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Abstract
Battery technology has gained significant attention in recent years due to the electric
vehicle revolution. Safety is an important concern for stakeholders, with several
reported incidents of thermal runaway. In this work, fault detection algorithms are
designed and evaluated for various levels of the internal short circuit in a battery
cell. A plant model of the battery cell and pack are designed for fault simulation
both in Simulink and Simscape. A comparative analysis based detection strategy
is first evaluated where estimated open circuit voltage is the metric for comparison.
Satisfactory detection is observed with this technique for various intensities of the
internal short circuit. A second method for detecting abnormal self-discharge using
a linear fit on terminal voltage measurements is also evaluated. Finally, a state of
charge and parameter estimator is developed using frequency separation and used
for estimating the short circuit resistance. Capacity of the cell is also estimated
using this methodology. The estimates obtained are observed to be close to the
actual values used in the plant model, thus enabling monitoring of the intensity of
internal short.

Keywords: Battery, logical cell, individual cell, state of charge, open circuit voltage,
internal short circuit, short circuit resistance, recursive least squares, forgetting
factor, parameter estimation
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1
Introduction

In recent years, the interest towards electric and hybrid vehicles have risen sharply
[1], with lithium-ion batteries gaining prominence as the energy source [2]. The driv-
ing factors for their widespread usage is attributed to their energy density, power
density, reliability and long life [2] which proves to be very promising. However,
safety remains a crucial issue to be addressed [3], and there have been several re-
ported accidents such as the fire in a Boeing 787-8 aircraft [4], and battery failures
in Samsung Note 7 [5]. Thus, there is an imminent need to develop fault detection
techniques that can offer reliable indications ahead of time so a hazardous incident
is thwarted.

The most common reason behind thermal runaway in a battery has been identified
as internal short circuit (ISCr) [6], although other reasons such as chemical crossover
[7] can also result in a thermal runaway. This project, however, will focus on the
modeling and detection of an ISCr in a battery cell due to its widespread nature.
There can be several possible factors that lead to the short circuit in a battery, such
as defects in manufacturing [8], overcharge [9] or overdischarge [10].

There have been several techniques proposed in literature for fault detection in a
battery pack. Some methodologies are not model based and use either additional
measuring equipment or special tests to detect abnormal self-discharge. In one such
method, a fault is both detected and isolated from electrical current measurements at
the terminals of a battery pack with multiple parallel strings [11]. Another method
proposes installing multiple sensors with different response speeds and reliability
for definitive fault detection [12]. A third method uses the self-discharge current as
the metric and estimates it through a dedicated test [13]. In this project, however,
model based fault diagnosis schemes will be investigated as it offers many inherent
benefits such as low cost and increased flexibility [14]. Furthermore, inaccuracies in
the model can be handled with some observer-based estimation techniques [14].

In the model based detection camp, several possible approaches to fault detection
have been proposed. These can further be broadly characterized into methods that
use the internal short circuit resistance (RISCr) as a fault metric and ones that do
not. The former set of methods is typically used under operating constraints such
as evaluating faults in a cell without information from other cells in a battery pack
or availability of only the battery pack terminal voltage without individual voltages
of cells. In techniques without RISCr calculation, the method observed to be most
promising in the context of this project work involves evaluating consistency of es-
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1. Introduction

timated open circuit voltage/internal resistance between different series-connected
cells in a battery pack [15], which offers accurate detection. Another method uses
combined estimated parameters of an equivalent circuit model (ECM) and an energy
balance equation (EBE) model in order to detect a fault [16]. This technique offers
detection of a nascent or instantaneous ISCr, and is robust w.r.t location of the fault
in the battery cell. However, verification of this algorithm was done for only one
current profile and it is unsure if reliable parameter variation will be obtained with
other profiles. Some other methods involve Multiple Model Adaptive Estimation
(MMAE) algorithms that use several models simulating the healthy state and var-
ious fault conditions, and corresponding Extended Kalman Filters (EKF) for each
condition [17], [18]. The residuals from the multiple EKFs are assessed to determine
likelihoods of the battery being in one of the states. This method has the obvious
disadvantage of being computationally intensive and also, the number of fault con-
ditions considered might not be exhaustive. Electrochemical model based detection
methods have also been proposed [19], but complexity can be a crucial issue with
such techniques.

To give a brief overview of methods attempted using the RISCr as a metric, a model
is typically used in combination with various measurements for estimation. For
instance, in methods proposed in [20], [21], voltage and current measurements of in-
dividual cells are employed to estimate the Open Circuit Voltage (OCV) and State
of Charge (SOC) of the faulted cell using which the RISCr is calculated. Another
method estimates the faulty cell RISCr in a battery pack using voltage measure-
ments of the entire pack along with an equivalent circuit model of the pack with the
EKF algorithm [22], but it is observed to be less accurate. All of these methods are
observed to be prone to errors and unreliable estimation. In this project work, in
addition to methods for identifying faults without identifying RISCr, a novel method
of estimating the RISCr and the capacity of the cell using a high-pass filter is pro-
posed, analyzed and evaluated in simulation.

The following sections describe the aim and scope of this project in context of the
material presented above.

1.1 Aim

The aim of this project is to simulate and detect faults in a battery pack. Once
a battery model is implemented for simulating faults, various algorithms for fault
detection will be designed an evaluated for performance.

1.2 Scope

• In this work, a battery model will first be built for fault simulation. The elec-
trical faults considered here are mechanisms that occur in the cell, modeled as
abnormal self-discharge. Other possible electrical errors that can occur in the
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1. Introduction

cell are not considered.

• A fault detection technique on the same lines as [15] will be developed in
MATLAB/Simulink to detect instantaneous faults, following which a second
method will be developed to monitor long term self-discharge effects. Both
these methods will not estimate the value of RISCr, and would merely employ
a comparative analysis over cells of the battery pack.

• A recursive parameter and state of charge estimator will then be developed
using a high pass filter to filter out low frequency errors in the estimation loop,
following which the capacity of the cell and RISCr can be estimated using the
SOC estimate. The estimation for the RISCr and capacity will not be recur-
sive, and will simply use data over the entire driving window to estimate those
entities. Furthermore, the tuning parameters such as the initial covariance
and forgetting factor will not be optimized formally in this work but chosen
through trial and error and other reasonable considerations.

• The algorithms developed will be tested in simulation environment for driving
profiles that are chosen appropriately to present performance. Verification of
the algorithms with experimentally obtained data will not be performed.

• The sustainable aspects relevant to this project will be discussed with respect
to ecological, economic and social dimensions.

• A few chosen ethical aspects from the IEEE code of ethics will also be discussed
in relevance to this work.

1.3 Outline
The body of this thesis report is organized into a theory chapter, that describes
the relevant theoretical background necessary for the analyses presented in this
project work. This is followed by a method chapter, that highlights the principles of
implementation of fault simulation and detection algorithms. A chapter on results
then follows to present the outcome of the proposed detection schemes. A short
discussion then ensues to highlight uncertainties in the work and provide further
commentary on the results followed by a conclusion.
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2
Theory

In the following sections, the theoretical background relevant for this project is
presented. First, a description of the battery model employed is described followed
by a discussion of the internal short circuit simulation. Subsequently, the theoretical
background necessary for an understanding of the detection algorithms is presented.

2.1 The lithium-ion battery

In this section, an overview of the chemistry of the lithium-ion (Li-ion) battery and
relevant important definitions are presented. A battery is an energy storage device
(ESD), and the Li-ion battery is of the rechargeable kind that can be charged and
discharged many times. The Li-ion battery consists of a cathode, e.g. LiFePO4
(LFP), an anode, e.g. Graphite, a separator and an electrolyte which is a lithium
salt in an organic solvent [23]. The potential difference between the electrodes drives
current to flow when an external load is applied across the cell terminals.

The discharge process of the Li-ion battery involves release of Lithium (Li) ions and
electrons (oxidation) at the negative electrode, and the reverse mechanism (reduc-
tion) at the positive electrode. The Li-ions are conducted through the electrolyte
from the negative to the positive electrode and the electrons flow through an exter-
nal circuit into the positive electrode. Thus, current flows from the cathode to the
anode of the battery during discharge. The exact opposite occurs during charging
of the battery.

It is important to mention that a typical battery pack in an electric/hybrid vehicle
consists of several individual battery cells. In this work, the term ’battery cell’ or
’cell’ will be used to describe the individual cell, while ’battery pack’ will refer to
an arrangement of several individual cells.

Before proceeding further with the subject of this project work, it is important to
briefly discuss the a few concepts related to batteries.

2.1.1 State of Charge (SOC)
The state of charge is used as an indicator of the extent of ’fullness’ of the battery in
terms of the ratio of the available charge (residual capacity) to the maximum possi-
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2. Theory

ble charge that can be drawn from the battery in the fully charged state (maximum
available capacity). The residual and maximum available capacity of the battery are
expressed typically in Ampere − hour (Ah) units, and the SOC can subsequently
be expressed as a percentage.

The maximum available capacity of the battery depends on temperature, aging
extent of the battery and discharge rate [24]. In this work however, these effects on
the capacity shall not be considered.

