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Abstract

The current advancements within the field of autonomous vehicles call for the de-
velopment of reliable and robust testing methods of these systems. While empirical
testing is necessary, virtual verification through simulations has the advantage of
being safe, fast and cost effective. However, to recreate a realistic driving scenario
in a simulation environment, correct models of the sensors used by self-driving sys-
tems are needed. Some of the sensors used by these systems are the lidar and the
radar sensor. The purpose of this thesis is to construct a model of a radar sensor,
based on data from both a lidar and a radar sensor.

To model a radar sensor, deep generative networks such as conditional variational
autoencoders (CVAE) and conditional generative adversarial networks (CGAN) are
utilised. The networks are trained on data from a radar sensor, while data from a
lidar is used as conditional input. The conditional input contains an environmental
description from which the radar model can create its output. Both radar and lidar
data are converted into suitable formats before training the models.

Both types of generative networks show potential to perform accurate radar mod-
elling. The CVAE is able to learn general behaviour of the radar sensor, while it
has difficulty adapting to specific scenarios. The CGAN, on the other hand, shows
sensitivity to the conditional input, but lacks the generic properties captured by the
CVAE. For both of the network results, it is apparent that errors in the data have an
adverse effect on the model performance. Future improvements that can be made
for the radar modelling are to include more features in the data that is given to the
networks, to create a network that combines a VAE and a GAN, and to improve on
the evaluation methods for the network output.

Keywords: Autonomous Driving, Safety, Radar modelling, Virtual verification, Deep
Generative Networks, Variational Autoencoders, Generative Adversarial Networks
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1
Introduction

Autonomous vehicles are on the verge of becoming a part of our day to day life.
The vehicles on the market today have an increasing number of Advanced Driver
Assistant Systems (ADAS) features, such as adaptive cruise control, lane keep assist
and park assist [1, 2]. In the meantime, several companies such as Tesla, Uber,
Google and Zenuity are actively working to solve the problem that is autonomous
driving (AD). Undeniably, ADAS and AD systems do already, or will in the future,
facilitate transportation for a magnitude of people.

While the development of ADAS features — along with completely self driving cars
— of course is a challenge in itself, there is still a long way left before society
gets on board to support the increasing technical development. Many companies
find themselves at a stage where the need for necessary permissions and legislation
to test their products is a huge bottleneck. There is also a need to build public
trust in autonomous vehicles [3]. Not to mention, companies in the ADAS and
AD fields need to be certain that their products are safe. For these reasons, the
industry needs to develop trustworthy and safe tests for their products. On those
grounds, verification and validation of ADAS and AD systems are imperative for
the development of autonomous vehicles.

As empirical verification is costly, sometimes not permitted, and, most importantly,
unfeasible [4], virtual verification is necessary. To properly verify that a driver
system is safe, all or a majority of all possible driving scenarios need to be checked.
While it is impossible to empirically drive through all possible scenarios, virtual
systems can simulate through them in a quicker manner. Consequently, reliable
virtual verification methods are crucial for a safe development of ADAS and AD
systems.

To enable simulated tests and virtual verification of an AD system, accurate models
of the sensors that are used by the system are needed. As the sensors are the eyes
of an AD system, the information they would output for a driving scenario needs to
be simulated when the scenario is simulated. To this end, a sensor model that takes
a certain driving scenario as input and gives the corresponding sensor information
for the scenario as output, would be very useful.

Recent research has indicated that artificial neural networks may be used to model
sensors used for autonomous driving [5]. Since neural networks are excellent function
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1. Introduction

approximators, they can learn to accurately map different inputs to different desired
outputs. Within the field of deep learning, neural networks have been used for a
wide range of tasks, from image enhancement, art generation, article writing and
emotion detection in text, to writing cooking recipes. Hence, it is hardly a surprise
that neural nets also have proven themselves useful for sensor modelling.

In this thesis, models of a radar sensor are developed based on state-of-the-art deep
learning algorithms. The purpose of each model is to facilitate virtual verification
of ADAS and AD systems. To develop the models, the neural networks Variational
Autoencoders and Generative Adversarial Networks are utilised. Also, to enable
training of the networks, a dataset is created. The thesis is performed at Zenuity,
using their data and data processing frameworks.

1.1 Thesis Objective

The aim of this master thesis is to create a stochastic model of the detection level
output from the radar sensors used by Zenuity. To do this, deep generative models
are used. The generative model should be able to produce realistic radar readings
for a given situation. This amounts to creating output that is as similar as possible
to what the real radar sensor would, both in terms of accuracy and flaws. This
model does not consider time series of the data, but instead views and predicts the
output for one instance at a time.

The input to the model is an environmental description. This data, called the
conditional input, is given by object detections from a lidar. When using the trained
model, it should also be possible to input synthetic object level lidar data. The
networks are trained on processed radar data at detection level, corresponding to
the environmental descriptions given as input.

In essence, the goal of this thesis is to find the function f , or an adequate approxi-
mation of f , that gives

y = f(c),

where y is the detection level output from the radar sensor and c is the conditional
input, containing information about the environment and objects surrounding the
radar sensor. Thus, c can be provided by some other sensor that can interpret the
environment, or it can be synthetically created in some simulation software. For
this thesis, a lidar provides c.
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1. Introduction

1.2 Related Work

Several approaches to radar modelling exist. One approach is to directly calculate
the electromagnetic wave propagation and reflection of objects [6]. Another more
black-box approach for radar modelling is to use deep generative neural networks,
such as Variational Autoencoders and Generative Adversarial Networks, that are
trained to imitate the output of a real radar [5, 7]. Presently, the standard method
for radar modelling utilises statistical models [8], as the previously mentioned meth-
ods are fairly new and still in development. For all radar modelling purposes, no
matter the approach, computational time and model accuracy are of importance.
Since a high model accuracy generally entails a long computational time, a com-
mon problem with radar modelling is the trade-off between high accuracy and short
computational time.

One example of radar modelling based on the standard radar modelling approach,
that is, the statistical approach, is given by Bühren and Yang [8]. They created a
radar model based on a statistical analysis of radar data, such that e.g. measurement
errors in distance and relative speed were simulated with white Gaussian noise,
according to their observations of measured data. For the evaluation of their results,
Bühren and Yang visually compared readings from the model and the real radar.
They found that simulated and real data displayed similar characteristics, even
though they did not consider every physical effect for the radar modelling.

As previously mentioned, neural networks have already been used for the modelling
of an automotive radar sensor. The main advantage of using neural networks for
radar modelling is that they have the potential to require less computational power,
while still maintaining the high accuracy otherwise associated with ray tracing and
long computational times [6]. Since artificial neural networks are capable of gener-
alisation, they have the capacity to model a radar given sufficient training data.

Neural networks, such as Variational Autoencoders and Generative Adversarial Net-
works, along with two baseline models, were implemented by Wheeler et al. to model
a radar sensor [5]. The input to the models was an environmental description and
the modelled output was a radar power field prediction. The environmental descrip-
tion was formatted as an occupancy grid, i.e. a grid that indicates where surrounding
vehicles, buildings, barriers etc. are located. Wheeler et al. found that the models
based on the Variational Autoencoders and on the Generative Adversarial Networks
had a better performance than the baseline models, while a model that combined
the two former mentioned networks had the best performance.

Conditional Variational Autoencoders were used by Suhre and Malik for modelling
a radar sensor [7]. However, they modelled the output at object level. The output
gave the properties of the objects such as 2D position, velocity and heading of
detected objects. The input was of the same format as that of Wheeler et al. For
a model with 10 layers, Suhre and Malik obtained reasonable results for the errors
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1. Introduction

of measured object properties, for different automotive scenarios that contained at
least one target vehicle.

Generative adversarial networks have a wide range of application areas beyond radar
modelling. While the desired input and output of each adversarial net may vary,
knowledge about the network from one area may be valuable across applications.
Such knowledge was presented by Sajjadi et al. when they created a deep convo-
lutional generative adversarial net EnhanceNet, for image enhancement [9]. The
input to the net was a 32×32 photo and the output a 128×128 photo with a higher
resolution. As such, the architecture of the EnhanceNet was largely based on con-
volutional layers and residual blocks. The resulting net proposed by Sajjadi et al.
proved to be very capable of deriving high resolution features for various images.

1.3 Contributions and Thesis Outline

Altogether, the contributions of this thesis are the creation and evaluation of a
dataset and a radar model. The contributions mainly consist of three parts. The
first part relates to the formatting and analysis of a dataset for the radar model
development, while the second part addresses the model development using neural
networks. The third part outlines the evaluation of obtained model results.

Firstly, a dataset is created for the radar model development. Data from both radar
and lidar is collected and formatted to suit an occupancy grid format. The method
and a description of the format of the generated datasets is given in Chapter 3.
Furthermore, an analysis of both overall properties and instance properties of the
gathered datasets is provided in the chapter. The data format is similar to that of
Wheeler et al. [5], such that polar occupancy grids are formed to give environment
descriptions and radar model output. Differently from Wheeler et al. a more
detailed data environment description with several grid layers is used in this thesis,
without object lists.

Secondly, different model architectures are developed to model a radar sensor. Both
Conditional Variational Autoencoders (CVAE) and Conditional Generative Adver-
sarial Networks (CGAN) are implemented together with different training algo-
rithms. The CVAE architecture is largely based on the radar modelling work of
Wheeler et al. and the CGAN architecture is mostly based on that of the EnhanceNet
by Sajjadi et al. in the sense that it uses residual blocks to map an input to an out-
put. The underlying theory that motivates the model architectures and algorithms
used in the project is provided in Chapter 2, while the architecture descriptions of
the models, along with their training algorithms, are found in Chapter 3.

Thirdly, the thesis results are evaluated with the evaluation methods described in
Chapter 3. Both derived radar models and dataset properties are considered here.
The corresponding results for the radar models are given in Chapter 4. The overall
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1. Introduction

performance as well as the behaviour for a few different scenarios are evaluated
for the radar models, and the radar model performance is compared to that of
the real radar sensor. Moreover, the results are discussed in Chapter 5, where the
different model architectures are compared, improvements are proposed and the
model performance is set into perspective with the quality of the data. The thesis
ends with a summary of the conclusions of the outcome of the project, given in
Chapter 6.

5
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2
Theory

The generative models developed in this master’s thesis are based on artificial neural
networks, described in section 2.1. The implemented model types, the Variational
autoencoder and the Generative Adversarial Network, are explained in section 2.2
and section 2.3. Moreover, lidar and radar sensors, used to obtain training data for
the models are described in section 2.4.

2.1 Artificial Neural Networks

Since ANNs are powerful function approximators, they have been utilised in a mul-
titude of fields; from image recognition, bug hunting in code, to music generation
[10, 11, 12]. Typically, ANNs consist of several connected artificial neurons which
can be trained with the backpropagation algorithm [13]. During training, the pa-
rameters of the neurons are tuned to suit a given input and desired output of the
ANN. The neurons can be arranged into layers, such as fully connected layers or
convolutional layers, described in section 2.1.2. The layers, and their respective ac-
tivation functions, make up the network. Several networks and models derived from
the ANN exist, such as Deep Neural Networks and Deep Generative Models, which
will be further described in sections 2.1.1 and 2.1.4.

2.1.1 Deep Neural Networks

Deep Neural Networks (DNNs) are artificial neural networks that can learn data
representations at higher levels, through deep learning [14]. This deep learning
is made possible by the use of several hidden layers within the ANNs, as well as
large amounts of data. Some of the initial state of the art DNNs used for image
recognition, such as the VGG nets and GoogLeNet, have 16-19 and 22 hidden layers
respectively [15, 16]. The higher levels of data representation that are achievable
with deep learning have been found to be very useful not only for image recognition,
but also for e.g. speech recognition, the analysis of particle accelerator data and
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2. Theory

natural language understanding [14].

However, while DNNs are powerful in the sense that they can learn very complex
functions, they also suffer from more issues during training than shallow NNs. More
layers lead to more weights in the network in need of tuning, and the backpropa-
gation algorithm needs to go deeper into the network, resulting in a more difficult
training process. Apart from taking a longer time to train, there are also issues
with exploding or vanishing gradients in the DNNs [17] and internal covariate shift,
described by Ioffe and Szegedy [18].

Consequently, considerable efforts have been made to find methods that alleviate
DNN training. For example, adding batch normalization between each layer in a
DNN has been found to prevent an internal covariance shift, such that it both speeds
up the training, and leads to a better network performance [18]. Furthermore, a
different weight initialisation for the DNN can improve its training [17]. A final
example of how to improve upon DNN training and performance is to make use of
residual nets, such that the layers instead learn residual functions with reference to
the layer inputs, as seen in Figure 2.1.

