can be mathematically represented by the Equation
(2.4),

ψab
(
t
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= 1√
a
ψ
(t− b

a

)
(2.4)

where ψ(t) is the mother wavelet, a is the scale parameter, which causes dilation
(stretching), if a > 1, or contraction, if a < 1, and b is the position parameter
responsible for translation [37]. The original signal can be retrieved by applying
the inverse wavelet transform, which consists of up-sampling, i.e. inserting zeros at
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even-indexed points, and then filtering the coarsest approximation and detail coef-
ficients [38].

Another type of wavelet transform is the Continuous Wavelet Transform (CWT).
The main difference between CWT and DWT is that the former discretizes scale
more finely than the latter. In fact, in the DWT the scale parameter is always
discretized to integer powers of 2, such as 2j, j=1,2,3,..., while the scaling parameter
for CWT varies as 2 j

v , with j=1,2,3,... and v is an integer greater than 1 [39]. By
continuously varying the scale parameter a (stretching or shrinking) and the position
parameter b (shifting along the signal), the CWT returns the wavelet coefficients of
the EOG signal s(t), and these coefficients are defined as in equation (2.5).
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By analyzing the coefficients at different scales, the characteristics of the signals can
be detected. Generally, at low scales, i.e. at high frequencies, the analyzing wavelet
is compressed, and sharp discontinuities can be more precisely tracked, while at high
scale, thus at low frequencies, the dilated wavelet is better capable of detecting slow
changing and coarse features.

2.6.2 Bag-Of-Patterns (BOP) and Symbolic Aggregate ap-
proXimation (SAX)

The "Bag-Of-Patterns" is a method for representation of time series data and it
stems from the "Bag-Of-Words" representation used for text data. It was firstly
proposed by [40] as a novel approach that outperforms leading current methods for
time series data clustering, classification, etc. Unlike common shape-based methods,
the concept is to find structural similarities in the signal based on the histogram
representation of different patterns. The histogram contains the recurrence of cer-
tain Symbolic Aggregate approXimation (SAX) words in the time series that differs
depending on the characteristics of the data. The creation of these SAX words is
the first part of the algorithm, and it aims at representing the pattern as strings
(i.e. words).

Originally proposed by Lin in [41], SAX is a symbolic approach that transforms
time series T of arbitrary length j into a lower dimensional representation, such as
words of arbitrary length w. The alphabet size α can be chosen by the user and it
has to be an integer α > 2. For example, if the alphabet is {a,b,c} the size is 3.
First, the time series T is normalized using standard score as defined in equation
2.6:

Tnorm = T − µ
σ

(2.6)

producing a normalized time series Tnorm with zero mean (µ) and standard devia-
tion (σ) of one. The next step is to perform discretization by applying Piecewise
Aggregate Approximation (PAA). This means that the time series is divided into
w equal-sized segments, and the mean for each segment is calculated. Thus, the

16



2. Background

dimensionality of the time series is reduced from j to w. The normalized time series
is assumed to follow a Gaussian distribution. Thus discretization can produce sym-
bols with equiprobability. The equiprobable regions are divided according to a set
of breakpoints βα−1 depending on the specified alphabet size α. For example, with
α = 3 the distribution space is divided into three equiprobable regions by the break-
points β1 = −0.43 and β2 = 0.43. Then, the PAA coefficients that are bigger than
β2 are mapped to the symbol "c", whereas the ones that are below β1 correspond
to the symbol "a" and the coefficients lying between β1 and β2 are mapped to "b".
The sequence of these symbols represents a word, e.g. aabcc. Figure 2.7 illustrates
how a time series, in this case containing a saccade, is mapped into a SAX string.
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Figure 2.7: SAX Word: the time series, a saccade in this example, is
transformed to the string aabcc. The parameters used here are w = 5, α = 3
and segment size j = 41

The sequence of SAX strings is extracted using a sliding window of size n that runs
over the segment. It results in a set of strings corresponding to a subsequence in
the time series, i.e. the segment. Afterward, the word-sequence matrix can be con-
structed, so that the number of rows is the same as the size of the SAX dictionary
and each column denotes a time series segment. The SAX dictionary is the collec-
tion of all SAX words (i.e. the patterns), and its size is expressed as αw. Figure 2.8
shows an example of word-sequence matrix.
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Figure 2.8: SAX word-sequence matrix

The word sequence matrix shows the occurrence of each word in each time series,
hence each time series can be represented as a histogram. Once produced, the
Bag-Of-Patterns, i.e. the histograms, can be sent to a classification or clustering
machine learning algorithm. The authors in [40] tried this approach with many
different datasets and they proved it to achieve superior clustering and classification
results compared to other methods.

2.6.3 Shape Features
In [33], Vidal introduces an algorithm for detection of smooth pursuits. The al-
gorithm utilizes a sliding window approach for detection, in which shape measures
that capture aspects of different eye movements are calculated for each window. The
shape measures used are:

• Slope
• Range
• Mean velocity
• Variance
• Integral
• Energy
• Waveform length

These measures are used as the basis for calculation of shape features, where the
features are set to 1 or 0 depending on if the values are within boundaries associated
with smooth pursuits. The shape features are then used as input to a k-nearest
neighbor (kNN) classifier.

2.6.4 k-Nearest Neighbor (kNN) classifier
The k-nearest neighbor is a machine learning algorithm used for classification of
objects based on the characteristics of the neighbor objects. An unknown object in
the feature space is classified by a majority vote of its neighbors, whose number is
defined by the parameter k. The kNN classifier commonly uses the Euclidean Dis-
tance as distance metric, to measure the position of the unknown object from the
neighbors. Therefore, given a set of n objects (or points) and a distance function,
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such as the Euclidean distance, the kNN classifier finds the k closest points to the
unknown point (or query point).

Figure 2.9 shows a simple representation of the "majority voting" working principle
done by the kNN classifier. The labeled training examples (data objects), illustrated
by the red circles for class 1 and the blue squares for class 2 are represented in fea-
tures space. An unlabelled data object, the violet triangle, is to be classified either
to class 1 or class 2. By measuring the Euclidean distance between the query point
and the neighbors, the k closest are found. In the example in Figure 2.9, when
k = 3 the closest three labeled data objects consist of two blue squares and one red
circle. Therefore, the unknown object will be classified as class 2, since the class 2
(blue squares) represents the majority. On the other hand, in the case of k = 10,
the query point (the violet triangle) will be labeled as class 1 because the number
of red circles is bigger than the number of blue squares.

Figure 2.9: kNN classification: if k = 3 the unknown data object (violet
triangle) is assigned to class 2 because the blue squares are the majority of the
3 neighbouring objects. However, if 10 neighbours are considered (k = 10),
the number of red circles is bigger than the blue squares. Hence, the majority
is represented by class 1 and thus the unknown data is classified to class 1.
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2.7 Cognitive Distraction during driving
Driver distraction can be defined as a diversion of attention away from activities crit-
ical for safe driving towards a competing activity [42]. Typically, a differentiation
is made between visual, manual and cognitive distraction [43]. Visual distraction
is when the driver takes his/her eyes off the road to look either at a device or a
person. Manual distraction is the action of the driver taking his/her hand/hands off
the steering wheel to manipulate an object (e.g. a phone or fruit) [44]. Cognitive
distraction refers to a more general diversion of attention, and it can be considered
the most difficult type to assess because it relates to what the driver’s brain is en-
gaged in.Therefore, it can be defined as the driver’s condition when he/she takes
his/her mind off the road [43, 44], due to, for example, talking to a passenger, having
a hands-free phone conversation [45] or simply thinking about something else than
driving. However, while visual distraction is proved to increase the risk of accidents,
the effect of cognitive distraction on traffic safety is less clear.

Eye movements and glance behavior analysis can be exploited to study cognitive
distraction. As found in [46], under cognitive distraction the drivers make fewer
saccades per unit time, with a consequent reduction in glance frequency and ex-
ploration of the driving environment. During increasing cognitive load the gaze
concentration is higher on the road center, and thus more time is spent looking
straight ahead [42, 46].