2.1.2 Open circuit voltage (OCV )

The OCV of a battery cell is the difference between its terminals in the absence of
an electric load (no-load). The OCV typically varies non-linearly with the SOC for
a lithium-ion battery, and laboratory experiments have been designed to quantify
this relationship [25].

It is important to note that the OCV of a battery changes with temperature and
age [26], but these effects shall not be considered in this study. Furthermore, OCV
hysteresis is a well documented phenomenon [27] where the OCV -SOC relationship
is slightly different for charge and discharge. The average of the two OCV profiles
is usually considered for the SOC-OCV function/look-up table in simulations.

2.1.3 Polarization in a battery cell

When an electric current flows through the battery, the terminal voltage of the cell
deviates from equilibrium. This is referred to as polarization and may occur at the
cathode or the anode of the cell. There are three different mechanisms for polariza-
tion during electric current flow [28].

• Activation/Charge transfer polarization is associated with the charge transfer
reaction occurring at the surface of the electrodes. In order to overcome the
energy barrier of the slowest step of a reaction, an overpotential is observed
and is the activation polarization.

• Concentration/Diffusion polarization is associated with the potential differ-
ence observed as a consequence of varying ion concentration near the electrode
surface.

• Resistance polarization is the ohmic potential drop across the electrodes, elec-
trolyte, separator and the metal contact terminals of the cell.

The above mentioned effects can be captured in equivalent circuit models (ECMs)
through use of various components, chosen with considerations of accuracy and
complexity.
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2. Theory

2.2 The battery cell equivalent circuit
In this section, the equivalent circuit of the battery cell relevant to this project shall
be discussed. The important battery definitions from Section 2.1 must be kept in
hindsight for a comprehensive understanding of the modeling.

2.2.1 Healthy cell
An Equivalent Circuit Model (ECM) of the battery cell was provided at the start
of the project, and the entire battery pack consists of several cells described by the
same ECM. The ECM used is a first order model (Thevenin model) [29] consisting
of an open circuit voltage, internal resistance and a polarization branch as shown in
Figure 2.1.

Figure 2.1: First-order Equivalent circuit model

In Figure 2.1, OCV represents the open circuit voltage of the cell that typically
varies with it’s state of charge (SOC) non-linearly, R0 represents the electrolyte
resistance in the cell and R1, C1 represent the polarization resistance and capacitance
respectively [29]. V is the terminal voltage that can be measured across the cell.

2.2.1.1 Characterization and parameter identification

The parameters in an equivalent circuit are not fixed quantities but vary with SOC,
temperature and other factors thus requiring characterization with respect to these
entities. In addition, there are other characteristics of a cell such as capacity and
OCV -SOC curve etc which also must be identified. Several tests can be performed
on a cell towards this purpose. Some of them are the charge-discharge test, the
electrochemical impedance spectroscopy (EIS) test and the current pulse test [30].

The charge-discharge tests involve charging and discharging an electrochemical en-
ergy storage device at various current rates, using which the capacity andOCV -SOC
profile can be obtained. EIS tests are used to acquire the frequency dependence of
a component’s impedance which can subsequently be used for ECM parameter esti-
mation. The current pulse test applies a current pulse input to the component and
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2. Theory

measures the voltage response using which parameters are identified. The EIS and
current pulse tests can be applied at various temperature and SOC levels, thereby
enabling parameter estimation under various conditions.

2.2.2 Faulty cell
As mentioned before, the primary reason for thermal runaway in a battery is internal
short circuit (ISCr) [6]. This fault can simply be represented as an additional parallel
resistance RISCr across the terminals of the ECM shown in Figure 2.1. This is
reasonable because the characteristics of an ISCr and external short circuit are
observed to be quite similar [31]. This modification results in the circuit in Figure
2.2.

Figure 2.2: ECM with RISCr

Different intensities of the fault Various are represented by changing the value of
RISCr. In an ideal healthy cell, RISCr is large and during occurrence of a fault,
the value is much smaller. As the intensity of the fault increases, the value of
RISCr decreases. Studies have been performed to identify critical levels of RISCr

that represent a transition from a ’soft’ short to a ’hard’ short, with some research
suggesting a critical value of 10 W below which a thermal runaway might occur
[16]. In this work, several values of RISCr will be used to perform simulations and
identification.

2.3 The battery cell discrete time model
In this section, the discrete time models for the healthy and faulted battery cell
presented in Section 2.2 shall be described. Before proceeding to the actual cells,
the discrete time system equation for an RC link is derived. In continuous time, the
voltage across the RC link can be expressed as

V̇ = −V
R1C1

+ I

C1
. (2.1)

Discretization of (2.1) yields
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2. Theory

V (k + 1) = AV (k) +BI(k) (2.2a)

A = eGT , B = (A− 1)HG−1 (2.2b)

G = −1
R1C1

, H = 1
C1

(2.2c)

where T is the sampling time and the A and B matrices, and subsequently the G
and H matrices for the discrete time system are expressed in terms of R and C.

2.3.1 Healthy cell
In a healthy cell ECM shown in Figure 2.1, the terminal voltage can be expressed as
a sum of the OCV , voltage drop across R0 and voltage drop across the polarization
RC link (V1) as

Vt(k) = OCV (k) + I(k)R0 + V1(k) (2.3a)

V1(k) = φV1(k − 1) +R(1− φ)I(k − 1) (2.3b)

where φ is defined as e−T
RC after simplifying (2.2). Also, the current I is considered

positive during charging in (2.3). In (2.3a), the OCV (k) can be obtained from
the state of charge SOC(k), as there is a non-linear relationship between the two
in lithium-ion batteries [25]. The SOC(k) in turn can be obtained from coulomb
counting in discrete time, which is essentially counting charge entering/leaving the
battery. If the coulomb efficiency is considered to be 100 %, the SOC at a time
instant k can be written as

SOC(k) = SOC(k − 1) + I(k − 1) T

Qnom

(2.4)

where Qnom is the nominal capacity of the battery and T is the sampling time.

2.3.2 Faulty cell
As described in section 2.2.2, a cell with an internal short (see Figure 2.2) can be
modeled as a healthy cell with an external resistance RISCr across its terminals. As
a consequence, the current through the cell I(k) is obtained by subtracting the load
current at a certain time instant IL(k) with the short circuit current (ISCr) through
the RISCr. This is observed easily from Figure 2.2 and can be written as

I(k) = IL(k)− Vt(k)
RISCr

(2.5)

In order to model a fault, (2.5) is used as an expression for the current trough the
cell in (2.3). However, usage of Vt(k) to calculate Vt(k) itself results in an algebraic
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2. Theory

loop in the model and to work around this effect, an earlier sample Vt(k − 1) is
chosen instead. This is a reasonable approximation as the sample time is small in
the simulations and the difference between successive values of the terminal voltage
are observed to be quite small.

The discrete-time model mentioned above is first implemented in Simulink to sim-
ulate faults and check the performance of the fault detection algorithm to gauge its
viability, and also because computational time using a Simulink model is smaller
than Simscape - which shall be described shortly. The actual battery pack to be
analyzed consists of logical cell units that have three cells in parallel, with several
such logical cells in series. Simulation of such a system is very difficult in Simulink,
and therefore, Simscape shall be used to model this system.

2.4 Simscape modeling
Simscape is used for modeling of physical systems in the Simulink environment.
Physical models of the components in the system can be chosen either from pre-
defined components available in the library, or can be coded to suit custom user
demands. The various components can then be connected easily in the system, as
connections are made for physical signals and not data like in Simulink. However,
integration to Simulink blocks can also be accomplished through data conversion
blocks, thus making the modeling process convenient.

Simscape is an acausal modelling tool, which means that inputs and outputs need
not be specified explicitly between components and instead, are inferred from the
solutions to the equations. Furthermore, the same model structure can be re-used
across physical simulations without making major changes. The implementation of
a battery cell will be described in the Methods section.

2.5 Least squares and robust least squares
The least squares is a non-recursive parameter estimation technique, where the
model can be formulated as

y = Xβ (2.6)

where y is the measurement (or response variable) vector, X is the regressor matrix
and β is the parameter vector. The objective function to be minimized in the OLS
algorithm is the sum of squared residuals, that is written as

S(b) = (y−Xb)T (y−Xb) (2.7)

for a particular parameter vector b. The solution for the parameter vector β that
minimizes (2.7) can be obtained to be
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2. Theory

β = (XT X)−1XT y. (2.8)

The OLS algorithm with the sum of squared residuals objective function is sen-
sitive to outliers in data. In order to reduce the effect of outliers, a robust least
squares algorithm can also be used. The bisquare weights regression method, where
a weighted sum of squares is minimized is also employed in this work through stan-
dard MATLAB commands.

2.6 Recursive Least Squares
The RLS filter is a recursive version of the least squares algorithm. It is used time
and again through this work in different formulations because of its low memory
requirements and computational simplicity. The Method section will elaborate fur-
ther on specific formulations of the RLS filter for various scenarios.

