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Abstract
This thesis describes a basis for decentralized cloud computing platforms; a sug-
gested protocol to be used for such a platform; and places decentralized networks
and their origins in a technical and practical context. The problem domain includes
how to distribute work and how to verify computations within a decentralized net-
work. To mitigate attacks on the network by internal and external actors, a com-
bination of incentives and free market principles are used. The protocol is utilizing
a general-purpose blockchain as well as other more established forms of network
communication. Arbitration between network participants is realized using smart
contracts.

A reference implementation of the protocol, named Zeppelin, has been partially
realized in the Ethereum general-purpose blockchain, and deployed on a small-scale
network. The reference implementation is highly modular and demonstrates the abil-
ity for decentralized applications to use both a traditional backend and a blockchain-
based backend. By using a blockchain, some application data and business logic is
stored and executed on a global virtual machine, distributed between participating
nodes. The reference implementation should be regarded as a proof-of-concept of
the proposed protocol, and is not yet ready for a production release. This is largely
attributed to the fact that general-purpose blockchains are currently in a very early
development phase and can not yet be used reliably.

Keywords: decentralization, blockchain, trustless, consensus, Ethereum, smart,
contract, Solidity.
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Sammanfattning
Denna rapport sätter decentraliserade nätverk i ett tekniskt och praktiskt samman-
hang, samt beskriver en grund för decentraliserade molnbaserade beräkningsplattfor-
mar genom att föreslå ett protokoll som kan nyttjas för att skapa sådana plattformar.
Huvudproblemet innefattar hur arbete ska distribueras och verifieras inom det de-
centraliserade nätverket. För att avvärja attacker riktade mot nätverket från både
interna och externa aktörer används en kombination av incitament och ekonomiska
principer. Protokollet använder både en generaliserad blockkedja och andra mer
etablerade elektroniska kommunikationssätt. Genom att använda smarta kontrakt
möjliggörs tillitslösa överenskommelser mellan deltagare i nätverket.

En referensimplementation av protokollet, vid namn Zeppelin, har delvis re-
aliserats i Ethereum-nätverkets generella blockkedja, och har testats på ett mindre
nätverk. Referensimplementationen är modulär och demonstrerar möjligheten att
använda både en traditionell backend och en blockkedjebaserad backend i decen-
traliserade applikationer. Genom att använda en blockkedja kan viss applikations-
data och affärslogik lagras och exekveras på en globalt distribuerad virtuell maskin.
Referensimplementationen är ännu inte redo för driftsättning, utan ska ses som
en teknikdemonstration av det föreslagna protokollet. Att referensimplementatio-
nen inte är redo för drift kan tillskrivas det faktum att generella blockkedjor i sitt
nuvarande tillstånd ännu inte går att lita på i en produktionsmiljö, eftersom de
fortfarande är under utveckling.
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Terminology

General terms and abbreviations
ABI

Application binary interface. A machine-level entry point for a program com-
ponent.

API
Application programming interface. A high-level entry point to a software
component.

Bitcoin
Short for the Bitcoin network. For the currency used by the network, see BTC.

Blockchain
A distributed and decentralized data store.

BTC
(pronounced as Bitcoin) refers to the currency in the Bitcoin network.

Centralized system
A system with one or more central points.

Cryptographic hash
A definite one way hash function.

DDoS
Distributed denial of service attack.

Decentralized system
A system without any central points.

Ether
The currency of the Ethereum network. Compare with BTC and Bitcoin.

Ethereum
A general-purpose blockchain network.

JSON
JavaScript object notation.

JSON-RPC
A JSON-based remote procedure call scheme.

MITM-attack
Man-in-the-middle–attack. An attack where one relays, and possibly modifies,
communication between two nodes who believe they are directly communicat-
ing to each other.
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Nonce
An arbitrary number used only once in a certain (cryptographic) environment.

Peer-to-peer network
A network in which the nodes communicate directly with each other.

Proof-of-work
Regulatory mechanism in a blockchain designed to deter forgery.

REST(ful)
Representational state transfer. An API model.

Smart contract
A piece of deterministic code, run on a blockchain, with which various entities
can interact.

Trustless
Literally without trust. Here meant to signify that no trust is neccessary
between nodes in the network.

Whisper
An anonymous message passing service on the Ethereum network.

Terms with specific meanings in the thesis
Client

A user paying to perform work on the cloud platform.

Verifier
A worker that verifies other workers.

Work
An arbitrary piece of software to be run by a worker, at the behest of a client.

Worker
A cloud platform node performing work in exchange of monetary compensa-
tion.
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1
Introduction

Cloud computing is an abstraction implying the possibility to store data and execute
arbitrary code concurrently and with redundancy. The solutions for cloud computing
available today are expensive, centralized, and as shown by recent events [1][2],
susceptible to third-party interference, e.g. Distributed Denial of Service (DDoS)
attacks and espionage by the National Security Agency or other similar agencies.
With a decentralized solution, hardware costs can be mitigated and the risk of
third-parties eavesdropping or interfering could be lowered or even eliminated.

1.1 Background
Services allowing companies and individuals to purchase cloud computing power and
storage from a hosting provider, e.g. Amazon and Google [3][4], have existed for
some time. However, this places the consumer in a position where trust between the
two parties is necessary: trust that the Service Level Agreement is honored; trust
that information is kept secret; trust that when the customer deletes information, the
information is actually deleted and not secretly kept stored by the storage provider.

Initiatives essentially working in reverse of the above, requesting donations of
computation power for scientific purposes have also been around for a while. Ex-
amples of these include SETI@home (analysis of radio telescope data) and Fold-
ing@home (protein analysis) [5]. These are centralized grid computing projects that
have resulted in powerful networks building on voluntary contribution to science.

By combining and decentralizing a) the ability to purchase computing power;
and b) the ability for individuals to participate with their computing power, we pro-
pose that a global marketplace of distributed computation power could be created.
Such a marketplace would make it possible to buy, sell or even trade computation
power, worldwide, with no trust required between parties.

1.2 Purpose
The purpose of this thesis is to investigate how to distribute work on a network
of nodes with no central authority, and how to verify that the work has been exe-
cuted correctly. The key focus is to conduct research in the field of decentralized
applications, and to draft a protocol that supports the ideas and features discovered
along the way. An effort should be made to create a reference implementation of
the protocol and deploy it on a small-scale network. The network must meet the
following criteria to be usable:
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1. Introduction

Transparency. All transactions in the network should be transparent and
traceable to show that the system is fair. To achieve this, ledgers must be persistent
and auditable.