Moreover, in previous studies, it was shown that the amplitude of saccadic eye move-
ments either increases [47, 48] or decreases [49] as cognitive workload increases. A
similar discrepancy was also found regarding fixations, which have been reported
to be either shorter [48] or longer [49] during cognitive load as compared to the
baseline. This disagreement could be attributed to the fact that the study in [48]
was carried out in a driving simulator, while the study in [49] was a field trial. In
addition, this difference might be due to the visual complexity of the scene [42].

Furthermore, it is found that cognitive distraction during driving causes an increase
in blink frequency, as a result of higher memory demand [42].

2.8 Driver Simulation Study on Cognitive Dis-
traction

The collection of the electro-oculographic data used in this thesis was part of a
project, called Vehicle Driver Monitoring (VDM), in which different physiological
measurements, such as ECG, Electroencephalography (EEG), EOG, skin conduc-
tance and respiration, were taken during simulated driving. These were collected,
before the beginning of our thesis work, from 36 volunteering test subjects while
driving in a simulated rural area traffic environment using a moving base simulator.
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In order to study the effects of cognitive distraction, the participants performed
two kinds of cognitive task several times during driving. The following subsections
2.8.1 and 2.8.2 briefly explain how the cognitive workload was assessed and what
were the relevant components for eye movements measurement.

2.8.1 Cognitive Tasks
Two cognitive tasks had to be performed by the test subjects during driving, one
easy task called "1-Back" and the other more mentally demanding called "2-Back".
During the 1-Back task, a number was orally read out every two seconds. The test
subject had to respond by pressing a button mounted on his/her finger whenever
the last presented number was the same as the previous one. The 2-Back task was
essentially similar but with a higher cognitive load. Instead of pressing the button
whenever the same number was presented twice in a row, the test subject had to
respond whenever the currently presented number was the same as two numbers
before. The duration of each task was one minute every time it was performed.
For each scenario, one baseline (no cognitive load) and three cognitive tasks were
performed (one 1-Back and two 2-Back).

2.8.2 Eye movements measurement setup
The EOG data, as well as the other physiological signals, was recorded using a
plugin in DeweSoft software for data acquisition on main S-box. The sampling
rate was 256 Hz. The sensors were four electrodes, which were connected to the
EEG cap and shared the same reference and ground with the EEG. The setup also
included an eye tracking equipment to find out where the test subject focused the
eyes during driving. This was done using wired eye tracking glasses from SMI, "SMI
Eye Tracking Glasses 2", whose sampling frequency for the tracking is 60 Hz.
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3
Methods

The developed algorithm is presented in the following sections. The goal of the
algorithm is to find and classify the saccades in the input data. This includes find-
ing the start- and end points of the saccades, handling saccades during blinks and
merging of oblique saccades. Firstly, we describe the signal processing techniques
used to remove baseline drift and reduce noise from the EOG data (Section 3.1).
Secondly, the algorithms for saccade detection and classification are presented and
their working principles are in details explained in Section 3.2. This section also
includes the calculation of start- and end points of saccades and how the segments
that are to be classified are extracted. Since saccades during blinks needed to be de-
tected, an algorithm for blink detection was implemented based on a previous work,
and is described in Section 3.3. Next, the flowchart of the final algorithm is illus-
trated in Section 3.4 and the general description of the process is presented. Section
3.5 reports the procedure of creating training and validation datasets for evaluat-
ing the developed algorithm. Finally, in Section 3.6 we introduce the methodology
used to perform a limited study on the effects of cognitive distraction, in which the
developed saccade detection algorithm is applied.

3.1 EOG Signal Pre-Processing

3.1.1 Wavelet-based approach for baseline drift removal
As the baseline drift removal technique used in [13] revealed to be very effective, the
decision was to replicate the same wavelet-based approach. A MATLAB function
was created, which inputs the raw EOG signal, the number of decomposition levels
and the chosen wavelet function. The algorithm performs a multilevel 1D wavelet
decomposition at level 12 using a reverse bi-orthogonal wavelet "rbio6.8". Thus, the
signal consists of approximation coefficients followed by a sequence of finer and finer
detail coefficients. The low-frequency components of the baseline drift appear in the
approximation coefficients (scaling coefficients) [28]. Therefore, the baseline drift es-
timation can be obtained, by first setting the detail coefficients to zero and then by
reconstructing the remaining coefficients, i.e. the approximation coefficients, with
the Inverse Discrete Wavelet Transform (IDWT). The obtained baseline drift esti-
mation is then subtracted from the original EOG signal, resulting in a signal with
removed or reduced drift offset [13].
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Figure 3.1: Vertical EOG with baseline drift (top) and without baseline
drift (bottom)

Since baseline drift commonly is present in both channels, the algorithm is ap-
plied on both vertical and horizontal EOG signals. Figure 3.1 shows the difference
between the EOG signal contaminated with baseline drift (top) and after baseline
drift removal (bottom).

3.1.2 Noise Reduction
The noise corruption in EOG signal, due to, e.g. bad placement of the electrodes,
power line interference, and muscle activity might significantly affect the quality of
the signal, making the recognition of some eye movements, particularly saccades,
very problematic. The provided EOG datasets for our work are especially noisy
mainly because they were collected during driving and thus, head movements are
common. Therefore, the choice of a filtering technique capable of preserving the
signal characteristics of the saccades had to be made. As a result of the literature
research, median filter and wavelet denoising appeared to be the most promising
ones. Thus both methods were applied, but for different applications.

3.1.2.1 Median filtering

As also stated by the literature [13], median filtering is suitable for denoising EOG
data, since it preserves the edge steepness of the saccades. However, if the chosen
window size, or the filter order, is too large some saccade parameters, such as the
start- and end points and amplitude, might be distorted. A large median filter can
also remove small saccades. Consequently, a trade-off between noise reduction and
detection precision exists.
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In our work, median filtering is applied to the EOG input data to both wavelet-
based algorithms for saccade detection and blink detection, which are described in
Sections 3.2.1 and 3.3. Filter orders between 10 and 40 were considered, and the
quality of the filtered signal was visual inspected and evaluated. For the saccade
detection algorithm, the chosen filter order was 19, corresponding to a window size
of about 74 ms. This window size reduces the noise without suppressing the small
saccades of interest. The choice of the filter order is explained further in Section
3.2.1.

On the other hand, a median filter of order 39, i.e. window size of 150 ms, was
used on the EOG data for the wavelet-based blink detection algorithm. This higher
filter order suited the application because it did not impair the capability of de-
tecting the blinks, which have a very high amplitude compared to the other eye
movements. Moreover, a consequence of this sharp median filter is that the peaks
of the blink signals (see the right plot in Figure 3.2) were cut off. Nonetheless, the
amplitudes of the wavelet coefficients corresponding to the blinks did not differ from
the amplitudes of coefficients produced with a median filter of order 19. In the left
plot of Figure 3.2 it can be seen that the steepness of the saccades is preserved but
the noisy spikes are chopped off.
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Figure 3.2: Median filtering of the horizontal EOG for the wavelet-based
saccade detection algorithm (left) and of the vertical EOG for wavelet-based
blink detection algorithm (right).

3.1.2.2 Combination of median filter and wavelet denoising

In the other parts of the algorithm, i.e. in the BOP and Shape Features classifi-
cation (see Sections 3.2.4 and 3.2.5), the EOG signals were denoised by applying a
combination of the median filtering and wavelet denoising methods.

The wavelet denoising function was performed using the MATLAB command "wden",
which carries out an automatic denoising process [50]. The signal was denoised by
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decomposing it at only level 1 with a "Symlet" wavelet. A soft thresholding on the
wavelet coefficient was performed by setting the universal threshold th =

√
ln (N),

which estimates the noise level [38] depending on the length of the time series (in
this case number of samples in the EOG signal) N . This wavelet denoising method
is very effective, but it might distort the steepness of saccades slopes. Therefore,
decomposition level 1 is used to maintain the slope while suppressing high-frequency
noise.

The filtered EOG output signal consists of the sum of the 19th order median filtered
EOG and the wavelet denoised EOG signal, which is then divided by two, as shown
in Equation 3.1.