The RLS filter is used to identify parameters in a linear regression model

yk = ψT
k θk (2.9)

where yk is the measurement, ψT
k is the regression vector and θk is the parameter

vector at time instant k. The RLS with forgetting factor is highly suitable for adapt-
ing to time varying parameter vectors, and the cost function that is minimized by
the optimum parameter estimates is an exponentially weighted linear least squares
cost function

J =
k∑

s=1
λk−s(ys − ŷs)2 (2.10)

where ys and ŷs are the measurement and predicted measurement at time instant
s respectively. Error in the past samples are discounted through the use of the
forgetting factor λ, which is usually set between 0.95 and 1. The parameter and
covariance update equations that minimize the cost function described in (2.10) can
be evaluated to be

θk = θk−1 + Pkψk(yk − ψT
k θk−1) (2.11a)

Pk = 1
λ

(
Pk−1 −

Pk−1ψkψ
T
k Pk−1

λ+ ψT
k Pk−1ψT

k

)
(2.11b)

The regressor vector is initialized to zero for negative indices, and the covariance
matrix is initialized according to the expected error in parameters. The parameter
vector can be initialized to an intelligent guess, and more detail on its choice will be
discussed for specific problems.
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2.7 Statistics

The arithmetic mean (simply referred to as mean) of N samples in a data set is the
sum of all numbers divided by the number of elements in the dataset, expressed as

a = 1
N

N∑
k=1

ak. (2.12)

The standard deviation σ of N samples in a data set is

σ =

√√√√ 1
N

N∑
k=1

(ak − a)2. (2.13)

The standard deviation gives an impression of the extent of spread of data.

The z-score of a data point is the distance in terms of the number of standard
deviations a data point is away from the sample mean. It can be represented as

zk = ak − A
σ

(2.14)

and gives a measure of how far away the point lies from the expected value.

The mean error, root mean square error and infinity norm (∞ norm) are frequently
used to measure the extent of error between the actual values (yk) and an estimate
(ŷk), and are described as

emean = 1
N

N∑
k=1

(ŷk − yk) (2.15a)

erms =

√√√√ 1
N

N∑
k=1

(ŷk − yk)2 (2.15b)

||e||∞ = maxk|ŷk − yk| (2.15c)

where N is the number of measurement points.

2.8 Polynomial regression

In this work, the first degree polynomial f(x) = mx + b is fit to the terminal
voltage measurements to detect abnormal self-discharge. Although a MATLAB
function is used to readily perform the fit, some principles of the fitting process are
mentioned here. If the measurements are represented by yi, i being the time index,
the regression attempts to minimize the sum of residual squares

12



2. Theory

RSS =
N∑

k=1
[yk − f(xk)]2. (2.16)

The solution for m and b that minimizes the RSS of (2.16) is given by

m =
∑N

k=0(xk − x̄)(yk − ȳ)∑N
k=0(xk − x̄)2 (2.17)

b = ȳ −mx̄ (2.18)

where x̄ and ȳ are the arithmetic mean of xi and yi respectively.
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Method

In this chapter, the implementation and methods used to perform simulations/esti-
mation are presented.

3.1 Internal short circuit simulation

For design and evaluation of algorithms for fault detection, a simulation environment
to mimic faults is needed. Here, various aspects involved in the implementation of
fault simulation are described. A Simulink model of a battery pack consisting of 108
logical cells in series will first be used for fault simulation. Subsequently, a Simscape
model of the battery pack shall be used in order to simulate faults on an individual
cell in the logical cell unit to evaluate if the detection algorithms still function as
expected.

3.1.1 Input current profiles

Various input current profiles will be used for evaluating fault detection algorithms.
The well-known Artemis driving cycle is considered as the base current profile for
algorithm testing. In Figure 3.1, one such testing current profile is shown, and it has
been obtained by duplicating the base Artemis cycle. Furthermore, it is important
to mention that the convention for current is positive for charging and negative for
discharging.
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Figure 3.1: Artemis cell profile cycle

3.1.2 Implementation of ISCr model, Simulink

The MATLAB/Simulink model used for simulating a faulty logical cell unit is pre-
sented in this section. The entire logical cell is considered as a lumped individual
cell and modeled as shown in Figure 3.2. The capacity of the logical cell is 180
Ah, and henceforth, for simplicity, the logical cell will be referred simply as a bat-
tery cell/cell in relation to the Simulink model. The implementation has been done
along the same lines as (2.3), (2.4) and (2.5), with the voltage delay adjustment for
avoiding the algebraic loop.
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Figure 3.2: Faulty cell in Simulink

The three different voltage terms contributing to the terminal voltage in the first-
order battery model are clearly displayed in Figure 3.2. Furthermore, the effects of
an internal short circuit, modeled as an external resistance across the terminals of
the battery is also shown. The values of R0, R1 and C1 are obtained from exter-
nal look-up tables and were derived from earlier characterization tests. They are
expressed as a function of cell temperature, which is calculated for each cell as as
a function of time in the overall battery pack model, and SOC. The OCV -SOC
relationship is also clearly seen as a look-up table in the model in Figure 3.2 and
further seen in Figure 3.3. The initial SOC is chosen to be 0.8 or 80% or these
simulations and the sampling time for the simulations is obtained from the input
current data.
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Figure 3.3: OCV -SOC curve of the battery cell

It is to be noted that the model shown in Figure 3.2 depicts a single cell belonging
to a pack consisting of 108 cells in series. The fault can be triggered on any cell
of choice at a pre-specified time in the battery pack after which the model shown
in Figure 3.2 gets activated with the Risc input to initiate short circuit. It is im-
portant to note that the pack simulation also contains a thermal model to simulate
cell temperatures that are then used in the electrical model to find values of var-
ious parameters. The temperature is computed using various parameters such as
specific heat, density, volume etc employed in heat transfer equations. A detailed
description and investigation of the thermal aspects is beyond the scope of this work.

Since the initial SOC specified for all cells is the same, the terminal voltage for all
healthy cells throughout the driving cycle will be the same (albeit with small differ-
ences on account of different cell temperatures) and this is not so realistic. Thus,
reasonable uncertainty is added to the voltage measurements to mimic a realistic
scenario where voltages across cells have slight differences. The uncertainty is zero-
mean and the standard deviation is obtained from experimental data.

3.1.3 Voltage measurement data uncertainties
In order to get an impression of the extent of variation of voltage measurements
across the various cells (due to either/both differences in cell parameters or voltage
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sensor errors), a previously obtained measurement data set for a battery pack is
used. A particular time instant is chosen, and the deviation of each cell’s voltage
measurement from the mean voltage measurement (interpreted as error) is obtained
and depicted in a histogram as shown in Figure 3.4.
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Figure 3.4: Voltage measurement ’error’ histogram

As can be seen in Figure 3.4, the maximum deviation of a measurement from the
mean value of voltage does not exceed ±10 mV. It is important to note that the mean
value of the voltage measurement at the chosen time instant is 3.448 V and thus,
the difference in measurements across voltage sensors is not very significant, with a
maximum value of around 0.3 % deviation form the mean. This is because the cells
and voltage sensors behave very similarly on account of consistency in both man-
ufacturing and operating conditions. Furthermore, a number of other data points
were checked and the deviation from mean does not exceed ±10mV .

The standard deviation of the voltage measurements from this chosen data set is
evaluated and added to the voltage outputs from the simulation, under an of normal
distribution. This results in a more realistic scenario where the voltage measure-
ments used for the RLS algorithm are different for different cells. The standard
deviation is obtained to be 3.4 mV, and the added noise is also zero mean, which is
reasonable and can also be visually understood from Figure 3.4.
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3.1.4 Fault simulations for various RISCr

Once the model for simulating the ISCr is developed, simulations are performed for
various values of RISCr and current profiles. The intention is to depict the change
in the SOC and OCV for various intensities of short circuit conditions in the cell.
Furthermore, the time at which the ISCr occurs can be varied, and this shall be
utilized to observe trends in the estimated OCV .

The values of RISCr considered for presenting effects of the short circuit are 1W and
5W. The Simulink model with the faulty battery cell shown in Figure 3.2 is first used
for simulation and detection of faults after which the Simscape model will be utilized.

3.2 Battery model in Simscape
In this section, the design of the battery model in Simscape will be described.

3.2.1 Component design
The battery pack model presented in Section 3.1.2 used a lumped model for the log-
ical cells, and faults were also simulated on a chosen logical cell unit. It is important
now to investigate the effects of a fault on an individual cell belonging to the logical
cell unit, and check if the detection algorithms work satisfactorily.

In order to construct a logical cell in Simscape with three parallel cell units (de-
scribed in Figure 2.1), the first step is to construct an individual cell. The compo-
nent code is written for all units of the cell such as OCV , R0, R1 and C1 and these
blocks are then assembled together. One such example for the code written for the
capacitance (C1) block is shown below, and other components follow similar design
methodology.

component C_1
% C_T
% Models a capacitor where the capacitance value (C) depends on an external
% physical signal inputs SOC and T. It is assumed that the capacitance
% value is slowly varying with time, and hence the equation i = C*dv/dt holds.