Resilience. The network must be resistant to attacks from internal and exter-
nal actors. Such attacks could include disruption of access to the network (DDoS)
and attacks that seek to compromise the integrity of ledgers and sabotage the in-
frastructure of the network.

Trustlessness. Users of the platforms should not be required to trust each
other about the details of their agreement when interacting with each other. This
should be abstracted away into deterministic code.

1.3 Problem
The overall problem can be summed up as follows: designing a network that lets
a client pay to perform work, distributes the work, and pays the workers for their
contributions. These are fundamental problems which must be solved in order to
fulfill the purpose of the study, and involve a number of challenges in both security
and network communication. However, the challenges can be divided into different
subproblems that are easier to solve. In this report client refers to a user paying to
perform work on the cloud platform; work refers to some arbitrary piece of software
defined by a client and submitted to be run on the cloud platform; and worker
refers to a cloud platform node which is performing work in exchange of monetary
compensation. We address the following three issues:

• How can work be distributed in a decentralized network?

• How can the network verify that workers execute work correctly?

• How can workers receive payment for performed work?

The issues above have so far not been studied in a decentralized context. How-
ever, there exists substantial research describing such problems in centralized grid
computing infrastructures. To facilitate our research, a theoretical basis has been
synthesized using previous studies and reports from the grid computing field.

1.3.1 Distribution of work
A client that wishes to have its work executed must have a way of finding workers.
This is traditionally done using a centralized server which maintains a record of all
workers and their identities [6][7]. For obvious reasons such a method could not be
used in a decentralized network [8]. Therefore, there must be a way to store this
information in a non-central location. Furthermore, a uniform way of specifying
the work payload is necessary to ensure interface compatibility between clients and
workers. There must also be a way to decide which worker(s) that will receive the
work. This must be done in a manner that aims for all work to be distributed evenly
throughout the network, and requirements from the worker have to be taken into
consideration. Whenever a worker receives work, the work must be executed at some
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1. Introduction

point in the future, implementing weak fairness [9]. Both clients and workers will
be interested in metadata, so there must be a way to send and receive information
about work and its status to and from clients and workers.

1.3.2 Verification of work
There must exist a uniform way of executing work so that all involved parties agree
on what work is to be performed. When a worker has started on a task, there must
be some external checking and verification ensuring that the worker is executing
the work as expected. The reasons for incorrect execution could be incidental (in-
competence, hardware or software failure) or intentional (in an attempt to cheat).
This problem is discussed by Chang et al. albeit on a lower abstraction level [10].
Chang et al. argue that a virtual machine must be used to execute work, in order
to guarantee the soundness of the completed work across the network.

Redundancy as verification. In distributed computation systems, where
tasks are deterministic in nature, some kind of result is expected from participants
for each task they have been assigned. The results from the same task performed by
different participants can then be compared against each other for proof-checking.
For result verification, SETI@home utilizes multiple workers on the same problem,
and then compare their results [11]. A solution similar to this cannot be used in our
network, since we allow arbitrary code to be executed on workers. The network does
not expect any answers from workers, nor is it aware of what kind of application
is deployed on a worker node, rendering such an approach useless. In addition, the
recent discovery of the P + ε attack has made this method of verification infeasible
in a decentralized context [12]. In this attack, a malicious user offers workers an
additional external reward for providing the network an incorrect result.

Mitigating cheating workers. In respect to cheating, i.e. workers claiming to
have completed work without actually having done so, Yurkewych et al. prove that
redundancy in P2P computing is cost effective if and only if cheating workers cannot
collude [13]. In a decentralized network, workers could easily create new identities,
which makes it hard to know if any two workers collude. It should be noted that
Yurkewych et al. assume that it is possible to audit the work of a client. Auditing
by external parties could be used if there is a defined way to perform auditing. The
notion of credibility-based auditing, which is introduced by Sarmenta [7], would
require the overhead of maintaining a list of credible identities, but could indeed be
used to solve the issue of workers creating new identities by assigning a credibility
reputation to each identity.

1.3.3 Monetary compensation to workers
Monetary compensation would in practice mean a cryptocurrency-based payment
due to the inherent trustlessness in such transactions, which is elaborated further
in section 2.1. Workers in the network should be paid if and only if they perform
work and the validity of said work has been established by network consensus. The
payment procedure should be conducted in a way which makes it costly for the
worker to cheat, thus making it more attractive to participate honestly than to
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1. Introduction

cheat. Therefore, combining the payout logic with the validity check on a deeper
level could be necessary. If it is more profitable to participate honestly than to cheat,
this will ensure that the network is not vulnerable to attacks by internal actors. On
the contrary, if the aforementioned profitability can not be guaranteed, the protocol
may end up unusable. While the work is being performed on behalf of a client, the
payment must be held in some kind of escrow. This is to ensure that the client can
not cheat by withholding payment when the worker has performed the work, and to
ensure that the worker can not receive payment before the work has been completed.

1.4 Scope
The scope of the thesis is to create a protocol fulfilling the criteria from section
1.2, and attempt to make a reference implementation of said protocol. It is not
within the scope of the project to make any applications or programs intended to be
deployed on the resulting platform, other than for testing purposes. The protocol
should be seen as an open invitation for others to use and develop further.

To ensure that computations are run in an expected manner on a remote agent
there must be some kind of virtual environment which allows software to run de-
terministically and hardware-independent. It does not fall within the scope of the
thesis to implement such an environment.

The protocol will face plenty of security risks, and it is necessary to find coun-
termeasures to possible attacks. It is not the main purpose of the thesis to find all
possible attacks on the protocol.

4



2
Technical background

In this chapter we provide a technical background of the concepts which the protocol
depends on. In addition, origins and implementations of those concepts will be
described and related to the protocol and reference implementation work. Of interest
is the cryptocurrency network Bitcoin and its data store called the blockchain. The
specific dependencies of the reference implementation, Ethereum and Docker, are
also described. A brief summary of computer networking concepts required for the
understanding of the protocol and reference implementation is given.