FilteredEOG = medianfilteredEOG+ waveletdenoisedEOG

2 (3.1)

This is done to further reduce the amplitude of the spikes of the high-frequency
noise. In this way, the properties of the saccade, i.e. start- and end points, steep-
ness and amplitude are maintained while the noise is reduced. This is illustrated in
Figure 3.3.
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Figure 3.3: Filtering of raw EOG (blue line): filtered EOG using only
median filter (green line), the combined median filter and wavelet denoising
filtered EOG (red line)
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3.2 Saccade detection and classification

3.2.1 Wavelet-Based Saccade Detection

We replicated the saccade detection method developed by [13], which is called Con-
tinuous Wavelet Transform - Saccade Detection (CWT-SD). One major reason why
this wavelet-based approach was chosen is that Bulling used it in another study [51],
in which EOG data were collected in a less controlled environment, namely while
walking.

The input of the CWT-SD algorithm are the EOG signals (vertical and horizon-
tal components) after baseline removal and denoising is performed. The CWT is
computed using ’Haar’ mother wavelet at scale a = 20. Among all the available
wavelets, ’Haar’ wavelet was selected due to its shape similarity with the saccade,
which resembles a step function [13].

A scale parameter of 20 was chosen because, as can be seen in Figure 3.4, abrupt
transitions (mainly corresponding to saccades) can be better detected at low scales
with a scale parameter range of 10-22. Moreover, the choice of using a = 20 and
mother wavelet ’Haar’ was supported by the fact that it was used in [13].

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Samples

-100

-50

0

50

100

A
m

p
lit

u
d
e
 [
u
V

]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Samples b

 1.00

 4.00

 7.00

10.00

13.00

16.00

19.00

22.00

S
c
a
le

s
 a

50

100

150

200

Figure 3.4: Continuous Wavelet coefficients (bottom) at different scales over
a short part (5000 samples) of the horizontal EOG (top). The brighter vertical
stripes, which go from color bright blue to red, corresponds to the sharpest
and largest signal discontinuities, i.e. saccades. These abrupt transitions are
localized at different scales.
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Since the CWT is very sensitive in detecting abrupt changes in the signals, the coef-
ficients amplitude will appear large in correspondence of saccades. Their sharpness
and amplitude depend on the changes in the signal. Thus small saccades will have
small, but rapidly varying coefficients, while big saccades will show big and steep
coefficients peaks. Therefore, by applying two thresholds (±thsd), one positive and
one negative, on the coefficients, most saccades can be detected.

The choice of the threshold’s value depends on the chosen scale since the ampli-
tude of the coefficients varies along with the scale parameter. To find the optimal
threshold value above which the highest number of saccades can be detected, several
values of median filter orders and thresholds were tried, and the number of missed
saccade candidates and false candidates were counted.

As one can see from Figure 3.5, a good coefficients threshold value lies in the range
of 10 to 30 depending on whether precision or recall is prioritized. Precision and
recall are performance measures that are further explained in Section 3.5. With
the threshold set to 17, a median filter with order 19 was found to have the best
trade-off regarding missed and false candidates.
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Figure 3.5: The plots shows how the number of missed candidates and of
false candidates depending on the wavelet coefficients threshold and the order
of the median filter.
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The principle of the saccade detection algorithm is illustrated in Figure 3.6, in which
a threshold thsd = ±17 (one positive and one negative threshold) was applied. The
coefficient peaks that cross the thresholds correspond to the saccades (red stars in
the bottom plot).
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Figure 3.6: Wavelet coefficients (top) and horizontal EOG signal with the
detected saccades (bottom)

3.2.2 Nominate Candidates
The CWT-SD is an effective algorithm for detecting saccades. However, as men-
tioned before, there exists a trade-off between precision and recall. A high threshold
results in a high precision (detected saccades are saccades), but a low recall (many
saccades are missed), while a low threshold has a high recall (almost all saccades
detected) but a low precision (many false positives). From this relationship, the
idea of using secondary machine learning algorithms to remove false saccades was
conceived. In this way, recall could be increased without reducing precision.

Instead of defining the peaks over a threshold as saccades, they are from now on
defined as saccade candidates. These saccade candidates are then used to extract
segments around the candidates. Bag-of-Patterns and Shape Features classification
are applied to the segments. In Figure 3.5, the number of missed saccades and
number of false candidates is illustrated for thresholds in the range of 1-100. From
this figure, it is clear that the most interesting range to investigate if precision can
be increased is in the threshold range of 10-30. This approach has several advan-
tages over using the machine learning algorithms in e.g. a sliding window approach,
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mainly:

• Since only parts of the signal with a high probability of containing saccades
are to be classified, the precision is likely to be higher.

• Wavelet detection is less computationally heavy compared to Bag-Of-Patterns
and Shape Features Classification. By only classifying parts of the signal with
a high probability of containing saccades, computational time is significantly
reduced.

• The peak of the wavelet coefficients is located in close proximity to the peak ve-
locity of the saccade. By extracting the segment around the peak, the saccade
movement will be in the center of the segment. This results in a higher simi-
larity between segments containing saccades, potentially simplifying training
and increasing the performance of the verification algorithms.

3.2.3 Extract Candidate Segments
Before the candidates are classified, the boundaries of the segments containing the
candidate need to be identified. First, the start- and end points of the saccade is
calculated. Secondly, the center of the saccade is used as the center point of the
segment. The start- and end of a saccade are typically defined by either a static or
dynamic velocity threshold. The variable amplitude and noise level limit the per-
formance of a static threshold. Therefore, the dynamic velocity threshold definition
is used, where the threshold is 10% of the peak velocity.

In order to calculate the saccade start- and end points, the peak velocity of the
candidate is identified by locating the closest local extrema in the derivative of the
signal associated with the saccade direction. Consequently, a saccade candidate
with a positive slope direction is related to the closest local maxima and a saccade
with a negative slope direction is related to the closest local minima. Secondly, the
peak velocity is used for calculation of the velocity threshold. This is illustrated in
Figure 3.7.
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Figure 3.7: EOG signal of a saccade segment (top) and derivative of the
same segment (bottom).
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The first sample which crosses the threshold closest to the peak velocity before and
after the peak velocity is regarded as the start- (closest crossing before the peak
velocity point) and end point (closest crossing the after peak velocity point). If the
duration of the crossing is limited to one sample, the crossing is ignored. This is
done to reduce the number of incorrect start- and end points caused by interrupted
saccades or noise.

3.2.4 Bag-Of-Patterns (BOP) Classification of Saccades
Bag-Of-Patterns was selected as one of the classification algorithms since it has a
good ability to compare structures in time series. The algorithm presented in [40]
was therefore implemented. In our work, the algorithm is applied to the "saccade
candidates", which were previously extracted using the CWT-SD algorithm.

The main parameters of the BOP algorithm are the segment size Ssize (i.e. the
time series length, containing the nominated saccade), the alphabet size α, which
also is the number of equiprobable regions, the word length w and the length of
the sliding window n. The algorithm is used to classify nominated candidates using
different values of the parameters. Three segment sizes Ssize, namely 21, 31 and
41 samples, were chosen to cover a reasonable range of saccade duration. In fact,
these sizes correspond to a duration value of 82 ms, 121 ms and 160 ms, respec-
tively. When transforming the time series into SAX strings, two alphabet sizes,
recommended in [40] were tested, namely α = 3 and α = 4, with two different word
lengths, w = 4 and w = 5. In this way, the possible SAX words collection varied
between 81 (α = 3 and w = 4) and 1024 words (α = 4 and w = 5). Finally, the
tested sliding window sizes n were 12, 15, 16, 20, 28 and 30 samples.

Figure 3.8 illustrates two typical examples of BOP representation. As one can
see, the histograms differ significantly depending on the type of eye movement. The
BOP of an upwards saccade (caption 3.8a) presents a localized concentration of
SAX words only in the first half of the dictionary, while the BOP representing a
fixation (3.8b) shows a spread distribution of SAX words along the whole dictionary.
Generally, the majority of the histograms for saccades and fixations looks similar
to those in Figure 3.8, but when the signal is strongly affected by noise the BOP
representation might be quite different.