% Copyright 2012-2013 The MathWorks, Inc.

nodes
p = foundation.electrical.electrical; % +:left
n = foundation.electrical.electrical; % -:right

end

inputs
T = {293.15,’K’}; %T:left
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SOC = {1,’1’}; %SOC:left
end

parameters (Size=variable)
C_Table = {ones(5,3),’F’} % Vector of capacitance, C(SOC,T)
SOC_Table = {[0;0.1;0.5;0.9;1],’1’} % State of charge(SOC) breakpoints
Temp_Table = {[273.15 293.15 313.15],’K’} % Temperature(T) breakpoints

end

parameters
v0 = {0,’V’}; % Initial voltage across capacitor

end

variables(Access=private)
i = { 0, ’A’ }; % Current
v = { 0, ’V’ }; % Voltage

end

function setup

% Check parameter values
if any(any(value(C_Table,’F’)<=0))

pm_error(’simscape:GreaterThanZero’,’Capacitance values’)
end
if any(value(Temp_Table,’K’)<0)

pm_error(’simscape:GreaterThanOrEqualToZero’,’% Temperature’);
end

% Set the initial voltage
v = v0;

end

branches
i : p.i -> n.i;

end

equations
v == p.v - n.v;
let

% Perform the table lookup
C = tablelookup(SOC_Table,Temp_Table,C_Table,SOC,T,...

interpolation=linear,extrapolation=nearest)
in

% Electrical equation
i == C * v.der;
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end
end

end

The code above can be observed to have nodes, which describe the conserving ports
of the block, i.e the positive and negative terminals in this case. Inputs are tem-
perature (obtained from the thermal model) and SOC (obtained from the OCV
component as an output) used to interpolate and calculate capacitance. Parameters
can be specified in the block by the user and the variables are also mentioned as
current and voltage in this case. It is noted that current is the through variable
and voltage is the across variable. Finally, after a parameter validity check, the
equations relating the variables and parameters are described to mathematically
model the component. It is important to understand that the values of inputs and
parameters seen in the code above are not actual values that shall be used in the
calculations, but merely default values.

3.2.2 Battery cell in Simscape
Once all the components are designed, they can be interconnected to form a single
battery cell as shown in Figure 3.5. The OCV , R0, R1 and C1 components are ob-
served clearly and are interconnected as in the Thevenin battery cell of Figure 2.1.
It is important to mention here that the ECM parameters that were provided from
the company are for a logical cell unit consisting of three individual cells in parallel.
Therefore, in order to obtain parameters for an individual cell, assuming the cells
are similar in nature and characteristics, the R0 and R1 parameters are scaled up
by a factor of three and C1 is scaled down by a factor of three. The capacity of the
individual cells is obtained by dividing the capacity of the logical cell (180 Ah) by
three. The power dissipation across the resistors is obtained as an output to use
for the thermal model that simulates cell temperatures, and the SOC and OCV
are also obtained as outputs to perform subsequent analyses. Simscape’s physical
modeling characteristic make it highly convenient for re-usability as shall be seen
next in the creation of a parallel cell logical unit.

3.2.3 Logical cell for fault simulations
Once a cell is created in Simscape, three such units can be physically connected
in parallel to form a logical cell unit shown in Figure 3.6, which will subsequently
be used for fault simulation and testing. It can be seen that the interconnection is
quite simple and also, the fault signals for each parallel cell are observed clearly. The
purpose behind the use of a logical cell module to simulate faults is to investigate
if a fault in one of the parallel cells in the module can still be detected by consid-
ering the logical cell as a lumped zeroth-order model. Since the proposed method
involves comparative analysis, the notion of SOC and OCV for the lumped model
can be used to evaluate if any of the logical cell modules deviates from the others
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18 such logical cell units in series are considered for fault simulation and detection to
save computation time without compromising on the comparative analysis. A fault
is required to be simulated on one of the three parallel cells and then detected. How-
ever, if the same principle of simulating an internal short circuit using an external
short circuit (connecting an RISCr across the battery terminals) is followed, all cells
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will be discharged equally due to the fact that they are in parallel and indistinguish-
able. Therefore, a slight modification is employed where the short circuit resistance
is connected across just the OCV branch of the faulted cell as shown in Figure 3.7
and not across the terminals. This is acceptable as the main aspect of simulating a
fault is to ensure that the SOC of the faulty cell drops faster than it would through
just the load current. This can be ensured by the secondary discharge current that
flows through RISCr in Figure 3.7.

OCV

R0

R1

C1

Vt

R_ISCr

Figure 3.7: Faulted cell ECM used in Simscape

3.3 RLS for OCV estimation
The RLS algorithm will be used to estimate the OCV of the battery cell using the
current and terminal voltage measurements. The equivalent circuit considered for
the RLS estimation of OCV will be a Rint model, which is a zeroth-order model
with just an OCV and internal resistance R0 as depicted in Figure 3.8.

OCV

R0 Vt

Figure 3.8: Battery Rint model

Note that the Rint model used for estimation of the OCV is not the same as the
Thevenin model used for simulation of the fault and thus, the OCV estimation will
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have some error as it will include the voltage drop across the polarization (RC)
branch. However, as shall be seen later, the detection algorithm’s performance is
not affected as a consequence of thi inaccuracy. Furthermore, an RLS algorithm
with a higher order model could be employed for more accurate estimation [32],
but it can prove to be computationally more intensive, especially considering that a
lower order model works satisfactorily.

The convention for current is taken as positive when charging and negative when
discharging, and the equation for the terminal voltage is then

V (k) = UOC(k) + IL(k).R0 (3.1)

where V (k) is the terminal voltage at time instant k, UOC(k) is the open circuit
voltage at time instant k and IL(k) is the current at time instant k. R0 is the inter-
nal resistance of the cell in the Rint model.

Equation 3.1 is now formulated to represent the regression vector ψk, parameters θk
and output yk as

yk = V (k) (3.2a)

ψk =
[

1
I(k)

]
(3.2b)

θk =
[
UOC(k)
R0

]
(3.2c)

It is of importance to note that the parameter R0 can also vary with time although
it has not been explicitly mentioned in (3.1). The entities presented in (3.2) can be
expressed in the form warranted for the RLS algorithm as yk = ψT

k θk.

The initial values of the parameter vector and the error covariance matrix P0 are
appropriately chosen as shall be described in the results. As far as the forgetting
factor is concerned, there have suggestions for selecting an optimum value based on
mathematical considerations [33] but in this work, a forgetting factor will be chosen
through trial and error.

3.4 Moving window linear regression method for
fault detection

In this section, the principles of using a moving window linear regression to detect
faults that operate over longer time horizons will be discussed. The previously de-
scribed method with the OCV estimation can work satisfactorily for instantaneous
faults, but slow degradation of a cell over the long term can be simply detected
with a linear regression applied to moving time windows. The regression considered
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will be a linear polynomial fit applied to a certain time horizon on all the terminal
voltage measurements in that window. The slope of the line for a particular cell is a
good indicator of the level of discharge in that cell, and consequently, if any of the
slopes of the cells in the battery pack are higher than the others and get worse with
time, abnormal self-discharge is detected.

A long driving profile is considered for simulating the terminal voltage in order to
verify this method. This is accomplished by repeating the Artemis cycle with inter-
mittent charging cycles to obtain a very long cycle that runs for a time of around
18 days. A small portion of this cycle (approximately 6 hours) is shown in Figure
3.9. it is important to mention that the Simulink model is used to simulate faults
for this scenario as the purpose is to investigate the terminal voltage trend and not
look at individual cell fault effects as dealt with in section 3.2.3.
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Figure 3.9: Long current profile used for fault detection

For a healthy cell, the current profile in Figure 3.9 results in the SOC and OCV
profiles in Figure 3.10.
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Figure 3.10: SOC and OCV of a healthy cell under the long driving cycle of
Figure 3.9

The terminal voltage of the battery cell is essentially additional voltages (due to
polarization and internal resistance for example) added to the open circuit voltage.
Thus, if the OCV of one of the cells has a decreasing trend due to abnormal self-
discharge over a long time frame, the terminal voltage also has a decreasing trend,
which can be identified through a linear curve fit.

The magnitude of the RISCr considered here is much larger as compared to the
internal short simulation case, to simulate very low levels of self-discharge. A value
of 50 W and 200 W will be considered to simulate different levels of abnormal-self
discharge of one of the logical cells in a similar experimental set-up as in section 3.1.2.
The polyfit function in MATLAB is utilized to perform linear curve fits on voltage
measurements for a chosen time window of 2 days. It is important to note that
other appropriate time windows can also be chosen through a more rigorous analysis
using actual experimental data. As before, the experimentally obtained uncertainty
on the voltage measurements are added to the simulated terminal voltage to mimic
an actual scenario.

3.5 SOC and parameter estimation using a high
pass filter

The parameter estimation procedure using a high pass filter will be described in this
section. Once the SOC of the cell is estimated using this method, it can be used to
estimate both capacity and RISCr as shall be seen in the subsequent section.

Let us begin by forming the following pre-estimate of SOC using coulomb counting

ŜOCpre(t) = ŜOC0 + h

Q̂nom

∫ t

0
i(τ)dτ (3.3)

where h is the sample time, ŜOC0 is the initial SOC and Q̂nom is the assumed
capacity. It can be seen immediately that errors in ŜOCpre(t) will be in the low
frequency range, and could be a consequence of errors in ŜOC0, Q̂nom and current
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sensor errors, the high frequencies of which are filtered out because of the integrator.