Weight layer

Activation function, Φ(·)

x

F (x) + x

F (x)

+

x

Figure 2.1: Illustration of a residual block. The weight layer is given an input x
for which it is trained to map the residual F (x). The final output from the model
is then given as Φ(F (x) + x).

The hypothesis is that it is easier to optimise the residual mapping than to optimise
the original, unreferenced mapping. For example, it becomes easier for the weight
layer to perform an identity mapping in this setting. With this approach, DNNs
with up to 152 layers are possible to train. One such net, created by He et al. won
the ImageNet Large-Scale Visual Recognition Challenge in 2015 [10].

2.1.2 Convolutional Layers

Convolutional layers in a DNN are of great use for the analysis of multi-dimensional
data samples for which the ordering of the data points matters. Examples of such
samples, consisting of ordered data points, are images and radar detection grids. In
the case of an image, the data points are given by pixels, and in the case of a radar
detection grid, the data points are given by ones (for a detection) and zeroes (for no
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2. Theory

detection). If the ordering of these points was to be altered, the original image or
radar detection grid would be lost. Convolutional layers have found a widespread
use within for example image recognition and language processing [10, 16, 19].

The principle of convolutional layers is illustrated in Figure 2.2. The main idea
behind the layers is to sweep filters, that are of a smaller dimension than the input,
over the input data such that each output point is calculated from a subset of the
input data. Each subset consists of points adjacent to each other. In Figure 2.2,
each subset consists of nine points from a filter of dimension 3 × 3. This way, the
ordering of the data points in the input is taken into account [20].

Input level

Output level

Figure 2.2: An illustration of the general idea behind a convolutional layer. The
coloured squares on input level correspond to the identically coloured squares on
output level. As such, nine squares on input level may correspond to one square on
output level for a convolutional layer.

Convolutional layers can both be used such that they preserve the dimension of the
data, as seen in Figure 2.2, or such that they reduce the dimension of the data across
the layer. The latter case can for example be achieved by taking fewer subsamples
from the previous layer, resulting in downsampled data. These fewer subsamples
are taken by specifying the number of strides that the filter should take between
each subsample, as illustrated in Figure 2.3. The stride determine over how many
subsamples the filter is applied to. If the dimension is to be preserved for a 2D data
grid, a stride of (1, 1) is specified, and if the dimension is to be decreased, a stride
of for example (3, 3) can be specified.

Furthermore, each element in a filter can be weighted, such that a filter can be
adapted to search for a certain feature within each covered subset, as illustrated
in Figure 2.4. Then, when the filter is swept over the input data, an output is
generated that for each subset specifies how well represented the feature that the
filter searches for is in each subset [20]. Consequently, convolutional layers can be
used to search for shapes and patterns in visual data, for example.

Convolutional layers can be stacked in networks that then are called Convolutional
Networks. A convolutional layer in a neural network usually utilises several filters
in the same layer. Then, all filters in the layer are applied to each subset of the
data. For a network consisting of convolutional layers, the weights in the filters of
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2. Theory

the layers make out the trainable parameters.

input input

(a) Stride (1,1). (a) Stride (3,3).

Figure 2.3: An illustration of how strides can be specified for convolutional filters.
A filter is swept over the input with different strides between the subsamples, result-
ing in outputs of different sizes. For (a) with stride (1,1) the output dimension will
be the same as for the input, (9,9). For (b) with stride (3,3), the output dimension
will be (2,2).

0 0
0

0
0
01

1
1

1 1
3

1
3 1

filter

input

output

Figure 2.4: An illustration of how a filter works for a convolutional layer. A filter
is swept with a stride of (3,3) over an input. The input consists of white and black
pixels, where white corresponds to a value of zero, and black corresponds to a value
of one. The convolutional layer generates an output that indicates which parts of
the input that contain the feature that the filter has learnt to map.

2.1.3 Transposed Convolutional Layers

Transposed convolutional layers, also called deconvolutional layers, are similar to
convolutional layers, while they can be used to up-sample data [21]. The principle
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behind deconvolutional layers is illustrated in Figure 2.5. Here, the squares on the
input level correspond to the squares on output level with the same colour. Hence,
a single value in the input layer is given as input to several values in the output
layers.

Similarly to Figure 2.4 for the convolutional layer, the input and output of the
deconvolutional layer are described in Figure 2.6 for one filter. Here, one input
point is used to generate several output points, guided by the filter. Consequently,
a more complex output is generated from a simple input. In this way, data is up-
sampled to suit certain features.

Input level

Output level

Figure 2.5: An illustration of the general idea behind a transposed convolutional
layer. The coloured squares on input level correspond to the identically coloured
squares on output level. As such, one square on input level may correspond to nine
squares on output level for a transposed convolutional layer.
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01
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filter

output

input

Figure 2.6: An illustration of how a filter works for a transposed convolutional
layer. A filter is swept with stride (3,3) to create an output. The output consists
of white and black pixels, where white corresponds to a value of zero, and black
corresponds to a value of one. The convolutional layer generates an output that
contains the feature that the filter has learnt to map based on an input that describes
where the feature should exist.
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The transposed convolutional layers can be used to artificially up-sample from a
low resolution to a high resolution, as is done in [9]. This type of layer can also be
used to generate images from one dimensional data, such that noise can be used to
generate images from a Generative Adversarial Network [22]. This will be explained
further in section 2.3.

2.1.4 Deep Generative Models

Generative modelling is a branch of machine learning where a model is trained to
generate new data. The new data should be similar, but not identical, to the data
that was used to train the model. To do this, the model aims to learn the distribution
of the data, after which it can produce new data points from this distribution. Some
models learn an explicit form of the distribution, in the form of hyperparameters,
from which new samples can be drawn. Others generate implicit representations
of the data distribution, such as the ability to directly generate samples from it
[23]. Deep neural networks can be used to create generative models, so called deep
generative networks [24].

There are several types of generative models based on deep learning, such as deep
Boltzmann machines and deep belief networks [23]. This category also includes the
two popular approaches generative adversarial networks (GANs) and variational
autoencoders (VAEs) [22, 25]. As previously mentioned, the two latter networks
will be used in this project to model the radar sensor. Therefore, GANs and VAEs
will be further described in the sections below.

2.2 Autoencoder Networks

An autoencoder is trained to attempt to copy its input, y, to its output, y′. It does
this by representing the input with a code, described by an internal hidden layer,
z = f(y). The output is then obtained from the mapping y′ = g(z). The part of the
network that handles the input representation aspect is called the encoder and the
part that generates the output by mapping z to y′ is called the decoder. Figure 2.7
illustrates the parts of an autoencoder.

y zE D y′

Figure 2.7: The basic schematics of an autoencoder. E denotes the encoding layers
and D the decoding layers. y is the input to the model, and the goal of the network
is to copy produce an output y′ that is as similar as possible to y. z is the values of
an internal hidden layer.
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Ideally, the goal for the encoder is to map y = y′. However, a network that performs
a mere copying task by setting g(f(y)) = y everywhere is of little use. Instead some
form of restriction is applied to the network, for example to the dimensionality of z,
to prevent it from generating perfect copies. The aim is that the applied restrictions
will force the model to prioritise which aspects of the input to replicate, such that
useful properties of the data are learned [23]. In this way, the autoencoder can for
example be used for feature learning or dimensionality reduction.

2.2.1 Variational Autoencoders

The variational autoencoder has many similarities with a basic autoencoder, but
with the important difference of being a generative model. Hence, the decoder will
from now on be called generator, denoted G. The goal of the VAE is to be able
to generate new samples, that are similar, but not identical, to the training data.
Here, the internal layer z is called the latent variable. In essence, after training the
VAE, the generator can be extracted and used to generate new samples by feeding
it z.

When using the trained VAE to produce new data, a way of knowing what z to feed
to the generator is needed [25]. In other words, the distribution of reasonable z needs
to be known. This is solved by applying some restrictions to the latent variables in
the network, and thus a neural network capable of generating data similar to the
training data can be created. The model therefore asserts that z can be drawn from
a simple distribution, for example N(µ̂, σ̂) [26].

y zE G y′(µ, σ)

w

KL [N(µ(y), σ(y)) || N (µ̂, σ̂)] ||y − y′||2

w G y′

(a) Variational autoencoder. (b) Generative network.

Figure 2.8: The basic schematics of a variational autoencoder can be seen in (a).
E denotes the encoding layers and G the generative layers. The two loss terms that
the VAE is trained on are indicated by red arrows. w is sampled from a normal
distribution N(µ̂, σ̂). z is computed as z = µ + σw. In (b), the parts of the VAE
used for generating new samples are depicted.

The key insight of this idea is that any distribution in d dimensions can be generated
by taking a set of d variables that follow a normal distribution, and mapping them
with a sufficiently complicated function. Since neural networks are powerful function
approximators, they can form this sufficiently complicated function. Thus, all that
is needed is to add the generation of standard normal distributed values w to the
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network, and some extra layers for the mapping of these w to our latent variables z,
as in Figure 2.8a. During training, the encoder is then taught how to generate z from
w, with the help of the training data. As a result, the network is also taught to find a
function Q(z|y) which can take a value of y and give a distribution over z values that
are likely to produce this y. Usually, it is assumed that Q(w|y) = N(w|µ(y), σ(y)),
where µ and σ are parameters that are learned from the data by the network.

Consequently, the training of the VAE involves the goal of maximising the likelihood
for the data y under the generative model, i.e. to maximise P (y), as well as to makeQ
produce representations for y that can be reliably decoded by the generative layers.
With some assumptions aboutQ and further derivations based on probability theory,
the full equation that is to be optimised for the VAE boils down to

Ey∼S

[
Ew∼N(0,I)

[
logP (y|z = µ(y) + Σ1/2(y) · w)

]
−D

[
Q(z|y)||P (z)

]]
, (2.1)

where the data y is sampled from a dataset S and D denotes the Kullback-Leibler
divergence (KL-divergence). This divergence denotes the difference between z and
the distribution that z is restricted to. The goal is to maximise the expression in
Equation (2.1), and this is done by maximising P (y) as well as minimising the KL-
divergence. Thus, during training of a VAE, two errors are to be minimised; the
original error for the autoencoder for the mapping of input to output, and the error
derived from the KL-divergence [26]. The last error may be intuitively interpreted
as a means to train the part of the network that has been added for the mapping of
normal variables, w, to latent variables z.

After training, the generator is extracted and used to generate new data samples.
See Figure 2.8b for a specification of the parts of the VAE that are kept for the data
generation. w is sampled from a normal distribution and fed through the generator,
resulting in the output y′.

2.2.2 Conditional Variational Autoencoders

A conditional variational autoencoder (CVAE) is a modified version of a VAE. Using
variational autoencoders as described above, new data samples can be generated
from a normal distribution. However, some additional properties of the output are
often desired. Consider an application in computer graphics, where a part of an
image is missing, and the missing pixels need to be approximated. Since there are
many possible solutions for this problem, a simple regression model will not do. This
would result in a blurry image, since the model would try to average between all
possible solutions. Instead, a model that learns a distribution over possible solutions
to sample from is needed, and a variational autoencoder comes to mind. For this
problem, a CVAE can be used.

CVAEs condition the generative process on some input. In the example above, the
conditional input could for example be the image that is missing data. The input
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y would then be the missing pixels, that the network should find. In practice, this
additional restriction is achieved by inputting the conditional input to both the
encoder and generator. The setup is described in Figure 2.9. The conditional input
enables far more sophisticated areas of use, such as image generation of desired
objects and features [27].

y zE G y′

c

w G y′

c

(a) Conditional variational autoencoder. (b) Generating part.

Figure 2.9: The structure of a Conditional Variational Autoencoder can be seen
in (a). E denotes the encoding layers and G the generating decoding layers. The
conditional input c is fed to both the encoder and the decoder. The loss functions and
sampling are identical to the ones in the VAE, but are left out here for readability.
As can be seen in (b), only the decoding layers (the generator, G) are used to
generate new samples.

The conditional input is different from the normal input y in the sense that it is
not trained on, i.e. it is not a part of the loss function. It is kept as input to the
generator when the training is completed. The purpose of the conditional input is
to give the network a hint of what the output y′ should look like when generating
new samples. Hence, when using conditional input to VAEs, the conditional input
data must correspond to the regular input data in some way.

2.3 Generative Adversarial Networks

Generative Adversarial Networks were first introduced by Goodfellow et al. in 2014
[22]. The basic idea behind GANs is to train two networks in parallel, the first
being a generative network, G, and the second a discriminative network, D, see
Figure 2.10. Since their introduction, GANs have been used for numerous purposes
that require data generation.