Finally, the word sequence matrix is input to a kNN classifier with k=1, as done by
Lin in [40]. MATLAB’s built-in kNN classifier is used and it was trained using the
MATLAB Classification Learner application.
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Figure 3.8: Bag-Of-Patterns representation of a saccade (a) and a fixation
(b). The parameters used here are α = 3, w = 4, thus the dictionary contains
αw = 81 SAX words.

3.2.5 Shape Features Classification of Saccades

The developed Shape Features Classification algorithm is based on Vidal’s approach
in [33]. The main similarity between the methods is that both are based on the
same shape measures mentioned in Section 2.6.3. An additional measure that was
used in our algorithm is the zero crossing rate. This feature measures the number
of times the signal crosses the x-axis (zero crossing) and is commonly used in e.g.
speech recognition [52].

The change in amplitude properties from subject to subject in EOG signals (see
2.3.1) makes it hard to define strict boundaries for the features. Therefore, clas-
sification is performed directly on the shape measures instead of having features
depending on boundaries. This is the main difference between the developed algo-
rithm and Vidal’s approach. Since the shape measures are used as features in the
developed algorithm, these will be referred to as shape features from now on.

Each segment is normalized according to equation 2.6 before the shape features
are calculated. This reduces the effects of change in amplitude properties. Since
the saccades are re-scaled to similar amplitude levels, the change over time is given
more significance, resulting in a greater similarity between saccades of different am-
plitudes. Segments containing an assumed saccade with a negative derivative are
also inverted to further increase similarity in shape features. The inversion and nor-
malization of two saccades of different amplitude and direction are shown in Figure
3.9.

In order to better capture differences between saccades, smooth pursuits, and fixa-
tions, a growing window size is applied. The window sizes are seven samples, 1/3 of
segment length, 2/3 of segment length and the full segment length. Segment sizes
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Figure 3.9: Illustration of normalization and inversion of saccades with negative deriva-
tive in order to make saccades more similar before feature calculation.

in similar range as for BOP was tested for the same reasons (see 3.2.4). For each
window size, a set of shape features is calculated, resulting in a feature set of size 7a,
where a = 4 is the number of windows. Furthermore, the features are standardized
before they are used as input to the classifier, in order to have all the features in a
similar range.

Finally, a kNN classifier with Euclidean distance measure is utilized, such as in
Vidal’s approach. MATLAB’s built-in kNN classifier is used for increased comput-
ing efficiency. Number of neighbors k was set to 10. The choice of k is explained
further in Section 4.2. The classifier was trained using 25% holdout validation using
the MATLAB Classification Learner application.

3.3 Wavelet-Based Blink Detection

The same principle as for the CWT-SD is employed for the blink detection. The
method developed in [35, 13] was implemented, which also consists of thresholding
the wavelet coefficients obtained by applying the CWT on the signal. Similar to the
CWT-SD, the algorithm is named Continuous Wavelet Transform - Blink Detection
(CWT-BD). The blinks can be distinguished from the saccades because they are
characterized by two large consecutive peaks in the coefficient vector, one negative
followed by one positive. However, the most important parameter separating sac-
cades from blinks is the time interval between these two peaks, which is smaller than
the minimum time between two consecutive saccades occurring in opposite direction
[13]. Therefore, blink detection can be accomplished by applying a maximum time
threshold on this time interval. As suggested by [35], the best detection performance
is reached when the time difference threshold is 500 ms.

The choice of the coefficient thresholds ±thbd is very arbitrary and large values can
be chosen since blinks correspond to very big coefficient amplitudes. As shown in
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Figure 3.10, the thresholds applied on the coefficients are -150 and 150, respectively
for the negative and positive coefficients values. Moreover, since blink detection was
a secondary task of our work, visual inspection of the detected blinks was considered
a sufficient verification method.
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Figure 3.10: Detected blinks using the CWT-BD algorithm. By setting
a negative and a positive threshold on the wavelet coefficients and a time
difference limit on the interval between negative and positive peaks of the
coefficients, the blinks can be detected and displayed (bottom figure).

3.4 Final Algorithm
The flowchart of the final algorithm is shown in Figure 3.11. First, the EOG signals
are pre-processed, meaning that the baseline drift is removed, and the median and
the combined wavelet-median filtered signals are generated. The median filtered
signals are then used as input to CWT-SD to find and nominate the saccade can-
didates. The corresponding candidate segments are then extracted, followed by the
calculation of start, end, and center of each candidate.

In order to reduce the risk of false positives, candidates not meeting certain cri-
teria are removed. Duration of saccades is rarely shorter than 10 ms and commonly
less than 100 ms. Therefore, saccades outside the range of 10-150 ms are removed.
Furthermore, a minimum amplitude of 10 µV was set since the amplitude of the
noise normally is equal to or greater than this. After evaluating the results of the
tuning, minimum amplitude was later increased to 20 µV. This is discussed further
in Section 4.3.

34



3. Methods

Figure 3.11: Flowchart of the implemented algorithm

Vertical saccades cannot be detected during blinks. Artifacts in the horizontal chan-
nel are also common during blinks. All saccades detected during blinks are therefore
removed. Instead, saccades are detected by calculating the difference in amplitude
before and after the blink. If a significant change is detected, a saccade during the
blink is assumed. Amplitude differences of more than 30 µV in the horizontal chan-
nel and 70 µV in the vertical is detected as saccades. A larger difference is needed in
the vertical channel since the "discharge period" of the blink often is longer than the
duration of the blink (signal has a raised potential after the eyes are open, without
any indication of eyelid or eye movement in the video).

Next, Shape Features and Bag-Of-Patterns are used to classify all remaining candi-
date segments. Each candidate is evaluated using the results of the classification.
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If an algorithm classifies the candidate as a saccade, the rating is increased by one.
Furthermore, if the peak value of the wavelet coefficients for the candidate is greater
than 40, the candidate rating is also increased by one. A candidate is valid if the
candidate rating is equal to or greater than two. After evaluating the results of the
tuning, minimum accepted candidate rating was changed to three and rating given
for Shape Features was increased to three. This is discussed further in Section 4.3.

Finally, all saccades occurring simultaneously in both EOG channels are merged
into one oblique saccade. All saccades are separated into six different classes. These
are horizontal saccades, vertical saccades, oblique saccades, horizontal saccades dur-
ing blink, vertical saccades during blink and oblique saccades during blinks. This is
used as output, together with the saccade duration, and amplitude in each channel.

3.5 Creation of Training and Validation Datasets
To be able to evaluate the performance of the algorithms, the results needed to
be compared with manually classified (true) data. This data is classified using vi-
sual inspection of video obtained with the eye tracker and eye tracker data. In
order to simplify this process, a Graphical User Interface (GUI) was developed us-
ing MATLAB. As shown in Figure 3.12, the GUI displays the video together with
the horizontal and vertical eye tracker and EOG signals. Using the keyboard or the
navigation buttons in the GUI, the user can step between the frames in the video.
At the same time, a red and yellow line shows eye tracker and EOG signal between
the previous and current frame. Using this information, the user can identify the
eye movements. Using the vertical cursors, the user then marks the saccades and
the blinks. The start- and end point of the saccades can be automatically calculated
using the method in Section 3.2.3, but can also be marked manually if the automatic
algorithm fails. Both the horizontal and vertical EOG channels were classified this
way.

This verification approach is a potential source of error since small eye movements
occasionally are hard to distinguish in the video. The tracking glasses can also move,
creating an artifact that resembles an eye movement. The limited frame rate (10
Hz) in the provided video is also a potential source of error, particularly when the
EOG signal contains a significant amount of noise and artifacts. Moreover, the eye
tracker signal also contains artifacts and signal drops, further limiting the quality
of the validation dataset. A sampling frequency of 60 Hz for the eye tracker is also
a limitation when investigating small saccades since these could contain few (one or
two) data points.