An estimate of U0 + U1, Û01 can then be formed as

Û01(t) = U(t)− focv(ŜOCpre(t)) (3.4)

where U is the measured terminal voltage and focv is the SOC-OCV relationship.
Further, focv(ŜOCpre(t)) can be termed as ÔCV pre(t).

It is reasonable to assume that the signals U01 and U0 will be very close in magnitude
for high frequencies. This is illustrated in Figure 3.11.
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Figure 3.11: U01 and U0 frequency domain spectra

The reason why U01 and U0 behave in this manner is because the signal U1 contained
in U01 is a low frequency signal due to the RC link acting as a low pass filter on the
input current signal. On the other hand, the signal U0 contains all the frequencies
of the input current signal as it is merely a scaled version of the same by a factor of
R0. Thus, if a high pass filter GHF is used, R0 can be estimated from the relation

GHF Û01(t) = R0GHF i(t) (3.5)

on which an RLS filter can be employed to form the estimate R̂0. It is important
to mention though that the high-pass filter is not explicitly applied as depicted in
(3.5) in the implementation. The difference operator, which is the counterpart of
differentiation in the discrete time domain is instead used to amplify higher frequen-
cies. The forgetting factor and initial covariance used for the RLS filter are chosen
by trial and error and depicted in Table 3.1.
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Table 3.1: Forgetting factor and initial covariance for R0 RLS estimator

Forgetting factor Initial covariance
0.995 2 × 10−7

Once R̂0 is obtained, Û0(t) is calculated as i(t)R̂0 and an initial estimate of U1 (Û1pre)
can be then formed by simple subtraction as per

Û1pre(t) = U(t)− Û0(t)− ÔCV pre(t) (3.6)

Again, since the errors in Û1pre are low frequency errors contained in ÔCV pre, it is
reasonable to assume

GHF Û1pre(t) ≈ GHFU1(t) (3.7)

which is further displayed in Figure 3.12. The actual capacity of the cell is 180 Ah
and actual initial SOC is 0.80.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency [Hz]

-5

-4

-3

-2

-1

0

1

2

3

4

lo
g

(m
a

g
n

it
u

d
e

)

FFT of U1

FFT of ÔCV
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Figure 3.12: Frequency spectra of U1 and ÔCV
err

pre for ŜOC0 = 70 % and Q̂nom =
190 Ah

It is seen clearly that the 0 Hz component of ÔCV
err

pre is high for both cases. How-
ever, U1 dominates immediately after till about 0.6 Hz after which all signals become
very low in magnitude.

As with R0 estimation, the parameters A and B w.r.t the RC branch can be esti-
mated using the high pass filtered signals of Û1pre(t) and i(t) using an RLS filter
applied to the relation
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GHF Û1pre(t) = AGHF Û1pre(t− h) +BGHF i(t− h) (3.8)

expressed in the standard RLS formulation of yk = ψT
k θk. The high pass filter used

is a Butterworth filter with a cutoff frequency of 0.005 Hz. The filter order is chosen
as 2. The IIR nature of the filter introduces distortions in the signals on account
of its non-linear phase response, but this will not affect parameter estimation as it
is applied to both the current and voltage signal as seen in (3.8). The forgetting
factor for the RLS filter is chosen as 0.998 through trial and error. Furthermore,
the initial covariance matrix P0 for the RLS filter is chosen as

P0 =
[
1000 0

0 0.0001

]
(3.9)

Once estimates Â and B̂ are formed, the estimate Û1 for all frequencies can be
obtained using

Û1(t) = ÂÛ1(t− h) + B̂i(t− h). (3.10)

Finally, it is straightforward to obtain the final estimates of OCV and SOC using
the relationships

ÔCV (t) = U(t)− Û0(t)− Û1(t) (3.11a)

ŜOC(t) = focv−1(ÔCV (t)) (3.11b)

The entire parameter and SOC estimation procedure is summarized in the flowchart
of Figure 3.13.
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Figure 3.13: Process flow depicting R0, A, B and SOC estimation. The two RLS
filters are shown as blocks that minimize error e(t)

3.5.1 Problem with insufficient excitation

In the RC branch parameter estimation step, specific criteria with respect to high
frequency content of the current signal must be met for update of the RLS filter.
The condition can be described as

√
1
T

∫ t

t−T
|I2

F |dτ > threshold (3.12)

where T is chosen to be 40 s and the threshold is chosen to be 30 A on the basis
of trial and error. This update condition ensures reliable parameter estimation as
the estimates may diverge in the presence of current and voltage sensor noises. In
order to demonstrate this effect, a simulation only of the RC branch is considered
and band limited white noise is added to the current and voltage signals. The es-
timation of parameters A and B is subsequently accomplished using the RLS filter
without the update criteria of (3.12).

The noisy current signal (I), noisy voltage signal (U1) and parameter estimates A
and B are depicted in Figure 3.14.
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Figure 3.14: A and B estimation in the presence of sensor noises

It is seen clearly in Figure 3.14 that the parameter estimates diverge when current is
constant. Therefore, an excitation condition is required to dictate the update stage
of the RLS algorithm.

3.5.2 Modification of R0 estimation

In section 3.5, it was mentioned that the estimation of R0 can be accomplished us-
ing GHF Û01 as it is approximately GHF Û0. However, it was observed that R̂0 had
a bias with respect to the actual value R0 using this method. This is because of
GHF Û1 is present as a disturbance in GHF Û01, despite its relatively small magnitude.

In order to eliminate this disturbance, estimates Â and B̂ from the subsequent
estimation stage are feedbacked through a low pass filter to the R0 estimator. GLF Â
and GLF B̂ are used to calculate an estimate of the polarization voltage Ũ1, which is
used to form an estimate Û0pre using the relation

Û0pre = U(t)− ÔCV pre(t)− Ũ1(t). (3.13)

The time constant of the low pass filter (used to ensure stability) is chosen to be the
rise time of the responses of the Â estimator, approximately 50 s. The difference
operator applied to Û0pre is then used to estimate R0 instead of Û01.
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3.6 Capacity Q and RISCr estimation using ̂SOC
estimate

The estimate of the state of charge (ŜOC) formed using the method described in the
previous section is used now to estimate capacity Q and the short circuit resistance
RISCr. The equation used for the estimation is formulated as

ˆSOC(k) = ˆSOC(0) + h

Q

k∑
n=0

I(n)− h

Q.RISCr

k∑
n=0

V (n) (3.14)

where I is the current, V is the terminal voltage and h is the sampling time. The
least squares algorithm shall be used to estimate the parameters ŜOC(0), h

Q
and

h
Q.RISCr

using data over the entire driving profile. The measurement vector (y),
regressor matrix (X) and parameter vector (β) are expressed as

y =


ˆSOC(0)
ˆSOC(1)
...

ˆSOC(end)

 (3.15a)

X =


1 I(0) V (0)
1 I(0) + I(1) V (0) + V (1)
... ... ...
1 ∑end

n=0 I(n) ∑end
n=0 V (n)

 (3.15b)

β =



ˆSOC(0)

h
Q

h
Q.RISCr


(3.15c)

to form the LS model y = Xβ. The capacity estimate Q̂ and the short circuit
resistance estimate R̂ISCr are then obtained from the estimate of parameter vector
β.

The ordinary least squares estimator is sensitive to data outliers and hence, a robust
least square estimator with a modified cost function will also be used to evaluate
parameters Q̂ and R̂ISCr. The formulation of the model remains the same as that
depicted in (3.15).
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4
Results

In this section, results for the fault simulation models and detection algorithms
are presented. Detection strategies that involve a comparative analysis without
estimation of RISCr are presented first. Subsequently, the high pass filter based
RISCr estimation procedure will be highlighted.

4.1 ISCr simulation with the Simulink model
Effects of an internal short circuit on SOC is first evaluated for various RISCr. Fig-
ure 4.1 depicts the SOC for all the 108 cells in the battery pack with an RISCr of
5W on cell number 37 at 500 s.
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Figure 4.1: SOC and OCV , RISCr of 5 W

As can be seen in Figure 4.1, the SOC all cells drop at the same rate until 500 s
after which the faulted cell SOC begins to deviate due to the internal short circuit.
The OCV of the cells depict a similar behaviour to the SOC are also seen in Figure
4.1. It is clearly shown how small the deviation is for the faulty cell as compared
with healthy cells, all of which follow the exact same profile (indicated by the yellow
curve). To illustrate an example, the difference in OCV of the faulted cell to the
healthy cells is around 2 mV at 1700 s, or 0.05 %. This means that the 5 W internal
short is not of extreme severity although, as shall be seen later, the RLS based
detection method shows promising detection even with such a short. Furthermore,
since the relationship between SOC and OCV is one to one, only the OCV will be
presented and discussed henceforth.
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The deviation of the faulted cell OCV is more pronounced for an RISCr of 0.5 W
as seen in Figure 4.2. This is expected as the value of RISCr has been decreased
by a factor of 10 as compared to Figure 4.1. The difference in OCV at 1700 s be-
tween the faulty and healthy cells is 18 mV as compared to 3 mV for an RISCr of 5 W.
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Figure 4.2: OCV , RISCr of 0.5 W

As Figures 4.1 and 4.2 show, the effects of the short circuit on the OCV increase
as the value of RISCr becomes smaller. This is further explained by the fact that
the internal short is a secondary discharge mechanism in addition to the load cur-
rent discharge, thereby depleting the SOC of the battery to a greater extent than
expected purely due to load current. This is also reflected in the OCV , and is the
essence of the first detection method based on the Recursive Least Squares.