2.1 Bitcoin and the blockchain
Bitcoin sparked a revolution in digital currencies when the white paper was released
in 2008. The innovation of the blockchain and its implications is of special interest.
All technical details in this section are taken from the Bitcoin white paper [14],
unless noted otherwise.

2.1.1 General idea
The purpose of Bitcoin is to provide a financial system where participants can send
and receive money without involvement of third parties. Traditionally, these third
parties comprise a governmental institution controlling a currency, and one or more
commercial banks that transfer money from the sender to the recipient. This is
problematic because a third party can perform malicious actions and moreover exert
complete control over the process. Bitcoin introduces a decentralized exchange of
digital tokens1, where no middleman is required, nor is any trust between sender
and recipient required. The only requirement to use Bitcoin is to have a computer
with Internet access. Bitcoin ownership is linked to cryptographic keys, thus, a
cryptographic public key is somewhat similar to a bank account. In the following
sections, key points of the Bitcoin white paper are discussed. In this report Bitcoin
refers to the Bitcoin network, and BTC refers to the currency.

2.1.2 Transactions
Transactions in the Bitcoin network are conducted as follows: If Alice has one BTC
and wants to send it to Bob, she will create a transaction stating that she transfers
one BTC to Bob. The transaction is signed using her cryptographic private key, and

1The intrinsic value of Bitcoin is discussed in-depth by Buterin [15].
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2. Technical background

then broadcast to the network. An attacker cannot spend Alice’s BTC, because the
transaction is valid only if it is signed by her private key.

2.1.3 Blockchain

Bitcoin is based around an innovation known as the blockchain2. Nodes in the
Bitcoin network send and receive transactions to other nodes in the network, trans-
actions are then checked for validity and placed together in a block of transactions.
To calculate the current state of the network, the whole graph of blocks must be
traversed.

A new block is created approximately every 10 minutes, with all transactions
that occurred since the last block creation stored in it. Figure 2.1 shows the chain of
blocks. Each block contains the hash of its parent; a nonce that proves the validity
of the block; and all the transactions in the block. Since any valid transaction is
part of some block, and all valid blocks are chained together, the blockchain can be
seen as a distributed ledger, and proof of the true state of the network. Once the
block has been created, any subsequent changes to a block will invalidate the nonce,
and thus invalidate the nonces of all child blocks.

Block

Parent hash Nonce

Tx Tx ...

Block

Parent hash Nonce

Tx Tx ...

. . . . . .

Figure 2.1: Visualization of blocks in the Bitcoin blockchain.

2.1.4 Proof-of-work
Like the name proof-of-work suggests, it is meant to be a regulatory mechanism
making it difficult to falsify blocks. As stated above, the nonce is used to validate
the integrity of a block, but also acts as a way to show that a sufficient amount of
computing power has been consumed. The proof-of-work process is implemented
by finding a certain hash value related to the block content, which is impossible
to precompute. Thus the nonce of the block must be iteratively chosen at random
until a low enough hash has been calculated. It is thus simple to verify that the
nonce is correct, but hard to generate a valid one. Specifically, the nonce is created
by calculating the hash of all the contents in the block with a function returning a
hash value lower than a network-wide set value, which is determined by the current
difficulty level of the network. The difficulty level is a mechanic used to control how
long, on average, the nodes of the network must work before a block is found. Once
every week the difficulty is adjusted, to match the computing power available in the
network. This is tuned to ensure an average block rate of approximately one block
every 10 minutes.

2The grammatically correct “block chain” has not gained widespread popularity.
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2. Technical background

2.1.5 Verification
The blockchain solves a fundamental problem of transferring value online, namely
that data (for instance money) could be copied and sent to multiple recipients. Alice
could spend the same BTC twice by signing two different transactions. However,
only one of these transactions would be accepted into a block, after which the other
transaction would be considered invalid, and thus would not be accepted into any
block. In the same way, an overspending transaction would also be considered
invalid.

2.1.6 Incentive
In order for the network to fully function, nodes in the network must provide the
verifying calculations, i.e. the proof-of-work, to continuously assert the integrity
of the blockchain. Without incentive, it is unlikely that peers would share their
computing power to benefit the network. In the Bitcoin network, whenever the
proof-of-work for a block is found, the worker is rewarded a number of BTC. The
current reward is 25 BTC, however this reward is halved every four years. Offering
a reward for the verification process thus leads to a more secure and robust network.

2.1.7 Weakness
The most widely known weakness in the blockchain structure is often referred to as
the 51%-attack. By default, nodes accept the longest blockchain as the representa-
tion of the network state, and the longest blockchain is always the one that has the
most raw computing power behind it. Thus, if an attacker has control of more than
50% of the computing power in the network, the attacker can take control of the
blockchain. This makes it possible for the attacker to void transactions and possibly
modify recent transaction history. If an attacker manages to modify a block in an
illegal way, and computes enough subsequent proof-of-work to make this blockchain
the longest, other nodes will be forced into accepting that chain, as they have no way
of outpacing the attacker. This situation is in practice very unlikely, since massive
computing power would be required in order to overthrow the Bitcoin blockchain.

2.2 Ethereum
Following the advent of Bitcoin and the blockchain, a number of initiatives were
started to explore and utilize the power of the blockchain within a distributed
and decentralized application context. One example is Namecoin, which uses the
blockchain to store domain names. As a result of each project aiming to solve one
specific problem, segmentation in the cryptocurrency projects ensued, with much
duplication of effort. The Ethereum project was started to unify the open source
blockchain efforts and provide a general purpose blockchain protocol which allows
running arbitrary code in the blockchain. This means that any type of features
can be programmed onto this protocol. Code is packaged into so called smart con-
tracts, executed on the Ethereum Virtual Machine (EVM) [16]. The Ethereum net-
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2. Technical background

work is built on top of DEVP2P, a peer-to-peer network between all nodes running
Ethereum-compatible software.

In the Ethereum network, the cryptocurrency rewarded for mining blocks is
called Ether. Ether ownership is very similar to the ownership of BTC, where Ether
is linked to a public key. However, there is one additional aspect that is very impor-
tant, namely that smart contracts can also own Ether. In contrast to the Bitcoin
network, this allows code run in a trustless environment to have complete control
over its funds. Transactions in the Ethereum network can, besides transferring
Ether, also make method calls to smart contracts.