In controlled environments, where the head position is kept firm, the resolution of
EOG is normally considered to be in the range of 0.5° to 1°. Since dynamic over-
shoots generally have an amplitude less than this, detection of dynamic overshoots
is unreliable. Furthermore, in a driver simulation study, the head is not kept station-
ary, likely introducing more noise and artifacts. The separation between dynamic
overshoots and eyelid artifacts are also unreliable in EOG data, especially in the
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Figure 3.12: Screenshot of the developed GUI for creating the training and
validation datasets. On the right side, the GUI displays (from the top to the
bottom) the horizontal EOG, the horizontal eye tracker position signal, the
vertical EOG and the vertical eye tracker position signal. On the left side, the
GUI displays the video frame corresponding to the time segment delimited by
the innermost vertical lines in the EOG and eye tracker signals.

vertical channel. The validation data is also not able to reliably validate a dynamic
overshoot since the sampling rates of the video and eye tracker are too low. For the
reasons described above, only the primary saccade movement is considered when
determining start and end points of a saccade. Dynamic overshoots are therefore
ignored to be able to get a consistent start and end position of saccades.

Another limitation related to EOG is the difference in signal properties between
subjects. Since the sensitivity µV/° varies up to a factor 4 between subjects, the
same movements can have up to a factor 4 of amplitude difference in the EOG signal.
Without calibrating the signal, it is hard to define a strict limit between smooth
pursuits and fixations. Since the provided dataset does not have calibration data,
the decision was made only to classify saccades, consequently creating a two class
problem, saccade, and other eye movements. Blinks and horizontal saccades during
blinks were also classified as separate classes, but for secondary use.

Three datasets were created to train and test the algorithm. One is a rough clas-
sification of 4 subjects, intended to give many examples of saccades and other eye
movements of different amplitude, duration and in different parts of the signal. The
purpose of it was to create a large dataset used to train the algorithms and differen-
tiate between saccades and other eye movements (examples of signal segments that
should not be classified as saccades, such as smooth pursuits and fixations). The
resulting dataset contains 1017 saccades and 1064 other movements.
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The second dataset was created to tune the precision of the detection algorithm and
to test the algorithm on untrained data. The dataset consists of precisely classified
EOG data from 5 different subjects during a 10-second interval. Two of the subjects
were the same as in the first dataset but gathered at another time interval. The re-
sulting dataset contains 147 horizontal saccades, 66 vertical saccades, and 16 blinks.
This dataset was created to tune the detection and classification performance of the
CWT-SD, BOP and Shape Features classification. Horizontal saccades during blink
was therefore only classified if the shape of the saccade was of "saccade shape" and
vertical saccades during blinks was not annotated.

Finally, a validation dataset was created. This was done to test the final perfor-
mance of the complete algorithm. In this dataset, movements were classified to
match the output of the algorithm. In other words, saccades during blinks were
classified as saccades if the level in the channels changed before and after the blink.
Simultaneous saccades in both channels were also merged into one saccade (oblique).
Classification of saccades is occasionally hard and subjective. Consequently, there is
a significant risk for bias in this dataset. To reduce this risk, the following measures
were taken:

• The saccades that are hardest to classify manually are in the range of 0-30
µV. Since all the detected saccades below 20 µV due to performance issues
are discarded in the final algorithm (see Section 4.3), only clear cases (clear
indication of saccade in EOG, video and eye tracker) were classified. Since
performance in this range will always be zero, saccades under 20 µV were
primarily annotated to indicate that saccades exist in this interval.

• Oblique saccades often have a large component in one direction and a smaller
one in the other. This makes it difficult to distinguish if a saccade is oblique
or not, particularly in the video. Because of this, all oblique saccades are
classified as saccades (no separate oblique saccade class exists in the valida-
tion dataset, only the class saccade). The result of this is that performance
of the separation of oblique and non-oblique saccades cannot be evaluated,
but detection of saccades is evaluated more accurately. This was considered
more important since number of oblique saccades is not used in the cognitive
distraction analysis, but detection (number of saccades of any type) is.

The data was collected in a 20-second interval for three previously untested sub-
jects. The resulting dataset contains 159 saccades, with 144 saccades with EOG
amplitudes greater or equal to 20 µV.

The final algorithm is evaluated in six different EOG saccade amplitude ranges.
These are 0-20, 20-30, 30-50, >50, >0 and >20 µV. For each range, F1 score, pre-
cision and recall is calculated. Precision is a measure of the fraction of detected
instances that are true instances, in other words how many of the detected saccades
are saccades. Precision is calculated according to

Precision = TP
TP + FP

(3.2)
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where TP is the number of true positives (detected saccades are saccades) and FP is
the number of false positives (detected saccade is not a saccade). Recall measures
the fraction of instances that are detected, or in other words, how many of the
saccades are detected and classified as saccades. Recall is calculated as

Recall = TP
TP + FN

(3.3)

where FN is the number of false negatives (number of missed saccades). F1 score is
the harmonic mean of precision and recall and is often used as an accuracy measure
of binary classification. It is calculated according to Equation (3.4):

F1 = 2 · Precision ·Recall
Precision+Recall

(3.4)

3.6 Limited analysis of saccades evaluated with
and without cognitive load

The final part of this thesis work was to evaluate how the saccadic eye movements
change during periods of driving with and without a cognitively distracting task.
It was decided to only consider the scenario during which the driver approaches
and then passes a four-way intersection. During the scenario, a second car also ap-
proaches the intersection but it stops once has reached it. The developed algorithm
was applied to the provided 29 subjects’ EOG signals. For this study, two saccade
parameters were considered, namely the saccade rate and the saccade amplitude.
The information about these two parameters during the time intervals correspond-
ing to the cognitive tasks and the baseline was then extracted from the data output
of the algorithm. For each time interval only the last 50 seconds out of 60 were
considered in order to neglect the "surprise effect" in the beginning of the tasks (the
first 10 seconds). In these time segments, the number of detected saccades for the
baseline and for each task was obtained, as well as the saccade amplitudes. How-
ever, the amplitude of the oblique saccades needed to be calculated as the resultant
amplitude of the horizontal and vertical component, such as in Equation 3.5

Soblique =
√
S2
horizontal + S2

vertical (3.5)

where Shorizontal and Svertical are the amplitude values of horizontal and vertical sac-
cades, while Soblique corresponds to the amplitude of the oblique saccade.

Furthermore, it was decided to carry out the comparison between cognitive load
and baseline (no load) "subject-wise", in the sense that the saccadic rate and sac-
cade amplitude in each task were compared within each individual subject, and not
between all subjects. The reason lies in the fact that the correlation between the
saccade parameters for different subjects is not reliable due to the lack of EOG
calibration.
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4
Results

In this chapter, the performance of the algorithms and the results of the cognitive
distraction study are presented. First, parameter selection and performance of BOP
and Shape Features are evaluated separately. Changes to the algorithm are then
motivated together with the final results of the complete algorithm. Finally, the
results of the cognitive distraction study are presented.

4.1 Bag-Of-Patterns
The parameters for the Bag-Of-Patterns algorithm were found by comparing the
results when the algorithm was trained on the training set with 25 % holdout val-
idation. An alphabet size (α) in the range of 3-4, word size (w) in the range of
4-5, and a window size about 1/2 - 3/4 of the segment size resulted in performance
higher than other parameter settings. Table 4.1 shows the performance of the algo-
rithm using parameters in the specified range for three different segment sizes. Four
parameter settings were selected to be evaluated further on the second dataset.

Segment Size α w n Accuracy Test
21 3 4 12 0.89033
21 3 4 16 0.9052
21 3 5 15 0.9368
21 4 5 15 0.92193
31 3 4 16 0.88476
31 3 4 20 0.94052
31 3 5 20 0.92565
31 4 5 20 0.9052
41 3 4 20 0.92885
41 3 4 28 0.96154
41 3 5 30 0.94231
41 4 5 30 0.96923

Table 4.1: Results of Bag Of Patterns with kNN classifier for different parameters using
25 % holdout validation.

Table 4.2 shows the F1 score for the different parameter settings. The F1 score
is presented for five different EOG saccade amplitude ranges, together with the
threshold used in CWT-SD that generated the best results. When the best threshold
is defined as 10-30, the threshold in that range did not have an impact on the results.
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All algorithms perform poor in the range 0-20 µ V. The two parameter settings that
perform the best for saccade amplitudes larger than 20 µV are parameter setting 1
and 4. The smaller segment size Ssize and SAX dictionary for parameter setting 1
together with a reduced segment size make parameter setting 1 faster than parameter
setting 4 in a computational point of view. The significantly greater dictionary
length, 1024 against 81, also increases the risk that the classifier is overfitted. Based
on this, parameter setting 1 was selected as the most appropriate.