4.1.1 RLS based fault detection

In this section, the results of the RLS based fault detection strategy applied to the
Simulink battery pack model will be discussed. The accuracy of the OCV estimate of
the faulty cell for different values values of RISCr will be assessed and a comparative
assessment of OCV s for different cells in the pack along the lines of [15] will be
performed.

36



4. Results

4.1.1.1 Initialization and forgetting factor

Before proceeding with a description of the performance of the algorithm, the val-
ues chosen for initialization of the parameter vector shown in (3.2c) and the error
covariance matrix for the RLS are ought to be mentioned. The initial value of the
OCV parameter is chosen to be the first value of the voltage measurement, while
the initial value of R0 is selected to be close to the expected value of the internal
resistance, in the order of a few mW for the recursive estimation. It is to be noted
that the algorithm performs satisfactorily even if a much higher value is chosen for
R0, if an appropriate initial error covariance is specified. In case the order of mag-
nitude of R0 is uncertain, a high value must be chosen for the initial variance for
this parameter to ensure faster convergence to the right value. Since the confidence
in the initial values of the parameters is reasonable in this project work, an initial
variance of 0.1 is chosen for the OCV parameter, and 10−4 for the R0 parameter
through trial and error. The covariance is chosen to be 0 assuming the parameters
are uncorrelated.

4.1.1.2 RISCr of 1 W

The first case is investigated for an RISCr of 1 W, which can be considered a short-
circuit of moderate severity. The reason why this is considered a case of moderate
severity is because the internal cell resistance is of the order of 0.3-0.4 mW which
is much smaller than 1 W, and also because the load current magnitude of around
100 A is quite high compared to the short circuit current which is in the order of
3-4 A. The terminal voltage data for various cells are acquired from the battery
pack simulation and appropriate error is added to these values to obtain a realistic
scenario as described in section 3.1.3. The values thus obtained are considered to
be the measurements for the RLS algorithm to function.

Figure 4.3 depicts the actual and estimated OCV for the faulty cell with the Artemis
current profile as input to the Simulink model.

It can be observed in Figure 4.3 that the estimated OCV is quite close to the actual
OCV . Upon closer examination, it can be seen that the OCV estimate is lower
than the OCV for most part of the cycle. This is because the RLS uses a linear
regression form based on a zeroth-order model while the simulation data is obtained
from a first-order model. Hence, the OCV estimate includes a part of the polariza-
tion voltage in addition to just the OCV (the polarization voltage is negative during
discharge due to the chosen convention).

The OCV estimates for all the cells in the battery pack are illustrated in Figure 4.4.
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Figure 4.3: Actual and estimated OCV of fault cell, RISCr of 1 W
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Figure 4.4: Estimated OCV all cells, RISCr of 1 W
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It is observed from Figure 4.4 that one of the OCV estimates begins to drift around
500 s upon application of the fault and it is precisely the OCV estimate of the faulted
cell. The deviation seems to become more pronounced as time progresses and is of
similar nature as the behavior seen in Figure 4.2 of the actual OCV . Furthermore,
the estimated OCV s of the healthy cells also seem to posses minor variations, a
phenomenon that was absent in Figure 4.2 where the actual OCV s of healthy cells
were observed to be the same. These variations occur because the thermal model
employed in the battery pack considers heat flow across cells for temperature cal-
culations, resulting in slightly different temperatures for various cells. This is seen
in Figure 4.5 for 3 healthy cells at different positions in the battery pack. These
temperature changes result in parameter variations in the ECM used in the simula-
tion model that subsequently cause differences in the terminal voltage. This leads
to the minor variations in the OCV estimates for healthy cells which were observed
in Figure 4.4.
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Figure 4.5: Temperature variation vs time for 3 chosen healthy cells

Various metrics showcasing the OCV estimation error for the faulty cell are compiled
are presented in Table 4.1.
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Table 4.1: Faulted cell OCV error statistics

Driving profile mean error (mV) RMSE (mV) ∞ norm (mV) of
Artemis -8.6 mV 10.9 mV 24.4 mV

Having presented the OCV estimation results, a comparative analysis of the OCV
estimates can be performed to identify faults. At every time instant, the z-score of
all the OCV estimates is evaluated and if any of the OCV estimates are observed to
deviate significantly, outside the ±3σ limit for a significant period of time, a fault
can be detected. Figure 4.6 depicts the z-scores vs time for the OCV estimates for
all the 108 cells vs time with the ±3σ limits.
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Figure 4.6: Z-scores vs time, OCV estimates

As can be seen in Figure 4.6, the z-score for the faulty cell drifts significantly out-
side the −3 limit soon after the fault at 500 s while the z-scores for the other cells
stay within ±2. A detection strategy could be to check if the z-score for an OCV
estimate strays outside the ±4 limit for more than a stipulated period of time, say
4 minutes, or to keep track of the proportion of time for which an OCV estimate
strays outside the ±3σ limit.
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4.1.1.3 RISCr of 5 W

A similar performance evaluation is now presented for an RISCr of 5 W. The actual
and estimated OCV plots are not presented for this case, but the metrics depicting
the extent of error in the OCV estimate in the faulty cell are presented in Table 4.2.

Table 4.2: Faulted cell OCV error statistics

Driving profile mean error (mV) RMSE (mV) ∞ norm (mV) of
Artemis -8.6 mV 10.9 mV 24.4 mV

The z-scores of the OCV estimates are presented in Figure 4.7.
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Figure 4.7: Z-scores vs time, OCV estimates for 5 W RISCr

It is observed that the z-score for the faulty cell OCV does not deviate out of the
−3 limit as clearly as it did with a 1 W ISCr as was seen in Figure 4.6, but still
strays outside of it for a significant proportion of time.

4.1.1.4 Decaying RISCr

Now that the RLS filter based detection has been verified with the fault induced
instantaneously at a certain time instant, the effects of a slowly degrading (decreas-
ing) RISCr is investigated. Furthermore, a much longer driving cycle will be used
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for this case. The total length of the cycle is around 6 hours, and the faulty cell
short-circuit resistance decays slowly from 11 W to a value less than 1 W at the end of
the cycle. Figure 4.8 depicts the decaying RISCr of the faulted cell and the z-scores
based detection.
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Figure 4.8: Faulted cell RISCr and Z-scores based detection

It is seen clearly from Figure 4.8 that the z-score of the faulted cell deviates outside
the -3 σ limit around the 1 hour mark, when the short circuit resistance is 9 W.
Thus, very early detection is possible in this case before the short circuit resistance
drops further.

4.2 Simscape modeling and fault simulation

Now that the RLS filter based detection has been demonstrated for the Simulink
model, investigations will be performed for faults in the Simscape model of a battery
pack. As mentioned in section 3.2.3, three parallel individual cells are considered as
a logical cell unit in a battery pack with 108 logical cells and a fault is induced on
the first individual cell in logical cell number 37 at 500 s. For a value of RISCr of 1
W, the OCV s of the three cells in the logical cell unit with the fault are presented
in Figure 4.9. The SOC of a healthy individual cell from another logical cell unit
is also presented for reference. The individual cells in logical cell 37 are denoted by
37,1; 37,2 and 37,3.
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Figure 4.9: OCV s of various individual cells

As can be observed in Figure 4.9, the OCV s of the individual cells in logical cell
37 all decay faster than the healthy cell which is due to the fault. However, within
the cells of logical cell 37, the first cell OCV decays faster than 2 and 3 (which are
identical), as the fault is simulated only on the first individual cell according to the
method in section 3.2.3. This achieves the desired effect of a fault on one of the
individual cells in a logical cell block. The performance of the detection algorithm
will be checked for different values of RISCr applied to cell 37,1.

4.2.1 RLS fault detection

The OCV of a logical cell is estimated using the RLS filter as a lumped parame-
ter, following which a comparative analysis is performed on similar lines as before
with the z-scores. As before, uncertainties are added to the voltage measurements
from the simulation to capture the combined effects of minor differences between
cell characteristics and voltage sensor errors.

In Figure 4.10, the z-scores based detection is presented for faults of 1 W and 5 W.
The actual and estimated OCV plots will not be presented since they look very
similar to Figures 4.3 and 4.4.
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Figure 4.10: Z-scores based detection for RISCr of 1 W and 5 W, Simscape model

It is seen that the detection algorithm performs satisfactorily for an RISCr of 1
W on cell 37,1. However, the performance of the algorithm for an RISCr of 5 W
is not as conclusive as observed in Figure 4.7. This indicates that although an
instantaneous fault on an individual cell can be detected using this method, the
detection is conclusive for smaller values of the short circuit resistance.

4.3 Fault detection with a linear regression
In this section, the results of the moving window regression technique for detecting
abnormal self-discharge is evaluated. A presentation of the effect of a minor abnor-
mal self-discharge on both the SOC and OCV will first be presented after which
results for the linear curve fit to identify abnormal self discharge are discussed.