2.2.1 Smart contracts
Smart contracts are a way to move and control assets using code to set up and enforce
arbitrary rules. Contracts can be defined in the three programming languages listed
below. All of these programming languages are Turing-complete. The programming
languages can be used to define smart contracts and must be compiled to EVM byte
code before they are incorporated into the blockchain.

• Solidity (C- and JavaScript-like)

• Serpent (Python-like)

• LLL (Lisp-like)

Smart contracts are inserted into the blockchain by creating a transaction con-
taining the EVM code. The resulting contract will receive a unique hexadecimal
identifier that can be used for subsequent contract interactions. Such interactions
would be the typically object-oriented task of getting and setting values, and invok-
ing methods. In addition, a contract can create other contracts on the Ethereum
blockchain, much like how an object can instantiate other objects in object-oriented
programming.

2.2.2 Halting problem
The notion of a Turing-complete language executing in a blockchain raises the halt-
ing problem. In a Turing-complete language, there is no way to know whether a
particular program will halt or not [17]. To ensure that each contract interaction
does halt, every Ethereum virtual machine instruction has a price, which must be
paid by the requesting party [18]. Therefore it is possible to argue that the EVM is
quasi-Turing–complete in practice.

2.2.3 Whisper
The messaging protocol Whisper is used to send anonymous messages over the
Ethereum network. A naive solution for a messaging protocol for the network would
be to store messages in the blockchain, however, this is infeasible because it would
be too expensive to send such messages. Whisper solves the problem for short- to
medium lived messages. This is done by enabling users to send messages to topics
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or with a public key as recipient. The origin node sends a Whisper message to
each of its connected peers. Whenever a Whisper message is received, the process
is repeated until the time to live of the message has expired. Before the initial
broadcast of the Whisper message, a small proof-of-work must be completed, in
order to prevent flooding of the network.

2.2.4 External interfaces
An Ethereum client (either local or remote) can be accessed by two APIs. The
lower level API, the Ethereum generic JSON-RPC, is a remote procedure call scheme
suited for fine grained control of the host client [19]. On the higher level, there exists
a JavaScript API built on top of the JSON-RPC API [20]. The JavaScript API is
targeted at usage in web application frontends with a backend either completely or
partially stored in the Ethereum blockchain, with a reference implementation called
web3.js being actively developed.

For communication with the blockchain, the expected format is binary. The
Ethereum contract ABI (Application Binary Interface) specifies the binary for-
mat [21]. For the end user, or developer, the ABI is abstracted away by higher
level constructs, such as the JavaScript API, which handles the conversion from
high level objects to binary data.

2.2.5 Ethereum ecosystem
To use the Ethereum network, a client connected to the DEVP2P network is re-
quired. There are a number of different clients, and client environments, listed in
Table 2.1. Note that both command line and graphical clients are provided. The
primary Ethereum client implementations are in Go and C++, with a secondary im-
plementation in Python and a peripheral Java implementation [22][23][24][25]. These
clients serve as the interface to the Ethereum decentralized application platform and
the Whisper anonymous message passing service.

Table 2.1: Ethereum client list by language.

Language GUI client CLI client
Go Mist geth
C++ AlethZero eth
Java studio core
Python N/A pyeth

Under the Ethereum project umbrella, a whole ecosystem for decentralized ap-
plications is being developed. To deliver decentralized applications to end users,
the preferred method is to build frontends in standard web technologies, such as
JavaScript and HTML, which most end users and developers are familiar with. Since
the identity of the user is linked to their Ethereum public key, users never need to
sign up or create accounts in Ethereum-based decentralized applications, since their
public key uniquely identifies them. The frontend interfaces with an Ethereum client
to interact with the underlying network peers and the business logic stored in the
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smart contracts associated with the application. In Figure 2.2, the full application
stack is listed. From a development standpoint, this invites to rich client applications
and thin servers, where in fact most web content can be served statically, since the
application data and business logic is stored in the blockchain. Note the contrast to
traditional web application architectures, where data and business logic is available
only to and through the application server. With a decentralized application, the
data and business logic is available and auditable by all users of the application.

Decentralized applications

Mist/AlethZero

Ethereum Whisper

DEVP2P

Internet

Figure 2.2: Ethereum application stack.

2.3 Docker
Software stacks today are generally quite complex. A website, for example, is most
often much more than a simple HTML document. To generate the HTML document,
there could be numerous programs and services running on the server side, e.g.
the web server, components encapsulating business logic, rule engines, databases,
document storage and so on. To deploy all these services manually, on different
platforms, would be time consuming and error prone. With Docker, such processes
can be containerized, which allows the application to be run in a virtual-like manner
on the Linux kernel, without the performance overhead of running a virtual machine
[26], simplifying the deployment and management of large software infrastructure.

2.3.1 Virtualized containers
Docker uses virtualization techniques to create isolated environments called contain-
ers which can be executed as if they were a runnable file. There are two distinct
advantages for this. The first one is that since the containers are a full applica-
tion packaged with its dependencies, it comes precompiled and is ready to run on
any architecture that supports Docker (and is on the same architecture the appli-
cation was compiled for). The other advantage is that a containerized application
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is isolated from both the system it is running on, as well as other containerized
applications running on the system. If the code were to run directly on the host
system, it would have been exposed to a number of exploits [5]. Containerizing and
virtualizing mitigates the immediate threat of such exploits.

2.3.2 Security
An important factor when volunteering to run arbitrary code on a private machine
is security. The software could potentially corrupt the data on disks, or steal all
the data. Docker containers are executed in a separate environment from other
containers and the host machine, meaning that it can not know about or interact
with the outside world [27]. To communicate with the outside world, certain ports
can be exposed on the container, and will be mapped to the host machine. Thus,
network communication can only occur in an expected and controlled way.

A containerized application can be run with restrictions on CPU and memory
usage, to prevent memory leaks from propagating to the host system.

2.3.3 Dockerfile
Docker images are defined by a format called Dockerfile [28]. The easiest, and
the most common method of building a Docker image is to use one of the readily
available base images, provided by software distributors and developers such as
Nginx, Ubuntu and PostgreSQL to name a few. A Dockerfile can be created by
composing it on top of an existing pre-configured base image for simplicity. The
Dockerfile serves as the blueprint for the Docker image, being the realization of the
Dockerfile.

All Docker images are saved in the local Docker repository, from which images
can be exported and distributed for deployment on other machines. A running
instance of a Docker image is called a Docker container. Several Docker contain-
ers of the same image may be run concurrently without interfering, since they are
containerized.