Parameter
setting 1

Parameter
setting 2

Parameter
setting 3

Parameter
setting 4

Ssize = 31
n=20
w=4
α = 3

Ssize = 31
n=20
w=5
α = 3

Ssize = 41
n=28
w=4
α = 3

Ssize = 41
n=30
w=5
α = 4

Horizontal
Saccade
Amplitude
in µV

F1 BestTh F1 BestTh F1 BestTh F1 BestTh

0-20 0.49 17 0.54 17 0.51 17 0.48 17
20-30 0.95 18 0.83 18 0.90 10-30 0.88 18
30-50 0.98 10-30 0.95 10-30 0.89 10-30 0.98 10-30
>50 0.92 10-30 0.87 10-30 0.92 10-30 0.94 10-30
>0 0.84 18 0.78 17 0.81 19 0.81 26

Vertical
Saccade
Amplitude
in µV

F1 BestTh F1 BestTh F1 BestTh F1 BestTh

0-20 0.51 17 0.51 17 0.59 16 0.52 16
20-30 0.9 10-30 0.84 28 0.80 28 0.80 28
30-50 0.82 10-30 0.88 28 0.80 28 0.88 10-30
>50 0.92 10-30 0.93 10-30 0.93 10-30 0.93 10-30
>0 0.73 17 0.73 17 0.74 18 0.72 19

Table 4.2: Performance of the BOP algorithm for four different parameter sets. The
table shows the F1 Score and the value of the best wavelet coefficients threshold in five
different saccade amplitude ranges.

4.2 Shape Features
Examples of features plotted against each other are illustrated in Figure 4.1. These
plots raised the question if all features should be included in the classifier. As seen
in the figure, some features are fairly separable, while others are not, indicating
that some possibly are redundant or irrelevant, thereby increasing computing com-
plexity while not increasing or reducing performance. The results of the classifier
were therefore also evaluated with a number of excluded features. Visual inspection
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Figure 4.1: Examples of features plotted against each other.

of feature scatter plots and testing revealed that 20 of the features did not pro-
vide any information increasing performance. By removing the irrelevant features,
the accuracy of the kNN classifier increased by approximately 0.05. The remain-
ing features are slopew1, waveform Lengthw1, number Of Zero Crossingsw1, slopew2,
slopew3, waveform Lengthw3, rangew4 and waveformLengthw4.

Next, the number of neighbors (k) was investigated. A small k gives sharp classifi-
cation boundaries, a property well fitted for completely separated data. However, as
in this case when no exact boundary between the features exists, a larger k giving a
softer boundary normally yields better performance. Using k = 10 resulted in good
accuracy in this case.

The last parameter to be investigated was the segment size Ssize. Table 4.3 shows
the results of the classifier for segments sizes between 21-43 samples. As seen in the
Table 4.3, the segment size does not significantly affect the results. Nevertheless, the
validation accuracy appears to increase slightly with the segment size. Segment sizes
31 and 41 were selected to be evaluated further using dataset 2. The results from
dataset 2 are shown in Table 4.4. Again, no major performance difference between
the different segment sizes is present, but segment size 41 performs slightly better,
especially in the horizontal channel for amplitudes 20-30 µV. Similar to BOP, per-
formance is poor for saccades in the amplitude range 0-20. However, for the other
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intervals, Shape Features have similar or better performance than BOP. F1 scores
exceed 0.9 for all intervals except 20-30 in the vertical channel.

Segment Size (Ssize) Validation Accuracy
21 0.9790
23 0.9792
25 0.9798
27 0.9769
29 0.9792
31 0.9864
33 0.9884
35 0.9898
37 0.9939
39 0.9941
41 0.9954
43 0.9915

Table 4.3: Shape Features algorithm: Dataset 1 validation accuracy of the kNN (k=10)
classifier for segment sizes ranging from 21 to 43 samples.

Ssize = 31 Ssize = 41
Horizontal
Saccade EOG
Amplitude [µV]

F1 Best Threshold F1 Best Threshold

0-20 0.5 16 0.54 17
20-30 0.91 10-30 0.97 10-30
30-50 0.96 10-30 0.98 10-30
>50 0.97 10-30 0.97 10-30
>0 0.87 17 0.89 17

Vertical
Saccade EOG
Amplitude [µV]

F1 Best Threshold F1 Best Threshold

0-20 0.46 16 0.51 16
20-30 0.84 28 0.83 28
30-50 0.92 10-30 0.92 10-30
>50 0.92 10-30 0.92 10-30
>0 0.74 18 0.74 18

Table 4.4: Shape Feature performance on the second dataset
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4.3 Limitations of the Algorithm

After evaluating the results from the first two datasets, two changes were made to
the algorithm. Firstly, the minimum acceptance amplitude of predicted saccades
was increased to 20 µV. This action was taken as a result of the poor performance
in the range 0-20 µV and since precision, in this case, is prioritized over recall.
Secondly, the candidate rating system was changed. The rating points given for
Shape Features classification and the accepted candidate rating was increased to 3.
Consequently, a saccade candidate needs to be accepted by Shape Features since
the maximum points rewarded by BOP and wavelet classification is limited to 2.
That is to say, the role of BOP and wavelet classification is reduced to providing a
confidence rating and could thus be removed from the algorithm if computational
efficiency is favored.

As mentioned further in section 4.6, about half of the subjects needed to be re-
moved from the study due to inaccurate results from the algorithm. Some of these
were removed due to measurement error (inaccurate test setup, signal loss, unrea-
sonable high noise level), but most were removed due to large artifacts in the EOG
or algorithm failure. This is a clear indication that both the measurement method
and algorithm is unstable in driving environments.

Noise and artifacts are the largest limitations to the stability of the algorithm. The
noise level and presence of artifacts often vary within the subjects. Part of the signal
could be of good quality while other parts are heavily affected by noise and artifacts.
One type of noise that the algorithm fails to handle is a type of (relatively) low fre-
quency, high amplitude noise common in some subjects. It often appears in bursts
of 1 - 10 seconds and causes complete breakdown of the algorithm. This is illus-
trated in Figure 4.2. The noise in this segment is high with peak to peak amplitudes
approaching 100 µV, but the algorithm is very sensitive to this type of noise and
amplitudes down to 20-30 µV can cause problems. High-frequency noise is generally
handled better, but noise levels higher than 20 µV increases the risk of false triggers.

One of the biggest limitation of the algorithm is that it does not discover the blinks
of subjects where the peak amplitude of the blinks are low (amplitudes around 100-
150 µV). This was the case for about 10 % of the tested subjects. Blinks are instead
often classified as two saccades in these situations.

As mentioned previously in 3.5, another big limitation is the difference in ampli-
tude in µV/° between subjects. This is particularly clear for some subjects. A
20-second section was manually classified for one subject and over 50% of the sac-
cades had amplitudes below 20 µV. Some of these saccades were small, but most
would exceed 20 µV by far in other subjects (based on movements visible in the
video). The algorithm performed well for saccades greater than 20 µV, but 50%
of the saccades was missed. For the algorithm to function properly the following
criteria must be met
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• No big artifacts can be present.
• The noise level should preferably have an average peak to peak noise level lower

than 20 µV. If low-frequency noise of the type described above is present, the
amplitude must be lower than 20 µV.

• The blinks must have a peak amplitude greater than 200 µV, preferably larger.
• The amplitude µV/degree can not be to low. Movements must show a clear

change in signal level.
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Figure 4.2: Example of the type of low-frequency noise normally causing
algorithm failure. Colors other than green represent segments classified as
saccades.