As mentioned in section 3.4, a driving profile that is approximately 10 days long
is considered, with a fault introduced on one of the cells. In order to highlight the
motivation behind this method to detect abnormal-self discharge, the difference of
the SOC and OCV between a healthy cell and the faulty cell, for a small period of
6 hours, is illustrated in Figure 4.11 for the 50 W RISCr.
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Figure 4.11: Difference in SOC and OCV between healthy and faulty cell

Figure 4.11 clearly depicts how the difference in SOC rises steadily with time. The
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OCV also shows an increasing trend but has peaks and valleys, which is because
the OCV -SOC relationship is not perfectly linear for all SOC levels as seen in
Figure 3.3. This increasing trend, over an appropriately long period of time, can be
captured by a linear curve fit on the terminal voltages. A time window of 2 days
is chosen to perform the linear curve fit. Figure 4.12 depicts the terminal voltage
measurements and linear fits over a period of 4 days for the 50 W short, and just the
voltage fits for the 200 W short for a period of 10 days.
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Figure 4.12: Terminal voltage measurements and linear fits, for shorts of 50 W
and 200 W

As observed in Figure 4.12, the linear fit for the faulty cell exhibits a higher slope
than the fits for a healthy cell and as the faulty cell degrades over time, the offset
increases.

4.4 SOC and parameter estimation using frequency
separation

In this section, the SOC and parameter estimation method using the high pass
filter to remove low frequency errors is evaluated. Figure 4.13 depicts the estimation
results without employing the high pass filter. An initial SOC of 0.82 and capacity
of 190 Ah is used in the estimation process. It is mentioned again that the actual
initial SOC is 0.8 and the capacity is 180 Ah in the plant model. The reference
values for the parameters have steps of 10% for R0 at 60 min and 1% for A at 40 min,
both of which also leads to steps in the B reference used in the plant. Furthermore,
the initial errors in R̂0 and Â are +0.5% and -5% respectively.
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Figure 4.13: Parameter and SOC estimates for a ŜOC0 of 0.82 and Q̂nom of 190
Ah

As can be seen in Figure 4.13, the estimates of the parameters and the SOC do
not converge satisfactorily to true values. This is because the incorrect initial SOC
(ŜOC0) and Q̂nom specified in the estimator propagate as low frequency errors to
the parameter estimates and finally to the SOC estimate.

In case ŜOC0 is further away from the actual value of 0.8, say 0.7, the SOC estimate
actually diverges in intervals where Â takes a value greater than 1 as seen in Figure
4.14.

The divergence can be explained by the fact that Â is the pole of the RC-circuit,
which is unstable for A > 1. This example shows the effects of low frequency errors
over the final SOC estimate, which will subsequently be used for capacity Q and
short circuit resistance RISCr estimation.

The estimates are now presented after application of the high pass filter with a
ŜOC0 of 0.82 in Figure 4.15 and 0.7 in Figure 4.16.
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Figure 4.14: Parameter and SOC estimates for a ŜOC0 of 0.7 and Q̂nom of 190
Ah

0 20 40 60 80 100 120 140

Time [min]

3.95

4

4.05

4.1

4.15

4.2

4.25

R
0
 [

o
h

m
]

×10-4

Actual R
0

Estimated R
0

0 20 40 60 80 100 120 140

Time [min]

0.94

0.96

0.98

1

1.02

A

Actual A

Estimated A

0 20 40 60 80 100 120 140

Time [min]

1

2

3

4

5

6

7

B

×10-6

Actual B

Estimated B

0 20 40 60 80 100 120 140

Time [min]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
O

C

Actual SOC

Estimated SOC

Figure 4.15: Parameter and SOC estimates for a ŜOC0 of 0.82 and Q̂nom of 190
Ah using a high pass filter
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Figure 4.16: Parameter and SOC estimates for a ŜOC0 of 0.7 and Q̂nom of 190
Ah using a high pass filter

Figures 4.15 and 4.16 show that the parameter and SOC estimates converge to the
reference values accurately. This occurs because the low frequency errors are filtered
out by the high-pass filter. One can also observe deviations in the SOC estimate
initially, especially for the case with a ŜOC0 of 0.7. This occurs because the ÔCV

err

pre

signal shown in Figure 4.17 takes some time to converge to 0 in the time domain
and is quite significant in magnitude as compared to the filtered U1 signal initially,
thus affecting the final SOC estimate.

Also, it is seen that the estimate R̂0 has an error at t = 40 min in both the figures.
This is a consequence of the step introduced in parameter A in the cell plant model.
Since both Â and B̂ are feed-backed to estimate R0, there are errors in R̂0 when
there are errors in Â and B̂, and after these estimates converge to the actual values
of A and B, the error disappears in R̂0.

It is important to point out that sudden parameter variations in the cell can also be
indicators of a thermal event. In this work, however, the primary focus of electrical
errors at the cell level is the short circuit resistance RISCr, and this will be estimated
in the following section.

4.5 Capacity Q and RISCr estimation
In the previous section, the results of the SOC and parameter estimator were pre-
sented. In this section, the results of the capacity Q and RISCr estimates, using the
SOC estimate ŜOC will be presented. First, the ŜOC for four different values of
RISCr introduced into the plant model is depicted in Figure 4.18. The ŜOC0 con-
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Figure 4.17: GHFU1 and ÔCV
err

pre in the time domain for a ŜOC0 of 0.7

sidered is 0.82, and the capacity Q̂nom in the estimator is 190 Ah, while the actual
capacity of the cell is 180 Ah.
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Figure 4.18: SOC estimate for various values of RISCr
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4. Results

The SOC estimates of Figure 4.18 are quite close to the actual SOC of the cell,
and the estimation of Q and RISCr can now be formed using the method presented
in section 3.6. Table 4.3 depicts the results of the estimation process for the four
different RISCr values using the Ordinary Least Squares method.

Table 4.3: Results of Q and RISCr estimation using the ordinary least squares
algorithm ˆSOC0 of 0.82

Actual RISCr Q̂ R̂ISCr

50 W 180.04 Ah 35.71 W
10 W 179.96 Ah 9.19 W
5 W 179.8 Ah 4.79 W
1 W 178.34 Ah 1.006 W

The estimates Q̂ are very close to the actual value of 180 Ah, especially when the
internal short is not very severe. As the short becomes more significant (for example
1 W), the capacity estimate worsens. It is also observed that R̂ISCr is close to the
actual value, thus indicating that the extent of self-discharge can be monitored using
such an estimation procedure.

The same estimation procedure is now repeated for a ŜOC0 of 0.7. The results of
the ordinary least squares estimator are presented in Table 4.4.

Table 4.4: Results of Q and RISCr estimation using the ordinary least squares
algorithm for a ŜOC0 of 0.7

Actual RISCr Q̂ R̂ISCr

50 W 179.93 Ah 5.79 W
10 W 179.84 Ah 3.96 W
5 W 179.69 Ah 2.85 W
1 W 178.22 Ah 0.89 W

The values of R̂ISCr are quite off from the actual values. This happens because
the OLS algorithm is very sensitive to outliers in data, which can be observed in
the ŜOC in Figure 4.16 near t = 0 min. The robust LS algorithm can be used to
decrease the influence of outliers, and the estimation results using this algorithm are
seen in Table 4.5. The estimation results can be observed to be significantly better
as compared to Table 4.4.

50



4. Results

Table 4.5: Results of Q and RISCr estimation using the robust least squares
algorithm for a ŜOC0 of 0.7

Actual RISCr Q̂ R̂ISCr

50 W 179.99 Ah 30.16 W
10 W 179.89 Ah 8.76 W
5 W 179.73 Ah 4.64 W
1 W 178.24 Ah 1 W
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4. Results
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5
Discussion

In this chapter, the results will be scrutinized further to provide descriptions of
potential uncertainties and deficiencies in this work and to also provide further
commentary.

5.1 Comparative analysis based fault detection

The comparative analysis based fault detection schemes offer a simple and reliable
solution to detect electrical faults occurring in a single cell in the pack. However,
the OCV estimate that was obtained for the cells in the pack seems to be under-
estimated as compared to the actual OCV in the cell as was seen in Figure 4.3,
which might be an issue if accurate OCV estimates are desired. This issue can
be resolved by employing an RLS filter that uses a higher order battery model as
described in detail in [32], although the estimation process can be more challeng-
ing with more parameters. Furthermore, it is assumed that the cells in a battery
pack are largely similar in performance with no major differences in their param-
eters for the comparative analysis to function effectively and not be susceptible to
false positives. In case a more individual cell level fault detection scheme is desired,
techniques involving RISCr estimation can be applied to each cell for the purpose
of fault detection. The technique with OCV extraction using an RLS filter with a
zeroth-order model has been successful in estimating RISCr in [21] but was found
to be unsatisfactory in this work, thereby warranting a more sophisticated approach.

The same method was also tested for faults in a single cell in a logical cell unit that
was built in Simscape. The results were satisfactory for faults of a higher severity
but were not conclusive for an RISCr of 5 W and above as compared to the detection
scheme applied to a single lumped cell. However, one can consider that even 1 W
faults are minor in relationship to the internal resistance of a few mW in the cell and
a load current that is of the order of 100 A.