Instead of learning from a cost function, the networks G and D in a GAN learn from
each other. This lack of a heuristic loss function enables the generative network to
learn a more general distribution. For example, in the case of image generation, a
heuristic loss function would be a pixel-wise mean squared error, which does not nec-
essarily perform well in evaluating the credibility of images. Instead, a discriminator
can be taught how to distinguish between real and fabricated images. This capabil-
ity of learning data representations have made GANs useful within for example art
generation, artificial face generation and artificial face ageing [28, 29, 30].
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z G y′

D d

y

or

Figure 2.10: A basic illustration of a GAN. G is a neural network that generates
samples y′ from an input noise z. D is a neural net that takes in data samples,
either true, y, or generated, y′, for which it assigns a probability, d, of the sample
being true.

More formally, G generates samples y′ = G(z) based on input noise variable z. D
outputs the probability d = D(y′) of a sample y′ being auhentic, i.e. not generated
by G. D is then trained to correctly label both true and generated samples, while
G is trained to minimise log (1−D(G(z)), i.e. to fool D that generated samples
are authentic. Consequently, D and G play the following two-player minimax game
with value function V (G,D)

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log (1−D(G(z))]. (2.2)

However, this original formulation may not be optimal in the regard of training G to
minimise log (1−D(G(z)). Because D usually is very certain about which samples
are generated in the initial phase of training, we will have that D(G(Z)) ≈ 0 for
this phase, and since the derivative of log(x) becomes smaller as x is increased from
zero to one, this results in a mostly unchanging log (1−D(G(z)) value for the initial
training phase. Hence, G can instead be trained to maximise logD(G(z)), since it
provides a better initial gradient for G while it still leads to the result defined by
Equation (2.2) [22].

Given that the two networks in a GAN have enough capacity for their designated
tasks, D and G can reach their respective optima. E.g. the networks have enough
capacity if they each have an accurate model architecture capable of solving their
respective tasks. At the optima of G and D, G will generate samples that are
indistinguishable from the real data, and D will be optimal at differentiating false
from true samples. However, when G is at its optimum, G∗(z), even an optimal
D should be unable to correctly identify generated samples. E.g. we should have
that the optimal D∗ is completely uncertain as to whether a given generated sample
from the optimal generator, (y′)∗ = G∗(z), is false or true, such that it predicts a
0.5 probability of the sample being either true or generated, D∗((y′)∗) = 0.5 [22].

To summarise a GAN, the purpose of G is to train on and learn from a dataset in
order to produce new similar data samples. The purpose of D on the other hand is
to evaluate a given data sample and deduce whether it comes from the dataset or
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the generator. Then, G is trained to maximise the probability of D believing that
generated samples come from the dataset and D is trained to learn how to tell the
samples apart. The structure can be likened to a situation where G works as an
art counterfeiter and D as an art specialist, where G tries to fool D with its faked
artwork and D tries to spot the fakes. The idea is then that the two networks train
each other until the fake samples and the real ones are indistinguishable from one
another. Once the networks have converged, the discriminator can be discarded and
the generator is taken as the final generative model.

2.3.1 Convergence of Generative Adversarial Networks Dur-
ing Training

In the previous section, it was stated that a GAN has an optimum. However,
quick convergence to this optimum is not guaranteed, as the networks may suffer
from convergence issues during training. The stabilisation of the learning process
in GANs is still an open problem, and they are generally difficult to train. There
is little to no theory explaining the unstable behaviour of GAN training, and many
recent papers on GANs are dedicated to heuristically finding stable architectures for
GANs [31].

The main issue during training of a GAN is that the discriminator may saturate,
such that it becomes very certain of which samples are fake and which are true.
I.e. instead of being approximately certain, the discriminator is almost binary in its
probability output, only generating values close to either zero or one. Initially, one
may think that a very certain discriminator gives good feedback to the generator.
However, this is not the case. Instead, the updates from the discriminator to the
generator become increasingly worse as the discriminator gets better [31]. Since
the generator is trained only on feedback from the discriminator, saturation of the
discriminator implies that the training of the GAN fails. Some of the heuristically
found methods to avoid saturation and to stabilise the general training of a GAN
will be discussed in the section below.

2.3.2 Stabilisation Methods for the Training of Deep Con-
volutional Generative Adversarial Networks

Deep convolutional generative adversarial networks (DCGANs) are GANs that utilise
hidden convolutional layers in the generator and the discriminator. These types of
networks have found several uses within 2D-data generation and are used for e.g.
resolution enhancement of images [9] and radar modelling [5]. However, as they are
deep networks, their training process is not straightforward and convergence is not
guaranteed.
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Given the potential of these types of networks, significant efforts have been made
to discover methods that stabilise their training. One article in particular describes
several steps that have been found to both speed up and stabilise the training of
DCGANs [32]. Some of these steps are to

• use leaky ReLu as activation function in the discriminator to improve the
training gradient for the generator

• add batch normalisation between each layer in the networks, with the exception
of the output of G and the input of D

• avoid fully connected hidden layers within the networks, to speed up their
training.

Other methods to improve the training process of DCGANs are to use residual
blocks, as in the case for DNNs, and possibly to make the whole network model
a residual. This was done for resolution enhancement with a DCGAN called En-
chanceNet [9], where a residual was mapped and then added to an image that already
had been enhanced with existing standard algorithms, as illustrated in Figure 2.11.
The residual model in the figure is similar to the residual block in Figure 2.1, with
the difference that it maps the residual between the model input and output, instead
of only over one or a few layers.

Input layer
Hidden layers

+

y

y′ = y + F (y)

F (y) y

Figure 2.11: A model that is trained to map the residual F (y) to an input y in
order to generate a final output y′. Thus, the model only has to learn the residual
F (y). A structure similar to this was employed in the EnhanceNet [9].

Another method employed by the EnhanceNet to improve the training process of a
DCGAN was to adapt the training steps for D and G based on the current accu-
racy of the discriminator during training. Consequently, the discriminator was only
trained if its accuracy fell below certain thresholds for real respectively fake data
samples. In that way, saturation of D as a consequence of too much training could
be avoided.
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2.3.3 Conditional Generative Adversarial Networks

An additional conditional input, c, can be given to both the generator and the
discriminator in a GAN, resulting in a conditional generative adversarial network
(CGAN) that can direct the generated data towards desired features [33], see Fig-
ure 2.12. The CGAN differs from a basic GAN such that the samples generated from
it are not only based on some arbitrary noise input. For example, if a generator is
trained to generate pictures of bedrooms, the conditional input can be a description
of desired bedroom features, such as blue or large, on which G can be trained to
generate images from.

z G y′

D d

c

y

or

Figure 2.12: Illustration of a conditional GAN. Both G andD receive an additional
conditional input c. G is a neural network that generates samples y′ from an input
noise z and the conditional input. D is a neural net that takes in c as well as data
samples, either true, y, or generated, y′, for which it assigns a probability, d, of the
sample being true based on the conditional input.

Thus, the two-player minimax game for a conditional GAN has the objective func-
tion,

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|c)] + Ez∼pz(z)[log (1−D(G(z|c))],

where c denotes the conditional information. This function is the same as that of
the simple GAN in equation (2.2), with the only difference that the distributions in
the function are conditioned on c.

2.4 Data Collecting Sensors

The sensors used for this thesis are radars and lidars. The sensors share the purpose
of perceiving their surrounding environment and generating data that describes it. In
most other regards, the sensors are very different. For instance, they differ in range
of perception, basic workings, resolution and dependence on weather conditions. In
order to understand the data generated from the sensors and to know what to expect
from it, essential sensor theory will be described in this section.
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2.4.1 Radar Sensor

Transmitter

Signal/data
processor

Duplexer

Receiver

Target

Antenna

Output at
intensity level

Output at
detection level

Output at
object level

Check if target echo
signal present

Object tracking

Detection decision is made

Figure 2.13: A schematic view of the basic processing steps for a radar. Note that
the data processing and object tracking are performed over time while the receiver
operates for separate time instances.

A radar sensor is an electromagnetic sensor used for detecting, locating, tracking and
recognising objects of various kinds. The sensor can operate at both short and long
target distances, where the targets for example can be aircrafts, ships, spacecrafts,
automotive vehicles, insects and rain. Radar sensors have the potential to determine
presence, location, velocity and shape of the targets. The radar is distinguished from
other optical and infrared sensing devices by its ability to detect faraway objects
also under harsh weather conditions, such as heavy rainfall or snowfall, and by its
ability to determine their distances with precision. The radar was first developed
during the 1930s and 1940s, mostly in correlation with the second world war [34].

A radar sensor operates by radiating a beam of electromagnetic energy from an
antenna. The beam scans a region where targets are expected. When a target is
illuminated by the beam, it intercepts some of the radiated energy and reflects a
portion back toward the radar system. This results in radar readings at intensity
level. After this, a decision is made by a receiver at the output of the radar antenna
as to whether or not a target echo signal is present. Present targets result in readings
at detection level by the radar, occupying sensor resolution cells, where the readings
for example can cover range. Readings at detection level, so called reflection points,
can then be tracked over time with object tracking algorithms. This results in a list
of objects and their specific features over time, such as velocity and position [35].
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These tracked objects can for example be automotive vehicles. See Figure 2.13 for
a schematic view of the processing steps for a radar.

As mentioned previously, radar readings at detection level are tracked over time with
object tracking algorithms to obtain an output at object level for the radar sensor.
For object tracking based on sensor measurements, Multiple Target Tracking (MTT)
is used, i.e. the process of successively determining the number and states of multiple
dynamic objects based on noisy sensor measurements [36]. The object level radar
data can then be used for example for simulation tests of the decision making of
ADAS and AD systems.

For object tracking on radar sensor data within automotive applications, there are
some basic limitations and issues. These relate to e.g. range, coverage, and typical
sensor errors. In general, a radar sensor can also display very complex and counter
intuitive behaviours. Some of these issues will be described in more detail in the
following sections.

Firstly, the radar sensor has a limited coverage depending on its frequency and type;
a lower frequency generally results in a larger range, while a higher frequency yields
a smaller range. For example, radar sensors with a frequency of 77 GHz are used for
obstacle detection in autonomous driving [35]. These sensors can also be of different
types, which may prioritise either a long range or a wide view.

Furthermore, the readings from a radar can display different errors. For example,
objects can be completely missed by the radar system, or false detections, that is
false positives, can occur. A false detection, also called false alarm or detection of
ghost target, occurs when a radar system registers a reading for an object that does
not exist, or for an insignificant object that should be ignored [37, 38]. For the
automotive radar, this may be caused by multi-bounce-reflections on metal objects
such as barriers near the road. These types of errors may then propagate into object
level, resulting in missed objects or ghost objects [39].

Another example of complex radar behaviour is that a radar sensor also can be
limited by occlusion, such that it may not be able to detect an object if it is hidden
behind something, for example a car. Occlusion and ghost targets make out the
more unexpected and undesired behaviour a radar can display [39].

Lastly, the detection performance also depends on the properties of the object to
be detected. For example, the size, shape and material of an object all affect the
probability of detection for a radar [40]. For example, an automotive radar sensor is
much better at detecting road barriers made of steel than barriers made of concrete.
As such, the radar sensor may fail to detect concrete barriers, while it rarely misses
steel barriers.
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2.4.2 Lidar

Lidar, or light detection and ranging, is a sensor commonly used in the development
of autonomous vehicles. As depicted in Figure 2.14, the sensor uses laser beams
to determine the distances to surrounding objects by measuring the time it takes
for each beam to be reflected. This results in observed reflection points that form
a point cloud of the surrounding environment, as seen in Figure 2.15. Based on
this point cloud, detections of e.g. vehicles, pedestrians and barriers can be made at
each time instance. These detections are then used by a tracking algorithm, which
connects them between time instances and approximates true positions, velocities
and other properties.

Figure 2.14: The lidar, that is the small cylinder, sends out laser beams, marked
in yellow, which are reflected by the cube object. This results in a point cloud.

A lidar works well in all lighting conditions, and it is very accurate in comparison
to automotive radar sensor. However, the performance of the lidar is very sensitive
to environmental influence, such as rain or snow [38]. It also typically has a shorter
range than for example the radar sensor. Generally, the lidar is considered to be
too expensive to include in the production of self-driving vehicles.
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Figure 2.15: An example of a lidar point cloud. An ego vehicle with a lidar on the
rooftop is seen in the centre of the figure. Surrounding the ego vehicle is a very dense
point cloud that describes the shapes of e.g. cars, buildings and barriers. Source:
Zenuity.
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Method

The methodology used in this thesis can be separated into three main parts; creation
of the dataset, implementation of network models and evaluation of obtained results.
The work flow has largely followed these steps, though some overlaps and iterations
have been necessary. In the following sections, the data format, the generative
networks and the evaluation are described in more detail.

An overview of setup for the project is shown in Figure 3.1. The part of the chart
to the left of the dashed line, that is the driving scenario, the sensor readings and
their respective tool chain of processing, are part of the toolchain at Zenuity and
was not a part of this project. Here, a real life scenario was measured by both the
lidar and the radar sensor. Both of the outputs were processed, so that the output
from the radar was given at detection level and the output from the lidar at object
level.