2.4 Networking
Communicating between devices over a local network is relatively simple, but for
connections via the Internet, a device behind a gateway can not be directly reached
by a remote device. There must be a path through the gateway mapped to it, via
a method called NAT [29]. The service then becomes available externally via the
external IP address and a port number.

2.4.1 NAT
Network Address Translation is a method commonly used to map any device on an
internal network to an external network like the Internet [29]. It works by storing
an internal port number paired together with the local IP address of the local device
and the external IP paired together with an external port on the gateway device of
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the network. When packets are received by the gateway with the combination of
an external IP and a NAT port, they are modified and forwarded to the internal
device.

2.4.2 UPnP
Universal Plug and Play, abbreviated UPnP, is a network protocol that allows con-
nected devices to discover the presence of other such devices and establish a con-
nection to each other on a network in order to share data, communicate and allow
media services to interoperate [30]. UPnP port forwarding can be implemented in
several ways, such as IGD-PCP (which will be described) and NAT-PMP.

2.4.3 IGD-PCP
Internet Gateway Device - Port Control Protocol, IGD-PCP, is a NAT port mapping
protocol which is supported by many routers. Many applications, such as Ethereum,
require the ability to send and receive data from the Internet. In cases where there
is a NAT enabled router between the sender and recipient, NAT traversal must take
place in order for communication to work [31]. As seen in the list below, IGD-PCP
enables a client computer behind a NAT-enabled router to find out the external IP
and then add and/or remove port mappings to the computer.

• Learn the public (external) IP address

• Requesting for a new public IP address

• Enumerate existing port mappings

• Add and remove port mappings

• Assign lease times to mappings
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We shall here describe our methodology for the development process of the protocol
and the reference implementation, and provide backgrounds and motivations for the
third party software used. The test network used for the reference implementation
is also described.

3.1 Implementation workflow

All produced software artifacts and their source code have been open source through-
out the development process, so that others might benefit from the research, espe-
cially since this technology is in its cradle. Dependencies on third party software
should only be made following an assessment of the stability, security and longevity
of the software. Based on these principles, the stability of the foundation upon which
the produced artifacts depend can be maximized. Exempt from this principle was
the Ethereum software, which was under development throughout the entire length
of the study.

3.2 Decentralized application platform

An existing blockchain is used due to the inherent security of a larger network as
described in section 2.1.7. Implementing a separate blockchain, designed specifically
for our purpose, would be out of scope for the thesis and would not bring any ad-
vantages. Bitcoin has the most widely used blockchain, but it is not designed to
support building applications upon. Thus, we have opted to utilize the Ethereum
general-purpose blockchain, which focuses on providing a full stack for decentral-
ized applications. Ethereum is currently the only project aiming to create such a
platform.

3.3 Development tools

The following tools have been used to provide a more efficient development process
and a refined project planning structure.
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3.3.1 Pivotal Tracker
In order to aid the agile development process Pivotal Tracker is used. Pivotal Tracker
is a story-based planning tool which allows members of the team to add stories to
a virtual project board. It is based on agile development methods, which suits
the team. Pivotal Tracker provides several story logs: tasks for the current sprint, a
backlog, and an icebox for stories that need grooming [32]. Stories are automatically
arranged in the backlog according to their estimated size and the projected sprint
velocity. Each story item can be further elaborated by a number of subtasks related
to it.

3.3.2 AlethZero
AlethZero is a proof of concept graphical client for Ethereum [33], implemented in
C++ and Qt. It is used as a development environment for Ethereum-based decen-
tralized applications and provides rich access to the blockchain and the DEVP2P
network. For debugging, or manual blockchain interaction, it is possible to make
Ether transactions, contract creation transactions or contract interaction transac-
tions from the graphical user interface. A graphical user interface is also available
for Whisper. AlethZero exposes the JSON-RPC API, making it possible to use it
as a backend for decentralized applications.

3.4 Test environment

A test environment was chosen and set up in order to test the implementation of the
cloud computing platform, with multiple actors. In this chapter detailed information
about the system is provided.

3.4.1 Hardware
To test the project, a computer with sufficient processing capabilities to host a
simple and small blockchain, as well as a web server when acting as a worker, was
required. The Raspberry Pi 2 Model B was chosen because it is a cheap and viable
computer. The hardware specifications are listed in Table 3.1.

Table 3.1: Raspberry Pi 2 Model B Specifications [34].

Processor 900MHz quad-core ARM Cortex-A7 CPU
Memory 1,024 MB LPDDR2
I/O Ports 4x USB, RJ45, microSD, 40-pin GPIO
A/V Ports HDMI, RCA video, 3.5 mm audio
Networking 10/100Mbit Ethernet
Storage microSD card slot
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3.4.2 Network
During development, for testing and researching purposes, a local network consisting
of three Raspberry Pi 2 computers was deployed. This network has served as the
backbone for distributed compilation, a private blockchain network, local Ethereum
test network nodes, and client as well as worker emulation for the reference imple-
mentation called Zeppelin.

Compiler network. Since Ethereum is still unfinished software, it must be
updated regularly. This takes a large amount of processing power every time it is
done, and while the Raspberry Pi 2 is a capable machine for testing purposes, the
several hour long task of recompiling Ethereum every other day is too much of an
obstruction to the work flow. In order to speed up the process a distributed compiler
network was deployed at an early stage. To facilitate this the hardware is networked
together via an Ethernet switch, enabling fast communication between all the nodes
as well as the Internet when required.

Private blockchain. While testing and developing the reference implemen-
tation, some level of control over the blockchain was required. Primarily because
both running as well as testing any software in the Ethereum network requires the
use of the Ether cryptocurrency. For this reason, a local Ethereum blockchain was
deployed during the early stages of development.

Nodes in the public blockchain. The test environment was eventually moved
to the public blockchain, to have a complete mirror of the production environment
while developing.

Client and worker emulation. Since access to decentralized applications
on the Ethereum network can be provided through a web application, the clients
running on the Raspberry Pi 2 computers can be accessed remotely and used as test
slaves. The most simple way to achieve this, is to expose the JSON-RPC port, and
setting the web application to use the remote JSON-RPC as its data source.
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Result

Our proposed solution is a general protocol, which fulfills the demands of the pro-
posed network outlined in section 1.2 and solves the underlying problem described
in section 1.3. In addition to the protocol, a reference implementation has been
developed and tested on a small-scale test network.