4.4 Performance of the algorithm
The created validation dataset follows the criteria described above. Results from
the algorithm applied to the validation set are displayed in Table 4.5. Naturally, the
scores for saccades with an amplitude less than 20 µV is 0, since these automatically
are disregarded by the algorithm. For saccades in the range of 20-30 µV, the F1
score is 0.90, slightly less compared to the training set (horizontal channel). How-
ever, for saccades with an amplitude greater than 30 µV, the algorithm performs as
well or better than on the training set with F1 scores of 1 for saccades in the range
of 30-50 µV and 0.99 for saccades greater than 50 µV. This increased performance
can potentially be explained by the merging of oblique saccades, where saccades
that were missed in one channel are "saved" by detection in the other channel.
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The overall F1 score for saccades greater than 20 µV is 0.98, with a precision of
0.97 and a recall of 0.99. However, the dataset is small and the analysis is per-
formed on good signals. Thus, the results cannot be said to reflect realistic cases.
The F1 score when all saccades (amplitudes less than 20 µV) are considered is 0.93
with a precision of 0.97 and recall of 0.81. This score should, however, be lower
since not all saccades below this threshold were classified.

EOG Amplitude [µV] F1 Score Precision Recall
Number of
Saccades
in the range

0-20 0 0 0 15
20-30 0.91 0.89 0.92 26
30-50 1 1 1 27
>50 0.99 0.99 1 91
>0 0.93 0.97 0.89 159
>20 0.98 0.97 0.99 144

Table 4.5: Algorithm performance: for each amplitude range F1 score, precision, recall
and number of detected saccades is computed.

4.5 Saccades start- and end point performance
The start- and end points of the primary saccadic movement of the correctly clas-
sified saccades from the validation dataset was visually inspected. Only saccades
not occurring during blinks were investigated since the saccades during blink have
incorrect start- and end points (the start and end points are the start and end of the
blink not the saccades). The results showed that 91% (out of 132 saccades) of the
saccades had correct and consistent start- and end points of the primary saccade.
This is, however, the assumed start- and end points in the EOG signal, and does not
necessarily agree with the real start- and end point of the saccade. Furthermore,
some start- and end points are hard to distinguish, and since no ground truth is
available, it is hard to specify how well this function works. The results are however
consistent in 91% of the validation set and are believed to be close to the truth.

4.6 Analysis of the effects of cognitive distraction
during driving

For this study, the EOG data of 14 out of 29 subjects were selected. The remaining
15 subjects were excluded due to the following reasons:

• Incomplete recording due to signal loss [1 subject]
• Presence of big artifacts [2 subjects]
• Small blink amplitudes compared to the other subjects, resulting in inaccurate

blinks and thereby inaccurate saccade during blink detection. [3 subjects]
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• High noise level (up to 100µV) resulting in algorithm failure [5 subjects]
• High blink rate (>1 per second) [1 subject]
• The horizontal and the vertical EOG signal were identical (assumed measure-

ment setup error) [1 subject]
• Too many false triggered saccades (algorithm failure) [2 subjects].

Most of the accepted subjects meet the signal criteria described in Section 4.3. Some
of them do contain big artifacts in the vertical channel, but visual inspection deemed
these not to affect the results. It is worth noting that both false positives and false
negatives are present in many of the accepted subjects but at an acceptable rate.

The parameters considered for the study is the saccadic rate, defined as the number
of saccades per 50 seconds, and the average saccade amplitudes in each task. Fig-
ure 4.3 shows two plots, representing the saccadic rate for each subject during each
task (left plot) and the mean saccadic rate of all subjects with the corresponding
standard deviations (right plot). As mentioned before, each subject performed one
1-Back task (easy task) and two 2-Back tasks (difficult task) during the test. The
two 2-Back tasks have been called "2-Back-a" and "2-Back-b", in order to distinguish
them. The difference between these two is that 2-Back-a comes earlier in the drive
than 2-Back-b. Moreover, the number of saccades is evaluated as the percentage of
the saccadic rate of the baseline, defined as 100%.
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Figure 4.3: Saccadic rate for each cognitive task (1-back, 2-back-a, 2-back-b) and for
the baseline (no cognitive task). After having defined the saccadic rate during baseline
to be 100%, the number of saccades in the other tasks are evaluated as the percentage
of the baseline saccadic rate. Saccadic rate of all subjects (on the left), mean values and
standard deviations of the saccade rate for all subjects (on the right) are plotted.

As seen in 4.3b, the mean saccade rate for saccades with amplitudes greater than
20 µV decreased as the cognitive load increased. Although Figure 4.3a shows that
one subject (TP61-blue square) has a tendency to perform approximately the same
number of saccades as the baseline during cognitive distraction, the overall trend
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of the saccadic rate among most subjects decreases as the cognitive load increases.
As illustrated in Figure 4.3b the mean of the number of saccades, expressed as the
percentage of the baseline value, goes from 100% of baseline to 84.9% for 1-Back,
and further to 78.4% and 74.6%, corresponding to 2-Back-a and 2-Back-b. A mixed-
effects model ANOVA, using test subject as random factor was recommended to in-
vestigate if a statistically significant difference exists between the tasks. It revealed a
significant difference of the number of saccades between the tasks (F (2, 40) = 24.93,
p < 0.0001). Post hoc tests using Bonferroni correction showed significant differ-
ences in saccadic rate between baseline and 1-Back task (p = 0.0006), baseline and
2-Back task (p < 0.0001), but not between 1-Back and 2-Back tasks (p = 0.0755).

Figure 4.4 shows the average amplitude of the saccades performed by each sub-
ject during each task (Figure 4.4a) and the mean of the average amplitude of all
subjects (Figure 4.4b). Having the baseline as 100%, the amplitude value of the
tasks is expressed as the percentage of the baseline.
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Figure 4.4: Average saccade amplitude for each cognitive task (1-back, 2-back-a, 2-
back-b) and the baseline (no cognitive task), calculated as the percentage of the baseline
amplitude. Average amplitudes of all subjects (on the left), mean values and standard
deviation of the saccade rate for all subjects (on the right) are plotted.

There is a small indication that the amplitude decreases during cognitive load com-
pared to baseline driving. However, some subjects make bigger saccades when cog-
nitive load is present. Figure 4.4b shows that the general trend of the mean saccade
amplitudes of all subjects is decreasing as the cognitive load increases. A mixed-
effects model ANOVA, using test subject as random factor revealed a significant dif-
ference of the amplitude of saccades between the tasks (F (2, 40) = 6.5, p = 0.0037).
Post hoc tests using Bonferroni correction showed significant differences in saccade
amplitude between baseline and 2-Back task (p = 0.003) but not between 1-Back
and 2-Back tasks (p = 0.2692), and between baseline and 1-Back (p = 0.3744).
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4. Results

In summary, the results from this limited study suggest that cognitive distraction
causes the drivers to make fewer saccades as the cognitive load increases. These
results are in agreement with the previously reported by [46]. A statistically signifi-
cant reduction of saccade amplitude was revealed only between the difficult cognitive
task and the baseline. Furthermore, the spread of the amplitudes are big and the
reduction in amplitude is small. Therefore, no clear indication of how this saccade
parameter is affected by cognitive load can be determined, which is in line with
contradictory findings in [47], [48] and [49].
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5
Discussion

We have developed an algorithm that proved to work well in detecting saccades big-
ger than 20 µV in EOG signals that satisfy certain quality criteria. To the best of
our knowledge, this is the first work that combines wavelet-based saccade detection
with shape-based saccade detection. Even though no quantitative comparison has
been made, we believe that our algorithm performs better than the existing Contin-
uous Wavelet Transform - Saccade Detection. However, there are limitations that to
some extent hindered the performance of the algorithm, and they will be discussed
in the following paragraphs.

The lack of calibration data and an accurate ground truth dataset have been a
significant limitation regarding the quality of the training and validation data sets.
If calibration data was available, stricter limits connected to the velocity and ampli-
tude definitions of what should be regarded as a saccade could have been derived.
These limits would have been connected with the velocity definitions of saccades,
giving more credibility to the created datasets, hence making the ground truth more
accurate and improving the performance of the algorithm. Unfortunately, uncali-
brated EOG data combined with unclear ground truth data made the classification
hard, arbitrary and time-consuming. The biggest limitation with the ground truth
data was the sampling rate of the video. One frame every 100 ms is not enough to
determine if a movement was made rapidly enough to be a saccade. The motivation
for why one movement is classified as a saccade while another similar movement is
not is very arbitrary. A higher sampling rate could help with this, but since the
differences between the frames would be very small, it might be difficult for a human
to interpret these as well. An attempt of having an independent expert group cre-
ating a dataset was made, but since they had similar problems as us, this approach
was abandoned. Consequently, the resulting dataset represents what we interpret
as saccades, and not what necessarily are saccades.