Radar Sensor
SystemReal Life

Scenario

Lidar System Data
Processing

Network
Output

Radar Grid

Lidar Grid

Data
Processing

Toolchain at Zenuity This project

Figure 3.1: Overview of the setup for the thesis. The toolchain at Zenuity is briefly
described to the left of the dashed line. To the right of the line, the steps that were
implemented in this project are depicted.

The parts that were implemented for this project were the ones to the right of the
dashed line. These consisted of a second data processing, where the sensor readings
were transformed into a format suitable for neural network training, and the network
itself. Both radar and lidar data was then used for training the network to produce
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the desired output. When the network training was finished, the radar branch (that
is the top row in Figure 3.1) was switched off and the network was to produce a
radar output of its own.

3.1 Implementation and Hardware

The radar models were based on sensor data gathered by Zenuity. It consisted of
automotive radar data from a front looking 77 GHz radar [41]. The front looking
radar sensor had a view as described by Figure 3.2, i.e. it was smaller than 180°
such that it was shaped like a fan. The sensor data also consisted of automotive
lidar data from an HDL-64E Velodyne lidar with a range of 120 meters and 360°
view [42].

Front looking radar view

Figure 3.2: An illustration of the view of automotive radar sensors. The front
looking radar sensor that was utilised to gather data had a view as described by the
two overlapping circle segments that are in front of the vehicle. Source: Veoneer
[41].

The radar models were created with Python, Tensorflow GPU and Keras. However,
data processing for both dataset generation and model evaluation was performed
in Matlab. A large part of the data processing that was performed for the dataset
creation came from the Matlab code base of the Data Analysis Team at Zenuity. The
hardware resouces available for the network training were an Intel Core i7-7820HQ
CPU at 2.9 GHz with 4 Cores and a NVIDIA Quadro M2200 GPU.
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3.2 Data

The data was collected by vehicles driven in highway environments under different
conditions, in various countries. Only highway environments were included in this
project, since they contain less noise than urban environments. The vehicles used to
collect the data are equipped with e.g. radar and lidar as well as cameras that record
the surroundings of the car continuously. The gathered data was then processed by
algorithms in the tool chain at Zenuity. This resulted in a set of frames, for which
one frame contains sensor readings for one measurement instance.

Radar data at detection level was used to train the networks. This data included
point wise detections, with a lateral and longitudinal position for each detection.
Several detections could exist for the same object. No tracking algorithm had been
applied to this data. Hence, the detections were not tracked over time, why it was
natural to train the networks on one frame at a time.

The lidar data constituted the conditional input to the models, and was given at
object level. Thus, it was obtained with the help of object tracking, generating
smooth object detections over time. It also included descriptions of the area of the
objects and their types. The lidar had a lower sampling frequency than the radar
sensor, why the lidar data was up sampled to match the radar data. The purpose
of this data was to describe the surroundings of the vehicle to the models.

3.2.1 Coordinate System of the Data

Radar position

Lidar position

Data coordinate systemy

x

Ego vehicle

Figure 3.3: A description of the sensor positions on the ego vehicle. Both the
radar and the lidar data has been formatted after the coordinate system described
in the figure, such that origin is the rear axle of the car.

In Figure 3.3, the positions of the lidar and radar sensor on the vehicle are described.
The radar sensor was placed on the front of the car, while the lidar was mounted
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on the roof. This was adjusted for in the data processing at Zenuity, such that both
data types had their origin at the rear axle of the ego vehicle.

Hence, the radar data had its origin behind the actual sensor. Since the radar
sensor is front-looking, this resulted in an absence of detections in the radar data
for positions behind the radar sensor, i.e. for positions with small longitudinal values.
The lidar did not suffer from this, since it has a 360° view.

3.2.2 Data Format

Before training the models on the data, the readings from both the radar and lidar
in each frame were formatted into binary matrices in polar coordinates, also called
occupancy grids. Each position in a polar matrix represented a position in polar
coordinates in the surroundings of the ego vehicle. See Figure 3.4a for a schematic
view of what the grids looked like.

range, r azim
uth

, ϕrm
ax

(a) Polar grid (b) Grid formatted into a matrix,
with several layers

± ϕmax

Figure 3.4: Description of the polar grids used as input to the models. Each object
and detection was placed in the corresponding location in the grid shown in a, where
the ego vehicle is positioned at the apex. Hence, only objects and detections within
a certain range and azimuth were considered. For the lidar grid, the different object
classes were divided into separate grids, forming a three dimensional matrix as in b.

As a consequence of the grid format, the input data was limited to readings in a
certain range and azimuth of the ego vehicle. The range of the polar matrix was set
to rmax and the azimuth to ±ϕmax. These limit choices were loosely based on the
capacities of the radar and the lidar, and are left out of this report for confidentiality
reasons. The grid contained 64 rows and 64 columns. A discussion pertaining the
model restrictions and sensor capacities is provided in section 5.1.
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In the occupancy grids, a value of one denotes that a radar detection or a lidar
object is contained within that grid element. To describe an occupied spot in a grid,
the term grid point is used. All ones in the grids were therefore denoted as grid
points. Figure 3.5 and Figure 3.6 display an example environment in a frame and
the corresponding set of grid points for both radar and lidar data.

Ego Vehicle

Barrier

Target Vehicle

Figure 3.5: A toy example of what the environment around the ego vehicle may
look like. Within the range of the grid, a barrier, in red, and another vehicle, in
blue, are present. These are detected by the radar and the lidar sensors, processed
and then transformed into the grid format, resulting in Figure 3.6.

(a) Radar Detections (b) Lidar Objects

Figure 3.6: Toy example of two grids, corresponding to the situation in Figure 3.5.
In a, four grid points, corresponding to four radar detections, can be seen. These
can belong to the same or different objects, as a radar detection pays no regard
to measuring the extent of detected objects. In b, two objects are distinguishable
by three respectively four grid points. The lidar data contains information about
the bounding boxes of the objects. Hence, all locations in the grid that contain a
bounding box will be marked for the lidar data, such that objects detected by the
lidar in general have more grid points than the ones detected by the radar sensor.
In this figure, no object class separation for the lidar objects is considered.

As the lidar data was given at object level, it contained information about the
classes of the detected objects. To include this information in the data format,
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several polar grids were stacked in layers with different classes in each layer. This
is illustrated in Figure 3.4b. The classes were divided as follows, with each class
in a separate grid layer: “miscellaneous”, “car, vehicle and truck”, “motorcycle and
bicycle”, “buildings” and “barriers”.

Unlike the radar data, where each detection was given as a single position, the lidar
objects also described the area of the objects. Hence, a radar detection resulted in
only one grid point while a lidar object could result in many. See Figure 3.5 and
Figure 3.6 for an example of the difference in nature between the radar detections
and the lidar objects.

The aforementioned data formatting steps resulted in two sets of polar grids, one
set for the radar and one for the lidar. Each set contained a number of grids that
each corresponded to one frame in the dataset. An example of two polar grids that
correspond to a frame in the dataset are shown in Figure 3.8. The colours used
to indicate detections and different object classes for radar and lidar are shown in
Figure 3.7.
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Miscellaneous
Car, vehicle and truck

Buildings

Barriers

Detection(a) Radar

(b) Lidar

Figure 3.7: The colours used to de-
scribe detections and object classes in
the polar grids. Since the radar de-
tection level does not register object
class only one colour is needed to de-
scribe the radar data. Hence, a red
colour is used to indicate radar de-
tections. As the lidar data also reg-
isters object class, several colours are
needed to describe the data. Orange,
yellow, blue and green are used to
indicate different groupings of object
classes for the lidar data.

 

(a) Radar detections.

 

(b) Lidar objects.

Figure 3.8: Example of a frame from the dataset that was created for and used in
this thesis. Figure 3.8a indicates the radar detections that were registered for the
environment described by the lidar in Figure 3.8b. The lidar registers five different
vehicles along with barriers on each side of the road, while the radar indicates a
number of detections for both vehicles and barriers. The plot colours are explained
in Figure 3.7.
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3.2.3 Properties of the dataset

In this section, some of the properties of the created dataset are examined. The
dataset consisted of 1,361,012 frames in total, all in the grid format described in
section 3.2.2. Hence, each frame contained one radar grid and one lidar grid.

During training of the models, the data was divided into training and test sets.
As the data consisted of consecutive frames, many of the frames in the datasets
were almost identical. Therefore, it was important to use sufficiently large datasets
when training the networks, and to shuffle the frames between training batches. For
the same reason, it was also important to not shuffle the frames when dividing the
data into training and test sets. Doing so would have resulted in near interchange-
able frames appearing in both datasets, which would have undermined the original
purpose of dividing the data into several sets.

The test set consisted of 14,342 frames, corresponding to 1% of the data. The radar
models were not trained on this test data, so that it could be used to evaluate
the generalisation capability of the models in Chapter 4. Below, the test set is
compared to the training set, to argue for the representativeness of the test set.
Since the frames were not shuffled when dividing the data, this analysis is necessary
to ensure that the test set is not biased in some way, despite this.

In Figure 3.9, the frequencies of grid points throughout all frames in the datasets
are depicted as heatmaps. The left column corresponds to radar data, and the
right one to lidar data. The top row contains heatmaps over the training set, and
the bottom row of the test set. To generate these, several grids such as the ones
in Figure 3.8 were summed up. For the radar heatmaps in Figures 3.9a and 3.9c,
grids corresponding to Figure 3.8a were summed, and for the lidar heatmaps in
Figures 3.9b and 3.9d, grids corresponding to Figure 3.8b were summed, without
respect to object class. The object classes in the lidar data were treated the same
to make the comparison to the radar detections possible. The resulting grids have
then been normalised, such that the largest value in each grid is 1. Hence, the scale
is not the same in the figures, why only the general shape of the heatmaps should
be considered, and not the actual colours.

The plots in Figures 3.9a and 3.9c showing the frequencies of the radar detections
display several characteristics. Firstly, the detections are clearly concentrated to the
highway in front of the ego vehicle, and even form a couple of lanes. Moreover, both
heatmaps for the radar data display a grid point frequency of zero on the left and
right edges of the grid and on short ranges. For example, note that the area directly
in front of the ego vehicle, corresponding to a short range, is dark for both of the
heatmaps in Figures 3.9a and 3.9c.
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(a) Training set, radar

 

(b) Training set, lidar
 

(c) Test set, radar

 

(d) Test set, lidar

Figure 3.9: Heatmaps describing the frequency of grid points in each position for
all frames in the datasets. Each figure is normalised to itself, why only the general
shape of the heatmaps should be considered, and not the actual colours. The units
are left out for confidentiality reasons.
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(a) Training set, radar (b) Training set, lidar

(c) Test set, radar (d) Test set, lidar

Figure 3.10: Histograms of the number of grid points per frame throughout the
datasets. The frequencies are normalised. Note the difference in scale on the x-axis.
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The plots in Figures 3.9b and 3.9d showing the frequency of the lidar objects also
have certain properties. Similarly to the radar data, the lidar objects are contained
within the lanes in front of the vehicle. As discussed in the section above, each lidar
object is described as the set of grid points inside the object’s bounding box. This is
a part of the reason why the lanes in the lidar data heatmap are wider and smoother
than for the radar data. Moreover, the lidar heatmaps differ from the radar versions
on the left and right edges of the grid and at short ranges. They display a higher
object frequency closer to the edges than the radar, and show no decrease in grid
point frequency at short ranges. This is partly due to the shift of coordinate system
described in section 3.2.1.

In Figure 3.10, the distribution of the number of grid points per frame can be
seen. Histograms have been created for both the radar and the lidar, and for the
training set as well as the test set. For lidar objects with bounding boxes, each grid
square that is inside the bounding box is counted once, as seen in Figure 3.6b for
the environment in Figure 3.5. This means that large objects will contribute more
to the distribution, and that lidar objects generally have more grid points. This
explains the difference in the scale in the x-axis in Figure 3.10 between the two
sensors. Even though the scale is very different between the radar detections and
the lidar objects, the distributions have resembling shapes.

Overall, Figures 3.9 and 3.10 show that although the radar detections and the li-
dar objects have some quantitative differences, the general qualitative behaviour is
similar. Of course, the analysis given in this section is in no way an exhaustive
comparison of the performance of the radar and lidar data. It only amounts to the
general behaviour of the data, and no comparisons between single frames have been
made. Nonetheless, the correspondence between the two data types indicates that
the lidar data has the potential of being used as conditional input to the models in
this project.