4.1 General protocol
The network connects clients, who pay to perform work, with workers, which are
paid to perform work. In order for the network, and its cloud computing platform, to
thrive, it relies on an free market where the supply of workers meets the demand of
clients. Any person with a computer could register to become a worker and receive
payment for the work they perform, and conversely, any person with the desire to
execute arbitrary code can do so, provided they can pay for it. The high level flow
of workers and clients within the network is shown in Figure 4.1.

We propose that a blockchain with capability to store and execute code can be
used to satisfy the requirements specified in section 1.2.

NetworkClient Worker

WorkerWorker

2 1

1
4

1
5

3

1. Workers register to the network

2. Client sends work and payment to the network

3. Worker receives work

4. Worker performs work

5. Network confirms work and sends payment to worker

Figure 4.1: Proposed simplified network state diagram.
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4.1.1 Dependencies and assumptions
We assume that there exists some external blockchain in which the network will
store its data and that it provides trustless arbitration between the involved parties.
The term contract is used as a shorthand for smart contract, here defined to be at
least capable of the set of quasi-Turing–complete actions described in section 2.2.2.
We also assume that two peers can communicate anonymously, given that each peer
has access to the public key of the other peer. This will be referred to as private
message passing. Finally we also assume there exists a method to package work
so that it is easy to distribute from clients to workers, and for workers to perform.
Note that the protocol is platform agnostic, in spite of the assumptions made and
the dependencies required.

«contract»
WorkerDispatcher

+ workerMetadata: Map[PublicKey, Worker]
+ workerList: List[PublicKey]

+ buyContract(worker: PublicKey,
length: int): WorkerAgreement

+ registerWorker(length: int,
price: int, name: string): void

«contract»
WorkAgreement

+ price: int
+ end: int
+ client: PublicKey
+ worker: PublicKey
+ verifiers: List[PublicKey]

+ provideVerification(data): void
+ redeemPayment(): void

«struct»
Worker

+ name: string
+ maxLength: int
+ price: int

Figure 4.2: UML diagram showing the proposed smart contracts. The type Pub-
licKey refers to either a cryptographic public key, or the cryptographic hash of such
a key.

4.1.2 Contract interaction
Communication within the network consists of actions which change the state of
at least one of the associated contracts in the blockchain. Contracts are used for
a) storing data that must be persistent; b) arbitration between worker and client;
and c) to hold monetary value in escrow. For these tasks, two contracts are used;
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WorkAgreement and WorkerDispatcher, the later being the main contract. The
contracts are shown in Figure 4.2.

WorkAgreement. To provide interaction between the client and the worker
for a work instance, the contract WorkAgreement is used. The contract holds the
value paid by the client for the work to be done in escrow until the work is finished
and holds information about auditing reports from the external verifiers of the work.
Once the worker has performed the work as described in the contract, the value held
in escrow can be released to the worker.

WorkerDispatcher. As the main contract of the protocol, this serves as the
entry point. WorkerDispatcher provides infrastructure for workers to register their
interest to perform work, by calling registerWorker. Clients use this contract to
buy WorkAgreement contracts. This is done by calling the method buyContract
with desired parameters. The WorkerDispatcher creates a WorkAgreement, assigns
a worker, and a given number of verifiers.

4.1.3 Direct communication between clients and workers
For the communication between specific clients and workers, private message passing
is used. When transferring data from the client to the worker, encrypted TCP/IP
traffic is used. The hosted data provided by the worker is then accessible via the
appropriate application protocol.

4.1.4 Brokering the client-worker agreement
As soon as a client has received a WorkAgreement from the WorkerDispatcher, the
client initiates communication with the assigned worker through private message
passing. The process starts with the client sending the WorkAgreement contract
address to the worker, after which the worker proceeds to check if it agrees with
the contract. When the verification is done, the worker sends a message via private
message passing to the client with the IP and port to be used to transfer the packaged
work (explained in section 4.1.5). Upon receiving the work, the worker starts to
deploy the packaged work. When the work is ready to be accessed, the worker sends
a message back to the client specifying the IP and port for external access.

4.1.5 Work transfer and execution
When the contract negotiation is finished, the work, defined as code executable on
the worker, must be transferred to the worker. The worker is placed into a receiving
state, and the client can proceed to send the work. Once the worker has received
the work, it proceeds to execute it, stopping once the contract has been fulfilled.

4.1.6 Work auditing and verification
In order to know that a worker is performing a given work, other workers are as-
signed as verifiers. These verifiers are given a time frame in which they are required
to report checked parameters of the given worker to the WorkAgreement contract.
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This is done through the provideVerification method, which is callable only by ver-
ifiers. The most basic check that could be done is simply for the verifier to assert
that the worker is providing the given work through the IP and port that it has
communicated. This does however only check uptime of the given worker, and not
that the work has been correctly performed. More rigid verification could be pos-
sible if the verifiers were able to make a more specific request to the worker, but
since the verifiers do not know anything about the work to be done, the client must
provide such specific request information.

4.1.7 Payment arbitration
When a WorkAgreement is created it must also be provided with an appropriate
amount of payment for the given work. The value of this payment is then held in
escrow by the contract until some specified conditions in the contract have been met.
These conditions consist of verifications that the verifiers have performed and checks
that the worker has performed for the given amount of time. When all conditions are
met the worker can call the redeemPayment method in the WorkAgreement and the
contract will release the payment held in escrow to the worker. In a similar fashion,
all the verifiers of a WorkAgreement can withdraw payment for their completed
services, although their reward is significantly smaller. Any calls to redeemPayment
by a party not entitled to receive payments will be ignored.

4.1.8 Security
The protocol itself can be seen as secure in most aspects as it mostly runs on top of a
blockchain. Security concerns can instead be found in that individual workers can be
attacked. Workers provide their services through regular HTTP connections and is
therefore vulnerable to e.g. DDoS-attacks and man in the middle attacks (MITM),
just as regular service providers are. The protocol does not take this into account
and thus only reward workers that have successfully provided results. However if
the protocol is implemented correctly only the client and verifiers can know the IP
address of the worker if the client chooses not to share it.