In order to detect abnormal self-discharge over a long span of time, linear fits were
performed on the terminal voltages on all the cells in the battery pack. The obvi-
ous disadvantage with this method is that the data over the chosen window period
has to be stored for all cells, although one could argue that memory is not a grave
consideration in recent years. A recursive linear regression can be implemented in
case available memory is constrained.
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5. Discussion

A temperature based analysis can also be used for detection of internal short circuits
as heat is generated as a consequence of such faults. However, temperature effects of
an internal short can take a long time to appear on the surface of the cell thus mak-
ing instantaneous detection difficult Furthermore, there is also continuous cooling
both by the coolant and also external agents like wind when driving, thus affecting
effective detection. Also, usually there are no temperature sensors for every cell
thus rendering it difficult to establish a correlation between temperature increase
and short in a specific cell. Further analysis needs to be performed to assess the
merits of a thermal model based detection strategy.

5.2 High pass filter based parameter, SOC, ca-
pacity and RISCr estimation

The previous methods performed fault detection without estimation of the RISCr.
In this technique, the parameters and SOC of the cell are estimated accurately using
a high-pass filter to filter out low frequency errors. Although the primary focus is to
obtain the RISCr from the SOC estimate, it is important to mention that other es-
timates such as capacity, ohmic resistance R0 and polarization branch parameters A
and B can also be used to identify abnormalities. For instance, an abrupt change in
capacity or parameter estimates can be a potential indicator of the thermal run-away.

In the parameter and SOC estimation block, the tuning parameters such as the
initial covariance and the forgetting factor for all the RLS filters are chosen by trial
and error. They have not been optimized in any way, for instance, to minimize the
RMSE of the estimate for a particular chosen reference. Furthermore, ∆I and ∆T
in the R0 estimation block have been chosen purely based on visual observation and
trial and error. The effect of sensor noise on the parameter estimates is not rigor-
ously explored but the importance of having an excitation condition is specified in
the context of the presence of sensor noise.

The capacity Q and RISCr estimation are performed in a non-recursive manner in
this report. Recursive methods such as the Kalman filter and RLS to estimate these
quantities were attempted, but it was observed that the estimates were highly sen-
sitive to errors in the SOC estimate. For example, when a parameter reference step
was introduced in A, the estimate takes a while to attain steady state and during
that time there is a disturbance in the SOC estimate. This disturbance leads to
issues in the recursive capacity estimator. It was attempted to solve this by tuning
the process and measurement noise of the designed Kalman filter and forgetting
factor of the RLS filter appropriately but it was not very successful. A possible
fix would be to optimize the forgetting factors of the RLS filters for R0, A and B
estimation to push the ŜOC disturbance to a higher frequency region, which can
then be filtered out using a low pass filter. At present, the disturbance is not in a
distinctly separate frequency band and thus, a Least Squares regression was used to
estimate SOC and RISCr.
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5. Discussion

5.3 Sustainable aspects

The implications of a thermal runaway on a cell form the economical perspective
are easily understood. For instance, the thermal failures in the being aircraft [4]
led to reputation damage and extensive investigation which proved very expensive.
Lithium-ion batteries are gaining reputation in the electric vehicles area as a reliable
source of energy, but safety incidents can prove very expensive for a company and in
worst cases, might lead to call backs and halted sales. However, it is also important
to ensure that any kind of a detection scheme does not lead to false positives as
this can also lead to waste of resources and reputation if it happens often. In this
work, several methods with different degrees of sophistication are presented and a
combination of them can be used to minimize instances of false detection. Further-
more, it is important to contemplate the degree of sophistication of the detection
scheme that is proposed, to ensure that the cheapest solution for effective detection
is implemented.

The transition to a new technology is always met with skepticism. In order to over-
come the initial social resistance to a new product, trust and reliability are very
essential. In case safety critical incidents are reported with respect to batteries,
even if they aren’t very many, the social barrier for adoption of battery vehicles will
grow and the ecological benefits of such vehicles will be ignored. Hence, it is imper-
ative to invest in technology that makes electric vehicles and batteries trustworthy.
A striking example of this is the Samsung phone explosion that occurred due to
the battery [5] resulting in customer outrage and breach of trust, not to mention
the widespread media coverage and damage to reputation. To summarize the social
aspects, safety and preservation of human life must be top priority for any kind of
technology and this work serves to achieve that in the context of electric vehicles.

There are no immediately obvious environmental impacts of implementing appro-
priate fault detection schemes for batteries besides the indirect benefits. However,
as mentioned before, social acceptance and trust in electric vehicles ensures more
sales and seamless transition, thereby ensuring ecological benefits of such technology
with respect to emissions, noise etc.

5.4 Ethical aspects

In the context of IEEE’s guidelines on ethical obligations that must be followed by
engineers, three guidelines are chosen and elaborated further.

• To be honest and realistic in stating claims or estimates based on available
data;
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5. Discussion

This project work is centred around making predictions and estimations based
on available data and therefore, this guideline is especially relevant. It was
important to verify that the parameters and look up tables used in the model
are checked for correctness as they impact the algorithms significantly. Also,
the input current profile was important to be chosen from a realistic scenario.
Furthermore, in case any algorithm failed to identify faulty situations effec-
tively, it was mentioned clearly in the chapter on results.

• To maintain and improve our technical competence and to undertake techno-
logical tasks for others only if qualified by training or experience, or after full
disclosure of pertinent limitations;

This work involved learning and familiarizing with many new techniques and
therefore, improving competence was always a part of the process. At times,
there was a risk of not maintaining a sufficient level of commitment towards
that cause, but it was overcome for the most part. Integrity with respect to
boundaries of knowledge and experience were kept to as significant an extent
as possible, and assistance was sought when necessary especially with the al-
gorithm involving a high-pass filter. The limitations of the various algorithms
have been attempted to be captured as much as possible in the discussions
chapter.

• To seek, accept, and offer honest criticism of technical work, to acknowledge
and correct errors, and to credit properly the contributions of others

Many of the tasks involved in this project were highly collaborative in nature,
and involved extremely valuable inputs from others. There were instances
where certain assumptions made initially were not perfectly valid, and sub-
sequently had to be corrected as pointed out by supervisors. Feedback and
criticism was also constantly sought and received with the ultimate goal of
incorporation into the work.
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6
Conclusion

In this work, electrical faults in the battery cell unit are simulated and various al-
gorithms for detection have been proposed. Specifically, the internal short circuit is
considered for analysis and a plant model for the 1 RC link equivalent circuit of the
battery cell with a modification to simulate a fault is employed. A Simscape plant
model consisting of three individual cell units in parallel is also designed to simu-
late faults. The methods for fault detection detection using a comparative analysis
without short circuit resistance (RISCr) estimation over the cells in the pack give
satisfactory detection for internal shorts as soft as 5 W. Furthermore, the detection
time is not very long thereby ensuring quick isolation of the fault. When the Sim-
scape plant model is used with a fault on one of the parallel cell units, this detection
is less satisfactory for the same severity of fault. A simple technique to detect ab-
normal self-discharge using a linear fit on the terminal voltage measurements is also
evaluated, and it is observed clearly that the faulty cell can be detected through
observation of the offset and slope.

Subsequently, a SOC and parameter estimation procedure using frequency separa-
tion is designed and evaluated with the end goal of estimation of RISCr. Investigation
of the frequency domain of the various signals is performed to determine filter prop-
erties and other aspects of design. The results of SOC and parameter estimates
for two different conditions of initial SOC and capacity fed to the estimator depict
clearly how low frequency errors propagate through the estimator and cause signif-
icant errors in these estimates. The high-pass filters eliminate these low frequency
errors in the parameter estimators, thus giving much better estimates which are
then used to calculate SOC over the entire frequency range. The SOC estimate
after employing the filters are very accurate, with minor disturbances in the initial
transient phase and also when parameter steps are introduced in the plant. The
RISCr and capacity Q are estimated using a Least Squares and a modified Robust
Least Squares technique for various scenarios. The estimation is observed to be rea-
sonable, especially with the Robust Least Squares estimator that disregards outliers.

6.1 Future Work

There are several possible avenues to further improve or modify the detection algo-
rithm design presented in this work.
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6. Conclusion

• Since the comparative methods for fault detection involve OCV extraction,
other methods can be investigated to estimate the same. For instance, an
RLS filter applied on a model with 1 RC link or a Kalman filter can be used.

• Voltage and current sensor noise can be introduced in the simulations to de-
termine effects on the comparative analysis. Characterization of the sensors
must first be done to obtain realistic values for the same.

• In the SOC and parameter estimator, the forgetting factors and other design
parameters can be obtained through optimization techniques.

• The effect of sensor noises has to be investigated on the performance of fre-
quency separation estimator. This analysis is very important with respect to
validating this method.

• The RISCr and capacity Q estimator is not implemented recursively in this
work. This must be investigated further, with respect to isolation of frequency
bands where the disturbances in the SOC estimate are not present. This also
relates to optimization of the forgetting factor for the parameter estimators to
give a faster rise time, so the SOC estimate has smaller disturbances.

• A thermal analysis can be performed using thermal models of the cells on FEM
software or Simulink to determine feasibility of soft short circuit detection
using temperature measurements. The specific architecture of temperature
sensors in the pack and other must be incorporated into the analysis.
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