By comparing the test set with the training set in Figures 3.9 and 3.10, it is noted
that while the plots for the test set are not as smooth as those for the training set,
it still take on analogous properties. As seen by comparing Figure 3.10b and Fig-
ure 3.10d, the test set displays more variance, although it holds a general similarity
to the rest of the data.

While the test set displays more variance, e.g. compare Figure 3.10d with Fig-
ure 3.10b, it holds a general similarity to the rest of the data. Given this analysis,
the test set can be considered representative of the data, and can be used to evaluate
models trained on the training set.
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3.2.4 Test Frames

Ten test frames from the test set were used for the evaluation of the models, all of
these may be viewed in appendix A. Four of these frames are used to illustrate some
of the results in the next chapter. The input data for those frames, that is the radar
grid and the lidar grid, along with a photo of the frame, are depicted in Figures 3.11
and 3.12. These test frames were chosen with the purpose of evaluating the radar
models for different environments.

Test frame 1 is captured in a busy highway environment with several cars present,
along with two barriers, see Figure 3.11a. Note that both of the barriers contain
steel. Moreover, Figure 3.12b shows that the lidar data has captured the relevant
objects in the photo. The radar data in Figure 3.12a also gives detections for both
of the barriers as well as the cars. However, no detections are given for the barriers
on a short range, close to the ego vehicle.

Test frame 2 is captured on a mostly lonely road with barriers on both sides, see
Figure 3.11b. Here, the barrier to the left is made of steel while the one to the
right is made of concrete. The lidar data in Figure 3.12d correctly registers both
of the barriers closest to the ego vehicle. However, it shows a strange behaviour
for the barrier to the left further away. Seemingly, the trees to the left of the road
confuses the lidar such that it registers weirdly shaped barrier noise in the left part
of the grid. The radar data in Figure 3.12c only gives detections for the steel barrier
to the left, and completely misses the concrete barrier to the right. Note that the
radar data does not contain any detections for the steel barrier on a closer range.
Moreover, the radar data does not register anything in the region of the barrier
noise.

Test frame 3 is captured in a dark tunnel with three other cars present, see Fig-
ure 3.11c. As can be seen in Figure 3.12f, the lidar data correctly registers the three
cars along with the walls of the tunnel. The radar data in Figure 3.12e also gives
detections for parts of the tunnel walls and for the three vehicles. Yet again, the
radar data does not contain any detections on a short range.

Test frame 4 is captured on a road with a truck in close presence, along with a car
further away and a concrete barrier to the right, see Figure 3.11d. As can be seen
in Figure 3.12h the lidar data correctly registers the vehicles, while it completely
misses the concrete barrier. The radar data in Figure 3.12g gives detections for both
vehicles, while it displays none for the concrete barrier. Moreover, it generates extra
detections to the left in the grid with no clear object correspondence with the photo
in Figure 3.11d, as the truck obscures the view.
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(a) Photo of test frame 1. (b) Photo of test frame 2.

(c) Photo of test frame 3. (d) Photo of test frame 4.

Figure 3.11: Photos of test frames 1, 2, 3 and 4, taken from the ego vehicle. The
evaluation of the radar models will include an analysis of the model performance on
these frames.
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(a) Test frame 1, radar detections.

 

(b) Test frame 1, lidar objects.
 

(c) Test frame 2, radar detections.

 

(d) Test frame 2, lidar objects.
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(e) Test frame 3, radar detections.

 

(f) Test frame 3, lidar objects.
 

(g) Test frame 4, radar detections.

 

(h) Test frame 4, lidar objects.

Figure 3.12: The radar and lidar grid for the test frames 1, 2, 3 and 4. The colours
correspond to the labels in Figure 3.7. See Figure 3.11 for photos of the scenarios.
Note that the radar in (c) misses the barrier that the lidar detects to the right in
(d), since it is made of concrete. Moreover, in (d) the lidar erroneously registers a
barrier further away to the left. In (h), note that the lidar also misses the concrete
barrier to the right, seen in Figure 3.11d.

39



3. Method

3.3 Models

The network models implemented in this project were largely inspired by the network
architectures in [5]. Various versions of VAEs and GANs were implemented, along
with combinations of these. Furthermore, different loss functions, hyperparameters
and training procedures were applied to these. The following sections contain de-
scriptions of the networks that were implemented. To facilitate the description of
the network implementation, the notation in Figure 3.13 and Figure 3.14 is used.

Conv block, number
Convolutional layer

strides (2,2)

Convolutional layer
strides (1,1)

Figure 3.13: To compress the description of the net-
work implementation, the notation Conv block, number
is used. A convolutional block here consists of two convo-
lutional layers. The first convolutional layer has strides
(2,2) whereas the second one has strides (1,1). Both
layers have kernel size (3,3). number denotes the num-
ber of filters in the convolutional layers. In the cases
for which a second digit is given inside parentheses, this
corresponds to the second convolutional layer. The ac-
tivation function that is used for each layer is either the
rectified linear unit (ReLu) or the leaky rectified linear
unit (lReLu). Batch normalization may also be imple-
mented for the layers in this block. ConvT block, number
works in a similar fashion, but with transposed convolu-
tional layers.

Conv Res block, number

Convolutional layer
strides (1,1)

Batch Normalization
Convolutional layer

strides (1,1)

Batch Normalization

Input

+

Activation

Figure 3.14: To compress the description of the
network implementation, the notation Conv Res
block, number is used to describe a convolutional
residual block that is used for the models. The
block consists of two convolutional layers with
batch normalisation in between. The first convo-
lutional layer has strides (1,1) whereas the second
one has strides (1,1). Both layers have kernel size
(3,3). number denotes the number of filters in the
convolutional layers. In the cases where a second
digit is given inside a parenthesis, it corresponds
to the second convolutional layer. The activa-
tion function that is used for this block is the
rectified linear unit (ReLu). Batch normalization
is performed either before or after the activation
function of the layers, as will be specified for each
model.

40



3. Method

3.3.1 Implementation of Conditional Variational Autoen-
coders

A schematic view of the CVAE network that was implemented can be seen in Fig-
ure 3.15. As described in sections 2.2.1 and 2.2.2, the loss of the network is a
combination of the KL-loss and the CVAE-loss. An important part of implementing
a CVAE was to define a loss function that was suitable for its task. The loss function
used in this project is described further below.

z G y′

KL-loss VAE-loss

y E

c

Figure 3.15: The implementation of the conditional variational autoencoder net-
work. E denotes the encoding layers and G the generating layers. The sampling
and generative process is the same as in Figure 2.8 and Figure 2.9.

As mentioned in Chapter 2, the goal of a VAE is to maximise Equation (2.1).
Hence, the loss function of a VAE consists of two terms, namely the Kullback
Leibler-divergence lKL defining the deviation of the latent variable z from a nor-
mal distribution, and a log-likelihood term lG representing the generator loss. The
total loss is then computed as l = wGlG − wKLlKL, where wG and wKL are tunable
weights. The KL-loss is defined as

lKL = 1
dz

dz∑
i=1

1 + zσ,i − z2
µ,i − ezσ,i .

Here, zσ and zµ are latent parameters, learned by the model. dz is the dimension of
the latent code, z, in the network.

The log-likelihood term is defined as

lG = log(logPσ) + error

logPσ
,

where logPσ is a scale parameter and error is defined in the generator loss function.
There are many ways of defining a loss function for the generator in a VAE. This is
a crucial choice since the loss function, in combination with the KL-loss, will direct
the training of the network and define the behaviour of the output.

A dilemma in this project was that the training data was very sparse. Most positions
in the grids were unoccupied, which resulted in an imbalanced dataset. Using a
standard loss function, for example the mean squared error between the generated

41



3. Method

output and the true radar detections, often resulted in a network that was very
hesitant to generate detections, since they were so unlikely. To circumvent this, a
loss function that treats the zeroes and ones in the grids separately was needed for
the generator loss. Here, the loss function proposed by Wang et al. in [43], called
mean false error (MFE), was used. It is designed to improve the performance when
training on imbalanced datsets, by being more sensitive to errors in the minority
class. The loss function is defined as

MFE = c1 · FPE + c2 · FNE,

where
FPE = 1

N

N∑
i=1

(
y′

(1)
i − y

(1)
i

)2
,

FNE = 1
P

P∑
i=1

(
y′

(0)
i − y

(0)
i

)2
.

FPE and FNE are the mean false positive error and mean false negative error,
respectively. N and P are the numbers of samples in each class. The class is either
zero or one, denoting whether a grid point should exist in the binary positional radar
grid, consisting of N+P elements. y′ is the generated output and y is the true radar
data. The loss function can be adjusted by weighting FPE and FNE using c1 and
c2.

A detailed description of the network implementation is given in Figure 3.16. In
Table 3.1, the hyperparameters used in the training are listed. The hyperparame-
ters were chosen to ensure a stable training process without overfitting. The model
contained 166,277 trainable parameters and was trained on the dataset for 30 epochs
during approximately 15 hours. The training was stopped when the network accu-
racy started to converge to a constant value for a validation dataset.

Table 3.1: The hyperparameters used for training the CVAE. The parameters were
tuned to improve upon the training of the network described in Figure 3.16.

Hyperparameter Description Value
b Batch size. 128
nepoch Number of epochs. 30
l2 L2-regularisation parameter. 0.001
logPσ Scale parameter for the log-likelihood. 0.001
wG Weight for the generator loss function. 0.5
wKL Weight for the KL-loss. 0.5
c1 Loss function weight for ones. 1
c2 Loss function weight for zeroes. 3
σε Variance for sampling layer. 0.01
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E
Output shape Layer

Concatenate
Dense, bn
Dense, bn

b× 192
b× 32
b× 32

Y
Output shape Layer

Input
Conv block, 8
Conv block, 16

b× 64× 64× 1
b× 32× 32× 8
b× 16× 16× 16
b× 8× 8× 32
b× 4× 4× 4

b× 64

Conv block, 32
Conv block, 32 (4)

Flatten

C
Output shape Layer

Input
Conv block, 2 (4)
Conv block, 8 (16)

b× 64× 64× 5
b× 16× 16× 4
b× 4× 4× 16
b× 2× 2× 64

b× 256
Conv block, 32 (64)

Flatten
Dense, bn
Dense, bn

b× 128
b× 128

Z
Output shape Layer

b× 16
b× 16

Dense, µ Dense, σ
Lambda (sampling)

G
Output shape Layer

Concatenate
Dense, bn
Dense, bn

b× 144
b× 128
b× 256

b× 8× 8× 4 Reshape
b× 16× 16× 8
b× 32× 32× 8

ConvT block, 8
ConvT block, 8

b× 64× 64× 4 ConvT , bn, 4
b× 64× 64× 1 ConvT , 1, sigmoid

Figure 3.16: Description of the implementation of the CVAE. The figure follows
the notation described in Figure 3.13. “Dense, bn” denotes a dense layer followed
by batch normalization. The radar data is given as input to Y and the conditional
input (the lidar data) is fed to C. These branches are then concatenated in the
encoder. In Z, the learned µ and σ are used for sampling in the Lambda layer. The
output from Z, z, is given by z = µ+εσ, where ε ∼ N(0, σε). When the training was
done, the layers in C and in the generator were kept to obtain a generating model.
For the generating model, the input to the generator is drawn from ∼ N(0, I), where
I is the identity matrix, instead of from the sampling in Z.
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3.3.2 Implementation of Conditional Generative Adversar-
ial Networks

Conditional GANs were also implemented to model the radar sensor. More specif-
ically, conditional deep convolutional generative adversarial networks (cDCGANs)
were used, with a general structure as described by Figure 3.17. Note that the
generator did not have any noise z as input, such that generated samples only were
based on the conditional input c.

G y′

D d

c

y

or

adversarial
loss

Figure 3.17: The implementation of the cDCGAN. For each data frame the gener-
ator G receives a conditional input, c. G then generates a fake data frame, y′, that
is fed to the discriminator D along with c. D then outputs a probability d of the
received sample being true or false. G is then trained on the loss based on this d for
the generated y′. D is trained on both generated samples, y′, and true samples, y.

A detailed description of the layers in the generator and the discriminator for the
final GAN model version can be seen in Figure 3.18. The generator for this model
consisted of 11 layers and was solely based on a residual block architecture, as
illustrated in Figure 2.1. This was easily implemented as the input and output
dimensions for G were of the same grid format, 64 × 64, as seen in Figure 3.18a.
The discriminator for the model consisted of 20 layers, of which the majority were
convolutional layers. Since D took both a conditional input and a radar detection
input it utilised parallel layers for separate input processing.

A training algorithm, that described how the discriminator and generator were
trained simultaneously, was needed for the training of a GAN. As described in
section 2.3.2, the training process of a DCGAN is not necessarily simple, and there
are some methods to stabilise it. For this thesis, a training algorithm that was based
on the methods described in section 2.3.2 was derived for the training of the network
in Figures 3.18a and 3.18b.