4.2 Reference implementation: Zeppelin

The reference implementation, called Zeppelin1, is a web application for end users,
which is dependent on the Ethereum network. For computational integrity, the client
constructs a Docker image which is sent to the worker. The implementation is built
around the concept of a thin server, and a fat client. It is worth noting that there are
two backends with which the frontend communicates; the web server, acting as the
traditional backend; and the smart contract interaction through Ethereum, acting
as the secondary backend for all blockchain-based interactions. Zeppelin is not a
complete implementation of the protocol described in section 4.1. Rather it solves
only the problem of distributing work in the network. However it is possible to build

1Because a Zeppelin navigates above the clouds with grace.

20



4. Result

upon Zeppelin to implement the remaining features of the protocol. All source code
for the reference implementation is available from https://github.com/dccp.

4.2.1 Docker
To package work to be sent between clients and workers in the reference imple-
mentation, Docker was chosen. Since Docker provides a way for applications to be
containerized with their dependencies and distributing image files is simple, it is a
good fit.

4.2.2 System design
The system design is characterized by high modularity, allowing for reuse or reimple-
mentation of most modules within the solution stack. In Figure 4.3, the component
diagram for the full stack is shown. The only strict dependency is on Docker, all
other components can be substituted.

Zeppelin frontend. For the simplicity of the end user, all interactions are
made in a web interface, in the form of a JavaScript client application. The frontend
interacts with two backends to display data: to communicate with the Ethereum
client over JSON-RPC, the library web3.js is used; to manage Docker the REST
API in the Zeppelin backend is used.

Zeppelin backend. This module acts as the traditional backend, serving the
static client web application and acting as a RESTful server for user interactions
with Docker, through the Docker transfer module.

Docker transfer. Works as both client and server for sending and receiving
gzipped Docker images and running the containers. When the worker is placed in
the receiving state, a Docker transfer server is spawned on the worker, waiting for
a connection from the client. Once a connection is made the client compresses the
desired Docker image and sends it to the worker, which imports the image into its
own Docker repository.

4.2.3 Smart contracts
The smart contracts used for business rules in the blockchain are realized in the C-
and JavaScript-like Ethereum-specific language Solidity. These contracts adhere to
the specification in section 4.1.2 to the extent required to implement the distribution
of work task. Since a private message passing is mandated by section 4.1.1, it has
been implemented in the WorkAgreement contract, which means that the contract
will be responsible for relaying the necessary connection information between work-
ers and clients. With this solution, privacy can not be ensured, since the information
is freely available in the contract storage.

4.2.4 Deployment
The Zeppelin application stack (the frontend, the backend, and Docker transfer) is
bundled together in a Node.js application. When deployed, it can accommodate a
client, a worker, or both without any special configuration. As shown in Figure 4.3,
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the reference implementation is dependent on a Docker instance to be running, as
well as access to an Ethereum client over JSON-RPC.

Zeppelin frontend

Zeppelin backend

Docker transfer

Docker daemon

web3.js

Ethereum client

Ethereum blockchain

REST

JavaScript dependency

Native

JavaScript dependency

JSON-RPC

DEVP2P

Figure 4.3: Component diagram of the full Zeppelin stack.
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Discussion

The result of the study is a protocol for a decentralized cloud computing platform
where a free market is used to distribute work throughout the network. The protocol
itself has no single point of failure, or any external authority which might revoke
access to it. However, the workers in the network can still be individually attacked,
but it can be argued that workers have the motivation to mitigate such attacks
since their payment is dependent on work performance. The network achieves de-
centralization because a) the specification and reference implementation are both
open source; b) each end user retains a copy of the blockchain in which the smart
contracts and data of the application are stored; and c) each end user runs the
application locally.

In the introduction, three basic requirements for the network were listed. The
requirements call for the network to be transparent, resilient and trustless. By virtue
of the open and distributed data store of the blockchain, the network can be deemed
to be transparent. Resilience is achieved on the data store level by the Ethereum
network, and on the work execution level by incentives offered to workers. The
inherent trustlessness in the blockchain and smart contracts allows parties to agree
upon work and payment. Thus, we argue that these requirements have been met.

5.1 Method discussion
To alleviate further research within the field, and to allow future studies to build on
the conducted thesis work, the methods will be briefly discussed. A central point
is that the thesis work suffered from unnecessary overhead due to dependencies on
unfinished software.

5.1.1 Ethereum client dependencies
Ethereum is the only platform currently providing a functional implementation of
a general purpose blockchain. Therefore, it was chosen for the reference implemen-
tation. At the inception of the study, three different Ethereum client implemen-
tations were widely used: the C++ based client cpp-ethereum; the Go based client
go-ethereum; and the Python based client pyethereum. All of the clients were at
the time developed in parallel, stepping towards milestones implementing different
aspects of the Ethereum specifications. The different clients were not always com-
pletely interchangeable, which was cumbersome while testing new client features
on the different platforms. Since the stable releases were rapidly becoming out-
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dated, the implementation was dependent on bleeding edge builds of the C++ and
Go clients. As a result of this, large amounts of time was spent waiting for regression
errors to be addressed in certain clients, and for cross-compatibility or workarounds
between the two clients to support the development efforts. Thus, the dilemma was
to either stay at a stable client version without necessary features — or to stay on
the potentially broken bleeding edge. This problem can be completely attributed to
the fact that depending on unfinished pre-released software has detrimental effects
on the expected productivity.

5.1.2 Implementation environment
The initial solution was to implement the reference implementation in a command
line Python client, using HTTP requests to access the JSON-RPC API provided by
Ethereum. This solution was abandoned because the JSON-RPC API expects input
in the form of the Ethereum ABI (Application Binary Interface), which means that
the client would have to supply the binary format. Implementing the ABI would
be out of scope and too time consuming for the study. Thus, the web3.js library,
which implements the Ethereum JavaScript API, acting as a higher level bridge to
the Ethereum client. Changing from Python to JavaScript resulted in also changing
from a command line client to creating a web application.

5.2 Protocol discussion
While the protocol addresses all three problems presented in section 1.3, it does so
on different abstraction levels for the different subproblems. The most thoroughly
described and concrete part of the protocol is the part regarding distribution of
work. This matter is described in a sufficiently detailed way to make it simple to
implement.

The verification of performed work is described on a more abstract level, omitting
various implementation details that could prove to be necessary in order to make the
verification process run reliably and to minimize trust between nodes. The approach
described should however provide a solid ground from which the verification process
can be further elaborated.