The final dataset was made on subjects with good signal quality. Attempts to
classify subjects with worse signals were done, but this turned out to be very hard.
Because of this, no performance measure for subjects not fulfilling the criteria in 4.3
was obtained.

Currently, different saccade sizes will be detected or disregarded for different sub-
jects. If calibration was available, it would be possible to define a limit for the
smallest eye movement size that could be detected, significantly improving the us-
ability of the algorithm, since data could be more reliably compared between sub-

51



5. Discussion

jects. Furthermore, a strict limit and calibrated data would restrict the different
signal properties of a saccade. This could create more clearly separable features,
likely leading to better classification performance. Moreover, the current algorithm
was optimized to be able to detect small saccades (10 µV). By finding the smallest
reasonable saccade amplitude, the algorithm could be optimized for that amplitude
(mainly in terms of filtering, thresholds and training data), further improving the
results. Nonetheless, comparisons can still be made within subjects, even though
differences exist between subjects.

The data used for BOP and Shape Features training was created by marking differ-
ent sections containing saccades, smooth pursuits, and fixations. This was a mistake
since the resulting dataset is "too nice". The created dataset has relatively separable
features resulting in very high performance using 50% holdout validation for shape
features. However, the saccade candidates nominated by CWT-SD are generally
much more similar to saccades in their shape compared to the negative examples in
the dataset. A better way of training the algorithm would have been to train it on
candidates nominated by CWT-SD, and then manually classified. This would not
only create a dataset that better represents the final performance of the algorithm
but would likely better capture situations where the algorithm currently fails.

Robustness of the algorithm would likely be improved by calibration and improved
training methods, but the main problem with noise, artifacts and reliability of EOG
remains. EOG is traditionally used in controlled environments where the head is
kept still to reduce artifacts. Since the head frequently moves in driving environ-
ments, we believe this is the main source of the big artifacts. Some subjects are also
contaminated with significant noise with peak to peak amplitudes up to 100 µV.
High amplitude noise could be present in the entire signal or come in bursts. This
was made clear when inspecting the segments in the cognitive study. For some sub-
jects, the performance of the algorithm was good in 2-3 out of 4 analysis segments
for the investigated scenario but contained high amplitude noise or artifacts in the
other 1-2 analysis segments.

Using an algorithm that adapts to the noise level either by adjusting filtering, nom-
inating threshold or minimum accepted saccade amplitude was considered. This
idea was however rejected since the saccade frequency was to be investigated. If
an adaptable algorithm was used, more saccades would be detected in parts of the
signal with low noise level compared to parts containing a high noise level. Conse-
quently, comparing saccade frequency would not be appropriate.

As long as the signal is of good quality the performance is fairly high and the
algorithm works well. However, it is highly sensitive to certain types of noise, and
overall performance of the algorithm, when applied to all subjects, is low. The dif-
ferent noise properties of the signal also affect the stability within a subject, and
the signal needs to be visually inspected to ensure that the signal does not contain
significant noise or artifacts. In some cases, the algorithm simply fails since it is
possible to see the saccades in the signal (but it is not classified as a saccade by the
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algorithm), but often the signal cannot be used to reliably detect saccades even with
manual classification. Unless the measurement setup can be significantly improved
to a point where the signals are more stable, EOG is not a reliable signal for saccade
detection in driving environments.

In our opinion, the eye tracker data from the SMI eye tracking glasses seems to
be more stable and reliable. Tracking is occasionally lost, but only for short pe-
riods of time and mostly during blinks. The resolution is also higher than EOG
and smaller movements are easier and more reliably distinguished in the eye tracker
data. The algorithm should be able to be modified to work on eye tracking data,
likely with improved and more stable results.

Our opinion is that EOG recordings have reached a technical limit while eye tracking
has not. The currently used tracker has a limit in temporal resolution, but a 120
Hz version is already available. While EOG barely has developed since it was in-
vented, eye tracking is a constantly developing and competitive field. Furthermore,
eye tracking is becoming more common in consumer products and is believed to be
a vital part of Virtual Reality (VR). Movement into the consumer space often accel-
erates development of electronic products leading to cheaper and better products.
We believe this will happen to eye tracking technology as well. The result of this
is likely that EOG will not be able to compete with eye tracking, except in studies
where the eyes are kept closed.

5.1 Cognitive distraction analysis on saccades

The study of the effects of cognitive distraction on saccadic eye movements was
planned to be a final and secondary aim of our thesis work. For this reason and
due to a limited availability of time, the study was decided to be focused on the
analysis of saccadic rate and saccade amplitude during only one specific scenario.
For the considered "four-way intersection" scenario, a trend was a general decrease
both in the number of saccades per unit time and saccade amplitude. Therefore,
a tendency towards "tunnel vision", or "attentional narrowing", is indicated, which
seems to be consistent with the literature. However, the results could possibly be
improved regarding higher statistical significance if more test subjects and thus more
data was available. Naturally, the quality of the signal should preferably be as good
as possible in order for the algorithm not to trigger false saccades.

A clearer reduction in saccade amplitude was expected to be observed, since "atten-
tional narrowing" implies that the gaze is concentrated straight ahead. Therefore, it
is reasonable to assume that the driver during cognitive distraction should perform
smaller saccades. Furthermore, the results are possibly affected by the inability to
detect small saccades (<20 µV) that would have reduced the average amplitude.
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5. Discussion

5.2 Future Works
The recommendations for future works mainly aim at improvements in data collec-
tion. First of all, the calibration procedure of EOG needs to be done before the start
of the test. It is necessary to be able to convert µV to degrees (°) and vice-versa, if
a reliable saccade amplitude is desired.

Secondly, a higher sampling rate could be beneficial in gaining clearer informa-
tion about small saccades. We had the opportunity to examine the EOG dataset
used in [20]. In this study, the EOG was sampled at 500 Hz and the small saccades
seemed to be more easily identified. Furthermore, a higher sampling rate means
that the saccades are described by more data points. This could possibly improve
the performance of the Bag-Of-Patters algorithm, since, according to [40], it works
better on more data.

Finally, a minor recommendation is related to the test subject’s preparation in
terms of the measurement setup. Since the EOG signals of some test subjects were
strongly affected by noise or artifacts, a good and stable placement of the electrodes
must be ensured.
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6
Conclusion

The thesis set out to develop an automatic method for detection of saccades using
EOG in driving studies. The resulting algorithm is a combination of two modified
existing eye detection algorithms, namely Continuous Wavelet Transform Saccade
Detection (CWT-SD) and Shape Features. It is found that the developed algorithm
can be used in driving environments if good signal quality can be assured. Results
from the validation set reported an F1 score of 0.98 for saccades with amplitudes
greater than 20 µV and an overall F1 score of 0.93. However, the limited dataset
and lack of reliable ground truth make these results unreliable. Moreover, the insta-
bilities regarding noise and artifacts discovered in the investigated EOG signals do
limit the reliability and hence the usability of the algorithm. In general, therefore,
it seems that EOG can be utilized for saccade detection during driving, but the
experienced higher stability and resolution of the eye tracker likely make it a more
suitable method.

The second aim of this thesis was to investigate the effects of cognitive distraction
on saccades in driving environments. The findings of the study suggest a decrease in
saccadic rate during cognitive distraction. The results were found to be statistically
significant using a mixed-effects model ANOVA with subject as random variable and
the results are in agreement with [46]. Average saccade amplitude was also found to
decrease during cognitive distraction but a statistical significance was only observed
between high cognitive load (difficult task) and no cognitive load (baseline). Since
the study was limited to 14 subjects and one driving scenario, further research is
needed to verify the results.
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