The derived algorithm used for the GAN training is described in Algorithm 1. Essen-
tially, the algorithm describes that the decoder should be trained only if its accuracy
on true or generated frames drops below a certain threshold, and that the generator
should be trained otherwise. If a plateau in training is reached, the learning rate
of both generator and discriminator is decreased and the discriminator is trained
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G
Output shape Layer

Conv, 1, sigmoidb× 64× 64× 1

b× 64× 64× 32 Conv Res block, 32
. . .

Input, bnb× 64× 64× 5
Conv, 32, bnb× 64× 64× 32

(a) Description of the implementation of the generator, G, of the cDCGAN, following
the notation described in Figure 3.14. Eight such blocks were used for the generator,
denoted “Conv Res block, 32”. ReLus are used where nothing else is specified, and
batch normalization is performed before the activation function of each layer. No
batch normalization is performed on the output. The input to the generator consists
of the conditional input, that is the lidar data. The generator output is obtained
after activation with a sigmoid function. In total, the generator network consisted
of 150,827 trainable parameters.

Output shape Layer
Input

Conv block, 8, bn
Conv block, 16, bn

b× 64× 64× 1
b× 32× 32× 8
b× 16× 16× 16
b× 8× 8× 32
b× 4× 4× 4

b× 64

Conv block, 32, bn
Conv block, 32 (4), bn

Flatten

Output shape Layer
Input

Conv, 4, bn
Conv, 8, bn

b× 64× 64× 5
b× 32× 32× 4
b× 16× 16× 8
b× 8× 8× 16

b× 128

Conv, 16, bn

Flatten
Dense, bnb× 128

b× 128 Dense, bn

Output shape Layer
Concatenate
Dense, bn
Dense, bn

b× 192
b× 64
b× 32

Dense, sigmoidb× 1

Y

C

D

Conv, 32, bn
Conv, 64, bn

b× 4× 4× 32
b× 2× 2× 64
b× 1× 1× 128 Conv, 128, bn

(b) Description of the implementation of the discriminator in the cDCGAN. The
conditional input of the discriminator was given to C and the radar data, either true
or generated, was given to Y . The output from C and Y is then concatenated in
D which generates the final output. C, Y and D together forms the discriminator.
The figure follows the notation described in figure 3.13 for the Conv blocks. The
convolutional layers in C have a stride of (2,2). The Leaky ReLU activation function
was used for all layers in the discriminator, unless otherwise specified, and batch
normalization was performed after the activation function for each layer. However,
no batch normalization was performed on the inputs. In total, the discriminator
network consisted of 176,077 trainable parameters.

Figure 3.18: Implementation of the cDCGAN. 45
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if it is not too close to saturation. For each training step of either generator or
discriminator, the network is trained on on a number of batches from the dataset,
rather than the whole training set (corresponding to 1 epoch). Generally, the gen-
erator was trained on more batches for one step than the discriminator, since the
generator was slower to learn. This process was then reiterated for a desired number
of training steps.

Algorithm 1 GAN Training Algorithm
1: for i=1:ntrain do
2: if train_D or ((D_val_accuracy_on_true<tD,true
3: or D_val_accuracy_on_false<tD,false)
4: and (G_val_accuracy>tG,bottom
5: or D_val_accuracy_on_true<tD,true,bottom)) then
6: Train D for nD,train steps.
7: train_D = False
8: step_after_D_train = 0

{Generally, D is trained for fewer steps than G.}
9: else

10: Train G for nG,train steps.
11: step_after_D_train += 1
12: end if
13: Validate D and G.
14: Save D_val_accuracy_on_true.
15: Save D_val_accuracy_on_false.
16: Save G_val_accuracy.
17: if step_after_D_train ≥ nmin,plateau then
18: Get average_diff for G_val_accuracy from past nmin,plateau steps.
19: if average_diff < tplateau then
20: Decrease D learning rate by multiplying with αD.
21: Decrease G learning rate by multiplying with αG.
22: if (G_val_accuracy>tG,bottom
23: or D_val_accuracy_on_true<tD,true,bottom) then
24: train_D = True
25: end if
26: end if
27: end if
28: end for

The hyperparameters for generator and discriminator were set as described in Ta-
ble 3.2. The main goal of the parameter settings was to prevent either D or G from
saturating. The optimiser for both D and G was the Adam algorithm [44], with
initial learning rates given by γD,init and γG,init respectively. The β1 value of Adam
was also tuned for each network, as seen in Table 3.2. With the chosen training al-
gorithm and parameters, the GAN model described by Figures 3.18a and 3.18b was
trained on approximately 5,120,000 data frames, with some repetitions, for approx-
imately 24 hours. The training was stopped when the network accuracy started to
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converge to a constant value for a validation dataset. No convergence was attained
for the GAN model, in the sense that G never reached a point at which D no longer
could be trained to distinguish between generated and real samples.

Table 3.2: The hyperparameters used for training a GAN with Algorithm 1. All of
the parameters were tuned for the training of the network described by Figures 3.18a
and 3.18b.

Hyperparameter Description Value
b Batch size. 64
ntrain Number of training steps for the model. 400
nD,train Number of training steps for D. 5
nG,train Number of training steps for G. 200
nmin,plateau Minimum number of training steps in a plateau. 4
tplateau Threshold in difference of accuracy for a plateau. 0.02
tD,true Threshold in accuracy on y data for D. 0.7
tD,false Threshold in accuracy on y′ data for D. 0.6
tG,bottom Bottom threshold in accuracy for G. 0.2
tD,true,bottom Bottom threshold in accuracy on y data for D. 0.6
γD,init Initial learning rate for D. 0.0001
γG,init Initial learning rate for G. 0.00001
β1,D β1 value for D. 0.5
β1,G β1 value for G. 0.99
αD Decrease in learning rate for D. 0.9
αG Decrease in learning rate for G. 0.9

3.4 Detection Sampling from Network Output

The networks were trained on binary data, as described in section 3.2. However,
the networks can never output something that is completely binary. It will always
be beneficial for them to include some uncertainty in the output. Hence, the output
from the networks were matrices with values ranging from 0 to 1. This output can
be interpreted as a probability distribution, where a grid element with a value close
to 1 indicates that it is likely to find a detection in the area covered by the grid
element.

Since the output from the models were probability distributions, a sampling had to
be performed to get separate radar detections. The sampling can be performed in
many ways, preferably with parameters corresponding to the dataset. No significant
effort was put into deriving a sampling method for the radar models in this thesis.
However, for illustrative and pedagogical reasons, some sampled frames are included
in the results. For these, a naive sampling method was used, where detections were
sampled from the radar detection distribution Pdetection(x) for a position x with an
added constant threshold, τ . The distribution that was used to generate samples
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can thus be described as,

P τ
detection(x) = Pdetection(x)− τ. (3.1)

Consequently, the threshold adjusts the number of expected detections for each
frame. A higher threshold leads to a lower number of expected detections from
P τ

detection(x).

3.5 Evaluation Methods

A stochastic generative radar model has no straightforward evaluation method.
Since the aim of this project was to create a stochastic generative radar model,
the evaluation of the results was not straightforward. On one hand, the output from
the model should be similar to the true radar detections used as labels in the net-
works, as well as the the conditional input. Here, similar does not necessarily refer
to identical, but rather that the generated output resembles the true one, with some
variation. The generated detections should also correspond to the conditional input
for each frame. On the other hand, the model should display the general behaviour
of a radar. For example, it should on average generate as many detections as a real
radar sensor would, and in the same ranges.

Thus, evaluating and comparing different models was not an easy task, and many
different aspects had to be considered. Therefore, several different approaches were
used in this project when testing the different radar models. These mainly concerned
the average behaviour of the model and frame by frame comparisons.

As already mentioned, the output from the model should on average display the same
behaviour as a real radar sensor would. Hence, comparisons of the distributions of
different features over all frames were included in the evaluation. Histograms and
heatmaps like the ones in section 3.2.3 were computed for the generated detections
corresponding to the test set and then compared.

The generated output was also compared frame by frame to the real radar detections
and conditional input. Ten frames from the test set were chosen to be representative
of the data, and these frames were used to evaluate the results from all models. Four
of these frames were described in section 3.2.4, and they will be used in Chapter 4
to describe the model results for some specific scenarios.

The model should also be stochastic. That is, the output from the model should be
different every time the model is used. Since the output from a model was interpreted
as a probability distribution, this was always accounted for in the sampling. The
stochasticity was also ensured in the models that were given random noise as input.

To conclude, visual evaluation was the primary tool in evaluating the results of the
implemented radar models. Similarly to previous work on radar modelling, modelled
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radar detections were visually compared to true radar detections [8]. Because of the
complex behaviour of a radar sensor, most loss functions that may be implemented
to get a model accuracy metric are not suitable, and visual evaluation turns out to
be the best option.
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When training the models presented in section 3.3 with the data described in sec-
tion 3.2, both of them show potential of being useful for radar modelling. Even
though both the VAE and GAN are deep generative models that share many prop-
erties, they exhibit several differences in their generated output. Both models have
their own advantages as well as difficulties.

In general, the networks do not produce a binary output. Hence, the output is
interpreted as a probability distribution, describing the probability of detections for
each position in each frame. The sampling method described in section 3.4 is used
to generate detections from this distribution. This makes it possible to compare
detections from the radar model with those of a real radar sensor.

Both models are trained on the dataset described in section 3.2.3. They are then
tested on the test set described in the same section. The output from the models
is visualised in the same way as the dataset, using heatmaps and histograms. The
output corresponding to the four test frames presented in section 3.2.4 is also in-
cluded, frame by frame. In the following sections, the results from the VAE and
GAN models described in Chapter 3 are presented further.

4.1 Predictions from the Conditional Variational
Autoencoder

In this section, the result from the VAE implementation described in section 3.3.1
is presented. The generated samples are based on the conditional input, that is the
lidar data, from the test set. The overall performance on the test set is visualised
in Figures 4.1 and 4.2, and separate outputs from the four test frames described in
section 3.2.4 are displayed in Figure 4.3.

In Figure 4.1a, the predicted output for all frames in the test set are depicted as
a heatmap. All of the generated samples were added up to produce the heatmap,
before performing any sampling. Compare with the real data in the test set in
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Figure 3.9c. Looking at the two white lanes in the middle of the grid in Figure 4.1a,
and the dark borders, it is clear that the model is able to learn in which areas
detections are more likely. Furthermore, the lanes in Figure 4.1a are very similar
to the ones for the whole dataset in Figure 3.9a, more so than to the test set in
Figure 3.9c. However, the grid point frequency around the lanes is a bit more
smudged than for both Figure 3.9c and Figure 3.9a.

In Figure 4.1b, the predicted output for all frames in the test set has been subtracted
with a threshold of τ = 0.4, after which the output has been averaged over to create
a heatmap. The resulting distribution limits the likelihood of detection to two lane
shaped regions in front of the ego vehicle, and there is no detection probability for
the regions that are not in the centre of the polar grid. As a result, it is not very
similar to the average behaviour of the radar data in figures 3.9a and 3.9c, as the
radar data also exhibits a probability of detection in the grid margins.

The histogram in Figure 4.2a clearly shows that this model is much more prone to
generate detections than a real radar sensor. This is clear when comparing with
Figure 3.10c. It does, however, exhibit peaks similar to the ones in the test set,
although more distinct and at different values.

 

(a) Output from network.

 

(b) After thresholding.

Figure 4.1: Heatmap over predicted grid points, i.e. predicted radar detections,
from the VAE model. Predictions for all frames in the test set have been added to
generate the heatmap. In a, the raw output from the network is depicted. In b,
a threshold of 0.4 has been subtracted before adding the frames. The result can
be compared to the true data in Figure 3.9c. Note that since the output from the
model is not binary, but a number between 0 and 1, it is the expected number of
detections that is depicted.
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(a) Output from network. (b) After thresholding.

Figure 4.2: Histograms over the number of detections per frame, as predicted by
the VAE model, using all test frames in the data set.Note that since the output from
the model is not binary, but a number between 0 and 1, it is the expected number
of detections that is depicted in these figures. Figure 4.2a depicts the distribution
from the raw output from the network, before any sampling has been performed.
In Figure 4.2b, a threshold of 0.4 has been subtracted from all probabilities before
computing the expected number of detections. The true number of grid points per
frame, as was depicted in Figure 3.10c, is included in grey in the background.

In Figure 4.2b, the distribution of the expected number of frames after sampling
with Equation (3.1) is visualised. Here, a threshold of τ = 0.4 was applied before
the expected number of detections per frame was computed. This results in values
in the same range as the true data in Figure 3.10c. However, even after thresholding,
the shape of distribution for the VAE in Figure 4.2b is not similar to that of the
distribution for the radar data in Figure 3.10c.