Regarding monetary compensation, the problem description is quite short. This
fact is reflected in the protocol. However, this does not mean that there is any
significant information missing. In any sufficiently advanced smart contract system
it should be trivial to retain value in a contract and to release said value to specific
users if and only if certain conditions are met.

5.3 Reference implementation discussion
The reference implementation, Zeppelin, does not fulfill the whole protocol specifi-
cation. One of the main factors behind this is that the Ethereum platform is still
under heavy development. Throughout the study, it has been unreliably to test new
features, often with many regression errors and breaking API changes. This makes
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it complicated to make any steady progress on many protocol features. Instead,
focus was shifted to assure that the distribution of work issue was solved as well as
possible.

Since the decentralized technology is emerging, demonstrations and proof of
concepts are key tools to achieve user and developer participation. In that sense,
Zeppelin is not an optimal proof of concept for the technology due to the fact
that it still requires a regular backend. However, it should still be viewed as an
accomplishment, because we show that both backends can, in fact, interoperate.
This can be seen as the greatest virtue of Zeppelin — it is truly a proof of concept.

5.3.1 Whisper
The private message passing described in section 4.1.1 was meant to be fulfilled by
Whisper, the peer-to-peer anonymous messaging protocol running on the Ethereum
network. Whisper was to be used in order to exchange information between a client
and a worker, such as IP addresses and ports. Since Whisper only requires a public
key and/or a topic in order to initiate the communication channel, it can be used as
private message passing. However, the Whisper project has not yet been developed
fully as of 18 May 2015. Initial tests using Whisper as private message passing
gave insufficient performance to be able to function as expected. As a result of the
decision to work around Whisper, and instead store more information in the smart
contracts. Due to this sacrifice, some of the privacy and security measures mandated
by private message passing were sacrificed in order to achieve a working reference
implementation.

Security is affected in the following way: in the reference implementation, all
IP addresses and ports are accessible via smart contracts for anyone with access to
the blockchain. If an attacker has all IP addresses for every node (both worker and
client), it is trivial to DDoS the nodes in the network. This is particularly dangerous
in since, at present, the network is very small.

5.3.2 Networking
The Internet is a large complicated structure, a network of networks. Negotiating
communication between hosts is seldom trivial, due to the way the Docker transfer
module works, workers behind routers need to have one or several ports forwarded
to be able to accept direct communication from a client. As all the test units
used throughout the study were hosted on a Local Area Network (LAN), under a
single private IP address, this caused problems with Network Address Translation.
In a centralized system this could be solved by using the centralized server as an
intermediary, where both the client and worker initiates communication with the
centralized server, creating a network tunnel allowing communication between the
two. But since Zeppelin is designed to be decentralized this is not possible. The
only viable solution is to have the client connect directly to the worker, and this
requires an open port.

The initial solution to this problem was to use either UPnP or NAT-PMP for
internal port mapping. This would, in theory, solve the problem. Unfortunately,
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due to time constraints and problems during the implementation this feature did not
reach a working state. The only way to test UPnP and/or NAT-PMP is via a LAN
behind a NAT-enabled router. Since all development and testing was conducted
remotely from a network with public IP addresses and no NAT-enabled router,
there was no compelling way to ensure this functionality. Instead of continuing on
the UPnP solution, it was decided that manual port forwarding was sufficient for
the reference implementation.

In the future, this solution could be extended to become completely network
environment agnostic.

5.3.3 Docker and security
The security that Docker offers is only on the host level. Thus, if a client is trying
to compromise the integrity of a worker by instructing it to run malicious work,
Docker will deter such attacks. Since Docker is an external dependency the end
user is required to keep it up to date independently from Zeppelin, meaning that
no responsibility can be assumed for security flaws in external software. Should
the IP address of a worker become known by external parties, it could by used to
initiate DDoS attacks or other similar attacks against the specific worker. This is
not something that can be handled by Zeppelin — instead, an effort is made to work
proactively by shielding all such identities behind public keys and private message
passing.

5.4 Ethical aspects
Since the network is fully anonymous and decentralized, there is no way to control the
legal or ethical aspects of the work offered by clients. Thus, clients could requisition
computing power to perform morally dubious or illegal actions. While the authors
do not condone such actions, any sort of strike against it would compromise the
openness of the platform and defeat its purpose. Since we merely have created a
tool, we argue that it does not fall upon us to decide how end-users utilize that tool.

5.5 Environmental impact
Not much research has been conducted on the environmental impact of decentral-
ized networks, perhaps because it is very hard to foresee how nodes in the network
will behave and how they will consume power. However, the Bitcoin network has
proven to outperform traditional monetary transaction networks by far when com-
paring carbon dioxide emissions [35]. It is not clear whether this is applicable when
comparing arbitrary decentralized networks and their centralized counterparts, but
since McCook’s work is describing decentralization as more efficient, it can definitely
be argued that decentralized applications will have an overall positive impact on the
environment when compared to centralized dittos.
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In the introduction, three research questions were stated: How can work be dis-
tributed in a decentralized network? How can the network verify that workers
execute work correctly? How can workers receive payment for the work they per-
form? To answer these questions, solve their associated problems and create a robust
and reliable network for arbitrary cloud computation, both a general protocol and
a modular reference implementation have been created. While the reference im-
plementation only handles the problem of distributing work in the network, the
proposed protocol should be seen as a generalized attempt at solving all three prob-
lems.

In its current state, the reference implementation is unsuitable for use in a pro-
duction environment due to security concerns. Even so, it is completely capable
as a proof-of-concept for a decentralized application running in a general-purpose
blockchain. In the future, reference implementation could be extended and further
refined to implement the full protocol, which however is dependent on the advance-
ment of the Ethereum decentralized application stack. A more rigid specification
and verification of the protocol could be necessary to achieve a fully functional
system.

The aim of the thesis is to eliminate the third party present in cloud computing
services, thus reducing the need for trust. It is possible that the ongoing trend of
such decentralization could be the next major advancement in the software sphere,
and we are eager to both be a part of and watch it happen.

Throughout the study it has become obvious that the underlying general-purpose
technologies currently available for decentralized applications are still in a very early
development stage. Before a platform for decentralized cloud computing could be
fully realized in such an environment, those dependencies must become more stable.
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