In Figure 4.3, the generated outputs for the four test frames described in section 3.2.4
are depicted. The left column contains heatmaps describing the output from the
network, ranging from 0 to 1, for each frame. The red crosses are the true radar
detections, included for comparison. The network produces little variation between
the four frames, and it is hard to find a clear correspondence with the conditional
input.

In the right column of Figure 4.3, detections have been sampled by interpreting the
output as a probability distribution and using the naive sampling method described
in section 3.4, with a threshold of 0.4. The threshold was chosen to decrease the
number of sampled detections, and to make them similar to the true ones. The
sampled detections are depicted in red. To illustrate the correspondence between
sampled output and conditional input, the conditional input from the lidar has also
been included for the plots in the right column. The plot colours are explained in
Figure 3.7. Visibly, there is little correspondence between the sampled output and
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the conditional input for the VAE.

 

(a) Output, test frame 1.

 

(b) Sampling, test frame 1.
 

(c) Output, test frame 2.

 

(d) Sampling, test frame 2.
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(e) Output, test frame 3.

 

(f) Sampling, test frame 3.
 

(g) Output, test frame 4.

 

(h) Sampling, test frame 4.

Figure 4.3: Output from the VAE for test frames 1, 2, 3 and 4. Each row represents
one frame, where the VAE output distribution is given as a heatmap in the first
column and the subsequent sampling from the distribution is given in the second
column. True detections are included as red crosses in the heatmaps in column 1
for comparison. The sampled detections and the conditional input in column 2 are
described by the colours as seen in Figure 3.7. The sampling from the heatmap in
column 2 was performed using the naive sampling method described in section 3.4
with threshold 0.4. Compare with the photos of the test frames in Figure 3.11 and
the conditional input for the frames in 3.12.
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4.2 Predictions from the Conditional Generative
Adversarial Network

The best performing radar model based on a GAN architecture is described in
section 3.3.2. This model generated results for all frames in the test set, as described
by Figures 4.4 and 4.5, and instance results for the chosen test frames, as shown in
Figure 4.6. The model learns how to map a given conditional input to a possible
radar output. It displays a high capability of changing its output depending on the
conditional input from the lidar, and does not merely perform an identity mapping.

 

(a) Output from network.

 

(b) After thresholding.

Figure 4.4: Heatmap over predicted detections from the GAN model. Predictions
for all frames in the test set have been added to generate the heatmap. In a, the raw
output from the network was used. In b, a threshold of 0.8 was subtracted before
adding the frames. The result can be compared to the true data in Figure 3.9c.
Note that since the output from the model is not binary, but a number between 0
and 1, it is the expected number of detections that is depicted. The GAN model
displays some output artifacts at the edges of the grid in a. The most prominent
artifact is seen at the left edge, where a clear white line resides.

As can be seen in Figures 4.6e and 4.6g, the radar model displays higher probabilities
of detection in regions for which there exist real radar detections. Moreover, the
regions with lower Pdetection seemingly contain less real radar detections. This is
most clear in Figure 4.6g, for which few real detections are found in the darker
regions, corresponding to a lower Pdetection.

However, a clear exception from the general correspondence between real radar
detections and model Pdetection can be seen in Figure 4.6c. Here, real detections are
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only generated for the steel barrier to the left of the ego vehicle, which can be seen
in Figure 3.11b. The model, on the other hand, displays a high Pdetection also for the
concrete barrier that the lidar registers to the right and for the barrier noise to the
left.

Another exception from the correspondence between the radar sensor and the model
is that the model generates a much higher number of expected grid points per frame
than the actual number of grid points per frame for the radar. Figure 3.10c displays
a frequency for grid points in the range [0, 60] for the radar, while the corresponding
Figure 4.5a for the GAN model has a range of [1000, 1500].

To compensate for the high frequency of detections, a threshold is applied before
sampling from the generated output, as described in section 3.4. For this model,
a threshold of 0.8 is used. When subtracting this threshold before computing the
expected number of grid points, the histogram in Figure 4.5b is obtained. Here,
the number of expected detections lie in the same range as for the radar data in
Figure 3.10c. Moreover, the shape of the distribution in Figure 4.5b for the GAN
model is very similar to that of the radar data.

(a) Output from network. (b) After thresholding.

Figure 4.5: Histograms over the number of detections per frame, as predicted
by the GAN model, using all test frames in the data set. Figure 4.5a depicts the
distribution from the raw output from the network, before any sampling has been
performed. In Figure 4.5b, a threshold of 0.8 has been subtracted from all proba-
bilities before computing the expected number of detections. The true number of
grid points per frame, i.e. corresponding to Figure 3.10c, is included in grey in the
background for easier comparison.

In the right column of Figure 4.6 the model output for the four test frames has been
sampled with a threshold of 0.8. The lidar data given as input is also displayed in
the column to depict the correspondence between sampled output and conditional
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input. The plot colours for the lidar and radar data are explained in Figure 3.7.
Visibly, there is a correspondence between the output from the GAN model and the
conditional input. For example, this clear correspondence is apparent in Figure 4.6f
for which a number of model detections are generated with a clear correspondence
to the two closest vehicles and to the barriers seen in the conditional input.

A more curious observation that can be made for the results of the GAN model is
that it does not generate a zero probability of detection in the grid margins. This
differs from the behaviour of the real radar data, as can be seen by comparing the
grid point frequency of the radar sensor in Figure 3.9c with the expected frequency
of the radar model in Figure 4.4. Seemingly, the model never generates a Pdetection
of zero in regions for which there are no lidar grid points. Rather, the model only
generates a zero probability of detection in the close presence of a high detection
probability. This is most prominent in Figure 4.6h for which there are only two
objects. In this figure, clear dark shadows are present behind brighter areas in the
point of view of the ego vehicle. In regions where no lidar grid points are present, a
constant probability of detection of ∼ 0.3 is given.

Moreover, the GAN model displays a set of artifacts that are most prominent in
Figure 4.4a, for which several model frame predictions have been added. These
artifacts also have a subtle presence for the test frames in Figure 4.6. The artifacts
reside on all of the edges of the polar grid, of which the most outstanding one is
seen as a white stripe on the left grid edge in Figure 4.4. There is also a darker
blue stripe on the right edge of the grid, along with synthetic-looking stripes on the
upper edge of the grid. These artifacts make it obvious that the output has not been
generated by a real radar sensor. See section 5.3 for a deeper discussion pertaining
the GAN artifacts.

After thresholding with 0.8 for the GAN output, the artifacts disappear and the
model heatmap becomes more similar to that of the radar data, as can be seen
for the heatmap of the model and the radar data in Figure 4.4b and Figure 3.9c.
Moreover, the thresholded heatmap in Figure 4.4b is similar to the heatmap of the
lidar in Figure 3.9d. This clearly shows that the GAN model output corresponds to
the conditional input.

Lastly, an apparent difference between the results for the GAN model and the radar
data is that the model predicts more detections on a short range, close to the host
vehicle. As can be seen in Figure 3.9c, the radar data has a grid point frequency
that is essentially zero for short ranges. This is not the case for the radar model,
which may be observed in both Figures 4.4a and 4.4b. In this sense, the model
behaviour is more similar to that of the lidar data, which does not generate a zero
grid point frequency for short ranges, as seen in Figure 3.9d.
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(a) Output, test frame 1.

 

(b) Sampling, test frame 1.

(c) Output, test frame 2.

 

(d) Sampling, test frame 2.
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(e) Output, test frame 3.

 

(f) Sampling, test frame 3.
 

(g) Output, test frame 4.

 

(h) Sampling, test frame 4.

Figure 4.6: Output from the GAN for test frames 1, 2, 3 and 4. Each row represents
one frame, where the GAN output distribution is given as a heatmap in the first
column and the subsequent sampling from the distribution is given in the second
column together with the conditional input from the lidar. True detections are
included as red crosses in the heatmaps in column 1 for comparison. The sampled
detections and the conditional input in column 2 are described by the colors as seen
in Figure 3.7. The sampling from the heatmap in column 2 was performed using
the naive sampling method described in section 3.4 with threshold 0.8.
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With the methods described in Chapter 3, a dataset and neural network models were
created and developed. In turn, these generated the results presented in Chapter 4.
What remains is to motivate, evaluate and discuss the chosen methods and results.
This also leads to propositions of future work that may improve on radar modelling
with deep learning methods.

5.1 Sensor Capacities and Data Limitations

Since the radar models were trained on data from radar and lidar, they were limited
by the capacities of these sensors. For example, the lidar used for this project has
a shorter range than the radar sensor. Hence, the range of the radar model, rmax,
was chosen with respect to the range of the lidar. Apart from the range, there are
several other sensor limitations to take into regard when defining the limitations of
the radar models. These include the sensor errors, lidar object classification limita-
tions, azimuth limitations, weather limitations, occlusion limitations, and so on. A
thorough understanding of the sensor limits, on which the models are constrained,
is necessary to argue for the validity of our radar models. In the sections below, we
will dvelve into some of the aspects of this.

5.1.1 Lidar as Conditional Input

Lidar data was used as conditional input to describe the environments of the radar
models. This is a serious constraint. Ideally, the conditional input should give an
exhaustive and accurate description of the environment of the radar sensor or model,
such that the information generated by the radar sensor or model is a subset of the
environmental description. That is, no information detected by the radar should be
missed by the lidar. Because of this, the radar data was formatted to be limited
by the perception field of the lidar, such that it complied with lidar limitations, for
example with regard to range.
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Apart from imposing sensor limitations on the models, the lidar data is not per-
fect, and hence it may violate these limitations and/or be erroneous. For example,
in Figures 3.11d and 3.12h the lidar completely misses a concrete barrier and ap-
pendix B displays a frame for which the lidar detects vehicles that do not exist.
In Figure 3.12d, the lidar mistakenly labels the trees on the left side of the road
as barriers. Moreover, the sizes of lidar objects are often distorted at a distance.
A common case is that the lidar only detects the back of a car, such that the car
appears to have the correct width while being far too short lengthwise. See for
example appendix B. The radar and lidar may also spot different things within the
same sensor limitations. For example, the radar sensor is able to see through objects,
while the lidar is not.

Additionally, the lidar information is not exhaustive, such that it for example does
not specify whether a barrier is made out of concrete or steel. This information is
important to the radar, as can be seen in Figures 3.12c and 3.12d where no radar
detections are given for a concrete barrier, while several detections are given for a
steel barrier in the same frame. As a result, both the VAE and the GAN radar
models perform poorly for this frame, as can be seen in Figures 4.3c and 4.6c.
Consequently, material parameters also form a necessary input to the model, as the
model cannot figure out whether an arbitrary barrier should be detected or not by
itself.

The consequence of using lidar data for environmental descriptions is that the radar
models developed with this assumption will try to compensate for the fallacies of
the lidar. E.g. the models may ignore some barriers at random instances, or display
possibilities for detections in areas for which the lidar generally misses objects. The
latter case is very apparent for the GAN model results in section 4.2, as the model
never indicates a zero probability of detection in regions that lack lidar data. These
model compensations might lead to issues if the model is to be used in a simulation
environment, where the conditional input actually is without fallacies.

5.1.2 Finding Accurate Sensor Limitations

As noted in the previous section, it is important to find accurate limitations of the
sensors used to generate model data. For example, it could be argued that the range
for the data grids should have been shorter than rmax, since the used lidar fails to
properly detect object dimensions after a range of approximately 2

3rmax.

Different methods can be used to define accurate sensor limits. For example, the
provided sensor capacities may be used as limits, or a limit can be defined based on
statistical data for the sensors. For this thesis, the latter approach was used to find
that the lidar performed adequately for a maximum range of rmax. However, a more
thorough investigation of sensor limitations than the one performed for this thesis
is possible, and should be beneficial to the radar model performances.
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5.1.3 Choice of Data Format

The decision to use the grid data format, as described in section 3.2.2, will be
motivated here. Originally, the radar and lidar data was given as lists of detections
and objects in every frame. For this thesis, the radar and lidar data was formatted
from a list format to a grid format. The motivation for the decision to use the
grid data format is based on an analysis of the different possible formats and of the
desired neural network input format.

The list format is seemingly more manageable, and fits into the radar tracking
algorithm that is to be applied to the radar detections. It also avoids the problem of
the approximate positions in the grid. However, to be able to formulate a sensible
loss function from such a list, one would have to know which true detection list
entry corresponds to which generated detection list entry, and compute the distance
between them. Also, if the output is a list, the fact that it is of variable length needs
to be accounted for. Moreover, it is difficult to describe the shape of listed objects.
While the area of vehicles of reasonable size may be described in a list using their
bounding boxes, barriers are harder to describe in a list.

In order to avoid the issues associated with working with list inputs, grid inputs can
be used instead. When using grids, no correspondences need to be found between
generated and true detections, since one can simply compare the values in each
position in a grid to the true ones. The grid format also allows for any number
of generated detections and makes it easy to describe object shapes. However, a
disadvantage of using a grid format is that a new layer needs to be added to the
grid for each added object feature. To describe e.g. position, object class, material
information and velocity, four layers are needed. This results in many layers if many
features are desired, and might become strenuous to compute. Moreover, the grid
format risks creating sparse data, i.e. many elements in a grid may be zero.

Seemingly, the grid format is more suitable for an input to a neural network. Firstly,
with grids as input, where the ordering of the grid entries matters, convolutional
layers can be applied to guide the network in understanding the spatial association
between grid points. Moreover, the connection between the conditional input and
the radar output should be easier to understand if the data from both lidar and
radar are described in a spatial grid instead of as separate list entries. Also, the grid
format made it easy to use residual blocks in the GAN models, and as described in
section 2.3.2, residual layers generally make GAN training easier.

The choice of polar coordinates in the grid is motivated by the fact that the require-
ments on the accuracy of a sensor model in general are stricter in the vicinity of
the ego vehicle. Moreover, the shape of the polar grid matches the field of view of
the radar sensor. The disadvantage of polar coordinates is that the resolution of the
data is low for long ranges in the grid, such that the position for objects far away
may be given within a range of several meters. However, this minimum resolution
also depends on the limitations of the number of rows and columns in the polar grid.
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The data representation was limited to 64 rows and 64 columns in the grids. This
leads to some approximations in the positions of the detections and objects and is
particularly noticeable in the far end of the grid, where the boxes are larger due to
the polar coordinates. More rows and columns would give more detailed data, but
also increase the file size and training time.

With the chosen data format, the radar models were able to produce reasonable re-
sults, as seen in Chapter 4. Moreover, the format of the plotted data in section 3.2.4
is adequate, such that objects generally scale well over different ranges and e.g. bar-
riers and buildings are sufficiently described. Based on the architecture of obtained
models and their respective results, a grid format was optimal for this thesis and
seems to be a good choice for future work on radar modelling with neural nets.

Naturally, there is potential to improve upon the chosen data format. For example,
it should be beneficial to input a more detailed description of the environment to
the model. A 3D grid describing the height of the different objects might help the
model generate representative detections. However, this would extend the training
time further as the size of the data to be processed is increased.

5.1.4 Reasonable Expectations of the Results

Given the limitations discussed previously, it is clear that a model trained on the
data used in this project can not be expected to perform perfectly, since the data
itself is not perfect. For example, the lidar could miss an object that the radar
detects. When the model is trained on such a frame, it learns that it sometimes can
be beneficial to generate detections in places where the lidar has not registered any
objects. This property is not desired in the radar model.

Moreover, the networks can not generate a binary output similar to the input,
without making any round offs. Hence, we have chosen to interpret the output
as a probability, from which detections can be sampled. This is not optimal, as
the generated output always will differ in character from the input. Further, the
networks will not output a real probability distribution, in the sense that they are
not trained for probability distributions. Instead, the model output is something
between a probability distribution and point-wise detections. Possibly, the network
could benefit from receiving an input that is an actual probability distribution, or
from receiving an input that has been softened by for example adding noise to the
binary data.
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5.2 Analysis of the Conditional Variational Au-
toencoder

The results in section section 4.1 show that a CVAE has the potential to learn
some of the properties of a real radar sensor. A clear correspondence to the general
behaviour of the radar data is visible, such as less detections in the vicinity of the
ego vehicle. The model is able to output frames that are similar to this average
behaviour. Though, the distribution over the number of grid points per frame does
not correspond to the true one, even after thresholding.

A well known problem when using VAEs is that the results tend to be blurry and
smudged. This is confirmed by the results in section 4.1. Even though the CVAE is
able to learn some useful properties, the generated output is too general and there
is not much variance between the frames. The network is strongly bound to the
general behaviour of the radar data, and lacks the ability to properly adapt to the
conditional input.

The main issue with using CVAEs for this problem is to define a proper loss function.
It is desirable to have a generated output that is similar to the real detections, but
they do not necessarily have to be exactly the same. For example, a generated
detection that is right next to a true detection in the grid might be just as good as
if it was generated in the exact same spot. This is hard to define in a loss function.

5.3 Analysis of the Conditional Generative Ad-
versarial Network

As can be seen in section 4.2, the CGAN was able to learn to generate something
that is similar to a radar output for a given environment. While the model output is
not exactly the same as the radar output, a clear correspondence can be observed be-
tween model and sensor, especially after thresholding. However, some disadvantages
can be observed with the model, and there is potential for improvement.

A great fallacy of the CGAN model is that it is prone to generate artifacts, as can be
seen in Figure 4.4a. It is unclear as to exactly what is causing these artifacts. Pos-
sible causes may be boundary conditions for the convolutional layers, the generator
architecture, the discriminator architecture, or lack of convergence during training.
It is not uncommon to have artifacts for deep convolutional networks, e.g. checker-
board artifacts may occur due to transposed convolutional layers, as discussed by
the creators of EnhanceNet [9]. However, the artifacts seen in Figure 4.4a are not
of the checkerboard type, and may instead originate from some other layer of the
CGAN. An investigation should be performed to try to determine the cause of the
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artifacts and to remove them, as they clearly should not be a part of a real radar
output.

When a threshold is applied to the CGAN model output, these artifacts disappear,
as can be seen in Figure 4.4b. Moreover, with thresholding, the model output
becomes similar to the radar data both with regard to the heatmap in Figure 4.4b
and to the histograms in Figure 4.5b. Consequently, if the CGAN model is to be
implemented to model a radar, it should be used together with some thresholding
method.

Another potential fallacy of the CGAN model is that it has learnt to compensate for
the shorter range of the lidar. That is, the model never generates a zero probability
of detection in areas where lidar data is lacking. This clearly points to the flaws
in using the lidar data for environmental descriptions, as the CGAN model has
learnt that objects still may exist in regions for which the lidar does not register any
objects. This fact is partly compensated for when subtracting the threshold, as can
be seen in Figure 4.4b. Here, the expected grid point frequency is zero at the edges
of the grid.

Moreover, it is clear that the CGAN model performance could be improved by
including material parameters of registered lidar objects. As can be seen in for
example Figure 4.6c, the model predicts detections for a concrete barrier, even
though a real radar sensor would not detect it. This is because the model treats all
barriers the same, without knowing whether they are made of concrete or steel.

Lastly, the CGAN model fails to capture some of the general properties of the radar
data. For example, as can be seen in Figure 4.4, the network has not learnt to omit
detections within short range. This may be a result of the fact that the network was
trained on too few epochs. Compared with the VAE which was trained for 30 epochs,
the CGAN was only trained on 5,120,000 frames, corresponding to approximately 4
epochs of the dataset.

In conclusion, while the CGAN displays some errors and has potential for improve-
ment, it is evident that this network has the capacity to model a radar. The model
shows a clear correspondence to conditional input given by the lidar, and it has a
behaviour that is similar to that of a radar sensor. Also, a clear advantage of using
the CGAN model is that its generating part does not need to be trained for an
explicit loss function. This enables the model to learn the actual radar behaviour,
without any explicit limitations.

5.4 Comparison of Model Results

Overall, the VAEs and GANs used in this project have displayed the types of prob-
lems and properties that are well known for these types of generative networks. For
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example, the output from the VAE was blurry, but captured the average behaviour
of the data. On the other hand, the GAN was better at producing samples with fine
resolution, but had a complex training process and did not necessarily converge.

Based on the results presented in Chapter 4, the GAN model seemingly fits the
purpose of the radar model better. Its main advantage is that it shows more cor-
relation to the conditional input. Also, when using GANs, the problem of defining
a loss function is circumvented. The distribution of expected grid points per frame
generated by the GAN, in Figure 4.5, also has a clearer correspondance with the
real radar detections than for the VAE in Figure 4.2. However, the GAN model
lacks some of the general radar properties that the VAE displays, such as the lack
of detections near the ego vehicle and a low probability of detections at the edges.
Nevertheless, the latter issue seems to be avoidable by applying sampling, as can be
seen in Figure 4.4b.

Given the results of this thesis, a network that combines a GAN and a VAE seemingly
has the potential to perform even better at producing a satisfying output. Moreover,
different types of coalitions between VAEs and GANs have already been used in
previous research [5, 27]. A common approach is to replace the generator in a
GAN with a VAE. However, this is not trivial to realise. Even though the networks
proposed in this project produce somewhat similar outputs, their training procedures
are very different. Since their respective objective is different, the VAE loss and the
adversarial loss might end up in a situation where they pull the network in different
directions.

5.5 Performance of the Evaluation Methods

The question remains as to what the correct behaviour of a radar model should be.
Two different methods to define this for a network, either with a loss function or by
the employment of a discriminator, were used. For the analysis of the performance
of a radar model, a combination of the overall statistics of the model output was
studied alongside direct outputs for some test frames. Primarily, the performance
of the models was evaluated using the perceptual senses of the authors. Clearly,
more work on defining how a radar sensor should behave for different scenarios will
benefit the development of accurate radar models.

Additionally, the radar models should be evaluated with regard to the objective of
the thesis, i.e. to create a model of a radar for facilitation of virtual verification
of ADAS and AD systems. The optimal approach to this would be to study the
existing radar models used for virtual verification, as self-driving systems already
are tested virtually, and to compare them to the radar models created for this thesis.
Presumably, there should already exist initial knowledge pertaining the validation
methods for virtual verification systems, and it would be interesting to apply it
to the performance of the developed radar models. However, with the methods
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used in this thesis, the performance of the radar models has only been evaluated
with regard to that of real radar sensors. Thus, further research with respect to
the validity of virtual verification with sensor models is necessary before the radar
model performance can be put into perspective with the objective of this thesis.

5.6 Future Work

Although some promising results for modelling a radar using VAEs and GANs were
obtained in this project, additional work is needed before the models can be used for
virtual verification. Some of the potential aspects for accuracy improvement have
already been discussed in the previous sections. These concern more accurate data,
more information included in the data, further network development, more training
time and more accurate evaluation methods. Additional examples of future work
on radar modelling that are related to the enablement of virtual verification are
described below.

First of all, the output from the models in the thesis need to be converted to a
binary format. A better method for sampling from the output is needed. Unlike
the naive sampling method used in this project, where detections where sampled
independently of each other, a rigorous sampling method should take detections in
the vicinity of a possible sample into account.

Also, to be able to apply a standard tracking algorithm on detections, velocities are
needed. To model this, the velocity of each detection could either be given as an
additional input and output from the network, or the model could be adjusted to
work with series of frames.
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Conclusion

In this thesis, deep generative networks were used to model a radar sensor in au-
tomotive scenarios. Two different network structures were proposed, a conditional
variational autoencoder and a conditional generative adversarial network. The con-
ditional variational autoencoder was able to learn where radar detections are more
likely, but produced blurred samples and had trouble with generating varying out-
puts for different frames. The conditional generative adversarial network gave more
fine grained radar samples that corresponded to the conditional input, while it did
not completely converge and lacked some of the average radar behaviour that the
VAE could display. We can conclude that neural networks have the potential to
model radar sensors for the set up described in this project, and that the generative
adversarial network holds the most potential of the tried networks. However, before
the models can be of use for virtual verification, more work needs to be done in
creating a rigorous sampling method for the network output and in deriving more
accurate evaluation methods.
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Figure A.1: The ten test frames used for model evaluation. These are sampled
from the test set described in section 3.2.3.
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Appendix 2 - Lidar Errors

For the frame shown in Figure B.1, the lidar erroneously detects non-existent vehi-
cles, as can be seen in Figure B.2. And for the frame shown in Figure B.3, the lidar
gives incorrect dimensions of detected objects, as can be seen in Figure B.4.

Figure B.1: Photo of a test frame taken from the ego vehicle. There are two other
vehicles in the vicinity of the ego vehicle, and no barriers.

 

(a) Radar Detections

 

(b) Lidar Objects

Figure B.2: The radar and lidar grid for the frame in Figure B.1. In b, observe
that the lidar registers three non-existent vehicles, in blue, on both sides of the road.
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Figure B.3: Photo of a test frame taken from the ego vehicle. There are five other
vehicles in the vicinity of the ego vehicle, and a steel barrier can be observed on the
right side.

 

(a) Radar Detections

 

(b) Lidar Objects

Figure B.4: The radar and lidar grid for test frame 9. See Figure B.3 for a photo
of the scenario. In b, observe that the lidar registers different object dimensions
for the two vehicles further away and the three vehicles that are closer to the ego
vehicle. The two far-away vehicles are given much smaller dimensions, while they
seemingly should not be smaller, as can be seen in Figure B.3.
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